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Introduction

This is a book about embedded systems, introduced primarily through the application of three PIC® micro-
controllers. Starting from an introductory level, the book aims to make the reader into a competent and
independent practitioner in the field of embedded systems, to a level whereby he or she has the skills
necessary to gain entry to professional practice in the embedded world.

The book achieves its aims by developing the underlying knowledge and skills appropriate to today’s
embedded systems, in both hardware and software development. On the hardware side, it includes in-depth
study both of microcontroller design, and of the circuits and transducers to which the microcontroller must
interface. On the software side, programming in both Assembler and C is covered. This culminates in the
study and application of a Real Time Operating System, representing the most elegant way that an embedded
system can be programmed.

The book is divided into introductory and concluding sections and three main parts, and develops its
themes primarily around three example PIC microcontrollers, which form the basis of each part. These
are the 16F84A, the 16F873A and the 18F242. It works through these in turn, using each to develop the
sophistication of the ideas introduced. Nevertheless, the book should not be viewed just as a manual on PIC
microcontrollers. Using these as the medium of study, the main issues of embedded design are explored. The
skills and knowledge acquired through the study of this set of microcontrollers can readily be transferred
to others.

A distinctive feature of the book is its combination of practical and theoretical. The vast majority of topics are
directly illustrated by practical application, in hardware or in program simulation. Thus, at no point is there
abstract theory presented without application. The main project in the book is the Derbot AGV (Autonomous
Guided Vehicle). This is a customisable design, which can be used as a self-contained development platform.
As an AGV it can be developed into many different forms. It can also be adapted into plenty of other things
as well, for example a waveform generator, an electronic tape measure or a light meter. Before the Derbot
is introduced, use is made of a very simple project, the electronic ping-pong game. The example projects
can be built by the reader, with design information being given on the book CD. Alternatively, projects can
simply be used as theoretical case studies.

This book is aimed primarily at second- or third-year undergraduate engineering or technology students.
It will also be of interest to the informed hobbyist, and parts to the practising professional. Readers are
expected to have a reasonable knowledge of electronics, equivalent to, say, a first-year undergraduate course.
This will include an understanding of the operation of transistors and diodes, and simple analog and digital
electronic subsystems. It is also beneficial to have some knowledge of computer architecture, for example
gained by an introductory course on microprocessors.
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Because the book moves in three distinct stages from the introductory to the advanced, it will in general
provide material for more than one course or module. The first six chapters can be used for a short and
self-contained one-semester course, covering an introduction to microcontrollers and their programming
in Assembler. The 16F84A is chosen as the example for these chapters. It is an excellent introductory
microcontroller, due to its simplicity. Chapters 7-11 can form an intermediate course, using Assembler
to program more complex systems. This leads to a detailed knowledge of microcontroller peripherals and
their use, as exemplified by the 16F§73A. Chapters 12-20 can then be used to form an advanced course,
working with C and the 18F242, and leading up to use of the RTOS. Alternatively, lecturers may wish to
‘pick and choose’ in Chapters 7-20, depending on their preference for C or Assembler, and their preference
for the microcontroller used. Having worked through Chapters 1-6, it is just possible to go directly to
Chapter 12, thereby apparently skipping Chapters 7—-11. The detail of the middle chapters is missed, but
this approach can also work. Using C demands less detailed knowledge of the peripherals than is required
if using Assembler, and cross-reference is made to the middle chapters where it is needed.

Whatever sequence of reading is chosen, the reader is expected as a minimum to have ready access to the
Microchip MPLAB® Integrated Development Environment, which is available on the book CD. This allows
the example programs in the book to be simulated and then modified and developed. Almost inevitably the
book starts with some study of hardware, so that the reader has a basic knowledge of the system that the
software will run on. To some extent the first few chapters, on PIC microcontroller architecture, represent a
steep learning curve for the beginner. The fun then starts in Chapter 4, when programming and simulation
can begin. From here, with the foundations laid, hardware and software run more or less in parallel, each
gaining in sophistication and complementing the other. For the final third of the book, the Microchip C18
C compiler should be used. The student version of this is also available on the book CD. For Chapter 19,
the “Lite’ version of the Salvo™ RTOS can be installed, again from the book CD.

Beyond program simulation, it is hoped that the reader has access to electronic build and test facilities,
whether at home, college, university or workplace. With these, it is possible to build up some of the example
project material or work on equivalent systems. By so doing, the satisfaction of actually implementing real
embedded systems will be achieved. When working through the middle or later chapters, the best thing a
lecturer or instructor can do is to get a Derbot printed circuit board into the hands of every student on the
course, along with a basic set of components. Guide them through initial development and then give them
suggestions for further customisation. It is wonderful what ideas they then come up with. Design details
are on the book CD.

An essential skill of any professional designer in this field is the ability to work with the manufacturer’s data
sheets. These are the main source of information when designing with microcontrollers and the ultimate
point of reference in the professional world. It is in general not desirable to work from intermediate drawings
by a third party, even if these are meant to simplify the information. Therefore, this book unashamedly uses
(with permission) a large number of diagrams straight from the Microchip data sheets. Many are made
more accessible by the inclusion of supplementary labelling. The reader is encouraged to download the full
version of the data sheet in use and to refer directly to it.

A complete knowledge of the field of embedded systems requires both breadth and depth. This is particularly
true of embedded systems, which combine elements of hardware and software, semiconductor technology,
analog and digital electronics, computer architecture, sensors and actuators, and more. With its focus on
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the PIC microcontroller, this book cannot cover all these areas. For the wider contextual background, the
author’s earlier book, An Introduction to the Design of Small-Scale Embedded Systems, is recommended.
With whole chapters on memory technology, power supply, numerical algorithms, interfacing to transducers
and the design process, it provides a ready complement to this book.

I hope that you enjoy working through this book. In particular I hope you go on to enjoy the challenge and
pleasure of designing and building embedded systems.

Tim Wilmshurst
University of Derby, UK
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Section 1
Getting Started with
Embedded Systems

This introductory chapter introduces embedded systems and the microcontroller, leading to a survey of the
Microchip range of PIC® microcontrollers.
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1
Tiny computers, hidden control

We are living in the age of information revolution, with computers of astonishing power available for our
use. Computers find their way into every realm of activity. Some are developed to be as powerful as possible,
without concern for price, for high-powered applications in industry and research. Others are designed for the
home and office, less powerful but also less costly. Another category of computer is little recognised, partly
because it is little seen. This is the type of computer that is designed into a product, in order to provide its
control. The computer is hidden from view, such that the user often doesn’t know it’s even there. This sort of
product is called an embedded system, and it is what this book is about. Those little computers we generally
call microcontrollers; it is one extended family of these that the book studies.

In this chapter you will learn about:

The meaning of the term ‘embedded system’

The microcontroller which lies at the heart of the embedded system
The Microchip PIC® family

A first PIC microcontroller, the 12F508

An alternative microcontroller structure from Freescale.

1.1 The main idea — embedded systems in today’s world
1.1.1 What is an embedded system?

The basic idea of an embedded system is a simple one. If we take any engineering product that needs
control, and if a computer is incorporated within that product to undertake the control, then we have an
embedded system. An embedded system can be defined as [Ref. 1.1]:

A system whose principal function is not computational, but which is controlled by a computer
embedded within it.

These days embedded systems are everywhere, appearing in the home, office, factory, car or hospital.
Table 1.1 lists some example products that are likely to be embedded systems, all chosen for their familiarity.
While many of these examples seem very different from each other, they all draw on the same principles
as far as their characteristics as an embedded system are concerned.

The vast majority of users will not recognise that what they are using is controlled by one or more embedded
computers. Indeed, if they ever saw the controlling computer they would barely recognise it as such. Most
people, after all, recognise computers by their screen, keyboard, disc drives and so on. This embedded
computer would have none of those.
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Table 1.1 Some familiar examples of embedded systems

Home Office and commerce | Motor car
Washing machine Photocopier Door mechanism
Fridge Checkout machine Climate control
Burglar alarm Printer Brakes

Microwave Scanner Engine control
Central heating controller In-car entertainment
Toys and games

1.2 Some example embedded systems

Let’s take a look at some example embedded systems, first from everyday life and then from the projects

used to illustrate this book.

1.2.1 The domestic refrigerator

A simple domestic refrigerator is shown in Figure 1.1. It needs to maintain a moderately stable, low
temperature within it. It does this by sensing its internal temperature and comparing that with the temperature
required. It lowers the temperature by switching on a compressor. The temperature measurement requires
one or more sensors, and then whatever signal conditioning and data acquisition circuitry that is needed.
Some sort of data processing is required to compare the signal representing the measured temperature to
that representing the required temperature and deduce an output. Controlling the compressor requires some
form of electronic interface, which accepts a low-level input control signal and then converts this to the

electrical drive necessary to switch the compressor power.

Compressor control

Alarm

Display
The

embedded
computer

Actual temperature

Required temperature _

Figure 1.1 Embedded system example 1: the refrigerator

Human
interaction
Networked
() interaction

(maybe!)
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This process of control can be done by a conventional electronic circuit or it can be done by a small embedded
computer. If used, the embedded computer could be designed simply to replicate the minimalist control
process described above. Once a little computer is in place, however, there is tremendous opportunity for
added value. With the signal in digital form and processing power now readily available, it is an easy step
to add features like intelligent displays, more advanced control features, a better user control mechanism
and so on.

Taking the idea of added value one step further, once an embedded computer is in place it is possible to
network it to other computers, embedded or otherwise. This opens up big new horizons, allowing a small
system to become a subset of a much larger system and to share information with that system. This is now
happening with domestic products, like the refrigerator, as well as much more complex items.

The diagram of Figure 1.1, while specific for a fridge, actually represents very well the overall concept of
an embedded system. There is an embedded computer, engaged in reading internal variables, and outputting
signals to control the performance of the system. It may have human interaction (but in general terms does
not have to) and it may have networked interaction. Generally, the user has no idea that there’s a computer
inside the fridge!

1.2.2 A car door mechanism

A very different example of an embedded system is the car door, as shown in Figure 1.2. Once again there
are some sensors, some human interaction and a set of actuators that must respond to the requirements of
the system. One set of sensors relates to the door lock and another to the window. There are two actuators,
the window motor and the lock actuator.

It might appear that a car door could be designed as a self-contained embedded system, in a similar way
to the fridge. Initially, one might even question whether it is worthy of any form of computer control

) Window control buttons
Window stall sensor

Window motor

Lock control

Lock actuator Open door sensor

Figure 1.2 Embedded system example 2: the car door
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whatsoever, as the functions seem so simple. Once again, by creating it as an embedded system, we
see the opportunity to enhance functionality. Now we have the door status and actuators under electronic
control, they can be integrated with the rest of the car. Central locking can be introduced or an alarm
sounded if the door is not locked when the driver tries to pull away. There is therefore considerable
advantage in having a network which links the humble actions of the door control to other functions of
the car. We will see in later chapters that networked interaction is an important feature of the embedded
system.

1.2.3 The electronic ‘ping-pong’

This little game, shown in Figure 1.3, is one of several projects used to illustrate the material of this book.
It is a game for two players, who each have a push button ‘paddle’. Either player can start the game by
pressing his/her paddle. The ball, represented by the row of eight LEDs (light-emitting diodes), then flies
through the air to the opposing player, who must press his paddle only when the ball is at the end LED and
at none other. The ball continues in play until either player violates this rule of play. Once this happens,
the non-violating player scores and the associated LED is briefly lit up. When the ball is out of play, an
‘out-of-play’ LED is lit.

All the above action is controlled by a tiny embedded computer, a microcontroller, made by a company
called Microchip [Ref. 1.2]. It takes the form of an 18-pin integrated circuit (IC), and has none of the
visible features that one would normally associate with a computer. Nevertheless, electronic technology
is now so advanced that inside that little IC there is a Central Processing Unit (CPU), a complex array
of memories, and a set of timing and interface circuits. One of its memories contains a stored pro-
gram, which it executes to run the game. It is able to read in as inputs the position of the switches
(the player paddles) and calculate the required LED positions. It then has the output capability to actu-
ally power the LEDs to which it is connected. All of this computing action is powered from only two
AAA cells!

The embedded computer,
a Microchip 16LF84A

On/off
switch |7 —— . ———

Player 1 paddle / - Player 2
‘Score’ LED Ball flight LEDs ‘Out-of-play’ LED paddle

Figure 1.3 The electronic ‘ping-pong’
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1.2.4 The Derbot Autonomous Guided Vehicle

Another project used later in this book is the Derbot Autonomous Guided Vehicle (AGV), pictured in
Figure 1.4. How do its features compare with the examples seen to date? Looking at the photograph, we
can see from the front that it bristles with sensors and actuators. Two microswitch bump detectors sense
if the Derbot hits an obstacle. An ultrasound detector, mounted on a servo actuator, is there with the aim
of ensuring that the Derbot never needs to have an unexpected collision! Two light sensors on either side
of the servo are used for light tracking applications — a third, not seen in the photo, is mounted at the rear.
A further navigational option is a compass, so that direction can be determined from the earth’s magnetic
field. Locomotion is provided by two geared DC motors, while a sensor on each (again not seen in this
picture) counts wheel revolutions to calculate actual distance moved. Steering is achieved by driving the
wheels at different speeds. A piezo-electric sounder is included for the AGV to alert its human user. The
Derbot is powered from six AA Alkaline cells, which it carries on a power pack almost directly above its
wheels. Its block diagram is shown in Figure 1.5.

As with earlier examples, the Derbot operates as an embedded system, reading in values from its diverse
sensors and computing outputs to its actuators. It is controlled by another Microchip microcontroller, hidden
from view in the picture by the battery pack. This microcontroller is seemingly more powerful than the one in
the ping-pong game, as it needs to interface with far more inputs and drive its outputs in a more complex way.

Figure 1.4 A Derbot AGV
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Bump sensor
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Figure 1.5 The Derbot block diagram

Interestingly, as we shall see, the CPU of each microcontroller is the same. They are differentiated primarily
by their interface capabilities. It is this difference that gives the Derbot microcontroller its aura of far greater

power.

Motor drive
interface

Motor
left

1.3 Some computer essentials

When designing embedded systems we usually need to understand in some detail the features of the embed-
ded computer that we are working with. This is quite unlike working with a desktop computer used for
word processing or computer-aided design, where the internal workings are skilfully hidden from the user.
As a preliminary to developing our knowledge, let us undertake a rapid survey of some important computer

features.

Motor
right
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1.3.1 Elements of a computer

Figure 1.6 shows the essential elements of any computer system. Fundamentally, it must be able to perform
arithmetic or logical calculations. This function is provided by the Central Processing Unit (CPU). It operates
by working through a series of instructions, called a program, which is held in memory. Any one of these
instructions performs a very simple function. However, because the typical computer runs so incredibly
fast, the overall effect is one of very great computational power. Many instructions cause mathematical and
logical operations to occur. These take place in a part of the CPU called the ALU, the Arithmetic Logic Unit.

To be of any use the computer must be able to communicate with the outside world, and it does this through
its input/output. On a personal computer this implies human interaction, through keyboard, VDU (Visual
Display Unit) and printer. In an embedded system the communication is likely to be primarily with the
physical world around it, through sensors and actuators.

The computer revolution that is taking place is due not only to the incredible processing power now at
our disposal, but also to the equally incredible ability that we now have to store and access data. Broadly
speaking there are two main applications for memory in a computer, as shown in Figure 1.6. One memory
holds the program that the computer will execute. This memory needs to be permanent. If it is, then the
program is retained indefinitely, whether power is applied or not, and it is ready to run as soon as power
is applied. The other memory is used for holding temporary data, which the program works on as it runs.
This memory type need not be permanent, although there is no harm if it is.

Finally, there must be data paths between each of these main blocks, as shown by the blo