Designing Embedded
systems with PIC
Microcontroliers
Principles ang];gnlicatimis.

.-; ?‘ _¢
\ ot e >
A\ ‘e (S T

v . :
1,0 = .,
\..‘ J -..-.;."'
e in oL

A _ e
- - . - 5} ‘\ ‘* i |
' (W
. P 2PN
Tim Wilmshurst | e @
Newnes

Designing Embedded Systems with PIC Microcontrollers

Principles and applications

This page intentionally left blank

ganga
This page intentionally left blank

Designing Embedded Systems with
PIC Microcontrollers

Principles and applications

Tim Wilmshurst

AMSTERDAM ¢ BOSTON ¢ HEIDELBERG ¢ LONDON ¢ NEW YORK ¢ OXFORD @

- PARIS ¢ SAN DIEGO ¢ SAN FRANCISCO ¢ SINGAPORE ¢ SYDNEY ¢« TOKYO
ELSEVIER Newnes is an imprint of Elsevier Newnes

Newnes is an imprint of Elsevier

Linacre House, Jordan Hill, Oxford OX2 8DP, UK

The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK
84 Theobald’s Road, London WC1X 8RR, UK

Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

525 B Street, Suite 1900, San Diego, CA 92101-4495, USA

First edition 2007
Copyright © 2007, Timothy Wilmshurst. Published by Elsevier Ltd. All rights reserved

The right of Timothy Wilmshurst to be identified as the author of this work has been
asserted in accordance with the Copyright, Designs and Patents Act 1988

No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333;
email: permissions @elsevier.com. Alternatively you can submit your request online by
visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting
Obtaining permission to use Elsevier material

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons
or property as a matter of products liability, negligence or otherwise, or from any use
or operation of any methods, products, instructions or ideas contained in the material
herein. Because of rapid advances in the medical sciences, in particular, independent
verification of diagnoses and drug dosages should be made

British Library Cataloguing in Publication Data
Wilmshurst, Tim
Designing embedded systems with PIC microcontrollers:
principles and applications
1. Embedded computer systems — Design and construction
2. Microprocessors — Design and construction
1. Title
004.1°6

Library of Congress Control Number: 2006933361

ISBN-13: 978-0-7506-6755-5
ISBN-10: 0-7506-6755-9

For information on all Newnes publications
visit our website at www.books.elsevier.com

Printed and bound in Great Britain

07 08 09 10 11 1 10 9 8 7 6 5 4 3 2 1

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID qihre Foundation

Contents

Introduction
Acknowledgements

Section 1 Getting Started with Embedded Systems

1 Tiny computers, hidden control

1.1 The main idea — embedded systems in today’s world
1.1.1 What is an embedded system?
1.2 Some example embedded systems
1.2.1 The domestic refrigerator
1.2.2 A car door mechanism
1.2.3 The electronic ‘ping-pong’
1.2.4 The Derbot Autonomous Guided Vehicle
1.3 Some computer essentials
1.3.1 Elements of a computer
1.3.2 Instruction sets — CISC and RISC
1.3.3 Memory types
1.3.4 Organising memory
1.4 Microprocessors and microcontrollers
1.4.1 Microprocessors
1.4.2 Microcontrollers
1.43 Microcontroller families
1.4.4 Microcontroller packaging and appearance
1.5 Microchip and the PIC microcontroller
1.5.1 Background
1.5.2 PIC microcontrollers today
1.6 An introduction to PIC microcontrollers using the 12 Series
1.6.1 The 12F508 architecture
1.7 What others do — a Freescale microcontroller
Summary
References

Section 2 Minimum Systems and the PIC® 16F84A

2 Introducing the PIC® 16 Series and the 16F84A

2.1

The main idea — the PIC 16 Series family
2.1.1 A family overview

XX1
XXV

O 0 JANUnNBA B~ WW W

23

25

25
25

vi

Contents

2.1.2 The 16F84A
2.1.3 A caution on upgrades

2.2 An architecture overview of the 16F84A
2.2.1 The Status register
2.3 Areview of memory technologies
2.3.1 Static RAM (SRAM)
2.3.2 EPROM (Erasable Programmable Read-Only Memory)
2.3.3 EEPROM (Electrically Erasable Programmable Read-Only Memory)
234 Flash
2.4 The 16F84A memory
24.1 The 16F84A program memory
2.4.2 The 16F84A data and Special Function Register memory (‘RAM”)
2.4.3 The Configuration Word
2.44 EEPROM
2.5 Some issues of timing
2.5.1 Clock oscillator and instruction cycle
2.5.2 Pipelining
2.6 Power-up and Reset
2.7 What others do — the Atmel AT89C2051
2.8 Taking things further — the 16F84A on-chip reset circuit
Summary
References

Parallel ports, power supply and the clock oscillator

3.1
32

33

34

3.5

3.6

3.7

The main idea — parallel input/output

The technical challenge of parallel input/output
3.2.1 Building a parallel interface

3.2.2 Port electrical characteristics

3.2.3 Some special cases

Connecting to the parallel port

3.3.1 Switches

3.3.2 Light-emitting diodes

The PIC 16F84A parallel ports

3.4.1 The 16F84A Port B

34.2 The 16F84A Port A

3.4.3 Port output characteristics

The clock oscillator

3.5.1 Clock oscillator types

3.5.2 Practical oscillator considerations

3.5.3 The 16F84A clock oscillator

Power supply

3.6.1 The need for power, and its sources
3.6.2 16F84A operating conditions

The hardware design of the electronic ping-pong

27
27
27
29
29
30
31
31
31
32
32
33
35
35
37
37
38
38
40
41
44
44

45

46
46
46
49
49
52
52
53
55
55
55
56
59
59
60
60
61
61
62
63

Contents

vii

Summary
References

Starting to program — an introduction to Assembler

4.1 The main idea — what programs do and how we develop them
4.1.1 The problem of programming and the Assembler compromise
4.1.2 The process of writing in Assembler
4.1.3 The program development process
4.2 The PIC 16 Series instruction set, with a little more on the ALU
4.2.1 More on the PIC 16 Series ALU
4.2.2 The PIC 16 Series instruction set — an introduction
4.3 Assemblers and Assembler format
43.1 Introducing Assemblers and the Microchip MPASM™ Assembler
4.3.2 Assembler format
4.3.3 Assembler directives
4.3.4 Number representation
4.4 Creating simple programs
4.4.1 A simple data transfer program
4.5 Adopting a development environment
4.5.1 Introducing MPLAB
4.5.2 The elements of MPLAB
4.5.3 The MPLAB file structure
4.6 An introductory MPLAB tutorial
4.6.1 Creating a project
4.6.2 Entering source code
4.6.3 Assembling the project
4.7 An introduction to simulation
4.7.1 Getting started
4.7.2 Generating port inputs
4.7.3 Viewing microcontroller features
4.7.4 Resetting and running the program
4.8 Downloading the program to a microcontroller
4.9 What others do — a brief comparison of CISC and RISC instruction sets
4.10 Taking things further — the 16 Series instruction set format
Summary
References

Building Assembler programs

5.1

52

The main idea — building structured programs

5.1.1 Flow diagrams

5.1.2 State diagrams

Flow control — branching and subroutines

5.2.1 Conditional branching and working with bits
5.2.2 Subroutines and the Stack

64
64

65

66
66
67
68
69
69
70
71
71
71
72
72
73
73
76
76
76
77
77
77
79
80
81
81
81
82
82
83
86
87
88
88

89

89
89
91
92
92
94

viii

Contents

53
5.4

5.5
5.6

5.7

5.8

59

5.10

5.11

Generating time delays and intervals

Dealing with data

5.4.1 Indirect addressing and the File Select Register
5.4.2 Look-up tables

5.4.3 Example program with delays and look-up table
Introducing logical instructions

Introducing arithmetic instructions and the Carry flag
5.6.1 Using add instructions

5.6.2 Using subtract instructions

5.6.3 An arithmetic program example

5.6.4 Using indirect addressing to save the Fibonacci series
Taming Assembler complexity

5.7.1 Include Files

5.7.2 Macros

5.7.3 MPLAB special instructions

More use of the MPLAB simulator

5.8.1 Breakpoints

5.8.2 Stopwatch

5.8.3 Trace

The ping-pong program

5.9.1 A structure for the ping-pong program

5.9.2 Exploring the ping-pong program code
Simulating the ping-pong program — tutorial

5.10.1 Setting up input stimulus

5.10.2 Setting up the Watch window

5.10.3 Single stepping

5.10.4 Animate

5.10.5 Run

5.10.6 Breakpoints

5.10.7 Stopwatch

5.10.8 Trace

5.10.9 Debugging the full program

What others do — graphical simulators

Summary
References

Working with time: interrupts, counters and timers

6.1

6.2

The main idea — interrupts

6.1.1 Interrupt structures

6.1.2 The 16F84A interrupt structure

6.1.3 The CPU response to an interrupt

Working with interrupts

6.2.1 Programming with a single interrupt

6.2.2 Moving to multiple interrupts — identifying the source

95

97

97

98

99
101
102
102
102
102
104
106
106
107
108
109
109
110
110
112
112
115
116
116
116
116
117
117
117
117
117
118
118
119
119

120

121
121
122
124
125
125
126

Contents ix
6.2.3 Stopping interrupts from wrecking your

program 1 — context saving 127

6.2.4 Stopping interrupts from wrecking your program 2 — critical
regions and masking 130
6.3 The main idea — counters and timers 131
6.3.1 The digital counter reviewed 131
6.3.2 The counter as timer 132
6.3.3 The 16F84A Timer 0 module 134
6.4 Applying the 16F84A Timer 0, with examples using the electronic ping-pong 136
6.4.1 Object or event counting 136
6.4.2 Hardware-generated delays 137
6.5 The Watchdog Timer 138
6.6 Sleep mode 139
6.7 What others do 140
6.8 Taking things further — interrupt latency 141
Summary 142
Section 3 Larger Systems and the PIC® 16F873A 143
7 Larger systems and the PIC® 16F873A 145
7.1 The main idea — the PIC 16F87XA 146
7.2 The 16F873A block diagram and CPU 146
7.2.1 Overview of CPU and core 146
7.2.2 Overview of memory 147
7.2.3 Overview of peripherals 150
7.3 16F873A memory and memory maps 150
7.3.1 The 16F873A program memory 150
7.3.2 The 16F873A data memory and Special Function Registers 152
7.3.3 The Configuration Word 154
7.4 ‘Special’ memory operations 155
7.4.1 Accessing EEPROM and program memory 155
7.4.2 In-Circuit Serial Programming (ICSP™) 156
7.5 The 16F873A interrupts 158
7.5.1 The interrupt structure 158
7.5.2 The interrupt registers 159
7.5.3 Interrupt identification and context saving 161
7.6 The 16F873A oscillator, reset and power supply 161
7.6.1 The clock oscillator 161
7.6.2 Reset and power supply 161
7.7 The 16F873A parallel ports 161
7.7.1 The 16F873A Port A 163
7.7.2 The 16F873A Port B 164
7.7.3 The 16F873A Port C 164

x Contents
7.8 Test, commission and diagnostic tools 165
7.8.1 The challenge of testing an embedded system 165
7.8.2 Oscilloscopes and logic analysers 167
7.8.3 In-circuit emulators 170
7.8.4 On-chip debuggers 170
7.9 The Microchip in-circuit debugger (ICD 2) 171
7.10 Applying the 16F873A: the Derbot AGV 172
7.10.1 Power supply, oscillator and reset 172
7.10.2 Use of the parallel ports 173
7.10.3 Assembling the hardware 174
7.11 Downloading, testing and running a simple
program with ICD 2 176
7.11.1 A first Derbot program 176
7.11.2 Applying the ICD 2 178
7.11.3 Setting the configuration bits within the program 179
7.12 Taking things further — the 16F874A/16F877A
Ports D and E 180
Summary 182
References 183
8 The human and physical interfaces 184
8.1 The main idea — the human interface 184
8.2 From switches to keypads 187
8.2.1 The keypad 187
8.2.2 Design example: use of keypad in Derbot hand controller 188
8.3 LED displays 193
8.3.1 LED arrays: seven-segment displays 193
8.3.2 Design example: the Derbot hand controller
seven-segment display 194
8.4 Liquid crystal displays 199
8.4.1 The HD44780 LCD driver and its derivatives 199
8.4.2 Design example: use of LCD display in Derbot hand controller 200
8.5 The main idea — interfacing to the physical world 203
8.6 Some simple sensors 203
8.6.1 The microswitch 204
8.6.2 Light-dependent resistors 204
8.6.3 Optical object sensing 205
8.6.4 The opto-sensor applied as a shaft encoder 205
8.6.5 Ultrasonic object sensor 207
8.7 More on digital input 207
8.7.1 16F873A input characteristics 207
8.7.2 Ensuring legal logic levels, and input protection 208
8.7.3 Switch debouncing 212

Contents

Xi

8.8 Actuators: motors and servos
8.8.1 DC and stepper motors
8.8.2 Angular positioning: the ‘servo’
8.9 Interfacing to actuators
8.9.1 Simple DC switching
8.9.2 Simple switching on the Derbot
8.9.3 Reversible switching: the H-bridge
8.9.4 Motor switching on the Derbot
8.10 Building up the Derbot
8.11 Applying sensors and actuators — a ‘blind’ navigation Derbot program
Summary
References

Taking timing further

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10
9.11
9.12
9.13

The main ideas — taking counting and timing further
The 16F87XA Timer 0 and Timer 1

9.2.1 Timer 0

9.2.2 Timer 1

9.2.3 Application of Timer O and Timer 1 as counters for Derbot odometry

9.2.4 Using Timer 0 and Timer 1 to generate repetitive interrupts
The 16F87XA Timer 2, comparator and PR2 register

9.3.1 Timer 2

9.3.2 The PR2 register, comparator and postscaler

The capture/compare/PWM (CCP) modules

9.4.1 A capture/compare/PWM overview

9.4.2 Capture mode

9.4.3 Compare mode

Pulse width modulation

9.5.1 The principle of PWM

9.5.2 Generating PWM signals in hardware — the 16F§7XA PWM
9.5.3 PWM applied in the Derbot for motor control

Generating PWM in software

9.6.1 An example of software-generated PWM

9.6.2 Further Assembler directives for memory definition and branching
PWM used for digital-to-analog conversion

9.7.1 An example of PWM used for digital-to-analog conversion
Frequency measurement

9.8.1 The principle of frequency measurement

9.8.2 Frequency (speed) measurement in the Derbot

Speed control applied to the Derbot

Where there is no timer

Sleep mode

Where do we go from here?

Building up the Derbot

212
212
214
215
215
217
218
220
220
222
223
223

225

225
226
226
226
228
231
232
232
234
235
235
235
237
237
237
239
241
244
245
248
249
249
252
252
252
255
258
260
261
262

Xii

Contents

10

Summary
References

Starting with serial

10.1
10.2

10.3

10.4
10.5

10.6

10.7

10.8

10.9

10.10

The main idea — introducing serial

Simple serial links — synchronous data communication

10.2.1 Synchronous basics

10.2.2 Implementing synchronous serial I/O in the microcontroller
10.2.3 Microwire and SPI (Serial Peripheral Interface)

10.2.4 Introducing multiple nodes

The 16F87XA Master Synchronous Serial Port (MSSP) module in SPI mode
10.3.1 Port overview

10.3.2 Port configuration

10.3.3 Setting the clock

10.3.4 Managing data transfer

A simple SPI example

The limitations of Microwire and SPI, and of simple
synchronous serial transfer

Enhancing synchronous serial, and the Inter-Integrated Circuit bus
10.6.1 Main I’C features and physical interconnection

10.6.2 The pull-up resistor

10.6.3 I2C signal characteristics

The MSSP configured for I>C

10.7.1 The MSSP I?C registers and their preliminary use
10.7.2 The MSSP in I’C Slave mode

10.7.3 The MSSP in I’C Master mode

I2C applied in the Derbot AGV

10.8.1 The Derbot hand controller as a serial node

10.8.2 The AGV as an I>C master

10.8.3 The hand controller as an I°C slave

10.8.4 Evaluation of the Derbot I>C programs

Evaluation of synchronous serial data communication

and an introduction to asynchronous

10.9.1 Asynchronous principles

10.9.2 Synchronising serial data — without an incoming clock
The 16F87XA Addressable Universal Synchronous
Asynchronous Receiver Transmitter (USART)

10.10.1 Port overview

10.10.2 The USART asynchronous transmitter

10.10.3 The USART baud rate generator

10.10.4 The USART asynchronous receiver

10.10.5 An asynchronous example

10.10.6 Using address detection with the USART receive mode
10.10.7 The USART in synchronous mode

262
262

263

263
265
265
266
266
267
267
268
268
270
271
273

275
275
275
275
276
277
277
281
283
286
286
286
290
292

293
293
293

295
295
295
298
299
300
302
302

Contents

xiii

11

10.11 Implementing serial without a serial port — ‘bit banging’
10.12 Building up the Derbot

Summary

References

Data acquisition and manipulation

11.1 The main idea — analog and digital quantities, their
acquisition and use
11.2 The data acquisition system
11.2.1 The analog-to-digital converter
11.2.2 Signal conditioning — amplification and filtering
11.2.3 The analog multiplexer
11.2.4 Sample and hold, and acquisition time
11.2.5 Timing and microprocessor control
11.2.6 Data acquisition in the microcontroller environment
11.3 The PIC® 16F87XA ADC module
11.3.1 Overview and block diagram
11.3.2 Controlling the ADC
11.3.3 The analog input model
11.3.4 Calculating acquisition time
11.3.5 Repeated conversions
11.3.6 Trading off conversion speed and resolution
11.4 Applying the ADC in the Derbot light meter program
11.4.1 Configuration of the ADC
11.4.2 Acquisition time
11.4.3 Data conversion
11.5 Some simple data manipulation techniques
11.5.1 Fixed- and floating-point arithmetic
11.5.2 Binary to Binary Coded Decimal conversion
11.5.3 Multiplication
11.5.4 Scaling and the Derbot light meter example
11.5.5 Using the voltage reference for scaling
11.6 The Derbot light-seeking program
11.7 The comparator module
11.7.1 Review of comparator action
11.7.2 The 16F87XA comparators and voltage reference
11.8 Applying the Derbot circuit for measurement purposes
11.8.1 The electronic tape measure
11.8.2 The light meter
11.8.3 The voltmeter
11.8.4 Other measurement systems
11.9 Configuring the Derbot AGV as a light-seeking robot
Summary

References

303
303
303
303

304

304
305
306
308
308
309
310
311
312
312
313
317
318
319
319
319
319
320
321
321
322
323
324
324
326
326
327
327
329
329
329
331
331
331
332
332
332

xiv Contents

Section 4 Smarter Systems and the PIC® 18FXX2

12 Smarter systems and the PIC® 18FXX2

12.1
12.2
12.3

12.4

12.5

12.6

12.7

12.8

12.9

12.10

The main idea — the PIC 18 Series and the 18FXX?2
The 18F2X2 block diagram and Status register

The 18 Series instruction set

12.3.1 Instructions which are unchanged

12.3.2 Instructions which have been upgraded
12.3.3 New, variant, instructions

12.3.4 New instructions

Data memory and Special Function Registers

12.4.1 The data memory map

1242 Access RAM

12.4.3 Indirect addressing and accessing tables in data memory
Program memory

12.5.1 The program memory map

12.5.2 The Program Counter

12.5.3 Upgrading from the 16 Series and computed goto instructions
12.5.4 The Configuration registers

The Stacks

12.6.1 Automatic Stack operations

12.6.2 Programmer access to the Stack

12.6.3 The Fast Register Stack

The interrupts

12.7.1 An interrupt structure overview

12.7.2 The interrupt sources, their enabling and prioritisation
12.7.3 Overall interrupt prioritisation enabling
12.7.4 Global enabling

12.7.5 Other aspects of the interrupt logic

12.7.6 The Interrupt registers

12.7.7 Context saving with interrupts

Power supply and reset

12.8.1 Power supply

12.8.2 Power-up and Reset

The oscillator sources

12.9.1 LP, XT, HS and RC oscillator modes
12.9.2 EC, ECIO and RCIO oscillator modes
12.9.3 HS + PLL oscillator mode

12.9.4 Clock source switching

Introductory programming with the 18F242

12.10.1 Using the MPLAB IDE for the 18 Series
12.10.2 The Fibonacci program

Summary
References

333

335

336
337
340
344
344
345
345
345
345
347
347
347
349
349
349
350
352
352
352
352
353
353
353
354
354
355
355
356
358
358
358
360
362
363
363
363
364
364
365
367
367

Contents xv

13 The PIC® 18FXX2 peripherals 368
13.1 The main idea — the 18FXX2 peripherals 368
13.2 The parallel ports 369
13.2.1 The 18FXX2 Port A 369
13.2.2 The 18FXX2 Port B 369

13.2.3 The 18FXX2 Port C 371
13.2.4 The parallel slave port 371

13.3 The timers 371
13.3.1 Timer 0 371

13.3.2 Timer 1 373

13.3.3 Timer 2 373

13.3.4 Timer 3 373
13.3.5 The Watchdog Timer 376

13.4 The capture/compare/PWM (CCP) modules 376
13.4.1 The control registers 376

13.4.2 Capture mode 376

13.4.3 Compare mode 377

13.4.4 Pulse width modulation 378

13.5 The serial ports 378
13.5.1 The MSSP in SPI mode 379

13.5.2 The MSSP in I?C mode 379

13.5.3 The USART 380

13.6 The analog-to-digital converter (ADC) 380
13.7 Low-voltage detect 380
13.8 Applying the 18 Series in the Derbot-18 382
13.9 The 18F2420 and the extended instruction set 383
13.9.1 Nanowatt technology 383
13.9.2 The extended instruction set 384

13.9.3 Enhanced peripherals 384
Summary 385
Reference 385
14 Introducing C 386
14.1 The main idea — why C? 387
14.2 An introduction to C 387
14.2.1 A little history 387

14.2.2 A first program 388

14.2.3 Laying out the program — declarations, statements, comments and space 388
14.2.4 C keywords 390

14.2.5 The C function 391
14.2.6 Data type and storage 392
14.2.7 C operators 392

14.2.8 Control of program flow, and the while keyword 393

xvi Contents

14.2.9 The C preprocessor and its directives 394
14.2.10 Use of libraries, and the Standard Library 394

14.3 Compiling the C program 394
14.4 The MPLAB C18 compiler 395
14.4.1 Specification of radix 396
14.4.2 Arithmetic operations 396

14.5 A C18 tutorial 396
14.5.1 The Linker and Linker Scripts 396
14.5.2 Linking header and library files 397

14.5.3 Building the project 397
14.5.4 Project files 398

14.6 Simulating a C program 400
14.7 A second C example — the Fibonacci program 401
14.7.1 Program preliminaries — more on declaring variables 402
14.7.2 The do-while construct 403

14.7.3 Labels and the goto keyword 403
14.7.4 Simulating the Fibonacci program 403

14.8 The MPLAB C18 libraries 403
14.8.1 Hardware peripheral functions 404
14.8.2 The software peripheral library 404

14.8.3 The general software library 405
14.8.4 The maths library 406

14.9 Further reading 406
Summary 407
References 407
15 C and the embedded environment 409
15.1 The main idea — adapting C to the embedded environment 409
15.2 Controlling and branching on bit values 409
15.2.1 Controlling individual bits 411
15.2.2 The if and if-else conditional branch structures 411

15.2.3 Setting the configuration bits 412
15.2.4 Simulating and running the example program 412

15.3 More on functions 413
15.3.1 The function prototype 413
15.3.2 The function definition 414

15.3.3 Function calls and data passing 414
15.3.4 Library delay functions, and Delayl0KTCYx() 415

15.4 More branching and looping 415
15.4.1 Using the break keyword 415
15.4.2 Using the for keyword 416

15.5 Using the timer and PWM peripherals 417
15.5.1 Using the timer peripherals 420

Contents xvii
15.5.2 Using PWM 421
15.5.3 The main program loop 421
Summary 422
16 Acquiring and using data with C 423
16.1 The main idea — using C for data manipulation 423
16.2 Using the 18FXX2 ADC 423
16.2.1 The light-seeking program structure 427
16.2.2 Use of the ADC 428
16.2.3 Further use of if-else 429
16.2.4 Simulating the light-seeking program 429
16.3 Pointers, arrays and strings 431
16.3.1 Pointers 431
16.3.2 Arrays 432
16.3.3 Using pointers with arrays 432
16.3.4 Strings 433
16.3.5 An example program: using pointers, arrays and strings 433
16.3.6 A word on evaluating the while condition 434
16.3.7 Simulating the program example 435
16.4 Using the I°C peripheral 437
16.4.1 An example I’C program 437
16.4.2 Use of ++ and —— operators 439
16.5 Formatting data for display 440
16.5.1 Overview of example program 440
16.5.2 Using library functions for data formatting 442
16.5.3 Program evaluation 442
Summary 443
17 More C and the wider C environment 444
17.1 The main idea — more C and the wider C environment 444
17.2 Assembler inserts 445
17.3 Controlling memory allocation 446
17.3.1 Memory allocation pragmas 447
17.3.2 Setting the Configuration Words 447
17.4 Interrupts 448
17.4.1 The Interrupt Service Routine 448
17.4.2 Locating and identifying the ISR 449

17.5 Example with interrupt on overflow — flashing LEDs
on the Derbot 449
17.5.1 Using Timer 0 450
17.5.2 Using interrupts, and the ISR action 451
17.5.3 Simulating the flashing LEDs program 452
17.6 Storage classes and their application 453
17.6.1 Storage classes 453

XViii

Contents

18

17.7

17.8
17.9

17.6.2 Scope

17.6.3 Duration

17.6.4 Linkage

17.6.5 Working with 18 Series memory
17.6.6 Storage class examples

Start-up code: c018i.c

17.7.1 The C18 start-up files

17.7.2 The c018i.c structure

17.7.3 Simulating c018i.c

Structures, unions and bit-fields
Processor-specific header files

17.9.1 SFR definitions

17.9.2 Assembler utilities in the header file

17.10 Taking things further — the MPLAB Linker and the .map file

17.10.1 What the Linker does
17.10.2 The Linker Script
17.10.3 The .map file

Summary
References

Multi-tasking and the Real Time Operating System

18.1

18.2

18.3
18.4

18.5

The main ideas — the challenge of multi-tasking

and real time

18.1.1 Multi-tasking — tasks, priorities and deadlines

18.1.2 So what is ‘real time’?

Achieving multi-tasking with sequential programming

18.2.1 Evaluating the super loop

18.2.2 Time-triggered and event-triggered tasks

18.2.3 Using interrupts for prioritisation — the foreground/background structure
18.2.4 Introducing a ‘clock tick’ to synchronise program activity
18.2.5 A general-purpose ‘operating system’

18.2.6 The limits of sequential programming when multi-tasking
The Real Time Operating System (RTOS)

Scheduling and the scheduler

18.4.1 Cyclic scheduling

18.4.2 Round robin scheduling and context switching

18.4.3 Task states

18.4.4 Prioritised pre-emptive scheduling

18.4.5 Cooperative scheduling

18.4.6 The role of interrupts in scheduling

Developing tasks

18.5.1 Defining tasks

18.5.2 Writing tasks and setting priority

454
454
455
455
455
456
456
457
457
459
460
460
461
462
462
462
464
465
465

466

466
467
468
469
469
469
469
470
471
471
472
473
473
473
474
475
476
477
477
4717
478

Contents xix

18.6 Data and resource protection — the semaphore 478
18.7 Where do we go from here? 479
Summary 479
References 479
19 The Salvo™ Real Time Operating System 480
19.1 The main idea — Salvo, an example RTOS 480
19.1.1 Basic Salvo features 480

19.1.2 Salvo versions and references 481

19.2 Configuring the Salvo application 482
19.2.1 Building Salvo applications — the library build 482

19.2.2 Salvo libraries 482

19.2.3 Using Salvo with C18 483

19.3 Writing Salvo programs 483
19.3.1 Initialisation and scheduling 484

19.3.2 Writing Salvo tasks 485

19.4 A first Salvo example 485
19.4.1 Program overview and the main function 487

19.4.2 Tasks and scheduling 488

19.4.3 Creating a Salvo/C18 project 488

19.4.4 Setting the configuration file 489

19.4.5 Building the Salvo example 489

19.4.6 Simulating the Salvo program 490

19.5 Using interrupts, delays and semaphores with Salvo 491
19.5.1 An example program using an interrupt-based clock tick 492

19.5.2 Selecting the library and configuration 494

19.5.3 Using interrupts and establishing the clock tick 494

19.5.4 Using delays 496
19.5.5 Using a binary semaphore 496

19.5.6 Simulating the program 497

19.5.7 Running the program 499

19.6 Using Salvo messages and increasing RTOS complexity 499
19.7 A program example with messages 500
19.7.1 Selecting the library and configuration 505

19.7.2 The task: USnd_ Task 505

19.7.3 The task: Motor_ Task 505

19.7.4 The use of messages 506

19.7.5 The use of interrupts, and the ISRs 507

19.7.6 Simulating or running the program 509

19.8 The RTOS overhead 509
Summary 510
References 510

xx Contents

Section 5

Techniques of Connectivity and Networking

20 Connectivity and networks

20.1

20.2

20.3

20.4

20.5

20.6

The main idea — networking and connectivity

20.1.1 A word on protocols

Infrared connectivity

20.2.1 The IrDA and the PIC microcontroller

Radio connectivity

20.3.1 Bluetooth

20.3.2 Zigbee

20.3.3 Zigbee and the PIC microcontroller

Controller Area Network (CAN) and Local Interconnect Network (LIN)
20.4.1 Controller Area Network (CAN)

20.4.2 CAN and the PIC microcontroller

20.4.3 Local Interconnect Network (LIN)

20.4.4 LIN and the PIC microcontroller

Embedded systems and the Internet

20.5.1 Connecting to the Internet with the PIC microcontroller
Conclusion

Summary
References

Appendix 1
Appendix 2
Appendix 3
Appendix 4
Appendix 5
Appendix 6

Index

The PIC® 16 Series instruction set

The electronic ping-pong

The Derbot AGV — hardware design details
Some basics of Autonomous Guided Vehicles
PIC® 18 Series instruction set (non-extended)
Essentials of C

511

513

513
514
515
515
516
516
517
517
518
518
520
520
521
522
523
523
524
524

527
528
533
537
541
544

549

Introduction

This is a book about embedded systems, introduced primarily through the application of three PIC® micro-
controllers. Starting from an introductory level, the book aims to make the reader into a competent and
independent practitioner in the field of embedded systems, to a level whereby he or she has the skills
necessary to gain entry to professional practice in the embedded world.

The book achieves its aims by developing the underlying knowledge and skills appropriate to today’s
embedded systems, in both hardware and software development. On the hardware side, it includes in-depth
study both of microcontroller design, and of the circuits and transducers to which the microcontroller must
interface. On the software side, programming in both Assembler and C is covered. This culminates in the
study and application of a Real Time Operating System, representing the most elegant way that an embedded
system can be programmed.

The book is divided into introductory and concluding sections and three main parts, and develops its
themes primarily around three example PIC microcontrollers, which form the basis of each part. These
are the 16F84A, the 16F873A and the 18F242. It works through these in turn, using each to develop the
sophistication of the ideas introduced. Nevertheless, the book should not be viewed just as a manual on PIC
microcontrollers. Using these as the medium of study, the main issues of embedded design are explored. The
skills and knowledge acquired through the study of this set of microcontrollers can readily be transferred
to others.

A distinctive feature of the book is its combination of practical and theoretical. The vast majority of topics are
directly illustrated by practical application, in hardware or in program simulation. Thus, at no point is there
abstract theory presented without application. The main project in the book is the Derbot AGV (Autonomous
Guided Vehicle). This is a customisable design, which can be used as a self-contained development platform.
As an AGV it can be developed into many different forms. It can also be adapted into plenty of other things
as well, for example a waveform generator, an electronic tape measure or a light meter. Before the Derbot
is introduced, use is made of a very simple project, the electronic ping-pong game. The example projects
can be built by the reader, with design information being given on the book CD. Alternatively, projects can
simply be used as theoretical case studies.

This book is aimed primarily at second- or third-year undergraduate engineering or technology students.
It will also be of interest to the informed hobbyist, and parts to the practising professional. Readers are
expected to have a reasonable knowledge of electronics, equivalent to, say, a first-year undergraduate course.
This will include an understanding of the operation of transistors and diodes, and simple analog and digital
electronic subsystems. It is also beneficial to have some knowledge of computer architecture, for example
gained by an introductory course on microprocessors.

xxii Introduction

Because the book moves in three distinct stages from the introductory to the advanced, it will in general
provide material for more than one course or module. The first six chapters can be used for a short and
self-contained one-semester course, covering an introduction to microcontrollers and their programming
in Assembler. The 16F84A is chosen as the example for these chapters. It is an excellent introductory
microcontroller, due to its simplicity. Chapters 7-11 can form an intermediate course, using Assembler
to program more complex systems. This leads to a detailed knowledge of microcontroller peripherals and
their use, as exemplified by the 16F§73A. Chapters 12-20 can then be used to form an advanced course,
working with C and the 18F242, and leading up to use of the RTOS. Alternatively, lecturers may wish to
‘pick and choose’ in Chapters 7-20, depending on their preference for C or Assembler, and their preference
for the microcontroller used. Having worked through Chapters 1-6, it is just possible to go directly to
Chapter 12, thereby apparently skipping Chapters 7—-11. The detail of the middle chapters is missed, but
this approach can also work. Using C demands less detailed knowledge of the peripherals than is required
if using Assembler, and cross-reference is made to the middle chapters where it is needed.

Whatever sequence of reading is chosen, the reader is expected as a minimum to have ready access to the
Microchip MPLAB® Integrated Development Environment, which is available on the book CD. This allows
the example programs in the book to be simulated and then modified and developed. Almost inevitably the
book starts with some study of hardware, so that the reader has a basic knowledge of the system that the
software will run on. To some extent the first few chapters, on PIC microcontroller architecture, represent a
steep learning curve for the beginner. The fun then starts in Chapter 4, when programming and simulation
can begin. From here, with the foundations laid, hardware and software run more or less in parallel, each
gaining in sophistication and complementing the other. For the final third of the book, the Microchip C18
C compiler should be used. The student version of this is also available on the book CD. For Chapter 19,
the “Lite’ version of the Salvo™ RTOS can be installed, again from the book CD.

Beyond program simulation, it is hoped that the reader has access to electronic build and test facilities,
whether at home, college, university or workplace. With these, it is possible to build up some of the example
project material or work on equivalent systems. By so doing, the satisfaction of actually implementing real
embedded systems will be achieved. When working through the middle or later chapters, the best thing a
lecturer or instructor can do is to get a Derbot printed circuit board into the hands of every student on the
course, along with a basic set of components. Guide them through initial development and then give them
suggestions for further customisation. It is wonderful what ideas they then come up with. Design details
are on the book CD.

An essential skill of any professional designer in this field is the ability to work with the manufacturer’s data
sheets. These are the main source of information when designing with microcontrollers and the ultimate
point of reference in the professional world. It is in general not desirable to work from intermediate drawings
by a third party, even if these are meant to simplify the information. Therefore, this book unashamedly uses
(with permission) a large number of diagrams straight from the Microchip data sheets. Many are made
more accessible by the inclusion of supplementary labelling. The reader is encouraged to download the full
version of the data sheet in use and to refer directly to it.

A complete knowledge of the field of embedded systems requires both breadth and depth. This is particularly
true of embedded systems, which combine elements of hardware and software, semiconductor technology,
analog and digital electronics, computer architecture, sensors and actuators, and more. With its focus on

Introduction xxiii

the PIC microcontroller, this book cannot cover all these areas. For the wider contextual background, the
author’s earlier book, An Introduction to the Design of Small-Scale Embedded Systems, is recommended.
With whole chapters on memory technology, power supply, numerical algorithms, interfacing to transducers
and the design process, it provides a ready complement to this book.

I hope that you enjoy working through this book. In particular I hope you go on to enjoy the challenge and
pleasure of designing and building embedded systems.

Tim Wilmshurst
University of Derby, UK

This page intentionally left blank

ganga
This page intentionally left blank

Acknowledgements

Certain materials contained herein are reprinted with permission of the copyright holder, Microchip Technol-
ogy Incorporated. All rights reserved. No further reprints or reproductions may be made without Microchip
Technology Inc.’s prior written consent.

PIC®, PICSTART® and MPLAB® are all registered trademarks of Microchip Technology Inc.
PICBASIC™, PICBASIC PRO™, ECAN™, In-Circuit Serial Programming™, ICSP™, MPASM™,
MPLIB™, MPLINK™, MPSIM™ and PICDEM.net™ are all trademarks of Microchip Technology Inc.

Figures 1.11, 1.13, 2.2-2.10, 3.8, 3.10-3.12, 3.14-3.16, 4.4, 4.13, 6.2, 6.3, 6.8-6.10, 7.1-7.4, 7.6, 7.7,
7.9-7.11, 7.14-7.16, 7.25, 7.26, 8.7, 9.1, 9.2, 9.4, 9.5, 9.7-9.9, 9.11, 10.7-10.9, 10.14-10.21, 10.25-
10.28, 11.6-11.10, 11.15, 12.1-12.10, 12.13, 12.14 and 13.1-13.11 are taken from Microchip Data Sheets:
PIC12F508/509/16F505 (DS41236A); PIC16F84A (DS35007B); PIC16F87XA (DS39582B); PIC18FXX?2
(DS39564B) and the PIC micro™ Mid-Range MCU Family Reference Manual (DS31004A, DS31005A)
and are reproduced by kind permission of Microchip Technology Inc.

Grateful acknowledgement is made to David Manley and Mike Vernon, for allowing me the sabbatical
leave which made this project possible. Thanks to many students who have designed their own AGVs
and contributed ideas to the Derbot project, including Jonathan Guinet, David Coterill-Drew, Grigorios
Dedes and Kelvin Brammer. Thanks also to Naoko Evans and Nick Roberts for reading and commenting
on sections of the script. Thanks to Trevor Noble, who has, over the years, with skill and enthusiasm,
made many an embedded system, including a series of Derbot prototypes. Thanks to staff at Microchip
Technology, who have answered numerous questions, both technical and on copyright and related issues,
and who freely gave permission for much copyright material to be reproduced. Similar thanks is due to
Pumpkin Inc., the authors of the Salvo™ Operating System, for their technical support and permission to
place Salvo ‘Lite’ on the book CD. Salvo™ is a trademark of Pumpkin Inc.

Thanks especially to my family, Beate, Imogen, Jez and Naomi, for supporting this project for the
15 months in which it has been a significant part of our lives. They are the joy of my life, and this
book is dedicated to them.

This page intentionally left blank

ganga
This page intentionally left blank

Section 1
Getting Started with
Embedded Systems

This introductory chapter introduces embedded systems and the microcontroller, leading to a survey of the
Microchip range of PIC® microcontrollers.

This page intentionally left blank

ganga
This page intentionally left blank

1
Tiny computers, hidden control

We are living in the age of information revolution, with computers of astonishing power available for our
use. Computers find their way into every realm of activity. Some are developed to be as powerful as possible,
without concern for price, for high-powered applications in industry and research. Others are designed for the
home and office, less powerful but also less costly. Another category of computer is little recognised, partly
because it is little seen. This is the type of computer that is designed into a product, in order to provide its
control. The computer is hidden from view, such that the user often doesn’t know it’s even there. This sort of
product is called an embedded system, and it is what this book is about. Those little computers we generally
call microcontrollers; it is one extended family of these that the book studies.

In this chapter you will learn about:

The meaning of the term ‘embedded system’

The microcontroller which lies at the heart of the embedded system
The Microchip PIC® family

A first PIC microcontroller, the 12F508

An alternative microcontroller structure from Freescale.

1.1 The main idea — embedded systems in today’s world
1.1.1 What is an embedded system?

The basic idea of an embedded system is a simple one. If we take any engineering product that needs
control, and if a computer is incorporated within that product to undertake the control, then we have an
embedded system. An embedded system can be defined as [Ref. 1.1]:

A system whose principal function is not computational, but which is controlled by a computer
embedded within it.

These days embedded systems are everywhere, appearing in the home, office, factory, car or hospital.
Table 1.1 lists some example products that are likely to be embedded systems, all chosen for their familiarity.
While many of these examples seem very different from each other, they all draw on the same principles
as far as their characteristics as an embedded system are concerned.

The vast majority of users will not recognise that what they are using is controlled by one or more embedded
computers. Indeed, if they ever saw the controlling computer they would barely recognise it as such. Most
people, after all, recognise computers by their screen, keyboard, disc drives and so on. This embedded
computer would have none of those.

4 Tiny computers, hidden control

Table 1.1 Some familiar examples of embedded systems

Home Office and commerce | Motor car
Washing machine Photocopier Door mechanism
Fridge Checkout machine Climate control
Burglar alarm Printer Brakes

Microwave Scanner Engine control
Central heating controller In-car entertainment
Toys and games

1.2 Some example embedded systems

Let’s take a look at some example embedded systems, first from everyday life and then from the projects

used to illustrate this book.

1.2.1 The domestic refrigerator

A simple domestic refrigerator is shown in Figure 1.1. It needs to maintain a moderately stable, low
temperature within it. It does this by sensing its internal temperature and comparing that with the temperature
required. It lowers the temperature by switching on a compressor. The temperature measurement requires
one or more sensors, and then whatever signal conditioning and data acquisition circuitry that is needed.
Some sort of data processing is required to compare the signal representing the measured temperature to
that representing the required temperature and deduce an output. Controlling the compressor requires some
form of electronic interface, which accepts a low-level input control signal and then converts this to the

electrical drive necessary to switch the compressor power.

Compressor control

Alarm

Display
The

embedded
computer

Actual temperature

Required temperature _

Figure 1.1 Embedded system example 1: the refrigerator

Human
interaction
Networked
() interaction

(maybe!)

Tiny computers, hidden control 5

This process of control can be done by a conventional electronic circuit or it can be done by a small embedded
computer. If used, the embedded computer could be designed simply to replicate the minimalist control
process described above. Once a little computer is in place, however, there is tremendous opportunity for
added value. With the signal in digital form and processing power now readily available, it is an easy step
to add features like intelligent displays, more advanced control features, a better user control mechanism
and so on.

Taking the idea of added value one step further, once an embedded computer is in place it is possible to
network it to other computers, embedded or otherwise. This opens up big new horizons, allowing a small
system to become a subset of a much larger system and to share information with that system. This is now
happening with domestic products, like the refrigerator, as well as much more complex items.

The diagram of Figure 1.1, while specific for a fridge, actually represents very well the overall concept of
an embedded system. There is an embedded computer, engaged in reading internal variables, and outputting
signals to control the performance of the system. It may have human interaction (but in general terms does
not have to) and it may have networked interaction. Generally, the user has no idea that there’s a computer
inside the fridge!

1.2.2 A car door mechanism

A very different example of an embedded system is the car door, as shown in Figure 1.2. Once again there
are some sensors, some human interaction and a set of actuators that must respond to the requirements of
the system. One set of sensors relates to the door lock and another to the window. There are two actuators,
the window motor and the lock actuator.

It might appear that a car door could be designed as a self-contained embedded system, in a similar way
to the fridge. Initially, one might even question whether it is worthy of any form of computer control

) Window control buttons
Window stall sensor

Window motor

Lock control

Lock actuator Open door sensor

Figure 1.2 Embedded system example 2: the car door

6 Tiny computers, hidden control

whatsoever, as the functions seem so simple. Once again, by creating it as an embedded system, we
see the opportunity to enhance functionality. Now we have the door status and actuators under electronic
control, they can be integrated with the rest of the car. Central locking can be introduced or an alarm
sounded if the door is not locked when the driver tries to pull away. There is therefore considerable
advantage in having a network which links the humble actions of the door control to other functions of
the car. We will see in later chapters that networked interaction is an important feature of the embedded
system.

1.2.3 The electronic ‘ping-pong’

This little game, shown in Figure 1.3, is one of several projects used to illustrate the material of this book.
It is a game for two players, who each have a push button ‘paddle’. Either player can start the game by
pressing his/her paddle. The ball, represented by the row of eight LEDs (light-emitting diodes), then flies
through the air to the opposing player, who must press his paddle only when the ball is at the end LED and
at none other. The ball continues in play until either player violates this rule of play. Once this happens,
the non-violating player scores and the associated LED is briefly lit up. When the ball is out of play, an
‘out-of-play’ LED is lit.

All the above action is controlled by a tiny embedded computer, a microcontroller, made by a company
called Microchip [Ref. 1.2]. It takes the form of an 18-pin integrated circuit (IC), and has none of the
visible features that one would normally associate with a computer. Nevertheless, electronic technology
is now so advanced that inside that little IC there is a Central Processing Unit (CPU), a complex array
of memories, and a set of timing and interface circuits. One of its memories contains a stored pro-
gram, which it executes to run the game. It is able to read in as inputs the position of the switches
(the player paddles) and calculate the required LED positions. It then has the output capability to actu-
ally power the LEDs to which it is connected. All of this computing action is powered from only two
AAA cells!

The embedded computer,
a Microchip 16LF84A

On/off
switch |7 —— . ———

Player 1 paddle / - Player 2
‘Score’ LED Ball flight LEDs ‘Out-of-play’ LED paddle

Figure 1.3 The electronic ‘ping-pong’

Tiny computers, hidden control 7

1.2.4 The Derbot Autonomous Guided Vehicle

Another project used later in this book is the Derbot Autonomous Guided Vehicle (AGV), pictured in
Figure 1.4. How do its features compare with the examples seen to date? Looking at the photograph, we
can see from the front that it bristles with sensors and actuators. Two microswitch bump detectors sense
if the Derbot hits an obstacle. An ultrasound detector, mounted on a servo actuator, is there with the aim
of ensuring that the Derbot never needs to have an unexpected collision! Two light sensors on either side
of the servo are used for light tracking applications — a third, not seen in the photo, is mounted at the rear.
A further navigational option is a compass, so that direction can be determined from the earth’s magnetic
field. Locomotion is provided by two geared DC motors, while a sensor on each (again not seen in this
picture) counts wheel revolutions to calculate actual distance moved. Steering is achieved by driving the
wheels at different speeds. A piezo-electric sounder is included for the AGV to alert its human user. The
Derbot is powered from six AA Alkaline cells, which it carries on a power pack almost directly above its
wheels. Its block diagram is shown in Figure 1.5.

As with earlier examples, the Derbot operates as an embedded system, reading in values from its diverse
sensors and computing outputs to its actuators. It is controlled by another Microchip microcontroller, hidden
from view in the picture by the battery pack. This microcontroller is seemingly more powerful than the one in
the ping-pong game, as it needs to interface with far more inputs and drive its outputs in a more complex way.

Figure 1.4 A Derbot AGV

8 Tiny computers, hidden control

Bump sensor
left

Ultrasound
ranging
module

Pulse

Echo

Light sensor
left

Light sensor
rear

L]

T]

Power
regulation &
management

5V

9V
Alkaline

Analog-to-digital

converter

PIC

microcontroller

Bump sensor
right

Light sensor
right

Serial data

Ultrasound
servo

Serial
clock
o

Compass

Serial extension bus

Pulse width modulation
stream x 2

9V

Figure 1.5 The Derbot block diagram

Interestingly, as we shall see, the CPU of each microcontroller is the same. They are differentiated primarily
by their interface capabilities. It is this difference that gives the Derbot microcontroller its aura of far greater

power.

Motor drive
interface

Motor
left

1.3 Some computer essentials

When designing embedded systems we usually need to understand in some detail the features of the embed-
ded computer that we are working with. This is quite unlike working with a desktop computer used for
word processing or computer-aided design, where the internal workings are skilfully hidden from the user.
As a preliminary to developing our knowledge, let us undertake a rapid survey of some important computer

features.

Motor
right

Tiny computers, hidden control 9

1.3.1 Elements of a computer

Figure 1.6 shows the essential elements of any computer system. Fundamentally, it must be able to perform
arithmetic or logical calculations. This function is provided by the Central Processing Unit (CPU). It operates
by working through a series of instructions, called a program, which is held in memory. Any one of these
instructions performs a very simple function. However, because the typical computer runs so incredibly
fast, the overall effect is one of very great computational power. Many instructions cause mathematical and
logical operations to occur. These take place in a part of the CPU called the ALU, the Arithmetic Logic Unit.

To be of any use the computer must be able to communicate with the outside world, and it does this through
its input/output. On a personal computer this implies human interaction, through keyboard, VDU (Visual
Display Unit) and printer. In an embedded system the communication is likely to be primarily with the
physical world around it, through sensors and actuators.

The computer revolution that is taking place is due not only to the incredible processing power now at
our disposal, but also to the equally incredible ability that we now have to store and access data. Broadly
speaking there are two main applications for memory in a computer, as shown in Figure 1.6. One memory
holds the program that the computer will execute. This memory needs to be permanent. If it is, then the
program is retained indefinitely, whether power is applied or not, and it is ready to run as soon as power
is applied. The other memory is used for holding temporary data, which the program works on as it runs.
This memory type need not be permanent, although there is no harm if it is.

Finally, there must be data paths between each of these main blocks, as shown by the blo