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Introduction

This is a book about embedded systems, introduced primarily through the application of three PIC® micro-
controllers. Starting from an introductory level, the book aims to make the reader into a competent and
independent practitioner in the field of embedded systems, to a level whereby he or she has the skills
necessary to gain entry to professional practice in the embedded world.

The book achieves its aims by developing the underlying knowledge and skills appropriate to today’s
embedded systems, in both hardware and software development. On the hardware side, it includes in-depth
study both of microcontroller design, and of the circuits and transducers to which the microcontroller must
interface. On the software side, programming in both Assembler and C is covered. This culminates in the
study and application of a Real Time Operating System, representing the most elegant way that an embedded
system can be programmed.

The book is divided into introductory and concluding sections and three main parts, and develops its
themes primarily around three example PIC microcontrollers, which form the basis of each part. These
are the 16F84A, the 16F873A and the 18F242. It works through these in turn, using each to develop the
sophistication of the ideas introduced. Nevertheless, the book should not be viewed just as a manual on PIC
microcontrollers. Using these as the medium of study, the main issues of embedded design are explored. The
skills and knowledge acquired through the study of this set of microcontrollers can readily be transferred
to others.

A distinctive feature of the book is its combination of practical and theoretical. The vast majority of topics are
directly illustrated by practical application, in hardware or in program simulation. Thus, at no point is there
abstract theory presented without application. The main project in the book is the Derbot AGV (Autonomous
Guided Vehicle). This is a customisable design, which can be used as a self-contained development platform.
As an AGV it can be developed into many different forms. It can also be adapted into plenty of other things
as well, for example a waveform generator, an electronic tape measure or a light meter. Before the Derbot
is introduced, use is made of a very simple project, the electronic ping-pong game. The example projects
can be built by the reader, with design information being given on the book CD. Alternatively, projects can
simply be used as theoretical case studies.

This book is aimed primarily at second- or third-year undergraduate engineering or technology students.
It will also be of interest to the informed hobbyist, and parts to the practising professional. Readers are
expected to have a reasonable knowledge of electronics, equivalent to, say, a first-year undergraduate course.
This will include an understanding of the operation of transistors and diodes, and simple analog and digital
electronic subsystems. It is also beneficial to have some knowledge of computer architecture, for example
gained by an introductory course on microprocessors.
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Because the book moves in three distinct stages from the introductory to the advanced, it will in general
provide material for more than one course or module. The first six chapters can be used for a short and
self-contained one-semester course, covering an introduction to microcontrollers and their programming
in Assembler. The 16F84A is chosen as the example for these chapters. It is an excellent introductory
microcontroller, due to its simplicity. Chapters 7–11 can form an intermediate course, using Assembler
to program more complex systems. This leads to a detailed knowledge of microcontroller peripherals and
their use, as exemplified by the 16F873A. Chapters 12–20 can then be used to form an advanced course,
working with C and the 18F242, and leading up to use of the RTOS. Alternatively, lecturers may wish to
‘pick and choose’ in Chapters 7–20, depending on their preference for C or Assembler, and their preference
for the microcontroller used. Having worked through Chapters 1–6, it is just possible to go directly to
Chapter 12, thereby apparently skipping Chapters 7–11. The detail of the middle chapters is missed, but
this approach can also work. Using C demands less detailed knowledge of the peripherals than is required
if using Assembler, and cross-reference is made to the middle chapters where it is needed.

Whatever sequence of reading is chosen, the reader is expected as a minimum to have ready access to the
Microchip MPLAB® Integrated Development Environment, which is available on the book CD. This allows
the example programs in the book to be simulated and then modified and developed. Almost inevitably the
book starts with some study of hardware, so that the reader has a basic knowledge of the system that the
software will run on. To some extent the first few chapters, on PIC microcontroller architecture, represent a
steep learning curve for the beginner. The fun then starts in Chapter 4, when programming and simulation
can begin. From here, with the foundations laid, hardware and software run more or less in parallel, each
gaining in sophistication and complementing the other. For the final third of the book, the Microchip C18
C compiler should be used. The student version of this is also available on the book CD. For Chapter 19,
the ‘Lite’ version of the SalvoTM RTOS can be installed, again from the book CD.

Beyond program simulation, it is hoped that the reader has access to electronic build and test facilities,
whether at home, college, university or workplace. With these, it is possible to build up some of the example
project material or work on equivalent systems. By so doing, the satisfaction of actually implementing real
embedded systems will be achieved. When working through the middle or later chapters, the best thing a
lecturer or instructor can do is to get a Derbot printed circuit board into the hands of every student on the
course, along with a basic set of components. Guide them through initial development and then give them
suggestions for further customisation. It is wonderful what ideas they then come up with. Design details
are on the book CD.

An essential skill of any professional designer in this field is the ability to work with the manufacturer’s data
sheets. These are the main source of information when designing with microcontrollers and the ultimate
point of reference in the professional world. It is in general not desirable to work from intermediate drawings
by a third party, even if these are meant to simplify the information. Therefore, this book unashamedly uses
(with permission) a large number of diagrams straight from the Microchip data sheets. Many are made
more accessible by the inclusion of supplementary labelling. The reader is encouraged to download the full
version of the data sheet in use and to refer directly to it.

A complete knowledge of the field of embedded systems requires both breadth and depth. This is particularly
true of embedded systems, which combine elements of hardware and software, semiconductor technology,
analog and digital electronics, computer architecture, sensors and actuators, and more. With its focus on
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the PIC microcontroller, this book cannot cover all these areas. For the wider contextual background, the
author’s earlier book, An Introduction to the Design of Small-Scale Embedded Systems, is recommended.
With whole chapters on memory technology, power supply, numerical algorithms, interfacing to transducers
and the design process, it provides a ready complement to this book.

I hope that you enjoy working through this book. In particular I hope you go on to enjoy the challenge and
pleasure of designing and building embedded systems.

Tim Wilmshurst

University of Derby, UK
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Section 1
Getting Started with
Embedded Systems

This introductory chapter introduces embedded systems and the microcontroller, leading to a survey of the
Microchip range of PIC® microcontrollers.
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1
Tiny computers, hidden control

We are living in the age of information revolution, with computers of astonishing power available for our
use. Computers find their way into every realm of activity. Some are developed to be as powerful as possible,
without concern for price, for high-powered applications in industry and research. Others are designed for the
home and office, less powerful but also less costly. Another category of computer is little recognised, partly
because it is little seen. This is the type of computer that is designed into a product, in order to provide its
control. The computer is hidden from view, such that the user often doesn’t know it’s even there. This sort of
product is called an embedded system, and it is what this book is about. Those little computers we generally
call microcontrollers; it is one extended family of these that the book studies.

In this chapter you will learn about:

• The meaning of the term ‘embedded system’
• The microcontroller which lies at the heart of the embedded system
• The Microchip PIC® family
• A first PIC microcontroller, the 12F508
• An alternative microcontroller structure from Freescale.

1.1 The main idea – embedded systems in today’s world

1.1.1 What is an embedded system?

The basic idea of an embedded system is a simple one. If we take any engineering product that needs
control, and if a computer is incorporated within that product to undertake the control, then we have an
embedded system. An embedded system can be defined as [Ref. 1.1]:

A system whose principal function is not computational, but which is controlled by a computer
embedded within it.

These days embedded systems are everywhere, appearing in the home, office, factory, car or hospital.
Table 1.1 lists some example products that are likely to be embedded systems, all chosen for their familiarity.
While many of these examples seem very different from each other, they all draw on the same principles
as far as their characteristics as an embedded system are concerned.

The vast majority of users will not recognise that what they are using is controlled by one or more embedded
computers. Indeed, if they ever saw the controlling computer they would barely recognise it as such. Most
people, after all, recognise computers by their screen, keyboard, disc drives and so on. This embedded
computer would have none of those.
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Table 1.1 Some familiar examples of embedded systems
Home Office and commerce Motor car
Washing machine Photocopier Door mechanism
Fridge Checkout machine Climate control
Burglar alarm Printer Brakes
Microwave Scanner Engine control
Central heating controller In-car entertainment
Toys and games

1.2 Some example embedded systems

Let’s take a look at some example embedded systems, first from everyday life and then from the projects
used to illustrate this book.

1.2.1 The domestic refrigerator

A simple domestic refrigerator is shown in Figure 1.1. It needs to maintain a moderately stable, low
temperature within it. It does this by sensing its internal temperature and comparing that with the temperature
required. It lowers the temperature by switching on a compressor. The temperature measurement requires
one or more sensors, and then whatever signal conditioning and data acquisition circuitry that is needed.
Some sort of data processing is required to compare the signal representing the measured temperature to
that representing the required temperature and deduce an output. Controlling the compressor requires some
form of electronic interface, which accepts a low-level input control signal and then converts this to the
electrical drive necessary to switch the compressor power.

The
embedded
computer

Compressor control

Alarm

Display

Actual temperature

Human
interaction

Required temperature

Networked
interaction
(maybe!)

20

Figure 1.1 Embedded system example 1: the refrigerator
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This process of control can be done by a conventional electronic circuit or it can be done by a small embedded
computer. If used, the embedded computer could be designed simply to replicate the minimalist control
process described above. Once a little computer is in place, however, there is tremendous opportunity for
added value. With the signal in digital form and processing power now readily available, it is an easy step
to add features like intelligent displays, more advanced control features, a better user control mechanism
and so on.

Taking the idea of added value one step further, once an embedded computer is in place it is possible to
network it to other computers, embedded or otherwise. This opens up big new horizons, allowing a small
system to become a subset of a much larger system and to share information with that system. This is now
happening with domestic products, like the refrigerator, as well as much more complex items.

The diagram of Figure 1.1, while specific for a fridge, actually represents very well the overall concept of
an embedded system. There is an embedded computer, engaged in reading internal variables, and outputting
signals to control the performance of the system. It may have human interaction (but in general terms does
not have to) and it may have networked interaction. Generally, the user has no idea that there’s a computer
inside the fridge!

1.2.2 A car door mechanism

A very different example of an embedded system is the car door, as shown in Figure 1.2. Once again there
are some sensors, some human interaction and a set of actuators that must respond to the requirements of
the system. One set of sensors relates to the door lock and another to the window. There are two actuators,
the window motor and the lock actuator.

It might appear that a car door could be designed as a self-contained embedded system, in a similar way
to the fridge. Initially, one might even question whether it is worthy of any form of computer control

Open door sensor

Window control buttons

Lock control

Lock actuator

Window motor

Window stall sensor

Figure 1.2 Embedded system example 2: the car door
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whatsoever, as the functions seem so simple. Once again, by creating it as an embedded system, we
see the opportunity to enhance functionality. Now we have the door status and actuators under electronic
control, they can be integrated with the rest of the car. Central locking can be introduced or an alarm
sounded if the door is not locked when the driver tries to pull away. There is therefore considerable
advantage in having a network which links the humble actions of the door control to other functions of
the car. We will see in later chapters that networked interaction is an important feature of the embedded
system.

1.2.3 The electronic ‘ping-pong’

This little game, shown in Figure 1.3, is one of several projects used to illustrate the material of this book.
It is a game for two players, who each have a push button ‘paddle’. Either player can start the game by
pressing his/her paddle. The ball, represented by the row of eight LEDs (light-emitting diodes), then flies
through the air to the opposing player, who must press his paddle only when the ball is at the end LED and
at none other. The ball continues in play until either player violates this rule of play. Once this happens,
the non-violating player scores and the associated LED is briefly lit up. When the ball is out of play, an
‘out-of-play’ LED is lit.

All the above action is controlled by a tiny embedded computer, a microcontroller, made by a company
called Microchip [Ref. 1.2]. It takes the form of an 18-pin integrated circuit (IC), and has none of the
visible features that one would normally associate with a computer. Nevertheless, electronic technology
is now so advanced that inside that little IC there is a Central Processing Unit (CPU), a complex array
of memories, and a set of timing and interface circuits. One of its memories contains a stored pro-
gram, which it executes to run the game. It is able to read in as inputs the position of the switches
(the player paddles) and calculate the required LED positions. It then has the output capability to actu-
ally power the LEDs to which it is connected. All of this computing action is powered from only two
AAA cells!

Player 2
paddle

Player 1 paddle

‘Score’ LED Ball flight  LEDs ‘Out-of-play’ LED

On/off
switch

The embedded computer,
a Microchip 16LF84A

Figure 1.3 The electronic ‘ping-pong’
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1.2.4 The Derbot Autonomous Guided Vehicle

Another project used later in this book is the Derbot Autonomous Guided Vehicle (AGV), pictured in
Figure 1.4. How do its features compare with the examples seen to date? Looking at the photograph, we
can see from the front that it bristles with sensors and actuators. Two microswitch bump detectors sense
if the Derbot hits an obstacle. An ultrasound detector, mounted on a servo actuator, is there with the aim
of ensuring that the Derbot never needs to have an unexpected collision! Two light sensors on either side
of the servo are used for light tracking applications – a third, not seen in the photo, is mounted at the rear.
A further navigational option is a compass, so that direction can be determined from the earth’s magnetic
field. Locomotion is provided by two geared DC motors, while a sensor on each (again not seen in this
picture) counts wheel revolutions to calculate actual distance moved. Steering is achieved by driving the
wheels at different speeds. A piezo-electric sounder is included for the AGV to alert its human user. The
Derbot is powered from six AA Alkaline cells, which it carries on a power pack almost directly above its
wheels. Its block diagram is shown in Figure 1.5.

As with earlier examples, the Derbot operates as an embedded system, reading in values from its diverse
sensors and computing outputs to its actuators. It is controlled by another Microchip microcontroller, hidden
from view in the picture by the battery pack. This microcontroller is seemingly more powerful than the one in
the ping-pong game, as it needs to interface with far more inputs and drive its outputs in a more complex way.

Figure 1.4 A Derbot AGV
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PIC
microcontroller

Pulse width modulation
stream �2

Serial data

Serial
clock

Compass

Motor drive
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right
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servo

Analog-to-digital
converter

Figure 1.5 The Derbot block diagram

Interestingly, as we shall see, the CPU of each microcontroller is the same. They are differentiated primarily
by their interface capabilities. It is this difference that gives the Derbot microcontroller its aura of far greater
power.

1.3 Some computer essentials

When designing embedded systems we usually need to understand in some detail the features of the embed-
ded computer that we are working with. This is quite unlike working with a desktop computer used for
word processing or computer-aided design, where the internal workings are skilfully hidden from the user.
As a preliminary to developing our knowledge, let us undertake a rapid survey of some important computer
features.
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1.3.1 Elements of a computer

Figure 1.6 shows the essential elements of any computer system. Fundamentally, it must be able to perform
arithmetic or logical calculations. This function is provided by the Central Processing Unit (CPU). It operates
by working through a series of instructions, called a program, which is held in memory. Any one of these
instructions performs a very simple function. However, because the typical computer runs so incredibly
fast, the overall effect is one of very great computational power. Many instructions cause mathematical and
logical operations to occur. These take place in a part of the CPU called the ALU, the Arithmetic Logic Unit.

To be of any use the computer must be able to communicate with the outside world, and it does this through
its input/output. On a personal computer this implies human interaction, through keyboard, VDU (Visual
Display Unit) and printer. In an embedded system the communication is likely to be primarily with the
physical world around it, through sensors and actuators.

The computer revolution that is taking place is due not only to the incredible processing power now at
our disposal, but also to the equally incredible ability that we now have to store and access data. Broadly
speaking there are two main applications for memory in a computer, as shown in Figure 1.6. One memory
holds the program that the computer will execute. This memory needs to be permanent. If it is, then the
program is retained indefinitely, whether power is applied or not, and it is ready to run as soon as power
is applied. The other memory is used for holding temporary data, which the program works on as it runs.
This memory type need not be permanent, although there is no harm if it is.

Finally, there must be data paths between each of these main blocks, as shown by the block arrows in the
diagram.

1.3.2 Instruction sets – CISC and RISC

Any CPU has a set of instructions that it recognises and responds to; all programs are built up in one
way or another from this instruction set. We want computers to execute code as fast as possible, but how
to achieve this aim is not always an obvious matter. One approach is to build sophisticated CPUs with
exotic instruction sets, with an instruction ready for every foreseeable operation. This leads to the CISC,
the Complex Instruction Set Computer. A CISC has many instructions and considerable sophistication.
Yet the complexity of the design needed to achieve this tends to lead to slow operation. One characteristic
of the CISC approach is that instructions have different levels of complexity. Simple ones can be expressed

Central 
Processing 
Unit (CPU)

Data
memory

Input/
output

Program
memory

The
outside
world

Figure 1.6 Essentials of a computer
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in a short instruction code, say one byte of data, and execute quickly. Complex ones may need several bytes
of code to define them and take a long time to execute.

Another approach is to keep the CPU very simple and have a limited instruction set. This leads to the
RISC approach – the Reduced Instruction Set Computer. The instruction set, and hence overall design, is
kept simple. This leads to fast operation. One characteristic of the RISC approach is that each instruction
is contained within a single binary word. That word must hold all information necessary, including the
instruction code itself, as well as any address or data information also needed. A further characteristic, an
outcome of the simplicity of the approach, is that every instruction normally takes the same amount of time
to execute.

1.3.3 Memory types

Traditionally, memory technology has been divided into two categories:

(1) Volatile. This is memory that only works as long as it is powered. It loses its stored value when power
is removed, but can be used as memory for temporary data storage. Generally, this type of memory uses
simple semiconductor technology and is easier to write to from an electrical point of view. For historical
reasons it has commonly been called RAM (Random Access Memory). A slightly more descriptive name
is simply ‘data memory’.

(2) Non-volatile. This is memory that retains its stored value even when power is removed. On a desktop
computer this function is achieved primarily by the hard disk, a huge non-volatile store of data. In an
embedded system it is achieved using non-volatile semiconductor memory. It is a greater challenge to
make non-volatile memory and sophisticated semiconductor technology is applied. Generally, this type
of memory has been more difficult to write to electrically, for example in terms of time or power taken,
or complexity of the writing process. Non-volatile memory is used for holding the computer program
and for historical reasons has commonly been called ROM (Read-Only Memory). A more descriptive
name is ‘program memory’.

With the very sophisticated memory technology that is now available, we will see that the division of
function between these two memory categories is becoming increasingly blurred. We return to the issue of
memory technology and its applications in Chapter 2.

1.3.4 Organising memory

To interact with memory, there must be two types of number moved around, the address of the memory
location required and the actual data that belongs in the location. These are connected on two sets of
interconnections, called the address bus and the data bus. We must ensure that the data bus and address bus
(or a subset of it) reach every memory area.

A simple way of meeting the need just described is shown in Figure 1.7(a). It is called the Von Neumann
structure or architecture, after its inventor. The computer has just one address bus and one data bus, and
the same address and data buses serve both program and data memories. The input/output may also be
interconnected in this way and made to behave like memory as far as the CPU is concerned.
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Figure 1.7 Organising memory access. (a) The Von Neumann way. (b) The Harvard way

An alternative to the Von Neumann structure is seen in Figure 1.7(b). Every memory area gets its own
address bus and its own data bus. Because this structure was invented in the university of the same name,
this is called a Harvard structure.

The Von Neumann structure is simple and logical, and gives a certain type of flexibility. The addressable
memory area can be divided up in any way between program memory and data memory. However, it suffers
from two disadvantages. One is that it is a ‘one size fits all’ approach. It’s the same data bus for all areas
of memory, even if one area wants to deal with large words and another wants to deal with small. It also
has the problem of all things that are shared. If one person is using it, another can’t. Therefore, if the CPU
is accessing program memory, then data memory must be idle and vice versa.

In the Harvard approach we get greater flexibility in bus size, but pay for it with a little more complexity.
With program memory and data memory each having their own address and data buses, each can be a
different size, appropriate to its need, and data and program can be accessed simultaneously. On the minus
side, Harvard reinforces the distinction between program and data memory, even when this distinction is
not wanted. This disadvantage may be experienced, for example, when data is stored in program memory
as a table, but is actually needed in the data domain.

1.4 Microprocessors and microcontrollers

1.4.1 Microprocessors

The first microprocessors appeared in the 1970s. These were amazing devices, which for the first time
put a computer CPU onto a single IC. For the first time, significant processing power was available at
rather low cost, in comparatively small space. At first, all other functions, like memory and input/output
interfacing, were outside the microprocessor, and a working system still had to be made of a good number
of ICs. Gradually, the microprocessor became more self-contained, with the possibility, for example, of
including different memory types on the same chip as the CPU. At the same time, the CPU was becoming
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more powerful and faster, and moved rapidly from 8-bit to 16- and 32-bit devices. The development of the
microprocessor led very directly to applications like the personal computer.

1.4.2 Microcontrollers

While people quickly recognised and exploited the computing power of the microprocessor, they also saw
another use for them, and that was in control. Designers started putting microprocessors into all sorts of
products that had nothing to do with computing, like the fridge or the car door that we have just seen.
Here the need was not necessarily for high computational power, or huge quantities of memory, or very
high speed. A special category of microprocessor emerged that was intended for control activities, not for
crunching big numbers. After a while this type of microprocessor gained an identity of its own, and became
called a microcontroller. The microcontroller took over the role of the embedded computer in embedded
systems.

So what distinguishes a microcontroller from a microprocessor? Like a microprocessor, a microcontroller
needs to be able to compute, although not necessarily with big numbers. But it has other needs as well.
Primarily, it must have excellent input/output capability, for example so that it can interface directly with
the ins and outs of the fridge or the car door. Because many embedded systems are both size and cost
conscious, it must be small, self-contained and low cost. Nor will it sit in the nice controlled environment
that a conventional computer might expect. No, the microcontroller may need to put up with the harsh
conditions of the industrial or motor car environment, and be able to operate in extremes of temperature.

A generic view of a microcontroller is shown in Figure 1.8. Essentially, it contains a simple microprocessor
core, along with all necessary data and program memory. To this it adds all the peripherals that allow it

Digital
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Program
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memory

Analog
I/O

Counters
& timers

Reset,
Interrupt(s)

Power

Clock

Internal data &
address buses

Further
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Further
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Figure 1.8 A generic microcontroller
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to do the interfacing it needs to do. These may include digital and analog input and output, or counting
and timing elements. Other more sophisticated functions are also available, which you will encounter later
in the book. Like any electronic circuit the microcontroller needs to be powered, and needs a clock signal
(which in some controllers is generated internally) to drive the internal logic circuits.

1.4.3 Microcontroller families

There are thousands of different microcontroller types in the world today, made by numerous different
manufacturers. All reflect in one way or another the block diagram of Figure 1.8. A manufacturer builds a
microcontroller family around a fixed microprocessor core. Different family members are created by using
the same core, combining with it different combinations of peripherals and different memory sizes. This
is shown symbolically in Figure 1.9. This manufacturer has three microcontroller families, each with its
own core. One core might be 8-bit with limited power, another 16-bit and another a sophisticated 32-bit
machine. To each core is added different combinations of peripheral and memory size, to make a number
of family members. Because the core is fixed for all members of one family, the instruction set is fixed and
users have little difficulty in moving from one family member to another.
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Memory

Peripherals

Memory
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Memory

Core Q
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Memory
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Memory
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Memory
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Figure 1.9 A manufacturer’s microcontroller portfolio
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While Figure 1.9 suggests only a few members of each family, in practice this is not the case; there can be
more than 100 microcontrollers in any one family, each one with slightly different capabilities and some
targeted at very specific applications.

1.4.4 Microcontroller packaging and appearance

Integrated circuits are made in a number of different forms, usually using plastic or ceramic as the packaging
material. Interconnection with the outside world is provided by the pins on the package. Where possible
microcontrollers should be made as physically small as possible, so it is worth asking: what determines
the size? Interestingly, it is not usually the size of the integrated circuit chip itself, in a conventional
microcontroller, which determines the overall size. Instead, this is set by the number of interconnection pins
provided on the IC and their spacing.

It is worth, therefore, pausing to consider what these pins carry in a microcontroller. The point has been
made that a microcontroller is usually input/output intensive. It is reasonable then to assume that a good
number of pins will be used for input/output. Power must also be supplied and an earth connection made.
It is reasonable to assume for the sort of systems we will be looking at that the microcontroller has all the
memory it needs on-chip. Therefore, it will not require the huge number of pins that earlier microprocessors
needed, simply for connecting external data and address buses. It will, however, be necessary to provide
pin interconnection to transfer program information into the memory and possibly provide extra power for
the programming process. There is then usually a need to connect a clock signal, a reset and possibly some
interrupt inputs.

Figure 1.10, which shows a selection of microprocessors and microcontrollers, demonstrates the stunning
diversity of package and size that is available. On the far right, the massive (and far from recent) 64-pin
Motorola 68000 dwarfs almost everything else. The package is a dual-in-line package (DIP), with its pins
arranged in two rows along the longer sides of the IC, the pin spacing being 0.1 inches. Because the 68000

Figure 1.10 A gathering of microprocessors and microcontrollers – old and new. From left to right: PIC 12F508, PIC
16F84A, PIC 16C72, Motorola 68HC05B16, PIC 16F877, Motorola 68000
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depends on external memory, many of its pins are committed to data and address bus functions, which forces
the large size. Second from right is the comparatively recent 40-pin PIC 16F877. While this looks similar
to the 68000, it actually makes very different use of its pins. With its on-chip program and data memory
it has no need for external data or address buses. Its high pin count is now put to good use, allowing a
high number of digital input/output and other lines. In the middle is the 52-pin Motorola 68HC705. This is
in a square ceramic package, windowed to allow the on-chip EPROM (Erasable Programmable Read-Only
Memory) to be erased. The pin spacing here is 0.05 inches, so the overall IC size is considerably more
compact than the 68000, even though the pin count is still high. To the left of this is a 28-pin PIC 16C72.
Again, this has EPROM program memory and thus is also in a ceramic DIP package. On the far left is the
tiny 8-pin surface-mounted PIC 12F508 and to the right of this is an 18-pin PIC 16F84A.

1.5 Microchip and the PIC microcontroller

1.5.1 Background

The PIC was originally a design of the company General Instruments. It was intended for simple control
applications, hence the name – Peripheral Interface Controller. In the late 1970s General Instruments pro-
duced the PIC® 1650 and 1655 processors. Although the design was comparatively crude and unorthodox, it
was completely stand-alone, and contained some important and forward-looking features. The simple CPU
was a RISC structure, with a single Working register and just 30 instructions. The output pins could source
or sink much more current than most other microprocessors of the time. Already the trademarks of the PIC
were emerging – simplicity, stand-alone, high speed and low cost.

General Instruments sold off its semiconductor division to a group of venture capitalists, who must have
realised the immense potential of these odd little devices. Throughout the 1990s the range of available
PIC microcontrollers grew, and as they did so they gradually overtook many of their better-established
competitors. In many cases PIC microcontrollers could run faster, needed a simpler chip-set and were quicker
to prototype with than their competitors. Unlike many competitors, Microchip made their development tools
simple and low cost or free. Moreover, Microchip stayed firmly entrenched in the 8-bit world. Despite the
huge advances that have been made, we can still see features of the old General Instruments microcontroller,
even in the most recent designs.

1.5.2 PIC microcontrollers today

Looking at the range of PIC microcontrollers today, anyone can be forgiven for a sense of complete
bewilderment. There are literally hundreds of different devices, offered in different packages, for different
applications. Let us therefore try to identify the characteristics that all of these have in common. At the time
of writing, all PIC microcontrollers are low-cost, self-contained, 8-bit, Harvard structure, pipelined, RISC,
single accumulator (the Working or W register), with fixed reset and interrupt vectors.

Today, Microchip offers five main families of microcontrollers, whose features are summarised in Table 1.2.
It is possible to see clear evolution from one family to the other, so knowledge of one readily leads to
knowledge of another. Every member of any one family shares the same core architecture and instruction
set. The families are identified primarily by the first two digits of the device code. The alphabetic character
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Table 1.2 Comparison of PIC families
PIC family Stack size (words) Instruction Number of instructions Interrupt vectors

word size
12CXXX/12FXXX 2 12- or 14-bit 33 None
16C5XX/16F5XX 2 12-bit 33 None
16CXXX/16FXXX 8 14-bit 35 1
17CXXX 16 16-bit 58, including hardware

multiply
4

18CXXX/18FXXX 32 16-bit 75, including hardware
multiply

2 (prioritised)

that follows gives some indication of the technology used. The ‘C’ insert implies CMOS technology, where
CMOS stands for Complementary Metal Oxide Semiconductor, the leading semiconductor technology for
implementing low-power logic systems. The ‘F’ insert indicates incorporation of Flash memory technology
(still using CMOS as the core technology). An ‘A’ after the number indicates a technological upgrade on
the first issue device. An ‘X’ indicates that a certain digit can take a number of values, the one taken being
unimportant to the overall number quoted.

For example, the 16C84 was the first of its kind. It was later reissued as the 16F84, incorporating Flash
memory technology. It was then reissued as the 16F84A, with certain further technological upgrades.

Microchip also used to give each family a name. Thus, their first family, the 16C5XX, was called the
‘baseline’ family. The development of this, with device numbers starting ‘16C’ or ‘16F’ (and a fourth digit
that was not 5), was called the ‘mid-range’ family. The powerful evolution of this, with codes starting ‘17C’,
was called the ‘high-end’ family. As the further families developed, with both very simple and advanced
architectures, this naming convention has lost prominence, although the terminology is still found. For
simplicity, to identify a PIC family, this book will refer to ‘12 Series’, ‘16 Series’, ‘18 Series’ and so on.
Let us survey each family in turn.

The 16C5X Series family

This PIC microcontroller family represents the most direct descendant of its General Instrument ancestors
and displays all the core features of the original PIC design. With only a two-level stack and no interrupts,
there is significant limitation on the program and hardware complexity that can be developed. Particularly
without interrupts there is restriction on the type of on-chip peripheral that can be included, as most
peripherals use interrupts to enhance their interface with the CPU. The 16C5X family has also been issued
with Flash memory, with 16F5X codes. While this family is well established, it has a limited number of
members and is not being given much prominence by Microchip.

The PIC 16 Series family

This, the ‘mid-range’ family, represents an improved version of the 16C5XX Series, in which interrupts
(albeit with a single interrupt vector) are introduced and the stack size increased. The instruction set is a
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slight extension of that of the 16C5X. A very wide range of family members exists, with many different
peripherals and technical enhancements. The larger devices, with many peripherals and significant on-chip
memory, are both powerful and versatile.

The 12 Series family

The 12 series microcontrollers are designed for really tiny applications, being packaged in small ICs (for
example, 8- or 14-pin). They have a simple architecture and can be viewed as ‘stripped-down’ versions of
the 16C5XX series, with the same instruction set. Despite their small size, 12 Series microcontrollers carry
some interesting peripherals, including analog-to-digital converters and EEPROM (Electrically Erasable
Programmable Read-Only Memory) data memory. Although a small family, there is strong interest at this
end of the size range, and further interesting additions to the family can be expected.

The 17 Series family

This family was introduced to give a real step-up in CPU performance compared with any of the 16 Series
devices. While retaining the RISC strategy, the instruction set size is nearly doubled and the instruction
word size increased to 16-bit. Thus, some programming activities that are awkward in the mid-range family,
like table reads or data moves, are here much simpler. A hardware multiplier is also available. The single,
often overloaded, interrupt vector of the mid-range family becomes four. Although much more powerful
than the 16 Series, this family is limited in number, and Microchip appear to be focusing on the 18 Series
family to move forward developments at the more powerful end of their range.

The 18 Series family

In this family Microchip comes to grips with some of the issues of sophisticated processors. The instruction
set has increased again, now to 75 instructions, and is designed to facilitate use of the C programming
language. In certain versions there is also an ‘extended’ instruction set, with a further small set of instruc-
tions. There are two interrupt vectors, which can be prioritised. This is an extremely powerful family of
microcontrollers and a number of new members can be expected in the future.

1.6 An introduction to PIC microcontrollers using the 12 Series

As the simplest of the PIC microcontrollers, this is a very useful series to introduce the range. Features
identified here will be recognisable in the more advanced PIC microcontrollers, where they appear alongside
the more advanced features that are added.

We will look at the PIC 12F508/509, whose pin connection diagram is shown in Figure 1.11. The only
difference between the 508 and 509 is that the latter has slightly larger program and data memories. Most
(if not all) labels on the pins in the diagram may initially make no sense – don’t worry, their meanings will
emerge.

The staggeringly small size of this microcontroller is reinforced in Figure 1.12. While the 12F508 has
been chosen as a simple microcontroller for introductory purposes, we also need to recognise that we are
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Key
VDD: Power supply VSS: Ground
VPP: Programming voltage input MCLR: Master clear 
OSC1, OSC2: Oscillator pins CLKIN: External clock input
GP0 to GP5: General-Purpose input/output pins (bidirectional except GP3)
CSPDAT: In-Circuit Serial Programming™ data pin.
CSPCLK: In-Circuit Serial Programming™ clock pin.

Figure 1.11 PIC 12F508/509 pin connection diagram

Figure 1.12 How small is a 12F508?!

looking at almost a conjuring trick as well. Remember that it has been said earlier that a microcontroller
should be input/output intensive. Then consider: how can a microcontroller be useful if it has only eight
pins interconnecting with the outside world? We will attempt to answer this question as we look at the
microcontroller’s architecture.

1.6.1 The 12F508 architecture

The annotated block diagram of the 12F508 appears in Figure 1.13. This may be the first Microchip diagram
that you have ever looked at. Don’t worry if it initially appears complex – we will aim to break it into
digestible pieces.

Let’s start by finding the microcontroller essentials identified in Figure 1.8: the core (containing the CPU),
program memory, data memory (or RAM), data paths and any peripherals. We should be able to relate some
of these features to the microcontroller pins of Figure 1.11.

The CPU, enclosed in a dotted line bottom right, is made up essentially of the ALU (the Arithmetic Logic
Unit), the Working register (‘W Reg’) and the Status register. This register carries a number of bits that
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Figure 1.13 PIC12F508/509 block diagram (supplementary labels in shaded boxes added by the author)

give information on the outcome of the instruction most recently carried out. A multiplexer (‘MUX’) selects
from two sources which data is presented to the ALU.

The data memory is just 25 bytes for the 508 or 41 for the 509. Notice that Microchip call the RAM memory
locations ‘file registers’ or elsewhere just ‘registers’. Program memory appears top left, with 512 12-bit
words for the 12F508 or 1024 for the 509.

A distinctive feature of the PIC architecture is that it is Harvard structure, as discussed above. We should
therefore be able to find two address buses (one for program memory, and the other for data memory and all
peripherals) and two data buses (again, one for program memory, and one for data memory and peripherals).
Easiest to find is the data bus for data memory and peripherals. This is simply labelled ‘data bus’ and is
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seen to the right of the diagram. It is 8-bit, and serves primarily the data memory, the General-Purpose
Input/Output (GPIO) and the ‘Timer 0’ peripheral. The address bus for data memory is labelled ‘RAM addr’
and feeds into the RAM data memory. It is derived from the address multiplexer (‘addr MUX’), which
selects the address from one of two sources.

The program address bus arises from the Program Counter and goes only to the program memory, as shown.
It is 12-bit, and hence can address 212 memory locations, or 4096 locations. As the program memory itself is
given as only 512 or 1024 words, we recognise that the address bus is larger than necessary for this memory
size. Coming from the program memory we see the 12-bit ‘program bus’. This carries the instruction words
from the memory to the ‘Instruction register’.

It is interesting to track the way the instruction word from program memory is divided up. As the PIC is a
RISC computer, each instruction word must carry not only the instruction code itself, but also any address
or data information needed as well. In the diagram the ‘Instruction Reg’ receives the instruction word and
then starts the process of dividing this up into its component parts. Depending on the instruction itself, 5 bits
of the instruction word may carry address information and hence be sent down the ‘Direct Addr’ bus to the
address multiplexer (‘Addr MUX’). Eight bits of the instruction word may carry a data byte that is to be used
as literal data for the execution of that instruction. This goes to the multiplexer (‘MUX’), which feeds into the
ALU. Finally, there is the instruction data itself, which feeds into the ‘Instruction Decode and Control’ unit.

This microcontroller has only two on-chip peripheral devices, a Timer (‘Timer 0’) and the General-Purpose
Input/Output port, with pins GP0 to GP5. The IC pins themselves appear in the block diagram as squares
with crosses inside. Each of these pins is dual or triple function, so each has a second function identified in
the diagram. We do not need at this moment to understand what each of these is, although that understanding
is soon coming.

Towards the bottom left of the diagram are a number of functions relating to the clock oscillator, power
supply and reset. Power supply and ground are connected via pins VDD and VSS respectively. A ‘Power-on
Reset’ function detects when power is applied and holds the microcontroller in a Reset condition while
the power supply stabilises. The MCLR input can be used to place the CPU in a Reset condition and to
force the program to start again. An internal clock oscillator (‘Internal RC OSC’) is provided so that no
external pins whatsoever need be committed to this function. External oscillator connections can, however,
be made, using input/output pins GP4 and GP5. The oscillator signal is conditioned for use through the
microcontroller in the ‘Timing Generation’ unit. The Watchdog Timer is a safety feature, used to force a
reset in the processor if it crashes.

Having worked through this section, it should be possible for the reader to appreciate that the diagram of
Figure 1.13 is a direct embodiment of the generic microcontroller shown in Figure 1.8. While the detail at
this stage is incomplete, it will fall into place in the coming chapters.

1.7 What others do – a Freescale microcontroller

At around the same time that General Instruments were producing their PIC 1650, Motorola were at work
on their first 8-bit microprocessor, the 6800. Both devices have become the ancestor of a truly impressive
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succession of descendants. While keeping a presence in the 8-bit world, Motorola also moved on to 16- and
32-bit devices. They continued to recognise the importance of the small 8-bit device, however, and in the
mid-1980s produced the first of their 6805 8-bit microcontrollers. This family evolved over the next 20 years,
and from it was developed the 68HC08 family. Motorola’s Semiconductor Division was relaunched under
the name Freescale in 2004.

While Microchip have become known for their very small microcontrollers, Freescale have also been active
in this area. Let us take an overview look at the Freescale 8-pin microcontroller shown in Figure 1.14, with
its simplified block diagram in Figure 1.15.

Although it is not clear from the figure, this microcontroller has a Von Neumann structure. The same
data interconnection goes to both data and program memory, and to the peripherals. The data bus is 8-bit,

VDD

PortA5/Osc1/keyboard interrupt input 5

VSS

PortA4/Osc2/keyboard interrupt input 4

PortA3/Reset/keyboard interrupt input 3

PortA1/Timer channel 1 I/O /keyboard interrupt input 1

PortA2 (input only)/interrupt request/

PortA0/Timer channel 0 I/O /keyboard interrupt input 0

MC68HC908QT1
keyboard interrupt input 2/timer clock input

Figure 1.14 A Freescale 68HC908 microcontroller
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Figure 1.15 The Freescale MC68HC908QTI microcontroller – simplified block diagram



22 Tiny computers, hidden control

which means that both the program and data word size are 8-bit. Like the 12F508, the Freescale device
has on-chip program and data memory, with somewhat larger sizes. Remember, however, that the F509
memory is quoted for 12-bit words, not bytes. The Freescale device has two peripherals with direct F508/9
equivalents, the input/output port and a timer. The Freescale port, Port A, is 6-bit, almost directly equivalent
to the 12F508 GPIO. Both devices have equivalent reliability features, Watchdog Timer for Microchip,
‘Computer Operating Properly’ for Freescale. A significant difference between the two is that Freescale
have chosen, even for so small a microcontroller, to include interrupts in the structure.

Summary

• An embedded system is a product that has one or more computers embedded within it, which exercise
primarily a control function.

• The embedded computer is usually a microcontroller: a microprocessor adapted for embedded control
applications.

• Microcontrollers are designed according to accepted electronic and computer principles, and are funda-
mentally made up of microprocessor core, memory and peripherals; it is important to be able to recognise
their principal features.

• Microchip offers a wide range of microcontrollers, divided into a number of different families. Each
family has identical (or very similar) central architecture and instruction set. However, common features
also appear across all their microcontrollers, and knowledge of one family can lead with ease to knowledge
of another.

• The Microchip 12F508 is a good microcontroller to introduce a range of features of microcontrollers in
general and of PIC microcontrollers in particular.
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Section 2
Minimum Systems and the

PIC® 16F84A

This section, of five chapters, introduces the main concepts of a microcontroller, using a ‘small’16 Series PIC
microcontroller. Emphasis is placed on understanding the core architecture, and using simple peripherals.
Programming is in Assembler, as this allows the closest possible contact with the underlying hardware.
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2
Introducing the PIC® 16 Series and

the 16F84A

In Chapter 1 we introduced embedded systems and surveyed the different PIC® microcontroller families
that are available, using the 12F508 as an introductory device. We are now going to step up a gear and begin
to look at the detail of the PIC 16 Series ‘mid-range’ family. As an example device we will use the 16F84A,
as it is a comparatively small member of the family. Six chapters later the focus of study will change to
the 16F873A, a larger member of the same family. Note carefully that the ’F84A is an almost direct subset
of the ’F873A. Therefore, don’t worry if you are more interested in the latter device. Everything you learn
about the smaller PIC is directly applicable to the bigger, and forms part of it. Indeed, just about everything
we meet in the following chapters applies to all of the PIC 16 Series microcontrollers.

We will explore the overall architecture of the device and take time to get into some detail over its memory –
both the technology and the memory maps.

In this chapter you will therefore learn about:

• The PIC 16 Series family, in overview
• The overall architecture of the 16F84A
• The 16F84A memory system, along with a review of memory technologies
• Other hardware features of the 16F84A, including the reset system.

If you wish, you will also learn about:

• Alternative approaches to microcontroller structure, through an example from another microcontroller
family.

2.1 The main idea – the PIC 16 Series family

2.1.1 A family overview

The PIC 16 Series family is growing rapidly, with a huge and almost bewildering diversity of members.
Therefore, when we talk of ‘family’ here, we are applying the concept of ‘extended family’, and a very
large one at that. Nevertheless, the 16 Series stays true to the concept that all family members have identical
core and instruction set, with the difference arising from different peripherals and other features being
implemented, and different package sizes. Hence the pattern of Figure 1.9 is followed.
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Table 2.1 gives summary details of some members of the 16 Series family, choosing the ones we meet in
this book. Even with this limitation, there is considerable diversity. Within the 16 Series extended family,
we find groupings of very closely related controllers, of which two are represented here, the 16F84A and
the 16F87XA. The 16F84A is listed first, with features we are about to explore in detail. It has a very close

Table 2.1 Some members of the PIC 16 Series family
Device No. of pins* Clock speed Memory Peripherals/special features
number (K = Kbytes, i.e. 1024 bytes)
16F84A 18 DC to 20 MHz 1K program memory, 1 8-bit timer

68 bytes RAM, 1 5-bit parallel port
64 bytes EEPROM 1 8-bit parallel port

16LF84A As above As above As above As above, with extended
supply voltage range

16F84A-04 As above DC to 4 MHz As above As above
16F873A 28 DC to 20 MHz 4K program memory

192 bytes RAM,
3 parallel ports,
3 counter/timers,

128 bytes EEPROM 2 capture/compare/PWM
modules,
2 serial communication
modules,
5 10-bit ADC channels,
2 analog comparators

16F874A 40 DC to 20 MHz 4K program memory
192 bytes RAM,

5 parallel ports,
3 counter/timers,

128 bytes EEPROM 2 capture/compare/PWM
modules,
2 serial communication
modules,
8 10-bit ADC channels,
2 analog comparators

16F876A 28 DC to 20 MHz 8K program memory
368 bytes RAM,

3 parallel ports,
3 counter/timers,

256 bytes EEPROM 2 capture/compare/PWM
modules,
2 serial communication
modules,
5 10-bit ADC channels,
2 analog comparators

16F877A 40 DC to 20 MHz 8K program memory
368 bytes RAM,

5 parallel ports,
3 counter/timers,

256 bytes EEPROM 2 capture/compare/PWM
modules,
2 serial communication
modules,
8 10-bit ADC channels,
2 analog comparators

*For DIP package only.
ADC, analog-to-digital converter; PWM, pulse width modulation.
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relative, the 16LF84A, whose extended supply voltage range allows operation at lower voltages. Either of
these controllers is available in different packages, different operating temperature ranges, and different
clock speed ranges. For example, the 16F84A is available in 4 and 20 MHz versions.

The 16F87XA is a diverse grouping, as can be seen. There are two package sizes and two memory sizes.
It is easy to see that package size is driven by the number of input/outputs that are available. The 40-pin
versions have five parallel ports (which translates to 33 lines of parallel digital input/output), as well as more
analog input, compared with their 28-pin relatives. There is otherwise not much difference. Each package
size, however, comes with two different memory sizes. The bigger memory of course gives the opportunity
for longer programs and more data storage, but also costs a little more.

As is normal Microchip practice, each member of the 16 Series family has its own comprehensive data
sheet, available from Microchip’s website. Reference 2.1 is the data sheet for the 16F84A. As well as this,
there is a manual covering all the features that are common to all members of the family [Ref. 2.2]. While
it is not necessary to refer to these while reading this chapter, it is worth knowing they are there, and
extremely useful for looking up the finer details of a microcontroller’s design and use.

2.1.2 The 16F84A

The 16F84A, along with its direct predecessors, has been one of many PIC success stories. It first appeared
as the 16C84. At a time when most microcontroller manufacturers were trying to make their products
bigger, more sophisticated and more complex, Microchip took the bold decision to stay small, simple and
easy to use. While many microcontrollers of the day did have on-chip program memory, it was usually
EPROM (Erasable Programmable Read-Only Memory), with the attendant time-consuming EPROM erase
cycle. With the 16C84, Microchip chose to use EEPROM (Electrically Erasable Programmable Read-Only
Memory) for program memory. Thus, it could be programmed rapidly, and repeatedly changed. Then,
as Flash memory technology became more accessible, the ’C84 was reissued as the 16F84, with the new
memory technology. With further upgrading it became the 16F84A. At the time of writing, this is the current
version. A 16LF84A, intended for low-power applications, is also available.

2.1.3 A caution on upgrades

As technological expertise develops, any microcontroller design is inevitably upgraded. These are normally
spelled out in documentation published by the manufacturer (e.g. Ref. 2.3). While each upgrade is generally
to be welcomed, the changes introduced need to be watched with care. Some are of obvious benefit. For
example, the ‘A’ version of the 16F84 can run at a higher speed than before (20 MHz maximum instead of
10 MHz). However, the technical upgrade sometimes has side-effects. These are of no direct advantage and
sometimes make it difficult to replace a microcontroller in an existing product with its upgraded version.
For example, operating power supply voltages and logic input thresholds are different between the ’F84
and the ’F84A.

2.2 An architecture overview of the 16F84A

The pin connection diagram of the 16F84A is shown in Figure 2.1 and its block diagram in Figure 2.2.
A comparison of these figures with the equivalent ones for the PIC 12F508 in Chapter 1 shows some
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Figure 2.1 The PIC 16F84A pin connection diagram
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Figure 2.2 Block diagram of the 16F84A (supplementary labels in shaded boxes added by the author)
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interesting similarities and differences. With 18 pins in play, there isn’t the intense pressure to squeeze
several functions onto each pin. Separate and dedicated pins are now provided, for example, for clock
oscillator (pins 15 and 16) and Reset (pin 4 – MCLR). Nevertheless, compared to most, the ’F84A remains
a small microcontroller.

Architecturally there is clear similarity between the 12F508 and the 16F84A. In fact, the former is a direct
subset of the ’F84A, with near identical CPU, memory, bus structure and counter/timer (TMR0) peripheral.
Notice first, however, that the address bus sizes have been increased, to meet the needs of the whole PIC 16
Series family. As a smaller member of that family, the ’F84A doesn’t fully exploit all these developments.
The program address bus is now 13-bit and the instruction word size is 14-bit. Therefore, 213 (i.e. 8192)
memory locations could be addressed. Program memory size, at 1 K, is however only one-eighth of this.
The larger bus size will, however, be useful in the larger 16 Series devices, as can be seen in the program
memory size of the 16F876A and 16F877A (Table 2.1). RAM size has crept up cautiously to 68 locations
and the Stack to eight locations.

A number of important new additions have appeared. The addition of an EEPROM memory gives the
valuable capability of being able to store data values even when the chip is powered down. There are now
two digital input/output ports. These are Port A, with five pins, and Port B, with eight. Importantly, there is
the addition of an interrupt capability (which we explore in detail in Chapter 6). This can be seen externally
on pin 6, where bit 0 of Port B is shared with the external interrupt input. We will also see that there are
three further internal interrupt sources, generated by the peripherals.

Overall, we have a microcontroller that, while only modestly more complex than the 12F508, has proved
incredibly diverse and useful in small applications.

2.2.1 The Status register

The result of any CPU operation is held in the Working register, but this does not necessarily tell everything
about the operation which has just occurred. What if, for example, the 8-bit range has been exceeded by an
addition instruction? The Working register has no way of indicating this and would simply hold an incorrect
result. Therefore, a set of logic bits, sometimes called condition code flags, is built in to any computer
CPU. These are used to carry extra information about the result of the instruction most recently executed,
for example whether the result is zero, negative or positive. For the 16F84A, these flags are held in the
Status register, shown in Figure 2.3. Only three of these Status register bits genuinely fall into the category
of condition codes. These are bits 0 to 2, i.e. bits C, DC and Z. As the key to the figure shows, these
indicate respectively whether a Carry or Digit Carry has been generated, or if the result is Zero. Their use
is explained in Chapters 4 and 5.

2.3 A review of memory technologies

In order to examine the memory capabilities of the 16F84A, and to work with embedded systems in general,
it is important to have some knowledge of the characteristics of the memory technologies in use. A detailed
survey can be found in Chapter 4 of Ref. 1.1. The following section gives just a brief overview of the
different memory technologies currently used by Microchip.
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Figure 2.3 The 16F84A Status register

An ideal memory reads and writes in negligible time, retains its stored value indefinitely, occupies negligible
space and consumes negligible power. In practice no memory technology meets all these happy ideals!
In general, different technologies are strong in one or more of these characteristics and weaker in others.
There is not one best memory technology, and different technologies are therefore applied for different
applications, according to the need.

Any memory is made up of an array of memory cells, where each cell holds one bit of data. The character-
istics of the single cell reflect the characteristics of the overall array; therefore, each technology is described
here simply in terms of its cell design.

2.3.1 Static RAM (SRAM)

Here each memory cell is designed as a simple flip-flop, using two back-to-back transistor pairs. Two further
transistors allow the cell to connect into the main array. Data is held only as long as power is supplied.
Hence the SRAM technology is volatile. With each cell taking six transistors, SRAM is not dense. However,
if made from CMOS (Complementary Metal Oxide Semiconductor) it can be made to consume very little
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power and can retain its data down to a low voltage (around 2 V). It has thus been a popular technology in
battery-powered systems. SRAM is mainly used for data memory (RAM) in a microcontroller.

2.3.2 EPROM (Erasable Programmable Read-Only Memory)

In this technology each memory cell is made of a single MOS transistor – but with a difference. Within the
transistor there is embedded a ‘floating gate’. Using a technique known as hot electron injection (HEI), the
floating gate can be charged. When it is not charged, the transistor behaves normally and the cell output takes
one logic state when activated. When it is charged, the transistor no longer works properly and it no longer
responds when it is activated. The charge placed on the floating gate is totally trapped by the surrounding
insulator. Hence EPROM technology is non-volatile. EPROM can, however, be erased by exposing it to
intense ultraviolet light. This gives the trapped electrons the energy to leave the floating gate.

A special version of EPROM is ‘OTP’ – One Time Programmable. Here the EPROM is packaged in plastic,
without a window. Therefore, OTP can be programmed only once and never erased.

With a single transistor for a cell, EPROM is very high density and robust. Its requirement for a quartz
window and ceramic packaging, to enable erasing, raises its price and reduces its flexibility. EPROM used
to be integrated onto many microcontrollers for program memory, forcing the whole microcontroller to be
ceramic-packaged, with a quartz window (as seen in Figure 1.10). As a technology, EPROM is now rapidly
giving way to Flash, which follows shortly.

2.3.3 EEPROM (Electrically Erasable Programmable
Read-Only Memory)

EEPROM also uses floating gate technology. Its dimensions are finer, so that it can exploit another means
of charging its floating gate. This is known as Nordheim Fowler tunnelling (NFT). With NFT, it is possible
to electrically erase the memory cell, as well as write to it. To allow this to happen, a number of switching
transistors need to be included around the memory element itself, so the high density of EPROM is lost.

Generally, EEPROM can be written to and erased on a byte-by-byte basis. This makes it especially useful
for storing single items of data, like television settings or mobile phone numbers. Both writing and erasing
take finite time, up to several milliseconds, although a read can be accomplished at normal semiconductor
memory access times, i.e. within microseconds or less. Again, like EPROM, because the charge on the
floating gate is totally trapped by the surrounding insulator, EEPROM is non-volatile. Because the EEPROM
structure is now so fine, it suffers from certain wear-out mechanisms. Manufacturers usually therefore define
a guaranteed minimum number of erase/write cycles that their memory can successfully undergo.

2.3.4 Flash

Flash represents a further evolution of floating gate technology. With a single transistor per memory cell, it
uses both HEI and NFT to allow electrical writing and erase. It does not include the extra switch transistors
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that EEPROM has, so can only erase in blocks. It therefore returns to the exceptionally high density of
EPROM. Like EEPROM, it has wear-out mechanisms, so cannot be written and erased indefinitely.

Apart from its inability to erase byte by byte, Flash is an incredibly powerful technology. It is now a central
feature of a huge range of products, including digital cameras, ‘memory sticks’, laptop computers and
microcontroller program memory.

2.4 The 16F84A memory

As Figure 2.2 shows, there are no less than four areas of memory in the 16F84A, as summarised in Table 2.2.
Each memory has its own distinct function and means of access.

2.4.1 The 16F84A program memory

The 16F84A program memory map is shown in Figure 2.4. Looking at this diagram, we can see that it
actually shows three things: the Program Counter, the Stack and the actual program memory. The three
work inextricably together. The program memory is loaded with the program code that the microcontroller
executes. The program is in the form of a list of instructions, and the Program Counter holds the address of
the next instruction that is to be executed by the microcontroller. Therefore, it acts as a pointer to program
memory, as indicated in the diagram. The value of the Program Counter can also be moved onto the Stack.
This occurs when either a subroutine or an interrupt occurs. The instructions indicated in the diagram,
CALL, RETURN, RETFIE and RETLW, all relate to subroutines and interrupts. We will meet them in
the coming chapters – don’t worry if they have no meaning to you at present!

We can see that the address range of program memory is from 0000 to 03FFH. With its 13-bit Program
Counter, the microcontroller can theoretically address a range from 0000 to 1FFFH. The extra address space
is shown (in grey), although it is of no use here.

The very first location in the program memory is labelled the reset vector. When the program starts running
for the first time, for example on power-up, the Program Counter is set to 0000. Therefore, the first memory
location that it points to is the reset vector. The programmer must therefore place his/her first instruction

Table 2.2 16F84A memory features
Memory function Technology Size Volatile/non-volatile Special characteristics*
Program Flash 1K × 14 bits Non-volatile 10 000 erase/write cycles,

typically
Data memory
(file registers)

SRAM 68 bytes Volatile Retains data down to supply
voltage of 1.5 V

Data memory
(EEPROM)

EEPROM 64 bytes Non-volatile 10 000 000 erase/write
cycles, typically

Stack SRAM 8 × 13 bits Volatile

*Information obtained from full 16F84A data sheet [Ref. 2.1].
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The Interrupt
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Figure 2.4 The 16F84A – program memory and Stack (supplementary labels in shaded boxes added by the author)

at this location. The peripheral interrupt vector acts in a similar way for interrupt service routines, as we
shall see in Chapter 6.

2.4.2 The 16F84A data and Special Function
Register memory (‘RAM’)

The RAM memory map is shown in Figure 2.5. The memory area is banked and is divided into two important
areas. The first is the general-purpose data memory, which occupies locations 0CH to 4FH. Above that are
the Special Function Registers (SFRs). Let us explore the two concepts just mentioned, as they are likely
to be unfamiliar.

‘Banked’ addressing

A problem with any memory space is that the larger the memory is, the larger the address bus must be. One
way of avoiding big address buses is to divide the memory into a number of smaller blocks – called banks –
each identical in size. Now a smaller address bus can be used. It can access all banks in an identical way,
with just one of the banks being identified at any one time as the target of the address specified.

PIC microcontrollers adopt a banked structure for their RAM, with the 16F84A having just two banks.
The address of either bank is the 7-bit RAM address (‘RAM addr’) seen in Figure 2.2. The active bank is
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MSB is ‘bank
select bit’

(Status register).

Figure 2.5 Data memory and Special Function Register map of the 16F84A (supplementary labels in shaded boxes
added by the author)

selected by bit 5 in the Status register (Figure 2.3). The programmer must ensure that the bank bit in the
Status register is correctly set before making any access to memory.

Special Function Registers

The SFRs are the gateway to interaction between the CPU and the peripherals, and we will get to know them
very well. To the CPU, an SFR acts more or less like a normal memory location – you can usually write
to it or read from it. What makes it ‘special’ is that the bits of that memory location have a dual purpose.
Each bit is wired across to one or other of the microcontroller peripherals. Each is then used either to set
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up the operating mode of the peripheral or to transfer data between the peripheral and the microcontroller
core. As we get to know the peripheral of the 16F84A, we will get to know each of the SFRs shown in
Figure 2.5. Note that four SFRs appear in Figure 2.2. Can you identify what they are?

RAM addressing

Figure 2.2 shows that there are two possible sources of the RAM address, selected through the address
multiplexer (‘Addr Mux’). Either the address forms part of the instruction, and is routed across to the
address multiplexer from the Instruction register. This is called direct addressing. Alternatively, the address
is taken from the File Select Register, or FSR, which can be found as one of the SFRs in Figure 2.5. If the
user loads an address into the FSR, that can then be used as an address to data memory, a technique know
as indirect addressing. This will be described in Chapter 5, Section 5.4.1.

The actual memory addresses are shown in Figure 2.5, labelled as ‘file address’. These addresses, at least
in the right-hand column, appear to be 8-bit. We know, however, from Figure 2.2 that the RAM address bus
is only 7-bit, or only 5 valid bits if direct addressing is used. It is important to understand that the addresses
shown are made up of this 7-bit RAM address, with the bank select bit from the Status register inserted as
the eighth, most significant, bit. When programming it is necessary to separate the two, ensuring that the
MSB in Figure 2.5 is used for the bank select bit. This will become clear as we start to program.

2.4.3 The Configuration Word

A special part of the 16F84A program memory is its Configuration Word (Figure 2.6). This allows the user to
define certain configurable features of the microcontroller, at the time of program download. These are fixed
until the next time the microcontroller is programmed. This is distinct from those many selectable features,
like the setting of SFRs, which are under normal program control. While the Configuration Word is part of
program memory, it is not accessible within the program, or in any way while the program is running. The
actual features it controls, which can be read on the diagram, are explained in this and later chapters.

2.4.4 EEPROM

The EEPROM is non-volatile and is particularly useful for holding data variables that can be changed, but
are likely to be needed for the medium to long term. Examples include TV tuner settings, phone numbers
stored in a cell phone or calibration settings on a measuring instrument.

In the 16F84A (and indeed any PIC microcontroller), the EEPROM is not placed in the main data memory
map. Instead (as the top right of Figure 2.2 neatly shows) it is addressed through the EEADR register and
data is transferred through the EEDATA register. These are both SFRs, seen in Figure 2.5.

As the review of memory technology earlier suggests, reading from EEPROM is a simple process, but
writing to it is not. This latter takes significant time in electronic terms (i.e. milliseconds) and care must be
taken to avoid accidental writes. A set of controls is therefore required, to start the process and (for write)
to detect when it is ended. These are found in the bits of the EECON1 register (Figure 2.7). To read
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Figure 2.6 16F84A Configuration Word

Figure 2.7 The EECON1 Special Function Register (address 88H)



Introducing the PIC® 16 Series and the 16F84A 37

an EEPROM location, the required address must be placed in EEADR and the RD bit set in EECON1.
The data in that memory location is then copied to the EEDATA register and can be read immediately. To
write to an EEPROM location, the required data and address must be placed in EEDATA and EEADR
respectively. The write process is enabled by the WREN (Write Enable) bit being set high, followed by the
bytes 55H followed by AAH being sent to the EECON2 register. The built-in requirement for these codes
helps to ensure that accidental writes do not take place, for example on power-up or down. The WR bit is
then set high and writing actually commences. The write completion is signalled by the setting of bit EEIF
in EECON1.

2.5 Some issues of timing

2.5.1 Clock oscillator and instruction cycle

Any microprocessor or microcontroller is a complex electronic circuit, made up of sequential and com-
binational logic. At fantastic speed it steps in turn through a series of complex states, each state being
dependent on the instruction sequence it is executing. While the detail of this process is invisible to us, it is
still necessary to provide the ‘clock’ signal, a continuously running fixed frequency logic square wave. The
overall speed of the microcontroller operation is entirely dependent on this clock frequency. It is not just
the CPU that is dependent on the clock. In most microcontrollers many essential timing functions are also
derived from it, ranging from counter/timer functions to serial communications. Furthermore, the overall
power consumption of the microcontroller has a strong dependence on clock frequency, with high speed
operation being much more power hungry than slow speed.

As Table 2.1 shows, every microcontroller has a specified range for its clock frequency. It is up to the
designer to determine the clock frequency needed and to select a means of generating the clock source.
With so many things depending on the clock frequency and its stability, these can be challenging decisions.
These are taken further in Chapter 3.

Within any microprocessor, the main clock signal is immediately divided down by a fixed value into a
lower-frequency signal. Each cycle of this slower signal is called either a machine cycle or an instruction
cycle. Microchip use the latter terminology. The instruction cycle becomes the primary unit of time in
the action of the processor, for example being used as a measure for how long an instruction takes to
execute. The original clock signal is retained to create phases or time stages within the instruction cycle.
In PIC 16 Series microcontrollers the main oscillator signal is divided by 4 to produce the instruction
cycle time.

Table 2.3 gives some popular clock frequencies, with their resulting instruction cycle durations. For
the fastest clock frequency, 20 MHz, the instruction cycle frequency is 5 MHz, with a period of 200 ns.
The slightly cheaper version of the controller, the 16F84-04, with maximum clock frequency of 4 MHz,
has at this frequency an instruction cycle time of 1 µs. As we will see, this unsurprisingly is a conve-
nient value for a range of simple timing applications, using software delay loops and the counter/timer.
A popular clock frequency for very-low-power applications, including wristwatches, is 32.768 kHz. This
has an instruction cycle period of 122.07 µs. The result is very low power, but strictly no high-speed
calculations!
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Table 2.3 PIC 16 Series instruction cycle dura-
tions for various clock frequencies

Clock frequency Instruction cycle
Frequency Period

20 MHz 5 MHz 200 ns
4 MHz 1 MHz 1 µs
1 MHz 250 kHz 4 µs
32.768 kHz 8.192 kHz 122.07 µs

2.5.2 Pipelining

The combination of the RISC instruction set and the Harvard memory map used by PIC microcontrollers has
an added advantage: instructions can be pipelined. Every instruction in a computer’s program memory has
first to be fetched and then executed. In many CPUs these two steps are done one after the other – first the
CPU fetches and then it executes. If, however, program memory has its own address and data bus, separate
from data memory (i.e. a Harvard structure), then there is no reason why a CPU cannot be designed so that
while it is executing one instruction, it is already fetching the next. This is called pipelining. Pipelining
works best if fetch and execute cycles are always of the same duration, such as a RISC structure gives. This
fairly simple design upgrade gives a doubling in execution speed!

All PIC microcontrollers implement pipelining, which is one of the reasons for their comparatively high
speed of operation. Each instruction is fetched while the previous one is being executed. Pipelining fails
only for instructions that cause the value in the Program Counter to be changed, for example a program
branch or jump. In this case, the instruction fetched is no longer the one needed. The pipelining process
must then start again, with the consequent loss of an instruction cycle.

A diagram representing the pipelining process in 16 Series microcontrollers is shown in Figure 2.8. Here
we can see that while instruction 1 is being executed, instruction 2 is already being fetched, the same
happening as instruction 2 is executed, and so on. An example sequence of instructions is shown to the left
of the diagram. It is not, however, necessary to understand their meaning to understand the diagram, except
to know that the CALL instruction causes a program branch. The instruction following it, instruction 4,
is fetched while instruction 3 is being executed. Due to the program branch, however, instruction 4 is no
longer needed, and a cycle has to be lost while the new instruction is fetched.

2.6 Power-up and Reset

When the microcontroller powers up, it must start running its program from its beginning (i.e. for the
16F84A from its reset vector, seen in Figure 2.4). This will only happen if explicit circuitry is built in to
detect power-up and force the Program Counter to zero. Along with this, it is also very useful to set SFRs
so that peripherals are initially in a safe and disabled state. This ‘ready-to-start’ condition is called Reset.
The CPU starts running its program when it leaves the Reset condition.
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Figure 2.8 Instruction pipelining

In the 16F84A there is a Reset input, MCLR (‘Master Clear’, on pin 4, Figure 2.1). As long as this is held
low, the microcontroller is held in Reset. When it is taken high, program execution starts. If the pin is taken
low while the program is running, then program execution stops immediately and the microcontroller is
forced back into Reset mode.

There remains the question of when program execution should actually be allowed to start. The moment
power is applied is a dangerous one for any embedded system. Both the power supply and the clock oscillator
take finite time to stabilise, and in a complex system power to different parts of the circuit may become
stable at different times. Clearly, this situation takes some careful handling. How can the start of program
execution be delayed until power has stabilised?

A simple way to resolve the ‘what do we do as power is applied?’ question is shown in Figure 2.9, illustrated
here for any microcontroller which has an active low Reset input. If a resistor capacitor circuit is connected
to the Reset input, then when power is applied the capacitor voltage rises according to the RC time constant,
which can be made as big as is wanted. For a certain period of time, because it is rising comparatively
slowly, the Reset input is at Logic 0. Thus, the microcontroller can be held in Reset while its power supply
stabilises and while the clock oscillator starts up. The diagram for a simple external Reset circuit is shown
in Figure 2.9(a).

A small problem arises with this circuit if the power is switched off and then on again quickly (a cruel and
challenging thing to do to any electronic device). With the circuit of Figure 2.9(a) the capacitor wouldn’t
have time to discharge and the Reset condition might not be properly applied when power is applied again.
More dangerously, the capacitor voltage might exceed the voltage supplied to the microcontroller and
excessive current could then flow from the capacitor into the Reset input. By adding a simple discharge
diode, as shown in the circuit in Figure 2.9(b), we can ensure that the capacitor discharges more or less at
the same rate as the VDD supply. The resistor RS is also included, to limit current into the |Reset input if
the capacitor voltage does inadvertently exceed the voltage supplied to the microcontroller or another fault
condition occurs.
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Figure 2.9 External Reset circuits – generic microcontroller with Reset input. (a) Power-on Reset, simplest possible.
(b) Power-on Reset, with discharge diode and protective resistor. (c) User Reset button.

If the designer wishes to include a Reset button, then the circuit of Figure 2.9(c) can be applied. This is
particularly useful for prototype circuits, where a large amount of testing is expected. Then it is convenient
to be able to reset a program that may have crashed. R is a pull-up resistor, whose value can be in the range
10–100 k�. In a commercial device it is usually undesirable to have a Reset button; the aim here is design
the product so reset by the user is never needed.

One of Microchip’s goals is to minimise the number of external components needed for their microcon-
trollers, and the components of Figure 2.9 fall exactly into this category. Therefore, the 16F84A includes
some sophisticated on-chip reset circuitry, which in many situations makes the components of Figure 2.9(a)
or (b) unnecessary. A Power-up Timer (PWRT) is included on-chip, which can be enabled by the user with
bit 3 of the Configuration Word (Figure 2.6). The 16F84A detects that power has been applied and the
Power-up Timer then holds the controller in Reset for a fixed period of time. Once this is over the micro-
controller leaves Reset and program execution begins. In practice, the circuit of Figure 2.9(b) need only
be applied if the supply voltage rises very slowly. The Power-up Timer, and further details of the internal
Reset circuit, are covered in greater detail in Section 2.8.

So what should be done with the 16F84A MCLR input if we don’t want to use it? It is essential to recognise
that this input must not just be left unconnected. The simplest thing to do is to tie it to the supply rail and
then forget about it.

2.7 What others do – the Atmel AT89C2051

Atmel produce a range of small (but not tiny) microcontrollers, comparable in size to the smaller PIC 16
Series devices, though somewhat larger than the 16F84A. They are based on an 8051 core, originally
developed by Intel, and since adopted by a number of other manufacturers, including both Atmel and
Philips.
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Figure 2.10 The Atmel AT89C2051 pin connection diagram and summary

The Atmel AT89C2051 [Refs 2.4, 2.5] is summarised in Figure 2.10. With 20 pins it is just slightly larger
than the 16F84A, and this is reflected in its internal capability. Despite the differences, it is interesting to
notice the similarities. Both have on-chip program and data memory, Flash for program and SRAM for data.
Crystal inputs, reset and power supply are all extremely similar. The PIC microcontroller has 13 digital
input/output lines, the Atmel 15, both with direct LED drive capability. The PIC microcontroller has one
external interrupt, the Atmel two. The Atmel has two 16-bit timers, to the one 8-bit timer of the PIC, and
the Atmel has a serial capability that the PIC microcontroller just doesn’t have. One would not have to
look far in the PIC 16 Series family to find relatives of the ’F84A, just slightly larger than it, which have
serial capability. An interesting further feature of the ’2051 is the on-chip comparator, which allows the
controller to host simple analog functions. However, it doesn’t all go the way of the Atmel device, as the
PIC microcontroller has the EEPROM memory that Atmel does not match.

All this discussion, however, is mainly just comparing peripherals, which manufacturers can add or subtract
with ease. What other differences would we find if we put both controllers to use? The answer lies in the
core and instruction set. The Atmel is a CISC device, with the 8051 instruction set. We take the instruction
set comparison a little further in Chapter 4. Let’s just note here the advantages that the PIC microcontroller
core enjoys. As a RISC processor, it requires just four oscillator cycles per instruction, as described earlier
in this chapter. The 2051 requires 12 for each of its machine cycles, and even then many instructions require
more than one machine cycle. The PIC microcontroller also uses pipelining, which the Atmel does not.

2.8 Taking things further – the 16F84A on-chip reset circuit

Let’s take a closer look at the 16F84A on-chip reset circuitry, shown in simplified form in Figure 2.11. This
takes some understanding, but it is worth doing.
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Table 6-5 of Ref. 2.1 gives example reset delay times for different settings of oscillator, and PWRT and OST enable lines.

Figure 2.11 The 16F84A reset circuitry

The actual reset to the CPU, Chip_Reset, is generated by a flip-flop, which appears to the right of the
diagram. This has two inputs, S (Set) and R (Reset). The CPU enters Reset mode when Chip_Reset goes
low, which is caused by the S line going high. It stays there until the flip-flop is cleared, caused by the R
line going high.

So what causes a reset? The S input to the flip-flop goes high, via a three-input OR gate, if any of the
following goes high:

• External Reset, from the MCLR line we have already seen
• Time-out Reset, from the Watchdog Timer (WDT); this is designed to occur if a program crash occurs –

the details are given in Chapter 6
• Power-on Reset, output of the circuit that detects power being applied (‘VDD Rise Detect’).

Once any of these occurs, the flip-flop is set, the Chip_Reset line goes low and the PIC microcontroller is
held in Reset.

The Chip_Reset line returns to 1 (and the PIC microcontroller is enabled) if the R input to the flip-
flop is activated. The three requirements to be satisfied here, determined by the inputs to the associated
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AND gate, are that both power supply and oscillator have stabilised, and that any demand for Reset has
been cleared. The first two of these requirements are achieved by two interesting timers, the Power-Up
Timer (PWRT) and the Oscillator Start-up Timer (OST). The Power-up Timer can be enabled by setting its
bit in the Configuration Word (Figure 2.6). The Oscillator Start-up Timer is enabled via the Enable OST
line. This is set automatically by the user oscillator setting in the Configuration Word, which enables it
for all oscillator modes except RC. The Power-Up Timer is clocked by its own on-chip RC oscillator, and
when enabled counts 1024 cycles of its oscillator before setting its output to 1. This time duration turns
out to be around 72 ms. This is long enough for the average power supply to have stabilised, though is
not enough for a slowly rising supply. Once the Power-Up Timer has completed its count, the Oscillator
Start-up Timer is then activated, which in turn counts 1024 cycles of the main oscillator signal. This tests
for a reliably running clock oscillator – if the oscillator isn’t running, then of course it can’t count. The
outputs of both counters, and the inverse of the S input to the flip-flop, are ANDed together, to form the
R input to the flip-flop. If all lines are high, i.e. both counters have completed their count and there is
no demand for a Reset, then the flip-flop is cleared. The CPU accordingly leaves the Reset condition and
starts running.

The reset sequence just described is shown in Figure 2.12, for the common situation of MCLR being
tied to VDD. The application of power is seen in the rise of the VDD trace, which brings the MCLR line
with it. This change is detected, as seen in the change of state of the ‘internal POR’ line. This in turn
triggers the Power-Up Timer, which runs for a period TPWRT. When TPWRT is up, the Oscillator Start-up
Timer, whose time delay is TOST, is activated. Notice that TOST depends on the main oscillator running
successfully, and is dependent on its frequency. For a 4 MHz oscillator, it will be 1024 × 250 ns, or
256 µs. When TOST is complete, the R line in Figure 2.11 goes high and the microcontroller leaves the
Reset state.

Figure 2.12 Reset sequence on power-up, with MCLR tied to VDD
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Summary

• The PIC 16 Series is a diverse and effective family of microcontrollers.
• The 16F84A architecture is representative of all 16 Series microcontrollers, with Harvard structure,

pipelining and a RISC instruction set.
• The PIC 16F84A has a limited set of peripherals, chosen for small and low-cost applications. It is thus a

smaller member of the family, with features that are a subset of any of the larger ones.
• The 16F84A uses three distinct memory technologies for its different memory areas.
• A particular type of memory location is the Special Function Register, which acts as the link between the

CPU and the peripherals.
• Reset mechanisms ensure that the CPU starts running when the appropriate operating conditions have

been met, and can be used to restart the CPU in case of program failure.
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Parallel ports, power supply and the

clock oscillator

So far we have looked a little at the theory of microcontroller architecture, and its implementation in PIC®

microcontrollers. This chapter now begins to move from that theory to the practice of small-scale hardware
design.

As we have seen, the microcontroller core has internal data and address buses. In a way these are like
motorways, or inter-state freeways, carrying large amounts of traffic in both directions to a variety of different
destinations. The microcontroller needs to be provided with a way of allowing that data flow to connect with
the outside world, so that it can read in external digital values or output other values. In other words, it
needs the equivalent of motorway junctions, where data can leave (or enter) the bus at designated times and
locations. In the microcontroller world these junctions have many forms, as there are many different ways
that data can be input or output. The most general purpose of these is the parallel input/output port. This is
one of the microcontroller’s most essential peripherals, and is the opening subject of this chapter.

Given a working car engine, two essentials that it needs to run are fuel and a stream of sparks from the
plugs. A microcontroller has similar needs. Its fuel is the low-level electrical power supply that it requires,
and instead of a flow of sparks, it needs a regular sequence of clock oscillator pulses. A study of these forms
the second half of this chapter.

Putting together our background knowledge already gained, an ability to work with digital input/output, and
an ability to design a power supply and clock oscillator, we will be in the happy position of being able to
start to design real systems.

In this chapter you will learn about:

• Why we need parallel input/output
• How simple logic circuits can be developed to give a flexible interface between the microcontroller data

bus and the outside world – these are the parallel ports
• How external devices can be connected to the parallel port
• The parallel input/output available on the PIC 16F84A
• The essential hardware features of power supply and clock oscillator
• The Microchip approach to power supply and oscillator, with the 16F84A
• The hardware design of the electronic ping-pong game.



46 Parallel ports, power supply and the clock oscillator

3.1 The main idea – parallel input/output

Almost any embedded system needs to transfer digital data between its CPU and the outside world. This
transfer falls into a number of categories, which can be summarised as:

• Direct user interface, including switches, keypads, light-emitting diodes (LEDs) and displays
• Input measurement information, from external sensors, possibly being acquired through an analog-to-

digital converter
• Output control information, for example to motors or other actuators
• Bulk data transfer to or from other systems or subsystems, moving in serial or parallel form, for example

sending serial data to an external memory.

With this plethora of data coming and going, it is likely we will need to have a variety of digital inputs
and/or outputs. These are divided broadly into serial and parallel. In serial data transfer, the information is
transferred one bit at a time. Only a single interconnection is used to carry the data itself, although other
lines are usually included for synchronisation and control. In parallel data transfer, a set (for example, eight)
of interconnections is used. Each of these can carry 1 bit, and each works in parallel with the others. Data
can thus be transferred in groups of bits, for example in bytes. Parallel input/output (I/O) is the workhorse
for all the basic data interchange of a microcontroller, including interfacing with switches, LED, displays
and so on. A group of parallel I/O interconnections, appearing on the pins of the microcontroller, is called
a parallel port.

3.2 The technical challenge of parallel input/output

Our immediate challenge is how to provide the required interface between the microcontroller data and
address buses and the outside world. As suggested above, we start with the data bus, a multi-purpose data
highway. How can we grab the data we want from the bus, and transfer it to the outside world, via the
parallel port? Alternatively, how can we take external input data, and introduce it onto the data bus, at the
right time and place, so that it gets to the right place within the microcontroller? Finally, given a port that
can do these things, how can we make it really flexible, so that it can be used for input, or output, or a
mixture of both, and can transfer a combination of data with possibly very different end uses.

3.2.1 Building a parallel interface

It should be simple to create a set of output pins to create an output port (Figure 3.1). Let us assign an
address in the memory map to the port. Whenever that address is selected by an instruction in the program,
it activates a line called Port Select. A further line, Read/ Write, indicates whether the CPU is undertaking
a Read (line is high) or Write (line is low) operation. This is gated with the Port Select line. Each line of
the data bus is connected to a bistable, and all of these are clocked by the Port Select line. Then the value
of the data bus is latched into the bistable whenever the port memory location is addressed, in Write mode.
The outputs of the bistables are made available for connection to the outside world.

It is equally simple to create a set of input pins (Figure 3.2). All that is needed is a tristate buffer gate
connected between an external pin and a line of the data bus. When the buffer is enabled, again by a
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Figure 3.1 Two bits of a possible digital output port
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is selected, AND Read is active

External pin

Read/Write

Figure 3.2 Two bits of a possible digital input port
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logical combination of Port Select line and Read/Write control, the logic value of the external pin is briefly
connected to the data bus line, and can be read by the CPU. Note that in this design the external data is not
latched by the port, it must be held at a stable value by the external source.

These ideas are quite attractive, but the reality is that it is inflexible to limit an external pin of an IC to just
one function, whether input or output. It would be much neater to combine somehow the two circuits used
for input and output, and let the user decide which direction he/she wants the data to move. The diagram
of Figure 3.3 does just that. It shows a possible ‘pin driver’ circuit for one bit of a parallel port. It is easy
to pick out in it the circuits of Figures 3.1 and 3.2. What must be added, however, is a further flip-flop
(‘Direction’), which is set to determine whether this microcontroller pin is to act as an input or output. The
state of this flip-flop is set by the program. It controls the ‘output buffer’, which is enabled when the port
bit is in output mode.

This circuit forms the basis for a very useful bi-directional input/output pin driver, and it is easy to find
versions of it in many popular microcontrollers. Sets of I/O pins are grouped together to form a parallel

D Q

D Q

‘Direction’

‘Data’ I/O pin

Read/Write

Port  Select

Direction Select

‘Data’ SFR

‘Direction’ SFR

Data bus

(bit n of an
8-bit port)

(bit n)

Output buffer

Input buffer

Alternate Input
 Function

Read port

Write
port

Write
DDR

Determines whether port
bit is input or output

8 of these flip-flops form
the ‘Data Direction’ SFR

8 of these
flip-flops form
the ‘Data’ SFR

Holds bit
output value

Buffer, enabled
when pin is output

Figure 3.3 A bi-directional port pin driver circuit
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I/O port. Each ‘Data’ flip-flop then forms one bit of a ‘Data’ SFR (Special Function Register), and each
‘Direction’ flip-flop forms one bit of a ‘Direction’ SFR, as seen in Figure 3.3. Each SFR is memory mapped,
with its own unique address. Derived from that address is its select line, which goes high when that location
is addressed. Port Select selects the Data SFR and Direction Select selects the Direction SFR.

By writing to the Direction SFR the user can determine which bits are to be input and which are to be
output. By writing to the Data SFR he/she can set the value of all Data flip-flops, whether that pin is actually
set as an output or not. This value is transferred to the I/O pin through the buffer for those pins which are
enabled as outputs. By reading from the Data SFR the program can acquire the logical value of the I/O
pin. If the pin is set as output, this value is simply the value held by the Data flip-flop and asserted on the
I/O pin through the Output Buffer. If the pin is set as an input, then an external signal should be connected
to the pin, and the controller will read its value.

Having established this basic design, it is possible to extend it further to add other features. We will see this
when we look at some PIC microcontroller examples. One simple extension is already indicated in Figure 3.3,
however. This is the ‘Alternate Input Function’ line, which allows an internal peripheral to share the I/O pin.

3.2.2 Port electrical characteristics

Logic gates are designed to interface easily with each other, and if we connect logic gates from just one
family together then we usually don’t need to worry about the electrical details of what is going on. If,
however, we are connecting logic devices (in this case microcontroller port bits) to non-logic elements (like
LEDs or switches) then we do need to understand the electrical characteristics of the logic. In particular,
we need to understand their input and output characteristics.

The output of a logic gate can be visualised, or ‘modelled’, as in Figure 3.4(a). If the output is at Logic high
(or ‘1’), then the internal switch is in the upper position. It is in the lower position for Logic 0. In either
case, the output is modelled as a voltage source in series with a resistor (in circuit theory this is called a
‘Thevenin equivalent’ circuit). VLH is the logic high output voltage, with an output resistance of RS(high).
VLL is the logic low output voltage, with an output resistance of RS(low).

In the case of CMOS (Complementary Metal Oxide Semiconductor) the situation is quite simple, as VLH is
equal to the supply voltage and VLL is equal to 0 V. This is illustrated in Figure 3.4(b). Thus, if the supply
voltage is 5 V, then Logic 0 and 1 will be 0 and 5 V respectively, if no current is being drawn from the gate
output.

In practice, RS(high) and RS(low) are not constant, but depend to some extent on the current being sourced or
sunk from the gate output. Therefore, manufacturers frequently publish graphical information on the output
characteristics. We will see this shortly for the 16F84A.

3.2.3 Some special cases

We review now two special types of I/O characteristic, which will be important as we explore the 16F84A
parallel ports.
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Figure 3.4 Modelling a logic gate output. (a) Generalised model. (b) Model of CMOS logic gate output

Schmitt trigger inputs

A Schmitt trigger (Figure 3.5) is a certain type of logic gate input which is designed to ‘clean up’ a corrupted
logic signal. It has two input thresholds, with the ‘positive-going’ higher than the ‘negative-going’. A signal
starting from a low value has to pass the negative-going threshold (at which point nothing happens) and then
cross the ‘positive-going’ threshold, at which point the output changes state. The output will not reverse
until the input (now negative-going) has got right back down to the negative-going threshold. Thus, small
fluctuations which recross a threshold just crossed do not cause any change in output.

The ‘Open Drain’ output

The Open Drain output is a flexible style of output that can be adapted either as a standard logic output, or
as a direct drive for small loads, or used for a special logic function known as ‘Wired-OR’. The output itself
is as illustrated in Figure 3.6(a). A logic gate drives the gate of a MOSFET (Metal Oxide Semiconductor
Field Effect Transistor), whose unconnected Drain terminal forms the output. When the MOSFET gate drive
is high, the FET conducts and a logic zero is asserted at the terminal. When the gate is low the FET will not
conduct and (with no other connection) the terminal will be at an undefined voltage. If a pull-up resistor is

VI VO

VI

VO

Positive-going
threshold

Negative-going
threshold

(a) (b)

Figure 3.5 Schmitt trigger characteristics. (a) Buffer with Schmitt trigger input. (b) Input/output characteristic
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Figure 3.6 The Open Drain output and some applications. (a) An ‘Open Drain’ output. (b) Open Drain output driving
load resistor. (c) The ‘Wired-OR’ connection

connected from the Drain to the supply voltage, then the output acts more or less as a normal logic output.
Without the active pull-up of a normal logic output, however, its rise time will be a little sluggish and the
amount of current it can source will be limited by the resistor value.

The Open Drain output can also be used to drive a simple load, acting as illustrated in Figure 3.6(b).
Usefully, the load does not have to be supplied from the same voltage as the logic supply, although it would
have to be of the same polarity. Therefore, for example, a microcontroller supplied from 5 V (VS1 in the
diagram) could drive a load supplied from 12 V (VS2 in the diagram), if all operating requirements are met.

Another important application of the Open Drain output is the ‘Wired-OR’ connection, shown in
Figure 3.6(c). Here several Open Drain outputs are connected together and tied high through a single
pull-up resistor, RPU. If all outputs are off, then the common line (VO) is high. If any one output goes low,
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then the common line is pulled low. This is a possible way of achieving the OR or NOR logic function, and
important for certain types of serial link, as we shall see later.

3.3 Connecting to the parallel port

3.3.1 Switches

Switches are extensively used in embedded systems. Our main initial interest is not to switch directly a
voltage or current, but to convert the switch position to a logic level that can be read by a microcontroller
port bit. Switches are used as direct user interface in the form of push-buttons, toggle switches, slide
switches, or as thumbwheel or rotary switches. They are also used, in the form of microswitches, to detect
certain types of mechanical movement.

The simplest way of deriving a logic level from a switch is shown in Figure 3.7(a). This shows a single-
pole, double-throw (SPDT) switch, with one terminal connected to ground and the other to the supply. The
switch wiper simply selects one of these two as the logic input. Some logic families advise against direct
connection of a logic input to the supply voltage, so a series resistor (shown dotted) might be in order.

There is a slight disadvantage to the connection of Figure 3.7(a), as it requires the SPDT switch. A simpler
option, using just a single-pole, single-throw (SPST) switch, for example a push-button, is shown in
Figure 3.7(b). Here a pull-up resistor is connected to one terminal of the switch, with the other terminal
connected to ground. If the switch is closed, then the input to the logic gate, VI, is 0 V and a current VS/R

flows to ground. If the switch is open then VO is equal to VS. To reduce wasted current when the switch is
closed, the value of R should be high. If it is too high, however, then the Logic 1 level that it is meant to define
may not be properly sustained. To evaluate the upper limit of the pull-up resistor, the input leakage current
and logic thresholds need to be applied (as demonstrated in Chapter 2 of Ref. 1.1). For PIC microcontrollers,
pull-up values in the range 10–100 k� are usually appropriate. The circuit of Figure 3.7(b) is very useful
and widely applied, as many simple switches (e.g. PCB-mounting slide switches and push-buttons) are only
available as SPST.

The switch circuit of Figure 3.7(b) can be reconnected as in Figure 3.7(c). The characteristics of some logic
families (for example, TTL) do, however, place restrictions on the use of this circuit, as the current sourced

R

R

VS

VI

VS VS

VI
VI

(a) (b) (c)

Figure 3.7 Connecting switches to logic inputs. (a) SPDT connection. (b) SPST with pull-up resistor. (c) SPST with
pull-down resistor
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from the gate input significantly affects the action of the pull-down resistor. The circuit can be applied with
PIC microcontrollers.

3.3.2 Light-emitting diodes

In certain semiconductor materials light is emitted as current flows across a forward-biased p-n junction.
LEDs exploit this phenomenon. LEDs made of gallium arsenide (GaAs) emit light in the infrared, and if
phosphorus is added in increasing proportions, the light moves to visible red and ultimately to green. LEDs
are widely available in red, green and yellow, as single devices, and as arrays, bargraphs and alphanumeric
displays.

Because they are diodes, LEDs display the normal voltage – current relationship of a forward-biased diode.
This means that, to a reasonable approximation, the voltage across an LED is constant, if it is conducting.
Note, however, that this forward voltage is considerably higher for GaAs than it is for silicon. Example
LED characteristics, for red and green Kingbright LEDs, are shown in Figure 3.8. From these graphs it can
be seen that the voltage across the red LED changes from 1.90 to 2.00 V if the current increases from 5 to
20 mA. For the green it changes from 1.95 to 2.20 V for the same current range. These voltage values are
typical for all LEDs of similar type, with red having a slightly lower forward voltage, compared to green
or yellow.

The different colours also do not give equal intensities for equal drive currents, as shown in the data in
Figure 3.8. Red is the most efficient, which may account for its greater popularity. For a single LED to be

Type number: L-441D
Wavelength = 627 nm
15mcd typ.@ 10 mA

Type number: L-44GD
Wavelength = 565 nm
12mcd typ.@ 10 mA

(a) (b)

Figure 3.8 Example Kingbright LED characteristics [Ref. 3.1]. (a) High-efficiency red. (b) Green. Reproduced with
permission of Kingbright Elec. Co. Ltd
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Figure 3.9 Driving LEDs from logic gates. (a) Gate output sourcing current to LED. (b) Gate output sinking current
from LED

comfortably visible, it typically requires around 10 mA of current. Brighter ones may require up to 20 mA,
but special low-power devices (such as the high-efficiency red) need as little as 1 or 2 mA to be seen.

An LED can be driven from a logic output, for example a microcontroller port, as long as its current
requirements can be met. Depending on the capabilities of the port output they can be connected so that the
output is sourcing current (Figure 3.9(a)) or sinking current (Figure 3.9(b)).

CMOS logic families have symmetrical outputs and can source or sink almost equally well, so either of
these circuits can be applied. In contrast, TTL logic can source little current but can sink a comparatively
large amount, and therefore the configuration of Figure 3.9(b) is preferred in this case.

A current-limiting resistor must normally be included in series with the LED. This is calculated as shown
below by considering the voltages in the circuit. Precise values are not usually required.

For current source: VOH = RID + VD

R = VOH − VD

ID
(3.1)

For current sink: VS = VOL + RID + VD

R = VS − VD − VOL

ID
(3.2)

An exception to the need for a series resistor, which must be cautiously applied, is when the logic is powered
from a comparatively low voltage, and its internal output resistance itself forms an appropriate value for
the current-limiting resistor.
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3.4 The PIC 16F84A parallel ports

We saw in Chapter 2 that the 16F84A has two ports, A and B. A is 5-bit, while B is 8-bit. Notice from
Figure 2.1 that some port bits have more than one function. We will see that the 16F84A adapts the generic
pin driver circuit of Figure 3.3 and cleverly weaves in these extra functions.

The SFRs that relate to the ports are seen in Figure 2.5. In each case the Port data itself appears in the
PORTA or PORTB register (i.e. these act as the ‘Data’ SFR of Figure 3.3), while the data direction is
determined by the bit values set in the TRISA or TRISB registers (i.e. these act as the ‘Direction’ SFR of
Figure 3.3).

We will now explore the ports in some further detail. Perhaps the most straightforward is Port B, with which
we accordingly start.

3.4.1 The 16F84A Port B

This is a general-purpose 8-bit bi-directional port, with pin driver circuit similar to that in Figure 3.3.
The simplest bits, 0 to 3, are illustrated in Figure 3.10(a). The data latch can be seen in each circuit, while
the ‘TRIS latch’ in Figure 3.10 replaces the ‘Direction’ latch of the earlier diagram. It can be seen that if the
‘TRIS latch’ output is set to 0, then the buffer that it drives is enabled and the port bit is in output mode.

There are four enhancements to the simple pin driver circuit we saw earlier:

• The incoming data is latched, through the lowest latch in the diagram, rather than just its instantaneous
value being read.

• The state of the ‘TRIS latch’ can be read, via the buffer controlled by the RD TRIS line. It follows that the
TRIS register acts as a normal read/write memory location, and the program can check if necessary the
values previously stored there.

• Bit 0 is also the external interrupt input and has a Schmitt trigger interface.
• ‘Weak pull-up’ resistors can be switched on, for all port bits used as inputs. These can be applied to replace

the resistor in circuits like in Figure 3.7(b). The pull-up is implemented with a p-channel MOSFET, seen
at the top of the diagram. They are enabled for all port bits set as input by clearing the bit RBPU in the
OPTION register. (This is seen memory mapped in Figure 2.5 or in full in Figure 6.9.)

Bits 4 to 7 of Port B are seen in Figure 3.10(b). They have a useful ‘interrupt on change’ facility. As with
the lower numbered bits, the data value is latched as input data is read. On these bits, however, the previous
input value, from the last time the port was read, is retained on another latch. Its stored value is compared
with the current input value. Any difference is detected by an Exclusive OR gate, whose output can generate
an interrupt. This capability will be considered in detail in Chapter 6.

3.4.2 The 16F84A Port A

Like Port B, this can be used as a general-purpose bi-directional digital port. The basic port pin driver
(Figure 3.11(a)) is very similar to the Port B pin. The diagram this time draws out in full the output
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Figure 3.10 Block diagram of Port B pin driver circuits. (a) Pins RB3 to RB0. (b) Pins RB7 to RB4 (supplementary
labels in shaded boxes added by the author)

tristate buffer. Bit 4 (Figure 3.11(b)) doubles as the Timer 0 clock input. It also has a Schmitt trigger input
characteristic and an Open Drain output, as described in Section 3.2.3. The full device data indicates that the
absolute maximum permissible voltage applied to this Open Drain pin is 8.5 V. Therefore, the ability to drive
an external load from a supply higher than the microcontroller itself can only be applied in a limited way.

3.4.3 Port output characteristics

The 16F84A port output characteristics are shown in Figure 3.12, for a supply voltage of 3.0 V. In
Figure 3.12(a) we see (at 25◦C) how the output voltage for Logic 1 is 3 V when the output current is 0, but
falls to around 1.7 V when the output current is 10 mA, flowing out of the gate. Similarly, in Figure 3.12(b)
we see (at 25◦C) how the output voltage for Logic 0 is 0 V when the output current is 0, but rises to around
0.8 V when the output current is 22.5 mA (flowing into the gate). It is curves like these that can be used to
find the VOL and VOH values used in equations (3.1) and (3.2), once a value for ID is known. Graphs are
also given in the full data for characteristics with a 5 V supply.

Another way of applying these curves is to deduce from them an approximate output resistance. This
can be done by measuring the gradient of the curve at a particular point. A simple construction to do
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Tristate buffer,
drawn out in full (a) (b)

Figure 3.11 Block diagram of Port A pin driver circuits. (a) Pins RA0, 1, 2 and 3. (b) Pin RA4/T0CKI (supplementary
labels in shaded boxes added by the author)

this has been added to each plot. By dividing vertical (voltage) by horizontal (current) for each of these,
output resistances of approximately 130 � when at Logic high and 36 � when at Logic 0 can be deduced.
If we call these two values ROH and ROL respectively, equations (3.1) and (3.2) can be written in a
different form:

For current source: VS = (R + ROH)ID + VD

R = VS − VD

ID
− ROH (3.3)

For current sink: VS = (R + ROH)ID + VD

R = VS − VD

ID
− ROH (3.4)
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Figure 3.12 16F84A port output characteristics. (a) VOH vs. IOH (VDD = 3 V, −40 to 125◦C). (b) VOL vs. IOL
(VDD = 3 V, −40 to 125◦C) (Dashed lines added by the author.)
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3.5 The clock oscillator

The choice of microcontroller clock source determines some of its fundamental operating characteristics.
While ‘faster is better’ in terms of operating speed and programming execution, faster is definitely worse in
terms of power consumption, and also possibly in terms of electromagnetic interference. All timed elements
within the microcontroller almost invariably depend on the clock characteristics. If stable and accurate
timing is required, then the clock oscillator must be stable and accurate. With these points in mind, the
clock source must be chosen with care and understanding. This section starts with a review of the clock
technologies available, before moving on to looking at the options offered with the 16F84A.

3.5.1 Clock oscillator types

Broadly, there are two types of oscillator circuit in common use in microcontrollers, as illustrated in
Figure 3.13. In the resistor–capacitor (RC) type (Figure 3.13(a)), a capacitor is charged through a resistor
from the supply rail. The capacitor voltage drives the input of a Schmitt trigger buffer. When the Schmitt
trigger threshold is exceeded, its output goes high, switching on the MOSFET transistor to which it is
connected. The capacitor is quickly discharged, the Schmitt output goes low, the MOSFET is switched off
and the charging process starts again. This continues for as long as power is maintained. The clock signal is
taken from the rectangular waveform generated at the Schmitt output. This simple circuit is integrated onto
many larger ICs requiring a clock signal. Users are then usually required to connect resistor and capacitor
externally, choosing these to set the desired frequency. It is important to note, however, that RC oscillators
can be implemented entirely on-chip. RC oscillators are very low cost and produce a clock signal very
reliably. As resistor, capacitor, power supply and Schmitt trigger threshold values all vary with temperature,
their frequency is not very stable. They cannot therefore be used where precise timing is required.

The crystal oscillator (Figure 3.13(b)) depends on the piezo-electric properties of quartz crystal. Any mechan-
ical distortion of the material causes a voltage to be produced across opposite sides of it; similarly, if a
voltage is applied to the material, a mechanical distortion results. Crystals are carefully cut into very thin

R

C

Supply voltage

Oscillator ‘signal’

Oscillator ‘signal’

Optional power-
limiting resistor

Crystal or
ceramic

(a) (b)

Figure 3.13 Microcontroller oscillator generator circuits. (a) Resistor–capacitor (RC). (b) Crystal or ceramic
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slices (usually discs), have tiny electrodes attached and are mounted so that they can vibrate. When con-
nected in the feedback path across a logic inverter, as the figure shows, the crystal can be forced through
piezo-electric action into mechanical vibration. This translates into electrical oscillation, an oscillation that
is sustained by the action of the logic gate. Small value capacitors connected from either side of the capacitor
to ground optimise the electrical conditions needed for this oscillation.

Crystal vibration occurs at a fixed and remarkably stable frequency – this is the great advantage of the
crystal oscillator. The crystals themselves tend to be on the expensive side (although cost continues to fall)
and mechanically fragile. An alternative is the ceramic resonator. This has similar piezo-electric properties
to the crystal and is connected in an identical way. It is, however, both lower in cost and rather less stable
in frequency. Crystals are the only option when precise timing functions, derived from the clock oscillator,
are required.

3.5.2 Practical oscillator considerations

All microcontroller manufacturers go a long way to making it easy to create a clock waveform for their
microcontrollers. Usually, this is done by including the circuits of Figure 3.13, possibly in merged form,
on-chip. One may be forgiven, therefore, for thinking that setting up the oscillator on a microcontroller is
a straightforward thing – in fact it isn’t, and unreliable or non-functioning oscillators are a cause of real
frustration with novice builders. Oscillator frequency shows greater or lesser dependence on supply voltage,
temperature, humidity, printed circuit board (PCB) layout and possibly other factors. Crystals in particular
are sensitive to poor PCB layout. It is important to exclude parasitic resistance, capacitance or inductance
by having very short PCB tracks, therefore locating the crystal close to the body of the microcontroller.

3.5.3 The 16F84A clock oscillator

The 16F84A can be configured to operate in four different oscillator modes, allowing implementation of
RC, crystal or ceramic oscillators. These are detailed below. It can also accept an external clock source.
The user selects which mode is to be used by setting bits in the Configuration Word (Figure 2.6).

• XT – crystal. This is the standard crystal configuration. It is intended for crystals or resonators in the
range 1–4 MHz.

• HS – high speed. This is a higher drive version of the XT configuration. It recognises that higher
frequency crystals, and ceramic resonators in general, require a higher drive current. It is intended for
crystal frequencies in the region of 4 MHz or greater, and/or ceramic resonators. It leads to the highest
current consumption of all the oscillator modes.

• LP – low power. This mode is intended for low-frequency crystal applications and gives the lowest
power consumption possible. In many cases this will be 32.768 kHz (i.e. 215), which is the most popular
frequency for low-power, time-sensitive applications, for example wristwatches. It will, however, operate
at any frequency below around 200 kHz.

• RC – resistor–capacitor. For this an external resistor and capacitor must be connected to pin 16, replicating
the circuit of Figure 3.13(a). This is the lowest cost way of getting an oscillator, but should not be used
when any timing accuracy is required. The nominal frequency of oscillation can be predicted with limited



Parallel ports, power supply and the clock oscillator 61

(a) (b)

(c)

Figure 3.14 Ways of supplying a clock waveform to the 16F84A. (a) Crystal or ceramic, HS, XT or LP. (b) Resistor–
capacitor. (c) Externally supplied clock

accuracy only, and even then it will drift with changing temperature, supply voltage and time. An example
of use of the RC oscillator appears in the electronic ping-pong case study at the end of this chapter.

As seen in Figure 2.1, the 16F84A has two oscillator pins, OSC1 (pin 16) and OSC2 (pin 15). Between these
lies a logic inverter and associated circuitry. Figure 3.14 shows the possible oscillator configurations that can
be connected using these pins. Either a crystal or a ceramic can be connected to create the oscillator circuit
of Figure 3.14(a). Any of the three speed ranges outlined above can be invoked through the Configuration
Word. An RC oscillator can also be used, as shown in Figure 3.14(b). The approximate oscillation frequency
can be selected by consulting graphical information given in the Electrical Characteristics section of the
data sheet, for example as seen in Figure 3.15. Finally, an external clock source can simply be connected
to the OSC1 pin (Figure 3.14(c)). Further guidance on oscillator design for Microchip microcontrollers can
be found in Ref. 3.2.

3.6 Power supply

3.6.1 The need for power, and its sources

Like any electronic circuit, a microcontroller and the overall embedded system need to be supplied with
electrical power. Traditionally, much logic circuitry is supplied at 5 V, arising from the voltage specified
for the TTL (Transistor Transistor Logic) logic family. With the growth in battery-powered equipment and
developments in electronic technology, supply voltages have been pushed down, and 3.3 and 3.0 V supplies
are now common.

Operating conditions for electronic components are specified in the manufacturer’s data sheet. In terms of
power supply there are two important issues: the supply voltage required and the current that the device
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Figure 3.15 Average RC oscillator frequency vs. VDD for variable R, C = 100 pF, 25◦C

will then take from the supply. This supply current will be dependent on operating frequency. Also given
are absolute maximum ratings, which give voltage and power dissipation levels beyond which the device
must not be taken.

3.6.2 16F84A operating conditions

The essential operating conditions of the 16F84A are shown in Figure 3.16. From this it can be seen that a
supply voltage of between 4.0 and 5.5 V is required, unless the HS oscillator mode is used. In this case the
supply voltage must not be below 4.5 V. In Sleep mode (when all program execution is suspended and the
oscillator is switched off), the supply voltage can be dropped right down to 1.5 V and the data in RAM is
still retained. If operation from lower supply voltages is required, then the 16LF84A should be used.

Looking further down the table, we see how much supply current depends on oscillator frequency. A typical
supply current of 1.8 mA can be expected when running at 4 MHz with a supply voltage of 5.5 V. If the
oscillator frequency is increased to 20 MHz, then the supply current rises to 10 mA. It’s worth mentioning
that both these values are actually very good, and compare well with many other, more power-hungry
microcontrollers. If we want to operate at really low currents, however, then look what the 16LF84A offers
at low frequency – a staggering 15 µA!

You may recognise that, for a battery-powered system, the required supply voltage of the 16F84A makes a
three-cell alkaline battery supply a useful option. This gives a supply of around 4.5 V. Suppose you powered
with three AA cells, each with a nominal capacity of 800 mAh. Running at 1.8 mA would give a battery life
of 444 hours, or 18.5 days. Running at 10 mA would give 80 hours, or 3.3 days, while 15 µA consumption
would lead to 53 333 hours, or 2222 days, or just over six years! In this case battery self-discharge would
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Note 1: This is the limit to which VDD can be lowered without losing RAM data.
Note 2: Gives further information on factors that influence supply current.
Note 3: Gives guidance on how to calculate current consumed by the external RC network, when this is used.

Figure 3.16 The 16F84A basic operating conditions

potentially be significant. The above calculations of course only take account of the consumption of the
microcontroller, and not of any other parts of the circuit.

An important opportunity for conserving power is through the ‘Sleep’ mode. This is introduced in Section 6.6
of Chapter 6.

3.7 The hardware design of the electronic ping-pong

The electronic ping-pong project was introduced in Chapter 1. Its circuit diagram can be seen in Appendix 2,
Figure A2.1. We are now in a position to understand every detail of its circuit design. Power is supplied from
two AAA cells, which are connected to the VSS and VDD pins of the microcontroller via an on–off switch.
Because the power supply is only 3 V, an LF version of the microcontroller is used. A 100 nF decoupling
capacitor across the power supply smoothes voltage spikes which may be induced due to the action of the
microcontroller internal circuitry. MCLR is simply tied to the supply rail, as no Reset function is needed
for this simple game.
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It can be seen that an RC oscillator is used. This is reasonable, as it is a cost-conscious application, with
no time-critical elements. Figure 3.15 shows that for the values used, and with a supply voltage of 3.0 V
nominal, the oscillator frequency will be 800 kHz.

Let us now look at the use of the parallel ports. It can be seen that the two player paddles, connected
to bits 3 and 4 of Port A, follow the pattern of Figure 3.7(b), with 10k pull-up resistors. The score and
out-of-play LEDs take up the remaining bits of Port A, and the ‘ball flight’ LEDs are all connected to Port B.
All LEDs are high-efficiency types and are connected according to Figure 3.9(a). Noting the approximate
130 � output resistance derived in Section 3.4.3 of this chapter, the total resistance in series with each LED
is (560 + 130) �. With a forward voltage across the LED of around 1.8 V, the current is given by applying
equation (3.3), i.e.

I = (3 − 1.8)/(560 + 130)

= 1.7 mA approx.

This current value is just adequate for this type of application and LED, where only close-up viewing is
expected. It would in general be viewed as low.

Summary

• The parallel port allows ready exchange of digital data between the outside world and the controller CPU.
• It is important to understand the electrical characteristics of the parallel port and how they interact with

external elements.
• While there is considerable diversity in the logic design of ports, they tend to follow similar patterns.

The internal circuitry is worth understanding, as it leads to effective use of ports.
• The 16F84A has diverse and flexible parallel ports.
• A microcontroller needs a clock signal in order to operate. The characteristics of the clock oscillator

determine speed of operation and timing stability, and strongly influence power consumption. Active
elements of the oscillator are usually built in to a microcontroller, but the designer must select the
oscillator type, and its frequency and configuration.

• A microcontroller needs a power supply in order to operate. The requirements need to be understood and
must be met by a supply of the appropriate type.
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4
Starting to program – an introduction

to Assembler

Embedded system design is made up of two main aspects, the hardware and the software. In the early days of
microprocessors, systems were built up laboriously using a large number of integrated circuits (ICs). Memory
was very limited, so only small programs could be written. Slowly, the available ICs became more and more
sophisticated, and the designer had to do less to get a working hardware system. Meanwhile memory was
growing, so longer programs could be written. Now we are in a situation where memory is plentiful and
cheap, and the hardware is sophisticated and readily available. Complex hardware systems can be built up
with comparative ease, and in many projects software development is now the main creative activity. In this
chapter we start down the long but exciting road to developing good programs. We start that road using the
Assembler programming language, but later in the book continue it using the high-level language C.

We have one problem if we are to start programming. What will the program run on? Ultimately, of course,
embedded systems programs are written to run on the target system hardware. You may be working with
an educational PIC® hardware system, or you may have the electronic ping-pong. In many cases, however,
we don’t want to be dependent on hardware to try out a programming idea. What can really cause a study
of programming to spring to life is a simulator – a program running on a desktop computer that will run
the program we have developed. Therefore, we make it a priority in this chapter to introduce the Microchip
MPLAB® Integrated Development Environment, and the simulator in it. Once you have the skill to use this,
then most program ideas can be tried out very quickly, and you should be able to make rapid progress in the
noble but tricky art of microcontroller programming!

In this chapter you will learn about:

• Some aspects of the underlying issues of computer programming
• The essentials of Assembler programming and how to write simple Assembler programs
• Development environments for programming and the Microchip MPLAB Integrated Development

Environment
• The PIC 16 Series instruction set in overview
• The use of certain PIC 16 Series instructions
• Simulating software and the MPLAB software simulator MPSIMTM.

You will also, if you wish, be able to learn about:

• How the RISC instruction set of the PIC 16 Series compares with the instruction set of a comparable CISC
microcontroller

• The details of how the PIC 16 Series instruction word is constructed.
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4.1 The main idea – what programs do and how we
develop them

The four main ideas of computer programming, according to this author, are listed here:

(1) A computer has an instruction set; it can recognise each instruction and execute it.
(2) The program that the computer executes is a list of instructions drawn from its instruction set; it reads

these in binary from its program memory. The program in this form is called machine code.
(3) To execute, the computer works relentlessly through the instructions of the program, from the beginning,

doing exactly what each instruction tells it to do – nothing more, nothing less – except when temporarily
diverted by an interrupt.

So far this is simple, but here is the difficult one:

(4) The programmer must find a means of breaking down and translating his/her ideas into steps that the
computer can undertake, where each step ultimately must be an instruction from its instruction set.

4.1.1 The problem of programming and the Assembler
compromise

The problem of programming is summarised in Figure 4.1. We as humans express our ideas in complex
and often loosely defined linguistic forms. A computer reads and ‘understands’ binary, and responds in a
precise way to precise instructions. It is ruthlessly logical and does exactly what it is told.

Given this linguistic divide, how can a programmer write programs for a computer? Three ways of bridging
the gap present themselves:

(1) The human learns machine code. This is what programmers used to do sometimes in the very early
days, laboriously writing each instruction in the binary code of the computer, exactly as the computer

11010010
01010010
11010101
01001011
01100011
....

Shall I
compare
thee to a
summer 
day.....?

Figure 4.1 The problem of programming
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would then read it. This is incredibly slow, tedious and error-prone, but at least the programmer relates
directly to the needs and capabilities of the computer.

(2) Use a high-level language (HLL). This is as if we go some way to asking the computer to learn our
language. In an HLL, instructions are written in a form that relates in a recognisable way to our own
language – in the case of people reading this book, probably English. Another computer program, either
a compiler or an interpreter, then converts that program into the machine code that the computer can
comprehend. The programmer now has a much easier time and can write very sophisticated programs.
He/she is now, however, separated from the resources of the computer, and the program may be
comparatively inefficient in terms of its use of memory and in its execution speed.

(3) Use Assembler. This is a compromise position. Every one of the computer’s instructions set is given
a mnemonic. This is usually a three- or four-letter word that can be used to represent directly one
instruction from the instruction set. The programmer then writes the program using the instruction
mnemonics. The programmer has to think at the level of the computer, as he/she is working directly
with its instructions, but at least the programmer has the mnemonics to use, rather than actually working
with the computer machine code. A special computer program called a Cross-Assembler, usually these
days running on a PC, converts the code written in mnemonics to the machine code that the computer
will see. Because there is a computer doing the conversion from the assembler code to machine code,
a number of other benefits can be built into the process. For example, the Cross-Assembler can look
after most of the business of allocating memory space in program memory, and it can accept labels for
numbers and memory locations, greatly easing the programmer’s task.

In the early days of computing, programming in Assembler was used to program almost any type of
computer. These days, however, it is pretty much the preserve of embedded designers, particularly when
using smaller 8-bit devices. For the embedded designer Assembler offers the huge advantage that it allows
him/her to work directly with the resources of the computer, and leads to efficient code, which executes
quickly. Because it is so directly linked to the computer structure, working in Assembler helps the user to
learn the structure of the computer. Programming in Assembler has the disadvantage that it is rather slow,
error-prone and does not always produce well-structured programs. We will aim to resolve this conundrum
in later chapters. For now, in order to write simple programs and understand the microcontroller more,
we will learn Assembler.

4.1.2 The process of writing in Assembler

The actual process of writing in Assembler is illustrated in Figure 4.2. The programmer writes in the
microprocessor or microcontroller Assembly language. This can be done using nothing more than a text
editor. We will soon recognise the two lines of Assembler program in Figure 4.2 as being from the PIC 16
Series instruction set. The computer he/she is writing on runs the Cross-Assembler. The terminology Cross-
Assembler implies that one computer is assembling code for one of another type, not for itself. Usually, and
somewhat confusingly, Cross-Assembler is shortened simply to Assembler. The Cross-Assembler assembles
the program, i.e. it converts it from Assembler mnemonics into machine code ready for the microcontroller.
In Figure 4.2 the Cross-Assembler is seen converting the two lines of assembler code into the 14-bit machine
code words of the PIC 16 Series. For most microcontrollers there are then special programming tools that
can download the program in machine code from the main PC and program it into the microcontroller
program memory.
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I am writing in the
Assembler language
 movlw 2a
 movwf portb
   ....

I load the machine code
which the computer
sends me into the
  microcontroller
  program memory

I am running a program
called a Cross-Assembler

movlw 2a = 11 0000 0010 1010
movwf portb = 00 0000 1000 0110

  ....                                

Figure 4.2 Programming in Assembler

4.1.3 The program development process

The process of writing in Assembler needs to be placed in the broader context of project development.
The possible stages in the development process for the program of a simple embedded system project are
shown in Figure 4.3. The programmer writes the program, called the source code, in Assembler language.

Write source code

Assemble/compile

(Simulate)

Download

Test in hardware

Figure 4.3 Developing a simple project
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This is then assembled by the Cross-Assembler running on the host computer. If the programmer has access
to a simulator then he/she may choose to test the program by simulation. This is likely to lead to program
errors being discovered, which will require alteration to the original source code. When satisfied with the
program, the developer will then download it to the program memory of the microcontroller itself, using
either a stand-alone ‘programmer’ linked to the host computer or a programming facility designed into the
embedded system itself. He/she will then test the program running in the actual hardware. Again, this may
lead to changes being required in the source code.

Clearly, to develop even a simple project, a selection of different software tools is beneficial. These are
usually bundled together into what is called an Integrated Development Environment (IDE).

4.2 The PIC 16 Series instruction set, with a little more
on the ALU

4.2.1 More on the PIC 16 Series ALU

Before looking at the 16 Series instruction set, it is worth taking a more detailed look at the ALU (Figure 4.4).
Understanding this will aid in understanding the instruction set. Looking at this, we see that the ALU can
operate on data from two sources. One is the W (or ‘Working’) register. The other is either a literal value
or a value from a data memory (whose memory locations Microchip call ‘register files’). A literal value
is a byte of data associated with a particular instruction that the programmer embeds in the program.

Figure 4.4 Block diagram of the PIC 16 Series ALU
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Thus, we can expect to see some instructions that call on data memory and others that require literal data to
be specified whenever they are used. Examples of all are coming! The data that the instruction operates on,
or uses, is called the operand. Operands can be data or addresses. We will see that some types of instructions
always need an operand to be specified with them, others do not.

Once an instruction has been executed, where is the result stored? For many instructions Microchip offer a
choice, whereby the result can either be held in the W register or stored back in data memory. Which one
is used is fixed by certain instructions; in others it is determined by the state of a special d bit, which is
specified within the instruction.

4.2.2 The PIC 16 Series instruction set – an introduction

Turn now to the PIC 16 Series instruction set, which can be found in Appendix 1. Take a long hard look at
it – we are aiming to get to know it extremely well! You can see that the table is divided into six columns,
and each of the 35 instructions gets one line. The first column gives the actual mnemonic, together with the
code specifying the type of operand it acts on. There are four such operand codes:

• f for file (i.e. memory location in RAM), a 7-bit number
• b for bit, to be found within a file also specified, a 3-bit number
• d for destination, as described above, a single bit
• k for literal, an 8-bit number if data or 11-bit if address.

The second column summarises what the instruction does. In some cases this gives adequate information.
A much fuller description of how each instruction works can also be found in the full microcontroller data
[Ref. 2.1]. The third column shows how many instruction cycles the instruction takes to execute. As a RISC
processor, we expect this to be a single cycle. This turns out to be the case, apart from those instructions
that cause a branch in the program. We discuss their use in Chapter 5. The fourth column gives the actual
14-bit opcode of each instruction. This is the code that the Cross-Assembler produces, as it converts the
original program in Assembler language to machine code. It is interesting to see here how the operand
codes, listed above, become embedded within the opcode. The fifth column shows which bits in the Status
register (Figure 2.3) are affected by each instruction.

Let us immediately look at five example instructions, to see how the information is presented. As an aside,
let us note now that Assembler programming does not have to be case sensitive, and that all the examples
in this book are not case sensitive. Therefore, do not worry if you see instruction mnemonics and operands
appearing in either upper or lower case in different references. In this book, for stylistic reasons, we choose
to write Assembler programs in lower case. Find now each of the instructions below in the Instruction Set
Table in the Appendix:

• clrw – this clears the value in the W register to zero. There are no operands to specify. Column 5 tells
us that the Status register Z bit is affected by the instruction. As the result of this instruction is always
zero, the bit is always set to 1. No other Status register bits are affected.

• clrf f – this clears the value of a memory location, symbolised as f. It is up to the programmer to specify
a value for f. Again, because the result is zero, the Status register Z bit is affected.
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• addwf f,d – this adds the contents of the W register to the contents of a memory location symbolised by
f. It is up to the programmer to specify a value for f. There is a choice of where the result is placed, as
discussed above. This is determined by the value of the operand bit d. Because of the different values
that the result can take, all three condition code bits, i.e. Z, the Carry bit C, and the Digit Carry bit DC
are affected by the instruction.

• bcf f,b – this instruction clears a single bit in a memory location. Both the bit and the location must be
specified by the programmer. The bit number b will take a value from 0 to 7, to identify any one of the
8 bits in a memory location. No Status register flags are affected, even though it is possible to imagine
that the result of the instruction could be to set a memory location to zero.

• addlw k – This instruction adds the value of a literal, whose value k must be specified by the programmer,
to the value held in the W register. The result is stored in the W register; there is no choice. Like addwf,
all condition code bits can be affected by this instruction.

4.3 Assemblers and Assembler format

4.3.1 Introducing Assemblers and the Microchip MPASMTM

Assembler

For any microprocessor or microcontroller, there are a large number of (Cross-) Assemblers available.
Some are distributed free by the makers of the processors to encourage people to buy their products. Others,
usually more sophisticated, are written by specialist software houses and sold commercially. Many these
days come as part of an IDE, as mentioned in Section 4.1.3. This book uses MPASM, the Assembler offered
by Microchip. It is usually used as part of the MPLAB IDE, and both MPASM and MPLAB are introduced
in some detail later in this chapter and the next.

While many aspects of Assembler programming are common across all Cross-Assemblers, some are specific
to the particular Assembler that is in use.

4.3.2 Assembler format

Having taken a first look at the instruction set, we need now to understand how we can build these instructions
into a program. Assembler programs have a simple format, which must be understood and followed. This
is shown in Program Example 4.1.

start bsf   status,5   ;select memory bank 1
movlw B'00011000';config pattern for port A
movwf trisa
movlw 53
...

label operandmnemonic comment

Program Example 4.1 Assembler format
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There are four possible elements to an Assembler line of code:

• Label. A label for a line is optional. When it is first specified, the label must start in the left-most space
of the line. The Assembler will interpret anything starting in this space as a label. Once defined in this
way, a label can be used as an operand. Labels must start with an alphabetic character or underscore, but
not a number. Labels can stand alone on a line, in which case the label is adopted by the next line that
contains an instruction.

• Instruction mnemonic. This is drawn from the instruction set. It may be placed anywhere on the line,
except starting at the far left. It should be separated from any label by at least one blank space.

• Operand. These must conform exactly to the format specified in the instruction set. For better intelligi-
bility, labels are often used rather than numbers. If there is more than one operand they are separated by
a comma.

• Comment. This is optional, and is used to add information to the program and improve its intelligibility
to the human reader. A comment must always start with a semicolon. The Cross-Assembler ignores
everything that follows a semicolon in any line. Comments can follow instructions on a line; alternatively,
a whole line can be used just for commenting.

A line of the Assembler program can contain an instruction, properly formatted as above, it can be a comment
only, or it can be left completely blank (this sometimes helps to improve layout and readability).

4.3.3 Assembler directives

While the Assembler program is written for the target microcontroller, it has to be processed by the Assembler
first. To aid this process and make it more powerful and flexible, a way is needed of passing information
and instructions to the Assembler, which it recognises as being for its attention only. These instructions are
called Assembler directives. They are used for very diverse applications, for example defining the target
processor or specifying where the program must be placed in memory. A few MPASM examples are shown
in Table 4.1. These are written in the code and appear almost like mnemonics from the instruction set.
Their very distinct role must, however, be recognised.

4.3.4 Number representation

One of the features of working close to the inner operations of a microcontroller is that sometimes one
is thinking in binary, sometimes in decimal and sometimes in hexadecimal, or even octal. Therefore, it is

Table 4.1 Some common MPASM Assembler directives
Assembler directive Summary of action
list Implement a listing option*
#include Include additional source file
org Set program origin
equ Define an assembly constant; this allows us to assign a value to a label
end End program block

*Listing options include setting of radix and of processor type.
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Table 4.2 Number representation in MPASM
Assembler

Radix Example representation
Decimal D‘255’
Hexadecimal H‘8d’ or Ox8d
Octal O‘574’
Binary B‘01011100’
ASCII ‘G’ or A‘G’

helpful for the Assembler program to be able to recognise and respond to different number bases. MPASM
does this first by allowing a default to be set. Thus, for example, if one wants to work only (or mainly)
in hexadecimal, then all numbers can be interpreted as such. Any number that the programmer wants to
represent in an alternative radix must be prefixed, as shown in Table 4.2. In Program Example 4.1, the
programmer is writing for a default radix of hexadecimal. In the second line of the example, however, he
wishes to specify a number in binary, so therefore uses the appropriate format from Table 4.2. In the fourth
line he is using the hexadecimal number 53 as an operand. As hexadecimal is the default radix, its number
base does not need to be specified explicitly.

Note that a hexadecimal number must not start with an alphabetic character, otherwise it might be interpreted
as a label. Therefore, any hexadecimal number starting with a, b, c, d, e or f must be preceded with a zero.
Thus, for example, the number b2H must be entered as 0b2.

4.4 Creating simple programs

4.4.1 A simple data transfer program

Let’s now look at a simple example program, written for the MPASM Assembler, using the MPLAB
IDE. It is shown in Program Example 4.2. The program is written for the electronic ping-pong hardware
(Appendix 2), but we will soon use it for simulation.

;******************************************************************
;ELECTRONIC PING-PONG DATA MOVE
;This program moves push button switch values from Port A to the
;leds on Port B
;TJW 21.2.05 Tested 22.2.05
;******************************************************************
;
;Configuration Word: WDT off, power-up timer on,
; code protect off, RC oscillator
;

list p=16F84A
;
;specify SFRs
status equ 03
porta equ 05

Program Example 4.2 A simple data transfer program
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trisa equ 05
portb equ 06
trisb equ 06
;

org 00
;Initialise
start bsf status,5 ;select memory bank 1

movlw B’00011000’
movwf trisa ;port A according to above pattern
movlw 00
movwf trisb ;all port B bits output
bcf status,5 ;select bank 0

;
;The "main" program starts here

clrf porta ;clear all bits in ports A
loop movf porta,0 ;move port A to W register

movwf portb ;move W register to port B
goto loop
end

Program Example 4.2 Continued

The program starts with a header made up of five comment lines, each starting with a semicolon. These
define the program title, briefly describe what it does, and give the date the program was written and the
author. Information on Configuration Word settings (Figure 2.6), fundamental to the running of the program,
is then given. We will find that there is more than one way to get this information programmed into the
microcontroller. The first active line of the program follows – all lines to here have been comments. This
defines the microcontroller to be used, using the list directive.

A section follows which uses the equ directive to define the memory locations of the SFRs that will be
used. It comes as some surprise to many people that it is necessary to do this. Haven’t we just ‘told’ the
Assembler what the processor is, so shouldn’t it ‘know’? The answer is that it doesn’t, so we must supply
this information. This program just uses the Status register, Ports A and B, and their control registers TRISA
and TRISB. Labels for these are therefore defined, taking memory addresses directly from the memory map
of Figure 2.5. Remember (from Section 2.4.2) that the Bank Select bit is held in the Status register. Once
this is removed from the SFR addresses shown in Figure 2.5, then the labels porta and trisa, and portb
and trisb have the same values. In the program it would make some sense to use just one label for each of
these pairs, instead of the two. We choose not to do this in this program example, for better clarity when
the different locations are used.

Before the actual program starts it is essential to use the org directive to define the program start address.
We have no choice over the address used – it must be the reset vector address, as seen in Figure 2.4.

The program that follows makes use of seven instructions, all of which manipulate bits and bytes of data,
except for one branch instruction. These are:

• clrf f – this clears to zero the value in memory location f
• movwf f – this moves the contents of the W register to the memory location f
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• movf f,d – this instruction moves the contents of the memory location f to the W register, if the d bit is
set to 0; if it is set to 1, then the contents of f are just returned to f

• movlw k – this instruction moves the literal value k, an 8-bit number which accompanies the instruction,
into the W register

• bcf f,b – this clears (i.e. sets to Logic 0) the bit b in memory location f
• bsf f,b – this sets to Logic 1 the bit b in memory location f
• goto k – this transfers program execution to the instruction in memory location k.

The initialisation section of the program follows. This sets up the direction of each bit of the two ports
that are used, and this requires access to the port control registers TRISA and TRISB. As these are placed
in RAM memory bank 1, it is necessary first of all to set bit 5 of the Status register to 1 (as explained in
Chapter 2). This is done in the first line of actual program, labelled start, using the bsf instruction. The
label status can be used, because it was defined earlier in the program. If this had not been done, then it
would have been necessary to write:

start bsf 3,5 ;select memory bank 1

which would have been somewhat less intelligible.

The port pin directions needed are derived from the circuit diagram (Figure A2.1). From this we can see
that the two push-buttons connect to bits 3 and 4 of Port A, which must accordingly be set up as inputs.
The three other bits of Port A are all connected to LEDs, so must be set up as outputs. As described in
Section 3.4, to be an output a port pin must have a 0 in its corresponding TRIS register bit. It must have
a 1 for the bit to be an input. Therefore, we must send the word 00011000 to TRISA. Note that TRISA is
an 8-bit location, even though Port A only has 5 bits. It is therefore necessary to specify a complete 8-bit
word to be sent, even for those 3 bits that are not implemented. There is no instruction that allows us to
transfer a byte of data directly from the program into a memory location, so two lines of code must be
used. First, the required word 00011000 is placed into the W register, using a movlw instruction. In doing
this, the binary radix is used (Table 4.2), instead of the default hexadecimal. The contents of the W register
are then moved to trisa using a movwf instruction. A similar process is followed for setting up Port B.
A quick look at the circuit diagram shows that all Port B pins are connected to LEDs, so all must be set as
output. Therefore, the word sent to trisb is 00H. The initialisation section ends with memory bank 0 being
selected in the Status register, as from here on the ports themselves will be accessed, whose locations are
in bank 0.

Finally, we reach the effective program itself, all five lines of it! The program continuously reads the value
of Port A and transfers it to Port B. Thus, if either push-button is pressed, this should be seen on the LEDs
connected to bits 3 and 4 of Port B. When Port A is read, all of its 5 bits are read, even though three are
set as outputs. For these, the values of the internal data latches (Figure 3.11) are read. All Port A bits are
therefore initially cleared to 0 in the program, using a clrf instruction.

The actual data transfer part of the program uses a movf instruction to shift the value of Port A to the
W register, followed by a movwf instruction to move the W register value to Port B. A goto instruction
creates a continuous loop, making use of the earlier defined label loop.
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It is worth observing here that label values are assigned in two different ways. Some, like porta or portb,
are assigned a specific value by the programmer, using the equ directive. Others, like loop, are inserted
into the program, and the Assembler allocates them a value.

The program ends with an end directive.

4.5 Adopting a development environment

4.5.1 Introducing MPLAB

MPLAB is an IDE that can be downloaded free from Microchip’s website [Ref. 1.2]. There is also a copy
on the book CD. It contains all the software tools necessary to write a program in Assembler, assemble it,
simulate it and then download it to a programmer. The latter must be built or bought, or designed in to the
target system. Further software tools can be bought and then integrated with MPLAB, both from Microchip
and from other suppliers. This includes alternatives to what MPLAB already offers – e.g. Assemblers or
simulators, as well as tools which offer much greater development power, like C compilers or emulator
drivers.

MPLAB is a continuously evolving package, with its own manuals [Refs 4.1, 4.2] and on-line Help facility.
Therefore, this book does not aim to act as a full MPLAB manual. It will, however, aim to give a clear
introduction to its use, so that you can begin to apply it with confidence. Screen images from MPLAB
Versions 7.00 and 7.22 are used in this chapter and the next.

4.5.2 The elements of MPLAB

MPLAB is made up of a number of distinct elements, which work together to give the overall development
environment. These are:

• Text editor. This allows entry of the source code. It behaves to some extent like a simple text editor such
as Notepad, but it can recognise the main elements of the programming language that is being used.
Thus, in Assembler it colour-codes instructions in one colour, labels in another and comments in a third.
In this way the programmer can immediately see if there is a misconception in his placing or use of text
within the Assembler line.

• Project manager. The preferred way of developing programs in MPLAB is by creating a project. An
MPLAB project groups all the files together that relate to any one project, and ensures that they interact
with each other in an appropriate way and are updated as needed.

• Assembler and Linker. The function of the Assembler has already been discussed. So far we have assumed
that there is a single source file. In advanced projects, however, the code may be created from a number
of different files. The role of the Linker is to put these together, give each its correct location in memory,
and ensure that branches and calls from one file to the other are correctly established.

• Software simulator and debugger. A software simulator allows the program that has been developed to be
tested, by running it on a simulated CPU in the host computer. Inputs can also be simulated, and outputs
and memory values can be observed. The debugger contains the tools which allow program execution
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Table 4.3 Some file extensions used in MPLAB IDE
File extension Function
.asm Assembly language source file
.err Error file
.hex Machine code in hex format file
.inc Assembly language include file
.lib Library file
.lst Absolute listing file
.o Object file
.mcp Project information file
.mcw Workspace information file

to be fully examined, for example by single stepping through the program, or running at slow speed, or
halting at a particular location.

4.5.3 The MPLAB file structure

Even with simple projects, a significant number of files are rapidly generated in MPLAB. Each type is
designated by the file extension used, examples of which are given in Table 4.3. Whenever a project is set
up, files of type .mcp and .mcw are created. When using Assembler, the original source code is written in a
file with the .asm extension. The source code may include an .inc file, to be described in Chapter 5. When
the source code is assembled successfully, the output appears in .lst and .hex files. If there is an error, that
is placed in an .err file.

4.6 An introductory MPLAB tutorial

This tutorial takes you through the stages of creating a project, writing simple source code and assembling
that to create output files. To follow the tutorial, you should download and install the current version of
MPLAB, if it is not available in your place of work or study.

Open the MPLAB IDE, which should appear as in Figure 4.5. If a blank Output window also opens, close
it. The main screen is blank, apart from the Workspace window at top left, which cannot be closed.

4.6.1 Creating a project

Click the Project button on the toolbar to access the pull-down menu, as shown in Figure 4.6.

There are two ways to create a project, both accessible from this menu. One is by using the Project Wizard
and the other by selecting New…. Try following the Project Wizard route, making the following selections
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Figure 4.5 The MPLAB IDE screen

as you work through the dialogue boxes:

Device: PIC16F84A
Active Toolsuite: Microchip MPASM Toolsuite
which will display:

MPASM Assembler
MPLINK Object Linker
MPLIB Librarian

as Toolsuite contents

Project Name <your own choice>
Project Directory <your own choice>

Add existing files… Make no additions

When you click Finish, the Workspace window should be updated to show the filename you have selected,
as seen in Figure 4.7(a), for a project called fred.
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Figure 4.6 Project pull-down menu

(a) (b)

Figure 4.7 Workspace window. (a) For a newly created project. (b) For a project with source file added

4.6.2 Entering source code

Now open a new file by clicking File > New, and start to enter into it the program of Program Example 4.2.
After a few lines save this using File > Save As…. Select file type Assembly Source File, and save
as <your project name>.asm. Continue entering the code and notice now that MPLAB has identified
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this file as an Assembler Source File. It applies colour-coding to label, instruction mnemonic, numerical
data, Assembler directive and comment. When complete, go to the Project menu again, click Add Files
to Project… and select the one you have just saved. Your Workspace window should now appear as in
Figure 4.7(b), with of course your own file name. You will now begin to appreciate how valuable this
window is to become, as it shows a complete picture of the files associated with your project.

4.6.3 Assembling the project

Now comes one of the testing moments in any project development. You have entered new source code,
and you need to know if it assembles correctly. The Assembler subjects your code to a series of checks. It
returns errors if it finds incorrect use of Assembler format, instruction mnemonics, labels or a range of other
things. Remember, however, that the Assembler can effectively only check that your program is correct
grammatically; it cannot assure you that it is a viable program. Above all else, it has no knowledge of the
target hardware, beyond the fact that the microcontroller has been specified. Correct assembly does not
guarantee correct program operation!

Check that the default radix is correctly set by clicking Project > Build Options > Project > MPASM
Assembler and ensuring that Hexadecimal is selected in the dialogue box. In the same dialogue box you
can enable or disable case sensitivity for all the source code. This is not necessary if you have directly
copied Program Example 4.2. You may need to use it in future, however.

Invoke the MPASM Assembler by pressing Project > Build All. This also ensures all files are updated as
needed. The Output window will open, reporting on the progress of the build. In the Output window you
will either get a ‘Build succeeded’ message or a ‘Build failed’, together with a fleeting box showing a green
(for success) or red (for errors) bar.

Whether your build has initially succeeded or failed, open the file <your project name>.lst. This should
be in the directory you specified for the project. Use File > Open, and ensure you select All Files in
the dialogue box against Files of Type. The .lst file is very informative and gives you the original source
code, alongside the assembled machine code, together with any errors and warnings that may have been
generated. Part of the list file for Program Example 4.2 is shown in Program Example 4.3. Notice both
how the machine code is represented and that, after the main program listing, there is essential underlying
program information.

00029 ;The "main" program starts here
0006 3000 00030 movlw 00 ;clear all bits in ports A and B
0007 0085 00031 movwf porta
0008 0086 00032 movwf portb
0009 0805 00033 loop movf porta,0 ;move port A to W register
000A 0086 00034 movwf portb ;move W register to port B
000B 2809 00035 goto loop

00036 end

Program Example 4.3 Part of the Data_Move list file
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MPASM 03.90 Released DATA MOVE.ASM 3-10-2005
15:55:03 PAGE 2

SYMBOL TABLE
LABEL VALUE

__16F84A 00000001
loop 00000009
porta 00000005
portb 00000006
start 00000000
status 00000003
trisa 00000005
trisb 00000006
.....etc

Program Example 4.3 Continued

If you have errors, each will be accompanied by an error number and message in the list file. In most cases
these are simple typographical errors that can be easily fixed by correcting the source code and building
again. If an error proves difficult, then full details on the error should be sought, either in the Help menu or
in Ref. 4.1, by looking up its number. At the end of a development session, close the current project using
Project > Close.

Once you have a source file which builds correctly, you are in a position either to download to microcontroller
memory or to simulate. We continue now on the simulation path.

4.7 An introduction to simulation

The following subsection introduces the MPLAB simulator, MPSIMTM, by means of a tutorial, simulating
the program that has just been assembled.

4.7.1 Getting started

Once in MPLAB, select the simulator by invoking Debugger > Select Tool > MPLAB SIM. The simulator
menu, as seen in Figure 4.8, then appears under Debugger.

4.7.2 Generating port inputs

This program applies the ping-pong hardware, so to simulate we will need to create simulated inputs for
the two ping-pong paddles, on Port A, pins 3 and 4. There are two ways of generating simulated inputs,
which depends on whether the input is to be synchronous with instruction execution or not. We will choose
the simpler – asynchronous under user control.

Select Debugger > Stimulus Controller > New Scenario. Explore the dialogue box that appears – it
allows you to set up different types of inputs at the Port pins, which are initiated by pressing the Fire button
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Figure 4.8 Simulator menu

at the appropriate moment. Under Pin, select RA3 and then RA4, with Toggle under Action for each. When
you close the project your settings are saved as a .stc file.

4.7.3 Viewing microcontroller features

You can observe a number of microcontroller features during simulation, including program memory, SFRs,
data memory and so on. A window can be opened for each of these, using the View menu. If you do this,
however, you will find that the screen very quickly becomes cluttered. A Watch window allows you to make
selections of only those variables you want to watch, while leaving out the others. Items for the Watch
window are selected by using the pull-down menus at the top of the window. Open a Watch window, and
select PCL, TRISA, PORTA, TRISB and PORTB. Looking ahead, the Watch window will appear as seen
in Figure 4.10.

4.7.4 Resetting and running the program

You can reset the simulated CPU either by the F6 button, or by using Debugger > Reset. Using the latter,
four Reset categories are offered, reflecting the Reset capabilities of the PIC microcontroller (Section 2.8).
Alternatively (and more simply), you can use the Reset button of the Debugger toolbar (Figure 4.9). If this
is not displayed, invoke it by View > Toolbars > Debug.
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Figure 4.9 MPSIM software simulator debugger toolbar

There are three ways to run the program. Each can be selected under the Debugger pull-down menu or by
selecting the buttons on the toolbar. These are:

• Single Step. This allows you to step through the program one instruction at a time. This version of
MPLAB uses the terminology Step Into for this mode.

• Animate. This is like an automated single step. The program runs slowly but continuously, with the screen
being updated after each instruction. The speed it runs at can be set by invoking Debugger > Settings >

Debugger Animation.
• Run. This runs the program, but does not update on-screen windows as it runs. It does, however, accept

stimulus input.

It is also possible to Step Over a subroutine or Step Out of one. Each of these also has a button on the
toolbar. These are especially useful for delay routines, which on a simulator may take an unacceptably long
time to simulate.

If you have followed the instructions to here, you should have a computer screen similar to that shown in
Figure 4.10, although you are likely to have arranged the windows differently. In this image we see the
Watch window top left, the Stimulus Controller top right and the source file bottom left. The simulated CPU
has been reset, so the arrow representing the Program Counter is pointing to the first instruction. This can
be confirmed by checking the PCL value in the Watch window.

Now, by repeated pressing of the Step Into button, single-step through the program. As the program
moves through the initialisation, you will see the SFR values being changed in the Watch window and the
PCL value being incremented. Program execution then circles around the loop, formed by the last three
instructions. Now try ‘firing’ RA3 or RA4. Display windows are not updated with the value you have forced,
until the next instruction execution. Observe Port A and Port B being updated in value, as you continue to
execute the program with single-stepping. Try now pressing the Animate button. Notice that the program
runs continuously, but still responds to stimulus inputs.

4.8 Downloading the program to a microcontroller

Most modern microcontrollers are equipped with on-chip program memory using Flash technology. The
process of programming requires data to be transferred into the chip in a precisely timed way and certain
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Figure 4.10 MPSIM set-up for a simple simulation

programming voltages to be applied, usually higher than the normal supply voltage. Certain microcontroller
pins therefore usually have a secondary function, being used in programming mode to transfer the program
data onto the chip and transmit the programming voltages.

In times past, the process of programming always used to require the IC carrying the memory (whether
a stand-alone device or memory in a microcontroller) to be placed in a programmer. This was linked to
a desktop computer for the process to be carried out. As memory technology has improved, however, the
process has become simpler and it has become increasingly easy to design the necessary programming
circuitry into the target system. This means that many microcontrollers can now be programmed in situ,
i.e. within the target system. We will see these techniques in later chapters. In this chapter we will stay
with traditional programmers, which require the microcontroller to be removed from the target circuit and
placed into the programmer.

A popular and low-cost programmer, supplied by Microchip, is the PICSTART® Plus, shown in Figure 4.11.
There are many alternatives to this, including many designs intended for home-build, which are available



Starting to program – an introduction to Assembler 85

Figure 4.11 The PICSTART Plus programmer

on the Web. The PICSTART programmer is connected to the host computer by a serial cable and MPLAB
has the software to communicate with it. The PICSTART programmer can accept a wide range of
dual-in-line microcontroller packages, from 18 to 40 pins. With adaptors it can program other package
types.

The following steps take you through actually downloading code to the microcontroller, using the PICSTART
Plus programmer. If you have a programmer and the ping-pong hardware, you can immediately download
the program you have just created in the preceding tutorial.

You will need to power your PICSTART programmer and connect it to the serial port of your computer.
From within MPLAB IDE, select Programmer > Select Programmer > PICSTART Plus. Then enable
the programmer with Programmer > Enable Programmer. A positive response should be given via the
Output window. If there is a problem, you may need to check Programmer > Settings > Communications.
Ensure the programmer toolbar (Figure 4.12) is displayed. If not, find it with View > Toolbars > Picstart.

Put the Zero Insertion Force (ZIF) socket on the PICSTART programmer in the Open position. Place a
16F84A into it, ensuring from the legend that the chip is in the right place and is the right way round.
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Figure 4.12 The MPLAB programmer toolbar

Then close the ZIF with the lever. With the project you want open on MPLAB, you should now be able to
apply the features available to you, as summarised in Figure 4.12.

4.9 What others do – a brief comparison of CISC and RISC
instruction sets

As they are CISC CPUs, we expect the Atmel 8051 microcontrollers to have a much larger instruction set,
compared to the RISC 16 Series family. Furthermore, we might expect some of those instructions to be
more powerful. The price to be paid for these is slower execution time. This expectation is proved correct.
The 8051 core has 111 instructions. Most instructions execute in one machine cycle, each of which takes 12
oscillator cycles (compared with the four oscillator cycles for the PIC instruction cycle). Some instructions
take two cycles. The two ‘advanced’ instructions MUL (multiply) and DIV (divide) take four cycles each.

The versatility offered by a CISC instruction set appears attractive when viewed from a RISC world. Simple
actions that require several RISC instructions are reduced to a single instruction. Two simple examples are
shown in Program Example 4.4. In the first, a byte of constant data (called literal data in the PIC world as
we know, and immediate data in the 8051 world) is moved to a memory location called mem_loc. This
requires two PIC instructions or one 8051 instruction. The programmer gains the advantage with the 8051
of writing less lines of code, but we can see that there is no apparent timing advantage in execution, as each
ultimately takes two cycles. Indeed, as the 8051 machine cycle is longer, the timing advantage ultimately
lies with the PIC microcontroller.

Interestingly, the advantage is less clear in the next example. The PIC 16 Series only has conditional skip
instructions and not branch. Thus, conditional branches have to be built from a skip instruction followed
by a goto. Here, three cycles are taken if the conditional branch is executed for the PIC microcontroller or
two for the 8051, while a single line of code is required for the latter. Now the timing advantage lies with
the 8051 CPU, as long as instruction cycles are equal in length.

PIC 16 Series Atmel 8051

movlw 22 ;1 cycle mov mem_loc,#22 ;2 cycles
movwf mem_loc ;1 cycle

(a)

Program Example 4.4 Comparing RISC and CISC instruction capabilities. (a) Moving immediate/literal data to a
memory location. (b) Branching if Carry bit set
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btfsc status,0 ;1 cycle (no skip) jc new_place ;2 cycles
goto new_place ;2 cycles

(b)

Program Example 4.4 Continued

The disadvantage of the extra lines of code required for the RISC processor is not a great one. We will
see in the next two chapters that even this slight disadvantage can be ameliorated; in Assembler by using
macros and then in a high-level language like C, where the programmer is no longer directly concerned by
the number of lines of assembler code produced.

4.10 Taking things further – the 16 Series instruction set format

It is interesting to take a little time here to understand further the way the instruction code is made up of
different component parts, as first discussed with the 12F508/9 in Chapter 1. The PIC 16 Series has four
possible instruction word formats, as shown in Figure 4.13. The instruction word, which is transferred down
the program bus (Figure 2.2), is made up of 14 bits. These appear as bits 0 to 13 in the figure. The opcode,
the actual instruction part of the instruction word, always occupies the highest bits of the instruction word.

Figure 4.13 Instruction formats of the PIC mid-range microcontrollers
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This is the part of the instruction word that ends up in the ‘Instruction Decode and Control’ unit of Figure 2.2,
but it is not always the same length.

If the instruction is the type that contains a file address, then it is of the first format shown. The most
significant 6 bits hold the opcode, while the least significant 7 bits are used to hold the address. These bits
are transferred onto the ‘Direct Addr’ bus of Figure 2.2. In fact, because the F84A only has a small memory,
only the least significant 5 bits are used, as can be seen from the ‘Direct Addr’ bus size indicated. Bit 7
holds the d bit. Different instruction word patterns are used for the other instruction categories. These can
be seen and understood by reading the information in the figure.

Summary

If you have followed the material of this chapter then you have taken an enormous step forward – you are
on your way to becoming a programmer of embedded systems! The key points are:

• Assembler is a programming language that is part of the toolset used in embedded systems programming.
It comes with its own distinct set of rules and techniques.

• It is essential to adopt and learn an IDE when developing programs. The MPLAB IDE is an excellent
tool for PIC microcontrollers, both for learners and professionals. And it can’t be beaten on price!

• While some people are eager to get programs into the hardware immediately, it is extremely useful to
learn the features of a simulator. The simulator in MPLAB allows the user to test program features with
great speed, and is an invaluable learning tool.
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5
Building Assembler programs

In Chapter 4 the basic rules of Assembler programming were introduced, along with some of the instructions
from the PIC® 16 Series instruction set. It’s as if we have now learned some introductory skills in bricklaying.
We need to develop those skills further, but we need to begin to think about the structures that the bricks are
going to be built into. Therefore, we now need to develop this introductory knowledge so that we can actually
build up programs that have structure, and are functional and reliable.

In this chapter you will learn about:

• How to visualise a program and represent it diagrammatically
• How to use subroutines
• How to implement delays
• How to use look-up tables
• Logical and arithmetic instructions
• How to simplify and optimise Assembler programming
• More advanced features of software simulators.

5.1 The main idea – building structured programs

When we actually design a program that is to do anything more than some minimalist task, it is important
to think about and plan its structure before starting to write the code. This is especially true in Assembler –
Chapter 4 warned that one of the problems of Assembler programming was that it leads to unstructured
‘spaghetti’ programs. Therefore, we must consider means of representing the program diagrammatically.
Let us consider how we might do this, with two examples of commonplace domestic products.

5.1.1 Flow diagrams

A well-established diagramming technique is the flow diagram. While this has many symbols that can be
used, we can develop good flow diagrams with just two! – rectangle for process or action and diamond for
decision.

Figure 5.1 shows a simple flow diagram example, for a refrigerator controller. The user has a single control,
an adjustable potentiometer that allows him/her to set a desired temperature. Within the fridge there is a
temperature sensor. Temperature is controlled by switching the compressor on or off – the temperature will
fall when it is running. The program reads both the actual and demand temperatures, and determines which
is higher. If it is the actual temperature, then the compressor is switched on. If the difference between the
two is very great, then an alarm will sound. The flow diagram shows this action, using just the two symbols
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Figure 5.1 Flow diagram of simple refrigerator controller

mentioned above. Notice how each diamond decision symbol contains a question within it, with a yes/no
answer. Its two exit points then correspond to the two possible answers. It can be seen that this example
program will loop indefinitely. This is a common embedded system program structure and is sometimes
called a super loop.

It is possible to draw flow diagrams with too much detail or too little. With care and experience, however,
it is possible to draw them at a level such that the diagram can be converted to an Assembler program
without too much difficulty. In some cases, an overview flow diagram might be appropriate, while different
sections within that are then developed as separate diagrams.

Flow diagramming is considered by some to be an old-fashioned technique as, somewhat like Assembler
itself, it does not encourage a structured program. Nevertheless, it is easy to learn and use, and it can clearly
represent simple program ideas. Therefore, for our purposes we will make use of it.
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5.1.2 State diagrams

The flow diagram views life as a series of actions or events which are rapidly passed through. Many
products, however, behave in a different sort of way. They tend to move from one state to another, maybe
spending a significant period of time in that state and leaving it only when a time period is completed or a
specific event occurs. These are best represented by a state diagram, which forms an alternative to the flow
diagram. As with flow diagrams, there is some sophistication in using state diagrams in their full form. For
our purposes, however, all we need to do is to draw each state as a labelled circle and interconnect these
with arrows. These show under what condition(s) one state can move to another. Each arrow is labelled
with the condition that causes the state to change.

Figure 5.2 shows the function of a domestic washing machine represented as a simple state diagram. When
switched on, the machine first enters a Ready state. If the door is closed and the user initiates a wash, then
the machine first loads with water. A level sensor detects when this is complete. However, the machine
will also measure the time taken to fill. If it does not fill within the allotted time, then a fault is assumed.

Door closed
Fill

water

Heat
water

WashRinse

Spin Fault

Ready

User initiates

Full level
detected

Time-out

Required
temperature

reached

Out of
balance

Out of
balance

Motor
failure

Motor
failure

Function
complete

Function
complete

Function
complete

Fault
cleared

Start!

Time-out

Figure 5.2 A washing machine control program – visualised as a state diagram
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This may be due to inadequate water pressure or a faulty valve mechanism. The use of time-out is a low-cost
alternative to sensing the water flow or pressure itself. The fill state is followed by a water heating state.
Again, a time-out occurs if the water is not heated in an allotted time. The process continues as shown, each
state having a ‘successful’ exit condition, as well as one which leads to the fault state.

From a programming point of view, state diagrams are more abstract than flow diagrams and cannot so
easily be translated directly into assembler code. In fact, it is often useful to convert each state into its own
flow diagram. To retain clarity of structure and ensure good programming practice, each state should have
very clearly defined entry and exit points. The use of both flow diagrams and a state diagram to represent
program structure is illustrated later in this chapter, with the electronic ping-pong program.

5.2 Flow control – branching and subroutines

As Figures 5.1 and 5.2 show, programs rarely execute in one continuous and unbroken sequence of instruc-
tions. The techniques used to allow program execution to move to different program sections are collectively
termed flow control, and are the subject of this section. We have already met the PIC instruction goto, which
unconditionally transfers program execution from one place in the program to another. Now we explore the
use of conditional branching and subroutines.

5.2.1 Conditional branching and working with bits

One of the most important features of any microprocessor or microcontroller program is its ability to make
‘decisions’, i.e. to act differently according to the state of logical variables. Many microprocessors have
within their instruction sets a number of instructions which allow them to test a particular bit, and either
continue program execution if the condition is not met or branch to another part of the program if it is.
This is illustrated in Figure 5.3. Most commonly these variables are bit values in condition code or Status
registers.

The PIC 16 Series microcontrollers are a little unusual when it comes to conditional branching, as they
do not have branch instructions as such. They have instead four conditional ‘skip’ instructions. These test
for a certain condition, and skip just one instruction if the condition is met and continue normal program
execution if it is not. The most versatile and general purpose of these are the instructions:

btfsc f,b
btfss f,b

The first of these tests bit b in memory location f and skips just one instruction if the bit is set (i.e. at
Logic 1). The second does a similar thing, but skips if the tested bit is clear (i.e. at Logic 0). Let us explore
this in an example program.

Our first example, the simple data moving program of Program Example 4.2, works well. Suppose, however,
we don’t want to move the whole of Port B to Port A. Maybe we wanted to transfer just one bit or move
a bit from one position in Port B to a different position in Port A. Then we could use the ‘bit-oriented’
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Add C to D

No

Yes

Figure 5.3 Conditional branching

instructions of the 16 Series instruction set, of which there are four: the two we have just seen above, and
bsf and bcf.

The program fragment in Program Example 5.1 performs a near identical function to that of Program
Example 4.2, but applies the bit manipulation instructions just identified. As just single bits are manipulated,
however, it does not affect any of the other bits in the port to which it is writing. It lights an LED if the
associated microswitch is pressed. Even this simple task requires some thought, however. As the port input
goes low when the button is pressed, the program needs to set the output bit (to light the LED) if the input
is low and clear it if it is high. This implies a selection process – in a high-level language we might call
this an if…else structure. The simple skip instruction is not able to do this on its own. One way to do this
is to preset the output bit with one value and then change it if we find it has been set wrong.

;The “main” program starts here
movlw 00 ;clear all bits in port A and B
movwf porta
movwf portb

loop bcf portb, 3 ;preclear port B, bit 3
btfss porta, 3
bsf portb, 3 ;but set it if button pressed

;

Program Example 5.1 Testing and manipulating single bits
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bcf portb, 4 ;preclear port B, bit 4

btfss porta, 4

bsf portb, 4 ;but set it if button pressed

goto loop

end

Program Example 5.1 Continued

Programming Exercise 5.1

Open a new project under the suggested name Bit_Set, or choose your own name. Copy Program
Example 4.2 into it as source file, but replacing the main section of code with Program Example 5.1.
Build the project and simulate. With the Stimulus Controller create inputs signals for Port A, pins 3 and 4,
selecting Toggle for Action. Open a Watch window with PCL, PORTA, PORTB and W register as observed
variables. Step through the program, ‘firing’ the inputs at appropriate moments, noting the effect. Change
the program so that:

(1) Port B, bits 3 and 4 are set if the respective buttons are pressed
(2) Different bits in Port B are set when the buttons are pressed.

5.2.2 Subroutines and the Stack

As we develop bigger programs, we quickly find that there are program sections that are so useful that we
would like to use them in different places. Yet it is tedious, and space and memory consuming, to write out
the program section whenever it is needed. Enter the subroutine.

The subroutine is a program section structured in such a way that it can be called from anywhere in the
program. Once it has been executed the program continues to execute from wherever it was before. The idea
is illustrated in Figure 5.4. At some point in the main program there is an instruction ‘Call SR1’. Program
execution then switches to Subroutine 1, identified by its label. The subroutine must be terminated with a
‘return from subroutine’ instruction. Program execution then continues from the instruction after the Call
instruction. A little later in the program another subroutine is called, followed a little later again by another
call to the first routine.

The action of the Call instruction is two-fold. It saves the contents of the Program Counter onto the Stack,
so that the CPU will know where to come back to after it has finished the subroutine. It then loads the
subroutine start address into the Program Counter. Program execution thus continues at the subroutine. The
return instruction complements the action of the Call. It loads the Program Counter with the data held at
the top of the Stack, which will be the address of the instruction following the Call instruction. Program
execution then continues at this address. Subroutine Call and Return instructions must always work in
pairs.
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Figure 5.4 Subroutine calling

The PIC 16 Series subroutine call and return instructions can be seen in Appendix 1, and are simply called
call and return. A special return instruction, retlw, is also available. Example subroutines will be explored
in the following section.

A subroutine called from within another subroutine is called a nested subroutine. In doing this, it must be
remembered that every time a subroutine is called one Stack location is taken up, which becomes free again
on the subroutine return. If we call a subroutine from within another, then two Stack locations are used up,
or three if there is another nested call. As the 16 Series microcontrollers only have an eight-level stack, care
must taken that there is not ‘stack overflow’.

5.3 Generating time delays and intervals

A recurring theme of embedded systems is how we deal with time – how they respond in a timely way to
external events, and how they can measure time and generate time delays. Even with only a limited grasp
of programming, we can begin to address the issue of timing by developing program loops that give time
delays of known and accurate duration.

The initial concept is simple. A memory location is set up to act as a counter, loaded with a certain value
and then decremented repeatedly in a loop until it reaches zero. The time taken will depend on the number
first placed in the counter and then the time taken for each decrement loop.

To implement accurate delays, the oscillator frequency needs to be accurate and stable, and we need to
know what that frequency is. Here lies one advantage of using a crystal oscillator, as that gives a frequency
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of excellent accuracy and stability. Approximate delays can of course be implemented with other oscillator
sources, as we do with the ping-pong. With the PIC, we need to remind ourselves that each instruction cycle
takes four oscillator cycles, as described in Section 2.5.1 of Chapter 2.

A simple example of a delay loop, taken from the ping-pong program, is shown in Program Example 5.2. It
takes the form of a subroutine called delay5. The subroutine opens by moving a number into the memory
location delcntr1. In this case the number is 200D, although this can be varied to produce delays of different
lengths (up to a maximum, for an 8-bit location, of 255D). The actual delay loop is that section of code
starting with the label del1. Two nop instructions, which do nothing at all but take up time, are used to
extend the time taken for one loop iteration. The decfsz instruction is then implemented. This decrements
memory location delcntr1, which has been previously loaded. If the result of the decrement is zero, then the
subsequent instruction is skipped and program execution moves on to the return instruction. For 199 cycles,
however, the decrement result will not be zero, there will be no skip and program execution will go back
to del1.

;Delay of 5ms approx. Instruction cycle time is 5us.
delay5 movlw D'200' ;200 cycles called,each taking 5x5=25us

movwf delcntr1
del1 nop ;1 inst. cycle

nop ;1 inst. cycle
decfsz delcntr1,1 ;1 inst. cycle, when no skip
goto del1 ;2 inst. cycles
return

Program Example 5.2 A delay subroutine

The time duration of this delay subroutine can be worked out with ease, by considering the time taken by each
instruction in the loop (taken from the instruction set, Appendix 1). This is shown in the program comments.
While delcntr1 is counting down from its initial value, the loop is made up of two nop instructions,
a decfsz and a goto. As the decfsz instruction does not skip, it takes only one cycle, whereas the goto
always takes two. Therefore, the total per loop is five. The electronic ping-pong has a clock frequency of
approximately 800 kHz, and therefore an instruction cycle frequency of 200 kHz or instruction cycle period
of 5 µs. Therefore each loop, with its five instruction cycles, takes 25 µs. Two hundred loops are called;
hence the overall duration is 5 ms.

For a precise delay, it is necessary also to take into account the time duration of the final cycle, and the
entry and exit to the subroutine. On the final loop iteration, for example, the decfsz causes a skip and hence
takes two cycles. The goto is, however, missed.

The simple delay loop of Program Example 5.1 is useful for comparatively short delays, say up to tens of
milliseconds. There are many situations, however, when we want something much longer. A simple way to
extend it is to create a second subroutine, similar to the first, but which calls the first from within its loop.
An example is shown in Program Example 5.3. This loop makes 100D calls to the subroutine delay5, which
we have just seen. The resultant delay is therefore around 500 ms. A further way of writing a longer delay
loop, using a ‘loop within a loop’ within a single subroutine, appears in Program Example 5.4.
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;500ms delay (approx) ;100 calls to delay5
delay500 movlw D'100'

movwf delcntr2
del2 call delay5

decfsz delcntr2,1
goto del2
return

Program Example 5.3 Nested subroutines for greater delay

Delay routines are very useful things and are widely used. However, they need to be used with care, as
when the delay routine is running, the CPU can do nothing else. A delay routine is a bit like asking the
scientist Einstein to sit and count beans – it’s just not very good use of a powerful resource. In Chapter 6
we meet other ways of creating time delays.

5.4 Dealing with data

We have seen that it is easy to move single bytes of data to or from data memory, whether the memory is
SFRs or memory locations dedicated to holding particular variables. We did this in the most recent program
example, with the instructions:

movlw D'100'
movwf delcntr2

In using these instructions, we specify the actual address of the memory location required. In this example,
delcntr2 is a label clearly specifying an address. If, however, we want to work with blocks of data, simple
data moves like this become restrictive. If working through a list of numbers, for example, it is quite
inconvenient to have to specify a fixed address for every memory location. Instead, it is useful to have a
pointer that shows where we are in the list, but which can be changed to point to successive locations. It
is useful to be able to do this in data memory. In this case the program can develop a block of data and
then manipulate it. It is also useful to do it in program memory, in which case the program is able to access
a predetermined block of data, but not modify it. This section considers two techniques used for working
with blocks of data, in data memory and program memory.

5.4.1 Indirect addressing and the File Select Register

In Figures 2.2 and 2.5 we see a register called the FSR, the File Select Register. As Figure 2.2 suggests,
instead of embedding an address in the instruction word, the number stored in the FSR can be used as
an address to data memory. This is called an indirect address. The FSR is invoked whenever the memory
location INDF is addressed. INDF doesn’t actually exist as a register; its use simply forces the CPU
to implement the indirect addressing mode. The beauty of this mode is that the FSR can be manipulated
as a normal memory location, to point to anywhere in data memory that is wanted. When INDF is invoked,
the instruction used then acts on the memory location pointed to by the FSR.

An example of the use of indirect addressing appears in Program Example 5.7, where we have developed
a program that develops a data list. It is discussed in Section 5.6.4.
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5.4.2 Look-up tables

The instruction movlw allows us to embed within the program a byte of constant data that is then applied in
any way we want. We have already seen this in the previous program examples. This is fine for manipulating
single bytes, or just a few. But suppose we want to place in the program a whole list of numbers that are
needed during program execution, maybe to generate a waveform or to produce output patterns on a display.
Suppose also that we wanted to be able to remember where we were in the list with some sort of marker.
The movlw instruction is then not really up to the job, and we need to apply a way of setting up data known
as a look-up table.

A look-up table is a block of data that is held in program memory, which can be accessed by the program
and used within it. In a Von Neumann structure (Figure 1.7(a)), with its single address and data buses, it is
rather easy to set up and use look-up tables, as all memory locations are of equal size and all can be accessed
with equal ease. In a Harvard structure (Figure 1.7(b)) it is more difficult, as data must be moved from one
distinct memory map to another. The situation is made worse by the difference in memory location size
that usually exists between data and program memories. Therefore, in a Harvard structure like the PIC’s,
a special technique is used to create look-up tables. This introduces several important new ideas.

The PIC 16 Series approach to look-up tables is shown in Figure 5.5. The table is formed as a subroutine.
Every byte of data in the table is accompanied by a special instruction, retlw. This instruction is another
‘return from subroutine’, but with a difference – it requires an 8-bit literal operand. As it implements the
subroutine return, it picks up its operand and puts it into the W register. The table is essentially a list of
retlw instructions, each with its byte of data.

I am the W register.
I am carrying a code

from the main
program, which will

show which number I
must come back with

Now Iím brin ging
back the chosen
number from the

subroutine.

table
retlw   23
retlw  3f
retlw  47
retlw  7f
retlw  0a2
retlw  1f
retlw  03
retlw  67
retlw  0c5
retlw  32

....

....

....
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call table
movwf portb
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Main program Look-up table, in
form of subroutine

05

addwf  pcl
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Figure 5.5 Fetching data from a look-up table
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What we need now is a technique which allows just one of those retlw instructions to be selected from the
list – we use something called computed go to. Look carefully at the very first instruction in the subroutine,
addwf pcl. The contents of the W register are added to pcl, which is the lower byte of the Program Counter.
This sounds like a pretty dangerous sort of thing to do, and for sure it must be done with care. The effect,
however, is that once a number has been added to the Program Counter, then program execution jumps
forward by whatever that number was. In this example the CPU then executes the retlw instruction it lands
on and thus goes back to the main program. Note carefully that, however long it appears, on any one
iteration only two instructions in the subroutine are executed, the addwf pcl and the chosen retlw. It is
obviously up to the programmer to ensure that as the subroutine is called, the W register is already loaded
with the offset that is needed.

Let’s see this at work in the example of Figure 5.5. Using the movf instruction, the main program transfers
into the W register the contents of a memory location called sample_no. It then calls the subroutine table.
In this example it is assumed that sample_no was holding the number 5, which the W register is holding as
the subroutine is entered. As the subroutine starts program execution, the number 5 is added to pcl. Program
execution therefore jumps forward by 5, to instruction retlw 1f. This causes a return from the subroutine,
with the number 1f now placed in the W register. The main program immediately makes use of this number,
in this case transferring it to Port B.

In summary, the W register is like a messenger being sent to the subroutine. It goes to the subroutine
carrying the code (which acts as a pointer) showing which number is wanted and it comes back carrying
that number.

There is one possible problem with this approach – by manipulating only the lower byte of the Pro-
gram Counter we can only operate within the first 256 words of program memory, or within any page
following. If the look-up table is very long, or if it is situated across a page boundary, then problems with
the computed go to will occur. In this case it is essential to calculate a fuller version of the computed
go to [Ref. 5.1].

5.4.3 Example program with delays and look-up table

Program Example 5.4 is a simple example combining delay loops and use of a look-up table, applied to the
ping-pong hardware. It takes 8-bit values from a look-up table and transfers them to the ping-pong LEDs,
with a delay between each data transfer. The overall effect is a display of randomly flashing LEDs. The
opening sections are very similar to Program Example 4.2, although now we need to specify the address
for pcl from Figure 2.5. Also specified is an RAM location, called pointer, whose address is chosen to lie
within the available range of 0C to 4F (also Figure 2.5).

The core of the program starts at the label loop. Just as in Figure 5.5, the value of pointer is moved to the
W register and a subroutine called table is called. Upon return from the subroutine, the value held in the W
register is transferred to Port B. This lights a certain pattern of LEDs. A delay loop, delay, is then called.
Note the structure of this, which is similar to the concept implied in Program Example 5.3, but uses a single
subroutine and a loop within a loop to extend the delay. The program continues to loop, checking whether
pointer has reached its maximum value. If so, it is reset to zero before continuing.
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;*************************************************************
;FLASHING LEDs!
;This program continuously outputs a series of led patterns,
;using simulation or ping-pong hardware.
;TJW 5.3.05. Tested in simulation 11.3.05.
;*************************************************************
;Clock is 800kHz
;Configuration Word: WDT off, power-up timer on,
; code protect off, RC oscillator
;

list p=16F84A
;
;specify SFRs
pcl equ 02
status equ 03
porta equ 05
trisa equ 05
portb equ 06
trisb equ 06
;
pointer equ 10
delcntr1 equ 11
delcntr2 equ 12
;

org 00
;Initialise
start bsf status,5 ;select memory bank 1

movlw B'00011000'
movwf trisa ;port A according to above pattern
movlw 00
movwf trisb ;all port B bits output
bcf status,5 ;select bank 0

;
;The “main” program starts here

movlw 00 ;clear all bits in port A
movwf porta
movwf pointer ;also clear pointer

loop movf pointer,0 ;move pointer to W register
call table
movwf portb ;move W register, updated from table SR, to port B
call delay
incf pointer,1
btfsc pointer,3 ;test if pointer has incremented to 8
clrf pointer ;if it has, clear pointer to start over
goto loop

;
;*************************************************************

;Subroutines

;*************************************************************
;Introduces delay of 500ms approx, for 800kHz clock
delay movlw D'100'

movwf delcntr2

Program Example 5.4 Using a look-up table
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outer movlw D'200'
movwf delcntr1

inner nop
nop
decfsz delcntr1,1
goto inner
decfsz delcntr2,1
goto outer
return

;Holds Lookup Table
table addwf pcl

retlw 23
retlw 3f
retlw 47
retlw 7f
retlw 0a2
retlw 1f
retlw 03
retlw 67

;
end

Program Example 5.4 Continued

Programming Exercise 5.2

People often find the concept of the PIC look-up table quite difficult to understand. It is therefore a particularly
good idea to simulate an example. Create a project called Flashing LEDs, copy the source code of Program
Example 5.4 from the book CD and include it in the project.Then simulate. Open a Watch window with PCL,
PORTB, WREG and pointer as observed variables. Step through the program and see carefully how the
value of the W register changes as the subroutine is entered and left. Use Step Over to avoid getting stuck
in the delay subroutine. Ensure that you understand all stages of the program and the new instructions that
have been used.

5.5 Introducing logical instructions

So far we have seen a good selection of the 16 Series instructions, but have yet to see any logical ones.
These instructions, like andwf, andlw, iorwf or xorwf, perform logical operations between the contents of
the W register and either a literal value or a value held in a memory location. They do it on a bitwise basis.
For example, if the andlw k instruction was applied, then bit 0 of the literal value is ANDed with bit 0 of the
W register, bit 1 is ANDed with bit 1 and so on. These instructions are useful for actual logical operations.
Commonly, and instructions are used for suppressing unwanted bits in a word and or instructions are used
for setting individual bits in a word.
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As an example, let’s look at an alternative way of resetting the pointer in Program Example 5.4. Remember,
every time the pointer increments to value 8 (0000 1000), it needs to be reset to 0. Instead of doing this,
why not just suppress the higher 5 bits of the word, which are of no use in this application?

The alternative, using logical instruction andlw, is shown in Program Example 5.5. Instead of testing the
value of pointer every time it is incremented, it is now ‘ANDed’ with the number 07, or 0000 0111B. Now
when it increments to 0000 1000B, bit 3 (which has been set to 1) is ANDed to 0 and the value of pointer
returns to zero.

loop movf pointer,0 ;move pointer to W register
call table
movwf portb ;move W register, updated from table SR, to port B
call delay
incf pointer,0 ;increment pointer, place result in W reg
andlw 07
movwf pointer
goto loop

Program Example 5.5 Introducing a logical instruction

5.6 Introducing arithmetic instructions and the Carry flag

The 16 Series instruction set has six arithmetic instructions: addwf, addlw, subwf, sublw, incf and decf.
Their use is central to any arithmetic processing that the microcontroller may have to do, as we will see
shortly in the next program example.

5.6.1 Using add instructions

The use of the two add instructions is straightforward. Using addwf the contents of the W register are added
to the contents of the memory location specified; using addlw a literal value is added to the contents of
the W register. The situation becomes slightly more complex when one realises that two 8-bit results added
together can lead to a 9-bit result. This ninth bit is the Carry flag in the Status register.

5.6.2 Using subtract instructions

The subtract instructions follow a similar pattern to the add. The Carry bit now acts as a Borrow, except
the polarity is reversed (see the Status register, Figure 2.3). Therefore, if a subtract occurs and the result is
positive, then the Carry bit is set. If the result is negative, then the Carry bit is clear.

5.6.3 An arithmetic program example

Program Example 5.6 demonstrates the use of some simple arithmetic techniques. It generates a Fibonacci
series by an adding process, as described in the header. A counter indicates how many numbers in the series
have been calculated. When it exceeds the 8-bit range, it reverses the series by subtracting. It detects the
range overflow by checking the Carry bit after each addition.
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The program starts by preloading the three first numbers in the series into the memory store. It then starts
moving up the series, from the label forward. The two most recent numbers are added and the Carry bit
then checked. If it is set, the 8-bit range has been exceeded and the program will need to reverse. Assuming
Carry was not set, the program then increments the counter and shuffles the numbers in the memory store,
discarding the oldest. The program then loops up to forward. If, however, the Carry had been set earlier,
the program branches to reverse. Now it works down the series, by subtraction. It tests the counter number
to determine when it should return to forward.

;**************************************************************************
;In a Fibonacci series each number is the sum of the two previous
;ones, e.g. 0,1,1,2,3,5,8,13,21.....
;This program calculates Fibonacci numbers within an 8-bit range,
;first going up and then down.
;Program intended for simulation only, hence no input/output.
;The program demonstrates addition, subtraction, compare.
;TJW 17.3.05. Tested by simulation 18.3.05
;**************************************************************************

list p=16F84A

;no i/o ports used

status equ 03

c equ 0

z equ 2

;these memory locations hold the three highest values of the Fibonacci series
fib0 equ 10 ;lowest number (oldest when going up,

;newest when reversing down)

fib1 equ 11 ;middle number

fib2 equ 12 ;highest number

fibtemp equ 13 ;temporary location for newest number

counter equ 14 ;indicates value reached, opening value is 3

org 00

;preload initial values

movlw 0

movwf fib0

movlw 1

movwf fib1
movwf fib2
movlw 3
movwf counter ;we have preloaded the first three numbers,

;so start count at 3
;
forward movf fib1,0

addwf fib2,0

btfsc status,c ;test if we have overflowed 8-bit range

goto reverse ;here if we have overflowed, hence reverse down

movwf fibtemp ;latest number now placed in fibtemp

incf counter,1

Program Example 5.6 Generating a Fibonacci series
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;now shuffle numbers held, discarding the oldest
movf fib1,0 ;first move middle number, to overwrite oldest
movwf fib0
movf fib2,0
movwf fib1
movf fibtemp,0
movwf fib2
goto forward

;when reversing down, subtract fib0 from fib1 to form new fib0
reverse movf fib0,0

subwf fib1,0
movwf fibtemp ;latest number now placed in fibtemp
decf counter,1

;now shuffle numbers held, discarding the oldest
movf fib1,0 ;first move middle number, to overwrite oldest
movwf fib2
movf fib0,0
movwf fib1
movf fibtemp,0
movwf fib0

;test if counter has reached 3, in which case return to forward
movf counter,0
sublw 3
btfsc status,z
goto forward
goto reverse

;
end

Program Example 5.6 Continued

Programming Exercise 5.3

Create a project in MPLAB® called Fibonacci. Copy from the book CD the source file of Program Example 5.6
into it and simulate. In the Watch window display counter, fib0, fib1, fib2, fibtemp, WREG and STATUS.
Single-step initially and watch the Fibonacci series develop, in fib0, fib1 and fib2. How many numbers in the
series fit into the 8-bit range? Watch the Carry bit being set as the range is exceeded and see the program
reverse down the series. Notice now that the Carry bit (now acting as Borrow) is set after each subtraction.
Try halting the program at reverse, and forcing two values for fib0 and fib1 that will give a negative result.
Single-step through the subtraction, check the result in the W register and notice that the Carry bit is clear.
See how the comparison of counter with the literal number 3 is achieved, and see the program return to
forward.

5.6.4 Using indirect addressing to save the Fibonacci series

Program Example 5.7 extends the Fibonacci series program to incorporate storage of the series, using
indirect addressing, with the main section of the program shown. The extra lines of code are highlighted in
bold. The data block is stored in data memory, starting at location 20H. The first three numbers in the series
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are entered using conventional addressing (indirect addressing could already be used here, but this would
require slightly more lines of code). The FSR is then loaded with 23H, the address of the next location in the
data block to be loaded. Entering the main loop, it can be seen that every time a new number is generated,
it is stored in the data block, using the movwf indf instruction. The value of the FSR is then incremented
until it reaches a predetermined maximum value.

;...
(opening lines of program omitted)
;...
;these memory locations hold the most recent numbers in the Fibonacci series
fib0 equ 10 ;lowest number (oldest when going up; newest when reversing down)
fib1 equ 11 ;middle number
fib2 equ 12 ;highest number
fibtemp equ 13 ;temporary location for newest number
counter equ 14 ;indicates which value we have reached, opening value is 2

org 00
;preload initial values

movlw 0
movwf fib0
movwf 20 ;save at start of list
movlw 1

movwf fib1
movwf 21 ;save in list
movwf fib2
movwf 22 ;save in list
movlw 3
movwf counter ;have preloaded the first three numbers, so start at 3
movlw 23 ;Initialise File Select Register, with next location for
movwf fsr ;list of numbers to be saved

;
forward movf fib1,0

addwf fib2,0
btfsc status,c ;test if we have overflowed 8-bit range
goto reverse ;here if we have overflowed, hence reverse down the series
movwf fibtemp ;latest number now placed in fibtemp
movwf indf ;save by indirect addressing
movf fsr,0 ;test to see if FSR is at top of range
sublw 30
btfss status,z
incf fsr,1 ;increment FSR, if available range not full
incf counter,1

;now shuffle numbers held, discarding the oldest
movf fib1,0 ;first move middle number, to overwrite oldest
movwf fib0
movf fib2,0
movwf fib1
movf fibtemp,0
movwf fib2
goto forward

Program Example 5.7 Storing the Fibonacci series with indirect addressing
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Programming Exercise 5.4

Create a project in MPLAB called Fibo+storage, or use a name of your choice. Copy from the book CD the
source file of Program Example 5.7 into it and simulate. Display the File Registers window using View >

File Registers. Using ‘Step Into’, single-step through the program and watch the Fibonacci series being built
up in the data memory block starting at location 20H. On completion you should have a window similar to
that in Figure 5.6. Notice in this also the two banks of SFRs, and how PCL, STATUS and FSR are mirrored
across both banks. What does the program do when FSR has reached its maximum value? Try changing
the definition of the top of the block by varying the literal value in the instruction sublw 30. Note the change
in program action as you do this.

Figure 5.6 The Fibonacci series stored in a data block starting at address 20H

5.7 Taming Assembler complexity

You are now beginning to see how complex even a simple Assembler program can become. We need every
means possible of keeping the program as short and understandable as possible. A few options are now
described.

5.7.1 Include Files

The Assembler directive #include allows any file to be embedded within a program, thereby saving the
trouble and space of pasting in large program sections which already exist elsewhere. A file so included is
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called an Include File. Initially, the most useful way to use this is to replace all the microcontroller-specific
memory definitions that must occur at the start of a program. Like other Assemblers, MPLAB contains
Include Files for each microcontroller, containing equ statements for all SFRs and their bits. These can be
found in one of the MPLAB folders.

Use of an Include File is useful for a small microcontroller like the 16F84A, where the file is several
pages long. It becomes almost essential for larger processors, which have a huge array of SFRs and
hence very long Include Files. Once an Include File is used, it is of course essential to ensure that
the microcontroller-specific labels that are referenced in the program are identical to the ones in the
Include File. The advantage of an Include File, even for a very small application, is illustrated in Program
Example 5.8.

;specify SFRs
timer equ 01
status equ 03
porta equ 05 #include p16f84A.inc
trisa equ 05 OR
portb equ 06 include p16f84A.inc
trisb equ 06
intcon equ 0B

the above, and much more besides, can be replaced by: the above

Program Example 5.8 Using Include Files

5.7.2 Macros

We are finding in every program we see that program development for a RISC processor is laborious, due to
the limited function of each individual instruction. A CISC instruction set, with its somewhat more powerful
instructions, offers some modest advantage, as we saw in Section 4.9, but not much. Is there a way we can
get around the minimalist nature of the instruction set while remaining in the Assembler environment?

One answer to this problem is by the use of macros. A macro is a grouping of instructions, defined by the
programmer and given a name. Once defined, the macro can be used in the program at any time. In some
ways a macro offers the convenience of a subroutine, but it is used differently. When the source code is
assembled, the macro is expanded out into the original instructions that made it up. Therefore, using macros
is a form of shorthand in programming rather than a way of structuring the program.

Program Example 5.9 shows three macros inserted at the start of the ping-pong program (Appendix 2).
The macro itself is contained within the directives macro and endm. Arguments are defined for the macro,
which are data values that the macro can apply. The macro movlf moves a data constant into a memory
location. It applies two arguments, const and address. The macros bfbset (branch if file bit set) and bfbclr
(branch if file bit clear) are similarly defined. All three macros are then applied within the first few lines of
program, each time saving one line of code. Thus, the eight original lines of code in loop wait are reduced
to four.
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;now ready for action

;macro to move a literal value to a file

movlf macro const,address

movlw const

movwf address

endm

;macro to branch if a specified bit is set

bfbset macro file,bit,target

btfsc file,bit

goto target

endm

;macro to branch if a specified bit is clear

bfbclr macro file,bit,target

btfss file,bit

goto target

endm

wait movlf 04,porta ;at rest, "out of play"

movlf 00,portb ;all play leds off

;both paddles must initially be clear before play allowed to commence

bfbclr porta,4,wait ;go to wait if right paddle pressed

bfbset porta,3,wait ;go to wait if left paddle pressed

;

Program Example 5.9 Applying macros to the ping-pong program

Programming Exercise 5.5

Enter the code of Program Example 5.8 into a copy of the ping-pong program, removing the lines of code
it replaces. Assemble the code and open the list file. Notice how the original macro definition occupies no
memory space and observe how the macro is expanded out into its original form whenever it is invoked,
thus replicating the original ping-pong program. Continue through the program, applying these two macros
wherever you can. How many times can you do this and how many lines of code do you save? Are there
other macros that could usefully be defined?

5.7.3 MPLAB special instructions

Microchip further eases the problem of the restrictive RISC instruction set by defining a set of ‘special
instructions’. These are recognised by the Assembler and expanded out to the equivalent instructions
shown. Examples are given in Table 5.1, while a full listing appears in Appendix B.11 of Ref. 4.1.
Most are operations using or manipulating the Z or C bits in the Status register. Some, like bc or bnc,
offer no saving in lines of code, but improve the clarity of programming. Others, like addcf, create
new and useful functions not originally available in the instruction set, which are very similar to CISC
instructions.
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Table 5.1 Example MPASMTM ‘special’ instructions
Mnemonic Description Equivalent Status flags affected
addcf f,d Add Digit Carry to file BTFSC 3,1 Z

INCF f,d
bc k Branch on Carry BTFSC 3,0 –

GOTO k
bnc k Branch on No Carry BTFSS 3,0 –

GOTO k
clrc Clear Carry BCF 3,0 –
movfw f Move file to W MOVF f,0 Z
subcf f,d Subtract Carry from file BTFSC 3,0 Z

DECF f,d
tstf f Test file MOVF f,1 Z

5.8 More use of the MPLAB simulator

We have already seen the enormous value of the software simulator as a means of running through a
program and observing outputs. We did this just using the simple controls, of single-step, animate or run.
As programs grow, however, we need greater sophistication in the way we can run them and how we observe
their behaviour.

5.8.1 Breakpoints

Once programs become long, it becomes increasingly tedious to step through them when simulating. We
need a means of getting them to run through the code that we may not be interested in, but stopping
where we need to take a closer look at what is happening. Breakpoints allow this functionality. In their
simplest form, breakpoints allow you to run a program up to a specified instruction. Program execution then
stops, and memory and register values can be inspected. In MPSIMTM you can set a breakpoint simply by
double-clicking on an instruction in the program window, and remove it in the same way. The number of
breakpoints is unlimited, so they can be used freely.

Programming Exercise 5.6

The Fibonacci program is perhaps the longest example we have looked at so far, and it is annoying to
have to step through it if we wish to see something happen deep inside the program. Open the Fibonacci
project you created earlier (or create it for the first time) and select the MPLAB simulator using Debugger >

Select Tool > MPLAB SIM. Scroll through the .asm source file and double-click on the line labelled reverse.
A breakpoint symbol should appear, as seen in Figure 5.7. Check that you can remove this by double-
clicking again. Reset the simulator and run. See how the program stops at the breakpoint.You can inspect
all windows at this point and then proceed any way you wish, for example by single-stepping. Try setting
another breakpoint at the second line shown in Figure 5.7 and running to here.
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Figure 5.7 Breakpoints inserted in Fibonacci program

5.8.2 Stopwatch

A weakness of the software simulator is that it does not run in real time, yet in embedded systems we have
a strong desire to understand the timing behaviour of our programs. The Stopwatch facility of the simulator
allows accurate time measurements to be simulated. It simply requires that the simulator ‘knows’ what the
oscillator frequency is. As it can record the number of instruction cycles executed, it can then calculate time
taken.

In MPSIM the oscillator frequency is set through the ‘Simulator Settings’ window, found using Debug-
ger > Settings > Osc/Trace (Figure 5.8(a)). The Stopwatch (Figure 5.8(b)) is displayed using Debugger >

Stopwatch.

Programming Exercise 5.7

Still with the Fibonacci project open, set the processor frequency to 4 MHz.This usefully gives an instruction
cycle time of 1 µs. Leave the breakpoints as set in Programming Exercise 5.6. Press Debugger > Stopwatch,
and Zero the Stopwatch. Reset the simulator and run the program to the breakpoint. The Stopwatch should
show 166 µs. Can you account for this value?

5.8.3 Trace

The various windows available in MPSIM give a good picture of the state of the processor status and
memory locations at any time, but they do not tell us the history of program execution. Even if program
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(a)

(b)

Figure 5.8 Using the Stopwatch. (a) Simulator Settings window. (b) Stopwatch window

execution has halted at a breakpoint, there may have been a number of program paths for it to go down to
reach that point. The Trace function is there to give a record of the recent past of the program execution.
In Trace memory the simulator keeps a continuous record of all instructions that have been executed. This
can be inspected when program execution stops.

MPLAB has a Trace function, with memory size of 32 767 lines. The Trace function is enabled in the
Simulator Settings window (Figure 5.8(a)), found by following Debugger > Settings > Osc/Trace. Note
that it slows down simulator speed somewhat if it is enabled. The Trace window is viewed using View >

Simulator Trace. Here the columns are all self-explanatory, except for:

SA = Source address − address or symbol of the source data
SD = Source data − value of the source data
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DA = Destination address − address or symbol of the destination data
DD = Destination data − value of the destination data.

Programming Exercise 5.8

Return again to the settings of Programming Exercise 5.6. Ensure the Trace is enabled as described above,
reset the simulator and run to the breakpoint at label reverse. Now open the Trace window, which should
appear as in Figure 5.9. See that it is a list of all the instructions recently executed, finishing (in line 142)
with the goto instruction which takes execution to the breakpoint line. Looking back over the SD and DD
columns, we see the Fibonacci series being formed. The value of the Status register in line 141 is 19H,
or 0001 1001B. This shows that bit 0, the Carry flag, has been set and the goto instruction is accordingly
invoked.

Figure 5.9 Trace window for section of Fibonacci program

5.9 The ping-pong program

It is useful now to look at the full ping-pong program, as seen in Appendix 2. It is never simple looking at
assembler code written by someone else (in fact, it’s often difficult looking at your own assembler code!),
so you should not feel worried if initially it appears difficult.

5.9.1 A structure for the ping-pong program

Let us first of all try to get a feel for the overall structure. For this program a state diagram gives a clear
overall representation, which would be difficult to achieve with a flow diagram. This is seen in Figure 5.10.
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Figure 5.10 The ping-pong program visualised as a state diagram

The program starts in the Initialise state. When this has completed it immediately enters a Wait state, where
it stays until play commences. If the left player presses a paddle then a Left-to-right state is entered. In this
the ‘ball’ starts at the left-most position and starts moving towards the right. Exit from this state occurs
either if there is a rule violation (for which definitions are given) or if there is a successful return hit,
when the ball has reached the right-most position. With no rule violation play continues, with the state
alternating between Left-to-right and Right-to-left. When either player makes a mistake this is classified as
a rule violation and the game enters a Score state. It leaves this when scoring is complete and returns to the
Wait state.

Having grasped the ping-pong state diagram, try to find each state in the Assembler listing. Three of the
five states, Initialise, Wait and Score, should be easy to follow. Indeed, we have met the first in Chapter 4.
The two states where play is actually in progress, Left-to-right and Right-to-left, are a little more difficult
to grasp. Each is a mirror image of the other, so when one is understood, the other immediately follows.

While the program overview is best represented as a state diagram, the actual Right-to-left/Left-to-right
states are essentially looping structures, and are most easily represented as a flow diagram (Figure 5.11).
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Figure 5.11 Flow diagram of Right-to-left/Left-to-right states
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Here we are confronted, perhaps for the first time, with the detailed complexity that such a program requires,
even in a product that appears so simple. There are certainly a number of requirements to be met within the
state. The ‘ball’ is to ‘move’ by lighting a series of LEDs, each to be illuminated for a set period of time.
The state of the paddles is to be continuously checked; at certain times a paddle press is a legal action, at
others it represents a rule violation. If timing were to be achieved simply by entering a timing loop, the
function of input checking could not be carried out. Hence each LED time duration is made up of a certain
number of loop iterations – within each the inputs are tested, followed by a short delay.

5.9.2 Exploring the ping-pong program code

As an aid to further understanding, certain sections of the ping-pong code are now described.

Opening section and memory allocation

In the opening comments the program gives details on hardware allocation. This is followed by a section
on memory allocation. Here names are given to memory locations in the general-purpose RAM area. The
names used, delcntr1, etc., are chosen by the programmer and are placed as labels, i.e. starting fully left
on the program line. The equ directive is used and the memory location is chosen from the memory map
of Figure 2.5, which shows that available memory locations range from address 0CH to address 4FH.

The Wait state

Let’s explore this by looking at the opening part of the actual ping-pong program, which follows the
initialisation section.

In the first four lines the program switches on the ‘out-of-play’ LED and switches off all others. It then tests
the state of both paddles. Remember that, when pressed, the switch input bit goes to Logic 0. If neither is
pressed then program execution skips forward to wait1. However, if one or both are pressed, then program
execution just returns to wait and loops until the button is released. This is to stop a ‘false start’ to play,
which would otherwise occur if a player switched on the game while a paddle was pressed. As this is the
point where play restarts after a score, it also ensures that the previous round of play is completed before
starting again. Note that the loop execution includes the setting of the LEDs. This is not strictly necessary
but does no harm and minimises the number of labels used.

Program execution then enters another loop, wait1. Both buttons have been cleared, so the game can now
start. Again both paddles are tested. This time, however, if a button is pressed, instead of looping back play
goes forward, to either l_to_r or r_to_l.

The main play states

Let us start by looking at the r_to_l section. This opens with the ‘out-of-play’ LED being switched off
and the opening LED position being defined. The larger loop then starts at the line labelled rtl_0. Here
the loop counter loop_cntr is loaded with the number led_durn. This number was defined in the opening
section of the program and represents the number of times the inner loop is to be iterated. This inner loop
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starts at line rtl_1. Much of it is concerned with checking for rule violation, the interpretation of which
depends on the position of the ball. The general structure is shown in the flow diagram, while the actual rule
interpretation can be determined from looking at the source code. Scoring occurs when any rule violation
is detected. At the end of the loop the 5 ms delay subroutine is called. The loop counter is decremented. If
zero, then a new ball position is set up, by rotating the led_posn memory location. A score occurs if this
causes the ball to go off the end of the 8-bit number; this happens if there has not been a successful return
hit while the ball has been at the end position.

The Score state is divided into two parts and is simple. It lights the appropriate Score LED, calls a half-second
delay and switches off the LED. The state is then left and execution returns to the Wait state.

5.10 Simulating the ping-pong program – tutorial

The ping-pong program is not exactly complex, but it is full of loops and delays, and therefore illustrates the
problems of thoroughly testing a program with a simulator. The art lies in using each feature where needed.
Generally, for a program segment that is to be explored in detail, you will single-step or animate. For the
sections of code you want to get through quickly, you will simply run through, heading for a breakpoint you
have already inserted. The following is a tutorial that guides you through the simulation of this program.

Ensure that you have created and built a project, which contains a copy of the ping-pong program.

5.10.1 Setting up input stimulus

The ping-pong program has two digital inputs, the two player paddles, which need to be simulated. Go to
Debugger > Stimulus Controller. This will give you the Stimulus Controller dialogue box. Under Pin select
RA3, and under Action select Set High. Repeat this for RA4. Then create two more lines, for RA3 and RA4
again, this time with Pulse Low as the action for each. Set the duration to 50 ms, which is representative of
a fast switch push. Can you work out from the program what is the maximum theoretical duration a player
can press a button?

5.10.2 Setting up the Watch window

Click View > Watch to set up a Watch window. A useful selection for the ping-pong is PCL (to track where
you are in the program), PORTA and PORTB using the Add SFR button, and duration, led_posn and
delcntr1 using the Add Symbol button. By right-clicking on the title bar near the top of the Watch window,
you will see that you can display further columns, for example the data shown in binary. The Watch window
you set up will be saved for you at the end of your session.

5.10.3 Single stepping

Press F6 to reset the Program Counter and then try single stepping the ping-pong program. You will be able
to see registers changing under program instruction, with the changes being highlighted in red.
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If one or both of the user paddles are set low (i.e. ‘pressed’), then the simulation will get stuck in the first
wait loop. (You can see their logic state by inspecting the Port A display in the Watch window.) Set these
lines high by pressing the Fire buttons on the Stimulus Controller box. You should see the change reflected
in the Watch window.

Now you should be able to single step on to the wait1 loop. Having looped round here once or twice, Fire
the RA3 pulse. You should now exit the loop and move on to l_to_r. See the Port B value change to 01 as
the ball position is set up. You can continue stepping from here, and either step over, or enter, the delay5
subroutine. Once in, you can Step Out of it at any time. Clearly it would be tedious to single step all the
way through this subroutine. Even if we step over it, the loop repetitions become endless and the limitations
of single stepping are revealed.

5.10.4 Animate

Press F6 again and try running the program in Animate mode. Adjust the speed to one you are comfortable
with by adjusting the setting in Debugger > Settings > Debugger Animation. Now you can’t use the Step
Over function and you will find yourself stuck again in the delay subroutine. Here you can watch the delcntr
value being decremented in the File Registers window.

5.10.5 Run

If you select Run there is not much to watch, as the memory windows are no longer updated as the program
runs. Stimulus inputs are, however, still accepted. Hence it is helpful to start using breakpoints.

5.10.6 Breakpoints

Set a breakpoint initially at the l_to_r label. Now reset the simulated CPU, set RA3 and RA4 high in the
Stimulus Controller box, and enter Run. Fire the pulse on RA3. The program should then halt at your
breakpoint. Without resetting, try setting another breakpoint at the ltr_1 label and press Run again. You
have an unlimited number of breakpoints in MPLAB simulator, so use them freely.

5.10.7 Stopwatch

Using Debugger > Settings > Osc/Trace, set the processor frequency to 800 kHz, which is the nominal
frequency for the ping-pong. Set a breakpoint at the first line of the delay5 subroutine and run to there.
Now press Debugger > Stopwatch. Zero the Stopwatch and insert a breakpoint at the Return instruction of
that subroutine. Run the program to there. Does the Stopwatch value agree with the calculated value of the
delay routine? This is a very useful facility for measuring durations of program execution.

5.10.8 Trace

Try enabling the Trace, running the program to a breakpoint and then inspecting Trace memory in View >

Simulator Trace.
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Table 5.2 Suggested breakpoint locations for ping-pong debug
Breakpoints Action when breakpoint reached
wait Check value of Port A – are bits 3 and 4 high? Press Run to loop here and see ‘out-of-play’ LED

being set high by the program. Set bits 3 and 4 high with the Stimulus generator. Press Run.
wait1 Port A should now be 0001 1100. Pulse RA4 low with Stimulus generator (i.e. a player initiates the

game); this will stay low for 50 ms of run time. Press Run.
r_to_l Here if RA4/RA3 has been pressed, note that this bit is now low in Port A. Press Run.
l_to_r
rtl_1
ltr_1

Single step a few lines here and see led_posn set to new value. This represents the ball position.
Press Run. Watch loop_cntr step down on each loop iteration. Then watch led_posn change.

rtlend
ltrend

Have completed one internal cycle, will now call a delay. Press Run. Remove breakpoint for faster
running.

score_left Here if an ‘illegal’ paddle press forces a Score. Press Run.
score_right Here if an ‘illegal’ paddle press forces a Score. Press Run.
delay5 Single step a few times through this loop. See value of delcntr1 set and then decremented. Press

Run. Remove breakpoint for faster running.
delay500 Here if a Score LED is lit. It will be illuminated for 0.5 s. Press Run.

5.10.9 Debugging the full program

Try inserting breakpoints at the positions shown in Table 5.2. Note that all breakpoints must be entered on
lines containing instructions. Reset the Program Counter with F6 and run the program. Step from breakpoint
to breakpoint, and observe the Watch window values shown in the table.

Having looped around a few times and understood the program, try in the simulator:

• An ‘illegal’ paddle press to force a score
• Looping until the ball reaches the far end and returning it with a ‘legal’ paddle press.

5.11 What others do – graphical simulators

These past two chapters have aimed to give a good introduction to MPLAB and its simulator, MPSIM.
While powerful in their own way, it is worth reminding oneself that they are free. What if we are willing
to spend some money on a simulator?

There are a number of simulators available which go well beyond the simple text-based interface of MPSIM.
An example is the simulator found in Ref. 5.2, shown in Figure 5.12. Here a 16F84 microcontroller is being
simulated. The W register, pipelined instruction, current instruction, Stack, Status register, ports and program
listing are all clearly displayed. The program can be run or be single stepped, with the internal status being
clearly updated and displayed.
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Figure 5.12 The ‘Virtual PICmicro’ screen, Matrix Multimedia

Summary

• It is important to devise good structures for programs as they are developed. Flow and state diagrams
can help with this.

• A number of techniques assist in producing clear and well-structured programs. These include subroutines,
look-up tables, macros and the use of Include Files.

• The full 16F84A instruction set can be applied to build big and sophisticated programs.
• More complex programs require greater expertise in the use of simulation techniques.
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6
Working with time: interrupts,

counters and timers

Apart from the lucky few, our daily lives are ruled by time. We have alarm clocks to wake us in the morning,
stopwatches to measure time duration, timers to start off single events (like a VCR recording) and timers
to maintain periodic events (like a house heating system coming on at the same time every day). For the
young and those who teach, the working day is ruled by a school timetable – a complex series of timed
events.

For embedded systems, time is similarly of the essence. At a simple level the system needs to respond
in a timely manner to external events. It may also need to measure time between external events and
generate time-based activity. These requirements are met primarily by two differing, but related, fea-
tures of a microcontroller: the interrupt and the counter/timer. While each is a stand-alone element in
its own right, both are so useful that they have become ubiquitous, finding their way into many other
microcontroller features. Interrupts are to be found generated in almost every microcontroller peripheral.
Counter/timers provide the timing for a range of activity, from motor control with pulse width modu-
lation to baud rate generation in serial communications. The principles of each are introduced in this
chapter and need to be learned in detail. Because they are used both at a simple level and in advanced
and sophisticated ways, we return to them on a number of occasions throughout the book. Ultimately, we
find that interrupts and counter/timers both form part of the exciting techniques that underpin real-time
programming.

In this chapter you will learn about:

• Why we need interrupts and counter/timers
• The underlying interrupt hardware structure
• The 16F84A interrupt structure
• How to program with interrupts
• The underlying microcontroller counter/timer hardware structure
• The 16F84A Timer 0 structure
• Simple applications of the counter/timer
• The Sleep mode.

If you wish you will also:

• Learn about alternative approaches to interrupt strategies, using examples from other microcontroller
families

• Get deeper into 16F84A interrupt issues, in particular its interrupt latency.
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6.1 The main idea – interrupts

As we know, a computer CPU is a deeply orderly entity, following the instructions of the program one by
one, doing what it is told in a precise and predictable fashion. An interrupt disturbs this order. Coming maybe
when least expected, its function is to alert the CPU in no uncertain terms that some significant external
event has happened, to stop it from what it is doing and force it (at greatest speed possible) to respond to
what has happened. Originally this was applied to allow emergency external events to get the attention of
the CPU, emergencies like power failure, the system overheating or major failure of a subsystem. But the
concept of interrupts was recognised as very powerful, and as time went on, more and more subsystems
gained the power to generate interrupts. This forced increasing complexity in interrupt structures and a need
to recognise that not all interrupts were equal.

To work successfully with interrupts, we need to understand both the hardware interrupt structure and the
programming techniques needed to program successfully with them. An introduction to these now follows.

6.1.1 Interrupt structures

Different microcontrollers have rather different interrupt structures. Inevitably they have more than one
interrupt source, usually with some internally generated and others external. A generic structure, which
illustrates the main hardware principles, is shown in Figure 6.1. At the left we see one of several sources,
‘Interrupt X’. If an interrupt occurs, it sets an S-R bistable. The occurrence of the interrupt, even if it is only
momentary, is thus recorded. The output of the bistable, the latched version of the interrupt, is called the
interrupt flag. This is then gated with an enable signal, Interrupt X Enable. If this is high, then the interrupt
signal progresses to an OR gate. If it is low, the interrupt signal gets no further. If enabled, it is ORed with
other enabled interrupt inputs of the microcontroller. The OR gate output will go high if any interrupt input
is high. There is then a further gating of the OR gate output, this time with a Global Interrupt Enable. Only
if that value is high can any interrupt signal reach the CPU. When the CPU has responded to an interrupt,

S Q

Interrupt
flag*

Interrupt X

Interrupt X Enable*

Other
maskable
interrupts

Global Interrupt Enable*

Non-maskable 

interrupt 

Interrupt
inputs to
CPU

R(Reset by CPU
or program)

* bits in a Special Function Register

Replicated for all other maskable interrupts

Figure 6.1 A simple generic interrupt structure
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it is necessary to clear the interrupt flag. In some processors this is done automatically by the CPU, in others
it must be done within the program.

The action of disabling an interrupt is sometimes called masking. It seems strange, however, to be able
to switch off a capability which is so important and which is meant to be there to report emergencies.
Therefore, some microcontrollers have interrupts that cannot be masked. These are always external (i.e. not
from an internal peripheral) and are used to connect to external interrupt signals of the greatest importance.
A non-maskable interrupt is shown in Figure 6.1. As the CPU always responds if it occurs, there is less
point in storing it as a flag, and this is sometimes therefore not done.

6.1.2 The 16F84A interrupt structure

The 16F84A has four interrupt sources, all of which can be individually enabled or disabled:

• External interrupt. This is the only external interrupt input. It shares a pin with Port B, bit 0 (Figure 2.1).
It is edge triggered.

• Timer overflow. This is an interrupt caused by the Timer 0 module, which is the subject of the second
half of this chapter. It occurs when the timer’s 8-bit counter overflows.

• Port B interrupt on change. This interrupts when a change is detected on any of the higher 4 bits of
Port B. The mechanism was described in Section 3.4.1.

• EEPROM write complete. This interrupts when a write instruction to the EEPROM memory is completed.

The interrupt structure is shown in Figure 6.2 and the SFR that controls it, INTCON, in Figure 6.3. It is
useful to study the two diagrams in parallel, as every bit in the INTCON register appears in the structure
logic diagram. The four sources appear labelled on the left of Figure 6.2. When comparing this diagram with
Figure 6.1, it is interesting to note the absence of the interrupt flag flip-flop. These exist, but are not shown
in the Microchip diagram. Each source has an enable line (labelled …E) and a flag line (labelled …F).

Global Interrupt
Enable

External Interrupt

EEPROM Write
Complete

Port B Change

Timer Overflow Flag

Timer Overflow
Interrupt Enable

Figure 6.2 The 16F84A interrupt structure (supplementary labels in shaded boxes added by the author)
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Figure 6.3 The 16F84A INTCON register

Thus, the lines TOIF, INTF and so on are actually the interrupt flags, rather than the interrupt inputs
themselves. All can be seen as bits in the INTCON register, with the exception of the EEPROM write
complete flag and enable. Note that the external interrupt is edge triggered. The edge it responds to is
controlled by the setting of the INTEDG bit of the OPTION register (shown later, as it mainly relates to
Timer 0, in Figure 6.9).

As in Figure 6.1, each flag is ANDed with a corresponding Enable input (TOIE, INTE, RBIE and EEIE).
The enable bits are located in the INTCON register and can be set by the programmer. The outputs of the
four AND gates are then ORed together, before passing on to the Global Enable gate. Interrupt flags must
be cleared by manipulating their INTCON bits in the program. The 16F84A has no non-maskable interrupt
input.
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6.1.3 The CPU response to an interrupt

Let us assume that an interrupt has occurred, and both its local enable and the global enable are set. The
interrupt is therefore detected by the CPU and it executes a special section of program called the Interrupt
Service Routine (ISR). It is important to understand the underlying detail of what goes on, which is illustrated
in the flow diagram of Figure 6.4. The CPU completes the instruction it is currently executing and saves
the value of the Program Counter on the top of the Stack. Thus, it will ‘know’ where to come back to when
the ISR is complete. To avoid other interrupts possibly interrupting this interrupt, it also clears the Global
Interrupt Enable.

In the PIC® 16 Series, the ISR must start at the interrupt vector, program memory location 0004 (Figure 2.4).
Therefore, when an interrupt occurs, this value is loaded into the Program Counter and program execu-
tion then continues from the reset vector. In any processor, the ISR must end with a special ‘return from
interrupt’ instruction. In the 16 Series this is the retfie instruction. When this is detected, the CPU sets
the GIE to 1, loads the Program Counter from the top of the Stack and then resumes program exe-
cution. Thus, it returns to the instruction which follows the instruction during which the interrupt was
detected.

Interrupt detected

Complete current instruction

Save Program Counter on Stack

Reload PC with 0004H

Continue program execution

Instruction 
is RETFIE?

No

Set GIE to 1

Load PC from Stack

Continue program execution

Yes

Clear GIE 

ISR execution starts

Main program is running

Main program continues

Figure 6.4 The 16F84A interrupt response sequence of events



Working with time: interrupts, counters and timers 125

6.2 Working with interrupts

6.2.1 Programming with a single interrupt

It is comparatively easy to write simple programs with just one interrupt. For success, the essential points
to watch are:

• Start the ISR at the interrupt vector, location 0004
• Enable the interrupt that is to be used, by setting the enable bit in the INTCON register
• Set the Global Enable bit, GIE
• Clear the interrupt flag within the ISR
• End the ISR with a retfie instruction
• Ensure that the interrupt source, for example Port B or Timer 0, is actually set up to generate interrupts!

Program Example 6.1 gives a very simple interrupt example, intended for simulation. The interrupt guide-
lines in the list above are applied. The program starts as usual at the reset vector 0000. However, the
interrupt vector is now also in use. The first action of the program is to branch over the reset vector to
location start, where initialisation takes place. Within this we see the GIE and INTE bits being set. These
bit labels can be used because they appear in the 16F84A include file. The main program simply outputs
the bit patterns 0AH and 15H to Port A in turn.

When an interrupt occurs the interrupt vector address is loaded into the Program Counter, from where
program execution continues. The first action of the ISR is to jump to location Int_Routine. This is placed
at program memory location 0080H to give clarity to the simulation. The ISR simply clears Port A before
clearing its interrupt flag and returning to the main program.

;****************************************************************
;Interrupt Demonstration 1
;This program demonstrates simple use of single interrupt.
;Intended for simulation.
;Int_Demo1 14.4.05
;****************************************************************
;

#include p16f84A.inc
;Port A all output. Port B: Bit 0 = Interrupt input
;

org 00
goto start
org 04 ;Interrupt Service Routine starts here
goto Int_Routine
org 0010

;Initialise
start bsf status,rp0 ;select bank 1

movlw 01
movwf trisb ;portb bits 1-7 output

;bit 0 input
movlw 00
movwf trisa ;porta bits all output

Program Example 6.1 Simple interrupt application
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bcf status,rp0 ;select bank 0
bsf intcon,inte ;enable external interrupt
bsf intcon,gie ;enable global int

;Remove semi-colon from following instruction to change
;interrupt edge

; bsf option_reg,intedg
wait movlw 0a ;set up initial port output values

movwf porta
movlw 15
movwf porta
goto wait

;
org 0080

Int_Routine ;Interrupt Service Routine continues here
movlw 00
movwf porta
bcf intcon,intf
retfie
end

Program Example 6.1 Continued

Simulation Exercise 6.1

Copy the program Int_Demo1 from the book CD into MPLAB® and create a project around it. Build the
project and enable the simulator. Open a Watch window, displaying PORTA, PORTB, INTCON and PCL.
Open the Hardware Stack window (under View) to observe the contents of the Stack. Open the Stimulus
Controller and set Pin RB0 to Toggle. Single step through the program, and observe and understand the
change to each observed variable, on every instruction. Now ‘fire’ the RB0 pin, setting RB0 high, and
continue stepping. This will cause no change to program execution, as the interrupt edge response will be
negative-edge triggered (the INTEDG bit has been left at a Reset value of 0). Fire the RB0 pin again and
an interrupt sequence should be instigated as you single step further. See the Hardware Stack change,
program execution transfer to the ISR and on ISR completion the program resuming after the instruction
after it was interrupted.Try changing the INTEDG bit, as shown in the program, to change the edge to which
the interrupt responds.

When you have implemented the above program successfully, try inserting the errors below into the program.
They are commonly made by novices. Observe the effect:

• Fail to clear the interrupt flag by removing the instruction bcf intcon,intf
• Terminate the ISR incorrectly by replacing retfie with return.

6.2.2 Moving to multiple interrupts – identifying the source

Using one interrupt in a program is generally quite easy, but be warned – once we start using more than
one, interrupts can interact with each other in ways which are far from simple. Complexity then seems to
rise approximately in proportion to the square of the number of interrupts used!
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As we have seen, the 16F84A has four interrupt sources, but only one interrupt vector. Therefore, if more
than one interrupt is enabled, it is not obvious at the beginning of an ISR which interrupt has occurred.
In this case the programmer must write the ISR so that at its beginning it tests the flags of all possible
interrupts and determines from this which one has been called. An example piece of code that does this,
assuming all four interrupt sources are enabled, is shown in Program Example 6.2.

interrupt btfsc intcon,0 ;test RBIF
goto portb_int
btfsc intcon,1 ;test external interrupt flag
goto ext_int
btfsc intcon,2 ;test timer overflow flag
goto timer_int
btfsc eecon1,4 ;test EEPROM write complete flag
goto eeprom_int

portb_int
...
place portb change ISR here
...

bcf intcon,0 ;and clear the interrupt flag
retfie

ext_int
...
place external interrupt ISR here
...

bcf intcon,1 ;and clear the interrupt flag
retfie

timer_int
...
place timer overflow ISR goes here
...

bcf intcon,2 ;and clear the interrupt flag
retfie

eeprom_int
...
place EEPROM write complete ISR here
...

bcf eecon1,4 ;and clear the interrupt flag
retfie

Program Example 6.2 Interrupt source identification

6.2.3 Stopping interrupts from wrecking your
program 1 – context saving

Because an interrupt can occur at any time, it has the power to be extremely destructive. Program
Example 6.3 is written to illustrate this. It applies a 16-bit addition subroutine. For the purposes of the
example, the 16-bit number 9999H is added to itself, with an expected 17-bit result 13332H. In the sub-
routine, the lower 2 bytes, qlo and plo, are added. Any Carry generated is then added into one of the
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higher bytes, and the higher two bytes are added. An ISR is written which affects both the Carry flag and
the W register, as most ISRs would.

Suppose the interrupt occurs immediately after the first subroutine movf instruction, where the W register
is holding the value of plo. The ISR changes the W register, so when program execution returns to the
subroutine, it will be with the incorrect W register value. Suppose the interrupt occurs immediately after
the first addwf instruction. The value of the Carry bit is essential to the success of the addition, but again
is lost in the ISR.

;****************************************************************
;Int_context
;This program demonstrates the need for context saving.
;Intended for simulation.

;TJW 15.4.05 Tested 17.4.05
;****************************************************************
;Port A not used. Port B bit 0 used for ext.interrupt ip.

#include p16f84A.inc
;
rhi equ 10
rlo equ 11
phi equ 12
plo equ 13
qhi equ 14
qlo equ 15

org 00
goto start
org 04 ;here if interrupt occurs
goto Int_Routine

;
start org 0010

bsf intcon,inte ;enable external interrupt
bsf intcon,gie ;enable global int

loop movlw 99
movwf phi ;preload numbers to be added
movwf plo
movwf qhi
movwf qlo
call Double_add
movlw 00 ;clear result
movwf rhi
movwf rlo
goto loop

;This subroutine adds two 16-bit numbers, stored in phi-plo, and qhi-qlo,
;and stores result in rhi-rlo. 16-bit overflow in Carry flag at end.
Double_add

movf plo,0 ;move plo to the W reg
addwf qlo,0 ;add lower bytes
movwf rlo
btfsc status,0

Program Example 6.3 Impact of interrupts
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incf phi,1 ;add in Carry
movf phi,0
addwf qhi,0 ;add upper bytes
movwf rhi
return

Int_Routine
bcf status,0 ;clear the Carry flag
movlw 0ff ;change W reg value
bcf intcon,intf
retfie
end

Program Example 6.3 Continued

Simulation Exercise 6.2

Copy the program Int_Context from the book CD into MPLAB and create a project around it. Build the
project and enable the simulator. Open a Watch window, displaying qhi, qlo, phi, plo, rhi, rlo, STATUS
and WREG. Open the Stimulus Controller and set Pin RB0 to Toggle. Single step through the program, and
check that the addition works correctly and the expected result is achieved. Now try inserting interrupts at
different points in the program. Note how at many points the occurrence of the ISR destroys the validity of
the addition result.

The temporary data being used in a particular activity in the CPU is called its context. In the PIC 16 Series
this includes at least the W register value and the Status register. It is clearly important to save the context
when an interrupt occurs. Some microcontrollers do this automatically, but PIC 16 Series microcontrollers
do not. Therefore, it is up to the programmer to ensure that whatever context saving that is needed is done
in the program.

Program Example 6.4 shows the recommended Microchip method for saving the W register into a pre-
designated memory location W_TEMP and Status register into a location called STATUS_TEMP. The
swapf and movwf instructions are used because they do not affect any Status register bits.

PUSH movwf w_temp ;Copy W to W_TEMP register,
swapf status,0 ;Swap status to be saved into W
movwf status_temp ;Save status to STATUS_TEMP register

ISR ;Interrupt Service Routine
...

actual ISR goes here
...
POP swapf status_temp,0 ;Swap nibbles in STATUS_TEMP register

;and place result into W
movwf status ;Move W into STATUS register ;sets bank to original

;state

Program Example 6.4 Context saving
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swapf w_temp,1 ;Swap nibbles in W_TEMP and keep result in W_TEMP
swapf w_temp,0 ;Swap nibbles in W_TEMP and place result into W

...
clear interrupt flag(s) here

...
retfie

Program Example 6.4 Continued

Simulation Exercise 6.3

Adapt the context saving shown in Program Example 6.4 and insert it into the Int_Context program (Program
Example 6.3). You will need to define memory locations for w_temp and status_temp. Check that the
program now operates correctly wherever you force an interrupt to occur.

6.2.4 Stopping interrupts from wrecking your program 2 – critical
regions and masking

We can resolve some of the problems of an interrupt occurring in a program section like the subroutine
discussed above by appropriate context saving. Unfortunately, we can’t resolve them all, at least not just
with context saving.

What if an interrupt occurred in a software delay routine, for example that of Program Example 5.2? The
delay length would be increased by the duration of the ISR, which could be disastrous, and no amount of
context saving would improve the situation.

Consider a more subtle problem. The ISR shown in Program Example 6.5 takes the word held in rhi-rlo,
calculated in the subroutine of Program Example 6.3, and outputs it to a 12-bit digital-to-analog converter
(DAC) connected to Ports A and B. We assume that the overall program constrains the word in rhi-rlo
to 12 bits. Suppose the ISR shown in Program Example 6.5 occurs during the subroutine of Example 6.3.
Context saving is implemented, so should there be a problem?

Unfortunately, there is a problem. The ISR is making use of a result that is being calculated in a program
section that it is interrupting. Suppose rlo has just been updated and not rhi when the interrupt occurs. The
ISR outputs the new value of rlo and the old one of rhi. Together, they might make a number that has no
sense, with potentially disastrous consequences.

Int_Routine
movwf W_temp ;Copy W to TEMP register,
swapf status,0 ;Swap status to be saved into W
movwf status_temp ;Save status to STATUS_TEMP register
bcf status,5 ;ensure we are in Bank 0

Program Example 6.5 An interrupt using data calculated in the program
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movf rhi,0 ;output higher 4 bits to DAC
movwf porta
movf rlo,0 ;output lower 4 bits to DAC
movwf portb
swapf status_temp,0 ;Swap nibbles in STATUS_TEMP register

;and place result into W
movwf status ;Move W into STATUS register ;set bank to original

;state
swapf W_temp,1 ;Swap nibbles in W_TEMP and place result in W_TEMP
swapf W_temp,0 ;Swap nibbles in W_TEMP and place result into W
bcf intcon,intf
retfie

Program Example 6.5 Continued

Therefore, we must accept the fact that in certain program areas we will not want to accept the intrusion of
an interrupt under any circumstances, with or without context saving. We call these critical regions. We can
disable, or mask, the interrupts for their duration, by manipulating the enable bits in the INTCON register.
Critical regions generally include all time-sensitive activity and any calculation where the ISR makes use
of the result. Time-sensitive activity itself includes timing loops and multi-instruction setting of outputs.

By applying properly the techniques of context saving and critical regions, we can make good use of
interrupts, without them displaying the more destructive side of their nature.

6.3 The main idea – counters and timers

6.3.1 The digital counter reviewed

It is very easy to make a digital counter using flip-flops. Counters can be made which count up, count
down, which can be cleared back to zero, pre-loaded to a certain value, and which by the provision of
an overflow output can be cascaded with other counters. A simple example is shown in Figure 6.5. Eight
negative edge-triggered J–K bistables are interconnected, so that the Q-output of one drives the clock input
of the next. With J and K both tied to Logic 1, the flip-flop toggles on every input negative edge. The
counter holds an 8-bit binary number, made up of the eight Q-outputs of the bistables, where Q7 is the most
significant and Q0 the least significant. It counts up by one on the negative edge of every incoming clock
cycle.

The output timing diagram is shown in the lower part of the figure. It can be seen that after one input cycle
Q0 has gone to Logic 1. After 16 input cycles have been completed (i.e. during cycle 17) the 8-bit word
forms 00010000B, i.e. 16D, and after 31 cycles it forms 00011111B, i.e. 31D. When 255 input cycles have
been completed the counter holds the word 11111111B, or FFH. If another input cycle comes along, then
all flip-flops ripple through to 0 and the output returns to 00000000B. The negative-going edge of Q7 can
be used to indicate that the counter has overflowed.

The counter of Figure 6.5 can be reset to zero if the clear line is activated. With a little more complexity
it is possible to add the facility to pre-load the counter with any number desired. By so doing we gain a
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Figure 6.5 A digital counter made of eight flip-flops

versatile digital subsystem which becomes the basis for a microcontroller counter. This can be represented
as in Figure 6.6. The only interconnections of significance are the Clock input, the overflow output and the
8-bit Read or Load capability, which can be gated to share a single bi-directional data path.

6.3.2 The counter as timer

It is extremely useful for a microcontroller to be able to count – widgets passing on a conveyor belt for
example, or coins in a slot machine, or people going through a door. It is, however, even more useful if it
can measure time, and the counter allows us to do this.

Suppose the Input signal of Figure 6.5 was a stable 1 ms clock frequency. Then the counter would incre-
ment exactly every 1 ms. After 16 clock cycles, exactly 16 ms would have elapsed, after 31 cycles 31 ms
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Figure 6.6 The digital counter in block diagram form

and so on. By starting the clock input at a moment of choice, it is therefore possible to measure elapsed
time. The resolution of the measurement is determined by the period of the clock. In this example the
resolution is 1 ms and we can’t measure anything less than that, or a fraction of it! Again, for the 1 ms
input period, the 8-bit counter can measure up to 255 ms before overflowing. The use of counters as timers
is so important that the counter is often called a counter/timer (C/T), or simply a timer, to reflect this
importance.

An obvious application of the counter/timer is to measure the time between two ‘events’. These events
may both be externally generated. Alternatively, the first is generated by the microcontroller and the second
happens some time later, as a response. It may also be necessary to measure the time between two pulses or
the duration of a single pulse. The general requirement is illustrated in Figure 6.7. The actual measurement
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Event 1

Event 2
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(b)

(c)

T

T

T

Figure 6.7 The challenge of time measurement
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seems easy – start the counter/timer running when the first event occurs and stop it on the second. In practice,
this poses a number of challenges. For an accurate measurement, the start and stop of the counter/timer
must be perfectly synchronised with the events. The best way of doing this is by using an interrupt. If we
don’t have an interrupt, then we will have to scan continuously the input to detect when the event occurs –
in which case it’s hardly worth using the counter/timer, as we might as well do the timing in software. If
there are two external events on two different lines then we still have a problem, as with the PIC 16 Series
we only have one external interrupt.

We will see a good example of this sort of time measurement in Chapter 10. We will also see enhancements to
the counter/timer that get over the problem of accurately synchronising the start and stop of the counter/timer
with the events it is measuring.

6.3.3 The 16F84A Timer 0 module

The 16F84A Timer 0 is typical of many simple counter/timers in smaller-scale microcontrollers. It takes an
8-bit counter like the one in Figure 6.5, connects it as an SFR in the memory map and packages it with some
useful extra features. Its block diagram representation is shown in Figure 6.8, with the actual 8-bit counter
labelled TMR0. Looking back to Figure 2.5, we can see that this appears as register TMR0 at memory
location 01 in Bank 0. Like all good microcontroller peripherals, Timer 0 is configurable, controlled by a
number of bits that appear in the OPTION register, shown in Figure 6.9.

Looking to the left of Figure 6.8, we can see that there are two possible sources of the clock input to the
TMR0 counter. One is the RA4 pin (i.e. pin 3 of the 16F84A – see Figure 2.1). The other is the internal
instruction cycle frequency, labelled Fosc/4. The selection of input source is made by the multiplexer

Input edge select

8-bit counter

Multiplexer selecting  
counting source 

Multiplexer
selecting  prescaler

Figure 5.2: the reference here is figure 5.2 of the original document.

Figure 6.8 The 16F84A Timer 0 module (supplementary labels in shaded boxes added by the author)
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Figure 6.9 The 16F84A OPTION register

controlled by bit T0CS, which appears in the Option register. The external input path includes the option of
inverting the signal with the Exclusive OR gate, the inversion being controlled by bit T0SE. The output of
the first multiplexer branches before reaching a second multiplexer. This selects either a direct path or the
path taken through a programmable prescaler. The choice is controlled by bit PSA of the Option register.
A complication here is that the prescaler is actually shared with the Watchdog Timer (WDT), which we
meet a little later in this chapter. For now we just need to recognise that if PSA is set to 1, then the prescaler
is assigned to the WDT and the multiplexer is selecting the input path which avoids the prescaler. The
prescaler itself is controlled by bits PS2, PS1 and PS0 of the Option register. Inspection of these bits in
Figure 6.9 shows that they allow a choice of frequency division of the incoming clock signal. The output
of the second multiplexer is synchronised with the internal clock, before becoming the input to the actual
counter. When the counter overflows, it sets the timer overflow flag, one of the PIC microcontroller’s four
interrupt sources, which we met in Figure 6.2.
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6.4 Applying the 16F84A Timer 0, with examples using
the electronic ping-pong

A simple counter/timer like the Timer 0 can be used for many applications. We will look at two examples.
Both are based on the electronic ping-pong program and can be readily simulated.

6.4.1 Object or event counting

The simplest application of Timer 0 is to use it as a counter, counting pulses entering the microcontroller
through the external input. Looking at the electronic ping-pong circuit (Appendix 2, Figure A2.1), we see
that the right paddle is connected to pin 3 of the 16F84A. The program of Program Example 6.6 is a very
simple counting example. It enables the counter appropriately and uses the right paddle as the counter input,
continuously displaying the current value on the LEDs connected to Port B.

To configure Timer 0, we’ll need to select its external input, i.e. T0CS = 1. The input edge that we trigger
from is not too important. As there is a risk of switch bounce, however, we will choose the edge associated
with switch release, i.e. the rising edge, as there is less likelihood of bounce. Therefore, T0SE = 0. We will
not want the prescaler, as we wish to count the exact number of switch presses; therefore, PSA = 1. Hence
the values of PS2, PS1 and PS0 do not matter (as this application does not make use of the WDT). All
Option register bits that have not been mentioned in this paragraph are not of importance to the ping-pong,
so will be arbitrarily set to 0. A final value for the Option register setting is thus 00101000B.

;********************************************************************
;cntr_demo Counter Demonstration
;This program demos Timer 0 as counter, using ping-pong hardware
;TJW 15.4.05 Tested 15.4.05
;********************************************************************
;Clock freq 800kHz approx (RC osc.)
;Port A 4 right paddle (ip) Counter input.
; 2 "out of play" led (op)
;Port B 7-0 "play" leds (all op)
;Interrupts not used
;Config Word: RC oscillator, WDT off, PU timer on, code protect off
;

list p=16F84A
#include p16f84A.inc

;
org 00

; Initialise
bsf status,rp0 ;select memory bank 1
movlw B'00011000'
movwf trisa ;port A according to above pattern
movlw 00
movwf trisb ;all port B bits outout
movlw B'00101000' ;set up TMR0 for external input, +ve edge,

;no prescale

Program Example 6.6 Initialising Timer 0 for measuring ping-pong rally length
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movwf TMR0 ;as we are in Bank 1, this addresses OPTION
bcf status,rp0 ;select bank 0

;
movlw 04 ;switch on "out of play" led to show power is on
movwf porta

loop movf TMR0,0 ;Continuously display Timer 0 on Port B
movwf portb
goto loop
end

Program Example 6.6 Continued

This program can be run on the ping-pong hardware, in which case every press of the right paddle causes
a binary display on the play LEDs to increment by one.

Simulation Exercise 6.4

Copy the program Cntr_Demo from the book CD into MPLAB and create a project around it. Build the
project and enable the simulator. Open a Watch window, displaying PORTB and TMR0. Open the Stimulus
Controller and set Pin RA4 to Pulse high, with a pulse width of one cycle. Animate the program, ‘fire’ the
input pulse and see how the Timer 0 and Port B SFRs count up.

6.4.2 Hardware-generated delays

In the original ping-pong program software-generated delays are used to time how long the LEDs are to be
illuminated. This is only acceptable in simple programs, as in software-generated delays the CPU is doing
nothing useful during the whole of the delay. Now that we have a counter/timer at our disposal, we can
use that to generate the delay and if necessary the CPU can busy itself with other things. This seems quite
simple, but a small problem presents itself: how do we know when the delay period is up? If we have
to keep checking the timer value, then we will have made little progress. This is where the interrupt on
overflow comes into its own. If things are set up so that an interrupt is generated as the delay ends, then we
have a powerful means of creating efficient delays.

As a first step, let’s replace the 5 ms software delay subroutine in ping-pong with a delay controlled by
Timer 0. The internal clock is approximately 800 kHz and the instruction cycle rate (Fosc/4) is therefore
200 kHz, or a period of 5 µs. Now with this clock frequency, Timer 0 would count up to its maximum value
(255) in 255 × 5 µs, or 1275 µs, and would overflow on the next cycle, i.e. after 1280 µs. We can, however,
make use of the prescaler here. If the incoming signal is divided by 4 (i.e. PS2, PS1, PS0 set to 001), then
Timer 0 will overflow after 256 × 4 × 5 µs, or 5.120 ms. This is very close to the 5 ms we’re looking for,
but it’s not quite exact.

Although the ping-pong does not need accurate timing, suppose we genuinely needed a delay very close
to 5 ms? Let us divide the incoming clock by 8 instead of 4, which gives a divided frequency of 25 kHz,
or period of 40 µs. Now 125 Timer 0 input cycles will cause a delay of 40 × 125 µs, or 5.00 ms, which is
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exactly our target. If we arrange for this prescaling, and at the start of each delay pre-load Timer 0 with
256 − 125, i.e. 131D, then an exact delay, terminated by the interrupt on overflow, is possible.

...
;Initialise

org 0010
start bsf status,5 ;select memory bank 1

movlw B'00011000'
movwf trisa ;port A according to above pattern
movlw 00
movwf trisb ;all port B bits op
movlw B'00000010' ;set up TMR0 for internal input, prescale by 8
movwf TMR0 ;as we are in Bank 1, this addresses OPTION
bcf status,5 ;select bank 0

...

...
;introduces delay of 5ms approx

delay5 movlw D'131' ;preload counter, so that 125 cycles, each
;of 40us, occur before timer overflow

movwf TMR0
del1 btfss intcon,2 ;test for Timer Overflow flag

goto del1 ;loop if not set
bcf intcon,2 ;clear Timer Overflow flag
return

Program Example 6.7 Using Timer 0 in the delay5 subroutine

An implementation of this approach is shown in the program sections in Program Example 6.7. This
includes both the initialisation section and the revised delay subroutine. Interrupts are not enabled and the
subroutine determines when the delay is complete by testing the overflow interrupt flag. The advantage to
the programmer is that timing is now achieved by manipulating the Timer 0 settings, rather than by adjusting
the software routine. The ‘interrupt on overflow’ has not been enabled, as it would in this instance offer
little advantage. In a more demanding program, however, the interrupt could be enabled and the time spent
in the delay used to undertake other CPU activities.

Simulation Exercise 6.5

Modify the ping-pong program to include the changes given in Program Example 6.7. Using Debugger >

Settings ensure that the clock frequency is set to 800 kHz. Use the Stopwatch facility to check the time
duration of the new delay subroutine. How much do the call, return and Timer loading instructions add to
the delay? Can you fine-tune it to improve its accuracy?

6.5 The Watchdog Timer

There is another timer in the 16F84A that we need to take note of, even though it is not normally
used in simple applications. This is the Watchdog Timer (WDT). A big danger with any computer-based
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system is that the software fails in some way and that the system locks up or becomes unresponsive.
In a desktop computer such lock-up can be annoying and one would normally have to reboot. In an
embedded system it can be disastrous, as there may be no user to notice that there is something wrong
and maybe no user interface anyway. The WDT offers a fairly brutal ‘solution’ to this problem. It is
a counter, internal to the microcontroller, which is continually counting up. If it ever overflows, it
forces the microcontroller into reset (Figure 2.11). It is up to the programmer to ensure that within
the program the WDT is repeatedly cleared. This is done with the instruction clrwdt. It is only when
the program ceases to run correctly that these instructions are no longer executed and the overflow
occurs.

A WDT Reset is generally not good news for an embedded system, as all current settings are of course
destroyed, and the program starts over. It is, however, better than a program which is not running at all.
Note that the WDT leaves one clue of its action behind, and that is through the TO bit in the Status register
(Figure 2.3). It is possible to test this bit towards the beginning of a program and hence distinguish between
a Power-on Reset and a WDT Reset.

The 16F84A WDT is enabled by one of the configuration bits, seen in Figure 2.6. Thus, it either runs or
it doesn’t for the duration of the time the microcontroller is switched on. It is driven by an internal RC
oscillator, which gives a nominal time-out period of 18 ms. This, however, is to some extent dependent
on temperature, supply voltage and variation from device to device. It can be extended by applying the
Timer 0 prescaler to it, in which case the time-out period can be stretched up to 128 × 18 ms, or around
2.3 seconds.

6.6 Sleep mode

Although we are considering timing in this chapter, it is an appropriate moment to consider one aspect of
microcontroller operation when time is almost suspended – the Sleep mode. This represents an important
way of saving power. The microcontroller can be put into this mode by executing the instruction SLEEP,
seen in Appendix 1. Once in Sleep mode, the microcontroller goes into almost suspended animation. The
clock oscillator is switched off, the WDT is cleared, program execution is suspended, all ports retain their
current settings, and the PD and TO bits in the Status register (Figure 2.3) are cleared and set respectively.
If enabled, the WDT continues running. Under these conditions, power consumption falls to a negligible
amount – Ref. 2.1 quotes a typical value of 1 µA, under specific ideal operating conditions.

Once asleep, the microcontroller requires an explicit event to wake it again. The 16F84A will awake from
Sleep in the following situations:

• External reset through MCLR pin. While this causes a wake-up, it also resets the microcontroller; there-
fore, its use seems limited to complete program restarts. It is possible, however, to detect that the
microcontroller has just been in Sleep mode, due to the state of the PD pin in the Status register.

• WDT wake-up. The function of the WDT is a little different in Sleep. Looking at Figure 2.10, it can be
seen that the WDT is blocked from causing a reset when in Sleep. Instead, on overflow it just causes a
wake-up from Sleep, and the microcontroller continues program execution from the instruction following
the Sleep mode.
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• Occurrence of interrupt. As Figure 6.2 indicates, any individually enabled interrupts cause wake-up from
Sleep, regardless of the state of the Global Interrupt Enable. Timer 0 cannot, however, generate an
interrupt, as the internal clock is disabled.

On wake-up, the oscillator circuit is restarted. For any crystal oscillator mode this means that the TOST
timer, seen in Figure 2.11, is also activated. It must complete its count before program execution can
resume. Therefore, like a human being, the 16F84A takes a finite time to wake up and be ready for
action.

The Sleep mode is extremely powerful for products that must be designed in a power-conscious way.
Many devices are not continuously active when powered. If put into Sleep when not in use, their power
consumption can be dramatically reduced.

6.7 What others do

Interrupts are an essential feature of almost every microcontroller, but architectures vary considerably.
One difference is the way interrupt vectors are applied.

The Atmel 8051-based microcontrollers have six interrupts, as shown in Table 6.1. Instead of sharing a
single interrupt vector, like the PIC 16 Series, each has its own vector. Therefore, for example, the ISR for
the external interrupt 0 starts at the address 0003H, while that for the Timer 0 overflow starts at 000BH.
Where each interrupt has its own vector, there is no need to poll interrupt flags at the beginning of an ISR to
detect the source, as was done in Program Example 6.2. However, once there are multiple interrupt vectors,
it is essential to have a means of choosing between interrupts, if two occur at the same time. Therefore, the
Atmel device prioritises its interrupts, as shown in the table. If two occur simultaneously, the one of higher
priority is serviced first. Like the 16F84A, when responding to an interrupt the Atmel device only saves the
Program Counter on the Stack.

The Freescale 68HC08, and indeed all previous Motorola products, have adopted a very different approach
to interrupt vectors. Instead of the interrupt vector being the start address of the ISR, it holds the start
address. Freescale places these vectors at the very top of memory space, as Table 6.2 indicates. Clearly,
non-volatile memory must be placed here. Each vector is 16-bit, so it occupies two 8-bit memory locations.

Table 6.1 Atmel interrupt sources and vector addresses
Source Symbol Priority Vector address
External interrupt 0 IE0 1 (highest) 0003H
Timer 0 interrupt request TF0 2 000BH
External interrupt 1 IE1 3 0013H
Timer 1 interrupt request TF1 4 001BH
Serial receive and transmit RI + TI 5 0023H
Timer 2 overflow, Timer 2 external TF2 + EXF2 6 (lowest) 002BH
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Table 6.2 Freescale 68HC08 interrupt sources and vector addresses
(incomplete)

Source Symbol Priority Vector address
Reset vector (low) – – FFFFH
Reset vector (high) – – FFFEH
Software interrupt (low) SWI 1 FFFDH
Software interrupt (high) SWI FFFCH
Interrupt request (low) IRQ 2 FFFBH
Interrupt request (high) IRQ FFFAH

The reset vector is always placed at the very top of the memory map. At this address is stored the actual
start address of the program. Below this the interrupt vectors are placed, in descending order of priority.
The table shows only the first few. The advantage to users is that they can place the ISRs anywhere in the
memory map they wish, as long as they correctly place their address in the vectors specified. The 68HC08
also differs from both the PIC 16 Series and Atmel, in that when interrupted it stacks all CPU registers, that
is the Accumulator (equivalent to the PIC W register), the lower byte of the Index register, the Program
Counter (2 bytes) and the Condition Code register.

6.8 Taking things further – interrupt latency

The purpose of the interrupt is to attract the attention of the CPU quickly, but actually how quickly does this
happen? The time between the interrupt occurring and the CPU responding to it is called the latency. The
latency is dependent on certain aspects of hardware and ultimately can also depend on the characteristics
of the program running. The timing diagram of Figure 6.10 shows how the mid-range PIC family responds
to an enabled external interrupt. The interrupt itself can be seen as a positive-going pulse on the INT pin
line. This causes the interrupt flag INTF to be set. This flag is sampled on the Q1 cycle of the internal
oscillator clock. Once this is done, the CPU has detected the interrupt and the sequence then follows that of
Figure 6.4. Two dummy cycles are needed to save the Program Counter to the Stack, reload it with 0004H
and fetch the instruction at that address.

Simulation Exercise 6.6

Working with the int_demo1 program again, set the clock frequency to 4 MHz using Debugger > Settings.
Enable the Stopwatch (under Debugger) and single step through the program. See how the Stopwatch
updates elapsed time in a predictable way. Now instigate the interrupt. Notice how the Stopwatch records
a latency of two instruction cycles. At the end of the ISR see that the retfie instruction also takes two
cycles.
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Figure 6.10 16F84A external interrupt latency

Summary

• Interrupts and counter/timers are important hardware features of almost all microcontrollers.
• They both carry a number of important hardware and software concepts, which must be understood.
• The basic techniques of using interrupts and counter/timers have been introduced in this chapter. There

is considerably increased sophistication in their use in more advanced applications.



Section 3
Larger Systems and the PIC®

16F873A

This section, also of five chapters, focuses on developing a good understanding of microcontroller peripherals
and their underlying principles. It makes use of the same microcontroller core as the earlier chapters, but
applies a ‘large’ PIC 16 Series microcontroller. All peripherals introduced are also directly applicable to the
18 Series. Emphasis is placed on understanding the peripherals and using them in increasingly sophisticated
applications. Program examples are in Assembler.
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7
Larger systems and the PIC® 16F873A

Over the previous five chapters the PIC® 16F84A has been used as the example microcontroller. It, and other
microcontrollers like it, are fine devices for the smaller product. However, there are many things they cannot
do, and for more demanding applications we need to look to a more powerful microcontroller. But what does
‘more powerful’ actually mean? Remember what was said in Chapter 1, that a microcontroller is essentially
made up of:

Microprocessor core plus memory plus peripherals

More ‘power’ can be added to a microcontroller by enhancing any of these areas. The core, containing the
CPU, can be made more powerful by making it faster, or enhancing the internal architecture or instruction
set. The memory can be made ‘more powerful’ by updating its technology, increasing its capacity and speed.
Alternatively, or in addition, more peripherals can be added or the current peripherals enhanced.

In many cases in embedded systems, the most dramatic advance is not made by enhancing the core. Instead,
it is the addition of new peripherals, perhaps accompanied by memory upgrades, which give the main sense
of progress. With the addition of appropriate peripherals, suddenly analog-to-digital conversion, or serial
communication, or complex timing functions, become readily available.

In this section of the book, Chapters 7–11, we stay with the PIC 16 Series. We move, however, from a
small member of the family to a large one, the PIC 16F873A. As 16F84A and 16F873A are members of the
same family, the core and instruction set remain constant, but the ability to engage in embedded control is
dramatically enhanced, by the addition of an excellent range of ‘new’ peripherals.

In these chapters the material is illustrated by application to the Derbot Autonomous Guided Vehicle (AGV).
If you are not building a Derbot, don’t worry; it will still act as a perfect case study for introducing the many
new concepts that we will meet. We remain with Assembler programming, but will begin to experience the
limitations both of using Assembler and of some of the hardware features of the 16 Series. This will lead in a
logical way to the final section of the book, where we take on the challenge of an advanced microcontroller,
programming in C, and the development of complex, multi-tasking programs.

As we move to larger systems, it is important to develop greater ability to get them working and to get them
working reliably. Therefore, this chapter introduces new and important diagnostic tools and techniques, which
are applied in the chapters that follow.

By the end of the chapter, you should have a good grasp of:

• The architecture of the 1687XA family, of which the 16F873A is a member
• The 1687XA memory map and interrupt structure
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• Some of the more advanced tools used for test and commission of an embedded system
• The use of the Microchip in-circuit debugger.

If you are building the Derbot AGV, this chapter will also give you guidance on the first step of a staged
construction, which will continue over several chapters.

7.1 The main idea – the PIC 16F87XA

The 16F873A, our example microcontroller, is part of a family group that was briefly introduced at the
beginning of Chapter 2. The group is made up of the 16F873A, the 16F874A, the 16F876A and the
16F877A. Generically, we can refer to them as 16F87XA. Each microcontroller in the group also has an LF
version, for example 16LF873A, which can run at a lower power supply voltage than the standard device.

The features of this group are summarised in Table 2.1. Looking back at that table, it is easy to see that
the four group members are distinguished simply by different memory sizes and different package sizes,
where the larger package allows more parallel input/output ports to be used. This is illustrated in the pin
connection diagrams of Figure 7.1. The ‘extra’ pins on the larger devices are enclosed in a dotted line. It can
be seen that a primary difference is the Port D and Port E that the ’874A/877A have.

The descriptions that follow in this chapter, and in all chapters up to 11, tend to use the 16F873A as the
example device, as this is used in the Derbot AGV project that we will study. The other members of the
group are, however, mentioned at times, particularly if they have a feature not found in the ’873A.

7.2 The 16F873A block diagram and CPU

The block diagrams of both the 16F873A and the ’876A are shown in Figure 7.2. The difference between the
two microcontrollers lies in memory size, as detailed in the table at the bottom of the diagram. It is worth
studying this diagram carefully and comparing it in detail with the 16F84A block diagram of Figure 2.2.
This will show that there are some areas that are identical, others where there has been slight incremental
change, others where the diagram is effectively the same but has been drawn in a different way, and a large
number of additions.

7.2.1 Overview of CPU and core

Let us note first that the CPU structure, made up essentially of ALU, Working register and Status register,
remains as expected like the ’F84A. The addition in this diagram of three lines from ALU to Status register
is simply acknowledgement of the three status bits in the Status register, Z, DC and C, which are controlled
from the ALU. The lines could be included in Figure 2.2.

One difference that does occur in the CPU is in the Status register. With the 16F84A Status register
(Figure 2.3), the upper two bits are not used, while bit 5 is used to select between the two banks of data
memory. Figure 7.3 shows the Status register for the 16F87XA. With its much bigger data memory, all the
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Key: 
RA0: Pin 0 of Port A etc. RB0: Pin 0 of Port B etc. 
RC0: Pin 0 of Port C etc. RD0: in 0 of Port D etc. 
RE0: Pin 0 of Port A etc.  PSP0:  Pin 0 of parallel slave port etc. 
AN0, AN1 etc:  Analog input channel C1OUT, C1OUT: Comparator outputs  
CCP Capture/compare/PWM INT: External interrupt
OSO/OSI: Timer 1 oscillator output/input OSC1/OSC2 Main oscillator connections 
SS: Slave Select TOCKI/T1CK1: Timer 0/1 clock input 
VREF:  Voltage reference CVREF: Comparator voltage reference
DT/CK: Synchronous serial data/clock (USART)
MCLR Master clear 
PGC/PGD: Clock and data for In-Circuit Serial Programming
PGM: Program, for In-Circuit Serial Programming
RD/WR/CS Read, Write, Chip Select (parallel slave port) 
RX/TX: Asynchronous serial receive/transmit (USART)
SCK/SDI/SDO: Serial clock, serial data in, serial data out (synchronous serial port as SPI serial peripheral)
SCL/SDA: Serial clock, serial data (synchronous serial port as I2C serial peripheral) 

(a) (b)

Figure 7.1 The PIC 16F87XA pin connection diagrams. (a) 16F873A/876A. (b) 16F874A/877A (‘extra’ pins enclosed
in dotted boxes)

higher three bits of the Status register are now used for memory bank selection. Apart from this, the Status
register remains unchanged.

7.2.2 Overview of memory

Further to the CPU being similar to the 16F84A, it is easy to see that the whole memory structure is also the
same, with some slight adjustments. The 13 program address lines from the Program Counter, which can
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Key: Peripherals
A/D: Analog-to-digital converter CCP: Capture/compare/PWM module
USART: Universal Synchronous/Asynchronous Receiver/Transmitter 

Figure 7.2 The 16F873A/876A block diagram
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Figure 7.3 The 16F873A Status register

address 213 (i.e. 8192) memory locations, are now fully exploited in the 16F876A with its 8K of program
memory, and half used in the ’873A.

One bus size which has changed is the ‘Direct Addr’, shown here as 7 bits. This is to accommodate the
much larger RAM size, which we see in the next section. The apparent change is not, however, a ‘stretching’
of the 16 Series structure. Those 7 bits are extracted from the instruction word (Figure 4.13). We can see
from this diagram that 7 bits are reserved for the ‘file register address’, so the larger microcontroller is
simply exploiting what is available to it.
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7.2.3 Overview of peripherals

The 16F84A and 16F873A share three peripherals that are the same (or almost the same). These are the
Timer 0, Port A and Port B. The big difference between the two microcontrollers is of course the extra
peripherals, as listed in Table 2.1 and seen in Figure 7.2. With the exception of the parallel ports, which are
described in this chapter, we meet all of these peripherals in the subsequent chapters.

The increased number of peripherals brings with it two significant challenges – how do they interface with
the CPU and how do they interface with the outside world? We have seen a preliminary answer to the
second of these questions in the greater pin count of the 16F873A and the increased sharing of functions
on many pins. To provide interfacing with the CPU, we will expect to see a greatly increased number of
Special Function Registers (SFRs) and interrupt sources.

Three important extra features found in the 16F873A and seen in Figure 7.2 are brown-out detect, the
in-circuit debugger and low-voltage programming. These will be considered later in this chapter.

7.3 16F873A memory and memory maps

The 16F873A has a memory structure very similar to the 16F84A. It is, however, greatly increased in
capacity, as has already been noted, and there are some important technical developments as well, notably
in terms of in-circuit programming.

7.3.1 The 16F873A program memory

The map of the program memory is seen in Figure 7.4. Comparing this to Figure 2.4, we see that it differs
from the 16F84A only in size. As it has already been deduced that the 13-bit Program Counter word is
adequate to address the whole memory space, it is surprising to see in the figure that there are two ‘pages’
of program memory. The situation is worse for the 16F876A/877A controllers, each of which have four
pages of program memory.

The fact that program memory has to be paged in this way is due to the way the program address, held in the
Program Counter, is generated in different situations. The Program Counter is 13 bits long. Its lower 8 bits
form the PCL register, one of the Special Function Registers (SFRs) that can be accessed and manipulated
just like any data memory location. The upper 5 bits of the Program Counter are not readable, but can
be written to via the lower 5 bits of the PCLATH register, another SFR. The contents of PCLATH are
transferred to the upper bits of the Program Counter whenever PCL is written to.

In normal program execution, the Program Counter is incremented after every instruction. However, there
are three other ways by which the program can change the Program Counter value. Each is described below,
and also illustrated in Figure 7.5.

By Stack transfers

The Stack is a full 13 bits wide. Therefore any instruction, like return, which uses the Stack causes a full
13-bit value to be transferred between Stack and Program Counter – there is no need to worry about looking
after any missing bits.
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Figure 7.4 PIC 16F873A/874A program memory map and Stack

By call and goto instructions

As the instruction word format in Figure 4.13 shows, these two instructions are formatted to provide only
11 bits of addressing. These 11 bits can address a range of 211, or 2K words, and thus represent the pages
in Figure 7.4. When these instructions are used, the two ‘missing’ address bits are taken from bits 4 and 3
of the PCLATH register. It is up to the programmer to recognise if a branch over a page is to occur, and
to set the bits appropriately. The data sheet [Ref. 7.1] contains an example of how to do this.

By writing to the PCL register

The PCL is written to directly in situations like the ‘computed go to’, as described in Section 5.4. Now
only the lower 8 bits of the Program Counter, in PCL, are adjusted directly and it is as if the programmer is
working with 256-word pages. If an address boundary is to be crossed in a computed go to, then PCLATH
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All Stack usage

Instructions operating on PCL, e.g. computed go to

PCLPCH 4 0 7 07

not used

these bits written to PCLthese bits transferred from PCLATH

All bits transferred to/from Stack

these bits embedded in instructionthese bits transferred
from PCLATH

Call and Goto instructions

Figure 7.5 Three ways of manipulating the Program Counter

must be set to the right value. For larger look-up tables this can be quite challenging; Ref. 5.1 gives examples
of how to do it.

7.3.2 The 16F873A data memory and Special Function Registers

The 16F873A/874A data memory map, including all the SFRs, is shown in Figure 7.6. The sight of all
those SFRs is initially unnerving. How is it possible to make sense of them all? Even more unnerving
is the thought that most contain 8 active bits, each of which has a function that probably needs to be
understood. As always, we will find that a carefully staged approach will allow a good understanding to
be developed. Most of these SFRs will be introduced and used, in the right context, over the next few
chapters.

Structurally the memory is divided into four banks, which are selected by the values set in bits 6 and
5 of the Status register (Figure 7.3). The 7-bit ‘Direct Addr’ of Figure 7.2 is drawn from either of the
first two instruction patterns of Figure 4.13. It gives the potential to address the 27, i.e. 128, memory
locations which make up each bank. It is this 7-bit address, concatenated with the two bank select bits in
the Status register, which form the 9-bit ‘RAM Addr’ seen in Figure 7.2, equivalent to the ‘File Address’
of Figure 7.6.

The first two data memory banks use this memory range to the full, the first one, for example, having 32 SFRs
and 96 general-purpose memory locations. The higher two banks are of limited use in the 16F873A/874A.
There is no general-purpose memory and most of the SFRs are just mirrored over from the other banks.
Check carefully which SFRs are unique to Banks 3 and 4. What are they?
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Figure 7.6 PIC 16F873A/874A register file map
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7.3.3 The Configuration Word

The Configuration Word of a 16 Series PIC microcontroller determines some of the programmable features
of the microcontroller, which can be changed only when the device is programmed. The Configuration Word
of the 16F87XA is shown in summary form in Figure 7.7. This reveals some of the underlying features of the
microcontroller. The lower 4 bits, and the highest, are already familiar, from the Configuration Word of the
16F84A (Figure 2.6). The two ‘new’ operating modes, of in-circuit programming and in-circuit debugging,
are enabled through the Configuration Word, as are new and flexible code protect features, and the detection
of partial loss of power – a ‘brown-out’ – enabled by bit BOREN. These are described in the sections which
follow.

Bit 13. CP: Flash program memory Code Protection bit 

Bit 12. Unimplemented: Read as ‘1’ 

Bit 11. DEBUG: In-circuit debugger mode bit 

Bit 10-9. WRT1, WRT0: Flash program memory Write Enable bits

These bits determine which sections of program memory can be written to during program execution:

PIC16F876A/877A PIC16F873A/874A
WRT1:WRT0

This area
write-protected

This area
writeable

This area
write-protected

This area
writeable

11 all none all
10 0000h to 00FFh 

none

0100h to 1FFFh 0000h to 00FFh 0100h to 0FFFh 
01 0000h to 07FFh 0800h to 1FFFh 0000h to 03FFh 0400h to 0FFFh 
00 0000h to 0FFFh 1000h to 1FFFh 0800h to 0FFFh 

.Bit 8. CPD: Data EEPROM memory Code Protection bit 

Bit 7. LVP: Low-Voltage (single-supply) In-Circuit Serial Programming Enable bit 

Bit 6. BOREN: Brown-out Reset Enable bit 

Bits 5-4. Unimplemented: Read as '1'

Bit 3. PWRTEN: Power-up Timer Enable bit 

Bit 2. WDTEN: Watchdog Timer Enable bit 

Bit 1-0. FOSC1, FOSC0: Oscillator Selection bits. 11 = RC, 10 = HS, 01 = XT, 00 = LP. 

Note: The erased state of all bits is Logic 1. 

0000h to 07FFh 

Figure 7.7 PIC 16F87XA Configuration Word
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7.4 ‘Special’ memory operations

A conventional microcontroller reads its instructions from non-volatile program memory and uses volatile
RAM for storing temporary data. With the introduction of Flash memory, these distinctions between tradi-
tional memory usages are diminishing. This is because Flash memory technology is non-volatile and hence
used for program memory. It can, however, also be very easily written to, so there is a temptation to use it
for other forms of storage.

Because of its Flash memory technology, the 16F87XA allows – under certain restrictions – program
memory to be written to while the program is running. It also allows the program memory to be programmed
serially, if wanted, while the IC is in the target location. It also of course allows its EEPROM data memory
to be accessed, through its special control registers. It is these memory functions that are covered in this
section.

7.4.1 Accessing EEPROM and program memory

The ability to write to program memory, as just mentioned, is controlled by the settings of the WRT1 and
WRT0 bits in the Configuration Word. It is worth looking back at these in Figure 7.7. It can be seen that
they permit writing access to different blocks of program memory.

Interaction with program memory is through the same data and address registers that are used for EEPROM
(EEDATA and EEADR), which were described in Section 2.4. These are only 8-bit registers, however,
and program memory holds 14-bit words. Furthermore, it requires a 13-bit address to access the full 8K
words (of the 16F876A and ’877A), or 12 bits to access 4K (of the 16F873A and ’874A). Therefore, a
‘high-byte’ register is added to each of EEDATA and EEADR. These extra registers are called EEDATH
and EEADRH respectively, and are used for accessing program memory only.

The arrangement is depicted in Figure 7.8, with program memory at the top of the diagram and
EEPROM at the bottom. The register pair formed by EEADRH and EEADR addresses program memory,
while only EEADR addresses EEPROM. The situation is similar for data transfer, with EEDATH and
EEDATA carrying data to and from program memory, and EEDATA alone being used for EEPROM data
memory.

If a section of program memory is enabled, then blocks of four words must be written at the same time.
This process is described in full in Ref. 7.1. Single word reads are, however, possible.

All data transfers are controlled by the EECON1 register, shown in Figure 7.9. It can be seen first of all
that the MSB of this controls whether EEPROM or program memory is to be accessed. The other bits are
similar to Figure 2.7 and therefore familiar. A major difference, however, is that the interrupt flag bit, EEIF,
has been relocated, now being found in the PIR2 register (Figure 7.13).

Accessing EEPROM and program memory is not entirely simple, and requires care in sequencing the actions
correctly. Writing to each requires the codes 55H followed by AAH to be sent to the virtual EECON2 register.
This adds further security to the process, aiming to ensure that accidental writes are not made. Code examples
are given in Ref. 7.1. These can be adapted as appropriate.
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EEDATAEEDATH 0 7 07

not used

EEDADRH

0 7 07

not used
EEDADR

Address

Address

single word reads

4-word block writes
enabled in

Config. Word

single byte read/write

EEPROM data memory

Program memory (Flash)

Figure 7.8 Writing to program memory and EEPROM

If the CP bit of the Configuration Word is cleared, then it is impossible to read the program memory
externally, for example using a programmer like the PICSTART® Plus. This protects the intellectual property
of the designer or maker of a product. This bit does not, however, affect internal access to program memory.
Similar comments apply to the EEPROM memory, which is protected from external access by the CPD bit
of the Configuration Word.

7.4.2 In-Circuit Serial Programming (ICSPTM)

All the 16F87XA microcontrollers can be programmed while in the target circuit. This is of great importance.
In a development environment, it means that test programs can be downloaded straight to the microcontroller
in the target system, without the need to remove it and put it in a programmer. In a production environment,
it allows the microcontroller to be programmed in place, just before it leaves the factory. The very latest
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Figure 7.9 The EECON1 register

software can therefore be installed. Once the product is in use, it allows program updates to be made,
possibly by the Internet and without the owner even knowing about it!

The disadvantage of in-circuit programming is that some pins have to be committed to the function, or
at least must be carefully designed to be dual purpose, in such a way that the normal function of the pin
does not impede the programming function. ICSP uses the pins shown in Table 7.1. The Derbot AGV uses
ICSP – we will see it designed into the circuit.

Under normal programming mode a high voltage, of around 13 V, is applied to the MCLR pin. A special case
of ICSP dispenses with this high voltage, however. It is called the Low-Voltage Programming mode (LVP).
This is enabled by the LVP bit in the Configuration Word, and allows the memory to be programmed using
just the normal power supply VDD. Its disadvantage is that an extra pin, RB3, must be used, as Table 7.1
indicates. The pin is used just to control entry to and exit from this programming mode.

Aside from the hardware interconnection, ICSP requires very specific software routines to transfer the data
serially into the microcontroller. These are not described further here, but full information can be found
in Ref. 7.2.
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Table 7.1 Pins used in In-Circuit Serial Programming
Pin Description
RB3 Control input in Low-Voltage Programming mode (LVP configuration bit is 1)
RB6 Clock input
RB7 Data input/output

MCLR Program mode select, programming voltage connection
VDD Power supply
VSS Ground

7.5 The 16F873A interrupts

7.5.1 The interrupt structure

As a member of the 16 Series family of microcontrollers, the 16F873A is expected to fit into the structure of
that family. This design strategy works well in places, but elsewhere tests the 16 Series structure to its limits.
An example of this is the 16F873A interrupt structure, shown in Figure 7.10. Here we see the minimalist
structure of the 16F84A (Figure 6.2) replicated to the right of the diagram. The EEPROM write complete

Bus collision

Comparator

Capture/compare 2

Timer 1

Timer 2

Capture/compare 1

(Master) synchronous serial port

USART transmit

USART receive

A-to-D converter

Parallel slave
port

EEPROM write

Timer 0

External

Port B
change

Peripheral
enable

Figure 7.10 PIC 16F87XA interrupt structure (supplementary labels in shaded boxes added by the author)
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interrupt is, however, replaced by a line linking across to the huge requirements of the larger microcontroller,
with no less than 11 more interrupt sources connected. All of these are routed ultimately through to the
single interrupt vector that we are familiar with, seen in the program memory map of Figure 7.4.

7.5.2 The interrupt registers

With 15 interrupt sources, the single INTCON register introduced in Figure 6.3 for the smaller 16 Series
microcontroller can now only hold a small proportion of the overall number of flags and enable bits. The
16F87XA version is shown in Figure 7.11. Essentially it remains unchanged, except that the EEIE (EEPROM
write complete enable) bit is replaced by the bit PEIE, seen in Figure 7.10. PEIE is the Peripheral Interrupt

Figure 7.11 PIC 16F87XA INTCON register
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Enable bit, acting as a subsidiary Global Enable, to all those interrupt sources upstream of the AND gate it
drives. It must be set to 1 if any of the ‘upstream’ interrupts are to be used.

To augment the INTCON register, four new SFRs are added – PIE1 and PIE2, which hold the enable bits
and are located in memory bank 1, and PIR1 and PIR2, which hold the flag bits and are in memory bank 0.
These are shown, in summary form, in Figures 7.12 and 7.13. It can be seen that PIE1 and PIR1 each
follow the same pattern, as do PIE2 and PIR2. As would be expected, all active bits are reset to 0 on any
form of power-up.

bit 7 bit 0

TMR1IE 

TMR2IE 

Timer 1 overflow

Timer 2 overflow

CCP1IE

SSPIE

TXIE

RCIE

ADIE

PSPIE

Capture compare 1 

Synchronous serial port

USART transmit

USART receive

Analog-to-digital converter

Parallel slave port Read/Write**

PIE1

TMR1IF* 

TMR2IF* 

CCP1IF*

SSPIF*

TXIF

RCIF

ADIF

PSPIF*

(enable bits)

PIR1

(flag bits)

  * Must be cleared in software
** 16F874/7 only. Reserved in 16F873/6

Figure 7.12 16F87XA PIE1/PIR1 (Peripheral Interrupt Enable/Peripheral Interrupt Request) registers

bit 7 bit 0

PIE2

(enable bits)

PIR2

(flag bits)

CCP2

Unimplemented

Bus collision

EEPROM write  

Comparator 

Unimplemented

Unimplemented

Unimplemented

CCP2IF 

BCLIF

EEIF*

CMIF*

CCP2IE 

BCLIE

EEIE

CMIE

* Must be cleared in software

read as 0

read as 0

read as 0 read as 0

read as 0 read as 0

read as 0

read as 0

Figure 7.13 16F87XA PIE2/PIR2 registers
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7.5.3 Interrupt identification and context saving

If more than one interrupt source is enabled, it will be necessary for the ISR to contain a program section
at its beginning to identify which is the calling interrupt. This is exactly similar to the case of the 16F84A,
and the principle of Program Example 6.2 can be applied to meet this need.

When it comes to context saving, the 16F87XA again acts like the 16F84A, with only the return address
being saved on the stack when an ISR is called. It is up to the programmer to save any other registers that
are needed, usually the W and Status registers, at the start of the ISR, and retrieve them at the end. Program
Example 6.4 can be adapted for this.

7.6 The 16F873A oscillator, reset and power supply

7.6.1 The clock oscillator

The 1687XA has exactly the same oscillator structure and range of options as the 16F84A, described in
Section 3.5. The oscillator type is again selected by settings in the Configuration Word (Figure 7.7). It may
be of interest at this point to look forward to Figure 7.19 and its accompanying description, to see actual
oscilloscope traces of oscillator waveforms.

7.6.2 Reset and power supply

The reset structure is extremely similar to that of the 16F84A (Figure 2.10), with the exception that a new
source has been added: the Brown-out Reset. A brown-out is a dip in the supply voltage. This form of power
loss can be particularly dangerous, because it can pass unnoticed. Part of a circuit or system may keep going,
whereas another part may temporarily fail or lose data. This reset is intended to ensure that the device is
fully reset if a brown-out occurs. It is enabled by the BOREN bit of the Configuration Word. If BOREN
is set high and a brown-out occurs, then the microcontroller is forced into reset. The device data [Ref. 7.1]
quotes 4 V as being the typical voltage that triggers this form of reset. Apart from this the 16F87XA has
almost identical power supply requirements to the 16F84A, as seen in Figure 3.16. A difference is that the
minimum supply voltage is now clearly defined by the Brown-out Reset, if this is enabled.

With multiple sources of reset now available, it can be useful when programming to know which form of
reset has most recently occurred. A Watchdog Timer reset is indicated by the TO bit of the Status register
(Figure 7.3). Further information is provided by the POR and BOR bits of the PCON register (which has
no other active bits). The first of these is set to 0 if a Power-on Reset occurs, the second if a brown-out
occurs.

7.7 The 16F873A parallel ports

It can be seen from Figure 7.2 that the PIC 16F873A has three ports, A, B, and C. Ports A and B are similar
to the ports of the 16F84A, except that more alternate functions are crowded onto the pins, and Port A is
now 6-bit, a 1-bit advance on the 5 bits of the 16F84A Port A. At reset all port bits are set to input. The port
pin output characteristics, for a supply of 5 V, are shown in Figure 7.14. It can be deduced, following the
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(a)

(b)

Figure 7.14 PIC 16F87XA port output characteristics. (a) Typical VOH vs. IOH (VDD = 5 V, −40 to 125◦C).
(b) Typical VOL vs. IOL (VDD = 5 V, −40 to 125◦C)
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same procedure as applied in Section 3.4.3, that the ‘typical’ output resistance at Logic 1 is approximately
70 � and around 22 � at Logic 0.

The port characteristics are now surveyed in turn.

7.7.1 The 16F873A Port A

The 6 bits of Port A appear on pins 2–7 of the 16F873A, as can be seen in Figure 7.1. It is worth checking the
accompanying key to work out the connections made to the pins. The port can be used for general-purpose
bi-directional digital data. It is also shared with the Analog functions, notably the analog-to-digital converter
(ADC) module and the comparators. While we meet both of these in Chapter 11, it is very important to note
that on power-up the port bits are set as analog inputs. To use the port for digital purposes the ADCON0
register, described in Chapter 11, must be set appropriately. As with the 16F84A, the important Timer 0
input is on bit 4 of Port A.

Two of the Port A pin driver circuits are shown in Figure 7.15. It is useful to compare these with the equiv-
alent 16F84A circuits, shown in Figure 3.11. With the added functionality of most pins, it is interesting

Multiplexer selects data
source, when in output 

Peripheral can
disable port input

(a) (b)

Figure 7.15 PIC 16F87XA Port A output characteristics. (a) Pins RA0, 1, 2 and 3. (b) Pin RA5 (supplementary labels
in shaded boxes added by the author)
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to see how the peripherals that share the pins begin to ‘invade’ the pin driver circuit. A simple exam-
ple is in Figure 7.15(a). This is almost the same as Figure 3.11(a), except the ADC peripheral, via the
‘Analog Input Mode’ line, can disable the digital input path of the port. A more extreme case is seen in
Figure 7.15(b). Here a multiplexer is introduced in the digital output path. Now the peripheral, in this case
the comparator circuit, can disable the normal port output and claim the output for its own purposes. In this
case the microcontroller pin can be configured as output of comparator 2 (C2OUT), rather than as the port
bit output.

The pin driver circuit for pin 4 is not shown. It is based on the circuit of Figure 3.11(b), but has added to
it the multiplexer arrangement in the output path, as just described, for comparator 1. It keeps the Open
Drain output of Figure 3.11(b).

An important point is emerging in this exploration of the pin driver circuits. The port pins are no longer
simply controlled by the port ‘TRIS’ register. Other SFRs can have a major impact, disabling or reallocating
a resource. This can lead to considerable programming frustration. A port appears not to work because a
peripheral SFR setting has reallocated its function. Let the programmer beware!

7.7.2 The 16F873A Port B

The interconnection of Port B can be seen in Figure 7.1 on pins 21–28 of the 16F873A. It remains a simple
port, almost identical to that of the 16F84A. The pin driver circuits are effectively the same as those shown
for the 16F84A in Figure 3.10. As seen in Figure 7.1 and Table 7.1, bits 3, 6 and 7 are used for In-Circuit
Serial Programming (ICSP). If ICSP is to be used, the designer must either not use these pins for any other
purpose or use them in such a way that they are still available for the ICSP function.

7.7.3 The 16F873A Port C

The Port C interconnection can be seen on pins 11–18 of the 16F873A (Figure 7.1). It is the most complex of
the 16F873A ports. Its pins can simply be used as general-purpose digital input/output (I/O). Interestingly,
all inputs now have Schmitt trigger characteristics. Aside from general-purpose digital I/O, Port C pins
are shared with some of the more complex microcontroller peripherals, including those dealing with serial
communication.

Diagrams of the Port C pin driver circuits are shown in Figure 7.16. At the heart of both of them it should
still be possible to find the standard digital I/O port capability, such as we saw in the simple 16F84A pin
drivers. To this is added the multiplexer on the output path, as seen just now for Port A. A further feature
is that the peripheral can now take over the TRIS function, through the ‘Peripheral OE’ line, and the OR
gate that it drives, as labelled in the diagram. A final modification of the standard port pin circuit is seen in
Figure 7.16(b). Because the SMBus (system management bus) has defined input characteristics, there are
now alternative input paths, one with standard Schmitt trigger inputs and the other with SMBus characteristic.
This is not the end of the added complexity that serial I/O brings. Not appearing in Figure 7.15(b), but
available on these pins if needed, is the full I/O interfacing capability of the inter-integrated circuit (I2C)
serial standard. This can be glimpsed by looking forward to Figure 10.19.
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Multiplexer selects
port bit input
characteristic

(a) (b)

Peripheral
can override
TRIS setting

Figure 7.16 Block diagram of Port C pin driver circuits. (a) Pins RC7 to RC5, RC2 to RC0. (b) Pins RC4, 3
(supplementary labels in shaded boxes added by the author)

7.8 Test, commission and diagnostic tools

As we are moving to a distinctly more complicated family of microcontrollers, it follows that we will be
developing distinctly more complicated systems. It is therefore necessary to take time to consider here how
we will test and commission such systems. The following sections explore equipment and techniques that
can be used for such activity, and which will be applied as we develop the Derbot AGV design.

7.8.1 The challenge of testing an embedded system

Section 4.1.3 outlined the program development process, which included the use of a software simulator.
When the program is downloaded to the hardware, however, our problems can increase. This is particularly
the case if both hardware and program are untested. Then the developer can be left in the unhappy position
experienced by all embedded systems developers at some time – of being confronted with a totally inanimate
system, not having any idea of where the problem lies.
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In the test procedure, the developer is confronted with broadly two types of problem:

• Design problems. These are problems in the design of hardware or software, leading to partial or total
system non-function.

• Implementation problems. These are due to the way the design, which may be perfectly good, has been
implemented. They include things like broken PCB tracks, failed or corrupted program download, or
configuration bits not set in the download process. These problems can similarly lead to partial or total
system non-function.

Each problem type can have the same sort of symptoms, yet it is important to be able to distinguish between
the two, as the solution to each can be quite different.

Let us therefore try to establish a commissioning hierarchy, such that a systematic approach to test and
commission can be made. The layers of dependency that exist between different elements in an embedded
system are shown in an informal way in Figure 7.17. Generally, in a test procedure one moves from the
bottom to the top of this diagram. If a car does not have petrol it does not run. Similarly, if a microcontroller
does not have the correct power supply, it does not run, however good the circuit or program may be. Nor
will it run in any way if its oscillator is not running, or if its Reset pin (MCLR for a PIC) is active, or if
the program has not downloaded properly. Once these four essential conditions are met, there is a chance
of the program starting to run. If a system is entirely inactive, these must be the ones that are tested first.
Faults in this area are most likely to be in implementation, for example the crystal is not properly soldered
to the board or program download has failed for some reason.

Correct
power,

reaching
the chip

Oscillator
running

MCLR
is high

Program starts

Program
structure is
plausible

Hardware
assembled
correctly

Peripherals
configured
plausibly

System runs

Program
design

optimised

Hardware
design

optimised

System runs correctly

Program has
downloaded

Hardware
design is
plausible

System does not function, in any way

Program starts, evidenced by very limited
system activity, e.g. simple diagnostics.

System runs, most functionality present,
but needs significant optimisation.

System fully performs
anticipated function(s).

Implementation
problems

Implementation/
design

problems

Design
problems

Figure 7.17 Layers of dependence in an embedded system
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Once these fundamental conditions have been satisfied, a further set applies if the system is to run continu-
ously and achieve a moderate level of functionality. As indicated, these include plausible circuit and program
designs, correct hardware assembly and all the peripherals being configured appropriate to the situation.
Here the word plausible is used to indicate that the design does not have fatal flaws, although it might have
some features that need improvement. As the conditions indicated are met, the system should progress to
a stage of optimisation. Now it shows a good level of functionality, although still imperfect in some areas.
From here it is likely that further tests must be accompanied by ongoing incremental design development,
which may lie in either hardware or the program. Finally, one expects to see a system functioning to the
full anticipated level of performance.

Given an understanding of the layers of dependence in an embedded system, how should the test procedure
be implemented, particularly once the basic tests indicated by the bottom layer of Figure 7.17 have been
completed? In Ref. 1.1, this author identified three ‘golden rules’ for test. These were:

• Divide and rule. Divide the system, both hardware and program, up into modules or subsystems which
can be isolated as much as possible from each other, and test these separately. The system can then be
built back together from ‘known good’ subsystems.

• Guilty until proven innocent. Make no assumptions that any part of the system is working correctly
until you have demonstrated that it is. In other words, assume it doesn’t work correctly until you have
demonstrated that it does. This is the opposite of the court of law, where the accused is innocent until
proven guilty.

• Work systematically, document ruthlessly. This can be expanded out to:

– Plan your test procedure ensuring that things are tested in a sensible and logical order. A starting point
for the sequence is to some extent indicated in Figure 7.17. Start at the bottom of the diagram and
work upwards.

– Work from good documents, updating them as necessary. As you work on your embedded system, have
the up-to-date circuit diagram and program listing beside you. Always. Test by reference to these. Have
appropriate data sheets (especially for the microcontroller in use) within easy reach. Update diagrams
as needed, ensuring each new version has the revision date on it.

– Record your test results. This becomes increasingly important as the system becomes more complex.
It is too easy, in a series of tests, to forget what the outcome of a single test was. However good your
memory, in a week or two you will have forgotten anyway. With the result, record the circuit and
program version in use.

To be successful in the test process, we need instruments that allow us to control and see what is going on.
A number of these are now surveyed.

7.8.2 Oscilloscopes and logic analysers

An oscilloscope is the most powerful general-purpose instrument available in the electronics world. It allows
simple and reasonably accurate measurements of voltage and time to be made, especially if they are DC or
periodic. A standard oscilloscope is greatly enhanced by the addition of a storage facility. In this case it is
possible to examine aperiodic signals, or single events, with reasonable ease. An oscilloscope is essential in
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the embedded world for examining the basic conditions of power supply, oscillator and simple port activity.
With expertise, and a good ’scope, it can be used for looking at more complex signals.

A logic analyser has some of the characteristics of an oscilloscope, in that it can also display the value of an
input signal against time. The input signal, however, is assumed to be digital, so the display can only take
one of two values, Logic 0 or Logic 1. The threshold applied is determined by the logic analyser, and is
for many instruments adjustable. A usual characteristic of the logic analyser is that it has many inputs, for
example 16, 32 or 48. Thus, it can be used to look at activity in data and/or address buses. Logic analysers
usually carry a range of extra features, including memories that can store a history of the input values, and
complex triggering capability, which allows defined combinations of inputs to be identified and to cause a
trigger. Logic analysers were most prominent in the days when systems were built up of multiple ICs and
there was a need to study bus activity. Now in many systems the ICs are very complex and the buses no
longer accessible. They can still be very useful, however, in looking at complex digital activity, for example
a parallel port, or serial data flow.

This book makes use of a wonderful instrument which combines features of both oscilloscope and logic
analyser. This is the Agilent Mixed Signal Oscilloscope, with the 54622D model used here and pictured
in Figure 7.18. It has two conventional oscilloscope inputs and 16 logic analyser inputs. Any combination
of input can be displayed simultaneously. The ‘oscilloscope’ has fantastic triggering, signal analysis and
storage facilities. Its combination of analog and digital capability reflects the mixture of analog and digital
in most embedded systems. It thus forms a natural tool to undertake a comprehensive range of tests in the
embedded environment.

Two screen images of oscillator signals, using the analog inputs of the Agilent ’scope, are shown in
Figure 7.19. Note from information on the screen border that the vertical scale of both channels 1 and
2 are 2 V/cm and the horizontal scale is 1 µs/cm. The two small arrowheads appearing on the left of the
screen indicate the 0 V reference position for each trace.

The first screen is of an RC oscillator, applying the circuit of Figure 3.14(b). The upper trace shows the
OSC1 microcontroller terminal, i.e. the junction of REXT and CEXT. The characteristic rising voltage of
a capacitor charging through a resistor is seen, followed by its rapid discharge as the oscillator Schmitt
trigger output switches to logic high. As Figure 3.14(b) indicates, the signal at the OSC2 pin is Fosc/4.
This can be seen in the lower trace. Component values of REXT = 8.2 k and CEXT = 100 pF are chosen
to give a nominal oscillator frequency of 700 kHz (i.e. a period of 1.43 µs). The actual signal can be seen
to have a period of close to 1.4 µs (just over 700 kHz), with the Fosc/4 having a period of 5.6 µs. This is
in reasonably good agreement with what is expected. It should be noted, however, that when the ’scope
probe was removed from the OSC1 pin, the Fosc/4 period fell to 5.0 µs. Herein lies a pitfall of oscilloscope
use – the probe plus oscilloscope input adds a loading capacitance (and resistance) to the circuit under test.
Whether it has any impact of significance depends on the test circuit itself. In this case the loading is 15 pF
approximately, which is placed directly in parallel with REXT, increasing its value by over 10 per cent! The
measurement itself has introduced an error.

The second trace is of the microcontroller in HS crystal mode, and applies the circuit of Figure 3.14(a). Both
microcontroller pins have similar, approximately sinusoidal, signals of the same frequency. One is the inverse
of the other. It can be seen that the signal clearly has a period of 125 ns, confirming a frequency of 4 MHz.
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Figure 7.18 An Agilent 54622D Mixed Signal Oscilloscope connected to the Derbot

Pin 9
OSC1/CLKIN

Pin 10
OSC2/CLKOUT 

(a) (b)

Figure 7.19 Oscillator traces from 16F873A devices. (a) RC oscillator, 1 MHz nominal. (b) Crystal oscillator, 4 MHz
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7.8.3 In-circuit emulators

Oscilloscopes and logic analysers are very good for testing signals that are accessible, when the system is
running. There are many situations, however, when we need to be able to undertake the same sort of tests
we were doing with the software simulator in Chapter 5, for example testing specific sections of code or
single stepping, but now with the code running in the target hardware.

The solution to this need has been the in-circuit emulator (ICE). This is a device which replaces the
microcontroller in the circuit, replicates its action as closely as possible, but which remains linked back to
a host computer. The host computer has the power to control program execution, in much the same way as
the software simulator does.

In-circuit emulators represent one of the most powerful ways of testing and commissioning an embedded
system. They come with just a few disadvantages:

• They are very sophisticated pieces of equipment and hence expensive
• They replicate one microcontroller or processor only, and hence a different one is needed for every

different microcontroller used
• There are areas where their action is imperfect, for example they are not usually good at replicating

the action of the microcontroller in terms of the clock oscillator, and they may have power supply
requirements which are less flexible than the microcontroller itself

• They do not allow the genuine final operating condition of the system to be fully replicated – after all,
the microcontroller itself has been removed.

7.8.4 On-chip debuggers

Given the benefits of the ICE, but also its disadvantages, it was natural for IC designers to ask themselves
if they could actually design features of the ICE into the microcontroller itself. A good part of the ICE,
after all, is a replica circuit of the microcontroller itself. Thus, a variety of on-chip test facilities came into
being. Motorola (now Freescale) used the terminology background debug mode (BDM), while Microchip
uses the terminology in-circuit debugger (ICD). We will explore this facility in detail, as it is now available
on many PIC microcontrollers, including the 16F873A.

The advantages of the ICD approach can be summarised as:

• Testing is done with the target system substantially undisturbed.
• The ICD can also act as a programmer, downloading program code to the target microcontroller.
• The ICD approach is more flexible – connection, test and further download can be done ‘in the field’ as

well as in the development lab.

The disadvantages of the ICD approach can be summarised as:

• Some microcontroller resources are taken by the ICD function; this includes a few I/O pins, some program
memory and other internal resources.

• The target microcontroller must be functioning, with its clock running.
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• It is generally less powerful than a fully fledged ICE system.
• Testing of certain aspects may still be imperfect. For example, when microcontroller operation has been

halted by the ICD, peripherals may continue running, leading to erroneous results.

7.9 The Microchip in-circuit debugger (ICD 2)

The features of the Microchip ICD 2 system [Ref. 7.3] are illustrated in diagrammatic form in Figure 7.20;
the host computer is linked to the target system via a special adaptor unit or pod. This is seen in a real
system in Figure 7.21, where an ICD 2 pod is shown linked to a Derbot AGV. The ICD is controlled from
the host computer, which must be running MPLAB®. The ICD 2 pod links to the host computer via a USB
cable. An RS232 link may also be used. It then connects to the target system via another cable, having
five interconnections. These are shown in the diagram and are the same as those for ICSP, except that the
low-voltage programming pin, bit 3 of Port B, is not used. The internal microcontroller resources needed
by the ICD are also shown in the diagram, and include elements of program memory, data memory and
the Stack.

The ICD 2 can be used as a debugger, in which case it can program the microcontroller, at the same time
downloading its own ‘debug executive’, which is loaded into the high end of program memory. Running
from MPLAB it can then execute all the functions of the MPLAB simulator, as introduced in Chapters 4
and 5, except that now the program is actually running in the hardware. The ICD 2 can also be used simply
as a programmer, in which case it replicates the action of programmers like the PICSTART Plus, described
in Chapter 4. The operating mode is selected from within MPLAB.

The normal use of the ICD 2 in the development cycle is to download the program under test to the
microcontroller with the ICD in debug mode. The program is then debugged using all the facilities of
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Figure 7.20 The ICD 2 system and internal resource demand
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Figure 7.21 ICD 2 connected to a Derbot AGV

the ICD. When a fully functioning version has been developed, the ICD is switched to debugger mode.
The program is then downloaded again, this time without the special features of the debugger, and the
microcontroller can run in its normal operating mode.

Use of the ICD 2 will be described in a simple Derbot-based tutorial following description of the first Derbot
build.

7.10 Applying the 16F873A: the Derbot AGV

Following the descriptions earlier in this chapter, we turn now to see the 16F873A applied in a practical
situation, the Derbot AGV. The Derbot block diagram is shown in Figure 1.5 and its circuit diagram
in Figure A3.1. Some of the underlying considerations in the design and application of the Derbot are
described in Appendix 4.

7.10.1 Power supply, oscillator and reset

The power needs of the Derbot are twofold, to power the motors and to power the microcontroller circuit and
all associated sensors and displays. While low-voltage motors, running from 2 or 3 V, are available, it is less
easy to arrange the necessary switching circuits to run at this voltage. Experimentation with several motors,
however, showed that adequate torque and speed could be obtained from a motor running from around 9 V,
with a tolerable supply current. This voltage fitted well with currently available motor interface ICs, like the
L293D, which is used. The second power supply need is for the microcontroller circuit. While this could
have been supplied unregulated, as in the ping-pong project, there are a number of sensors, particularly the
light-dependent resistors and reflective opto-sensors, which require stable operating conditions for correct
results. Therefore, a regulated supply was chosen.
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The Derbot is therefore normally supplied from six ‘AA’ Alkaline cells, giving an overall nominal supply
of 9 V. This voltage is used ‘raw’ for the motor supply. For supply to the microcontroller and associated
circuit it is regulated down to 5 V, using a National Semiconductors LP2950 low-power voltage regulator.
A number of the system elements, for example the opto-sensors, rely on this regulated voltage to operate
correctly.

As there are precise timing requirements in the application, a crystal oscillator was selected; 4 MHz was
chosen as the oscillator frequency, to allow simple timing functions to be derived from the resulting 1 µs
instruction cycle time.

7.10.2 Use of the parallel ports

As can be seen, Derbot has extensive I/O requirements, although not all of these may be implemented in any
one version of it. These are listed in Table 7.2. Some simply require general-purpose parallel I/O. Others,

Table 7.2 Derbot I/O needs
Function Data direction Microcontroller

peripheral used
Port and pin
allocation

In-circuit debug Bi-directional Parallel port Port B, 6 and 7
‘Bump’ microswitches Input Parallel port Port B, 4 and 5
Servo drive Output Parallel port Port B, 3
Opto-sensor enable Output Parallel port Port B, 2
Piezo sounder Output Parallel port Port B, 1
Interrupt Input Parallel port/interrupt Port B, 0
Mode switch, also USART RX Input Parallel port Port C, 7
Diagnostic led,
also ultrasound echo,
also USART TX

Output
Input
Output

Parallel port Port C, 6

Diagnostic led, also
ultrasound pulse

Output Parallel port Port C, 5

I2C, serial data Bi-directional Synchronous serial port Port C, 4
I2C, serial clock Bi-directional Synchronous serial port Port C, 3
Right motor PWM drive, also
PWM demo, TPs 1 and 2

Output PWM Port C, 2

Left motor PWM drive Output PWM Port C, 1
Reflective opto-sensor Input Timer 1 Port C, 0
Left motor enable Output Parallel port Port A, 5
Reflective opto-sensor Input Timer 0 Port A, 4
Light sensor, rear Input Analog-to-digital

converter (ADC)
Port A, 3

Right motor enable Output Parallel port Port A, 2
Light sensor, left Input ADC Port A, 1
Light sensor, right Input ADC Port A, 0
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as indicated, are special purpose functions that link to specific peripherals or I/O, through uniquely identified
pins. These functions were therefore allocated immediately to their special-purpose pins. Like the port pins
themselves, there are some shared functions apparent in the table. These are mainly used in the short term
for demonstration purposes.

The Derbot general-purpose I/O can be allocated with some degree of flexibility. The choice is only influ-
enced by the opportunity of Schmitt trigger input, internal pull-up resistor (Port B) and of course the physical
position on the microcontroller IC. The implementation of Derbot switch and LED interfacing is considered
here; other interfacing is considered in later chapters.

Switch interfacing

The Derbot AGV uses the mode switch, a user control which can cause the robot to switch between two
modes, and a couple of microswitches, which are used for bump sensing. Electrically these switches are the
same, being SPST, and so can be connected using the diagram of Figure 3.7(b). A regular pull-up resistor
can be used or the Port B pull-up. In the latter case, it’s worth noting pull-ups will be switched on for all
Port B bits used as inputs, regardless of whether they’re wanted or not. As only three pull-ups are required,
it was decided to use external components and not activate those of Port B.

LED driving

Two general-purpose diagnostic LEDs are included in the circuit. These can be used for any purpose
that the programmer wishes. The high-efficiency red type chosen gives excellent output at very low
currents. Tests showed that adequate visibility could be obtained with a current in the region of 3.5 mA.
Using the characteristics of Figure 3.8(a), the forward voltages across the LED for this current will be
around 1.88 V, and from Figure 7.14(a) the port bit output voltage will be around 4.7 V. Hence, applying
equation (3.1):

R = 4.7 − 1.88

0.0035
= 806 �

820 � is a close ‘preferred value’ and was found to provide good visibility.

7.10.3 Assembling the hardware

If you are building up a Derbot AGV, then use the component layout diagram in the book CD and assemble
the following:

• All components in the power supply path, including decoupling capacitors
• Reset switch and pull-up resistor
• Crystal and load capacitors
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• Diagnostic LEDs with current-limiting resistors
• Two front microswitches with pull-up resistors
• Mode switch and pull-up resistor
• (Optionally) the piezo sounder and drive transistor
• The ICD connector, if you have an ICD 2 unit.

Having done this, you will have a PCB assembled with the circuit shown in Figure 7.22.
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7.11 Downloading, testing and running a simple
program with ICD 2

Let us now attempt running a program for the new hardware design and, if you have access to one, the
ICD 2.

7.11.1 A first Derbot program

Program Example 7.1 is a very simple test program for the embryonic Derbot AGV, as just constructed.
It simply tests the states of the front microswitches and sets or clears the diagnostic LEDs accordingly.
If both switches are pressed, the sounder comes on. Notice that the program uses the 16F873A Include File,
in the line:

include p16f873a.inc

With this larger microcontroller it is no longer practical to consider entering the addresses of each register,
as we did, for example, at the head of Program Example 4.2. Errors introduced at this stage can also be very
difficult to detect. Using the Include File should become your regular practice, if this is not already the case.

In MPLAB create a project Dbt_sw2led (or name of your choice) and copy the program Dbt_sw2led.asm
from the book CD, or enter it by hand; it is shown in its entirety in the printed example. Build the project
in the usual way. If you do not have an ICD 2, then download the program to the PIC, using your usual
programmer, for example the PICSTART Plus, as described in Chapter 4.

;***********************************************************
;Dbt_sw2led
;Moves state of front microswitches to diagnostic leds.
;If both switches on then buzzer goes on.
;TJW 24.3.05 Tested & working 20.8.05
;***********************************************************
;

list p=16f873a
include p16f873a.inc

;Specify RAM labels
delcntr1 equ 20 ;used in delay SR
delcntr2 equ 21
;
;Set Configuration Word: crystal oscillator HS, WDT off,
; power-up timer on, code protect off, LV Program off.

__CONFIG _HS_OSC & _WDT_OFF & _PWRTE_ON & _LVP_OFF
org 00

;Initialise
start bsf status,5 ;select memory bank 1

movlw B'00000011' ;all port A bits op
movwf trisa
movlw B'11111000'

Program Example 7.1 Simple bit moving with the Derbot



Larger systems and the PIC® 16F873A 177

movwf trisb ;port B bits
movlw B'10000000'
movwf trisc ;port C bits
movlw B'00000110'
movwf adcon1 ;set port A for digital function
bcf status,5 ;select bank 0

;
;The “main” program starts here
;Switch all outputs off

clrf porta
clrf portb
clrf portc

;diagnostic, switch leds on for half a second
bsf portc,6
bsf portc,5
call delay500
bcf portc,6
bcf portc,5
call delay500

;move microswitch states to diag leds
loop bcf portc,6 ;preclear port C, bit 6 (led off)

btfsc portb,4 ;jump if switch pressed
bsf portc,6 ;led on if switch clear

;
bcf portc,5 ;preclear port C, bit 5 (led off)
btfsc portb,5 ;jump if switch pressed
bsf portc,5 ;led on if switch clear

;
btfsc portb,4
goto loop1
btfsc portb,5
goto loop1
bsf portb,1 ;switch on sounder if both pressed
goto loop

loop1 bcf portb,1 ;switch off sounder
goto loop

;**********************************************
;SUBROUTINES
;**********************************************
;introduces delay of 1ms approx
delay1 movlw D'250' ;250 cycles called,

;each taking 4us
movwf delcntr1

del1 nop ;4 inst cycles in this loop, ie 4us
decfsz delcntr1,1
goto del1
return

;
;500ms delay (approx) ;500 calls to delay1
delay500 movlw D'250'

movwf delcntr2

Program Example 7.1 Continued
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del5 call delay1
call delay1
decfsz delcntr2,1
goto del5
return
end

Program Example 7.1 Continued

7.11.2 Applying the ICD 2

The following assumes you have an ICD 2, or later version of it. It is a very brief introduction, written in
the expectation that you already have knowledge of the MPLAB simulator, whose features are used by the
ICD 2. Further expertise can then be gained by experimentation and reading the full manual [Ref. 7.3].

Ensure, by reading the ‘Getting Started’ section of the manual, that the ICD 2 is configured correctly for
your computer and operating system. Connect it between computer and AGV, as illustrated in Figure 7.20.
Open MPLAB and open the project that you have created, containing Program Example 7.1. Set the
ICD to operate initially in debug mode, by clicking Debugger > Select Tool > MPLAB ICD 2. Then
complete the connection to the AGV by pressing Debugger > Connect. The ICD runs a self-test, which
checks for the presence of power supply, as well as its ability to apply the correct voltages to the lines
it controls. If the target system is powered and working, the ICD 2 should pass the self-test and will be
able to identify the microcontroller. It displays a message indicating whether it passed the test and issues
an MPLAB ICD 2 Ready message. The drop-down menu under Debugger then becomes active, as does
the toolbar, as seen in Figure 4.9 and repeated in Figure 7.23. An extra toolbar, special for the ICD 2, also
appears. This appears to the right of the figure, and allows the user to read program memory, download
to it and reset the ICD. Notice, however, that if on the main toolbar Programmer > Select Programmer
is pressed, the menu indicates that no programmer is selected. This is because in this mode the ability to
program is only available within the ICD debugger facility.

Ensuring that the Derbot is switched on, download the program memory, using either the toolbar button
of Figure 7.23 or Debugger > Program. Open a Watch window, as described in Chapter 4, and display
registers PCL, PORTB and PORTC. Then start single stepping through the program, using the Step Over
function to skip the delay routines. Once in the main loop, try pressing the microswitches in turn, and see
the response of the Port values in the Watch window as you step. Unlike when using the simulator, it is
actual values from the hardware that are being transmitted back to the display you are seeing. Try actually
setting or clearing port bits from your computer, and see how you can actually switch the Derbot leds on

Reset and connect to ICDProgram target device

Read target
device

Figure 7.23 Debug toolbars for ICD 2 – Standard debug, with extra ICD program features



Larger systems and the PIC® 16F873A 179
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Figure 7.24 Programmer features for ICD 2 – pull-down menu and toolbar

and off in this way. As with the simulator, breakpoints can be set in the program by double-clicking on
any line.

To finally program a product, the ICD 2 should be switched to programmer mode. On the top toolbar click
Programmer > Select Programmer > MPLAB ICD 2 and then Programmer > Connect (an automatic
connection mode is also possible). A check back at the Debugger menu will show that there is now no
debugger selected. It is now possible to program and read memory. The pull-down menu and programmer
toolbar are available, as shown in Figure 7.24. Notice that Reset can be controlled from the screen. When
programming is complete, Reset is left active. It can be released using the toolbar button shown, and the
program then runs immediately.

7.11.3 Setting the configuration bits within the program

The 16F873A has more configuration bits than the 16F84A and it is easy to make an error when setting
them in the MPLAB window. Incorrect settings can lead to very odd behaviour in the target embedded
system or to no behaviour at all! It is, however, possible to set the configuration bits in the program, by
using the _CONFIG assembler directive. This directive uses symbols that are defined in the microcontroller
Include File. The relevant section for the 16F873A is shown as Program Example 7.2. It can be seen that
each hexadecimal value that a symbol equates to is derived from the Configuration Word setting shown in
summary in Figure 7.7. As combinations of these are ANDed together, a final setting for the Configuration
Word is formed. The setting used, seen in the program example shown below, can be applied to all Derbot
programs based on the 16F873A.
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;Set Configuration Word: crystal oscillator HS, WDT off,
; power-up timer on, code protect off, LV Program off.

__CONFIG _HS_OSC & _WDT_OFF & _PWRTE_ON & _LVP_OFF

Even with this setting in the program, there is a danger that a change is made inadvertently in the MPLAB
Configuration Bits window. You can demonstrate this by building Program Example 7.1. Look at the
configuration bit settings in the window – they are correct. However, it is possible at this stage to introduce
an error by making a change in the window. Whatever is now shown in the window will be downloaded
to program memory on the next program download. This danger can be removed by clicking Configure >

Settings > Program Loading and checking the ‘Clear configuration bits upon loading the program’ box.
Now, on program download, the window setting is cleared and the configuration bits defined in the program
are downloaded.

;==========================================================================
;
; Configuration Bits
;
;==========================================================================
_CP_ALL EQU H'1FFF'
_CP_OFF EQU H'3FFF'
_DEBUG_OFF EQU H'3FFF'
_DEBUG_ON EQU H'37FF'
_WRT_OFF EQU H'3FFF' ;No prog memory write protection
_WRT_256 EQU H'3DFF' ;First 256 prog memory write protected
_WRT_1FOURTH EQU H'3BFF' ;First 1/4 prog memory write protected
_WRT_HALF EQU H'39FF' ;First half memory write protected
_CPD_OFF EQU H'3FFF'
_CPD_ON EQU H'3EFF'
_LVP_ON EQU H'3FFF'
_LVP_OFF EQU H'3F7F'
_BODEN_ON EQU H'3FFF'
_BODEN_OFF EQU H'3FBF'
_PWRTE_OFF EQU H'3FFF'
_PWRTE_ON EQU H'3FF7'
_WDT_ON EQU H'3FFF'
_WDT_OFF EQU H'3FFB'
_RC_OSC EQU H'3FFF'
_HS_OSC EQU H'3FFE'
_XT_OSC EQU H'3FFD'
_LP_OSC EQU H'3FFC'

Program Example 7.2 Defining configuration bits in 16F873A Include File

7.12 Taking things further – the 16F874A/16F877A
Ports D and E

Looking at Figure 7.1(b), one can see that the 16F874A and 16F877A have two extra ports, the 8-bit Port D
and the 3-bit Port E. Either port can be used for general-purpose I/O, like any of the other ports. The
block diagram of Port D, when configured for normal digital I/O, is shown in Figure 7.25(a). An alternative
function for Port E is to provide three further analog inputs. Because of this, Port E is also under the control
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Output latch

Input latch

(a) (b)

Figure 7.25 Block diagrams of Port D pin driver circuits. (a) In I/O mode. (b) As parallel slave port (supplementary
labels in shaded boxes added by the author)

of one of the registers that control the ADC, ADCON1. The setting of this determines whether the port is
used for digital or analog signals.

Together, Ports D and E can also form the parallel slave port. The ports are put into this mode by setting the
PSPMODE bit in the TRISE register (Figure 7.26). The purpose of this mode is to allow the microcontroller
to interface as a slave to a data bus, controlled perhaps by a microprocessor. The Port E bits must be set
as inputs (with digital mode selected in ADCON1); the state of TRISD is, however, immaterial. Ports D
and E are then configured as in Figure 7.25(b). The diagram shows 1 bit of Port D, together with the three
control lines, CS, WR and RD. These are the 3 bits of Port E, now configured for this purpose. Notice that
there is an output latch and an input latch for each Port D bit.

An example application for the parallel slave port appears in Figure 7.27. Here the port is connected to a
data bus and control lines that form part of a larger system, controlled by a microprocessor. The 16F874A
program can write data to the port, in which case bit OBF of TRISE is set. If CS and RD are taken low
by the external circuit, then the port outputs the data held on its output latches onto the external bus. This
action clears OBF. If CS and WR are taken low, the port latches data from the bus into its input latches, and
bit IBF of TRISE is set. IBF is cleared when the port is read by the microcontroller program. If, however,
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Figure 7.26 The TRISE register

the external circuit writes to the port again, before the previous word has been read, then the IBOV bit of
TRISE is set. The interrupt flag PSPIF (Figure 7.10) is set when either a slave write or read is completed
by the external circuit. This flag must be cleared in software.

Summary

• The 16F87XA group of microcontrollers is an important subset of the 16 Series family. Its added capability
is achieved by the inclusion of a powerful set of peripherals, along with memory upgrades.

• The central architecture of the 16F87XA group is the same as other microcontrollers in the PIC 16 Series
of microcontrollers, with the same instruction set.
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Figure 7.27 Parallel slave port connected to system bus

• Testing of an embedded system must be undertaken systematically, applying the best tools that are
available to do the job.

• In-circuit debugging is a powerful technique for testing and commissioning both program and hardware,
allowing minimum invasiveness.
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8
The human and physical interfaces

Figure 1.1 illustrates a typical embedded system. It shows an embedded computer reading in signals, outputting
control signals, interacting with a human user and possibly interacting with an external system via a network.
All of these activities fall under the broad heading of interfacing, which forms a very large part of the hardware
design of embedded systems. In this chapter we look at some aspects of interfacing, including both the human
and the physical interfaces.

In order to design the interface we need to know something about the sensors and actuators that can be used.
These lie between the wider system and the electronic domain of the microcontroller circuit. There are input
devices, sensors for measurement or data entry devices for human interaction. There are also output devices,
displays or alarms for the human being, and motors or other actuators for the physical system. There are
thousands of these devices to choose from; we take just a few as examples.

Further to this knowledge of the sensors and actuators themselves, we will need to know how they can be
connected to the microcontroller. Sensor signals may need amplification to connect to the microcontroller;
motor control output signals may need to drive powerful switching circuits to get the motor turning, at the
right speed and the right time.

Finally, and crucially, there is a need to understand how programs can be written to effect this interfacing.

In this chapter you will therefore learn about:

• Human interfacing needs and some simple means of meeting these
• Some simple example sensors
• Some ways of interfacing between sensor signals and the microcontroller
• Some simple example actuators
• Some ways of interfacing between the microcontroller and the actuator
• The Derbot application of some of its sensors and actuators.

Many of these topics will be illustrated by examples from the Derbot AGV.

It is important to note that important elements of interfacing do not appear in this chapter. The whole process
of the input of analog signals gets its own chapter (Chapter 11). Networking concepts, through an exploration
of serial communication, are introduced in Chapter 10.

8.1 The main idea – the human interface

The human has to interface with any machine that he/she works with. This is almost inevitably in some
form of closed loop interaction. The user perceives what the current status of the machine and perhaps the
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wider environment is. In so doing, he/she receives information from the system. Then, based on what he/she
wants to happen, the user interacts with the machine to cause some change in action. This interaction may
be purely in the form of information exchange. For example, the user of the fridge may read the current
temperature on the display, decide he wants it colder and thus enter a new demand temperature on the
keypad. Alternatively, the user may have to input some physical actuation of his own. This is very much
what happens in driving a car, where the driver receives information from the dashboard but still turns this
into physical actuation, in the form of movements of the steering wheel, gear stick or accelerator.

Figure 8.1 shows examples of human interfaces found in everyday products, which are also embedded
systems of one form or other. The fridge can operate in one of two modes, ‘super’ or ‘eco’. It displays the

(a)

(b)

(c)

Figure 8.1 The human interface in some familiar products. (a) Domestic fridge. (b) Photocopier. (c) Car dashboard
(detail)
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actual temperature of its freezer and main compartments. Demand temperatures for each of these can be set.
An acoustic alarm sounds if the freezer temperature rises above a certain value. This alarm can, however, be
disabled. All the control input is by simple push-buttons, while the display information is by two two-digit
numerical displays with polarity indicators.

The photocopier control is somewhat more complex. There is a wide range of operating modes available, with
different paper sources and image adjustment capabilities available. Information is conveyed by a customised
display. As this is touch sensitive, it also acts as an input of control information. A more conventional
numerical keypad allows input of purely numerical data, like codes and the number of copies required.

The detail from the car dashboard represents a further increase in complexity. Its central feature is car
speed – as the car in this instance is stationary this shows a big zero. Around this, one can see a range of
status information, including things as diverse as engine r.p.m., radio station, temperature, door status and
fuel. Despite the complexity and diversity of information, it is all conveyed in simple forms. Again, there is
considerable use of numerical display. To this is added bar graphs, simple illuminated symbols and simple
diagrammatic information. No user input is seen in this picture.

What is striking in each of these three very diverse interfaces is the strands which unite them. Each has
significant need to convey numerical information and status information; means are found to achieve both
of these in simple ways. The main sense invoked is sight. Sound is also used, especially in alarm situations.

We will be exploring means of information exchange between the embedded system and user in the section
that follows. This will be done through a study of the keypad, seven-segment LED (light-emitting diode)
display and the liquid crystal display (LCD), as these are more or less ubiquitous in simple embedded
systems. These will be illustrated with the Derbot ‘hand controller’ module. This is an optional unit that
can be hand-held or fitted above the battery pack, as seen in Figure A3.3. The hand controller is available
in two versions, one for LED and one for LCD. These are shown in Figure 8.2. The hand controller is

(a) (b)

Figure 8.2 The Derbot hand controller. (a) LED version. (b) LCD version
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designed as a ‘dumb terminal’ which interfaces directly with the main Derbot AGV. It can, however, be
used in stand-alone form, which is the case in this chapter. In Chapter 10 it is linked to the AGV and used
to illustrate serial communications. Its circuit diagram is given in Figure A3.2.

8.2 From switches to keypads

The humble switch, mainstay of so many human interfaces, was introduced in Chapter 3. Switches are good
for conveying information of a digital nature – they are two-state, but can be used in multiples, each one
taking one port bit. In more complex situations it becomes inappropriate to keep adding switches. For one
thing, the demand on port bits becomes excessive, and their relentlessly two-state nature often does not
meet the need.

8.2.1 The keypad

A useful step forward from the simple switch is given by the keypad, as seen in the photocopier interface
and the Derbot hand controllers in Figure 8.2. The keypad allows numeric or alphanumeric information to
be entered. It is widely used in photocopiers, burglar alarms, central heating controllers and so on.

A keypad is based on switches, yet it would be extremely resource-intensive if each of these switches were
allocated to a port bit. Instead, to make good use of resource, each switch is connected in a matrix. Figure 8.3
shows the electrical connections for the keypad of Figure 8.2, which has 12 keys. It can be seen that these
are arranged in a 4 × 3 matrix, with four rows and three columns. Now only seven interconnections are
needed, rather than 12. Whenever a key is pressed, it connects its row with its column.

* 0 #

7 8 9

4 5 6

1 2 3

Keypad

Row
connections

Column
connections

Pull-up
resistors

VS

Port bit
7
6
5
4

3
2
1

Figure 8.3 Keypad circuit diagram, with pull-up resistors
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Set column bits as outputs

Set row bits as inputs

Set column bits to 0

Read row bits

Set column bits as inputs

Set row bits as outputs

Set row bits to 0

Read column bits

Key Value Read
1 0111 011X
2 0111 101X
3 0111 110X
4 1011 011X
5 1011 101X
6 1011 110X
7 1101 011X
8 1101 101X
9 1101 110X
* 1110 011X
0 1110 101X
# 1110 110X

(a) (b)

Figure 8.4 Reading a keypad with a microcontroller port. (a) Flow diagram. (b) Outputs for keypad of Figure 8.3

In an embedded environment the keypad is usually connected to the bits of a microcontroller input/output
(I/O) port. Example port bit connections are shown in the figure, as well as the necessary pull-up resistors.
The challenge is how to detect efficiently which key has been pressed.

The technique usually used to read a keypad follows the flow diagram of Figure 8.4(a). First the column
bits are set to output, with the row bits as input. The output column bits are set to 0. If no button is pressed
all row line inputs will read 1, due to the action of the pull-up resistors. If, however, a button is pressed
then its corresponding switch will connect column and row lines, and the corresponding row line will be
pulled low. If the same process is repeated instantaneously, but with outputs exchanged for inputs, then the
column line for the key pressed can be found and the key fully identified.

Output values for the keypad connection shown in Figure 8.3 are shown in Figure 8.4(b). For example,
suppose key 7 was pressed. In the first phase of the flow diagram, with row connections as inputs, the third
row line (port bit 5) would read low. In the second phase, with column bits as inputs, the first column (port
bit 3) would read low. The final pattern is as shown, with bit 0 showing a ‘don’t care’ condition, as it is
unused.

8.2.2 Design example: use of keypad in Derbot hand controller

The flow diagram just described is only the starting point for working with keypads. How, for example, do
we detect when the keypad is actually pressed and what do we do with the code appearing in the table?
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Initialise

Wait

Read keypad pattern

Clear interrupt flag
return from interrupt

(RETFIE)

Enable interrupt
Convert pattern to ASCII

Output to LCD

Is key released?
No

Yes

Interrupt

Figure 8.5 Flow diagram of Program Example 8.1

Program Example 8.1 illustrates a practical application of keypad reading, in a program called keypad_test.
The program is used to illustrate use of both keypad and LCD. It is too long to print in its entirety, so
keypad-related sections only are reproduced here. The book CD contains the full program.

The program flow diagram is shown in Figure 8.5. To detect keypad action, it uses the ‘interrupt on change’
facility, available on the higher 4 bits of Port B. Following initialisation, all program activity is contained in
the Interrupt Service Routine, called kpad_to_lcd. This does essentially four things. It reads a pattern from
the keypad, converts this to ASCII code, sends the code to the LCD and waits for the key to be released,
before leaving the ISR.

Try following the program through, matching it with the flow diagrams shown. In the opening initialisation
Port B is set up so that row bits are input and column bits are output. We could start the other way round,
but to make use of the ‘interrupt on change’, the higher 4 bits must be set as input. All output bits are
subsequently set to zero and the ‘interrupt on change’ interrupt is enabled. We have at this stage already
entered the flow diagram of Figure 8.4(a).

An interrupt occurs when a key is pressed and the Interrupt Service Routine, labelled kpad_to_lcd, is
invoked. This immediately calls the subroutine kpad_rd, which continues the flow diagram of Figure 8.4(a),
started in the initialisation section. The value of Port B is read and stored in memory location kpad_pat.
Column and row roles are then reversed, and the row bits are then read. These are ORed into kpad_pat,
ensuring that any unwanted bits are removed by ANDing with 0. The routine then resets Port B to its initial
value, ready for the next keypad read.

The value held in kpad_pat, on completing the kpad_rd subroutine, is not in a very useful format. It is a 7-bit
number, with possible values shown in Figure 8.4(b). The program therefore calls subroutine kp_code_conv,
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which converts this number into the keypad code that caused it. The way this is done is described in the
next paragraph. This value is then output to the LCD, using subroutine lcd_write. This is not shown in this
example, but is described later in the chapter. The program then sits in a loop, waiting for release of the
key, invoking the kpad_rd subroutine again. This is because the user letting go the keypad will also cause
an ‘interrupt on change’, which would lead to a second, unwanted keypad read.

;***************************************************************
;keypad_test
;Tests keypad, writing key pressed to lcd display on
;Derbot Hand Controller.
;TJW 23.6.05 Tested 24.6.05
;***************************************************************
...
(opening program sections omitted)
...
;Initialise

bsf status,rp0 ;select memory bank 1
...

movlw B'11110000' ;Port B initially Row bits ip, column op
movwf trisb ;(port B not used)
bcf status,rp0 ;select bank 0

...
(lcd initialisation omitted)
...

clrf portb ;initialise keypad value
;enable interrupt

bcf intcon,rbif
bsf intcon,rbie
bsf intcon,gie

loop goto loop ;await keypad entries

;***************************************************************
;Interrupt Service Routine.
;***************************************************************
;Keypad press has been detected through Port B Interrupt on Change.Gets
;keypad pattern, converts to character, stores in kpad_char, sends to lcd,
;and awaits key release,
kpad_to_lcd call kpad_rd
;now convert code to character, forming address used in lookup table

call kp_code_conv
;now send to lcd

bsf portc,lcd_RS ;set for character op
movwf lcd_op
call lcd_write

;test now for keypad release
rel_test call kpad_rd

movf kpad_pat,0
andlw 0fe ;suppress lsb, which is not used
sublw 0fe ;test if inactive
btfss status,z
goto rel_test

Program Example 8.1 Keypad reading on the Derbot hand controller
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bcf intcon,rbif ;clear interrupt flag
retfie

;
;***********************************************************
;SUBROUTINES
;***********************************************************
;Reads keypad, places pattern into kpad_pat, and resets keypad interface
kpad_rd movf portb,w ;read portb value, this will be row pattern

andlw B'11110000' ;ensure unwanted bits are suppressed
movwf kpad_pat
bsf status,rp0 ;set row to op, column to ip
movlw B'00001110'
movwf trisb
bcf status,rp0
movlw 00
movwf portb ;ensure output values still zero
movf portb,w ;read portb value, this will be column pattern
andlw B'00001110' ;ensure unwanted bits are suppressed
iorwf kpad_pat,1 ;OR those results into the pattern

;reset keypad interface
bsf status,rp0 ;set row to ip, column to op
movlw B'11110000'
movwf trisb
bcf status,rp0
clrf portb ;ensure output values still zero
return

;Converts keypad pattern held in kpad_pat to ASCII character, first forming
;address (in kpad_add) that is used in lu table. Returns with character held
;in kpad_char
kp_code_conv bcf status,c

rrf kpad_pat,1 ;discard bit 0 which is not used
clrf kpad_add

;deduce row
btfsc kpad_pat,6
goto kp1
goto col_find ;here if row 1, kpad_add stays as is

kp1 btfsc kpad_pat,5
goto kp2
movlw B'00000100' ;here if row 2
iorwf kpad_add,1 ;form table address
goto col_find

kp2 btfsc kpad_pat,4
goto kp3
movlw B'00001000' ;here if row 3
iorwf kpad_add,1 ;form table address
goto col_find

kp3 btfsc kpad_pat,3
goto kp4
movlw B'00001100' ;here if row 3
iorwf kpad_add,1 ;form table address
goto col_find

Program Example 8.1 Continued
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kp4 movlw D'16' ;no row detected, return "E" via Table
goto keypad_op

;now deduce column
col_find btfsc kpad_pat,2

goto cf1
goto keypad_op ;here if column 1, kpad_add stays as is

cf1 btfsc kpad_pat,1
goto cf2
movlw B'00000001' ;here if column 2
iorwf kpad_add,1 ;form table address
goto keypad_op

;assume now column 3
cf2 movlw B'00000010'

iorwf kpad_add,1 ;form table address
keypad_op movf kpad_add,0

call kp_table
movwf kpad_char ;save the character
return

;
;Table called to convert pattern recd from keypad to actual character. Note that
;ASCII codes will be returned, as each digit is in format 'D'.
kp_table addwf pcl,1

retlw '1' ;row 1
retlw '2'
retlw '3'
retlw 'A' ;Error code
retlw '4' ;row 2
retlw '5'
retlw '6'
retlw 'B' ;Error code
retlw '7' ;row 3
retlw '8'
retlw '9'
retlw 'C' ;Error code
retlw '*' ;row 4
retlw '0'
retlw '#'
retlw 'D' ;Error code
retlw 'E' ;Error code

...

Program Example 8.1 Continued

The kp_code_conv subroutine converts the patterns derived from reading the keypad, as seen in
Figure 8.4(b), into the ASCII code of the key pressed. It does this by deriving an address, held in memory
location kpad_add, which is used to access the look-up table kp_table. The address follows the format
shown in Figure 8.6. The subroutine tests the bits of the pattern in turn, finding out which row and column
has been active. It sets up the address bits according to the outcome of its tests. The look-up table is then
called, as described in Chapter 5.
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kp_add

ColumnRow
Row 1 = 00
Row 2 = 01
Row 3 = 10
Row 4 = 11

Col. 1 = 00
Col. 2 = 01
Col. 3 = 10

not used

Figure 8.6 Format of look-up table address

8.3 LED displays

The first part of this chapter showed how very important displays are, in almost any system which has a
human interface. We look at two types of display here, the seven-segment LED and the liquid crystal.

8.3.1 LED arrays: seven-segment displays

As with the switch, the simple LED was introduced in Chapter 3. We saw that LEDs are visually attractive,
are an efficient source of light, can be driven from a logic gate or port bit output and are thus exceptionally
useful for conveying simple information. Yet the single LED, or even groups of LEDs, are restricted in
the information they can give, and as their number increases they become increasingly complex to drive.
There are therefore a number of standard configurations in which LEDs are packaged, including bargraph,
seven-segment display, dot matrix and ‘star-burst’.

The seven-segment display is a particularly versatile configuration, seen already in Figures 8.1(a, c) and
8.2(a). We explore the LED implementation of it in some more detail here. A single digit, made by Kingbright
[Ref. 8.1], is shown in Figure 8.7. This is the display used in the Derbot hand controller (Figure 8.2(a)).
By lighting different combinations of the seven segments, all numerical digits can be displayed, as well as
a surprising number of alphabetic characters. A decimal point is usually included, as shown. The problem
arises that if each segment is illuminated by an LED, then 14 connections are required, and that is just for
one digit. If multiple digits are required, then the number of connections soars. Therefore, two clever and
simple techniques are used to tame the number of connections used.

The common anode/common cathode connection

When using multiple LEDs in simple configurations, it is almost certain that one ‘side’ of all the LED
terminals will be connected to all others of the same type. In other words, all LED anodes are likely to
be connected together, or all LED cathodes. This is what is done in the seven-segment digit, as seen in
Figure 8.7(b). The digit is available either in common cathode form or in common anode. There are eight
LEDs in the digit (including the decimal point), but instead of 16 connections being needed, there are now
only nine, one for each segment and one for the common connection. The actual pin connections in the
example shown lie in two rows, at the top and bottom of the digit. There are 10 pins in all, with the common
anode or cathode taking two pins.
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(a) (b)

Figure 8.7 The seven-segment display. (a) A seven-segment digit (Kingbright, 12.7 mm). (b) Electrical connection
(upper: common anode; lower: common cathode). Reproduced with permission of Kingbright Elec. Co. Ltd

Multiplexing of digits

By making a common cathode or common anode connection, the number of connections to a single digit is
reduced. But a digit on its own is rarely used and multiple digits will still require many connections. A four-
digit display, for example, with decimal points on each digit, would require 36 connections. Furthermore,
a multi-digit display would have power supply requirements that are quite excessive. With all segments on,
and each taking 5 mA, it would draw 160 mA. Therefore, a second, important technique is introduced, that
of digit multiplexing. While this enables us to develop a practical display, it also poses an interesting early
challenge in handling some real-time issues. The technique is illustrated in the design example that follows.

8.3.2 Design example: the Derbot hand controller
seven-segment display

The circuit diagram of the Derbot hand controller in Figure A.3.2 is comparatively complex, as the controller
can be used in LED version or LCD version (but not both). The seven-segment LED display section alone
is shown in Figure 8.8(a), and from this an understanding of digit multiplexing can be developed. It can be
seen that all equivalent segment lines are connected together, so that, for example, segment ‘a’ of Digit 1 is
connected to segment ‘a’ of Digit 2 and so on. Each of these segment lines is connected via a resistor (1.2 k�;
not shown) to a port bit. Kingbright ‘high-efficiency red’ common cathode displays are used [Ref. 8.1].

Each of the digit common cathode lines is connected to a ‘logic-compatible’ MOSFET transistor. When the
gate voltage of the transistor goes high, the transistor conducts and the common cathode terminal goes low.
(Further details on transistor switching is given later in the chapter.) Any segment whose anode is at logic
high then illuminates. The value of the series resistors was selected experimentally, to minimise the current,
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Figure 8.8 Seven-segment display part of the Derbot ‘hand controller’. (a) Detail of display circuit diagram. (b) Timing
diagram for driving the digits
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while maintaining reasonable visibility. Noting from the data that each LED has a forward voltage when in
conduction of around 1.9 V, the current I flowing per segment can be calculated as:

I = (5.0 − 1.9)/(1200)

I = 1.3 mA

This calculation neglects the ‘on’ resistance of the switching transistor and the output resistance of the port.
Both of these are small compared with the 1.2 k� value of the series resistance.

The way this display is driven is shown in the timing diagram (Figure 8.8(b)). The digits are activated
continuously in turn. If this is done at the right speed, the eye is tricked into thinking that all digits are being
continuously lit. The timing diagram shows the segments for Digit 4 being set and the Digit 4 common
cathode being set to 1. Digit 4 is therefore switched on, while all other digits are off. This is held for a
period of time (around 5–20 ms is generally appropriate) and then Digit 2 is illuminated in a similar way.
Each digit is lit in turn and the cycle recommences.

If driven from a microcontroller, a program must be written to recreate the timing diagram. Let us see how
this is done in practice, in Program Example 8.2. This is a very simple program, which runs on the LED
version of the hand controller, and does nothing but display the word HELP on the digits. Figure 8.7(a)
shows that, for the letter H, segments b, c, e, f and g should be illuminated. After a simple initialisation,
the bit pattern for the letter H is set up on Ports A and C, by setting high each of the bits connected to the
‘on’ segments. The common cathode of Digit 1 is also set high and a 5 ms delay called. The H segments,
and the Digit 1 common cathode drive, are then replaced by the segments for the letter E and the common
cathode drive for Digit 2. The program continues through all four letters, before looping back to start again.

;***************************************************************
;led_disp_tst
;Tests led display on Derbot Hand Controller by writing
;word "HELP" to 4-digit display.
;TJW 17.6.05
;***************************************************************
;Clock is 1MHz approx
;Configuration Word: WDT off, power-up timer on,
; code protect off, RC oscillator
;
; Port A Port B Port C
; ------ ------ ------
;0 led seg c led cc digit 4 led cc digit 2
;1 led seg d keypad col 3 led cc digit 1
;2 led seg e keypad col 2 Interrupt op
;3 led seg f keypad col 1 SCL
;4 led seg g keypad row 4 SDA
;5 led seg dp keypad row 3 led cc digit 3
;6 - keypad row 2 led seg a
;7 - keypad row 1 led seg b

Program Example 8.2 Driving the seven-segment display on the Derbot ‘hand controller’
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list p=16F873A
#include p16f873A.inc

;Specify RAM
delcntr1 equ 20 ;used in delay5
;Specify some port bits
;Port C

dig1_cc equ 1 ;digit common cathode drives
dig2_cc equ 0
dig3_cc equ 5
;Port B
dig4_cc equ 0
;

org 00
;Initialise

bcf status,rp1
bsf status,rp0 ;select memory bank 1
movlw B'00000000' ;setall port bits op
movwf trisa
movwf trisb
movwf trisc
bcf status,rp0 ;select bank 0

;
;set digit1
loop bcf portb,dig4_cc

movlw B'00011101' ;turn on segments for H
movwf porta
bcf portc,6
bsf portc,7
bsf portc,dig1_cc ;enable digit once segments set
call delay5

;digit2
bcf portc,dig1_cc
movlw B'00011110' ;turn on segments for E
movwf porta
bsf portc,6
bcf portc,7
bsf portc,dig2_cc ;enable digit
call delay5

;digit3
bcf portc,dig2_cc
movlw B'00001110' ;turn on segments for L
movwf porta
bcf portc,6
bcf portc,7
bsf portc,dig3_cc ;enable digit
call delay5

;digit4
bcf portc,dig3_cc
movlw B'00011100' ;turn on segments for P

Program Example 8.2 Continued
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movwf porta
bsf portc,6
bsf portc,7
bsf portb,dig4_cc ;enable digit
call delay5
goto loop

;
;SUBROUTINE: Introduces delay of 5ms approx
delay5 movlw D'250' ;250 cycles called

movwf delcntr1
del1 nop ;5 inst cycles in this loop, ie 20us

nop
decfsz delcntr1,1
goto del1
return
end

Program Example 8.2 Continued

Digit 1
active

Digit 2
active

Digit 3
active

Digit 4
active

5 ms/div.

seg. a

seg. b
seg. c
seg. d

seg. e

seg. f
seg. g

d.p.

Digit 1

Digit 2

Digit 3

Digit 4

Figure 8.9 Seven-segment display output waveforms – ‘HELP’ displayed

Figure 8.9 shows a screen print from the logic analyser section of the Agilent Mixed Signal Oscilloscope,
with the program running. All segment lines are shown, together with the four digit drives. When any digit
common cathode drive is high, the associated common cathode connection itself is taken low and the digit is
activated. For Digit 1, it is easy to see the segments b, c, e, f and g are on, forming the letter ‘H’. Similarly,
for Digit 2, the segments a, d, e, f and g form the letter ‘E’, and so on. The process repeats continuously and
the word ‘HELP’ is spelt out. It can be seen that segments e and f are continuously on, while the decimal
point (d.p.) is always off.
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Light-emitting diodes are enormously useful, but they suffer from several drawbacks: they are power hungry,
at least for battery-powered designs, and it is difficult, if not impossible, to form them into complex multi-
digit or graphical displays. Therefore, it is essential to look elsewhere for sophisticated displays, with the
solution being readily found in liquid crystal technology.

8.4 Liquid crystal displays

The liquid crystal display (LCD) has been one of the enabling technologies of the current electronic
revolution. It is an essential part of every mobile phone, every laptop and every personal organiser.

Liquid crystal is an organic compound that polarises any light that passes through it. Liquid crystal also
responds to an applied electric field by changing the alignment of its molecules, and in so doing changing
the direction of the light polarisation that it introduces. Liquid crystal can be trapped between two parallel
sheets of glass, with a matching pattern of transparent electrode on each sheet. When a voltage is applied to
the electrodes, the optical character of the crystal changes and the electrode pattern appears in the crystal.

A huge range of LCDs has been developed, including those based on seven-segment digits or dot matrix
formats, as well as a variety of graphical forms. Many general-purpose displays are available commercially,
while customised displays are made for large-volume products. The Derbot hand controller uses an example
of a very popular and useful general-purpose format, as seen in Figure 8.2(b). The display shown has two
lines, of eight digits each, where each digit is a liquid crystal dot matrix. Larger displays in this format are
common, with more digits and more lines.

Driving LCDs directly is not entirely simple. That need not concern us too much here, however, as most
displays, like the one shown in Figure 8.2(b), contain their own drive electronics, designed to be interfaced
to a microcontroller. The need is then to understand how to interface to the drive electronics.

8.4.1 The HD44780 LCD driver and its derivatives

Some few years back the electronics giant Hitachi developed a microcontroller specially designed to drive
LCD alphanumeric modules such as the one shown in Figure 8.2(b). In turn, it had a simple interface
that can be connected to general-purpose microprocessors and microcontrollers. This microcontroller, the
HD44780 [Ref. 8.2], defined an interface that has become something of an informal standard for this type
of display. Many manufacturers of displays integrated it into their products. A generation of derivatives now
exists, which have replaced the original Hitachi device but retain most of its features. These include the
S6A009 and KS0066U devices made by Samsung. As these derivatives tend to be so similar to the original
Hitachi device, the HD44780 features will be described. When designing with a display it is important,
however, to ensure that you are working with the correct data for the device.

The HD44780 interface has some peculiarities, partly due to the time-scale laid down by the display itself.
It has the following highlights:

• Data is transferred on a 4- or 8-bit data bus, determined by the user. Data may be instruction or character
information. Using the 4-bit mode allows the whole interface to be contained within just 7 bits, but the
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data transfer process is a little slower. Bit 7 of the data bus doubles as a ‘busy flag’, indicating whether
the device is ready to accept new data. This is very important, as many operations of the HD44780 take
finite time and must be completed before another instruction can be accepted.

• Control is exercised by three control lines:

– Register Select (RS), which determines whether an instruction or character data is being transferred
– Read/Write (R/W), which determines data direction
– Enable (E), which provides a clock function to synchronise data transfer.

• There is a simple instruction set, which allows control of operating characteristics – this includes
initialising and clearing the display, and controlling the position and characteristics of the cursor.

• The user can access two registers, depending on the state of the RS line:

– An instruction register, used to transfer instructions (RS = 0)
– A data register, used to transfer display data, for example character codes (RS = 1).

• Internal resources include 80 bytes of display RAM and a character generator ROM.

On power-up, the HD44780 must undergo a very specific initialisation process. It is important to get this
absolutely right, or any HD44780-driven display may just sit inactive. An instruction sequence is given in the
data accompanying any commercially available display based on this interface. An example is reproduced
in Ref. 8.3. The early initialisation instructions are independent of whether the display is in 4- or 8-bit mode
and the busy flag is not initially available. Therefore, these initialisation instructions are usually separated
by delay routines of appropriate duration, to ensure that one action is completed before the next is started.

The HD44780, constrained as it is by the timing requirements of the LCD itself, tends to operate at a slower
speed than most microcontrollers. Interfacing with it therefore carries some unique timing problems. An
example timing diagram, for an 8-bit interface, is shown in Figure 8.10. Every data transfer to the LCD
controller is made by a pulse on the E line. With RS initially set low, the data placed by the microcontroller
on the data bus is interpreted as an instruction, which the HD44780 receives and starts to execute. The
microcontroller needs to know when that instruction has been completed. R/W is therefore taken high, so
on the next cycle of E the LCD controller outputs to the data bus a word made of the busy flag as MSB,
with lower bits made up of the internal RAM address counter. No further data can be sent to the LCD
controller until the busy flag is cleared, so it is checked repeatedly. When it goes low, RS in this example
is taken high, R/W is taken low and the next data transfer is therefore a character code.

8.4.2 Design example: use of LCD display in Derbot
hand controller

The Derbot hand controller, in its LCD version, uses a Powertip PC0802-A display [Ref. 8.4]. This display
has two lines, each of eight characters. It is controlled by the S6A0069 LCD driver microcontroller, which
has the features of the HD44780 just described. It is used in 8-bit interface mode. The full circuit diagram
is given in Figure A3.2, with the LCD-only detail given in Figure 8.11.

The program used to demonstrate the LCD display is keypad_test, which has already been quoted in
Program Example 8.1. When a keypad key is pressed, this program identifies it and transfers the key
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number, in ASCII, to the LCD. The subroutines to write an instruction or character code to the display
controller, lcd_write, and to check the busy flag, busy_check, are shown in Program Example 8.3. The
initialisation process can be seen by checking the full program listing on the book CD.

The lcd_write subroutine starts with a call to the busy_check subroutine, so that no attempt is made to
write to the display controller unless it is ready to receive. The subroutine then sets the R/W line low, to
indicate a write process is about to occur. The subroutine is rendered a little more complex as the hardware
design splits the 8-bit bus to the LCD controller across two ports (Figure 8.11), so two shifts right must be
undertaken. Once the correct data value is set up on the port, the enable line, labelled lcd_E, is pulsed high
to complete the transfer.

The busy_check routine first sets Port A to input. The value of RS, which can be in either logic state, is
saved. This line is then set low, and R/W set high, which sets the condition for a read of the busy flag. The
E line is then strobed high and a test of the busy flag occurs. The subroutine loops until the busy flag is
cleared.

;Waits until busy clear, and writes word held in lcd_op to display.
;RS must be preset to required value, this status is preserved.
lcd_write call busy_check

bcf portc,lcd_rw
bcf status,c
rrf lcd_op,1 ;form output bits, op word sits

;across ports a & c
bcf portc,6 ;set value of bit 0 of bus
btfsc status,c
bsf portc,6
bcf status,c
rrf lcd_op,1
bcf portc,7 ;set value of bit 1 of bus
btfsc status,c
bsf portc,7
movf lcd_op,0
movwf porta
bsf portc,lcd_E
bcf portc,lcd_E
return

;
;Test Busy Flag, and wait till cleared
busy_check bsf status,rp0 ;select memory bank 1

movlw B'00111111' ;set port A all ip
movwf trisa
bcf status,rp0
bcf flags,0
btfsc portc,lcd_RS ;save RS bit in flags, 0
bsf flags,0
bcf portc,lcd_RS ;access instruction register
bsf portc,lcd_RW ;set to read

Program Example 8.3 Keypad Test Program: LCD Drive Subroutines
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busy_loop bcf portc,lcd_E
bsf portc,lcd_E
btfsc porta,lcd_busy ;test the busy flag, loop if still busy
goto busy_loop
bcf portc,lcd_E
bsf status,rp0 ;select memory bank 1
movlw B'00000000';set port A all op,
movwf trisa
bcf status,rp0
bcf portc,lcd_RS
btfsc flags,0 ;reinstate RS bit
bsf portc,lcd_RS
return

Program Example 8.3 Continued

Liquid crystal displays such as the one just described are enormously useful in the world of small to medium
embedded systems. They are low power and comparatively flexible in their use. On the downside, interfacing
to them can be tiresome, with not insignificant blocks of code required just to transfer simple messages.
Because their interface is slow, they can become a limiting factor in high-speed systems.

8.5 The main idea – interfacing to the physical world

Whether or not the embedded microcontroller has a human interface, it will certainly interface with the
physical world. To do this it must be able to detect the state of physical variables and it must be able to
control those variables. This interaction with the physical world is done by means of transducers, a major
field of study in themselves. Input transducers, also called sensors, detect and convert physical variables
into electrical variables. Examples include light or temperature sensors, or sensors which detect physical
position, including measurement of distance or rotary displacement. Output transducers convert electrical
variables to physical. Ones which cause physical movement, our main interest here, are also called actuators.
Examples include solenoids and motors.

In our study of embedded systems, we need knowledge of what transducers are available, what they can
do and how we can interface to them. In the remaining part of this chapter, therefore, some interfacing
techniques essential to embedded systems are introduced. The transducers used in the Derbot AGV are also
introduced. While this might seem an arbitrary choice, they are as good a selection as any – it would be
impossible in this book to attempt to undertake a comprehensive survey of all transducers.

8.6 Some simple sensors

There is an enormous range of sensors available today, some with a long history and others based on very
recent technology. These include ‘smart’ or ‘intelligent’ sensors, which are integrated onto an IC and have
on-chip signal processing. All are based on one or other physical phenomenon that leads to conversion of
physical variable to electrical, sometimes via an intermediate variable. The sensors introduced here include
electromechanical, optical and ultrasonic. Some are shown in Figure 8.12.
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Figure 8.12 Some of Derbot’s sensors and actuators – an ultrasonic distance sensor mounted on a Futaba servo, behind
a light-dependent resistor and microswitch

8.6.1 The microswitch

The microswitch has been the mainstay of mechanical position sensing over many years, and is likely to
retain that position in years to come. Usually, it is in the form of a single-pole, double-throw switch, with
a lever or roller for actuation. Microswitches are available from the sub-miniature to the large and rugged,
for heavy-duty industrial applications. Electrically they can be interfaced just like a normal toggle switch,
using one of the circuits shown in Figure 3.7. In industrial applications further precautions may be taken
to minimise electrical interference. On the Derbot two microswitches are used as ‘bump’ sensors, one of
which is seen in Figure 8.12.

8.6.2 Light-dependent resistors

A light-dependent resistor (LDR) is made from a piece of exposed semiconductor material. When light falls
on it, it creates hole–electron pairs in the material, which improve the conductivity. When light is removed,
the hole–electron pairs recombine and conductivity falls. The overall effect is that as illumination increases,
the LDR resistance falls.

The LDR used in the Derbot is the NORP12, made by Silonex [Ref. 8.5], with a resistance when completely
dark of around 20 M�, falling to a few hundred ohms when very brightly illuminated. It can be connected
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Figure 8.13 The NORP12 LDR connected in a potential divider, with indicative output values

in a simple potential divider to give a voltage output, as shown in Figure 8.13. The Derbot has three of these
sensors, which it uses when in light-seeking mode. These can be seen in Figure A3.1. They are connected
to the 16F873A analog-to-digital converter inputs described in Chapter 11.

8.6.3 Optical object sensing

Optical methods are very useful in sensing objects and surfaces. In one configuration the presence of an object
can be sensed if it breaks a light beam, in another if it reflects the beam. Many sensors are available with
both light source and sensor integrated into the same package. The Derbot AGV uses reflective opto-sensors
made by Optek, type OPB608A [Ref. 8.6].

The principle of this sensor is illustrated in Figure 8.14(a). The sensor consists of an infrared LED and
phototransistor mounted side by side in the same plastic package. The package material allows infrared
light to pass, but filters ambient visible light. When a reflective surface is placed at a suitable distance in
front of the sensor, some of the emitted light is reflected back to the phototransistor, which then conducts.
If the sensor is connected in the circuit of Figure 8.14(b), then the circuit output VO is at Logic 1 when
no reflection occurs and goes to Logic 0 if a reflective surface is present. Resistor values are dependent on
sensor characteristics, the ones given here being indicative. The distance from sensor to reflective surface
is critical in many such sensors, with preferred distances around 3 mm being common.

8.6.4 The opto-sensor applied as a shaft encoder

In the Derbot, the reflective opto-sensors just described are used to create very simple shaft encoders, as
can be seen in Figure 8.15. A card with a simple black/white pattern (Figure A3.4) is fixed to the wheel,
with the sensor face positioned around 3 mm away from it. As the wheel rotates, the sensor produces an
approximate square wave, with logic high every time a black section of the pattern goes by. (An actual
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waveform is shown in Figure 8.20, where the conditioning requirements of the signal are investigated.)
If these pulses are counted, they can be used as the basis for distance measurement, or odometry, in the
AGV. This is developed further in later chapters. It should be mentioned that the handmade shaft encoder
developed here is very crude compared to commercially available units. Whereas the Derbot shaft encoder
generates 16 pulses per revolution, a commercial unit can generate hundreds of cycles, giving a far improved
resolution.
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Figure 8.14 The reflective optical sensor. (a) Principle of operation. (b) Electrical connection

Figure 8.15 A reflective opto-sensor used as a shaft encoder on the Derbot
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8.6.5 Ultrasonic object sensor

Ultrasound is widely used for sensing and measurement, from simple distance measurement to complex
medical imaging. The Derbot AGV uses an ultrasonic reflective sensor to detect obstacles in its path or to
allow it to run parallel to a wall. The sensor, a Devantech SRF04 [Ref. 8.7], is seen in Figure 8.12.

The sensor consists of a transmitter and receiver and, to the extent that it is based on a reflective principle,
is initially similar to the reflective opto-sensor. The big difference lies in the fact that the ultrasound source
is pulsed and the time taken for the echo to return is measured; from this a distance can be calculated. The
timing diagram of the sensor is shown in Figure 8.16. A logic pulse is input to the module trigger input. This
causes an eight-cycle ultrasonic burst to be generated. The echo output of the module then goes high and
remains high until an echo is detected, at which point it goes low. If the duration of the pulse is measured,
then the distance away of the object that caused the reflection can be calculated.

8.7 More on digital input

If a microcontroller is to receive logic signals, then it is essential that those signals are at voltage levels
which are recognised by it as being either Logic 0 or Logic 1. These voltage levels are usually defined
by logic family, for example TTL (Transistor Transistor Logic) or CMOS (Complementary Metal Oxide
Semiconductor). When one device is connected to another, and each is supplied by the same voltage and
is of the same logic family, then it is usually safe to assume that logic levels will be safely and reliably
transferred. However, if signals are generated from a non-logic source, e.g. a sensor, or if they have been
received over a long communication link, or have been subject to interference, then it may be that they are
not correctly interpreted by the receiver.

8.7.1 16F873A input characteristics

To determine whether a signal will be properly received by a logic device, it is first necessary to under-
stand its input characteristics. The characteristics for a 16F873A port bit, taken from Ref. 7.1, are shown
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diagrammatically in Figure 8.17. From this it can be seen that any input voltage lying between 0 and 0.8 V
is interpreted as a Logic 0, and any lying between 2 and 5 V is interpreted as a Logic 1. An input voltage
lying between these two regions is not defined.

If the input voltage exceeds 5 V, then there is a danger of damage to the device. Logic inputs, however,
almost invariably have internal protection diodes, one connected from input to ground, the other from
input to supply rail. This arrangement can be seen by looking forward to Figure 8.19(a). Both diodes are
connected so that in normal operation they are reverse-biased. However, if the input voltage exceeds the
supply rail by a voltage adequate to cause diode conduction, then the diode connected between them will
start to conduct and the input voltage will be clamped at that voltage. Similarly, if the input falls sufficiently
below 0 V, then the other diode will start to conduct. This mechanism offers some protection to the input
circuit.

For the 16F873A, input protection diodes come into action at +5.3 or −0.3 V. These do not, however, have
limitless capability; the maximum input clamp current is specified as ±20 mA. If the absolute maximum
voltages are significantly exceeded, then damage will occur, probably starting with the destruction of a
protection diode.

8.7.2 Ensuring legal logic levels, and input protection

It is up to the designer to ensure that the input voltage is only ever steady state in one of the recognised logic
levels, i.e. one of the shaded zones of Figure 8.17. It can pass quickly through the intermediate undefined
zone, but must not linger there. It must never exceed the maximum ratings. It will meet these conditions if
signals are generated locally, by another logic device of the same family. If, however, the signal has been
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Figure 8.18 Different forms of signal corruption. (a) Spikes in signal, potentially harmful to device input. (b) Spikes
in signal. (c) Excessively slow edges. (d) DC offset in signal

transmitted over a long distance, maybe from a remote sensor, or there is interference, or if it was never a
proper logic signal in the first place, then problems may arise.

Figure 8.18 shows sketches of a number of forms that a corrupted signal can take. Signal (a) has acquired
positive-going spikes, which are potentially damaging to the input circuit. Signal (b) has similarly acquired
voltage spikes. While these are not at a level that will damage the input circuit, they may well lead to
misleading results, particularly if the signal is to be input to a counter, or is a serial clock or data signal.
Signal (c) has very slow edges, perhaps due to the filtering effect of a long cable or because the source
is from a sensor. Finally, signal (d) looks like a reasonably healthy logic signal, but it has picked up a
voltage offset. This could be due to long-distance transmission, with a voltage differential between the earth
references at transmitter and receiver.

A variety of techniques are available to try to correct problems like these, and to ensure legal logic levels.
These are found in any good electronics textbook. Figure 8.19 illustrates three of them.

Clamping voltage spikes – with current-limiting resistor

It has been mentioned that if too much current flows in the protection diodes, they will themselves burn out.
Therefore, if there is a chance of the protection diodes being invoked, then it is worth including a series
resistor to limit the current that may flow in them. This is shown in Figure 8.19(a). Such a method would
correct the corrupted signal of Figure 8.18(a), if the magnitude of the spikes was not too great.

Suppose in Figure 8.18(a) that the maximum permissible diode current was 20 mA, Rprot was 1 k� and the
upper protection diode started to conduct when the input voltage was 5.3 V. Then the maximum permissible
voltage spike would have a peak value of [(20 mA × 1 k�) + 5.3], or around 25 V.
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Figure 8.19 Some simple methods to condition a digital input. (a) Invoking protection diodes. (b) Filtering spikes with
Schmitt trigger. (c) Isolation or level shifting with the opto-isolator

Schmitt trigger

The Schmitt trigger was described in Chapter 3. It provides an easy means of speeding up slow logic edges,
such as are seen in Figure 8.18(c).

Analog input filtering

Sometimes a logic signal picks up interference that is not potentially damaging to the microcontroller, but
can cause problems in the system operation. For example, if the signal is the input to a counter, then spurious
counts will occur if there are voltage spikes in the signal. A simple RC filter, as seen in Figure 8.19(b), is
sometimes enough to remove low-level interference. The edges of the signal, which will have been slowed
by the filter, can be recovered by means of the Schmitt trigger. This approach could solve the problem seen
in the signal of Figure 8.18(b).

Figure 8.20 shows the oscilloscope trace at the output of one of the reflective opto-sensors on the Derbot
AGV. The connections to this run close to the motors, which being brushed DC motors are a rich source of
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Figure 8.20 Signal from the Derbot reflective opto-sensor

interference. The signals are connected to the inputs of Timer 0 and Timer 1. While the signal does not look
severely corrupted, it was found that the little voltage spikes that are present are quite enough to introduce
spurious counts.

As the circuit diagram of Figure A3.1 shows, an RC filter having component values R = 11K, C = 10n
(i.e. cut-off frequency close to 1.4 kHz) is inserted in the signal path. This is well above the maximum
frequency of 40 Hz expected from the shaft encoder, but proved adequate to remove the effects of the
voltage spikes. The Schmitt trigger inputs of both timers then serve to correct the slow rate of change of
the incoming signal.

Opto-isolation

The opto-isolator, as seen in Figure 8.19(c), is a very useful means of protecting a logic input, especially
when a signal has been received over a distance. The incoming signal drives an LED, whose light output
activates an opto-transistor. There is no electrical connection between input and output, so problems such
as the earth differential, seen in Figure 8.18(d), can be resolved.

Digital input filtering

Many ICs designed to accept signals that may carry interference have some form of digital input filtering
designed into their input circuit. This is the case with the 16F873A, as we shall see in Chapter 10 with the
asynchronous serial input. A simple digital filtering strategy is to sample the input three times in succession
and then use a ‘majority vote’ circuit to determine the logic value to be accepted. Thus, if two ones and
one zero are detected, the Logic 1 will be accepted and the zero – possibly representing a glitch due to
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interference – discarded. The sampling must of course occur at a faster rate than any intended rate of genuine
input change.

8.7.3 Switch debouncing

A particular problem with mechanical switches is the property that the switch contacts literally bounce as
they close. This leads to a short period of time, generally less than 10 ms, when the switch state bounces
between open and closed. When switching on a conventional electrical load, like a light, this is not a problem
and is not even noticed. When connected to a digital circuit, particularly one that has a rapid response or is
counting, the effect can be disastrous.

A number of standard ways exist to eliminate the effect of switch bounce. Hardware techniques, generally
based on bistables or Schmitt triggers, can be found in any good electronics textbook and in Ref. 1.1. It
is interesting to explore software techniques briefly here, as these can be implemented in a system without
extra cost. Figure 8.21 shows two possibilities. In (a) and (b), a switched input is being polled (i.e. read
periodically), with the polling period being greater than the period of switch bounce. If, as in (a), the switch
change and bounce occurs between input polls, then a clean transition is perceived. If the input is polled
as the switch bounce occurs, as in (b), then the logic value read is unpredictable. Either the previous logic
state is detected and retained for another poll interval (dotted line) or the new logic state is detected (solid
line), a value repeated at the next poll. In either case the transition is clean.

Sometimes the programmer does not want to poll an input, but may instead use it to force an interrupt. If the
interrupt is caused by a single switch, changing to a known state (for example, always switching from high
to low), then switch bounce is unlikely to cause a problem. The interrupt could, however, be caused by one
of several switches, for example the keypad read described earlier in this chapter. If the switch states were
read immediately the interrupt occurred, then the read would probably occur during the period of switch
bounce. In this case a short programmed delay, following the first detection of change, can be introduced.
Switch states can then be read at the end of the delay, when the bounce has completed.

8.8 Actuators: motors and servos

A common requirement in an embedded system is to cause physical movement. This is usually either
linear, i.e. movement in a straight line, or rotary. Many of the actuators used to create these movements are
electrical. Solenoids can be used for linear movement, ‘servos’ for angular only, and DC or stepper motors
for angular or rotary. Other actuation methods, particularly for high forces, include pneumatic and hydraulic.

8.8.1 DC and stepper motors

DC and stepper motors are very widely used in embedded systems. While based on very different operating
principles, they tend to compete for similar applications. Given the right operating environment, both can
be used for continuous rotary motion or for precise angular displacement.

DC motors range from the extremely powerful to the very small. DC motors drive huge electric trains, but
also drive tiny mechatronic systems. Their popularity is due to their wide, useful speed range, the ability
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Figure 8.21 Eliminating switch bounce by polling. (a) Input poll misses bounce. (b) Input poll hits bounce

to control this speed and their potentially good efficiency. When used with a feedback potentiometer or
shaft encoder, they can be used to provide accurate angular positioning. Small DC motors, such as are used
in embedded systems, are usually of the permanent magnet type, i.e. the magnetic field within which the
armature rotates is provided by one or more permanent magnets. This leads to one of the attractive features
of the DC motor – its operating simplicity. Only the armature winding needs to be driven.

The big attraction of stepper motors is their ability to interface very directly with a digital system. Each
digital pulse sent to a stepper controller can be used to advance the motor shaft position by a known angle.
Therefore, in theory, a microprocessor or microcontrollers can control speed and angular position of the
motor shaft to a high level of accuracy, without feedback. In practice this happy position is not completely
achieved. Stepper motors have awkward start-up characteristics, show mechanical resonance in a particular
speed range and lose torque at high speed, with a limited top speed. Any of these can cause the motor to
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lose synchronisation with its digital drive. On top of this, stepper motors tend to be less efficient and more
complex to drive than the DC motor.

The choice between stepper and DC motor is not always an obvious one. In general, if precise and limited
rotary motion is required, and power consumption is not of primary importance, then stepper motors usually
win. If less precision is needed, and perhaps higher speed and/or higher efficiency, then a DC motor may
be the choice.

The Derbot AGV needs controllable rotary actuation to drive its wheels. It steers by these, and needs to
exercise speed and distance control. All these functions could be achieved by stepper motors. However,
the simplicity of driving a DC motor, coupled with their good efficiency – essential for the Derbot battery
operation – led to the choice of this type of motor. To effect control some form of feedback was necessary.
For this the simple shaft encoder already described was implemented. The version of the Derbot described
in this book uses a geared motor made by MFA/Como Drills [Ref. 8.8]. The motor is pictured in Figure 8.22,
with basic data provided in Tables A3.1 and A3.2.

8.8.2 Angular positioning: the ‘servo’

The ‘servo’ is a device that has claimed the generic title of servomechanism for its own! Widely used in
radio-controlled modelling and robotics, it allows precise angular positioning. The servo output is a shaft
that can take an angular position over a range of around 180◦. The input to the servo is a pulse stream,
generally of repetition rate 50 Hz (i.e. period of 20 ms). The width of the input pulse determines the angular
position of the output shaft. In the example of Figure 8.23, a pulse width of 1.25 ms leads to an output shaft
position of 0◦, 1.5 ms to an output shaft position of 90◦ and 1.75 ms to an output shaft position of 180◦.
This is an example of pulse width modulation, which we shall meet in later chapters.

Figure 8.22 A Derbot geared motor MFA/Como RE280/1
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Figure 8.23 Servo input and output characteristics

In some of its configurations the Derbot uses the Futaba S3003 servo [Ref. 8.9] to rotate the ultrasonic
sensor, thus allowing a single sensor to make measurements in different directions.

8.9 Interfacing to actuators

8.9.1 Simple DC switching

Only very small electrical loads, like LEDs, can be driven directly by a microcontroller port bit. Larger
loads, drawing beyond 10 or 20 mA, or powered from a voltage higher than the logic supply voltage, need
to be interfaced via power switching devices.

Transistor switches provide an easy way of switching DC loads. Figure 8.24 shows two types applied,
MOSFET and bipolar, interfacing a controller port bit or logic gate output to a resistive load RL. In both
circuits a logic high from the microcontroller causes current to flow in the load. As with the Open Drain
output shown in Figure 3.6, the load supply voltage VS does not have to be the same as the microcontroller
supply. In many cases it is greater, for example a microcontroller powered from 5 V can drive a load powered
from 12 or 24 V.

A bipolar transistor (Figure 8.24(a)) requires a small base current to switch a much larger collector current.
MOSFETs (Figure 8.24(b)) require a modest gate voltage, with negligible current, to switch a large drain
current. As the MOS device is purely voltage controlled, its gate can be connected directly to the port bit
output. This output must then just comfortably exceed the gate-to-source threshold voltage necessary for
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Figure 8.24 Transistor switching of DC loads. (a) Resistive, bipolar transistor. (b) Resistive, MOSFET. (c) Inductive,
MOSFET

the MOSFET to switch on. This simplicity of connection makes the MOSFET a very attractive option for
load switching in the microcontroller environment, as long as the threshold voltage just mentioned can be
exceeded.

Special families of MOSFETs, designed for direct interface to logic levels, are available. Two examples,
made by the company Zetex [Ref. 8.10], are shown in Table 8.1. For either transistor, it can be seen that if
their gate-to-source voltage VGS exceeds 3 V, then their drain-to-source resistance falls from near infinity to
a low value. How low it goes depends on the type and internal construction. The ZVN4306A has the lower
maximum ‘on’ resistance of 0.33 �. Its input capacitance is, however, 350 pF. The slightly lower-priced
ZVN4206A has an ‘on’ resistance of 1.5 �, but a lesser input capacitance, of 100 pF. This input capacitance
has to be charged by the drive circuit as it switches from Logic 0 to 1. For high current-capacity MOSFETS
it becomes a significant factor, in many cases needing its own drive circuit.
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Table 8.1 Characteristics of two popular logic-compatible MOSFETs
Characteristic ZVN4206A ZVN4306A
Maximum drain-to-source voltage, VDS (V) 60 60
Maximum gate-to-source threshold, VGS(th) (V) 3 3
Maximum drain-to-source resistance when ‘on’, RDS(on) (�) 1.5 0.33
Maximum continuous drain current, ID 600 mA 1.1A
Maximum power dissipation (W) 0.7 1.1
Input capacitance (pF) 100 350

If the load is inductive, like a DC motor, the winding on a stepper motor, a solenoid or electromechanical
relay, then special precautions must be taken. The inductance stores energy when current is flowing in its
magnetic field. If the applied voltage is switched off, it is essential for a path to be provided for the current
to decay to zero, by which process the inductance returns the stored energy to the circuit. This is normally
done by the inclusion of a ‘freewheeling’ diode, as seen in Figure 8.24(c).

8.9.2 Simple switching on the Derbot

The Derbot AGV uses transistor switching in a number of places, both on the main AGV as well as on the
hand controller, to switch loads on and off. Two of these are shown in Figure 8.25, taken from the main
Derbot circuit diagram of Figure A3.1.

The piezo sounder is rated at 9 mA, 3–20 V. As such, it can be driven directly from the 5 V supply, so
does not demand its own drive transistor. Nevertheless, to minimise loading on the microcontroller, it was

ZVN4206ZVN4206

Piezo
sounder

OptoOpto

Left Right

5 V

5k6 5k691R

Port B bit 2Port B bit 1

Kingstate electronics
KPE-204A

0 V

Optek
OPB608A

Figure 8.25 Section of Derbot circuit diagram – opto-sensors and piezo sounder
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decided to include one. The opto-sensors tend to be a little more power hungry. To minimise overall current
consumption, the two sensor LEDs are connected in series, as seen in the figure. Experimentally, the
sensors were found to operate well if the resistor in series with the LEDs was 91 �. With (from device data)
a forward voltage across each diode of around 1.7 V, this indicates a current of:

I = (5 − 3.4)/91

I = 17.6 mA

As with the piezo sounder, a PIC® microcontroller port output would be able to switch this, although it is
closer to the 25 mA ‘absolute maximum’ limit. Again, however, it was decided to use transistor switching
to minimise microcontroller loading.

8.9.3 Reversible switching: the H-bridge

As we have seen, it is easy to switch loads on and off, with the current always going in the same direction.
Some loads, however, for example DC or stepper motors, need to have a reversible voltage applied, even
if only a unipolar supply voltage is available. The way this is usually achieved is by a simple yet ingenious
circuit connection called the H-bridge, shown in Figure 8.26.

In the H-bridge two pairs of switching devices, usually transistors, are connected between supply rail
and 0 V. For simplicity the switching devices are shown in the diagram as switches, with a control input
assumed to close the switch if the control is at Logic 1. The switch pairs are labelled A and B. Each pair
has a ‘high-side’ and a ‘low-side’ switch. The load is connected between the two pairs to form an overall
H configuration. Clearly, the switches in a pair must never be on at the same time or the supply will be
shorted to ground. Therefore, it is common to drive them through a logic inverter, as shown, to ensure that
only one can be on at any time.

VS

Input X Input Y

Load

‘High side’

‘Low side’

A B

Figure 8.26 The principle of the H-bridge



The human and physical interfaces 219

If input X is switched low and input Y high, then the switch positions will be as shown in the diagram,
with upper right and lower left closed, and the other two open. Current will then have a path through the
high side of Pair B, through the load and through the low side of pair A. If the two inputs are reversed,
then all switches will change state and current flows in the opposite direction. Reversible current drive has
been achieved. If the load is inductive, freewheeling diodes must be connected as shown. This circuit, and
derivations of it, is applied in many applications – from low power to very high power indeed.

A low-power, practical realisation of the H-bridge is available in the L293D IC, made by ST Microelectronics
[Ref. 8.11]. This contains four half-bridges, so that two full H-bridges can be configured. A simplified
diagram is shown in Figure 8.27. This is drawn so that each half-bridge is depicted as a logic buffer. This
may not seem immediately obvious, but consider in the previous diagram that when input X is high, then
the voltage output from transistor pair A is high, or low when input X is low.

Buffers 1 and 2 can form one complete H-bridge, as can buffers 3 and 4. Two power supplies, VLS and
VOS, are used. The former supplies the input logic, while VOS supplies the bridge itself. These two supplies
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Operating Conditions – Highlights
600 mA output current per channel
Over temperature protection

1.2 A peak output current (non-repetitive) per channel 
High noise immunity (Logic 0 input voltage to 1.5 V)

Figure 8.27 The L293D dual H-bridge
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Figure 8.28 The L293D applied in the Derbot motor drive circuit

can be of different values, although VOS must not be less than VLS. The logic supply could, for example,
be at 5 V, with the load supply at 12 V. An enable is provided to pairs of buffers, so that all switches in the
bridge can be easily switched off. Internal freewheeling diodes are included. The L293D has four ground
pins, which can be soldered to a copper plane on the PCB to provide a limited amount of heat sinking.

8.9.4 Motor switching on the Derbot

The Derbot AGV uses the L293D to drive its two motors, with the circuit detail shown in Figure 8.28.
Instead of having separate drives to each logic input, it uses an inverter between each. Thus, the motor is
always driven in one direction or the other. However, the enable lines are each driven from a port bit, so
that each motor can be disabled. The logic supply is connected to the main 5 V supply, while the output
supply is taken directly from the incoming battery voltage, meaning that 9 V is available for driving the
motors. Internal voltage drops in the IC, however, reduce this to closer to 7 V. The enable lines each have
a pull-down resistor of value 10 k�, connected between them and ground, not shown in this diagram (but
seen in Appendix 3). These have the important function of disabling the motors when the microcontroller
is not driving these lines, for example during initialisation.

8.10 Building up the Derbot

If you are building up the Derbot it is suggested that you now add the motors and their drive, based around
the L293D, leading to the circuit shown in Figure 8.29. If you want a running AGV, then you will also need
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Figure 8.29 Derbot intermediate build stage 2

to build the battery pack using the separate PCB and mount the spacing pillars. Further build guidance is
given on the book CD.

You can also at this time build up a hand controller card, either in its LED or its LCD version. The programs
used in the first sections of this chapter can then be downloaded and tested. These programs do not yet
cause the hand controller to interact with the AGV; this is coming in later chapters.
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8.11 Applying sensors and actuators – a ‘blind’ navigation
Derbot program

With the Derbot build as just described, it is possible to run the program Dbt_blind_Nav, as found on the
book CD, with the main features appearing in Program Example 8.4. This program sends the AGV running
forward until it hits an obstacle, detected by its front microswitches. At this point it reverses, turns and runs
forward again in a new direction.

The main program runs from the label start, by setting the motors running forward. It should be easy to
do this simply by switching the motors on. However, they are chosen to give a good top speed, which is
excessive for this simple application. Therefore, pulse width modulation is applied to set a slower speed.
The detail of this is hidden in the subroutines leftmot_fwd and rtmot_fwd, which are called in turn. These
are not included in the program example below, but can be found in the full book listing and will be
fully explored in a later chapter. The program then enters a loop, at label loop. Here it repeatedly tests its
microswitches and continues running until one or other is detected as being activated. When a microswitch
is hit, the AGV stops, sounds the piezo sounder and reverses for 1.5 s approximately, again calling pulse
width modulation subroutines to do this. It then turns, driving one motor forward while the other continues
to reverse, before returning to running forward in the main program loop.

;***************************************************************
;Dbt_blind_Nav
;Derbot moves by “blind” navigation.
;Moves forward, and reverses and turns on bump.
;Fixed rate PWM applied to set reasonable speeds.
;
;TJW 5.5.05 Tested 9.5.05
;***************************************************************
...
(Memory Allocation and Initialisation omitted)
...
;start motors
start call leftmot_fwd ;sets left motor running forward

call rtmot_fwd ;sets right motor running forward
;test for bumps - reverse and turn if either microswitch closes
loop btfss portb,us_rt ;test right microswitch

goto rev_rt
btfss portb,us_left ;test left microswitch
goto rev_left
call delay100
goto loop

;
rev_rt bsf portc,led_rt

bcf porta,mot_en_left ;stop motors
bcf porta,mot_en_rt
bsf portb,sounder ;small bleep from sounder
call delay200
bcf portb,sounder

Program Example 8.4 Derbot blind navigation (section)
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;reverse both motors
call leftmot_rev
call rtmot_rev
call delay500
call delay500
call delay500
call leftmot_fwd ;left motor forward to turn
call delay500
call delay500
bcf portc,led_rt
goto start

;
rev_left bsf portc,led_left

bcf porta,mot_en_rt ;stop motors
bcf porta,mot_en_left
bsf portb,sounder ;small bleep from sounder
call delay200
bcf portb,sounder

;reverse both motors
call leftmot_rev
call rtmot_rev
call delay500
call delay500
call delay500
call rtmot_fwd ;right motor forward to turn
call delay500
call delay500
bcf portc,led_left
goto start

...
(subroutines omitted)
...

Program Example 8.4 Continued

Summary

• An embedded microcontroller must be able to interface with the physical world and possibly the human
world as well.

• Much human interfacing can be done with switches, keypads and displays.
• To interface with the physical world, the microcontroller must be able to interface with a range of

transducers. The designer needs an understanding of the main sensors and actuators available, and must
be ready to keep abreast of current technology in the field.

• Interfacing with sensors requires a reasonable knowledge of signal conditioning techniques.
• Interfacing with actuators requires a reasonable knowledge of power switching techniques.
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Taking timing further

We began to see in Chapter 6 how important counting and timing are in the embedded environment. We also
saw how easy it is to count digitally and to convert that counting ability to an ability to measure time. We
need now to take this capability much further, especially in the timing arena. Once we have good tools for
timing, we can use them to underpin other microcontroller functions, like the generation of serial data or of
pulse width modulation. We can also use those timing tools to facilitate complex external activity, generating,
for example, the timing signals for an engine management system.

This chapter will explore counting and timing needs in the embedded environment, and develop capabilities
to meet those needs, to a comparatively sophisticated level. While counting remains the underlying technique,
it is its timing function that emerges as the predominant activity.

A central theme of this chapter will be an exploration of enhanced counter/timer structures. This will lead
to the microcontroller being able to hand over much of its time-based activity to this hardware. Program
execution can then continue, doing other things, while the hardware looks after timing issues. This activity
will include:

• Maintaining continuous counting functions
• Recording (‘capturing’) in timer hardware the time an event occurs
• Using timer hardware to trigger events at particular times
• Setting up an environment whereby repetitive time-based events can be generated
• Measuring frequency, and hence physical variables which can be expressed as frequencies, for example

motor speed.

The structures examined will be those of the 16F873A microcontroller. This will lead both to increased
expertise in using this device and its relatives, as well as to an understanding of the underlying concepts,
applicable to any microcontroller system. Many aspects will be illustrated with examples from the Derbot
AGV. The necessary build for this is outlined in the final section of this chapter.

Note that Microchip tend to use the terminology ‘timer’ when referring to their counter/timer modules. In this
chapter, ‘timer’ and ‘counter/timer’ will be used more or less interchangeably.

9.1 The main ideas – taking counting and timing further

Building on the material of Chapter 6, we need now to move on to more advanced applications of counting
and timing, as shown in the bullet-point list above. The ability to do these things depends very much
on extending the basic counter/timer hardware. Therefore, in this chapter each new counting or timing
technique will be introduced alongside a description of the hardware that enables it to happen.
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The Timer 0 of the PIC® 16 Series was introduced in Section 6.3 of Chapter 6. Take a moment to look
at Figure 6.8 and remind yourself of its principle features, if there is any chance you have forgotten. At
the heart is a digital counter, which is memory mapped, and can be written to and read from. The clock
input to the counter can be selected from two sources. Either an external input can be chosen, in which
case the module is often viewed as being in ‘counter’ mode. Alternatively, the internal oscillator signal
can be connected to the counter, in which case it is viewed as being in ‘timer’ mode. A prescaler can be
applied, which divides down the frequency of the incoming clock signal. When the counter counts up to its
maximum value and then overflows to zero, an interrupt can be generated.

The PIC 16F873A has three timers, with some important accessories, which we now explore. The
comparatively simple structure just reviewed forms the basis of the more advanced designs that we shall see.

9.2 The 16F87XA Timer 0 and Timer 1

9.2.1 Timer 0

The 16F873A uses the standard mid-range Timer 0 module. This is therefore the same counter/timer design
as used by the 16F84A. Hence the description of Chapter 6, Section 6.3.3 fully applies.

9.2.2 Timer 1

The PIC mid-range Timer 0 is limited by being only 8 bits. Timer 1, shown in Figure 9.1, builds directly
on the concepts of Timer 0, but has a number of important differences. First of all, it is 16-bit. As the figure
shows, it is made up of two 8-bit registers, TMR1H and TMR1L. These are Special Function Registers
(SFRs), which in the usual way are readable and writeable. They can be seen in the register file map

The 16-bit counter

External input

Connections for
external oscillator Internal clock source

Figure 9.1 The 16F87XA Timer 1 block diagram (supplementary labels in shaded boxes added by the author)
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of Figure 7.6. Together, they can count from 0000 to FFFFH, or 65536D. When the count rolls over from
FFFFH back to 0, the interrupt flag TMR1IF (seen in the interrupt structure diagram of Figure 7.10) is set.
This can be enabled to form an interrupt on overflow.

Timer 1 is controlled by the T1CON register, shown in Figure 9.2. The timer is switched on and off with
bit TMR1ON. The timer has three distinct clock sources, which can be traced on Figure 9.1. For counting
functions, the external input T1CKI, shared with pin 0 of Port C, must be used. For timing functions, there
remains the option of the internal clock oscillator, Fosc/4. Selection between these two is made by the
TMR1CS bit in the control register. A third possible clock source is made available due to the possibility of
setting up a dedicated Timer 1 external oscillator, connected to the two external pins shown. This removes
the dependence of working with the main oscillator frequency. The external oscillator can operate at a
frequency entirely distinct from the main oscillator, and can also run when the main one is shut down in
Sleep mode. The external oscillator is enabled with the T1OSCEN bit. The oscillator input for Timer 1 is
identical to the main LP oscillator (Section 3.5.3 of Chapter 3). It is intended for lower frequency oscillation,
up to around 200 kHz. Typically it is used with a 32.768 kHz crystal, which can be divided down to provide
a one-second time base.

Note: In the 18 Series register of this name, bit 7 is called RD16. If set to 1 it enables the
‘16-bit Read/Write’ mode

Figure 9.2 The Timer 1 control register, T1CON (address 10H)
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Whichever clock source is chosen, there is the option of applying the prescaler. With only two control bits,
TICKPS1 and TICKPS0, this does not have the range of scaling options offered by Timer 0, with only
three effective division values, of 2, 4 and 8. Finally, synchronisation of the external input is enabled by
bit T1SYNC. The timer must run synchronously if either the Capture or Compare modes, described in the
coming sections, are to be used. If operating asynchronously, however, it can continue to run when the
microcontroller is in Sleep mode.

When the external clock source is chosen, the counter is always incremented on a rising edge (on Timer 0,
a rising or falling edge can be chosen). However, the counter must first have a falling edge before it starts
to count. There is a danger, therefore, that a first pulse might be lost. We will see in the Derbot program
that follows how to get over this little problem.

9.2.3 Application of Timer 0 and Timer 1 as counters for
Derbot odometry

Having suggested that timing is to be the dominant theme of this chapter, our first example is of counting!
A fundamental need of any vehicle is an ability to measure how far it has travelled, a technique known
as odometry. This is done in the Derbot by using its handmade optical shaft encoders, as described in
Section 8.6.4 of Chapter 8. By counting pulses from the shaft encoder, and calculating from the wheel
geometry the distance represented by each pulse, a measure of total distance travelled can be obtained.

Program Example 9.1 applies the shaft encoder to implement simple odometry with the Derbot. The outputs
of the two optical sensors are connected on the Derbot PIC to the inputs of Timer 0 and Timer 1, as shown
in Figure A3.1. Both of these are used in Counting mode. For the wheel diameters used in the prototype,
and applying the shaft encoders described in Appendix 3, the program drives the Derbot forward for 1 m.
It then completes a 180◦ turn on the spot and runs forward for 1 m again. The program loops continuously
in this manner.

As before, to save space, the full program listing is not reproduced in the book, but can be found in the
book CD. It is instructive to look at a number of features of the program. Port bits are set up in the normal
way, to reflect Derbot bit usage. ADCON1 controls whether Port A bits are to be used for analog input or
digital input/output. It is initialised here for the final expected analog/digital distribution of Port A bit, even
though the analog input is not used in this program.

By checking the Option register diagram in Figure 6.9, the Timer 0 settings described in the comment can
be verified. Similarly, a look at Figure 9.2 should verify the setting for Timer 1.

At the program section opto_move, both timers are cleared to zero. The input to Timer 1 is, however,
tested. If it is zero, then the timer value is incremented to one, as the first rising edge is not detected in
the hardware. The two motors are then set running forward, using the same subroutines used in Program
Example 8.4. Program execution then moves to the loop opto_loop. Here the timer values are continuously
tested. A count of 91 represents a distance travelled of 1 m, for an encoder pattern of 16 black/white
cycles per wheel revolution, as described in Appendix 3. When a timer value reaches 91, the respective
motor enable bit is cleared to zero and the motor stops.
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When both motors have stopped, the Derbot executes a turn on the spot, running the motors in opposite
directions. The distance that each wheel must cover is calculated by applying the geometry described in
Appendix 4, and found to equate to the count of 23 that is found in the program. In program execution,
the arc travelled by each wheel in the turn is measured with the shaft encoder, and the motors stop running
when the distance is complete. The AGV then runs the same fixed distance back to its starting point and
the process continues.

;***************************************************************
;odometry_test
;Runs forward a fixed distance, turns by 180 degrees,
;and returns - looping continuously.
;
;TJW 19.5.05 Tested 20.5.06
;***************************************************************
...
(comments, and memory definition omitted)
...

org 00
;set up SFRs in Bank 1
...
(set up Tris A, B, C)
...

movlw B'01000100'
movwf adcon1 ;set port A for right analog/digital mix
movlw B'11101000' ;set up Timer 0: external input, low to high

;transition,no prescale
movwf option_reg
movlw D'250' ;set PWM prd
movwf pr2

;set up SFRs in Bank 0
bcf status,rp0 ;select bank 0
movlw B'00000011' ;set up Timer 1: no prescale, oscillator
movwf t1con ;disabled, external sync input

...
further initialisation, and opening section of program
...
;*************************************************
;run forward fixed distance, then turn and return
;*************************************************
opto_move clrf tmr0 ;clear timers

clrf tmr1l
clrf tmr1h
clrf flags
btfss portc,0 ;increment T1 if ip is zero, as first rising edge

;isn’t detected
incf tmr1l
call leftmot_fwd ;start motors running
call rtmot_fwd

opto_loop call opto_to_led ;transfer opto states to diagnostic leds
;move forward set distance (1m)

movlw D'91' ;test if counter has reached this value

Program Example 9.1 Application of Odometry with the Derbot
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subwf tmr0,0
btfsc status,z
bcf porta,mot_en_left ;disable motor if value reached
movlw D'91'
subwf tmr1l,0
btfsc status,z
bcf porta,mot_en_rt

;if both motors stopped, proceed to turn, otherwise loop
btfsc porta,mot_en_left
goto opto_loop
btfsc porta,mot_en_rt
goto opto_loop

;now turn
call delay500 ;ensure AGV is at rest
movlw 00
movwf tmr0 ;clear timers and flags
movwf tmr1l
btfss portc,0 ;increment T1 if it is zero,
incf tmr1l
call leftmot_fwd ;turn on spot, left motor forward, right back
call rtmot_rev

;execute the turn
opt_loop1 call opto_to_led ;transfer opto states to diagnostic leds
;rotate by 180 degrees

movlw D'23' ;test if counter has reached this value
subwf tmr0,0
btfsc status,z
bcf porta,mot_en_left ;disable motor if value reached
movlw D'23'
subwf tmr1l,0
btfsc status,z
bcf porta,mot_en_rt

;if both motors stopped, proceed to straight line, otherwise loop
btfsc porta,mot_en_left
goto opt_loop1
btfsc porta,mot_en_rt
goto opt_loop1
call delay500 ;ensure we’re at rest
goto opto_move

;**********************************************

;SUBROUTINES

;**********************************************
...

motor control and delay subroutines
...

;transfers opto sensor state to leds
opto_to_led bcf portc,led_left ;preclear left led

btfss porta,4
bsf portc,led_left ;but set it if opto on
bcf portc,led_rt ;preclear right led
btfss portc,0

Program Example 9.1 Continued
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bsf portc,led_rt ;but set it if opto on
return
end

Program Example 9.1 Continued

This program demonstrates the application of counting to odometry, and also its weaknesses. The resolution
of the distance measurement using this simple home-made shaft encoder is poor and suitable for demon-
stration purposes only – interesting though these are. The AGV can execute only approximate 180◦ turns
and an approximate return home. If it is allowed to continue its back and forth trajectory, its return becomes
increasingly approximate, as a cumulative error builds up. Moreover, there is no speed control on the motors.
Although driven from the same voltage, any two motors are rarely identical and the AGV tends to run in a
curve, albeit slight. We will be able to resolve this problem when speed measurement is implemented later
in this chapter, and speed control in Chapter 11.

9.2.4 Using Timer 0 and Timer 1 to generate repetitive interrupts

An important use of a counter/timer is often for it to generate a continuously running series of accurately
timed interrupts. These can be used for a host of timing applications, including forming the basis of a
sophisticated programming framework known as a Real Time Operating System – but that’s the business
of Chapter 18! Sometimes such a series of interrupts is called a clock tick. This can be a little misleading,
as we already have a clock oscillator and now we are talking about something different. However, such a
clock tick can become almost as fundamental as the microcontroller clock oscillator itself, and can be used
as the basis for almost as many time-based operations.

Timer 0 and Timer 1 can readily be used to generate such a clock tick, as both can produce an interrupt on
overflow. The principle is illustrated in Figure 9.3. The timer is set to run continuously, in Timer mode, with
interrupts enabled. Its value is represented by the stepped waveform in the diagram. It repeatedly counts up
to its maximum value and overflows back to zero. Every time it does this, an interrupt is generated.

Timer  value

Interrupts

Timer overflows to zero, interrupt is generated

Tint

Figure 9.3 Generating a ‘clock tick’ – a repetitive interrupt stream
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In general, if the timer is n-bit, then it will count 2n cycles, from one zero to the next. The time between
the interrupts, Tint, is then given by:

Tint = 2n × tclk,

where tclk is the period of the clock input to the timer.

Design Example 9.1

Assuming an oscillator frequency of 4 MHz, what is the slowest ‘clock tick’ rate that can be obtained from
Timer 0 and Timer 1? What is the next fastest in each case?

For Timer 0, refer to Figures 6.8 and 6.9. To achieve the slowest interrupt rate, the prescaler is set to ÷256.
The input clock frequency to the timer itself is therefore 1 MHz/256, or 3.906 kHz. The action of the 8-bit
timer itself is to divide this frequency by 256 to produce the clock tick frequency, which will be 3.906 kHz/256,
or 15.26 Hz. The next frequency up would be if the prescaler were set to ÷128. In this case, the interrupt
rate would be 30.52 Hz.

For Timer 1, refer to Figures 9.1 and 9.2. The maximum prescale rate is ÷8. Using this, the clock input
to the timer itself will be 125 kHz. The action of the timer is to divide this by 216, leading to an interrupt
frequency of 1.91 Hz. The next highest frequency would be if the prescaler were set to ÷4, leading to an
interrupt frequency of 3.81 Hz.

It is interesting to see that there is not a major difference between the slowest rates of each timer. Although
Timer 0 is only 8-bit, the fact that it has a very effective prescaler compensates in this sort of application for
its smaller size.

An example of interrupt on overflow appears in Program Example 9.3.

9.3 The 16F87XA Timer 2, comparator and PR2 register

9.3.1 Timer 2

The 16F87XA Timer 2 is a simple 8-bit device. It is shown in block diagram form in Figure 9.4. Only two
of the elements in the diagram, the TMR2 register and the prescaler, actually relate to the conventional
timer function. Timer 2 is a pure timer, so is driven only from the internal oscillator, shown at the right of
the diagram. No external input is possible. The 8-bit Timer register is readable and writeable, and can be
seen at memory location 11H in Figure 7.6. Modest prescaling opportunities are possible.

The control register for Timer 2, T2CON, appears in Figure 9.5. The explanations in the figure give a good
description of the role of each bit.
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Internal (and only)
clock source

Pulsed when
PR2 = TMR2

Figure 9.4 The 16F87XA Timer 2 block diagram (supplementary labels in shaded boxes added by the author)

Figure 9.5 The Timer 2 control register, T2CON
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Despite its seeming simplicity, Timer 2 begins to emerge as a powerful module when its add-on elements,
described now, are brought into play. Its usefulness is increased further when the Capture and Compare
register, with its pulse width modulation (PWM) capability, is introduced.

9.3.2 The PR2 register, comparator and postscaler

Timer 2 has a Period register PR2, at memory location 92H in the memory map (Figure 7.6), which can
be preset by the programmer. When the timer is running, its value is continuously compared with the PR2
register by the comparator. When it reaches the value held in PR2, it resets to 0 on the next input cycle.

This process is illustrated in Figure 9.6. The PR2 value is shown fixed, although it can be changed within
the program. The Timer 2 value is now just represented as a sawtooth, although its underlying stepped
nature (as shown in Figure 9.3) should still be recognised. It counts up to the PR2 value. When they are
equal, a reset is generated and Timer 2 is cleared to zero. This occurs on the increment cycle after the
equality has been detected, so there are (PR2 + 1) cycles between each reset. Figure 9.4 shows that this
reset forms an output of the module, labelled ‘TMR2 output’. This can be selected as a baud rate generator
by the synchronous serial port (SSP), as described in the following chapter.

Design Example 9.2

The Derbot AGV has an oscillator frequency of 4 MHz. What is the slowest Timer 2 interrupt rate that it can
generate?

To achieve the slowest rate, PR2, and post- and prescalers must be set to maximum. If the prescale is set
to ÷16, then the frequency of the clock driving Timer 2 will be 1 MHz ÷ 16, or 62.5 kHz. If PR2 is set to 255,
then Timer 2 will be able to clock up to its maximum value (i.e. 255) before returning to 0. Therefore, the
reset frequency will be 62.5/256 kHz, or 244.14 Hz. If this is further postscaled by 16, then the interrupt
frequency will be 15.26 Hz. This is the slowest possible interrupt frequency for this source.

PR2 value

Comparator output
(= ‘TMR2 output’)

Timer 2 value

Interrupt TMR2IF
(postscale set to /4)

Timer 2 value, if no comparator action

Figure 9.6 PR2 and comparator action
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The series of resets just described also forms an input to the postscaler, whose output can be used as an
interrupt source. The postscaler is controlled by the TOUTPSX bits of the control register. Notice that it
can take any division value up to 16 – it is not just limited to binary powers. Figure 9.6 shows the case
when the postscaler is dividing by four. The outcome of this is a stream of interrupts, whose frequency can
be adjusted across a range of values.

9.4 The capture/compare/PWM (CCP) modules

9.4.1 A capture/compare/PWM overview

At the beginning of Chapter 6 it was suggested that embedded systems have timing needs which are
equivalent in some ways to various timing needs in everyday life. The embedded system does need the
equivalent of setting an alarm and of recording the time of an event. These and other requirements are neatly
resolved by the addition of one or more registers to a basic counter/timer. A register that can record the time
of an event is called a ‘Capture’ register. One that can generate an alarm does this by holding a preset value
and comparing it with the value of a running timer (as we have seen already with PR2). The alarm occurs
when the two are equal. Such registers are called ‘Compare’ registers. The PIC 16 Series microcontrollers
combine these different functions, and more besides, in their capture/compare/PWM (CCP) modules.

The CCP modules are very versatile, and interact with both Timer 1 and Timer 2. The 16F873A has two such
modules and they are well worth understanding. Each module has two 8-bit registers, called CCPRxL and
CCPRxH, where x is 1 or 2. Together they form a 16-bit register that can be used for capture, compare or
to form the duty cycle of a PWM stream. The CCP modules are controlled by their respective CCPxCON
registers (Figure 9.7). It is the least significant 4 bits of these that determine the mode of operation of
the module. It can be seen that they can be switched off, set for PWM or set for one of four possible
configurations in either Capture or Compare mode. We will examine each operating mode in turn.

9.4.2 Capture mode

A Capture register operates something like a stopwatch. When an event occurs, the value indicated by a
running clock is recorded. In a stopwatch, the watch then stops running. In a Capture register, the clock
goes on running, but its value at the instant when the event occurred is recorded.

The CCP1 in Capture mode is shown in Figure 9.8. CCP2 will act the same as CCP1 in this mode, but will
share its input with Port C bit 1. Because the input pin is shared with Port C, it must be set as an input in
TRISC. An external signal, representing an ‘event’, is connected to the microcontroller pin RC2/CCP1. The
purpose of the Capture mode is to record in CCPR1L and CCPR1H the value of Timer 1 when the event
occurs. Further flexibility can be built in, as the external signal can be prescaled by 4 or 16, and rising or
falling edge can be selected. The possible options can be seen in Figure 9.7. As well as causing a capture to
occur, the occurrence of the event also causes an interrupt, represented by the CCP1IF flag in the interrupt
structure diagram of Figure 7.10. Module CCP2 has an equivalent interrupt, represented by CCP2IF.
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Figure 9.7 The CCP1CON/CCP2CON registers (addresses 17H and 1DH respectively)

‘Captures’ (stores)
value of Timer 1

when event (or its
prescaled version)

occurs. 

Interrupt flag set when
event (or its prescaled

version) occurs. Event input here.

Figure 9.8 Capture mode block diagram (CCP1) (supplementary labels in shaded boxes added by the author)
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Value preset
in program.

Timer 1 running
continuously.

Event can be
output here.

Figure 9.9 Compare mode block diagram (CCP1) (supplementary labels in shaded boxes added by the author)

9.4.3 Compare mode

The CCP1 module configured in Compare mode is shown in Figure 9.9. Here a digital comparator is
designed into the hardware, which continuously compares the value of Timer 1 and the 16-bit register made
up of CCPR1H and CCPR1L. Timer 1 must be running in Timer mode or in synchronised Counter mode.
The module is connected to an external pin, which must be configured as an output in TRISC. When a match
occurs, one of several things may happen, depending on the setting of the control register (Figure 9.7). The
associated output bit can be set or cleared (with the interrupt flag bit set in both cases). This allows external
events to be started or terminated. Alternatively, the interrupt may be set with no change to the output.
Finally, a ‘special event’ may be triggered. For both modules this includes clearing Timer 1 and leaving
the output pin unchanged. Module CCP2 also initiates an analog-to-digital conversion, if the converter
is enabled.

9.5 Pulse width modulation

Pulse width modulation is a very powerful technique, which allows analog variables to be controlled from
a purely digital output, and just with a single data connection at that!

9.5.1 The principle of PWM

An understanding of a typical application of PWM requires a little bit of background electronics. This is so
important that we will review it briefly, by reference to Figure 9.10.
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Figure 9.10 The principle of PWM. (a) Example circuit. (b) Time constant small compared to ‘on’ time. (c) Time
constant large compared to ‘on’ time, narrow pulse. (d) Time constant large compared to ‘on’ time, wide pulse

The voltage–current relationship in an inductor is given by the equation:

V = Ldi/dt,

where V is the voltage across the inductor, i the current through it and L its inductance. Derived from this,
if a step change in voltage is applied, then the current rises exponentially to a steady state value of V/R,
where R is the resistance of the inductor. The rate of rise depends on a circuit quantity known as the time
constant, which for an inductor is given by L/R. It can be shown that, for a step change in applied voltage,
the current rises from 10 to 90 per cent of its final value in time 2.2L/R. If the voltage is removed, the time
taken for it to fall (assuming there is a circuit for it to flow in) is the same.

Let us imagine an inductive load is switched on and off by a transistor switch, as shown in Figure 9.10(a).
When the transistor is switched off, the decaying current flows in the freewheeling diode. If the time duration
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it is on is much greater than the circuit time constant, then the current rise and fall times will just be a
small proportion of the overall time, and the current waveform will appear as shown in Figure 9.10(b).
If, however, the switching is repetitive, with a period less than the inductor time constant, then the current
has no chance to reach steady state. It rises a little when the switch is on and falls a little (flowing through the
freewheeling diode) when it is off. If the switching is continuous, the current rises to an average value which
is dependent on the Mark : Space ratio of the switching waveform. This is represented in Figure 9.10(c, d).

The great thing about this is that the average current flowing in the inductor can be controlled by the
Mark : Space ratio of the switching waveform. PWM is born!

A PWM waveform generally has a fixed period T , with a variable pulse width, ton. It can be shown, for the
circuit of Figure 9.10(a), that the average current flowing in the inductor, Iave, is given by:

Iave = ton

T
× V

R
(9.1)

9.5.2 Generating PWM signals in hardware – the 16F87XA PWM

The beauty of PWM lies in its simplicity, and the way in which it acts as a gateway between the digital and
analog worlds. It is easy to generate a PWM waveform in digital hardware. We will use the PIC 16 Series
as an example to explain this. Although the principle is straightforward, the useful ‘extras’ introduced by
Microchip add to the complexity. A little care is therefore needed in its understanding.

The simplified block diagram of the CCP configured to generate PWM is shown in Figure 9.11, with example
waveforms in Figure 9.12. It can be seen that Figure 9.11 contains the central features of Figure 9.4, with
Timer 2, comparator and the PR2 register working together. Although not now shown, Timer 2 is still driven
from the on-chip oscillator, through its own prescaler. With Timer 2 free-running, it is reasonable to expect
the waveforms of Figure 9.6 to be found in the PWM process. This is indeed the case – the waveforms of
Figure 9.6 are extended to become those of Figure 9.12. The comparator output, however, now drives an
R–S flip-flop. When the value in PR2 equals Timer 2, then the comparator clears the timer and sets the
flip-flop, whose output goes high. This is seen in Figure 9.12. This action sets the PWM period.

Having established the PWM period, let us consider how the pulse width is determined. A second Compare
register arrangement is introduced to do this. This is made up of the CCPR1H register, plus a second
comparator. As the logic of the diagram shows, every time this comparator finds equal input values, it resets
the output flip-flop, clearing the output to zero. It is this comparator that determines the pulse width. Again,
this is shown in Figure 9.12. To change the pulse width, the programmer writes to the CCPR1L register,
which acts as a buffer. Its value is transferred to CCPR1H only when a PWM cycle is complete, to avoid
output errors in the process.

The block diagram is made more complex because three of the registers are ‘stretched’, to make them
potentially 10-bit instead of 8-bit. This increases the resolution. CCPR1L uses 2 bits of the CCP1CON
register (as already seen in Figure 9.7). CCPR1H is extended with an internal 2-bit latch, while the extension
to Timer 2 is as described in Note 1 of Figure 9.11. Because of these two extra bits, in its 10-bit version
it is effectively clocked direct from the internal oscillator signal, undivided. If the prescaler is used, then it
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Figure 9.11 Simplified PWM block diagram (for CCP1 – CCP2 is equivalent) (supplementary labels in shaded boxes
added by the author)
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Figure 9.12 Example waveforms for the 16F873A PWM generator
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acts on this frequency, not the usual Fosc/4. Notice, however, that the PR2 register remains at 8 bits. This
means that the PWM period has only an 8-bit equivalent resolution.

The PWM period T is determined by the interaction of the PR2 register and the 8 bits of Timer 2. It may
be calculated as follows:

T = (PR2 + 1) × (Timer 2 input clock period)

= (PR2 + 1) × {Tosc × 4 × (Timer 2 prescale value)} (9.2)

The PWM pulse width ton is determined by the interaction of the extended CCPR1H register (all 10 bits
of it) and the extended (10-bit) Timer 2. It may be calculated as follows:

ton = (pulse width register) × (PWM timer input clock period),

where ‘PWM timer input clock period’ is the period of the clock input to the extended Timer 2 and ‘pulse
width register’ is the value in the extended CCPR1H register. Hence,

ton = (pulse width register) × {Tosc × (Timer 2 prescale value)} (9.3)

Note that there is not here a factor of 4 with the Tosc term, as explained above.

9.5.3 PWM applied in the Derbot for motor control

Let us now explore an application of the 16F873A PWM to the Derbot AGV. We need first of all to
understand how PWM is applied in the circuit design. We saw in Chapter 8 how an H-bridge could be used
for reversible drive. If PWM, rather than just on/off drive, is applied to an H-bridge, then continuously
variable reversible drive can be achieved.

The Derbot circuit diagram for the left motor is shown in Figure 9.13(a). Half of the L913D IC (Figure 8.27)
is used to form an H-bridge, with outputs driving the motor. The two inputs of the H-bridge are connected
with a logic inverter between them, so that whenever one is at Logic 1, the other is at Logic 0, and vice
versa. If the input labelled ‘Bridge Drive’ is held at Logic 1, the motor will run in one direction, if at Logic 0
in the other.

If now the Bridge Drive is connected to a PWM source, interesting things happen. If it is an exact square
wave of sufficiently high frequency, the motor stands still, as the average current is zero. This is illustrated
in Figure 9.13(b). If the Bridge Drive changes to a Mark : Space ratio of less than 1 the current takes up
a negative average value. With a Mark : Space ratio of greater than 1 it takes up a positive average value.
This is also seen in Figure 9.13(b). By varying the PWM pulse width across its full range, from absolute
minimum to absolute maximum, the motor speed can be continuously varied, in both directions.

Looking at the full circuit diagram in Figure A3.1, it should be possible to work out that CCP1 drives the
right motor, while CCP2 drives the left. Enable signals come from bits 2 and 5 of Port A.
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Figure 9.13 Applying PWM with an H-bridge to the Derbot AGV – achieving continuously variable bi-directional
control. (a) Circuit diagram (left motor). (b) Example waveforms

The simplest program that we have available to look at PWM use in the Derbot AGV is the ‘blind navigation’
program of Chapter 8, appearing in part as Program Example 8.4. The parts of the program relating to PWM,
omitted in the earlier chapter, now appear as Program Example 9.2.

The example program sections start with initialisation of the PWM. By writing to the T2CON regis-
ter (Figure 9.5), Timer 2 is switched on, with neither pre- nor postscale (see Figure 9.4). Applying the
CCPxCON registers, the two CCP control registers are set up in PWM mode. Finally, the PR2 register is
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loaded with 249D. Noting that the clock oscillator frequency is 4 MHz, we can deduce from equation (9.2)
that the PWM period is:

T = (PR2 + 1) × {Tosc × 4 × (Timer 2 prescale value)}
= 250 × (250 ns × 4 × 1)

= 250 µs

i.e. PWM frequency = 4.00 kHz.

This is a convenient frequency value, which we shall use for other things later. It retains almost the full
resolution of the PWM system.

Also shown in Program Example 9.2 are the subroutines used to set the motors running forward and back,
leftmot_fwd, rtmot_fwd and so on. Each of these starts by enabling the respective motor drive, by setting
the port bit mot_en_rt or mot_en_left high. A number is then loaded into CCPR1L or CCPR2L, which
determines the PWM pulse width. For simplicity, the two least significant bits of the pulse width setting,
held in CCPxCON, are preset to zero and not further used in this program. Therefore, the pulse width
setting can range from 00 to 250D loaded into CCPRxL, where 00 gives full reverse, 250D gives full
forward and 125D gives no rotation. The numbers actually loaded in the program, 176D and 80D, were
found experimentally to give gentle forward and reverse speeds. Later in this chapter, and then later in the
book, programs are developed to exploit the PWM capability to give variable speed drive.

;****************************************************************
;Dbt_blind_Nav
;Derbot moves by “blind” navigation.
;Moves forward, and reverses and turns on bump.
;Fixed rate PWM applied to set reasonable speeds.
;
;TJW 5.5.05 Tested 9.5.05
;***************************************************************
...
(opening program sections omitted)
...
;Specify some port bits
;For Port A
mot_en_rt equ 2 ;right enable input to L293D ic
mot_en_left equ 5 ;left enable input to L293D ic
...

bcf status,rp0 ;select bank 0
;set up PWM

movlw B'00000100' ;switch on Timer2, no pre or postscale
movwf t2con
movlw B'00001100' ;enable PWM

Program Example 9.2 PWM – related sections of ‘blind navigation’ program
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movwf ccp1con
movwf ccp2con
movlw 0f9
movwf pr2

...
(main program omitted – appears as Program Example 8.4)
...
;motor drive subroutines
leftmot_fwd ;sets left motor running forward

bsf porta,mot_en_left
movlw D'176'
movwf CCPR2L
return

rtmot_fwd bsf porta,mot_en_rt
movlw D'176'
movwf CCPR1L
return

leftmot_rev bsf porta,mot_en_left
movlw D'80'
movwf CCPR2L
return

rtmot_rev bsf porta,mot_en_rt
movlw D'80'
movwf CCPR1L
return

Program Example 9.2 Continued

9.6 Generating PWM in software

While hardware PWM sources are versatile and simple to use, they are not always available. Perhaps a cost-
conscious application has chosen a microcontroller without a PWM source. Alternatively, an application
may have used up all its PWM sources and still need more. PWM is a classic case of a capability that can
be developed either in hardware or software – if using a software solution, the only hardware resource that
is needed is a single port I/O pin, set to output!

PWM outputs can be generated based on software delay loops only, such as those described in Chapter 5.
A possible flow diagram appears in Figure 5.4 of Ref. 1.1. This approach, however, ties up the CPU almost
completely, so is likely to be of only limited use in practice.

An alternative to using a purely programming approach to generating a PWM stream, still without requiring
a PWM hardware module, is to use a timer interrupt to set the period. This can simplify programming
complexity, and allows the CPU to be used in part for other activities. All that is needed is to set a timer
interrupt on overflow running at an appropriate speed, as described in Section 9.3.3 of this chapter. On
every interrupt the PWM output should be set high and a programmed delay initiated. At the end of the
delay the PWM output is cleared. This is illustrated in Figure 9.14.
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Figure 9.14 Generating PWM with timer interrupt

9.6.1 An example of software-generated PWM

A good example of the technique just described is found in Program Example 9.3. This drives the Derbot
servo, which is used to rotate the ultrasound detector. The 16F873A has only two PWM sources and
these are committed to the motors. The servo requires the pulse waveform shown in Figure 8.23. This is
particularly appropriate for a program-generated technique, as the pulse width is always small compared to
the period, so the CPU is committed for only a comparatively short period of time. The program moves
the servo shaft position in 45◦ steps, from a reference 0◦ to 180◦. Because the current consumption is
very high if an instantaneous step movement is demanded of the servo, a ramp is generated between each
step position.

With Timers 0 and 1 committed to the shaft encoder function, only Timer 2 is possibly available for timer
overflow use. However, it appears to be tied up with the PWM function. Here now we see how a timer
can be used for two apparently unrelated things. The timer can be left in its PWM role, but its interrupt on
overflow, via the postscaler (Figure 9.4), can be evaluated for this new application. The two applications
are in some conflict – the servo needs a period of 20 ms, while the PWM frequency needs to remain in the
region of several kilohertz. The flexibility of the postscaler is an advantage here. As with the motor PWM
setting, it can be seen that if the contents of PR2 are set to 249D, then the Timer 2 overflow rate is 4 kHz.
With the postscaler set to ÷16, the interrupt frequency becomes 250 Hz, or a period of 4 ms. This is not the
20 ms we want, but it is easy in the program to output a pulse every five interrupts.

The settings just described can be seen in the program example. Register PR2 is loaded with 249D and
the Timer 2 postscaler set to ÷16. Three software counters are then preset – int_cntr counts the incoming
interrupts, pulse_cntr counts the number of pulses sent at each pulse width, while past_pulse holds the
pulse width of the previous pulse, and is used to determine whether ramping is needed between one pulse
width and the next. The Timer 2 interrupt is then enabled and the program moves to sit in a wait loop. All
subsequent program action is then in the ISR (Interrupt Service Routine).
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Within the ISR, the value of int_cntr is first decremented to test whether a pulse is to be output. If it is,
the value of pulse_cntr is then decremented to test if the pulse width is to be changed. In this case, the
value of servo_dirn is incremented. This acts as a pointer to the look-up table, from which the new period
is taken. At label ISR1, the look-up table is accessed and the ‘demand’ pulse width is read. This is stored
in memory location pw_cntr. The value stored determines how many times a 20 µs delay routine is called,
setting the pulse width.

The ramp, if needed, is now generated. The value in pw_cntr is compared with the previous value, in
memory location past_pulse. If they are equal, the pulse is immediately output. If not, a test of the
Carry flag determines which was the greater. The value of pw_cntr is then incremented or decremented
accordingly, to set the new pulse width. The pulse is then output using a simple delay loop.

;*******************************************************************
;Dbt_servo_tst
;Rotates servo position in 45 degree steps from 0 degs to 180 degs.
;Servo PWM drive period, is generated with interrupt on overflow
;(Timer 2), with pulse width in software.
;Ramp between each step is generated.
;TJW 26.5.05 Tested 30.8.05
;*******************************************************************
...
(opening comments omitted)

cblock 20
delcntr1 ;used in delay5 & delayADC SRs
delcntr2
temp ;a temp location, to be used only in consecutive instructions
int_cntr ;counts incoming interrupts
pulse_cntr ;counts how many pwm pulses sent to servo, before moving to

;next posn.
pw_cntr ;counter used to set width of pulse to servo
servo_dirn ;little counter which determines direction servo points, used

;as look-up table pointer
past_pulse ;holds value of most recent pulse width, used with demand value

;to determine actual
endc

...
org 00
goto begin

;
org 04
goto ISR

;Initialise
;set up SFRs in Bank 1
begin bcf status,rp1

bsf status,rp0 ;select memory bank 1
...

movlw B'11110001' ;set port B bits, bit 3 is servo PWM op
movwf trisb

...

Program Example 9.3 PWM generated in software
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movlw D'249' ;set Timer 2 Overflow period
movwf pr2

;set up SFRs in Bank 0
bcf status,rp0 ;select bank 0
movlw B'01111100' ;switch on Timer2, no prescale, /16 postscale

;giving 4ms interrupt prd (with pr2=250)
movwf t2con

;
;Initialise counter values

movlw D'5' ;preset interrupt counter
movwf int_cntr
movlw D'200'
movwf pulse_cntr ;preload pulse counter
movlw D'60' ;start with intermediate pulse width
movwf past_pulse

...
(opening program section omitted)
...
;Enable interrupts

bcf pir1,tmr2if ;clear pending interrupts
bsf status,rp0 ;select memory bank 1
bsf pie1,tmr2ie ;enable Timer 2 interrupt
bcf status,rp0 ;select memory bank 0
bsf intcon,peie ;enable peripheral interrupts
bsf intcon,gie

wait goto wait ;let ISR do the work
;
;******************************************************************
;ISR is here. Interrupts occur every 4ms. Count 5, and on 5th
;emit pulse to Servo. Pulse length will depend on servo_dirn setting
;******************************************************************
ISR decfsz int_cntr ;decrement interrupt counter. Action occurs

;only if it is 0.
goto intend
decfsz pulse_cntr ;here if a pulse to be output, test if pulse

;width is to change
goto ISR1
incf servo_dirn,1 ;here if pulse width changing, point to new

;duration
movlw D'200' ;reload pulse counter, 200 pulses will be emitted
movwf pulse_cntr ;at new pulse width

;now determine pulse width, calculating ramp value if needed
ISR1 movf servo_dirn,0 ;get demand pulse duration from Table

andlw 07 ;use only 3 lsbs of servo_dirn
call int_table
movwf pw_cntr ;this is demand value, may need to ramp towards it

;now determine ramp value, if needed
subwf past_pulse,0 ;compare demand value with most recent pulse
btfsc status,z
goto pulse_op ;if equal, go direct to pulse
btfsc status,c ;if carry clear, demand>past
goto $+3

Program Example 9.3 Continued
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incf past_pulse,1 ;here if demand>past, hence ramping up
goto $+2
decf past_pulse,1 ;here if demand<past, hence ramping down
movf past_pulse,0 ;and save new value for next time round
movwf pw_cntr

;now send pulse
pulse_op bsf portb,3 ;set pulse high
pw_loop call delay20u

decfsz pw_cntr
goto pw_loop
bcf portb,3 ;clear pulse
movlw D'5' ;reload interrupt counter
movwf int_cntr

intend bcf pir1,tmr2if ;clear interrupt flag
retfie

;Table for servo positions
int_table addwf pcl

retlw D'20' ;400us delay, 0 degrees
retlw D'40' ;800us delay, 45 degrees
retlw D'60' ;1200us delay, 90 degrees
retlw D'80' ;1600us delay, 135 degrees
retlw D'100' ;2000us delay, 180 degrees
retlw D'80' ;1600us delay, 135 degrees
retlw D'60' ;1200us delay, 90 degrees
retlw D'40' ;800us delay, 45 degrees

;
;**********************************************************
;SUBROUTINES
;**********************************************************
;introduces delay of 20us
delay20u movlw 5 ;5 cycles called, each taking 3us,

;plus call, return (2 ea), and 2 move insts
; less one cycle lost when last goto is hopped

movwf delcntr1
dela decfsz delcntr1,1 ;3 inst cycles in this loop, ie 3us

goto dela
return

;
...
(other delay subroutines omitted)
...

end

Program Example 9.3 Continued

This little program was found to work well, with the position change being incremented smoothly.

9.6.2 Further Assembler directives for memory definition
and branching

Notice the use in the program of two useful additions to our Assembler coding repertoire. Early in the
program, the directive pair cblock and endc are used to define the list of data memory locations. This saves
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the use of a long list of equ statements. In the ISR, branching is achieved with instructions such as the
following:

btfsc status,c ;if carry clear, demand>past
goto $+3
incf past_pulse,1 ;here if demand>past, hence ramping up
goto $+2

Here the dollar symbol $ represents the current Program Counter value. Its usage in the line goto $+3
therefore forces a forward jump of three lines. Negative values can also be used. This technique is invaluable
for local branches, of a few lines forward or back, reducing the need for line labels. It is less useful with
longer jumps, as a program change may be made some distance from the goto instruction, which renders
the indicated jump value invalid.

9.7 PWM used for digital-to-analog conversion

While PWM is perhaps primarily used for load control, it allows a simple but very effective digital-to-
analog converter (DAC). If a PWM stream of fixed Mark : Space ratio is low-pass filtered, with a suitable
cut-off frequency, then the digital stream becomes a DC voltage, with a little residual ripple. If the PWM
Mark : Space ratio is modulated, then a varying output voltage can be produced.

This idea is illustrated in simple form in Figure 9.15. The PWM stream is taken through an RC filter, which
has the smoothing effect shown. The filter characteristic, in Figure 9.15(b), is chosen so that the PWM
frequency is well into the filter stop-band. If the modulation frequency is in the filter pass-band, then the
PWM is effectively blocked and the modulating frequency passed. The effect can be quite dramatic.

9.7.1 An example of PWM used for digital-to-analog conversion

The Derbot has two low-pass RC filter sections in its circuit, with outputs at TP1 and TP2 (Figure A5.1).
These are simply there to demonstrate analog voltage generation with PWM and are nothing whatever to

R

C

f

G

Place PWM
frequency deep

in stop-band

Place modulation
frequency in pass-band Cut-off frequency

(a) (b)

Figure 9.15 Filtering a PWM stream to produce an analog voltage. (a) The low-pass filter with input and output signals.
(b) Filter characteristics
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do with the operation of the AGV. If used experimentally for this purpose, the motor enable bits should be
set to 0!

The program dbt_pwm_qrtr_sinwave on the book CD is a simple illustration of this technique. It is
reproduced in part in Program Example 9.4. The program uses the full 10-bit width available for setting the
PWM time period. It generates a quarter sine wave, by taking samples in turn from a look-up table called
Sin_Table. A memory location called pointer indicates where in the look-up table the program currently is.
There are 45 samples, held as 16-bit values, in 2 bytes each. These give a binary, scaled sine value for 0◦,
2◦, 4◦ and so on up to 90◦. Only the most significant 2 bits of the lower byte are used, however.

Once initialisation is complete, the program is structured as a simple loop, starting at sin_loop. The more
significant sample byte is transferred directly to ccpr1l. The less significant byte has to be adjusted to fit
the two target bits in ccp1con. At the same time, the other bits of ccp1con must not be affected. It should
be possible to follow through in the program listing the way this is done. A 1 ms delay is inserted for each
sample, using the delay1 subroutine. It is this, along with execution time of the remainder of the program,
which determines the sine wave frequency.

;***************************************************************
;dbt_pwm_qrtr_sinwave
;Demonstrates quarter sin wave output, on CCP1
;Uses full ten bits of PWM period setting
;TJW 9.7.05 Tested 11.7.05
;***************************************************************
...
(all opening sections of program omitted)
...

clrf pointer
sin_loop movf pointer,0

call sin_table ;get more significant byte of sample
movwf ccpr1l ;move it to the PWM output
incf pointer,1 ;increment the pointer
movf pointer,0
call sin_table ;get the less significant byte
andlw B'11000000' ;we only use ms 2 bits of this
movwf temp
bcf status,c ;adjust for CCP1CON
rrf temp,1
rrf temp,0
iorlw B'00001100' ;ensure other bits of CCP1COn are set

;correctly, ie PWM mode remains selected
movwf ccp1con ;and output
incf pointer,1
movf pointer,0
sublw D'92' ;test for end of table
btfsc status,z
clrf pointer ;reset pointer
call delay1
goto sin_loop

;

Program Example 9.4 Generating a quarter sine wave with PWM
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Sin_Table
addwf pcl,1
retlw 00 ;0 degrees, higher byte
retlw 00 ;0 degrees, lower byte
retlw 03 ;2 degrees, higher byte
retlw 5A ;2 degrees, lower byte
retlw 06 ;4 degrees, higher byte
retlw 0B2 ;4 degrees, lower byte
...

Program Example 9.4 Continued

Also on the book CD is a program called dbt_pwm_full_sinwave. This uses the same look-up table to
generate the full sine wave, but is slightly more complex than the quarter sine wave version. It adds all
samples to a midway value of 125D. This represents the offset zero value of the sine wave. In the first
quadrant it steps up through the table, in the second it steps backwards. In the third it steps forward again,
but subtracts the samples from 125D. In the fourth it steps backwards and subtracts. This can be seen in the
full program listing.

The output of the dbt_pwm_full_sinwave program can be seen in Figure 9.16(a), with the output taken
through the 100 nF/20 k� filter section (cut-off frequency of 80 Hz approximately). Notice the vertical and
horizontal settings in each. Channel 2 displays the sine wave in both cases. Image (a) appears to show a very
satisfactory sine wave. Image (b) shows a detail of the very same waveform, along with the PWM stream
that creates it. The PWM period can be seen to be exactly 250 µs (i.e. a frequency of 4 kHz) in image (b).
The characteristic (but small) sawtooth-like rise and fall of the analog waveform that accompanies it is
very evident in the analog trace, with the overall rise in the signal voltage being just evident. With a PWM
frequency of 4 kHz and the delay1 subroutine in use, there will be just four or five PWM cycles per sample.
The overall sine wave period can be seen to be approximately 3.8 divisions, at 50 ms each, i.e. 190 ms. This
is accounted for by 180 samples making up the sine wave, each with a 1 ms delay, plus further program
execution time.

(a) (b)

Figure 9.16 A sine wave generated with PWM. (a) The output sine wave. (b) Lower: the PWM stream. Upper: detail
of analog output
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The use of PWM for digital-to-analog conversion, as just described, can be simple and effective. It does,
however, come with some weaknesses, which need to be understood if the technique is to be used. In brief,
these are:

• The output analog voltage is directly dependent on the logic levels of the PWM stream. These in turn are
dependent on the accuracy of the power supply voltage, cleanness of the ground path and logic technology
in use. Overall, accurate D-to-A conversion cannot normally be expected from this technique.

• The impact of the low-pass filter is such that the technique is of little use to generate fast-changing signals.
The situation can be improved by use of a higher order filter and/or running the PWM faster. This can
be achieved by reducing the value stored in register PR2. By increasing the PWM speed in this way,
however, it should be noted that the resolution is decreased. In general, we can see that any demand for
high PWM frequency conflicts with a demand for high resolution.

• There will always be some residual ripple on the analog output.

9.8 Frequency measurement

9.8.1 The principle of frequency measurement

Frequency measurement is a very important application of both counting and timing. Fundamentally, fre-
quency measurement is a measure of how many times something happens within a certain known period of
time, as illustrated in Figure 9.17. The use can be as diverse as how many counts are received per minute
in a Geiger counter, how many cycles per second (i.e. Hertz) in an electronic or acoustic measurement, or
how many wheel revolutions there are per unit of time in a speed measurement. Both a counter and a timer
are needed, the timer to measure the reference period of time and the counter to count the number of events
within that time.

9.8.2 Frequency (speed) measurement in the Derbot

The Derbot AGV applies frequency measurement techniques to measure the speed of travel of the machine,
later applying this to speed control. As Figure 9.17 indicates, what is needed first is an accurate timebase
against which measurement can be made. Although any of the 16F873A timers could be used for this,

Fixed, known
time period

Measurand
frequency

All incoming cycles in this
time period to be measured

Figure 9.17 The principle of frequency measurement
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Timers 0 and 1 are both used in counting mode for the wheel shaft encoders, so are not available. Timer 2
appears to be committed to the PWM function, but just as with the software-generated PWM in Section 9.6,
further inspection shows that it can still be used. It was explained in that section how a 4 ms interrupt
period could be achieved without impeding the PWM action. This is too low a period for most frequency
measurements, but if we build a measurement period based on a certain number of iterations of this clock
tick period, then we have the basis of a good time period for frequency measurement.

Program Example 9.5 shows sections of the program Dbt_speed_meas, a simple speed measurement pro-
gram, which can be found in full on the book CD. The program simply switches on the motors and runs
them at fixed PWM rate. The program is structured according to the simplified diagram of Figure 9.18.
The system is initialised, and motors and Timer 2 interrupt are enabled. The Timer 2 interrupt occurs every
4 ms, and every 250th occurrence of this (i.e. every second), the count accumulated in Timers 0 and 1 is
measured.

The timer settings applied can be explored through the program listing. The settings of Timers 0 and 1 are
the same as for Program Example 9.1, and the setting of Timer 2 the same as for Program Example 9.3.
Following the initialisation, the enabling of interrupts and motors can be seen, and the setting of the interrupt
counter int_cntr. The motors are set running forward at modest forward speed.

At the beginning of the ISR, the value of int_cntr is first of all decremented. If it is non-zero, then the
ISR is terminated. However, if the counter has decremented to zero, then one second exactly has elapsed,
and the values of Timer 0 and 1 are read and saved. A frequency measurement is thus made. In this simple
demonstration program nothing further is done with that measurement. It is used, however, in the next
section of this chapter to implement Derbot speed control.

Initialise

Start motors

Wait

Timer 2 interrupt
(every 4 ms)

Decrement counter

Counter
= 0?

Read and reset Timers 0 and 1

Reset counter

Return from interrupt
(RETFIE)

Enable interrupt

Reset counter

Yes

Clear flag

No

Figure 9.18 Derbot speed measurement program: simplified structure
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;*******************************************************************
;dbt_speed_meas
;Derbot wheel speed is measured by frequency counting. This is a demo
;program. The frequency measurement concept can be embedded into larger
;programs, eg for speed control.
;TJW 7.7.05 Tested 7.7.05
;*******************************************************************
...

#include p16f873A.inc
...
(opening program sections omitted)
...
;Initialise
;set up SFRs in Bank 1
main bcf status,rp1
...

bsf status,rp0 ;select memory bank 1
movlw B'11101000' ;set up Timer 0: external input,
movwf option_reg ;low to high transition, no prescale

movlw D'249' ;set PWM prd
movwf pr2
bsf pie1,tmr2ie ;enable Timer 2 interrupt

;set up SFRs in Bank 0
bcf status,rp0 ;select bank 0
movlw B'00000011' ;set up Timer 1: no prescale, oscillator
movwf t1con ;disabled, external sync input
movlw B'01111100' ;switch on Timer2, no prescale, /16 postscale
movwf t2con
movlw B'00001100' ;select PWM
movwf ccp1con
movwf ccp2con

...
(further initialisation and startup omitted)
...
;clear timers

clrf tmr0
clrf tmr1l
clrf tmr1h

;enable interrupts
movlw D'250' ;load interrupt counter
movwf int_cntr
bcf pir1,tmr2if ;clear pending interrupt
bsf intcon,peie ;enable peripheral interrupt
bsf intcon,gie ;enable global interrupt

;
;start running, then wait for Timer interrupt

movlw D'200' ;set PWM rate for reasonable forward speed
movwf ccpr1l
movwf ccpr2l
bsf portb,2 ;switch on optos
bsf porta,mot_en_left ;enable motors
bsf porta,mot_en_rt

Program Example 9.5 Frequency measurement applied to the Derbot
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wait goto wait
;
;********************************************************************
;ISR is here. Interrupts occur every 4ms. Count 250 (i.e.1.0s), then
;measure pulse count on each wheel.
;********************************************************************
Timer2_Int bsf portc,5 ;diagnostic

decfsz int_cntr
goto int_end

;here if making a measurement
movf tmr0,0 ;save counter values
movwf tmr0_temp
movf tmr1l,0
movwf tmr1_temp
clrf tmr0 ;clear counters
clrf tmr1l
btfss portc,0 ;but increment T1 if it is zero, as first
incf tmr1l ;rising edge won’t be seen
movlw D'250' ;reload interrupt counter
movwf int_cntr

int_end bcf pir1,tmr2if
bcf portc,5 ;diagnostic
retfie

...

Program Example 9.5 Continued

9.9 Speed control applied to the Derbot

Embedded systems are about control, and now for the first time we will apply some closed loop control!

The Dbt_speed_control program, shown in part in Program Example 9.6, uses the frequency measurement
just discussed to implement closed loop speed control on the AGV’s motors. It is based on the principles of
a simple closed-loop control system [Ref. 9.1], in that an output variable (motor speed, as represented by
shaft encoder frequency) is compared with a demand value. The difference between the two is amplified and
used to modify the drive to the motors. The control algorithm is identical for each motor and is embedded
within the program ISR, following the comment line adjust left motor speed.

The program is effectively an extension of Program Example 9.5, except that the contents of PR2, governing
the maximum PWM period, have been to 255D. This just makes the data manipulation simpler and the
program easier to follow. It does, however, mean that the Timer 2 interrupt period is now 4.096 ms, not
4.000 ms, so the frequency measurements made are not exactly per half second or second. As data is not
displayed in human-friendly form, this does not really matter.

To understand settings within this program, an understanding of how the motor speed relates to shaft encoder
frequency is needed. A shaft encoder of 16 cycles per wheel revolution was used. With a supply of 9 V
applied to the L293 drive IC, the free-running gearbox output speed was measured to be approximately
154 r.p.m. This is in reasonable agreement with Table A3.1, bearing in mind the losses that occur in the
drive electronics. This speed converts to a maximum shaft encoder frequency of (154 × 16)/60, or 41 Hz.
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To test this program a speed of approximately half this maximum was chosen, implying that over a period
of 0.512 s a count of 10 cycles (nearest integer) is expected. This value is embedded within the program.

;*******************************************************************
;dbt_speed_control
;Derbot wheel speed is measured by frequency counting. Derbot
;runs forward at fixed speed - demonstrates simple speed control.
;
;TJW 7.7.05 Tested, 24.7.05
;*******************************************************************
...

bsf status,rp0 ;select bank 0
...

movlw B'11101000' ;set up Timer 0: external input, increment
movwf option_reg ; on low to high transition,no prescale
movlw 0ff ;set PWM prd to its maximum.
movwf pr2
bsf pie1,tmr2ie ;enable Timer 2 interrupt

;set up SFRs in Bank 0
bcf status,rp0 ;select bank 0
movlw B'00000011' ;set up Timer 1: no prescale, oscillator disabled,
movwf t1con ;external input, sync with int clock
movlw B'01111100' ;switch on Timer2, no prescale, /16 postscale.
movwf t2con ;Timer int prd is 4.096ms, freq is 244.14Hz

...
;*********************************************************************
;ISR is here. Interrupts occur every 4.096ms. Count 125 (0.512s), then
;measure pulse count on each wheel, and calculate new PWM setting
;*********************************************************************
Timer2_Int bsf portc,5 ;diagnostic

decfsz int_cntr
goto int_end

;here if checking speed
movf tmr0,0 ;save counter values
movwf tmr0_temp
movf tmr1l,0
movwf tmr1_temp
clrf tmr0 ;clear counters
clrf tmr1l
btfss portc,0 ;but increment T1 if it is zero, as first
incf tmr1l ;rising edge isn’t seen

;Adjust left motor speed. Find “error” frequency by subtraction
movf tmr0_temp,0
sublw D'10' ;this is demand speed
movwf tmr0_temp
btfss status,c ;check for polarity of result, skip if +ve
goto left_err_neg
bcf status,c ;here if result positive,

;"Amplify" result by shifting left.
;Check for over-range, bit 7 is initially 0 (from numbers used)

btfss tmr0_temp,6 ;check for possible over-range,
;don’t shift if bit 6 set

Program Example 9.6 Derbot speed control program
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rlf tmr0_temp,f
bcf status,c
btfss tmr0_temp,6 ;shift again
rlf tmr0_temp,f
bcf status,c
btfss tmr0_temp,6 ;shift again
rlf tmr0_temp,f
movf tmr0_temp,w
addwf ccpr2l,0 ;add in current PWM value, result to W
movwf tmr0_temp ;test and correct for over-range
btfsc status,c
goto set_l_max ;carry set, so set max op
movf tmr0_temp,0 ;output calculated result to PWM
movwf ccpr2l
goto rt_adj ;and proceed

set_l_max movlw D'255' ;here if output value has saturated,
movwf ccpr2l ;hence output max value

goto rt_adj ;and proceed
left_err_neg comf tmr0_temp,0 ;this will be holding a negative no,

addlw 1 ;therefore correct by taking 2’s comp.
movwf tmr0_temp
btfss tmr0_temp,6 ;check for possible over-range,
rlf tmr0_temp,f ;don’t shift if bit 6 set
bcf status,c
btfss tmr0_temp,6 ;shift again
rlf tmr0_temp,f
bcf status,c
btfss tmr0_temp,6 ;shift again
rlf tmr0_temp,f
movf tmr0_temp,w
subwf ccpr2l,1 ;and subtract from current PWM value.

;Over-range testing not included
;
;now adjust right motor speed
...

Program Example 9.6 Continued

The control algorithm itself follows the flow diagram of Figure 9.19. It should be possible to follow the
program listing through, by cross-reference to the flow diagram. The motors’ PWM rates are initially set
to mid-range (i.e. zero speed) at the start of the program and the ISR adjusts them thereafter. The program
listing shows the left motor only being controlled in this way. The setting for the right motor can be found
in the complete listing on the book CD.

This program was found to run well, with the controlled speed being measured first ‘on the bench’ by testing
the frequency of the output waveform of the reflective opto-sensors. With the Derbot running on the floor,
for the first time it was seen to run in a reasonably true straight line, rather than the gradual curve that
occurs when the two motors just run freely.

It is worth reminding ourselves that all features of this program, from setting the motor speed to measurement
and control of the same, have been achieved using counting and timing techniques.
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Calculate error frequency

Result −ve?

Take two’s complement

‘Amplify’ by shifting left

Check and correct for over-range

Subtract from current PWM setting

‘Amplify’ by shifting left

Check and correct for over-range

Add to current PWM setting

Continue

Yes No

Figure 9.19 Flow diagram of motor control algorithm

9.10 Where there is no timer

While we have seen the power of the hardware timer, situations will continue to arise where they are not
available. Maybe there are no timers on the microcontroller in use or maybe they have all been used up.
This is the case with the Derbot AGV, where all timers are committed, yet if the ultrasound sensor is applied
then a further timer is needed. The solution adopted here is to return to the software timing loop described in
Chapter 5. The disadvantage of such a loop is that it wholly commits the CPU. It is justified in this case, as
the ultrasound measurement is not made continuously and the measurement time is a comparatively small
proportion of time overall.

Program Example 9.7 shows part of a program which measures the distance between the ultrasound sensor
described in Section 8.6.5 of Chapter 8 and an object in its range. When we get to Chapter 11, the distance
will be displayed in centimetres on the hand controller LCD and the circuit can be adapted as an ultrasonic
tape measure. This second section of the program is not shown here, as it depends on data manipulation
routines described in that chapter. The whole program is on the book CD. The ultrasound sensor shares pins
with the diagnostic LEDs. Therefore, if the sensor is used, the LEDs are no longer available for independent
use, although they still light in response to the ultrasound drive pulses.

The main program applies the timing diagram of Figure 8.16 and is structured as a continuous loop, starting
at the label us_loop. The ultrasound pulse is initiated by the pulse on Port C bit 5. A blanking period
follows, to allow the echo pulse to rise. The program then enters a timing loop, within which the counter
echo_time is incremented on every cycle. The duration of this loop is designed to be exactly 30 µs. With
sound travelling at 1 mm/3 µs, this implies that the sound will travel 10 mm for every iteration of the loop.
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As the sound must travel to the target and return, this implies in turn a measurement resolution of 5 mm.
The state of the echo pulse is tested on every loop iteration, and if and when it is found to fall to zero, the
loop is terminated. If the counter overflows, however, then no object has been detected. A short bleep on
the AGV sounder is emitted if an object is detected and a long one if none is detected. The full program
goes on to convert the reading in echo_time to a distance value expressed in centimetres.

;*******************************************************************

;Dbt_US_tst
;Tests derbot ultrasound sensor.
;Measures distance between sensor and object, converts and sends
;measured distance to lcd display,
;Sound travels 1mm/3us. For range of 1m require timing up to 6ms,
;2m up to 12ms.
;
;TJW 10.9.05 Tested 12.9.05

;*******************************************************************

...
;
;Specify RAM

cblock 20
...
echo_time ;counter measuring time for echo to return
...

endc
;

org 00
goto begin

; (opening program sections omitted)
...

;***********************************
;The “main” program loop starts here

;***********************************
us_loop clrf echo_time ;clear counter used to measure time

bsf portc,5 ;output us pulse. 10us minimum required
call delay20u
bcf portc,5
call delay300u ;pause for op to be set high; ie blank for 5cm

;this loop takes 30us per cycle, ie 10mm there and back, or 5mm one way;
;hence 8-bit range is 255x5mm = 1275mm. Max duration in loop is 30x255=7.6ms
echo call delay24u

incf echo_time,1
btfsc status,z ;test for overflow,which indicates no target found
goto no_tgt
btfsc portc,6 ;test echo pulse, skip if cleared (ie echo recd.)
goto echo

;here if target detected
; bsf portb,1 ;indicate with short bleep

call delay200
bcf portb,1
call delay200

Program Example 9.7 Ultrasound timing in software
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...
(data processing, and transfer to lcd inserted here)
...

goto us_loop
no_tgt bsf portb,1 ;indicate with long bleep

call delay500
call delay500
bcf portb,1
call delay200
goto us_loop

...
(most subroutines omitted)
...
;This subroutine introduces delay of 24us
delay24u movlw 6 ;6 cycles called, each taking 3us,

;plus call (2), & 2 opening insts (2) + 2 at end
;less one cycle lost when last goto is hopped
movwf delcntr1

del21 decfsz delcntr1,1 ;3 inst cycles in this loop, ie 3us
goto del21
nop
return

Program Example 9.7 Continued

It is suggested that this program is just looked at as a theoretical example at this time, as the subroutines
necessary to complete it are introduced in Chapters 10 and 11.

9.11 Sleep mode

As with Chapter 6 we embed Sleep mode, when time appears suspended, in a chapter on timing. The
Sleep mode of the 16F87XA follows exactly the principles of the Sleep mode of the 16F84A, described
in Section 6.6 of Chapter 6. A possible limitation on the 16F84A Sleep mode was the limited range of
wake-up opportunities. A significant example of this is the lack of a periodic timed wake-up. (Although
the WDT seems to offer this, its frequency of operation is imprecise and the range of overflow periods not
particularly wide.)

The 16F87XA in contrast offers a wide range of wake-up opportunities, including a number from peripherals.
The interrupt structure diagram of Figure 7.10 suggests that all peripherals can cause a wake-up from Sleep.
In practice, of course, some of these stop functioning, as they depend on the clock oscillator, which is
turned off during Sleep. An interesting case now is Timer 1, which can run with its own oscillator. This
can be left running while in Sleep, with a periodic wake-up derived from its overflow interrupt. Peripheral
wake-up opportunities are available from the following:

• Timer 1, when operating in asynchronous mode
• The CCP Capture mode interrupt
• The special event trigger, with Timer 1 operating in asynchronous mode with external clock
• The synchronous serial port
• The USART (Addressable Universal Synchronous Asynchronous Receiver Transmitter) port
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• The analog-to-digital converter, when running with RC clock oscillator
• EEPROM write complete
• The comparator output change
• The parallel slave port read or write (for 16F874A or ’877A).

9.12 Where do we go from here?

We have seen in the last few pages a wealth of tools and techniques that allow time-based activities to be
developed. Life has been kept simple, however, as most examples have been introduced as if the activity
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in question will be the only one it will do. In practice this is not the case, of course – the Derbot AGV will
need to run its motors while it measures the motor speed while it controls the servo and so on. The number
of time-based tasks will become many, and possibly conflicting. We have already seen, for example, the case
of one timer being used for two different and potentially conflicting tasks. This challenge of marshalling
time-based activity in an embedded system is common in many systems and needs a systematic approach
to resolve it. That systematic approach will be seen in the Real Time Operating System, a subject for
Chapter 18.

9.13 Building up the Derbot

To run most of the programs used as examples in this chapter, you will need to add the reflective opto-
sensors to the Derbot and the shaft encoder patterns to the wheels. The circuit will then have reached the
stage shown in Figure 9.20. To run Program Example 9.3, the servo will need to be added. This is not
shown in Figure 9.20, but can be seen in Figure A3.1.

Summary

• Timing is an essential element of embedded system design – both in its own right and to enable other
embedded activities, like serial communication and pulse width modulation.

• A range of timers is available, with clever add-on facilities which extend their capability to capture,
compare, create repetitive interrupts or generate PWM pulse streams.

• In applications of any complexity, a microcontroller is likely to have several timers running simultane-
ously, for quite different and possibly conflicting applications. The question remains open at this stage:
how can these different time-based activities be marshalled and harmonised?

Reference

9.1. Bolton, W. (1998). Control Engineering Pocket Book. Newnes, Oxford, UK. ISBN 0 75063928 8.
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Starting with serial

An essential activity within any microprocessor system is the movement of data, between say CPU and
memory. Equally important is the transfer of data between subsystems, between say computer and keyboard.
Data is sent by ordering bits into words (often bytes, but not always) and then sending those words.

Broadly speaking, there are two ways of transferring the data. In parallel transfer, all the bits of the word are
transmitted at the same time, each bit over its own connection. The alternative is to send each bit in turn,
over a single connection. This is called serial communication. It is easy to see the first relative advantages.
Parallel takes more wires and connections, but is faster. Serial needs fewer wires, is slower, and generally
requires more complex hardware to transmit and receive.

Therefore, in the past, over short distances, data transfer has been mainly parallel. Over long distances,
where running a large number of wires would be bulky and expensive, it has been serial. Now, however, that
distinction has been challenged, and nowhere more so than in the field of embedded systems, where things
must be very small. The advantage of serial transmission, with its fewer wire links, has in many situations
become overwhelming. Serial communication has therefore become very important and great ingenuity has
been applied to overcoming its main apparent disadvantages – its low speed and more complex hardware.

This chapter introduces the main ideas of serial data communication, both in principle and practice. This
includes:

• Describing the principles of synchronous serial communication
• Exploring the implementation of synchronous serial communication with the PIC® 16F873A, notably with

the SPI (Serial Peripheral Interface) and I2C (Inter-Integrated Circuit) protocols
• Describing the principles of asynchronous serial communication
• Exploring the implementation of asynchronous serial communication with the PIC 16F873A.

As always, a good proportion of the material is illustrated with example code. This is written for the Derbot
AGV, and its hand controller board, and will be of interest whether or not one has the hardware to run
the programs. A number of oscilloscope traces of serial data are also included. At the time of writing it is
effectively not possible to simulate the programs in this chapter with the MPLAB® simulator, as the serial
ports are not supported in the simulator.

10.1 The main idea – introducing serial

The introduction above has just identified one of the main advantages of serial communication, the fact
that it saves space. Figure 10.1 shows one way that this happens. Both of the memory ICs pictured can
store the same amount of data. However, the one with parallel interconnect needs 13 address lines and eight
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Figure 10.1 Example dual-in line packages required for 8 Kbyte memory, approximately to scale. (a) Parallel address
and data buses. (b) Serial address and data

for data, which dominate the chip size. The one using serial interconnect has two lines (SCL – serial clock;
SDA – serial data) for data address and three (S0, S1, S2) for address. This incidentally is an example of
an I2C chip, of which we shall learn much more soon. The space saving at the IC level is clearly dramatic.
To this is added the space saving in PCB tracks, ribbon cable and so on.

While serial communication has a number of clear advantages, it is important to recognize the challenges it
also presents. With just a single wire to carry the data how do we know when one bit starts or ends, or where
a word starts or ends? These questions are resolved in a number of interesting ways. Two different ways
are used to identify the individual bits. The simple way is to send a clock signal to accompany the data;
every clock cycle is used to indicate 1 bit of data. This is called synchronous serial data communication.
Instead of sending a clock signal everywhere, certain timing requirements can be placed on the data itself.
In this case, it can be possible to do without the clock and the data bits can still be properly identified.
This is called asynchronous serial data communication. We look at both of these in some detail during this
chapter.

To identify the start and end of a whole word, it is common to package the data in a certain format.
Data synchronisation and formatting implies certain sets of rules will be needed, in order to ensure coher-
ent communication. These sets of rules are called protocols and are very important in the serial world.
Some are comparatively simple, while others are very complicated. We will come across a number in this
chapter.

In a serial link, we generally use the idea of a transmitter, the device outputting data onto a serial link, and
receiver, the device receiving the data. In general terms, any device on a serial link is sometimes called
a node.

To illustrate our study of serial communication, we will be looking at the serial capabilities of the 16F873A.
This has two serial ports, as mentioned in Chapter 7. Both are extremely flexible and can be configured in
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different ways. Therefore, both are quite complex! The Master Synchronous Serial Port (MSSP) is designed
for different forms of serial communication, while the Addressable Universal Synchronous Asynchronous
Receiver Transmitter (USART) can operate in both synchronous and asynchronous modes.

10.2 Simple serial links – synchronous data communication

10.2.1 Synchronous basics

To understand how data can be sent serially, it is helpful to explore the underlying hardware. Data within a
microprocessor or memory is still likely to be used and formatted in parallel. Therefore, a serial transmitter
needs to be able to accept data in parallel format, but then transmit it serially; a serial receiver needs to be
able to do the reverse. The classic way of doing this is with a shift register.

A simple 8-bit shift register is shown in Figure 10.2. It is made up of eight flip-flops connected together so
that the Q-output of one becomes the data input of the next. All are driven from the same clock, and on
every clock cycle the data is moved one flip-flop to the right. If a new bit of data appears at the DIN input
on every clock cycle, then in eight clock cycles 1 byte will be clocked through such that it can be read as
a parallel word from outputs QA to QH. This simple circuit can act as a receiver of serial data.

It is not difficult to enhance the circuit so that parallel data can not only be read from the shift register, it can
also be loaded with a parallel word. It’s not worth drawing the full logic diagram of such a shift register,
but instead we could represent it in block diagram form, as in Figure 10.3. With this general-purpose shift
register, we can clock serial data into it or out of it, and can read parallel data or load parallel data.

At this point we already have the basis for a serial communication link. If two of the shift registers shown
in Figure 10.3 are taken and clocked from the same source, then data from one can be transferred serially
to the other using the connection shown in Figure 10.4. Effectively, the two 8-bit shift registers act as one
16-bit shift register, with output connected back to input. After eight clock cycles the data in one shift
register is moved to the other. Therefore, either can be viewed as the transmitter and either as the receiver.
The action of data transfer is actually controlled by the clock. The link is called a synchronous link, because
the data transfer is synchronised to a common clock signal.

D Q
DIN

DOUT

QA QB QC QD QE QF QG QH

Clk

D Q D Q D Q D Q D Q D Q D Q

Figure 10.2 An 8-bit shift register – a possible receiver of serial data
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Figure 10.4 A general-purpose serial communication link

10.2.2 Implementing synchronous serial I/O in the microcontroller

The synchronous serial link just described can be readily implemented in a microcontroller, as shown in
Figure 10.5. The clock source is placed in the microcontroller, and as the clock controls data flow, this node
is called the master. The other node is called the slave. The slave device could be another microcontroller,
a memory device or one of a range of other peripherals.

This sort of connection is the basis of many simple embedded serial links. The shift register is memory
mapped, and can be read from and written to.

10.2.3 Microwire and SPI (Serial Peripheral Interface)

In the late 1970s and early 1980s, National Semiconductor, Motorola and others were developing micro-
processors and microcontrollers that had built-in synchronous serial capability. They needed to define the
associated operating characteristics so that other manufacturers could make devices that could interface
reliably with their products. Both National and Motorola were producing serial ports that worked in the
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Figure 10.5 The synchronous serial link implemented in a microcontroller

way described above. From their designs, two standards were produced. National called theirs Microwire
and Motorola called theirs SPI. These are similar to each other and can communicate with each other. Each
has the flexibility to adjust its characteristics, for example to determine whether data is transferred on rising
or falling edge of the clock. Both have now both been going for many years and are well established, with
new chips still being produced which interface with them. We will see an implementation of SPI in the
following sections.

10.2.4 Introducing multiple nodes

The diagram of Figure 10.5 gives an effective serial link, but it only connects two nodes. How could we
extend it? The answer is simple. If a means is introduced of selecting which slave device the master is
to communicate with, then more than one slave can be connected to the serial data lines, as shown in
Figure 10.6. Each slave input now requires a means of enabling it, sometimes labelled Slave Select (SS) or
Chip Select. The exact function of the SS line varies somewhat from one device to another, but to a greater
or lesser extent it causes the slave to disconnect all or part of itself from the serial connection. The master
now has to have a dedicated line for each slave with which it communicates; these can be port bit outputs.

10.3 The 16F87XA Master Synchronous Serial Port (MSSP)
module in SPI mode

The MSSP module is designed for synchronous communication and can be configured as a simple syn-
chronous port (called SPI mode, but compatible with both SPI and Microwire), or as an I2C port



268 Starting with serial

Master

Slave Select 1
Slave Select 2
Slave Select 3

SDO

SDI

Clk

Slave 3

Slave 2

Slave 1

SS

SS

SS

Figure 10.6 Single synchronous master with multiple slaves

(Inter-Integrated Circuit). It has three SFRs dedicated to it, SSPCON1, SSPCON2 and SSPSTAT, which
can be found in the register file map diagram of Figure 7.6. It also has a register for data transfer,
SSPBUF, and is the source of an interrupt, as seen in Figure 7.10. In this section we look at the module in
SPI mode.

10.3.1 Port overview

Figure 10.7 shows the MSSP configured as an SPI port. It can be configured as master or slave, with a
variety of clock speeds if master. Let us see how it builds on the simple serial concepts we have discussed
above. At the heart of the serial port is the shift register SSPSR. When clocked, it transfers serial data to
pin SDO (if the output buffer gate is enabled) and transfers serial data in from pin SDI. If the port is set up
as a slave, it will receive the clock from the system master through pin SCK. If the port is set up as master,
it will generate the clock, which it now outputs through the SCK pin. This clock is derived either from the
internal clock oscillator, or from Timer 2.

An important enhancement to our earlier simple serial port is the addition of the buffer register SSPBUF.
This holds a data byte on its way to or from the shift register, and is actually the addressable register that
the program writes to or reads from. This makes the serial port much more flexible in use. Data can be
moved to or from the buffer while the shift register is in operation. This, for example, allows a received
byte to be held temporarily, while the next one is already being clocked in.

10.3.2 Port configuration

The two SFRs that control the action of the port in SPI mode are SSPCON1 and SSPSTAT. Their
use differs somewhat between SPI and I2C modes. They are shown, when used in SPI mode, in
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Figure 10.7 The MSSP block diagram, in SPI mode (supplementary labels in shaded boxes added by the author)

Figures 10.8 and 10.9 respectively. In them there are bits to do the following:

• Enabling and configuring the port
• Setting clock rate and clock characteristics
• Managing data transfer and buffering.

The port is enabled with bit 5 (SSPEN) of SSPCON1, and its operating mode with the lower 4 bits
of the same register. It can be seen that these bits determine whether the port is to work as master or
slave. If in Master mode, four clock sources are available. As can be seen, these are either the clock
oscillator signal divided by 4, 16 or 64, or the Timer 2 output, as described in Chapter 9 and seen in
Figure 9.4.

If in Slave mode, the Slave Select input pin SS can be enabled, through the four lower bits of SSPCON1.
In this case, an external SS signal can control the tristate buffer that drives the SDO pin, and the clock to
the shift register. The SS input then effectively enables the serial port action and the port can be used in a
multi-node configuration, such as in Figure 10.6.
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Figure 10.8 SSPCON1 register (address 14H) in SPI mode

For all pins through which data or clock transfer is to take place, the data direction bits must be set as
needed. Therefore, for the SDO pin, which is shared with Port C bit 5, bit 5 of TRISC must be cleared to
make the pin an output. Similarly, for SCK, in Master mode bit 3 of TRISC must be cleared (to make it an
output), while in Slave mode it should be set (to make it an input). The SDI pin, however, is under direct
control of the MSSP module.

10.3.3 Setting the clock

Figure 10.10 shows the relationship between clock and data waveforms available when the module is in
Master mode. If bit CKP is set to 1, then the clock idles at Logic 1. The clock edge on which data is
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bits 1 to 5 not used in SPI mode

Figure 10.9 SSPSTAT register (address 94H) in SPI mode

transmitted is determined by bit CKE. For incoming data, the instant when data is sampled is determined
by bit SMP. The way these are set may be determined by the particular requirements of a slave device
that is being used. It is, of course, essential to maintain consistency throughout a single interconnected
system.

10.3.4 Managing data transfer

A synchronous serial port such as the one we are looking at can be set as master or slave. Within either of
these, the application software can use it as receiver or transmitter, or both. Whatever the application, data
is always clocked out from one end of the shift register and in at the other. It is up to the user to determine
which data is to be used.

Use of a serial port therefore brings with it some interesting challenges in terms of timing and control. If
the port is set as Slave, then an external device causes the transfer, but the slave port must be alerted to
this. It must move data into and/or out of the port buffer, according to which direction data is moving. If it
is a master, it initiates the transfer, and must also move data to and/or from the buffer. In either case, the
serial port hardware can be undertaking a data transfer while the program is doing something completely
different. To assist in managing the process, the port has a number of Status bits in its SFRs, as well as the
interrupt.
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Figure 10.10 SPI timing diagram, Master mode

If the port is set as Master, a write to the buffer register SSPBUF automatically starts a transfer, clocking
out whatever data has been loaded into SSPBUF and clocking in whatever data is present at the SDI pin.
On completion of eight clock cycles, the interrupt flag SSPIF is set and data in the shift register SSPSR
is automatically transferred to the buffer SSPBUF. The SSPIF flag can be used as an interrupt to alert
the CPU that the transfer is complete. If there is a write to SSPBUF before the previous word has been
completely sent, then the write collision bit WCOL is set.

If set as Slave, then when the SCK input starts switching, the port clocks data into the SSPSR shift register
through the SDI pin. At the same time, data is clocked out of it from the other end through the SDI pin.
It is, of course, up to the system designer to ensure that valid data is ready in the SSPSR register and/or
is available at the SDI input, according to the requirement. When eight cycles are complete, the interrupt
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flag SSPIF flag is set and again data in SSPSR is automatically transferred to the buffer SSPBUF. If the
previous byte has not been read from SSPBUF, then the SSPOV bit is set, indicating a receive overflow.

10.4 A simple SPI example

The Derbot AGV, in the version described in this book, does not use SPI data communication. Nevertheless,
Program Example 10.1 provides a simple example program that runs on the Derbot hardware. As always,
a full listing appears on the book CD, while only the features of direct interest are shown in the example.
In this case, it is such a short program that almost all of it is reproduced. It should be possible to cross-check
all initialisation settings with the control registers in Figures 10.8 and 10.9.

The program enables the Derbot microcontroller SPI by writing to SSPCON1 (for reasons of backward
compatibility the Assembler Include File calls this SSPCON) and sets it up as a master, with clock frequency
Fosc /16. Clock control bits SMP and CKE are both set to zero here. Clock and data output pins are set
up as outputs via TRISC. The program then transmits 2 bytes in turn repeatedly on the serial link, with a
40 µs delay in between.

;*************************************************************************
;sync_ser_demo
;Program to demonstrate MSSP serial output.
;Program sends same two digits repeatedly from serial port, with delay.
;serial data appears on Port C bit 5, serial clock on Port C bit 3.
;2.7.05. TJW Tested 2.7.05
;*************************************************************************
...
(early comments and initialisation omitted)
...
;

bsf status,rp0 ;select memory bank 1
...

movlw B’10000000’ ;Set port C bits, SDO and SCK set as op.(SDI line,
movwf trisc ;bit 4, is controlled by SPI module, so leave)

...
bcf status,rp0 ;select memory bank 1
movlw B’00000000’
movwf sspstat ;SMP=0, CKE=0, other bits don’t apply
movlw B’00110001’ ;enable serial port, master mode, clock is fosc/16
movwf sspcon ;& idles high.

;Switch all outputs off
clrf porta
clrf portb
clrf portc

loop movlw B’11010101’
movwf sspbuf
call delay40u
movlw B’00101010’
movwf sspbuf
call delay40u

Program Example 10.1 SPI demonstration program
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goto loop
;
;Subroutine: introduces delay of 40us approx
delay40u movlw D’10’ ;10 cycles called, each taking 4us

movwf delcntr1
del1 nop ;4 inst cycles in this loop, ie 4us

decfsz delcntr1,1
goto del1
return
end

Program Example 10.1 Continued

Figure 10.11 shows oscilloscope traces of the data and clock lines of Program Example 10.1, for CKE =
1 and CKE = 0. These are a practical confirmation of some of the waveforms of Figure 10.10. With the
horizontal scale set at 10 µs per division, the clock period can be seen to be exactly 4 µs, i.e. a frequency of
250 kHz. This corresponds with the clock setting made in SSPCON1, of Fosc (4 MHz) divided by 16. The
two data bytes 11010101, followed by 00101010, can clearly be seen, being transmitted MSB first. With
bit CKP (in SSPCON1) in both cases set high, the clock is seen to idle at Logic 1. When bit CKE (in
SSPSTAT) is set high, we see the output data changing on the positive-going edge of the clock, i.e. from
its ‘active’ (Logic 0 in this case) to its idle state. The reverse is true when CKE is zero. Notice that the idle
state of the data line is not fixed.

The timing between bytes is also of interest. Notice that the program calls a delay of 40 µs between sending
bytes, but that the apparent gap is less than 20 µs. This is because the data transmission process is initiated
by the program when it writes to SSPBUF. The delay subroutine is then called by the program and much
of it runs while the data transmission is taking place.

Clock

Data

(a) (b)

Figure 10.11 Synchronous serial output. (a) CKP = 1, CKE = 1. (b) CKP = 1, CKE = 0
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10.5 The limitations of Microwire and SPI, and of simple
synchronous serial transfer

From what we have seen so far, synchronous links like Microwire and SPI provide a simple and reliable
data connection, yet they have limitations. These include:

• They don’t cater well for situations where more than one master may be required
• They don’t address
• They don’t acknowledge – the transmitter simply doesn’t know whether the message has been received
• They are not very flexible – it may not be that easy to add another node, even just one more slave, as

for each new slave (at least in the configuration of Figure 10.6) an extra Slave Select line is needed.

10.6 Enhancing synchronous serial, and the Inter-Integrated
Circuit bus

The Inter-Integrated Circuit (I2C) protocol was developed by Philips to provide a serial communication
standard that overcame some of the shortcomings of Microwire or SPI. As its name suggests, it is meant
to provide communication between ICs within a single system. It is intended to be flexible, and tolerant of
different technologies and speeds. Like all good standards, it has been exploited well beyond its original
intended application. The full I2C specification can be found in Ref. 10.1, with a useful commentary on it
in Ref. 10.2.

10.6.1 Main I2C features and physical interconnection

Like SPI or Microwire, I2C is based on a master–slave relationship between nodes. The master controls
all bus usage. There is a standard I2C mode (with clock rate up to 100 kHz), a fast one (with clock rate to
400 kHz) and a high-speed mode (with maximum clock rate of 3.4 Mb/s).

The I2C bus uses only two lines for all interconnection, called SDA (serial data) and SCL (serial clock).
The output of each node connects to the bus using an Open Drain or Open Collector output, as shown in
Figure 10.12, while the node input is through a standard logic buffer. The two interconnect lines each have
a pull-up resistor. Both lines are bi-directional, but the SCL clock signal is always generated by the current
master.

When no node is accessing the bus the Open Drain outputs are all inactive and the lines idle at Logic 1.
The number of nodes connected to the bus is limited just by the number of addresses that are available
(see below) and the loading capacitance that each adds. Too much capacitance ultimately will mean that
the clock or data rise time will exceed the specified maximum value.

10.6.2 The pull-up resistor

With neither line having an active pull-up, it is the pull-up resistor in conjunction with the line capacitance
that determines the rise time. The specification states a maximum line capacitance of 400 pF and a maximum
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Figure 10.12 The basis of I2C interconnection

rise time (from Logic 0 to Logic 1) in standard mode of 1000 ns. The value of the resistor is chosen to
achieve the rise time requirement, dependent on this line capacitance. A low value of resistor reduces the
rise time, but increases current consumption. A value of 4.7 k� is a widely used; the value must, however,
be lowered if the line capacitance is high or can be increased if line capacitance is low. Reference 1.1 gives
example calculations for this.

10.6.3 I2C signal characteristics

The I2C protocol follows a very clear format for data transfer, as shown in Figure 10.13. It is initiated by
a Start condition, in which the SDA line is taken low, while the SCL line stays high. It is terminated by a

SCL

SDA

Start Address

1–7 8

R/W Ack Data

1–7 8

Ack StopData

1–7 8

Ack

Figure 10.13 I2C signal characteristics
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Stop condition, in which the SDA line goes high while the clock is held high. The Start and Stop conditions
are asserted by the current master, as is the clock.

Between the Start and the Stop, data is transferred in bytes. During this time, the SDA value can only
change when SCL is low; data must remain stable when the clock line is high. This allows data transfer and
Start or Stop to be distinguished. The first byte of any transfer contains address information. The standard
allows for either a 7-bit address, within a single byte, or a 10-bit address spread across 2 bytes. The figure
shows the 7-bit version. In either mode the eighth bit of the first byte is a Read/Write bit. This determines
direction of data flow for the message that follows. At the end of every byte, the transmitter releases the
SDA line and the receiver must send an acknowledge bit, pulling the SDA line low. Any number of bytes
can be sent within one message (i.e. between single Start and Stop bits).

There are two slight exceptions to the pattern just described. A ‘general call’ address is allowed, for which
all address bits are zero. This is used to address all nodes on the bus simultaneously. If a master wants to
start a new message, when it is still within a message, then a ‘Repeated Start’ condition is available.

Importantly, the I2C protocol allows for more than one master, and a node can switch from being a slave
to being a master. If the bus is idle, then any of the potential masters can take control of it. If two try to
take control of the bus at the same time, an arbitration process is applied, as described in Ref. 10.1.

10.7 The MSSP configured for I2C

The 16F873A MSSP can be configured for I2C operation. In this case the SCL line is shared with bit 3 of
Port C and SDA with bit 4 of Port C. In I2C mode the port is significantly more complex than when in SPI
mode, and care needs to be taken to understand it. The first indication of the increased complexity is the
whole extra control register, SSPCON2, needed for I2C mode.

We will aim to introduce this complex but interesting serial application incrementally, and illustrate with
programs for the Derbot AGV.

10.7.1 The MSSP I2C registers and their preliminary use

As with the MSSP in SPI mode, the two registers central to the module hardware are the shift register
SSPSR and the buffer SSPBUF. To these are added an address register, SSPADD. This is used to hold the
slave address when in Slave mode, while in Master mode it forms part of the baud rate generator. Block
diagrams of the module hardware, one for each of slave and master, follow shortly.

When in I2C mode, the MSSP uses the two control registers already introduced, SSPCON1 and SSPSTAT.
Most bits in these are, however, used for different functions, so they must effectively be viewed almost
as different SFRs, from the point of view of learning about them. They are reproduced in Figures 10.14
and 10.15. To cope with the greater I2C complexity, there is a further control register, SSPCON2, shown
in Figure 10.16. There is thus a total of six registers that the programmer uses directly for I2C operation,
in addition to the registers relating to Port C and interrupts.
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Figure 10.14 The SSPCON1 register (address 14H) in I2C mode
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Figure 10.15 The SSPSTAT register (address 94H) in I2C mode
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Figure 10.16 The SSPCON2 register (address 91H) in I2C mode
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As in SPI mode, the MSSP is enabled for I2C by setting the SSPEN bit in the SSPCON1 register. The mode
of operation, notably whether master or slave, and the address length used, is then determined by the setting
of the least significant 4 bits of SSPCON1. It can be seen from Figure 10.14 that there are six possible I2C
modes of operation.

While the bits of the SSPSTAT register mostly give information of the current status of the port, the
bits in the new SSPCON2 register (Figure 10.16) initiate one or other of the I2C activities. Setting SEN,
for example, initiates a Start condition, PEN a Stop condition and RSEN a Repeated Start. We shall see
examples of this soon.

To gain an insight into how these bits are used, and their timing, it is more or less essential to study the
timing diagrams that appear in the data sheets. There are many of these, one for each of the possible modes
of operation. Two of these are shown a little later in this chapter. The art of developing software to drive
the MSSP in I2C mode is very much a case of ensuring that these diagrams are satisfied – completely. That
does not mean that every bit displayed in the diagram has to be used; sometimes one does not need to use
them all. The flow of events depicted must, however, be followed. The diagrams are not entirely simple
and in many cases it is preferable to use or adapt software already written, rather than start from scratch.

10.7.2 The MSSP in I2C Slave mode

When configured in I2C Slave mode, the MSSP operates as shown in Figure 10.17. This diagram is not too
complex and indeed has many similarities to the SPI mode diagram of Figure 10.7. The central features
of the SSPSR shift register and the SSPBUF buffer are there. The shift register clock is provided by the
external pin SCL and data is shifted out or in via the SDA pin.

The role of the slave is brutally simple, to wait until it is addressed and then to do what it is told to do.
Therefore, a special logic circuit detects when a Start condition occurs, and an address match comparator
indicates whether the address that follows matches the internal address of the node, held in the SSPADD
control register. If there is an address match, then the MSSP interrupt flag SSPIF, in register PIR1, is set.
The programmer uses this to initiate the slave response. This will depend primarily on the value of the R/W
bit in the address word, which is transferred to the R/W bit in the SSPSTAT register, and can be tested in
the program.

If a Write is detected, the slave is to act as receiver. The relevant timing diagram, for a 7-bit address, is
shown in Figure 10.18(a). The buffer full flag BF, set because the address byte has been received, must be
cleared by a dummy read of SSPBUF. If used, the SSPIF flag should be cleared. The slave then clocks in a
byte of data, under control of the master clock. If all is operating correctly, an Acknowledge is automatically
generated by the slave. Figure 10.18(a) goes on to illustrate the case when the first data byte is not read
from SSPBUF. The BF flag (in SSPSTAT) remains high, leading to the overflow flag, SSPOV, being set.
An Acknowledge is then not sent by the slave, and the master terminates the message with a Stop condition.

If a Read is detected in the first byte of the message, the slave must act as a transmitter. The sequence is
shown in Figure 10.18(b). When the slave recognises that it has been addressed and a Read demanded,
it must write a byte of data into the SSPBUF register, which automatically sets the BF flag high.
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Figure 10.17 I2C Slave mode block diagram

Of course, it may take a little time to respond to this, so it holds the clock line low until this transfer
is complete. This blocks any further action on the serial link – the slave has power at last! It releases the
serial line, in the software, by setting bit CKP high. The hardware automatically returns this low (if BF
is low) on completion of 9 bits of transmission. This is an example of ‘clock stretching’ – one of the few
ways that a slave can influence the activity of the serial link. It is automatically implemented in Trans-
mit mode, and optionally implemented in Receive mode, by the setting of the SEN bit in the SSPCON2
register.

With the SCK released, the master clocks the data out and should generate an Acknowledge in response.
Further status information can be derived from the state of flags in the Status register SSPSTAT. The I2C
message is terminated when a stop bit from the master is detected. It should be possible to follow this full
sequence in the figure.
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(a)

(b)

Figure 10.18 I2C Slave mode timing, 7-bit address, SEN = 0. (a) Reception. (b) Transmission

10.7.3 The MSSP in I2C Master mode

The MSSP in Master mode is altogether more complex, as can be seen in Figure 10.19. The master must after
all control all bus transactions. At the heart of things, however, we still find the SSPSR shift register and
the SSPBUF buffer. Electrical interface with the two serial lines shows the classic I2C connection already
seen, with Open Drain for output and Schmitt trigger for input. The clock is now internally generated,
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Figure 10.19 The MSSP block diagram, I2C Master mode

by the baud rate generator. It is routed both to the shift register and to the external bus via the SCL pin.
The node must be able to generate and detect Start, Stop and Acknowledge conditions. It also, by means of
the Exclusive OR gate connected to the SDA output, detects a bus collision. This occurs when the master is
transmitting, but the logic state on the bus does not accord with the intended transmitted value. A collision
sets the bus collision interrupt flag, BCLIF (Figure 7.10). The master port can also engage in arbitration,
if it finds itself in contention with another master.

The baud rate generator, which appears at the top right of Figure 10.19, is shown in further detail in
Figure 10.20. It consists of a Down Counter that is reloaded with the value held in the SSPADD reg-
ister when it has counted down to zero. Note clearly that the SSPADD register has nothing to do with
addresses when the module is in Master mode – masters don’t have addresses. The user selects the
desired baud rate by the value placed in SSPADD. The formula which determines the value, quoted from
Ref. 10.3, is:

[SSPADD] = Fosc

4 × FSCL
− 1 (10.1)
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Figure 10.20 The I2C baud rate generator

where [SSPADD] is the value loaded into the SSPADD register, Fosc is the microcontroller clock frequency
and FSCL is the desired I2C clock frequency.

Figure 10.21 shows the timing diagram for the port as I2C master, when transmitting a byte of data. The
SEN bit is seen being used to initiate a Start condition and the PEN bit to initiate a Stop. Both are in
the SSPCON2 register. The R/W bit, in SSPSTAT, is used to indicate that transmit is in progress. This
sequence of events will be illustrated in the forthcoming Derbot example.

Figure 10.21 I2C Master mode timing – transmission, 7- or 10-bit address
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10.8 I2C applied in the Derbot AGV

10.8.1 The Derbot hand controller as a serial node

The Derbot AGV is designed to interface with its hand controller via an I2C link, with the AGV being set as
master and the hand controller as slave. Many data transfers are, however, initiated by the hand controller
when the user presses a key on the keypad. An I2C slave cannot, however, initiate a transfer! Therefore,
an interrupt line is connected from controller to AGV, which forms the external interrupt input of the AGV
microcontroller. The full interaction is programmed so that when a keypad press is detected, the controller
sends an interrupt to the AGV, which then requests data, via the I2C link.

The two program examples that follow, 10.2 and 10.3, are written respectively for the Derbot AGV acting as
master and the hand controller acting as slave. When working together, a keypad press on the hand controller
causes an interrupt to be sent to the AGV. This then initiates an I2C message, in which the AGV as master
requests a byte of data (the character) from the hand controller. The AGV then echoes the character back
to the controller, which sends it to the display. Full program versions can be found on the book CD. The
subroutines and ISRs can be used as the basis of any communication between hand controller, AGV and any
other I2C peripheral the user may wish to design. It is worth noting, however, that they are comparatively
simple routines and do not test or respond to all possible fault conditions.

10.8.2 The AGV as an I2C master

Program Example 10.2 runs on the Derbot AGV and applies the I2C port as a master. The key SFR settings
are Port C (where I2C port bits must be set as inputs), SSPADD (which determines the clock frequency)
and SSPCON1 (which determines the overall setting). Equation (10.1) is used to determine the value for
SSPADD. The detail of the SSPCON1 setting should be explored by comparing it with the register details
in Figure 10.14.

All major I2C actions in the program are undertaken with the use of subroutines and it is instructive to look
at these. The program starts, from comment ;send opening string, by transmitting the character message
‘Derbot’ to the hand controller. This is done in a single multiple-byte message. First the address is sent,
using subroutine I2C_send_add. The address 52H is arbitrarily chosen; this must be shifted left by 1 to fit
into the address word. With R/W set to 0, the transmitted word becomes A4H.

Within the ongoing I2C message, the characters are then read in turn from Table 1 (not shown, but on the
book CD) and sent serially, using subroutine I2C_send_word. This transfer applies the timing diagram of
Figure 10.21. A delay is called between each character, to allow time for the hand controller to write to the
LCD display. The end of the character string is marked with the code FFH. When this is detected, the Stop
condition is asserted with subroutine I2C_send_stop.

All subsequent program activity is in the ISR, which is initiated by receipt of an external interrupt from the
hand controller. The ISR starts an I2C message, addressed to the hand controller, requesting a read. This
is done with subroutines I2C_send_add and I2C_rec_word. With the R/W bit now set to 1, the address
word is A5H. It should be possible to follow the sequence of the subroutines and their use of the control
registers. This message ends with a Stop condition, implemented by subroutine I2C_send_stop. The return
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message, where the received word is echoed back to the hand controller, is done with the subroutine sequence
I2C_send_add, followed by I2C_send_word, followed by I2C_send_stop.

;***************************************************************************
;Dbt_kybd_echo_mstr
;This program exercises I2C bus in several ways:
; * sends an opening multi-byte message to the hand controller
; * on interrupt receives a single digit from the Hand Controller,
; * stores it, and echoes it back.
;Routines can be embedded into any program to provide user control of AGV.
;TJW 20.7.05 Tested and working 21.7.05
;***************************************************************************
...
(opening program sections omitted)
...
;Specify RAM
I2C_RX_word equ 23 ;holds most recent I2C word recd
I2C_add equ 24 ;holds address used in I2C message
I2C_TX_word equ 25 ;holds word to be transmitted on I2C
...

org 00
goto start
org 04
goto Interrupt_SR

;Initialise SFRs in Bank 1
start bcf status,rp1

bsf status,rp0 ;select memory bank 1
...

movlw B’10011000’ ;set port C bits, I2C bits are both set as ip
movwf trisc
movlw 07 ;set up 125kHz baud rate
movwf sspadd

;Initialise SFRs in Bank 0
bcf status,rp0
movlw B’00101000’ ;SSPCON1:MSSP on, I2C Master
movwf sspcon

...
;Send opening string

clrf pointer
movlw 0a4 ;send slave address, R/W is write
movwf I2C_add
call I2C_send_add

loop_str1 movf pointer,0
call table1
movwf I2C_TX_word
sublw 0ff ;test and move on if end marker reached
btfsc status,z
goto string_end
call I2C_send_word
incf pointer,1
call delay1 ;give LCD time to write

Program Example 10.2 Derbot I2C interchange AGV to hand controller – master (excerpts)
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call delay1
call delay1
goto loop_str1

string_end call I2C_send_stop
;Enable interrupts

bcf intcon,intf ;clear pending interrupts
bsf intcon,inte ;enable external interrupt
bsf intcon,gie

;Wait for interrupts from Hand Controller
loop goto loop
;
;*******************************************************************
;ISR. On external interrupt, SSP reads byte from Hand Controller,
;and echoes it back, ie two I2C messages.
;Received Byte stored in I2C_RX_word for further action.
;*******************************************************************
Interrupt_SR

bsf portc,6 ;diagnostic
;Start new I2C message, requesting word from slave.

movlw 0a5 ;this is slave address, R/W is read
movwf I2C_add
call I2C_send_add

;now wait for byte to come in
call I2C_rec_word
call I2C_send_stop
bcf status,rp0
call delay20u

;Now echo byte - start new message
movlw 0a4 ;this is slave address, R/W is write
movwf I2C_add
call I2C_send_add

;send the echoed character
movf I2C_RX_word,0 ;move received word to transmit store
movwf I2C_TX_word
call I2C_send_word
call I2C_send_stop
bcf status,rp0
bcf portc,6 ;clear diag led
bcf intcon,intf
retfie

;*******************************************************************
;SUBROUTINES
;*******************************************************************
;initiates I2C message, by sending the word found in I2C_add, which
;must include R/W bit. Waits for all acknowledgement and completion
;states. Leaves RAM in Bank 0.
I2C_send_add

bsf status,rp0
bsf sspcon2,sen ;force start bit
btfsc sspcon2,sen ;check for its completion
goto $-1
bcf status,rp0
movf I2C_add,0 ;load address and data dirn bit

Program Example 10.2 Continued
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movwf sspbuf ;and send
bcf pir1,sspif ;will test this soon
bsf status,rp0
btfsc sspstat,bf ;test for write complete
goto $-1
btfsc sspcon2,ackstat ;wait for 0 acknowledge bit
goto $-1
bcf status,rp0
btfss pir1,sspif ;test for int flag to show completion
goto $-1
bcf pir1,sspif
return

;
;Receives (single) word from I2C bus, and stores in I2C_RX_word. Returns Ack of 1,
;signalling this is last byte. Leaves RAM in Bank 0
I2C_rec_word bsf status,rp0

bsf sspcon2,rcen ;set receive enable bit
btfss sspstat,bf ;wait for buffer full
goto $-1
bcf status,rp0 ;read the data
movf sspbuf,0
movwf I2C_RX_word ;store it for use somewhere
bcf pir1,sspif ;preclear int flag, as we are about to use it
bsf status,rp0
bsf sspcon2,ackdt ;set required acknowledge state, 1 as it’s

;last byte
bsf sspcon2,acken ;and enable it
bcf status,rp0
btfss pir1,sspif ;use interrupt flag to test for end of ack
goto $-1
bcf status,rp0
return

;
;Sends word on I2C bus, and awaits acknowledgement. Leaves RAM in Bank 0.
I2C_send_word bcf status,rp0

movf I2C_TX_word,0 ;get the word
movwf sspbuf ;this starts the transfer
bsf status,rp0
btfsc sspstat,r_w ;test for write complete
goto $-1
btfsc sspcon2,ackstat ;check for 0 acknowledge bit
goto $-1
bcf status,rp0
return

;
;Sends I2C stop bit, and awaits completion. Leaves RAM in Bank 0.
I2C_send_stop bsf status,rp0

bsf sspcon2,pen ;force stop bit
btfss sspstat,p ;test for stop bit completion
goto $-1
bcf status,rp0
return

...

Program Example 10.2 Continued



290 Starting with serial

10.8.3 The hand controller as an I2C slave

Program Example 10.3 runs on the Derbot hand controller. It is an extension of the program keypad_test,
which appeared in Program Example 8.1, with the I2C transfer to the AGV now inserted. Notice first the
way the control registers are used, compared to the Master mode. SSPCON1 sets the node as slave and
SSPADD is now used to hold the slave address. SSPADD holds the slave address, 52H, rotated left by 1 bit.
The I2C bits of Port C again must be set as input. Two interrupts are enabled – Port B interrupt on change,
to detect the keypad being pressed, and the MSSP interrupt, to alert the microcontroller to the arrival of the
first byte of an I2C message. Interrupt control bits GIE, PEIE, SSPIE and RBIE are accordingly set.

An MSSP interrupt occurs when an address match is detected on an address byte. The interrupt routine
first determines the interrupt source. If it is an I2C interrupt, the D/A bit in SSPSTAT is first tested, to
determine if the byte just received was address or data. If address, the SSPBUF register (which will be
holding the address byte) is read – simply to clear the BF flag in SSPSTAT. A test is then made of the R/W
bit in SSPSTAT. If the master is requesting a Write, then the ISR is quit. The program will wait for the
next interrupt, which will indicate the expected incoming data byte. If the master is requesting a Read, then
program execution stays in the ISR and goes to the label Send_I2C. The timing diagram of Figure 10.18(b)
is followed. The byte held in kpad_char is moved to SSPBUF, the CKP bit in SSPCON1 is set high to
release the clock, and the interrupt flag is monitored to determine completion.

If in the test of the D/A bit an incoming data byte had been detected, then program execution moves to
the label ISR1. The data will by then already be in SSPBUF. This is accordingly read and the character is
sent to the display, using the lcd_write subroutine. A subroutine dig_pntr_set is also invoked, seen only in
the full listing on the CD. This manages the LCD pointer, ensuring that characters are not sent to positions
which do not appear on the size of display used.

;***********************************************************************
;dbt_kypd_echo_slave for Derbot Hand Controller
;Reads keypad value when pressed and sends interrupt to main AGV.
;Transmits on I2C keypad character when asked, and receives echo back.
;Displays anything sent from AGV.
;TJW 13.7.05 tested 15.7.05
;***********************************************************************
...
(opening program sections omitted)
...
;Initialise SFRs in Bank 1
main bcf status,rp1

bsf status,rp0 ;select memory bank 1
...

movlw B’00011000’ ;I2C bits of Port C to ip
movwf trisc
movlw B’10100100’
movwf sspadd ;our address to be 52H

;(it’s shifted by one in sspadd)
bsf pie1,sspie ;enable I2C interrupt

;

Program Example 10.3 Derbot I2C interchange AGV to hand controller – slave (excerpts)
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;Initialise SFRs in Bank 0
bcf status,rp0 ;select bank 0
movlw B’00110110’ ;SSPCON1:MSSP on, I2C Slave, 7 bit address,

;interrupts off, no clock stretch on Receive
movwf sspcon

...
;enable global interrupts

clrf portb ;initialise keypad value
bsf intcon,gie
bsf intcon,peie

loop goto loop ;await keypad and I2C interrupts
;
;***************************************************************
;This is ISR, caused by keypad or I2C address match.
;Does not context save, as all action is in ISRs.
;***************************************************************
Interrupt_SR btfsc intcon, rbif ;is it keypad interrupt?

goto kpad_ISR
;Here if interrupt is I2C, either address match (Ack sent automatically)
;OR further received byte has been detected.
;check whether this byte was address or data

bsf status,rp0
btfsc sspstat,d_a
goto ISR1 ;go if word was data
bcf status,rp0
movf sspbuf,0 ;dummy read of the address byte, to clear flag

;check if read, if so load and send byte
bsf status,rp0
btfsc sspstat,r_w
goto Send_I2C
bcf status,rp0 ;otherwise exit ISR, to await incoming data byte
bcf pir1,sspif ;clear interrupt bit, and end ISR
retfie

;Here if data byte has been detected, word is hence already in buffer.
ISR1 call dig_pntr_set ;sort display pointer

bcf status,rp0 ;read word
movf sspbuf,0
movwf I2C_RX_word ;save word
movwf lcd_op ;prepare to send word to display
bsf portc,lcd_rs
call lcd_write

;transfer to lcd is done, end ISR.
bcf pir1,sspif ;clear interrupt bit
retfie

;here if sending I2C word. Send byte held in kpad_char
Send_I2C bcf status,rp0

bcf pir1,sspif
movf kpad_char,0 ;move character to sspbuf
movwf sspbuf
bsf sspcon,ckp ;release clock
btfss pir1,sspif ;wait for completion of transfer
goto $-1

;transfer is complete, end ISR.
bcf pir1,sspif ;clear interrupt bit

Program Example 10.3 Continued
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retfie
;
;Keypad press has been detected through Port B Interrupt on Change.
;Gets value, converts to character, stores in kpad_char, awaits key release,
;and sends interrupt to AGV
kpad_ISR call kpad_rd
...

Program Example 10.3 Continued

10.8.4 Evaluation of the Derbot I2C programs

Figure 10.22 shows some of the waveforms of the I2C exhange, when the programs above are running.
In (a), we see the characteristic nine clock cycles per word of an I2C data exchange. The clock frequency can
be seen to be just a little lower than the expected frequency of 125 kHz. The master starts a message, with
the address byte 10100100B (i.e. A4H) being sent. As we know, the LSB of this is the R/W bit, indicating
a Write is requested. The slave then replies with the word 00110111B (i.e. 37H, or the ASCII character 7,
meaning that the keypad key ‘7’ has just been pressed). The master is seen to Acknowledge and then exert
a Stop condition.

The detail of Figure 10.22(b) is characteristic of an Open Drain output driving a logic line. The transition
from Logic 1 to 0 is fast, and caused by the transistor output switching on. When it switches off, however,
the line only rises to Logic 1 through the action of the pull-up resistor, and the slower, exponential rise of
this is clearly seen.

The two programs just discussed are useful, and show the use of I2C in an application that is reasonably
constrained. It’s worth noting that they don’t take account of every state an I2C node can get into, nor do
they take corrective action if the serial link is not working properly. In the master program, for example,
if no Acknowledge is received, the program simply loops indefinitely.

Clock 

Data

(a) (b)

Figure 10.22 Actual I2C waveforms. (a) A complete, single-byte message. (b) Detail, showing signal edges
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10.9 Evaluation of synchronous serial data communication
and an introduction to asynchronous

Synchronous serial communication as discussed is an incredibly useful way of moving data around, but the
question remains: do we really need to send that clock signal wherever the data goes? Although it allows
an easy way of synchronising the data, it does have these disadvanges:

• An extra line is needed to go to every data node
• The bandwidth needed for the clock is always twice the bandwidth needed for the data; therefore, it is

demands of the clock which limit the overall data rate
• Over long distances, clock and data themselves could lose synchronisation.

10.9.1 Asynchronous principles

For the reasons just listed, a number of serial standards have been developed which do not require a clock
signal to be sent with the data. This is generally called asynchronous serial communication. It is now up to
the receiver to extract all timing information directly from the signal itself. This has the effect of laying new
and different demands on the signal, and making transmitter and receiver nodes somewhat more complex
than comparable synchronous nodes.

A common approach (but not the only one – the diversity of asynchronous links has been limited only by
human ingenuity) to resolving the challenges of asynchronous communication is based on this:

• Data rate is predetermined – both transmitter and receiver are preset to recognise the same data rate.
Hence each node needs an accurate and stable clock source, from which the baud rate can be generated.
Small variations from the theoretical value can, however, be accommodated.

• Each byte or word is framed with a Start and Stop bit. These allow synchronisation to be initiated before
the data starts to flow.

An asynchronous data format, of the sort used by such standards as RS-232, is shown in Figure 10.23. The
line idles in a predetermined state. The start of a data word is initiated by a Start bit, which has polarity
opposite to that of the idle state. The leading edge of the Start bit is used for synchronisation. Eight data
bits are then clocked in. A ninth bit, for parity checking, is also sometimes used. The line then returns to the
idle state, which forms a Stop bit. A new word of data can be sent immediately, following the completion
of a single Stop bit, or the line may remain in the idle state until it is needed again.

10.9.2 Synchronising serial data – without an incoming clock

In order to receive correctly an incoming data stream with no accompanying clock, the receiver must be
able to detect the start of the byte or word and the moment in each bit when the data is valid. With the data
rate predetermined, one might think that this is not a difficult problem, but it is impossible for different
microcontrollers to have clock frequencies that are precisely the same.
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Start
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Figure 10.23 A common asynchronous serial data format

The principle of how this timing can be done is shown in Figure 10.24. The receiver runs an internal clock
whose frequency is an exact multiple of the anticipated bit rate. Usually, a multiple of 16 is chosen, but
this is not essential. The receiver monitors the state of the incoming data on the serial receive line. When
a Start bit is detected, a counter begins to count clock cycles until the midpoint of the anticipated Start bit
is reached, i.e. eight clock cycles when a ×16 clock is being used. It tests the state of the incoming data
line again, to confirm a Start bit is present. If not, the receive is aborted. If the Start bit is confirmed as
present, the clock counter counts a further 16 cycles, to the middle of the first data bit. At this point, it
clocks that bit into the main receive shift register. In this manner it continues to clock in bits, waiting each
time for a bit width before clocking in the next. Depending on the setting of the receiver, it clocks in 8 or
9 bits (or whatever the expected word length is). After a further bit width, it tests for a Stop bit. If this is of
the correct value, then a valid reception can be flagged and the received data can be latched into a buffer.

Idle state Start
bit

Incoming
data

Receiver clock,
running at multiple of

expected bit rate

First
data bit

Midpoint of
first data bitMidpoint

of Stop bit

Figure 10.24 Synchronising the asynchronous data signal
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If the Stop bit is not present, then a ‘framing error’ is flagged. The receiver can then be readied to receive
the next word.

10.10 The 16F87XA Addressable Universal Synchronous
Asynchronous Receiver Transmitter (USART)

10.10.1 Port overview

The second serial port that the 16F87XA family has is an Addressable Universal Synchronous Asynchronous
Receiver Transmitter (USART). This rather forbidding title tells us that it can operate in both synchronous
and asynchronous modes, and that it can receive and transmit. The inclusion of the word ‘Universal’ reflects
traditional titles and simply implies that it can be configured in all major operating modes needed. The
‘Addressable’ term indicates a mode of use whereby an incoming byte can be designated and interpreted as
an address.

The USART can be configured as synchronous master, synchronous slave or in asynchronous mode. In the
latter case it is full duplex – that is, it can transmit and receive both at the same time. Thus, it has both a
receive shift register and a transmit shift register, which can operate simultaneously. Both sections share the
same baud rate generator and have the same data format. As can be seen from Figure 7.10, it has interrupt
sources for both receive and transmit. The USART shares pins with Port C, the Receive line being on bit 7
and the Transmit on bit 6.

Operation of the USART is controlled by two registers, TXSTA (Figure 10.25) and RCSTA (Figure 10.26).
The port is enabled by the SPEN bit of RCSTA, and selection of synchronous or asynchronous modes is
by the SYNC bit of the TXSTA register.

We will consider each operating mode in turn, with a small example from the Derbot AGV.

10.10.2 The USART asynchronous transmitter

The block diagram of the USART transmitter section is shown in Figure 10.27. It is controlled mainly by
the TXSTA control register. To start with the familiar, we see in the block diagram that central feature of a
serial port – a shift register, ‘TSR register’. Notice that data is transmitted LSB first, unlike the MSSP port.
The shift register is buffered by the TXREG register, an addressable SFR linked to the data bus. It is to this
register that the program writes. The shift register is driven by a clock, ‘baud rate CLK’, which is enabled
by the TXEN bit. The clock frequency is set by the baud rate generator, depending on the value held in the
SPBRG register. The output of the shift register is connected to the microcontroller pin via the ‘Pin Buffer
and Control’ circuit. This is enabled by the Serial Port Enable bit, SPEN, in the RCSTA control register.

Data to be transmitted must be loaded into the TXREG buffer by the program. It is transferred immediately
to the TSR shift register if no transmission is taking place, or after the Stop bit if a transmission is already
under way. Status information is provided by two bits, the interrupt flag TXIF and the TMRT bit. The
former indicates the status of TXREG. When the data transfer between TXREG and shift register occurs,
then the interrupt flag TXIF (in register PIR1, Figure 7.12) is set. This cannot be cleared in software and is
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Figure 10.25 The transmit status and control register, TXSTA (address 98H)

only cleared when TXREG is reloaded. The bit TRMT monitors the state of the shift register and can be
polled by the program. It is set when the shift register is empty, i.e. a transmit has been completed.

A ninth data bit, TX9D, enabled by bit TX9, can be inserted into the transmitted word. Both these bits
appear in the TXSTA control register. This ninth bit can be used as a parity bit. Unlike some serial ports,
however, the parity value is not generated automatically in hardware – it is up to the programmer to do
this within the program. If the ninth bit is to be used, it should be set up before its associated data word is
written to TXREG. If this is not done, then a transfer to TXREG will start a serial data transfer before the
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Figure 10.26 The RCSTA register (address 18H), receive status and control register



298 Starting with serial

Key:    For TXIF, TXIE, see Figure 7.12.
            All other control bits in TXSTA (Fig. 10.25) except for SPEN.

Serial Port
Enable9-bit Transmit

Enable

9th data bit

Transmit Shift
Register Status

Transmit
Enable

Figure 10.27 The USART transmit block diagram (supplementary labels in shaded boxes added by the author)

ninth bit is in place. An alternative use for the ninth bit is to indicate an address in the accompanying byte,
as described in Section 10.10.6.

10.10.3 The USART baud rate generator

The baud rate generator is used in both synchronous and asynchronous modes of the USART. It is built
round a free-running 8-bit counter, controlled by the SPBRG register. The counter is clocked by the internal
microcontroller oscillator frequency, and the action of the counter is effectively to divide this frequency down
by the amount predetermined by the value in SPBRG. The division rate is further modified in asynchronous
mode by a prescaler bit, BRGH, in register TXSTA. The resulting baud rate frequencies are as follows,
where [SPBRG] is the value in the register of the same name:

Asynchronous

For BRGH = 0 Baud rate = fosc

64([SPBRG] + 1)
(10.2)

For BRGH = 1 Baud rate = fosc

16([SPBRG] + 1)
(10.3)

Synchronous

BRGH = don’t care Baud rate = fosc

4([SPBRG] + 1)
(10.4)
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10.10.4 The USART asynchronous receiver

The block diagram of the USART receiver section is shown in Figure 10.28. It is controlled mainly by the
RCSTA register (Figure 10.26). In some ways the diagram is a mirror image of the transmitter diagram
of Figure 10.27. Some features are, however, distinctly different due to the differing requirements of the
receiver and transmitter. Data enters the Port C bit 7 pin of the microcontroller. The data recovery circuit is
included to minimise interference. Every time a data value is to be determined three samples are taken and
the majority value transferred. Central to the receiver we see a shift register, ‘RSR register’. This is driven
by a clock from the baud rate generator. The shift register is double-buffered by a FIFO (first in, first out)
buffer. The upper byte in this is the RCREG register, an addressable SFR. This double-buffer can hold the
most recent two data bytes that have been received and thereby allow a third incoming byte to be clocked
in to the shift register. The port is enabled overall by the SPEN bit. Subservient to this is a Single Receive
Enable bit SREN (not to be confused with SPEN!) or a Continuous Receive Enable bit CREN. This allows
choice between accepting a single incoming word or a continuous series.

When a complete word has been received correctly, including the Stop bit, the main 8 data bits are transferred
to the FIFO, if it is clear to receive, and interrupt flag bit RCIF is set. If a ninth bit is used (determined by

Key: FIFO: First in first out. For RCIF, RCIE, see Figure 7.6 
 For RCIF, RCIE, see Figure 7.12.
 All other control bits in RCSTA (Figure 10.26).

Overrun Error Framing Error Continuous
Receive Enable

Serial Port 
Enable

9th received
data bit

9-bit Receive
Enable

Figure 10.28 The USART receive block diagram (supplementary labels in shaded boxes added by the author)
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the state of RX9), then it is transferred to bit RX9D. This bit has the same level of buffering as the main
incoming data bytes.

If an incoming data byte is clocked in, but the Stop bit is detected as Logic 0, then a framing error is
indicated by bit FERR. As with RCREG and RX9D, this bit is double-buffered, so the framing status
of each buffered bit can be tested. If both buffers of RCREG are full and the RSR register has received
a further complete byte, then the overrun error bit, OERR, is set. The word in the RSR register is lost
and further transfers from RSR register to RCREG are then blocked. The OERR flag must be cleared in
software before further reception can take place. When reading a data value, the action of reading RCREG
causes the FERR and RX9D bits to be updated with new values. These bits should therefore be read first.

10.10.5 An asynchronous example

In this section we extend Program Example 10.2, described earlier in this chapter, to include an asynchronous
communication link. Now when the keypad is pressed on the Derbot hand controller, the keypad character
is sent to the AGV, which then sends it out on its asynchronous transmitter. This is looped back to its
asynchronous receiver and the word is finally echoed back to the hand controller. While this extra serial
link provides no extra functionality whatsoever, it does give a good opportunity to develop a simple test
program and look at more serial data! Program Example 10.4 shows the detail relating to the asynchronous
communication. The full program is on the book CD.

It should be possible to follow the initial setting of the TXSTA and RCSTA registers as shown, by reading
the program comments and comparing with the control registers in Figures 10.25 and 10.26. The baud rate
of 50 kbps was chosen arbitrarily.

As with Program Example 10.2, all data transfer occurs within the main ISR. For this reason the asynchronous
interrupts are not used. The ISR starts with a byte being read from the hand controller on the I2C port and
stored in I2C_RX_word. The point where data is sent on the asynchronous transmitter is shown. The
word just received is transferred to the TXREG register. As it transfers out, the asynchronous receiver
will simultaneously begin to clock it in. The program simply waits for the receive interrupt flag to be set,
indicating that a word has been received and a transfer is complete. The received word is then echoed back
to the hand controller, via the I2C link.

;***************************************************************************
;Dbt_kybd_echo_async
;This program receives a digit from the Hand Controller on the I2C
;bus,stores it, sends it through the asynchronous serial link,
;and echoes it back to the I2C. Each I2C message one byte only.
;Routines can be adapted and embedded into any Derbot program.
;TJW 18.7.05 Tested and working 19.7.05
;***************************************************************************
...
(early program sections omitted)
...

Program Example 10.4 Asynchronous data transfer on the Derbot
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bcf status,rp0
;Initialise USART in both banks

movlw B’10010000’ ;set up async channel: port is on, 8-bit transfer,
movwf rcsta ;continuous receiving, no address detect
bsf status,rp0
movlw B’00100100’ ;set up async channel:transmit enabled, 8-bit,
movwf txsta ;high speed baud rate
movlw 04 ;set up baud rate of 50k
movwf spbrg
bcf status,rp0

...
(program sections omitted)
...
;*******************************************************************
;ISR. On external interrupt, SSP reads byte from Hand Controller,
;sends it out on USART, receives it back through USART
;and echoes it back to keypad.
;Received Byte stored in I2C_RX_word for further action.
;*******************************************************************
Interrupt_SR
...
;send out via async comm channel

bcf pir1,rcif ;preclear receive interrupt flag
movf I2C_RX_word,0 ;get word, and move to txreg
movwf txreg
btfss pir1,rcif ;test for receive interrupt flag,

;indicating receive complete
goto $-1
movf rcreg,0 ;get and store received word
movwf async_RX_word

...
;send the echoed character

movf async_RX_word ;move async received word to transmit store
movwf I2C_TX_word
call I2C_send_word

...

Program Example 10.4 Continued

Waveforms from this program example can be seen in Figure 10.29. Figure (a) shows a byte of asynchronous
data, with the display in oscilloscope mode. With the horizontal time base at 50 µs/division, a bit period of
exactly 20 µs can be seen, relating exactly to the selected baud rate of 50 kbps. The idle state of Logic 1
and the opening Start bit at Logic 0 can clearly be seen. The data runs ‘backwards’, LSB first, and can be
seen to be 00110101B, or 35 in hexadecimal. This is ASCII character 5, indicating that this was the keypad
button pressed. The Stop bit merges into the next idle period, being simply its first 20 µs, so it cannot be
seen explicitly.

Figure 10.29(b) shows the same asynchronous word, but now with part of the preceding and following
I2C messages. The oscilloscope is here in logic analyser mode. The first I2C message shows just the data
byte, again 00110101B, which is repeated by the asynchronous link, although of course in its own format.
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I2C data 

I2C clock 

Async. data

Idle

Start bit 
1  0  1  0  1  1  0  0 

Stop bit 

Idle

(a) (b)

Figure 10.29 Serial waveforms. (a) Single byte, asynchronous. (b) Single byte, passed from I2C to asynchronous

The following I2C message is just the address byte of the hand controller, which can be read as 10100100B.
The R/W bit is low (i.e. the master will write to the slave) and an Acknowledge can just be seen on the
ninth clock cycle.

10.10.6 Using address detection with the USART receive mode

The USART may be used in a way that allows an address to be embedded in the received data. Multiple
nodes can then be connected to the serial line and a node can recognise its own address. The USART
receiver must be set in 9-bit mode (bit RX9 = 1) and the address enable bit ADDEN, in RCSTA, should
be set to 1. Once in this mode, a Logic 1 in the ninth bit indicates that the accompanying byte is an address.
Initially, all data whose ninth bit is zero is ignored. When a byte is detected whose ninth bit is 1, the program
can read the accompanying byte and determine (in software) whether an address match has occurred. If
this is the case, the program can revert the port to normal reception by setting ADDEN to 0, and further
words will be read as data. This continues until a further address word is detected, which may be for
another node.

10.10.7 The USART in synchronous mode

Aside from its essential asynchronous capability, the USART can also be used in synchronous mode, which
is selected by setting the SYNC bit in the TXSTA register. The port must be enabled with RCSTA bit
SPEN. Port C bit 7 is then used for serial data and bit 6 for serial clock. Given an understanding of the
SPI mode of the MSSP port, as described earlier in this chapter, the underlying concepts of this mode of
USART operation will not present any major difficulty. It is therefore left to the reader to read the data on
this, if you wish to use it.
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10.11 Implementing serial without a serial port – ‘bit banging’

The foregoing pages seem to imply that to make use of serial communication, it is absolutely essential to
use a microcontroller with one or more serial ports. This is not absolutely true, as it is possible to generate
and receive serial data streams in software only, using standard port bits for input/output. This can be a
comparatively simple, even attractive (from a cost-saving point of view), option for a simple synchronous
link, especially if it is only occasionally used. It remains a possibility for more advanced protocols like
I2C, but becomes increasingly difficult to implement. Chapter 6 of Ref. 1.1 gives further information and
an example for the PIC 16F84 microcontroller.

10.12 Building up the Derbot

To run most of the programs used as examples in this chapter, you will need to have a working LCD
version of the hand controller. The ‘bus’ connector on the AGV will have to be in place, as well as the
I2C pull-up resistors. The circuit will then be very close to that shown in Figure A3.1, except without the
light-dependent resistors and the ultrasound detector.

Summary

• Serial communication is an increasingly important aspect of embedded systems. A good understanding
is essential to the aspiring designer.

• There are two broad types of serial communication: synchronous and asynchronous.
• There are a very large number of different standards and protocols for serial communication, ranging

from the very simple to the seriously complicated. It is important to match the right protocol with the
right application.

• The 16F873A microcontroller has two extremely flexible serial ports. The cost of flexibility is a significant
level of complexity in grasping their use. Therefore, it is often worth adapting publicly available routines
to use, rather than starting from scratch in writing new code.
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11
Data acquisition and manipulation

In the early chapters of this book we limited ourselves to a world that is almost entirely digital. While we
want to benefit from the advantages that digital signals can offer us, we need to recognise that most real
variables are analog in nature. They are continuously variable and can take an infinite range of different
values, whether we are talking about temperature, sound level, frequency or other variables. It is necessary,
therefore, for the microcontroller to be able to read values that are analog and if necessary generate output
values that are analog, even though internally the microcontroller is relentlessly a digital device. The process
of converting an analog signal to digital, along with all the attendant signal manipulation, is usually called
‘data acquisition’.

Once data from the outside world has been acquired, it needs to be processed and put to use. It may also need
to be averaged, scaled, linearised or stored. Quite possibly it will be used for some form of control purpose
and it may need to be displayed, or transmitted to another device.

Data acquisition, and the use of the data acquired, is the business of this chapter. In the chapter you will learn
about:

• The main features of a data acquisition system
• The characteristics of an analog-to-digital converter
• The characteristics of the 16F873A analog-to-digital converter
• How the 16F873A analog-to-digital converter can be applied
• Some simple data manipulation techniques
• The use of comparators and the 16F873A comparator capability.

Once we have the ability to acquire data and manipulate it in simple ways, we are in the powerful position of
being able to make a variety of measuring devices. The chapter therefore ends with a number of illustrative
projects. These use the Derbot either as an AGV or else simply use the core design as the basis for other
projects, which have no need for wheels!

11.1 The main idea – analog and digital quantities, their
acquisition and use

Most transducers produce output signals that are an analog of the quantity they represent. Thus, the voltage
output from a temperature sensor represents the temperature as faithfully as it can, increasing or decreasing
as the temperature does the same. Similarly, a microphone output signal represents the precise characteristics
of the sound wave as best it can, in amplitude, frequency and waveform. Analog signals are fine things, but
they suffer from a number of big disadvantages, as Table 11.1 shows. Digital signals, on the other hand,
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Table 11.1 Some properties of analog and digital quantities
Property Analog Digital
Means of (electrical)
representation

A continuously variable voltage, or current,
represents the variable.

Variable is represented by a binary number.

Precision of
representation

Can take infinite range of values; absolute
precision is theoretically possible, as long
as signal is kept completely uncorrupted.

Only a fixed number of digit combinations
are available to represent measure; for
example, an 8-bit number has only 256
different combinations. ‘Continuously
variable’ quality of analog signal cannot be
replicated.

Resistance to signal
degradation

Almost inevitably suffers from drift,
attenuation, distortion, interference.
Cannot completely recover from these.

Digital representation is intrinsically
tolerant of most forms of signal
degradation. Error checking can also be
introduced and with appropriate techniques
complete recovery of a corrupted signal
can be possible.

Processing Analog signal processing using op amps
and other circuits has reached sophisticated
levels, but is ultimately limited in
flexibility and always suffers from signal
degradation.

Fantastically powerful computer-based
techniques available.

Storage Genuine analog storage for any length of
time is almost impossible.

All major semiconductor memory
technologies are digital.

as the table indicates, perform better on most counts and with today’s technology are easier to work with.
In many cases the advantage is dramatic and overwhelming.

It is possible fairly readily to convert a signal from analog to digital form, using an analog-to-digital
converter (ADC). The circuits available to do this conversion are comparatively complex. Their design is
a mature art form, however, and they are available as ready-to-use integrated circuits or modules within a
microcontroller.

As embedded designers, we will need to understand the characteristics of the ADC, so that we can choose
the right one and use it effectively.

11.2 The data acquisition system

When converting an analog signal to digital form, it is usually not enough just to find a suitable ADC.
Usually, more than one input is required and the signal needs processing before it can be converted. In
most cases, therefore, it is necessary to build up a complete data acquisition system. The elements of
such a system are shown in Figure 11.1. This shows, in block diagram form, a system with multiple inputs,
amplification, filtering, source selection, sample and hold, and finally the ADC itself. The different elements
are outlined in the sections which follow.
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Figure 11.1 Elements of a (four-channel) data acquisition system

11.2.1 The analog-to-digital converter

The task of the ADC is to determine a digital output number that is the equivalent of its input voltage. The
design of such circuits is a non-trivial task. Many very different ADC circuits have been developed, targeted
towards different applications. Some, like the dual ramp ADC, are slow but with very high accuracy, and
useful for precision measurements such as digital voltmeters. Others, like the Flash converter (not to be
confused with Flash memory technology), are fast but of lesser accuracy, and are used to convert high-
speed signals like video or radar. Others, like the successive approximation ADC, are of medium speed and
medium accuracy, and useful for general-purpose industrial applications. This is the type most commonly
found in embedded systems. Descriptions of how this type of ADC circuit works can be found in most
electronics textbooks (see Ref. 1.1).

An ADC is characterised principally by the following features.

Conversion characteristic

The ADC accepts an input voltage that is infinitely variable. It converts this to one of a fixed number of
output values. An example ADC conversion characteristic is shown in Figure 11.2, where the input voltage
is represented on the horizontal axis and digital output on the vertical. If the ADC is converting continuously
and the input voltage is gradually increased from zero, the output is also initially zero. At a certain value
of input, the output changes to …001. It stays at this same value as the input increases further, until at
another input value the output switches to …010. If the input voltage increases continuously, the output at
some point reaches its maximum value. The input has then traversed its full range. The output will have
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Figure 11.2 The ideal ADC input/output characteristic

moved stepwise up to its maximum value. For an n-bit ADC, the maximum output value will be (2n − 1).
For example, for an 8-bit ADC, the final value will be (28 − 1), or 11111111B, or 255D.

The input range shown in Figure 11.2 starts from zero and goes up to the value Vmax. This is placed a little
to the right of where one might expect it, at the centre of where a step for 2n would occur. This positioning
allows the horizontal axis to be divided into exactly 2n equal segments, each centred on an output transition.

Many ADCs have a characteristic like in Figure 11.2, for example with an input range of 0–5 V. Others,
however, have a bipolar range, with the input voltage taking both positive and negative values, for example
−5 to +5 V. In every case the input range Vr is the difference between maximum input voltage and minimum
input voltage. The range usually relates in a direct way to the value of the voltage reference, which forms
part of the ADC.

It can be seen intuitively from the diagram that the more the number of output bits, the more will be the
number of output steps and the finer is the conversion. A measure of the fineness of conversion is called
the resolution. This is the amount by which the input has to change to go from one output value up to the
next. In the diagram, the resolution is the width of one step in the conversion characteristic. An ADC with
n output bits can take 2n possible output values, from 0 up to 2n − 1. It therefore has a resolution of Vr/2n,
where Vr is the input voltage range. An incoming signal should use as much of the input range as possible,
without exceeding it. If it only uses a part of it, then the effective resolution is degraded and the ADC is
not being put to best use.
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Conversion speed

An ADC takes time to do its work. That time is called the conversion time. A slow ADC, with a high
conversion time, will only be able to convert low-frequency signals, as Nyquist’s criterion (Section 11.2.2)
must always be satisfied. The conversion time of an ADC defines which type of signal it can be used to
convert. As suggested earlier, high-accuracy ADCs generally take longer to complete a conversion.

Digital interface

The digital interface is made up of the control signals and the data output. Typical control signals are
shown in Figure 11.1. Generally, there is a signal to the ADC that causes a conversion to start. When the
conversion is complete, the ADC signals that completion with an output signal. A further signal causes the
ADC to output its data. Depending on the type of interface required, the ADC has a parallel or serial data
interface.

An ADC always works in conjunction with a voltage reference. This is a device or circuit that maintains
a very precise and stable voltage, and is based around a zener diode or a band-gap reference. The ADC
effectively uses the voltage reference as the ruler, with which it measures the incoming voltage. An ADC
is only as good as its voltage reference. For accurate A-to-D conversion, a good ADC must be used with a
good reference.

11.2.2 Signal conditioning – amplification and filtering

To make best use of the ADC, the input voltage should traverse as much of its input range as possible,
without exceeding it. Yet most signal sources, say a microphone or thermocouple, produce very small
voltages. Therefore, in many cases amplification is needed to exploit the range to best effect. Voltage level
shifting may also be required, for example if the signal source is bipolar while the ADC input is unipolar
(voltage is positive only).

If the signal being converted is periodic, then a fundamental requirement of conversion is that the conversion
rate must be at least twice the highest signal frequency. This is known as the Nyquist sampling criterion.
If this criterion is not met, then a deeply unpleasant form of signal corruption takes place, known as aliasing
(see Ref. 1.1 or signal processing text for further details). Anti-aliasing filtering may therefore be required
to ensure that the Nyquist criterion is satisfied.

11.2.3 The analog multiplexer

If there are to be multiple inputs, then an analog multiplexer is used. The alternative, of multiple ADCs, is
both costly and space consuming. The multiplexer acts as a selector switch, choosing which input out of
several is connected to the ADC at any one instant. The multiplexer is built around a set of semiconductor
switches. It is important to know that the semiconductor switch is an imperfect device. In particular, when
switched ‘on’, it has internal series resistance, which can range from tens to thousands of ohms. This can
impact on the data acquisition process, as we shall see.
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11.2.4 Sample and hold, and acquisition time

Because most ADCs are unable to convert accurately a changing voltage, a sample and hold (S&H) circuit
is often found. This takes a sample of the voltage, like a snapshot, and holds it steady for the duration
of the conversion. A circuit of a simple but practical S&H is shown in Figure 11.3. At its heart are just
a semiconductor switch and a capacitor. When the switch is closed, the capacitor charges up to the input
voltage VS. At this moment, ideally VO = VC = VS, as the buffer amplifier just has unity gain. When the
switch opens, the charge is left on the capacitor and VC (and hence VO) remains at a fixed value. In practice
there is some leakage from the capacitor, so the output voltage drifts. This circuit is sometimes also called
track and hold, as when the switch is closed the output voltage follows, or tracks, the input.

One problem with this simple circuit is that there is inevitably series resistance in the signal path. This is
represented by the resistor in the circuit. When the switch closes, therefore, the capacitor voltage VC does
not take on the signal voltage immediately, but rises towards it exponentially. This is shown in Figure 11.4.
The voltage rise is given by:

VC = VS{1 − exp(−t/RC)}. (11.1)

Our interest from a data acquisition point of view is to ensure that the voltage has risen sufficiently close to
its final value with the switch closed, before the switch is opened (the signal is then ‘held’), and a conversion
allowed to start. The time that VC (and hence VO) takes to reach a value deemed to be acceptable is called
the acquisition time.

Let us suppose that VC must rise to 90 per cent of its final value, VS. Then, substituting into equation (11.1):

0.9VS = VS{1 − exp(−t/RC)}
exp(−t/RC) = 1 − 0.9

−t = RC ln(0.1)

t = 2.3RC.

Input

Signal source

Output

Control

+

−C
R

VC

VS
VO

Figure 11.3 A simple form of sample and hold circuit
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Figure 11.4 Exploring acquisition time (not to scale)

This is shown in Figure 11.4. It is, however, an undemanding requirement. To ensure good accuracy in
data conversion, the error introduced by this process should be less than the equivalent of half of 1 LSB.
Hence, for 8-bit conversion, this implies that the acquired voltage value VC must reach ≥ (511/512)VS, or
0.9980VS. For 10-bit conversion it must be ≥ (2047/2048)VS, or 0.9995VS.

Following the calculation above, but substituting the 10-bit value in, we get:

−t = RC ln(1/2048)

t = 7.6RC.

The resulting acquisition times are shown in Figure 11.4. It is clear that acquisition time increases with
increasing resistance, capacitance and with accuracy required. We will meet practical application of this
calculation later in the chapter.

It is worth noting that the multiplexer circuit and S&H circuit can be merged into one, with the multiplexer
switches forming the S&H switch. This is common practice.

11.2.5 Timing and microprocessor control

Usually, a data acquisition system is under the control of a microprocessor or microcontroller. This can
control the overall system timing, including which input is being selected, when the selected signal is
sampled and when the conversion starts.
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Figure 11.5 Typical timing requirement of one A-to-D conversion

The process of a single conversion can be represented as a flow diagram, as shown in Figure 11.5. Two
major time requirements need to be satisfied – the acquisition time (of the S&H) and the conversion time
(of the ADC).

Once the system is initialised, the multiplexer switch can be set. The S&H can then start its sample process.
A period of time equal to or greater than the required S&H acquisition time must elapse. The ADC can then
start its conversion. Again, this takes finite time. The ADC flags when it has completed a conversion and
the microprocessor can read the output data.

11.2.6 Data acquisition in the microcontroller environment

Embedded systems need ADCs, so it is natural to expect to find an ADC integrated onto a microcontroller
as one of its peripherals. It is important, however, to realise that ADCs and microcontrollers do not make
happy bedfellows. To operate to a good level of accuracy, an ADC needs a quiet life (electronically speak-
ing), with excellent and clean power supply and ground, and freedom from electromagnetic interference.
A microcontroller, on the other hand, being a digital device, tends to corrupt its power supply and ground
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with a voltage spike on every switching edge. As a consequence, with all its intensive internal digital activ-
ity, it radiates a smog of local interference. Therefore, to integrate an ADC onto a microcontroller is at best
a compromise and high accuracy is not usually possible.

Despite this, ADCs are widely available in the microcontroller environment, with many microcontrollers
having an on-chip ADC. These are mostly 8- or 10-bit.

11.3 The PIC® 16F87XA ADC module

11.3.1 Overview and block diagram

The 16F87XA has a versatile and powerful 10-bit ADC module, shown in Figure 11.6. This provides a
subset of the overall data acquisition system shown in Figure 11.1, having an ADC, a multiplexer and the
possibility of using the supply voltage as the voltage reference. The particular ADC design used incorporates
in an interesting way the function of sample and hold, discussed further in Section 11.3.3.

Input select
bits

External 
inputs for 
voltage 

reference 

Input
multiplexer

Figure 11.6 The 16F87XA analog-to-digital converter (supplementary labels in shaded boxes added by the author)
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The input multiplexer, seen to the right of the diagram, has five channels for the 16F873A and F875A,
and eight for the 16F874A and F876A. The inputs are shared with five of the six Port A bits and three of
the eight Port E (for 16F874 and F876) bits. Only Port A bit 4 is not used, as it already shares with the
important Timer 0 input. Port bits can be allocated in a flexible way to analog or digital input, according to
settings in an SFR.

An external voltage reference can be used for applications requiring reasonable accuracy, with terminals
for both positive and negative connections provided. Provision of the negative connection means that the
reference does not have to be referred to system ground. For lower-cost, lower-accuracy conversions, the
power supply voltage can be used as reference. The input range is equal to whatever voltage reference
is chosen.

11.3.2 Controlling the ADC

The ADC is controlled by two SFRs, ADCON0 (Figure 11.7) and ADCON1 (Figure 11.8). The result of
the conversion is placed in two further SFRs, ADRESH and ADRESL. These four registers can all be seen
in Figure 7.6. Other SFRs also have an important impact on the ADC. These include TRISA and (for the
40-pin devices) TRISE. Any bits used for analog input must be set as inputs in these. Registers PIR1 and
PIE1, which contain the ADC interrupt flag and interrupt enable bits respectively, are also used.

The control possibilities are now described, in the approximate sequence they would be used.

Switching on

The ADC is switched on and off by the ADON bit of ADCON0. Switching it off when not needed offers a
slight power-saving advantage.

Setting the conversion speed

Operation of the 16F87XA ADC is governed by the ADC clock, which has a period TAD. A full 10-bit
conversion takes around 12 TAD cycles, depending slightly on which clock source is chosen. The user can
select the clock frequency from a number of options. Although one generally wants a conversion to take
place as quickly as possible, there is an upper limit to the clock frequency. For the 16F87XA the minimum
clock period for correct operation is specified as 1.6 µs (from the Electrical Characteristics of Ref. 7.1),
or a frequency of 625 kHz. This implies a fastest conversion time of 19.2 µs. At the other extreme, if
conversion is too slow, charge leaks from the storage capacitance and the conversion becomes inaccurate.
Best practice is therefore to set the ADC clock frequency such that it has a period equal to or just less
than 1.6 µs.

Selection of the ADC clock source is controlled by bits ADCS2 in ADCON1, and ADCS1 and ADCS0
in ADCON0, as seen in Figure 11.7. This shows that various divisions of the main clock frequency are
possible. There is also a dedicated RC oscillator which can be chosen. This has a typical period of 4 µs, but
may range from 2 to 6 µs.
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Figure 11.7 The ADCON0 register (address 1FH)

If the system clock is fast, it is usually appropriate to use it to derive the clock source. If the system clock is
slow, however, it is better to use the RC oscillator. The dividing line between a ‘slow’ and ‘fast’ clock oscil-
lator here is around 500 kHz. With an internal oscillator running at this speed, the fastest ADC clock
that can be derived from it is 250 kHz. This gives a period of 4 µs, equal to the typical RC oscillator
period. If the main oscillator is lower than this frequency, it will then generally be advisable to use the RC
oscillator.
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Figure 11.8 The ADCON1 register (address 9FH)
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Configuring the input channels and selecting the voltage reference

The way the input port bits are used is defined by the setting of bits PGFC3 to PGFC0 of ADCON1. It is
worth looking at this closely in Figure 11.8. The variety of opportunity is impressive, both in terms of input
channels and voltage reference. We can see that it ranges from just a single Port A channel used for input
(PGFC3:PGFC0 = 1110) to all eight analog inputs in play (PGFC3:PGFC0 = 0000). Many combinations
which include an external reference are also possible. Note again that any port pin that is to be used as an
analog input must be set as an input in its TRIS register. Otherwise, the pin will act as an output and the
(unintended) digital output value will be converted!

Selecting the input channel

The input channel is selected by the channel select bits CHS2 to CHS0 in ADCON0. These bits determine
which switch in Figure 11.6 is closed. Making this selection is usually the first step in the data acquisition
process, as we shall see below.

Starting a conversion and flagging its end

A conversion is initiated by setting bit GO/DONE in register ADCON0. When the conversion is complete
the bit is returned to zero by the hardware. Completion of conversion is also signalled by an ADC interrupt
flag ADIF, as seen in Figure 7.10. Completion of conversion may therefore be detected by testing either of
the bits GO/DONE or ADIF, or by enabling the interrupt and responding to it in an ISR.

Formatting the result

The result of the conversion is placed in registers ADRESH and ADRESL. Two possible result formats are
possible, as shown in Figure 11.9. The result can be left justified, in which case the 8 most significant bits

Figure 11.9 Formatting the ADC conversion result
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Figure 11.10 The 16F87XA ADC input model

appear in ADRESH. This is useful if only an 8-bit result is required, as the contents of ADRESL can then
be ignored. In most other cases a right-justified result will be the more useful. The formatting is controlled
by bit ADFM in ADCON1.

11.3.3 The analog input model

It was demonstrated earlier in this chapter that an understanding of the actual signal path is necessary in
order to understand and predict system characteristics. Figure 11.10 is a diagram of the signal path for this
ADC – and what an obstacle course it appears to be! This diagram is effectively a real-life representation
of parts of Figure 11.6, shown from the signal’s point of view.

The signal source, together with internal resistance, is depicted to the left of the diagram, modelled as
voltage source in series with internal resistance. The signal voltage enters the microcontroller through the
pin labelled ANx. There is a small input capacitance (5 pF), and the input protection diodes and other input
circuitry clearly have the potential to leak current into the signal path. The signal then passes through
the interconnect resistance, RIC, before reaching the multiplexer switch. This is one of the switches of
the analog input multiplexer in Figure 11.6. The internal resistance of this switch, RSS, is shown. The
approximate value of this is dependent on supply voltage and is given by the small graph on the bottom
right of Figure 11.10. From this we see that the switch resistance is a sobering 7 k� approximately, when
the supply voltage is 5 V.

The ADC itself is a so-called switched capacitor type (Ref. 1.1, Chapter 5). First of all, that means that
the ADC has internal capacitance, which must be charged up to the input voltage before a conversion can
start. Neatly, however, this capacitance takes on the function of the S&H capacitor. On the downside, the
capacitance, all 120 pF of it, must be charged up in the first place.
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11.3.4 Calculating acquisition time

In Ref. 7.1 Microchip define three sources of time delay in their calculations for acquisition time, tac, as
shown:

tac = Amplifier settling time + Hold capacitor charging time + Temperature coefficient. (11.2)

The reference specifies the amplifier settling time as a fixed 2 µs. The temperature coefficient applies only
when temperature is above 25◦C and is specified as:

Temperature coefficient = (Temperature − 25◦C)(0.05 µs/◦C).

It can be seen that this creates a time delay of only 0.5 µs for every 10◦ above 25◦, so its impact in most
cases is slight.

It is the capacitor charging time that dominates the acquisition time, which we now explore. The analog
input model of Figure 11.10 can be related back to the S&H diagram of Figure 11.3 and equation (11.1).
To analyse this, we neglect the effects of the input leakage current and the small input capacitance. Actual
values for R and C in Figure 11.3 for the 16F87XAADC can be extracted from Figure 11.10. R is made up of
(RSS +RIC +RS), or (1k + 7k + RS), for a supply voltage of 5 V. C is the 120 pF shown. Calculations made
for Figure 11.4 showed us that, for 10-bit accuracy, an acquisition time of 7.6RC was needed. Substituting
values in, assuming at first negligible source resistance, gives:

tac = 7.6RC

= 7.6(1k + 7k)120 pF

= 7.3 µs.

If amplifier settling time is added to this, as it must be, the acquisition time rises to 9.3 µs.

This represents a best possible value. To determine the overall time needed to complete a single conversion,
this acquisition time must be added to the conversion time, discussed in Section 3.2. There, a best possible
conversion time of 19.2 µs was deduced. Adding this to the best possible acquisition time leads to a total
time to complete a conversion of (2 + 7.3 + 19.2) µs, i.e. 28.5 µs.

In many cases the source resistance is not negligible and any external series resistance will degrade the
acquisition time calculated above. In Ref. 7.1 Microchip recommend a maximum source resistance of 2.5 k�.
In this case:

tac = 7.6(1k + 7k + 2.5k)120 pF

= 9.6 µs.

Note that this is not the highest acquisition time that may be encountered, as the maximum allowed source
resistance is specified in Ref. 7.1 as being 10 k�.
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11.3.5 Repeated conversions

When a conversion is complete, the converter waits for a period of 2 × TAD before it is available to start
a new conversion cycle. Once this time is up, either the same input channel may be converted again, or a
new one (which may already have been selected).

A best possible conversion time of 28.5 µs was calculated in Section 11.3.4. If a period of 2×TAD is added to
this, i.e. 3.2 µs for fastest possible, then the complete conversion cycle time becomes 31.7 µs. If successive
conversions are intended, this implies a maximum sampling rate of around 30 kHz. Note, however, that this
figure takes no account of software overheads, which would tend to slow the conversion rate.

11.3.6 Trading off conversion speed and resolution

The conversion times deduced above are not particularly fast by today’s standards and there will be occasions
when a faster conversion time is needed. While one option is to use an external ADC, another is to consider
whether the full 10-bit resolution is needed. If it is not, then the conversion time can be reduced. One
technique, described in Ref. 11.1, is to start a conversion with a valid ADC clock frequency and then to
switch it during the conversion to a faster speed, which violates the clock specification. The higher order
bits converted before the switch will be valid and can be used. Those converted after will not be valid.
A lower resolution conversion, at higher speed, has thus been achieved. It is up to the program, however,
to determine when the switch should take place.

An alternative approach is to reduce the acquisition time, as suggested in Figure 11.4, so that, for example,
the acquisition is only to 8-bit accuracy. The conversion can then be allowed to run its full course. The
switching of the ADC clock frequency, as just described, can still be implemented.

11.4 Applying the ADC in the Derbot light meter program

The Derbot AGV has three light-dependent resistors, used as light sensors, as seen in Figure A3.1. Two are
at the front and one at the rear of the vehicle. The Derbot uses the 16F873A ADC to measure light intensity,
both for a light meter program and a light-seeking program.

Program Example 11.1 shows sections of the program Dbt_light_meter, reproduced in full in the book
CD. The program reads the LDR output values and displays these on the LCD of the hand controller unit.
There are, however, several data manipulation challenges on the way. The result of the ADC must be scaled
to a true voltage reading and then converted to a format suitable for the LCD. Therefore, the reading is
converted to Binary Coded Decimal and then to ASCII. The resulting characters are then transferred to the
LCD. Let us explore how this is done.

11.4.1 Configuration of the ADC

The initial setting of the ADC control registers, ADCON0 and ADCON1, can be seen in the program
example. Figure A3.1 shows that the right LDR is connected to Port A bit 0, the left to Port A bit 1 and
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the rear to Port A bit 3. No external reference voltage is available, so the power supply is used. These
connections lead to the PCFG bits in ADCON1 (Figure 11.8) being set to 0100.

With a main clock period of 250 ns (4 MHz), but a minimum specified TAD time of 1.6 µs, it is necessary to
divide the clock frequency by at least 8. This value is chosen, giving a TAD of 2 µs. A right-justified result
is selected.

11.4.2 Acquisition time

The operation of the data acquisition can be examined by looking further down the program example.

The acquisition time needs to be calculated for the worst-case condition, which is when ambient light is low
and the LDR resistance high. This may be checked in the LDR data [Ref. 8.5]. In the worst case the LDR
resistance will be very high and the source resistance will tend towards the value of the 10 k� resistor in
series with the LDR. Note that this is at the limit of the maximum allowed source resistance. However, under
normal lighting conditions the source resistance will be considerably lower. From Figure 11.4, acquisition
time is given by:

t = 7.6RC

= 7.6(10k + 1k + 7k)120 pF

= 16.4 µs.

Adding in the amplifier settling time gives 18.4 µs.

;***************************************************************************
;Dbt_light_meter
;Dbt reads LDR values to 10-bit resolution, scales to a voltage reading,
;converts to 4 digits of BCD, and displays on Hand Controller LCD.
;Rear LDR is scaled to be a true millivolt reading, displayed to tens of mV.
;Requires Hand Controller loaded with corresponding program.
;TJW 19.7.05 Tested 20.7.05
;***************************************************************************
...
(early program sections omitted)
...

bsf status,rp0
movlw B'00001011' ;set port A bits according to their function,
movwf trisa ;ADC channels set as inputs
movlw B'10000100' ;select port A bits 0,1,3 for analog input
movwf adcon1 ;right justify result

...
bcf status,rp0
movlw B'01000001' ;set up ADC: clock Fosc/8, switch ADC on but not

;converting,

Program Example 11.1 Applying the ADC in the Derbot light meter program
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movwf adcon0 ;input channel selection currently irrelevant
...
;read and store ldrs
main_loop movlw B'01000001' ;select channel 0 as input (left front ldr)

movwf adcon0
call delay20u ;acquisition time
bsf adcon0,go ;start conversion
btfsc adcon0,go_done ;wait for conversion to complete
goto $-1
movf adresh,0 ;read and store ADC output data, high byte
movwf ldr_left_hi
bsf status,rp0
movf adresl,0 ;read and store ADC output data, low byte
bcf status,rp0
movwf ldr_left_lo

;select channel 1 (right ldr)
movlw B'01001001'
movwf adcon0 ;select channel 1 as input (right front ldr)
call delay20u

...
(samples other two LDRs)
...
(scales, converts to BCD, and outputs values to diplay)
...

goto main_loop
...

Program Example 11.1 Continued

11.4.3 Data conversion

The actual operation of the ADC can be seen by checking further down the program example, from the label
main_loop. The three LDRs are sampled in turn. For the first (front left), it can be seen that the appropriate
input channel is selected, with the GO/DONE bit of ADCON0 left low. A delay of 20 µs is introduced
for signal acquisition, which just covers the calculated worst-case value of 18.4 µs. The actual conversion
is then initialised by setting the GO/DONE bit high. Completion of conversion is awaited by testing the
same bit. The result of the conversion is then transferred from ADRESH and ADRESL to the two stores in
memory, and the program moves on to sample the next input. The data manipulation that follows is omitted
in this program example, but is described later in the chapter.

11.5 Some simple data manipulation techniques

Almost as soon as data is acquired in a program there follows the need to manipulate it in some way.
This could include simple addition and subtraction, as we have already done, or other arithmetic oper-
ations like multiplication and division. As the data processing demand rises, so most certainly does the
Assembler complexity, creating a strong motivation for a move to a high-level programming language.
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Nevertheless, it should not be necessary to write a program or subroutine for any standard mathematical
operation in Assembler. Many are already available, for example in Ref. 11.2.

11.5.1 Fixed- and floating-point arithmetic

We have already repeatedly used the fact that an n-bit binary number can represent any integer number
value from 0 to 2n − 1. For example, an 8-bit number can represent from 0 to 255D, a 12-bit number from
0 to 4095D, and a 16-bit number from 0 to 65 535D. For larger numbers, more bits just need to be added.
We could even represent fractional numbers in this way, by inserting a binary point. Then the digits to the
right of the binary point represent negative powers of 2. This is seen in the example of Figure 11.11, where
the binary number 1101.11 is evaluated to 13.75D. As long as the binary point remains in the same fixed
place in all numbers being used (in fact, we only need to imagine it there), then it is possible to undertake
a range of arithmetic operations with a set of numbers.

This type of binary number representation is called fixed point. The binary point is not used, or else is
assumed to be in a fixed place in the number. Such representation can solve the need to represent integers
and non-integer numbers. It does not, however, solve the problem of dealing with number values that range
from the very small to the very large. The smallest non-zero number that the 6-bit fixed-point number of
Figure 11.11 can represent, for example, is 0.25D, while the maximum number is 15.75D. It could neither
represent 0.0004D nor 2.3 × 106.

The solution to this problem lies in floating-point representation. This represents the number with a sign
bit, mantissa and exponent. A huge range of numbers can be represented, but processing complexity is
greater. While floating-point routines are available in Assembler, it is most commonly found in high-level
languages, where it is used for all precision calculation. In this chapter we apply only fixed-point arithmetic.

1  1  0  1 . 1   1

1 × 20

0 × 21

1 × 22

1 × 23

1 × 2−2

1 × 2−1

1101.11B = 8+4+0+1+0.5+0.25 = 13.75D 

Figure 11.11 A fractional binary number
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11.5.2 Binary to Binary Coded Decimal conversion

While all fixed-point arithmetic is done in binary, where there is human interaction, there will be a marked
preference for decimal. How do we move data between the binary domain and the decimal?

A simple halfway house between binary and decimal is Binary Coded Decimal (BCD). This uses a 4-bit
number to represent a decimal digit, as shown in Table 11.2. The only thing that distinguishes BCD from
hexademical is that in BCD the binary equivalents of Hex. AH, BH, CH, DH, EH or FH are not allowed. Thus,
Table 11.2 shows all legal BCD codes for a single decimal digit. The table also shows the ASCII (American
Standard Code for Information Interchange) code for each of the numbers. For numeric characters, it can
be seen that this is simply a single-byte code, in which the number itself occupies the lower nibble and the
number 3 forms the higher.

Given this simple coding, multi-digit decimal numbers can be represented in BCD. In packed BCD, which
is commonly used, a byte is used to represent two decimal digits. An example is shown in Figure 11.12.

Despite this simple representation, it is not completely straightforward to convert between BCD and binary.
Standard algorithms are available, however, such as are used in Ref. 11.3. The Derbot light meter example
uses a subroutine taken from this reference that converts a 16-bit number into a five-digit BCD number.
This is used to prepare the data for the display. The underlying algorithm can be found in many books on
computer arithmetic and in Ref. 1.1.

Table 11.2 Binary, BCD and ASCII
Decimal Binary (BCD) ASCII (in hex.) Decimal Binary (BCD) ASCII (in hex.)

0 0000 30 5 0101 35
1 0001 31 6 0110 36
2 0010 32 7 0111 37
3 0011 33 8 1000 38
4 0100 34 9 1001 39

6 9 2 7

0 1 1 0 1 0 0 1 0 0 1 0 0 1 1 1

Most significant
digit 

Least significant 
digit 

Figure 11.12 Packed BCD representation of the decimal number 6927
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11.5.3 Multiplication

After addition and subtraction, multiplication is the next most common arithmetic requirement that is usually
needed in computer arithmetic. Some processors have hardware multipliers in them and hence a multiply
instruction. For the simpler ones, like the PIC 16 Series, multiplication must be achieved by software
routines. The standard algorithm for this is a repeated shift and add process [Ref. 1.1]. A very wide range of
standard routines are available, in both fixed point and floating point. The fixed-point ones come in different
sizes, depending on the number size to be used. Inevitably, those with longer word length take more time
to execute. Reference 11.2 has fixed-point multiply routines for 8-bit × 8-bit (with 16-bit result), 8-bit ×
16-bit (with 24-bit result), 16-bit × 16-bit, up to 32-bit × 32-bit (with 64-bit result).

The Derbot light meter example uses a 16-bit × 16-bit multiply subroutine taken from Ref. 11.3, as is now
described.

11.5.4 Scaling and the Derbot light meter example

A common application of multiplication is for scaling of input data, perhaps to convert it into a standard
unit. The Derbot example is interesting in this respect.

The Derbot uses the power supply voltage of 5 V as its reference. Hence the 10-bit resolution is (5/1024) =
4.883 mV. Thus, the ADC least significant bit, when using this voltage reference, is ‘worth’ 4.883 mV.
If the ADC output value is multiplied by 4.883, then the result will give a true millivolt reading. Yet it is
awkward to introduce and track a binary point. A possible workaround is to scale the fractional number
up by a binary power and then – after the multiplication – divide by the same number. It’s easy to do
this, as binary division is a straightforward process of shifting a number right, effectively discarding less
significant bits.

For example, for the Derbot light meter, we want to do the calculation:

ADC output × 4.883 = Millivolt reading.

While we can’t multiply by 4.883, we note that 4.883 × 256 = 1250.048 and we can do the following
multiplication using integers only:

ADC output × 1250 = Intermediate result.

With the ADC output being a 10-bit number and 1250D (i.e. 04E2H) an 11-bit number, the result will be at
most 21 bits. This defines the type of multiply routine needed.

If the intermediate result is then divided by 256, which can be done simply by discarding its least significant
byte, then our scaling process is complete. The outcome is the voltage input to the ADC, given in millivolts.

One is justified in asking how the multiplying factor of 256 was chosen, rather than say 128 or 512. This
depends on the rounding error introduced. The rounding error in taking 1250 instead of 1250.048 is very
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small, well below 0.05 per cent, and so is acceptable when dealing with 10-bit numbers. In fact, it would
have been acceptable to use 128 as the multiplying factor, but then the convenience of dropping the least
significant byte for the division stage would have been lost.

Remember that all of this is a workaround. We could alternatively convert 4.883 directly to binary, which
turns out to be 100.11100010, or 4.E2H. With a bit of thought, and comparing this number with the multiplier
we found above, it can be seen that the two methods are essentially equivalent.

The process described above is applied in Program Example 11.2, which scales the value of the rear LDR.
It uses two subroutines: mult16x16 to multiply two 16-bit numbers and Bin2BCD16 to convert a 16-bit
number to a five-digit BCD output. The program section starts after the ADC conversions have been made.
The stored output of the ADC conversion, held in memory locations ldr_rear_hi and ldr_rear_lo, is
transferred into aargb0 and aargb1, one of the 16-bit inputs to the multiplier subroutine. The other input
to the subroutine is the word formed by bargb0 and bargb1. Into this is loaded the word 04E2H, the
hexadecimal equivalent of 1250D. The mult16x16 subroutine is then called, with the result being placed in
aargb0:aargb1:aargb2:aargb3. As the result can only be 21-bit, the most significant byte aargb0 will be
empty and is ignored. The least significant byte is similarly ignored, as the result needs to be divided by 256.
The next byte up, aargb2, is the less significant byte of the required result and is therefore transferred into the
lower byte (templ) of the 16-bit input to the Bin2BCD16 subroutine. Similarly, aargb1 is transferred to
the upper byte, temph. The Bin2BCD16 subroutine is then called. The output bytes of this are immediately
used for transfer to the LCD, by the subroutine four_dig_disp. This sends the BCD characters in turn on
the I2C link, for display on the hand controller LCD.

All subroutines appear in the complete program listing in the book CD.

(ADC conversions have been undertaken for all three LDRs)

...

;scale rear

movf ldr_rear_hi,0 ;get higher byte of ADC conversion result

movwf aargb0 ;this is multiplier higher byte

movf ldr_rear_lo,0

movwf aargb1 ;this is multiplier lower byte

movlw 04 ;higher byte of scaling factor

movwf bargb0

movlw 0e2 ;lower byte of scaling factor

movwf bargb1

call mult16x16 ;call the multiply subroutine

movf aargb1,0 ;discard highest and lowest bytes

movwf temph ;second highest byte for BCD conversion

movf aargb2,0 ;third highest byte for BCD conversion

movwf templ

call Bin2BCD16 ;call Binary to BCD conversion subroutine

call four_dig_disp ;call subroutine which sends BCD bytes to display

...

Program Example 11.2 Data processing sequence for rear LDR, Derbot light meter program
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11.5.5 Using the voltage reference for scaling

The fact that the ADC output in the Derbot example immediately needs to be scaled, in order to provide a
true voltage reading, can be annoying, and of course use of the multiply routine itself is time-consuming in
program execution.

In some cases a judicious choice of voltage reference value can significantly simplify further calculations
that need to be made. For example, if the Derbot ADC was fitted with a reference of 4.096 V, then 1 LSB
of the output would represent 4 mV exactly and complex scaling would not be needed. Similarly, if the
reference voltage was 1.024 V, then 1 LSB of the output would represent exactly 1 mV. Voltage references
with values such as these are readily available for this very purpose.

11.6 The Derbot light-seeking program

This program gives another example of use of the 16F873A ADC. By comparing measurements between
the three LDRs, the AGV finds the source of brightest light and moves towards it. It moves at a speed
dependent on the light difference between its sensors, so comes to a halt when all three are at similar levels
of illumination. As only comparative measurements are being made, the application does not require high
accuracy. Therefore, only an 8-bit ADC result is used in the program. It is therefore more convenient to
left-format the result (Figure 11.9), so that the result can be taken from just the 8 bits of register ADRESH.
This can be seen in the changed setting for ADCON1 in this example.

With only an 8-bit result in use, the opportunity presents itself to shorten the acquisition time, notionally
to 6.2RC (Figure 11.4). As the program will only operate in reasonable levels of ambient light, the highest
LDR resistance is estimated to be 10 k�, giving a revised maximum source resistance of 5 k�. The ADC
input capacitance remains at 120 pF, as do the internal series resistances of the ADC. The acquisition time
is therefore 6.2 × 13k × 120 pF, or 9.7 µs. An 11 µs delay subroutine is used.

;*******************************************************************
;Dbt_light_seek
;Derbot seeks light. PWM applied. Speed is dependent on
;light difference (front to back), so Derbot comes to a
;halt when light difference is minimal. Microswitches used
;for bump detection.
;TJW 19.5.05 Tested 19.5.05
;*******************************************************************
...
(initial program sections omitted)
...

bsf status,rp0 ;select memory bank 1
movlw B'00001011' ;set port A bits so that ADC bits are input
movwf trisa
...
movlw B'00000100' ;Set up ADC, left justified result,
movwf adcon1 ;port A bits 0,1,3 for analog input

Program Example 11.3 Applying the ADC in Derbot light-seeking program
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...
bcf status,rp0 ;select bank 0
...
movlw B'01000001' ;Set up ADC, clock Fosc/8, ADC on but not running,
movwf adcon0 ;input channel selection currently irrelevant.
...

;initiate a conversion
movlw B'01001001' ;select channel 1 (right ldr)
movwf adcon0
call delay11u
bsf adcon0,go ;start conversion

adc2 btfsc adcon0,go ;wait for conversion to complete
goto adc2
movf adresh,0
movwf ldr_rt

...

Program Example 11.3 Continued

The actual control algorithm is represented in Figure 11.13 and is repeated approximately every 200 ms.
The full listing can be found on the book CD. Having read each LDR value, it makes some preliminary
calculations of average and difference values, used later if a forward speed is to be calculated. It then
determines the brightest LDR and takes appropriate action. If front left or front right are brightest, it moves
forward, turning in the brighter direction, with a speed and turn dependent on the relative light intensities.
If the rear is brightest, however, it rotates on the spot for a fixed period, in the direction of the front LDR
that is brighter. As it approaches a location where light intensity in all LDRs is similar, the speed slows.
The AGV halts if all LDRs are at similar levels of light intensity.

11.7 The comparator module

Having explored the intricacies of the ADC, we end the chapter with one of the simplest interfaces between
the analog and digital world – the comparator. This important circuit element acts a little like a 1-bit ADC.
It is usually used to compare an input voltage with a reference. If the input is higher than the reference, the
comparator output goes high, if it is lower, the output goes low. There are many applications for comparators
in embedded systems. These include cleaning up corrupted digital signals (in which case their use is very
close to a Schmitt trigger), testing battery voltage, setting an alarm if a temperature or other variable reaches
a certain value and so on.

11.7.1 Review of comparator action

A comparator is shown in Figure 11.14(a). The comparator simply compares its two inputs, shown in the
diagram as V+ and V−. If V+ is greater than V−, then the comparator output goes to a positive voltage value,
usually the maximum ‘saturated’ voltage level. If V+ is less than V−, then the output goes to a negative or
zero voltage value. With suitable design of output circuit, the output voltage levels can easily be made to
be recognisable logic levels.
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Figure 11.13 Flow diagram – Derbot light-seeking program
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An example of input and output voltages is shown in Figure 11.14(b). V− has been set to a fixed voltage,
shown by the dotted line, while V+ is varying. Whenever V+ is greater than V−, the output goes to Logic 1,
when it is less, the output goes to Logic 0.

11.7.2 The 16F87XA comparators and voltage reference

The 16F87XA has two comparators, which share inputs with the ADC inputs. Comparator 1 has inputs on
AN0 and AN3, and comparator 2 on AN1 and AN2. They are controlled by the CMCON register, seen
at address 9CH in Figure 7.6. A number of different configurations are possible. For example, comparator
outputs can be routed externally, to pins RA4 and RA5, or they can simply appear as bits in the CMCON
register. These can be easily looked up in the Microchip data [Ref. 7.1] and are not enumerated here.
Importantly, the comparators also form an interrupt source. A change in state of either comparator will set
the CMIF flag, seen in Figure 7.10.

The 16F873A also has a voltage reference module, under the control of the CVRCON register (address
9DH). This is a resistor ladder, connected at one end to the supply voltage (via a switching transistor),
which allows different voltage values to be selected as reference. The voltage reference can be used as an
input to one or both comparators, and can be output through pin 4 of the 16F873A. In this case, it can be
used as a very crude digital-to-analog converter output.

11.8 Applying the Derbot circuit for measurement purposes

We have now reached a stage where we can acquire input analog voltages, process the data acquired and
then display it. This is a very powerful position, as it is the basis of many a measurement system. This
section describes how the Derbot PCB and hand controller can be used to create certain measurement
tools, using programs already described. The hand controller connects to the Derbot ‘bus’ connector, which
lies physically at the lower end of the microcontroller IC holder. It should be loaded with its standard
program, i.e. that of Program Example 10.3.

These projects can be created as stand-alone devices or incorporated into the AGV. If stand-alone, then of
course the end product is a little bulkier than one would wish. The option remains to redesign the hardware
to create a more compact outcome. The circuit required, if stand-alone projects are being made, is shown in
Figure 11.15. This shows components and connections needed for all three items. The sections below will
indicate which ones are needed for any single build.

When programming, ensure as always that all unused port bits are set as outputs. Check, therefore, your
build against the program initialisation in use and adjust if necessary.

11.8.1 The electronic tape measure

The ultrasound test program, shown in part in Program Example 9.7, forms the basis of an ultrasonic ‘tape
measure’, displaying in centimetres the distance from the sensor to a reflecting surface. It processes data
in a similar way to the light meter program of Program Example 11.1 and therefore shares a number of
features with it.
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Figure 11.15 Derbot assembly for voltmeter, light meter and electronic tape measure

To build the tape measure as a stand-alone unit, the circuit of Figure 11.15 needs to be built on the Derbot
PCB, but without the LDRs and their resistors. A Devantech SRF04 or SRF05 ultrasonic sensor should be
used. A set of connection points for this is available just forward of the motor locations on the Derbot PCB.
Terminal pins should be soldered in here. Applying the sensor data [Ref. 8.7], connect 0 V, 5 V, pulse and
echo to the pins, and glue or attach the sensor to a place of your choosing on the PCB.
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Complete the build as described and create an MPLAB® project around the Dbt_US_Test program, shown
in part in Program Example 9.7. Adjust the initialisation to match your build, setting all unused port bits
to output. Build the program and download to the microcontroller. Point the sensor at a reflective surface,
and the distance between sensor and surface should be continuously displayed in centimetres on the hand
controller display.

11.8.2 The light meter

To create the light meter, build the circuit of Figure 11.15 without the ultrasonic sensor. Download the
Dbt_light_meter project from the book CD and create an MPLAB project around it. Adjust the program
initialisation to match your build, setting all unused port bits to output. Build the program and download
to the microcontroller. Run the program and see how all LDR readings are displayed. As discussed, each
reading is in millivolts, but gives an indication of light intensity. Notice that the reading goes down as the
light intensity increases.

11.8.3 The voltmeter

It is a simple matter to adapt the light meter program to a voltmeter. In this case, the LDRs should not be
built onto the board. The voltmeter input is shown connected across the left LDR, although any other LDR
connection points can be chosen. Input terminals for the voltmeter can be placed in the prototype area and
connected appropriately.

Download the Dbt_light_meter project from the book CD and create an MPLAB project around it, giving
it a name appropriate to this project. Adjust the program initialisation to match your build, setting all unused
port bits to output (and noting that two ADC inputs are now no longer used). The program can otherwise
be used as it is. It is better, however, to remove the two unused ADC readings and the two redundant
displayed values, which will now have no meaning, unless a multi-input voltmeter is wanted. To test,
connect a variable DC voltage input to your voltmeter input and connect a digital voltmeter across this.
Check whether the two voltmeter readings agree.

This adaptation of the Derbot core design leads to a fairly inaccurate voltmeter, as the voltage reference is
the power supply. The place of the rear LDR can, however, be taken by a voltage reference of appropriate
value. It can be seen from Figures 11.6 or 11.8 that this input can be reconfigured as a reference input. The
software scaling will need to change to reflect any change in reference value. By making these changes,
a voltmeter of reasonable accuracy can be developed.

11.8.4 Other measurement systems

It is very easy to adapt the ideas already applied here to other measurement systems. This applies to any
sensor that has a voltage output. There is, for example, a range of semiconductor temperature sensors that
have a voltage output directly dependent on temperature. One of these could be used, either on a flying
lead or soldered into the prototyping area. With the scaling adjusted, a digital thermometer can readily be
developed.
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11.9 Configuring the Derbot AGV as a light-seeking robot

To configure the Derbot as a light-seeking AGV, the LDRs and their resistors should be added to the board.
Download the Dbt_light_seek project from the book CD and create an MPLAB project around it. Adjust
the program initialisation to match your build, setting all unused port bits to output. Build the program and
download to the microcontroller. The Derbot should be immediately ready to run in light-seeking mode.
This works well in a space where there is a clear variation of light. The Derbot will struggle in a space
where the light is mottled or patchy, and will sit completely still in a space that is uniformly lit!

Summary

• Most signals produced by transducers are analog in nature, while all processing done by a microcontroller
is digital.

• Analog signals can be converted to digital form using an analog-to-digital converter (ADC). The ADC
generally forms just one part of a larger data acquisition system. ADCs represent a fascinating interface
between the analog and digital worlds.

• Considerable care needs to be taken in applying ADCs and data acquisition systems, using knowl-
edge among other things of timing requirements, signal conditioning, grounding and the use of voltage
references.

• The 16F873A has a 10-bit ADC module that contains the features of a data acquisition system. An
understanding of such systems is essential in applying this module.

• Data values, once acquired, are likely to need further processing, including offsetting, scaling and code
conversion. Standard algorithms exist for all of these, and Assembler libraries are published.

• A simple interface between the analog and digital world is the comparator, which is commonly used to
classify an analog signal into one of two states.
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Section 4
Smarter Systems and

the PIC® 18FXX2

This section moves to more sophisticated processing power and matching programming techniques. The
PIC 18 Series family is introduced and used as the underlying hardware. The section is, however, mainly
concerned with software. The C programming language is introduced and applied. The issues of multi-
tasking and real time, essential in the embedded world, are introduced, and the SalvoTM Real Time Operating
System is applied.
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12
Smarter systems and the

PIC® 18FXX2

In this book so far we have studied the application of two microcontrollers from the PIC 16 Series – one
small and one large. While these are good microcontrollers, certain tensions and limitations have emerged.
Some aspects of the hardware are very limiting, for example the small size of the stack or the way all those
interrupt sources have to share a single interrupt vector. As far as the instruction set is concerned, we recognise
the value of the RISC approach. The absence of certain styles of instruction is, however, frustrating. Branch
instructions, for example, have to be made out of a combination of skip and goto. Furthermore, the prospect
of crafting major programs out of all those little Assembler instructions is becoming increasingly daunting.

Many of these limitations are experienced because the 16 Series has retained a core which was designed with
only modest applications in mind. Now the number of peripherals has increased dramatically and memory
sizes have soared. It is worth having a new beginning, addressing the issues that limit the 16 Series and
rethinking the design of the microcontroller core. This is the basis of the PIC 18 Series.

When advancing from the 16F84A, we found that the 16F873A kept the core and enhanced the peripherals.
We will now find that the 18 Series devices advance the core, while keeping peripherals reasonably constant.
A very new style of microcontroller is produced as a result. The distinctive advantages of the PIC structure –
RISC architecture, high speed and so on – is of course retained. New features appear, however, that allow
the PIC microcontroller to move into a bigger arena – features which enhance real time operation, ease the
use of high-level languages and allow interaction with much larger memories. Of the 18 Series the 18F242,
along with its close relations in the 18FXX2 sub-family, are chosen for detailed study.

This chapter anticipates that the reader is upgrading from a 16 Series device. It makes comparison with the
16 Series, as it is interesting to see how design concepts have evolved. The description of the instruction set
in particular is developed through such a comparison.

From this chapter onwards the book will use the C language for programming, rather than Assembler. It is
therefore less important to know the microcontroller hardware in intimate detail. The C compiler looks after
that side of things. This comes as quite a relief, as the 18 Series devices are not simple. For this reason, you
may find that some topics in this chapter are introduced with a ‘lighter touch’ than equivalent sections in, say,
Chapter 7.

After introducing the 18 Series and the 18F242, the chapter focuses on its central features, primarily core and
memory. In particular, it introduces:

• The overall architecture of the 18FXX2 group of microcontrollers
• The structure and operation of the 18 Series microcontroller core
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• The 18 Series instruction set
• The memory structure, and how it is accessed and addressed
• The 18FXX2 interrupt structure
• The 18FXX2 power supply, reset and oscillator.

12.1 The main idea – the PIC 18 Series and the 18FXX2

The PIC 18 Series microcontrollers dramatically enhance the PIC core, making it suitable for advanced
embedded projects. Despite many features which are new, it has been designed to make upwards migration
from a 16 Series device easy, so that the designer making this move will find many things which are familiar.
The principal characteristics we shall see are:

Similar to 16 Series

• RISC (Reduced Instruction Set Computer), pipelined, 8-bit CPU, with single Working (W) and Status
registers

• Many peripherals identical or very similar
• Similar packages and pinouts
• Many Special Function Register (SFR) and bit names unchanged
• All but one of the 16 Series instructions are part of the 18 Series instruction set
• Instruction cycle made up of four oscillator cycles.

New for 18 Series

• The number of instructions more than doubled, with 16-bit instruction word
• Enhanced Status register
• Hardware 8 × 8 multiply
• More external interrupts
• Two prioritised interrupt vectors
• Radically different approach to memory structures, with increased memory size
• Enhanced address generation for program and data memory
• Bigger Stack, with some user access and control
• Phase-locked loop (PLL) clock generator.

The 18FXX2 microcontrollers form a set of four closely related devices, whose main characteristics are
represented in Table 12.1. In many ways this table is similar to Table 2.1 and the 16F87XA microcontrollers.
All 18FXX2 devices have an instruction set of 75 instructions, with a clock oscillator that can run from
DC to 40 MHz. There are also ‘low-power’ versions of each microcontroller available, coded 18LFXX2.
The full manufacturer’s data on this family is found in Ref. 12.1.

The pin connections of the 18FXX2 family, for the dual-in-line packages, are shown in Figure 12.1. The
figure is very similar to Figure 7.1, with the ports, power supply, oscillator and reset lying in the same
places. This of course allows upgrade with minimum change.
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Table 12.1 The 18FXX2 sub-family
Device number No. of pins* Memory Peripherals/special features
18F242 28 16 KB program memory

(8K instructions**)
768 bytes RAM,
256 bytes EEPROM

3 parallel ports, 4 counter/timers,
2 capture/compare/PWM modules,
2 serial communication modules,
5 10-bit ADC channels

18F252 28 32 KB program memory
(16K instructions**)
1536 bytes RAM,
256 bytes EEPROM

3 parallel ports, 4 counter/timers,
2 capture/compare/PWM modules,
2 serial communication modules,
5 10-bit ADC channels

18F442 40 16 KB program memory
(8K instructions**)
768 bytes RAM,
256 bytes EEPROM

5 parallel ports, 4 counter/timers,
2 capture/compare/PWM modules,
2 serial communication modules,
8 10-bit ADC channels

18F452 40 32 KB program memory
(16K instructions**)
1536 bytes RAM,
256 bytes EEPROM

5 parallel ports, 4 counter/timers,
2 capture/compare/PWM modules,
2 serial communication modules,
8 10-bit ADC channels

*For DIP package only.
**Single-word instructions, noting that some are two words.
ADC, analog-to-digital converter; PWM, pulse width modulation.

12.2 The 18F2X2 block diagram and Status register

The block diagram of the 18F2X2 microcontrollers, which are the 28-pin devices of Figure 12.1(a), is shown
in Figure 12.2. Take some time to identify the principal features of this important diagram.

Almost central to the diagram is the CPU (Central Processing Unit), containing the 8-bit ALU (Arithmetic
Logic Unit), the Working register ‘WREG’ (sometimes called the accumulator) and an 8-bit × 8-bit hardware
multiply unit. CPU action is determined by the instruction received from program memory, which is
transferred through the Instruction register. This is seen above and to the left of the CPU block. An important
element of the CPU, though not shown in this diagram, is the Status register.

Program memory is seen to the top left of the diagram. Its address bus enters the memory ‘Address Latch’.
With its 21 bits, it is possible to address 221 locations, i.e. 2097152 (2 Mbyte) locations. Table 12.1 shows
that the 18F242 only needs to address 16K locations, which require only 14 bits. The other lines are therefore
redundant here. The 16-bit bus carrying the instruction word is seen leaving the ‘program memory data
latch’. This can be seen working its way down to, among other places, the Instruction register, already
mentioned. To the right of the program memory is an area labelled ‘program memory address generation’.
Central to this of course is the Program Counter. Below the Program Counter is the Stack, which contains
31 locations. A table pointer provides a means of accessing tables or other data in program memory, under
user program control.

The data memory is seen almost top centre of the diagram. Like the program memory, its address generation
forms a significant block of the diagram overall, with a bank of File Select Registers (FSR0, for example)
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(a)

(b)

Figure 12.1 PIC 18FXX2 pin diagrams and DIL packages. (a) 18F242 and 18F252. (b) 18F442 and 18F452

and a Bank Select Register (BSR). The data memory address is 12 bits, which can address 4096 bytes.
Again, Table 12.1 shows us that this address bus is not fully exploited. Data transfer to and from the data
memory is through the main data bus.

With the separate address bus and data input/output for each of program memory and data memory, we can
at this point confirm the underlying Harvard structure of the microcontroller.

Power supply connections for the microcontroller, VDD and VSS, appear towards the bottom left of the
diagram. Looking back at Figure 12.1 shows that two pins are dedicated to the VSS connection for either
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Figure 12.2 The PIC 18F2X2 block diagram (supplementary labels in shaded boxes added by the author)
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of the two packages shown. This ensures a good 0 V connection. The smaller package has a single VDD
connection, while the larger has two. Associated with power supply is the Power-on Reset, which ensures
reset when power is switched on; the Power-up Timer, which can be used to maintain the microcontroller in
a state of reset for a fixed time after power-up; and the Brown-out Reset, which will force the microcontroller
into reset if the power supply dips.

Oscillator inputs, both for the main oscillator and for Timer 1, are seen at the left of the diagram. Linked
to the main oscillator is the Timing Generation circuit, which develops the various internal clock signals.
Also associated with the main oscillator is the Oscillator Start-up Timer, which can be used to ensure that
the oscillator is running reliably before the microcontroller itself starts to run. A new oscillator element is
the phase-locked loop (PLL). This introduces the option of multiplying up the oscillator frequency, so that
overall operation can be speeded up. This has an impact on operating flexibility and on power consumption.

In the lower left region of the diagram we also see the Watchdog Timer and in-circuit debugger. The first
is a timing element that can be used to force a restart of microcontroller operation, if the program crashes
in some way. The second provides a diagnostic capability that is actually designed into the microcontroller.
Its use relies on connection of the microcontroller to a host computer. If used, program execution can be
controlled from the computer. In this case it is also possible to return diagnostic data, including values of
microcontroller registers, to the computer for display. This feature has already been described in Section 7.11
of Chapter 7.

Finally, the parallel ports, containing both their input/output function and all interconnection with the
peripherals, are placed on the right-hand side. The other peripherals appear along the bottom of the diagram.
Among these is another memory block, using EEPROM technology.

As an important part of the CPU, the Status register is shown in Figure 12.3. It contains a full 5 bits of
status information on the operation most recently performed by the microcontroller. The limited number of
Status bits (Figure 7.3) is arguably one of the weaknesses of the 16 Series microcontroller. The 18 Series
adds 2 new bits. These are OV (bit 3), which signals an overflow of the 8-bit range, and N, which indicates
that a twos complement number is negative. As the sign bit in a twos complement number is the MSB,
the N bit is simply the MSB of the result. These extra bits allow improved program branching and better
mathematical capability. The other information in the figure is self-explanatory.

12.3 The 18 Series instruction set

The full instruction set of the PIC 18 Series is shown in Appendix 5, with 75 distinct instructions! It is
a super-set of the PIC 16 and 17 Series instruction sets, so any program which runs on one of those
microcontrollers can be expected to run on the 18 Series. With this many instructions, the set begins to
have a CISC (Complex Instruction Set Computer – see Chapter 1) feel to it, losing some of the simplicity
we expect of RISC. Note that there is also an ‘extended’ 18 Series instruction set, which adds a number of
instructions to this one. These are described in Chapter 13.

Looking at Table A5.1, it seems a daunting prospect to get to know all those instructions. The good news
is: we don’t need to! After this chapter, almost all the programming we do will be in C, so someone else
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Figure 12.3 The PIC 18FXX2 Status register

can worry about Assembler. However, an overview is still useful – we do, after all, need Assembler inserts
in C sometimes.

For those migrating to the 18 Series from the 16 Series, Table 12.2 should be interesting. This gives a brief
comparison of the two instruction sets. The first column lists all 16 Series instructions, approximately in
the order given in Appendix 1. The second column gives the 18 Series equivalent, where there is one, and
also lists all instructions that are completely ‘new’.

To explore the 18 Series instructions, let’s start by looking at the first two columns of Table A5.1. These
give the Assembler mnemonic of the instruction with its operands, followed by what the instruction does.
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Table 12.2 Comparison of 16 Series and 18 Series instruction sets
16 Series
instruction

18 Series
equivalents

Description

Byte-oriented file register operations
addwf f,d addwf f,d,a

addwfc f,d,a
Add W and f
Add W and f with Carry

andwf f,d andwf f,d,a And W and f
clrf f clrf f,a Clear f
clrw – Clear W
comf f,d comf f,d,a Complement f
–
–
–

cpfseq f,a
cpfsgt f,a
cpfslt f,a

Compare f with W, skip if equal
Compare f with W, skip if greater than
Compare f with W, skip if less than

decf f,d decf f,d,a Decrement f
decfsz f,d
–

decfsz f,d,a
decfsnz f,d,a

Decrement f, skip if zero
Decrement f, skip if not zero

incf f,d incf f,d,a Increment f
incfsz f,d incfsz f,d,a

incfsnz f,d,a
Increment f, skip if zero
Increment f, skip if not zero

iorwf f,d iorwf f,d,a Inclusive OR f with W
movf f,d
–

movf f,d,a
movff fs,fd

Move f
Move source file fs to destination file fd

movwf f movwf f,a Move W to f
nop nop

nop
No operation – an intentional instruction
The second word of a two-word instruction, which is encoded to
execute as a nop if it is accidentally interpreted as an instruction

– mulwf f,a Multipy W and f
– negf f,a Negate f
rlf f,d rlfc f,d,a

rlnfc f,d,a
Rotate left through Carry
Rotate left, no Carry

rrf f,d rrcf f,d,a
rrncf f,d,a

Rotate right through Carry
Rotate right, no Carry

– set f Set f
subwf f,d subwf f,d,a

subwfb f,d,a
Subtract W from f
Subtract W from f with borrow

– subfwb f,d,a Subtract f from W with borrow
swapf f,d swapf f,d,a Swap nibbles in f
– tstfsz f,a Test f, skip if zero
xorwf f,d xorwf f,d,a Exclusive OR W with f
Bit-oriented file register operations
bcf f,b bcf f,b,a Clear bit b in register f
bsf f,b bsf f,b,a Set bit b in register f
– btg f,d,a Toggle bit b in register f
btfsc f,b btfsc f,b,a Test bit b in f, skip if clear
btfss f,b btfss f,b,a Test bit b in f, skip if set

continued
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Table 12.2 Continued
16 Series
instruction

18 Series
equivalents

Description

Literal operations
addlw k addlw k Add literal to W
andlw k andlw k And literal with W
iorlw k iorlw k Inclusive OR literal with W
movlw k movlw k Move literal to W
– movlb Move literal to BSR
– lfsr f,k Load FSR f with 12-bit literal k
– mullw Multiply literal with W
sublw k sublw k Subtract W from literal
xorlw k xorlw k Exclusive OR literal with W
Control operations
call k call n,s

rcall n
Call subroutine, with (s = 1) or without (s = 0) saving context to Stack
Relative call to subroutine

clrwdt clrwdt Clear Watchdog Timer
– daw Decimal adjust W
goto k goto n Go to absolute address, where k/n address anywhere in program memory

space
– pop Pop top of return stack (TOS)
– push Push top of return stack (TOS)
– reset Software reset
retfie retfie s Return from interrupt, with (s = 1) or without (s = 0) retrieving context

from Stack
retlw k retlw k Return with literal in W
return return s Return from subroutine, with (s = 1) or without (s = 0) retrieving context

from Stack
sleep sleep Go into standby mode
– bc, bn, bnc, bnn,

bnov, bnz, bov,
bz

Eight conditional branch instructions, one for each state of Status register
bits N, OV, Z, C, all with 8-bit twos complement relative address n

– bra n Branch unconditionally 8-bit twos complement relative address n
Program memory Table Read/Write operations
– tblrd*, tblrd*+,

tblrd*−, tblrd+*
Four Table Read instructions, with pointer change respectively
no change, post-increment, post-decrement, pre-increment

– tblwt*, tblwt*+,
tblwt*−, tblwt+*

Four Table Write instructions, with pointer change respectively:
no change, post-increment, post-decrement, pre-increment

The symbols used for the operands, for example a, d or f, are explained in Table A5.2. While some of these
are familiar from the 16 Series, the operand bit a is new and leads to the possibility of instructions with
three operands. This defines the memory area called ‘Access RAM’ described later in this chapter. Through
this bit, the programmer now has a choice of whether to use Access RAM or not.

The third column of Table A5.1 indicates how many instruction cycles the instruction takes to execute. As we
expect with a RISC and pipelined structure, all normal instructions execute in a single cycle. Those which
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cause a program branch take two. Skip instructions take one cycle if there is no skip, two if followed by
a single-word instruction and three if followed by a two-word instruction. A small number of complex
instructions also take more than one cycle.

The next column (column 4) shows the actual coding of the instruction. Fortunately, it is the assembler
or compiler that generates this code. Most instructions are contained in a single 16-bit word, while just
four occupy two 16-bit words. These are call, goto, movff and lfsr. Take a look at the machine code
itself of these instructions. It is interesting to see that while the second word of any of them carries useful
information, if taken alone it encodes as a nop instruction. This is because the most significant 4 bits
form the nop machine code, for which the less significant bits are ‘don’t care’. This arrangement allows
program execution to realign itself, if at any time the microcontroller tries to interpret this second word as
a stand-alone instruction.

The final column of Table A5.1, ‘Status affected’, indicates which bits of the Status register (Figure 12.3)
are affected by the action of the instruction. It is interesting from this point of view to compare ‘identical’
instructions, as they appear in the 16 Series (Appendix 1) and 18 Series instructions sets. For example,
addwf in the 16 Series only affects the C, DC and Z bits. In the 18 Series, the same bits are affected, as
well as OV and N. While the instruction is unchanged in its function, it has become more powerful, by its
effect on more Status bits.

In relation to the 16 Series, and looking at Table 12.2, it can be seen that the 18 Series instructions fall into
the categories listed below.

12.3.1 Instructions which are unchanged

These are instructions whose function and form is identical to the 16 Series. Many examples lie in the literal
instructions, for example addlw k, andlw k. The only difference is the effect on the increased number of
Status bits.

12.3.2 Instructions which have been upgraded

These instructions are almost the same as their 16 Series predecessors, but have added functionality or
flexibility, due in part to changes in architecture. The most widespread example of this is the ability to
select Access RAM as the target memory area, as mentioned above. It can be seen that this change is
implemented in a large number of the byte-oriented arithmetic and logical operations, for example addwf
f,d,a and andwf f,d,a.

Another interesting development is the flexibility attached to call, return and retfie instructions. A new
operand s allows a choice to be made over whether context is saved to the Stack, and then retrieved from
it or not.

To ensure upward compatibility, all these instructions assemble to valid 18 Series code, even if presented
in 16 Series format.
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12.3.3 New, variant, instructions

Some of the 16 Series instructions felt limited, and for effective use in certain situations had to be used
in direct association with other instructions. The 18 Series instruction set adds variants to many of these
instructions to ease these limitations. For example, the simple add instruction addwf is now also available
as add with carry, addwfc. This simplifies an enormous number of 16-bit or greater additions. Similarly,
subtract with borrow is also available, as are rotates with or without Carry and incfsnz (increment f, skip
if not zero).

12.3.4 New instructions

Finally, there are many instructions that are just plain new. These derive in many cases from enhanced hard-
ware or memory addressing techniques. Significant among arithmetic instructions is the multiply, available
as mulwf (multiply W and f) and mullw (multiply W and literal). These invoke the hardware multiplier,
seen already in Figure 12.2. Multiplier and multiplicand are viewed as unsigned, and the result is placed in
the registers PRODH and PRODL. It is worth noting that the multiply instructions cause no change to the
Status flags, even though a zero result is possible.

Other important additions to the instruction set are a whole block of Table Read and Write instructions, data
transfer to and from the Stack, and a good selection of conditional branch instructions, which build upon the
increased number of condition flags in the Status register. There are also instructions that contribute to con-
ditional branching. These include the group of compares, for example cpfseq, and the test instruction, tstfsz.

A useful new move instruction is movff, which gives a direct move from one memory location to another.
It should be noted that this codes in two words and takes two cycles to execute. Therefore, its advantage
over the two 16 Series instructions which it replaces may seem slight. It does, however, save the value of
the W register from being overwritten.

Some of these new instructions will be explored in the program example and exercises of Section 12.10.

12.4 Data memory and Special Function Registers

Table 12.1 showed the different memory sizes in the 18FXX2 family. In the next sections, where we look
at memory, we will use the 18F242 as the main example. The other devices in the family are similar, but
all have larger memory capability in one way or another. Those upgrading from the PIC 16 Series will need
to be ready for some new approaches to memory structure.

12.4.1 The data memory map

The general data memory map of the 18F242 is shown in Figure 12.4. Each memory location is 1 byte,
while the address is 12-bit, with the capability to address up to 4096 locations. The structure of the memory
is effectively made up of 16 banks, each of 256 bytes. A special register, the Bank Select Register (BSR),
holds the bits that select the bank. These bits are seen in Figure 12.4 and form the highest 4 bits of the 12-bit
memory address. Figure 12.4 shows that only the lowest three banks are implemented as ‘general-purpose
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Key 
BSR:  Bank Select Register        GPR: General-purpose Register        SFR:  Special Function Register

Figure 12.4 The PIC 18F242 data memory map
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registers’ (i.e. general-purpose RAM) in the 18F242. These make the 768 (3 × 256) bytes of data memory
indicated in Table 12.1.

While the lower three banks of data memory are used for general-purpose RAM, the SFRs are contained in
a block at the top end of memory, in the upper half of the top bank. They are shown in Figure 12.5. Note
that the four columns shown are not themselves memory banks. In fact, taken together they only form part
of the highest bank, as already seen in Figure 12.4.

12.4.2 Access RAM

We have already come across mention of ‘Access RAM’ while looking at the instruction set. Figure 12.4
shows two areas of memory that carry this name. These are the lowest and highest 128 bytes of memory.
The lowest is general-purpose RAM, while the highest contains all the SFRs. The Access RAM concept
provides a way of addressing a part of RAM quickly. While the two halves of Access RAM are at opposite
ends of the memory map, when used as Access RAM they are treated as one continuous block of memory.
The bits of the BSR are ignored and they then have just an 8-bit address, with the SFR addresses following
directly on from the lower Access RAM addresses.

Access RAM is available to all instructions which have the a operand, as seen in Appendix 5 or Table 12.2.
If a is set to 0, then only Access RAM is available and it is accessed as described above.

12.4.3 Indirect addressing and accessing tables in data memory

The concept of indirect addressing in the 16 Series was introduced in Chapter 5, Section 5.4.1. This described
how a File Select Register (FSR) can be used to hold an address. If the program addresses the (non-existent)
register INDF, then the address placed in the FSR is used as the address for that instruction.

This concept continues to apply in the 18 Series, but is extended to match the larger memory sizes involved,
and with multiple FSR and INDF registers. To begin with, there are now three FSRs, which appear in
Figure 12.2. Because of the much larger data memory size, each one needs to have 12 bits. They are
therefore each made up of two memory locations and can be seen in the SFR map of Figure 12.5 as
FSR2H:FSR2L, FSR1H:FSR1L and FSR0H:FSR0L.

To further complicate matters, there are five equivalents to the INDF register. These are shown in Table 12.3.
They can also be found in the SFR map of Figure 12.5.

Now if an instruction addresses any of the locations shown in Table 12.3, then the 12-bit number held in
the corresponding FSR is used as an indirect address, accessing a location in data memory upon which the
instruction operates. During instruction execution the value of the FSR is modified as shown.

12.5 Program memory

As with the data memory, we use the smallest 18FXX2, the 18F242, as our example device when looking
at program memory.
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Figure 12.5 The PIC 18F242 Special Function Registers
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Table 12.3 ‘Virtual’ registers used in indirect addressing
‘Virtual’ register addressed
n = 0, 1 or 2

Action following instruction invoking FSR

INDFn No change to FSRn

POSTINCn The FSR is automatically incremented following access
POSTDECn The FSR is automatically decremented following access
PREINCn The FSR is automatically incremented preceding access
PLUSWn The value in WREG is added to FSRn, to form indirect

address. Neither FSR nor WREG are changed

12.5.1 The program memory map

The program memory map is shown in Figure 12.6. It can be seen that it occupies only a modest proportion
of the overall capacity offered by the 21-bit bus. Each memory location has a size of 1 byte. With the
normal instruction word being 16 bits, each instruction therefore takes 2 or 4 bytes. The less significant
byte is stored in a location with an even address. The reset vector, where the program starts, is shown
as memory location 0000, and the two interrupt vectors at locations 0008H and 0018H. Interrupt Service
Routines (ISRs) must be written to start at one of these locations.

12.5.2 The Program Counter

The Program Counter, seen at the top of Figure 12.6, is 21 bits wide. With each instruction stored as 2 or
4 bytes, the Program Counter increments twice, or four times, every instruction.

Access to the Program Counter is available through SFRs in the memory map. The least significant byte is
called PCL. It is readable and writeable, and can be seen as memory location FF9H in Figure 12.5. The
middle program counter byte, and the higher 5 bits, are not directly readable or writeable. Updates to these
may, however, be made through the PCLATH and PCLATU registers, seen in both Figures 12.2 and 12.5.
Contents of these locations are transferred to the Program Counter by any operation that writes to PCL.
Similarly, any operation that reads PCL will cause the relevant higher bits of the Program Counter to be
transferred to PCLATH and PCLATU.

12.5.3 Upgrading from the 16 Series and computed
goto instructions

With the 16 Series, we used the computed goto as a means of retrieving data from a look-up table, for
example Figure 5.5 or Program Example 5.4. An offset was added to the Program Counter to cause a jump
to one of a list of retlw instructions. That instruction then caused a return to the main program, with the
selected byte of data carried in the W register. This is still possible in the 18 Series, but it is important to
remember that each instruction now takes 2 bytes in program memory. Therefore, any offset added to the
Program Counter in a 16 Series program must be doubled to create the same effect in an 18 Series program.
An example of how to do this is given in Ref. 12.2.



350 Smarter systems and the PIC“ 18FXX2

Figure 12.6 The PIC 18F242 program memory map and return address stack

12.5.4 The Configuration registers

Whereas the 16 Series microcontrollers have a single 14-bit Configuration Word, the 18 Series has a whole
set of Configuration registers, reflecting the greater complexity and flexibility of the device. The registers are
shown in Table 12.4 and a summary of the function of each bit in Table 12.5. It is easy to see that the usual
features – oscillator settings, Watchdog Timer, power-up timing, Brown-out Reset and code protection –
are there. Most of these have grown in the options they offer. There are now, for example, eight oscillator
settings, an alternative Watchdog mode and more brown-out settings. More bits are therefore needed.

The Configuration registers are mapped in program memory starting at memory location 300000H.
Like program memory, they are 8-bit locations. The two device identification registers, DEVID1 and
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Table 12.4 18 Series Configuration Words: 18FXX2 Configuration registers and device identifications (Table provided
by Microchip)
File name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Default/

unprogrammed
value

300001h CONFIG1H – – |OSCSEN – – FOSC2 FOSC1 FOSC0 --1- -111
300002h CONFIG2L – – – – BORV1 BORV0 BOREN |PWRTEN ---- 1111
300003h CONFIG2H – – – – WDTPS2 WDTPS1 WDTPS0 WDTEN ---- 1111
300005h CONFIG3H – – – – – – – CCP2MX ---- ---1
300006h CONFIG4L |DEBUG – – – – LVP – STVREN 1--- -1-1
300008h CONFIG5L – – – – CP3 CP2 CP1 CP0 ---- 1111
300009h CONFIG5H CPD CPB – – – – – – 11-- ----
30000Ah CONFIG6L – – – – WRT3 WRT2 WRT1 WRT0 ---- 1111
30000Bh CONFIG6H WRTD WRTB WRTC – – – – – 111- ----
30000Ch CONFIG7L – – – – EBTR3 EBTR2 EBTR1 EBTR0 ---- 1111
30000Dh CONFIG7H – EBTRB – – – – – – -1-- ----
3FFFFEh DEVID1 DEV2 DEV1 DEV0 REV4 REV3 REV2 REV1 REV0 (1)
3FFFFFh DEVID2 DEV10 DEV9 DEV8 DEV7 DEV6 DEV5 DEV4 DEV3 0000 0100

Table 12.5 18 Series Configuration Words: 18FXX2 summary of configuration bits and device identifications

Configuration bit(s) Summary of function
(unprogrammed value is 1, active (enabled) value generally 0)

OSCSEN Clock Source Switching Enable bit
FOSC2:FOSC0 Selects one of eight oscillator modes (see Table 12.6)
BORV1, BORV0 Selects Brown-out Reset voltage, to 2.5, 2.7, 4.2 or 4.5 V
BOREN Brown-out Reset Enable bit

PWRTEN Power-up Timer Enable bit
WDTPS2:WDTPS0 Watchdog Timer Postscale bits, eight values from 1:1 to 1:128
WDTEN Watchdog Timer Enable bit
CCP2MX CCP2 Multiplex, selects RC1 (1) or RB3 (0)

DEBUG Background Debug Enable bit
LVP Low-Voltage Program Enable bit
STVREN Stack Full/Underflow Reset Enable bit
CP3:CP0 Code Protection bits
CPD Data EEPROM Code Protection bit
CPB Boot Block Code Protection bit
WRT3:WRT0 Program Memory Write Protection bits
WRTD Data EEPROM Write Protection bit
WRTB Boot Block Write Protection bit
WRTC Configuration Register Write Protection bit
EBTR3:EBTR0 Table Read Protection bits
EBTRB Boot Block Table Read Protection bit
DEV2:DEV0 Device ID bits: 000 = 18F252, 001 = 18F452, 100 = 18F242, 101 = 18F442
REV4:REV0 Revision ID bits
DEV10:DEV3 Further Device ID bits
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DEVID2, are readable only and contain pre-programming information identifying the device and its revision
number.

12.6 The Stacks

The Stack in an advanced microprocessor is a versatile memory block, which can be used both
automatically – say, for saving a return address in a subroutine call – as well as by the programmer,
for short-term data storage. Indeed, in many cases multiple Stacks are used. The 16 Series Stack seen earlier
was, however, a small and mechanistic structure. With only eight levels, it is linked directly to the Program
Counter, and just saves or returns its value under certain subroutine call or interrupt conditions.

The 18 Series Stack moves some way to taking on the features of the larger microprocessor. The automatic
functions remain, for subroutine call and so on, but there is also some user access. There is also limited
stacking, in another memory area, of key data registers.

12.6.1 Automatic Stack operations

The main Stack is called, in the 18 Series, the ‘Return Address Stack’. This distinguishes it from the other
smaller Stack locations that also exist. It is seen as part of Figure 12.6. It consists of 31 Read/Write memory
locations, each of 21 bits. This figure also shows the Assembler mnemonics of those instructions that cause
it automatic access. All of these relate to subroutine call or return, with the exception of retfie, the return
from interrupt instruction.

12.6.2 Programmer access to the Stack

Not shown in Figure 12.6 is the Stack Pointer, which holds the current Stack address. It is set to zero on
all resets and its value is changed by all automatic Stack accesses. Thus, it is incremented when a value is
pushed onto the Stack and decremented when a value is popped off. It is also configured as part of an SFR,
called STKPTR. As with all SFRs, this is readable and writeable by the programmer. STKPTR is seen as
memory location FFCH in Figure 12.5. The 5 lower bits of STKPTR form the Stack Pointer. The register
also contains bits that flag Stack overflow or underflow – respectively STKOVF (also called STKFUL,
bit 7) and STKUNF (bit 6).

The value held in the top location of the Stack is accessible to the programmer, and is both readable and
writeable. Being 21 bits, it occupies three register locations, TOSU, TOSH and TOSL. These can again
be seen in the register map of Figure 12.5, above STKPTR. The instructions PUSH and POP allow the
programmer to push the current Program Counter value onto the Stack, or retrieve the top of the Stack and
place it in the Program Counter.

12.6.3 The Fast Register Stack

The 18 Series structure provides not only a Stack for the Program Counter, but also (in primitive form)
a separate ‘Stack’ for the STATUS, WREG and BSR registers. These are single memory locations, not
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directly accessible to the programmer, which together are called the Fast Register Stack. When an interrupt
occurs, either high or low priority, the values of the three registers listed are saved. The stacked values are
returned if a ‘fast’ return from interrupt is selected. In other words, the retfie instruction should be used
with the s operand set to 1. Section 12.7.7 returns to this issue.

The Fast Register Stack can also be used with subroutine calls and returns. As Appendix 5 shows, both call
and return instructions can be used with the s bit set, invoking use of the Fast Register Stack. It is of course
only safe to do this if interrupts are not being used. Otherwise, an interrupt occurring during a subroutine
will cause the Fast Register Stack to be overwritten.

12.7 The interrupts

The 18FXX2 microcontrollers offer a sophisticated interrupt structure that shows considerable advance over
the 16 Series. Improvements include the introduction of a second interrupt vector, allowing a high priority
and a low priority vector. This has already been seen in the program memory map of Figure 12.6. All
interrupts but one can be allocated to high or low priority. There are more external interrupts, and automatic
context saving, by use of the ‘fast return’ Stack (Section 12.5).

12.7.1 An interrupt structure overview

The interrupt structure is shown in Figure 12.7. It is fairly complex, but an understanding of it will lead to
effective use of the microcontroller interrupts. Interrupt sources tend to appear from the left of the diagram.
The three major outputs are to the right. Two of these lead to the interrupt vectors. Activation of either of
these outputs causes a CPU interrupt, with Interrupt Service Routine (ISR) starting at one or other of the
interrupt vectors seen in Figure 12.6. There is also a ‘Wake-up’ output, implemented if in Sleep mode.

As we explore the diagram, we will look for these features:

• The interrupt sources (noting, however, that not all are shown)
• The source enabling logic
• The source prioritisation logic
• The overall prioritisation enabling logic
• The overall (global) enabling logic.

12.7.2 The interrupt sources, their enabling and prioritisation

Let us start by identifying some of the interrupt sources. A useful first block to look at has been labelled
‘External interrupt sources and Timer 0’. This block contains five AND gates, with all but one having three
inputs. Look at the top one, with inputs labelled TMR0IF, TMR0IE and TMR0IP. This is the Timer 0
input and it displays a pattern that is repeated many times over. The input …IF is the Interrupt Flag bit, set
if the Timer 0 interrupt has occurred; the input …IE is the Enable bit, a bit in an SFR which can be set or
cleared by the program. The input …IP is the Priority bit, also in an SFR and set or cleared by the program.
If all these inputs are high, i.e. the interrupt is enabled, it is selected as high priority, and the interrupt flag



354 Smarter systems and the PIC“ 18FXX2

has been set, then the output of the AND gate goes high and the interrupt is routed through to the next stage
of gating. Notice that the outputs of all AND gates in this block are ORed together.

The block just described is repeated towards the bottom of the diagram. Now, however, the third input to
the Timer 0 AND gate is TMR0IP. It is possible to see that every interrupt source (except one, which we
will mention below) appears once in the top half of the diagram and once in the bottom. In the top half, it
is enabled if its priority bit is high; in the bottom half, it is enabled if the bit is low. Again, the outputs of
all AND gates in this block are ORed together.

The one source that is not prioritised is the external interrupt 0. This is always high priority and is labelled
as such in the diagram.

The interrupts from the microcontroller peripherals, towards the left of the diagram, follow a similar pattern
to the external interrupts. Again, they can be selected for high or low priority. They are not all shown,
as there are so many. The generalised pattern for high priority sources appears towards the top left of the
diagram, repeated for low priority towards the bottom left. As before, the logic ensures that for any one
interrupt source, either high priority or low priority can be selected. As an example, the input for Timer 1
is given. Again, the outputs of all AND gates in each block are ORed together.

12.7.3 Overall interrupt prioritisation enabling

While we have seen that it is possible to prioritise individual interrupt sources, we may not want to use
this facility. Therefore, it is possible to enable or disable the whole prioritisation process. This is done
by IPEN, the Interrupt Priority Enable bit. IPEN is the MSB in the RCON register, which appears in
Figure 12.14.

Look now at the block towards the centre of Figure 12.7, labelled ‘priority steering logic’. The line IPEN
appears three times in this block (once incorrectly labelled as IPE). If it is low, then interrupts from the
lower half of the diagram, coming either from peripheral sources or from external sources, are routed up
to the upper half of the diagram through the two AND gates in the block. All interrupts in this case are
routed through to the high priority vector and there is no effective prioritisation. There is one more piece
of enabling in this state, that we return to soon. When IPEN is low, as just described, the interrupt system
is compatible with the 16 Series.

If IPEN is high, then high priority and low priority interrupts are each routed towards their own vector.
Interrupt prioritisation is enabled and individual interrupt sources can be placed in the low or high priority
domain, with their individual priority control bits.

12.7.4 Global enabling

There are two levels of global interrupt enabling, controlled by bits GIE/GIEH and PEIE/GIEL.
These have a somewhat dual function, depending on the state of IPEN – hence the dual nature
of their name.
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It can be seen that GIE/GIEH controls both of the AND gates leading to the interrupt vectors. Through
this it plays its ‘global interrupt enable’ role. If GIE/GIEH is low, there will be no interrupt, whatever
the state of IPEN. When IPEN is low, all interrupts are routed towards the high interrupt vector, so it
genuinely acts as a ‘global enable’. When IPEN is high, it still has the power to disable both high and
low priority interrupt. However, it cannot on its own enable the low priority one, as PEIE/GIEL is also
involved. Therefore, it acts as enable for only the high priority path.

When IPEN is low, PEIE/GIEL acts as an enable line for all unmasked peripheral interrupts. It performs
this function through the OR gate at the centre of the ‘priority steering logic’. When IPEN is high, it acts
as ‘global enable’ for the lower priority inputs, through its connection to the output AND gate for the lower
priority vector.

12.7.5 Other aspects of the interrupt logic

Two final elements in this circuit are the line going from the high priority interrupt output down to the lower
priority control logic. We can see that the action of this is that if a high priority interrupt is asserted, then
the low priority path is blocked. The reverse is not true, however, and a high priority interrupt can interrupt
a low priority interrupt. There are also lines from either interrupt path up to an OR gate which leads to
Wake-up from Sleep. The action of these lines is independent of the state of the two ‘global enable’ lines.

12.7.6 The Interrupt registers

With the formidable number of bits seen in Figure 12.7, it is clear that a good number of registers will be
needed to hold them all. Each interrupt source but one now needs a Flag bit, an Enable bit and a Priority
bit, and all the control bits are needed as well. Beyond this, there is further control over some inputs, for
example setting the active edge on external interrupts.

The design approach in creating the Interrupt registers has been to retain as far as possible those registers
that are used in the 16 Series. This allows a comparatively easy upgrade path for the system designer.
Therefore, the 16F87XA INTCON register, appearing in Figure 7.11, is almost exactly replicated in the
18 Series INTCON register, seen in Figure 12.8. Some small retitling of bits has taken place, and the
functionality of GIE and PEIE has been extended, as just discussed.

To the INTCON register are added two further Interrupt control registers, INTCON2 and INTCON3.
These are shown in Figures 12.9 and 12.10 respectively. They contain the control bits for the interrupts
that appear in the INTCON register. The bits are self-explanatory. It can be seen that the ‘odd one out’ is
RBPU, which is not an interrupt bit at all, but controls the Port B pull-ups. In the 16 Series it was placed
in the Option register, which does not exist in the 18 Series.

Enable bits, Flag (or ‘Request’) bits and Priority bits for the peripheral interrupt sources are placed in the
PIE1, PIE2, PIR1, PIR2, IPR1 and IPR2 registers. These are summarised in Figures 12.11 and 12.12.
Again, to improve upward compatability, they are very similar to the 16 Series registers of the same name,
excluding of course the priority registers. It is interesting to compare them, by looking back at Figures 7.12
and 7.13. By doing this, you can see which interrupts have been added (Timer 3 and Low Voltage Detect),
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Figure 12.7 The PIC 18F242 interrupt logic (supplementary labels in shaded boxes added by the author)

and which have been removed (Comparator). Further details on the operation of some individual peripheral
interrupts are given in the section on that peripheral, mainly in Chapter 13.

12.7.7 Context saving with interrupts

With the Fast Register Stack, described in Section 12.6.3 of this chapter, context saving can in some
circumstances be delightfully easy. The programmer must decide first if the three registers saved on this
stack, WREG, STATUS and BSR, are adequate for the purpose. If not, or if the fast return from interrupt
is not used, then the programmer will need to write code to save all necessary registers at the start of the
ISR and retrieve them at the end. It is important also to remember that a high priority interrupt can interrupt
one of lower priority. In so doing, the interrupt of high priority would overwrite the contents of the Fast
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Figure 12.8 The PIC 18FXX2 INTCON register
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Figure 12.9 The PIC 18FXX2 INTCON2 register

Register Stack, and the low priority interrupt loses its context! In such cases it is not safe to use the Fast
Register Stack for low priority interrupts. Context for these should be saved in software.

12.8 Power supply and reset

12.8.1 Power supply

The supply voltage requirements of the 18LFXX2 and the 18FXX2 are shown in Figure 12.13. This shows
that the 18LFXX2 devices can operate with a supply from 2.0 to 5.5 V, and the 18FXX2 from 4.2 to 5.5 V. The
low-power device cannot, however, run at full speed at the lower voltage. The data [Ref. 12.1] shows that
its maximum clock frequency at minimum supply voltage is 4 MHz. This rises to 40 MHz at 4.2 V.

12.8.2 Power-up and Reset

In Section 2.8 of Chapter 2 we explored the Reset circuitry of a simple PIC microcontroller, the 16F84A.
The 18FXX2 controllers have a reset structure built directly on the model of Figure 2.11, with just a few
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Figure 12.10 The PIC 18FXX2 INTCON3 register
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Priority) registers
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Figure 12.12 18FXX2 PIE2/PIR2/IPR2 (Peripheral Interrupt Enable/Peripheral Interrupt Request/Peripheral Interrupt
Priority) registers

extra sources of reset. These are Stack over- or under-flow, Brown-out (already seen in the 16F873A) and
Software Reset.

Besides adding further sources of reset, the 18 Series goes beyond this in an interesting way, by providing
some history of what the source of reset was. Therefore, coming out of the Reset condition is not the
completely fresh start that it is with simple microcontrollers. Now we can find out why we were forced into
reset. In certain circumstances this can be very valuable, say if the Watchdog Timer has timed out. This
information is provided through the RCON register, whose bits indicate what type of reset has occurred
most recently. We have already met RCON, as its MSB is the interrupt IPEN bit.

A listing of all 18XX2 resets is given in Figure 12.14. This also shows the value of the Program Counter,
the RCON register bits and the two Stack overflow bits (described in Section 12.5 of this chapter), after
the reset has occurred. Now at the restart of a program it is possible to test the state of RCON, with the
chance of introducing customised action if a particular type of reset has occurred.

The Software Reset indicated in Figure 12.14 is caused by execution of the instruction reset (Table A5.1).
This replicates an external reset caused by a Logic 0 on input MCLR. The conditions to ensure Power-on
Reset are given in Figure 12.13, along with the different possible settings for the Brown-out Reset.

12.9 The oscillator sources

So far in this chapter we have seen that where 18 Series hardware features have been compared with
16 Series, the theme has been: evolve from the 16 Series, but give better performance and more flexibility.
We will find similar developments as we look at the 18FXX2 clock sources.
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Figure 12.13 The PIC 18FXX2 power supply parameters

As with the 16F87XA group, the 18FXX2 devices have internal oscillator driver circuits, along with
two external pins, OSC1 and OSC2, for connection of any necessary external components. These pins
can be seen in Figure 12.1. Interestingly, they share with other functions. The peripheral Timer 1 also
has an oscillator source, with external connections labelled T1OS0 and T1OS1 (alongside other shared
functions).

The 18FXX2 offers all four clock oscillator modes of the 16F87XA, and to these adds four more. These
are all seen in Table 12.6. The relevant configuration bits are found in Configuration Word 1 (Table 12.4).

The oscillator modes have the characteristics described below.
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Bits 4, 3, 2, 1, 0 resp.
of RCON Register

Bits 7 and 6 resp. of
STKPTR Register

Figure 12.14 The PIC 18FXX2 sources of reset, and subsequent Program Counter and Flag values (supplementary
labels in shaded boxes added by the author)

Table 12.6 Oscillator modes
Mode Description Config. bits

FOSC2:FOSC0
LP Low power 000
XT Crystal/resonator 001
HS High-speed crystal/resonator 010
RC External resistor/capacitor 011
EC External clock 100
ECIO External clock with OSC2 configured as RA6 101
HS + PLL High-speed crystal/resonator with phase-locked loop 110
RCIO External resistor/capacitor with OSC2 configured as RA6 111

12.9.1 LP, XT, HS and RC oscillator modes

These modes of operation are the same as the modes of the same name as used in the 16 Series, and
described in Section 3.5.3 of Chapter 3. That section can be read again as a review.
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12.9.2 EC, ECIO and RCIO oscillator modes

In the EC (external clock) mode of oscillator operation, an external clock source is connected to the OSC1
pin. This is not a new concept to PIC microcontrollers and was identified as a possible mode of operation
with the 16 Series. The difference in the mode discussed here is that the feedback device in the internal
drive circuit is switched off, thereby saving a little current.

The EC mode of operation uses only one pin as input, potentially leaving the OSC2 pin unused. The ECIO
mode grabs this pin and creates of it an extra bit for Port A, bit RA6. A similar approach is taken with the
RCIO mode – the RC clock oscillator only uses one pin, leaving pin OSC2 again available to be used as a
port pin.

12.9.3 HS + PLL oscillator mode

A phase-locked loop (PLL) is a clever piece of analog and digital circuitry that can be used, among other
things, to multiply by an integer number the frequency of a signal. PLLs are finding increasing usage
in microcontrollers to manipulate the frequency of clock signals. This can allow certain sections of the
microcontroller to run faster than others, or to run the microcontroller at a clock frequency faster than the
oscillator itself. The 18FXX2 PLL can be enabled if the microcontroller is set in HS + PLL mode, and then
multiplies the oscillator signal by a factor of 4. Therefore, for example, the oscillator can run at 10 MHz,
but with the PLL running, the internal clock frequency will be 40 MHz. This can have the effect of reducing
external electromagnetic interference.

Because, just like a crystal oscillator, a PLL takes finite time to settle into stable operation, a timer is included
to delay CPU start-up until the PLL has settled. This actually forms part of the Power-up Timer (PWRT),
pictured in Figure 2.11 in a 16 Series version. The added delay is symbolised as TPLL and is set to be 2 ms.

12.9.4 Clock source switching

If a microcontroller is designed into a power-conscious application, and particularly if that application runs
over a long period of time, it can be beneficial to be able to switch the clock speed. Thus, it could run fast
for periods of intensive activity and slower for less activity. In a way this is a less extreme variation on
using the Sleep mode.

The ability to switch clock sources is controlled by the OSCSEN configuration bit (Tables 12.4 and 12.5).
If enabled, the clock source can be selected from one of just two sources – the main clock oscillator (in
whatever mode it has been configured) and the Timer 1 oscillator. The selection is controlled by the SCS
bit, which is the least significant (and only) bit in the OSCCON register. When it is low the main oscillator
is selected, when high the Timer 1 oscillator is selected.

It is of course important when switching between two unsynchronised oscillators, of different frequency, to
ensure that unwanted glitches do not occur in the clock signal. Therefore, the 18FXX2 contains circuitry
to ensure error-free switching. When the SCS bit changes state, program execution freezes at the start of
the next instruction cycle. Eight cycles of the oscillator signal that it is switching to are counted before the
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switch is implemented. The CPU can then proceed. The precise details of the switch, which depends also
on the type of oscillator in use, can be found in the full data [Ref. 12.1].

12.10 Introductory programming with the 18F242

While most programming in this section of the book is to be done with the C language, it is worth simulating
some trial programs in Assembler, in order to gain an initial familiarity with the instruction set. If you have
followed this book from the beginning, you will be familiar with the MPLAB® development environment
and the simulator MPSIMTM. Let us use MPLAB to develop some simple programs. Review Section 4.6
of Chapter 4 for a refresher if needed.

12.10.1 Using the MPLAB IDE for the 18 Series

Try opening MPLAB and, using Configure > Select Device, select the 18F242. See that all familiar
development tools remain available. Then, using Configure > Configuration Bits, see the considerably
increased number of bits that are available. These were seen in Tables 12.4 and 12.5, and in MPLAB form
are shown in Figure 12.15.

Figure 12.15 Setting the 18F242 Configuration Word in MPLAB – all values shown are default
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12.10.2 The Fibonacci program

Program Example 5.6 is a program that calculates a Fibonacci series, using the 16 Series CPU.

Programming Exercise 12.1

Create a project in MPLAB called Fibonacci-18. Copy from the book CD the source file of Program
Example 5.6 into it. Using Configure > Select Device, set the chosen microcontroller to be the 18F242.
Introduce any changes essential to allow the program to run correctly. By doing this, you should be able
to illustrate that the 18 Series instruction set is a super-set of the 16 Series, and that the changes needed
are minimal. Notice that in doing this we are invoking Assembler default values. For example, a direct code
substitution like this will not specify the value of the instruction operand ‘a’ (Appendix 5). Therefore, the
default value of 1 is applied.

Programming Exercise 12.1 shows that an 18 Series device can run using just 16 Series instructions.
However, this wastes the powerful new features of the 18 Series CPU. Program Example 12.1 adapts the
Fibonacci program in a modest way to the 18 Series, with the changes highlighted in bold. This illustrates
use of some of the new instructions.

;***************************************************************************
;Fibo_18
;In a Fibonacci series each number is the sum of the two
;previous ones, e.g. 0,1,1,2,3,5,8,13,21....
;This program calculates Fibonacci numbers within an 8-bit range,
;first going up and then down.
;Program intended for simulation only, hence no input/output.
;The program demonstrates addition, subtraction, compare, and conditional
;branching.
;TJW 10.10.05 Tested 10.10.05
;***************************************************************************
;Configuration bits need not be set

list p=18F242
#include P18F242.inc

;no i/o ports used

;these memory locations hold the Fibonnaci series.
fib0 equ 10 ;lowest number (oldest when going up, newest when reversing

;down)
fib1 equ 11 ;middle number
fib2 equ 12 ;highest number
fibtemp equ 13 ;temporary location for newest number
counter equ 14 ;indicates which value we have reached, opening value is 3

org 00

Program Example 12.1 The Fibonacci series generator, adapted for the 18F242
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;Initialse BSR
movlb 00 ;clear BSR

;preload initial values
movlw 0
movwf fib0
movlw 1
movwf fib1
movwf fib2
movlw 3
movwf counter ;have preloaded the first three numbers, so start at 3

;
forward movf fib1,0

addwf fib2,0
bc reverse ;reverse down the series if we have overflowed
movwf fibtemp ;latest number now placed in fibtemp
incf counter,1

;now shuffle numbers held, discarding the oldest
movff fib1,fib0
movff fib2,fib1
movff fibtemp,fib2
goto forward

;when reversing down, we will subtract fib0 from fib1 to form new fib0
reverse movf fib0,0

subwf fib1,0
movwf fibtemp ;latest number now placed in fibtemp
decf counter,1

;now shuffle numbers held, discarding the oldest
movff fib1,fib2
movff fib0,fib1
movff fibtemp,fib0

;test if counter has reached 3, in which case return to forward
movlw 3
cpfseq counter
goto reverse
goto forward
end

Program Example 12.1 Contined

Programming Exercise 12.2

From the book CD take the source file of Program Example 12.1. Create a project around it and build it.
Simulate the program, and use View > Special Function Registers and View > File Registers to view these
two areas of memory. Notice how their structure differs from the 16 Series. Scroll the Special Function
Registers window to see PCL. Step through the program and see how this increments twice for every
instruction, as described in Section 12.5.2. Also see the Fibonacci numbers appearing in the data registers.



Smarter systems and the PIC“ 18FXX2 367

Summary

• The 18 Series microcontrollers represent a very clear step forward in the PIC design strategy. The CPU
and memory structure are radically redeveloped, while many peripherals are retained.

• The instruction set is increased to 75 distinct instructions, with big new capability in arithmetic, program
branching, table access and memory usage.

• Data memory is structured to give a much greater RAM capacity and a separate grouping of Special
Function Registers.

• Program memory has greatly increased capacity, with larger address bus, and the 16-bit instructions are
now split into 2 bytes for storage. The Stack is deeper and more flexible.
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13
The PIC® 18FXX2 peripherals

The purpose of this chapter is to introduce the PIC 18FXX2 peripherals. For a microcontroller family with
many peripherals, the chapter is surprisingly short. There are two reasons for this. First, as already stated
in Chapter 12, many of the 18 Series peripherals are similar or identical to those used in the 16 Series.
We will build on this knowledge and not repeat material already in the book. Second, because we are
moving to program in C, we will benefit from the support that the C compiler gives. We will find C library
functions to undertake all interaction with the peripherals, and in normal usage we just won’t need an intimate
knowledge of the peripherals. Energies previously spent (while programming in Assembler) in learning every
fine detail of a peripheral can therefore be diverted to the creative task of writing working programs. This is a
liberating step.

The descriptions that follow make repeated reference to 16 Series peripherals in earlier chapters. If you know
the peripherals well, then this will act as a useful refresher and show the small changes that have been
introduced in the 18 Series. If you don’t know the 16 Series peripherals, you will learn them (and hence those
of the 18 Series) in this way.

So that we do not view the 18FXX2 as representing all there is to know on the 18 Series, the chapter closes
with a final section on another member of the family, the 18F2420. This has some interesting characteristics
that we need to know about, notably the extended instruction set and nanowatt technology.

This chapter aims to:

• Review all the PIC 18FXX2 peripherals, in most cases drawing on knowledge of their 16 Series equivalents
• Glimpse some further enhancements which are available in the 18 Series world.

The chapter can be read through. Alternatively, it can be skipped and simply used as a reference from later
chapters when needed.

13.1 The main idea – the 18FXX2 peripherals

The peripherals of the 18FXX2 microcontrollers are summarised in Table 12.1 and seen for the 18F2X2 pair
in Figure 12.2. When comparing them to the peripherals of the 16F87XA, in Figure 7.2, it can be seen that,
in almost every case, the same peripherals appear, with the same name and in the same pattern. Differences
to note are that the 18FXX2 claims an extra timer, Timer 3, but does not have the comparator module of
the 16F87XA.
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13.2 The parallel ports

The parallel ports of the 18FXX2 are very similar to those of the 16 Series, both in structure and interfacing.
They each have a PORTX register for data transfer and a TRISX register to set data direction. There is
just one significant difference we need to take note of, which will be described shortly.

When working with a port we may need to do four things: set the data direction, read an input value, set an
output value and read back an output value previously written. The 16 Series designs had one weakness in
all of this – it was not good at doing the fourth in this list. Suppose a port bit such as the one in Figure 7.15(a)
was set to output and a bit value written to it. If the port was then read by the CPU, it was impossible to be
certain that the value read was equal to the value previously written. This is because the reading is of the
actual port bit pin value. This could be the value output by the bit circuitry or it could be a different value
forced by an external device connected to the pin.

To get round this small problem, the 18 Series ports introduce an interesting development. Each port has a
third register, LATA for Port A, LATB for Port B and so on, which holds the value of the latched output
port bit. This can be read by the program, and the programmer can have complete confidence that he/she is
reading the value previously stored at the port and nothing else.

We will now survey the 18XX2 ports, introducing this and other changes.

13.2.1 The 18FXX2 Port A

The position of the Port A pins can be seen in the pin layout diagram of Figure 12.1. Unsurprisingly, the
pattern is almost the same as the 16F873A, with the digital I/O features of the port being shared with the
ADC (analog-to-digital converter) inputs. The Timer 0 input is shared with bit 4 of the Port, which has an
Open Drain output. There is the possibility of an extra port bit, RA6, if ECIO or RCIO oscillator modes
are used, as described in Section 12.9.2 of Chapter 12.

The three registers associated with Port A – PORTA, TRISA and LATA – can be seen in the fourth
column of the register map (Figure 12.5). The working of the extra data latch register LATA is illustrated in
Figure 13.1. This diagram is very similar to its 16 Series equivalent (Figure 7.15(a)). With the new register
LATA introduced, one expects to see an extra bistable in the circuit somewhere. Interestingly, this is not
the case. A quick look at the diagram shows that LATA and PORTA share the same data latch; a write to
one is equivalent to a write to the other. The only real difference in the circuit is the LATA buffer appearing
at the top of the diagram. A read to LATA activates this buffer and the value held on the PORTA/LATA
data latch is transferred to the data bus. Therefore, the LATA is not really a different register at all – but
addressing it allows a direct reading of the output of the PORTA data latch.

13.2.2 The 18FXX2 Port B

The position of the Port B pins can be seen in the pin layout diagram of Figure 12.1 and its three primary
registers – PORTB, TRISB and LATB – in Figure 12.5. LATB plays an identical function to LATA,
discussed above.
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‘Extra’ buffer
to allow reading 

of data latch

PORTA and
LATA share same

data latch 

Figure 13.1 18FXX2 RA0–RA3 and RA5 pins (supplementary labels in shaded boxes added by the author)

The port keeps most of the characteristics of the 16 Series, being comparatively straightforward in design.
There is some increase in the number of shared functions, especially with the introduction of more external
interrupt sources. It can be seen that bits 5–7 share with the in-circuit debug functions of PGD, PGC
and PGM, the last of these having moved from its 16 Series position. The three external interrupt inputs
share with the lower 3 bits of the port. An interesting addition is the introduction of an alternative CCP2
connection, on bit 3. This relieves pressure on the very ‘busy’ pin of Port C bit 1, and allows the Timer 1
external oscillator to be used at the same time as CCP2.

Internal pull-ups are still available on all pins, with the controlling bit, RBPU, now placed in register
INTCON2 (Figure 12.9). The interrupt on change function, whereby a change on any of pins 4–7 causes



The PIC“ 18FXX2 peripherals 371

an interrupt flag to be set, is also in place. The Enable and Flag bits, RBIE and RBIF, are in the INTCON
register (Figure 12.8).

13.2.3 The 18FXX2 Port C

As with the other ports, the position of the Port C pins can be seen in the pin layout diagram of
Figure 12.1 and its three primary registers – PORTC, TRISC and LATC – in Figure 12.5. As with
the 16F87XA, this port shares its pins with the serial ports and the CCP functions, while bit 0 is shared
with the Timer 1 input. This bit and bit 1 can also be used for an external oscillator input for Timer 1.
Because of these shared functions, the port pin driver circuits are comparatively complex. The pin func-
tion can, moreover, be taken over by peripheral functions – care is therefore needed. This override does
not, however, include the reading of the LATC register. This can be read whatever mode a port pin is
operating in.

13.2.4 The parallel slave port

This is implemented on the 40-pin devices and is the same as described in Section 7.12 of Chapter 7.
The parallel port itself is Port D, with 3 bits of Port E being available for handshaking. The mode of
operation of the port is controlled primarily by the TRISE register, which is the same as in Figure 7.26.
The only addition to the port is the inclusion of an LATD register, functioning as described for Port A
above.

13.3 The timers

All versions of the 18FXX2 have no less than four programmable timers, as well as a Watchdog Timer.
We will survey the timers in turn, making extensive use of information already provided for their 16 Series
equivalents.

13.3.1 Timer 0

The 18FXX2 Timer 0 draws its roots clearly from the 16 Series Timer 0. It can, however, operate either in
8-bit or in 16-bit mode. Its control register, T0CON, is shown in Figure 13.2. The lower 6 bits of this have
similar function to the 16 Series OPTION register of Figure 6.9, which it replaces. The overall operating
mode is selected by bit 6, which determines whether it is in 8-bit or 16-bit mode.

In 8-bit mode the action of Timer 0 is effectively the same as the 16 Series Timer 0 of Figure 6.8. Unlike
the 16 Series Timer 0, which shares its prescaler with the WDT, the prescaler is entirely assigned to the
timer. Therefore, the PSA bit of T0CON simply determines whether or not the prescaler is in circuit, it
does not assign it to the Watchdog Timer.

In 16-bit mode the action of the timer is as shown in Figure 13.3. The lower byte of the counter itself is
called TMR0L, while the higher byte is simply called TMR0, as it is the same register location as the
8-bit version.
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Figure 13.2 The Timer 0 control register, T0CON

An interesting problem occurs in 16-bit timers when operating in the 8-bit environment. Suppose the
program needs to read the value held in the timer. The 2 bytes are read in turn. It is possible, however,
that an increment occurs after the first byte has been read, maybe causing an overflow from lower to higher
byte. The value of the 2 bytes that have been read can therefore be seriously in error.

The solution to this problem is seen in Figure 13.3. A buffer, TMR0H, is included alongside the timer
higher byte, TMR0. It is impossible to access the higher byte directly. Whenever the lower byte is read,
however, the value of TMR0 is simultaneously transferred to TMR0H. This can be read in a later instruction.
Its value is guaranteed to correspond exactly to the value of the lower byte, when it was read. Similarly,
if the programmer wishes to write to the timer, the program should first write the required higher byte
to TMR0H. When the lower byte is written to TMR0L, then the value stored in TMR0H is transferred
simultaneously to TMR0. Again, the 16-bit value being loaded into the timer is guaranteed to be correct,
and uncorrupted by increments occurring within a 2-byte transfer.
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Figure 13.3 Timer 0 operating in 16-bit mode

In either mode of Timer 0, an interrupt is generated when the counter overflows from its maximum value
(FFH for the 8-bit and FFFFH for the 16-bit). The same bit, TMR0IF, seen in Figure 12.7, is used for both
interrupts.

Timer 0, in 16-bit mode and with interrupt, is used in a number of the C example programs in later chapters.

13.3.2 Timer 1

The 18FXX2 Timer 1 in its basic form is nearly identical to the 16 Series Timer 1, as seen in Figure 9.1.
It has a control register T1CON. This is the same as Figure 9.2, except that bit 7 (not used in the 16 Series)
is called RD16. When set to 1 this bit enables the ‘16-bit Read/Write’ mode. This is just as described for
Timer 0 and when enabled operates as shown in Figure 13.4. There is now a buffer register TMR1H for
the higher byte, allowing synchronised data transfer to or from the timer. A small further difference with
the 16 Series Timer 1 is the ability to clear the timer through a ‘special event’ from the CCP module. This
is also seen in Figure 13.4 and is described in Section 13.4.

13.3.3 Timer 2

The 18F242 Timer 2 is the same as the 16 Series Timer 2, shown in Figure 9.4. Similarly, it has a control
register T2CON, the same as in Figure 9.5.

13.3.4 Timer 3

Timer 3 is structurally the same as Timer 1, so presents no new problems of understanding. It is shown in
its basic form in Figure 13.5, with its control register, T3CON, shown in Figure 13.6. As with Timer 1,
this timer can be operated as a timer with internal clock source input, as a counter with external input or
as a timer with external oscillator input. For the last two, inputs are shared with Timer 1. Thus, if external
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Figure 13.4 Timer 1 operating in 16-bit Read/Write mode

Figure 13.5 The Timer 3 block diagram
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Figure 13.6 The Timer 3 control register, T3CON

oscillator is used, it is that of Timer 1, which must be enabled with the T1OSCEN bit in T1CON. If external
input is used, it is the same input as Timer 1, i.e. pin 11 in the case of the 18F2X2.

A study of Figure 13.6 shows that bits 0, 1, 2, 4, 5 and 7 have the same function as those of T1CON
(Figure 9.2). Bit 7 shows that the ‘16-bit Read/Write’ mode is again available as described for Timers 0
and 1. If not selected, the timer operates as shown in Figure 13.5. If selected, the timer’s interface with the
data bus takes the ‘16-bit Read/Write’ form shown in Figure 13.4. Reading or writing to the higher byte is
then buffered, with the buffer being memory mapped as TMR3H.

It is evident in bits 6 and 3 of T3CON that the timer can be linked to a CCP (capture/compare/PWM)
module, and used for capture and compare instead of, or alongside, Timer 1. The ‘CCP special trigger’ is



376 The PIC“ 18FXX2 peripherals

seen coming in to Figure 13.5, being gated by one of these control bits. If either bit 3 or 6 is high, this path
is enabled. These functions are described further in Section 13.4.

13.3.5 The Watchdog Timer

The Watchdog Timer (WDT) is identical in concept to the 16 Series WDT, as described in Section 6.5
of Chapter 6. It is a free-running down counter which, if enabled and allowed to time out, will cause
the microcontroller to be reset. It is enabled by the WDTEN bit of Configuration register CONFIG2H
(Table 12.4). It has its own dedicated postscaler (unlike the 16 Series, where it is shared with Timer 0),
whose setting is determined by bits WDTPS2 to WDTPS0 in the same Configuration register. Reference 12.1
indicates that the time-out period is typically 18 ms, with minimum of 7 ms and maximum of 33 ms, for a
postscaler value of 1. If the postscaler is set to 128, the typical time-out value rises to 2.3 s. Both WDT and
postscaler are cleared by execution of the clrwdt instruction.

An important development in design strategy for the WDT is the inclusion of a software WDT enable bit,
SWDTEN. This is the LSB, and the only active bit, in the register WDTCON, seen at memory location
FD1H in Figure 12.5. If the WDT has been disabled in the Configuration register, then it can be enabled by
setting the SWDTEN bit. If the WDT is enabled in the Configuration register, then the SWDTEN bit has
no effect. The ability to switch the WDT on and off goes rather against the whole concept of the WDT –
how wise is it to have a safety feature that can be switched off? However, it allows the WDT to be enabled
for certain modes of operation and disabled for others. As with all safety or reliability features, it should be
used with caution.

13.4 The capture/compare/PWM (CCP) modules

The 18FXX2 has two CCP modules, as seen in Figure 12.2. These are very similar to the 16 Series
modules, applying exactly the principles described in Section 9.4.1 of Chapter 9. The CCP modules work
with Timers 1, 2 and 3 to provide capture, compare and PWM operation. An important difference with the
16 Series, and a big step forward in terms of flexibility of operation, lies with the addition of Timer 3 and
its interlinking with the CCP modules.

13.4.1 The control registers

The CCP modules are controlled primarily by the CCPxCON registers, seen in Figure 13.7. These are very
similar to the 16 Series CCPxCON registers of Figure 9.7. There is, however, a little difference in detail in
the modes which are available, as a study of the lower 4 significant bits will show. A new mode, when bits
3–0 are set to 0010, is, for example, available in the 18FXX2. It can be seen that there is a name change,
but not a function change, in bits 4 and 5 of these registers.

13.4.2 Capture mode

The CCP configured for Capture mode is shown in Figure 13.8. This is a direct equivalent of Figure 9.8 and
applies the principles described in Section 9.4.2 of Chapter 9. Both inputs are, however, drawn out here.
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Figure 13.7 The CCP1CON and CCP2CON registers (addresses FBDH and FBAH)

The major structural difference is that both Timers 1 and 3 are available to be used. This allows two input
signals of rather different time characteristics to be tested, as Timers 1 and 3 can now both be used, and
both optimised, in terms of frequency and prescaler setting, for the signal they are ‘capturing’. Selection of
the timer to be used is determined by the values of the T3CCPx bits, already seen in the T3CON register
in Figure 13.6. Once this selection is made, capture operation is the same as for the 16 Series.

13.4.3 Compare mode

The CCP configured for Compare mode is shown in Figure 13.9. This is a direct equivalent of Figure 9.9 and
applies the principles described in Section 9.4.3 of Chapter 9. As with the Capture mode above, both inputs
are drawn out here. The major structural difference, of both Timers 1 and 3 being available, is shown.
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All signal routing is 
controlled by just 2 bits,

T3CCP1 and T3CCP2, in 
register T3CON. 

Figure 13.8 Capture mode operation (supplementary label in shaded box added by the author)

Selection of the timer to be used is again determined by the values of the T3CCPx bits, as indicated
in Figure 13.6.

The ‘special event’ action is summarised at the top left of the diagram. It is selected through setting the
right combination of the lower 4 bits in the CCP1CON or CCP2CON registers (Figure 13.7).

13.4.4 Pulse width modulation

The CCP modules configured for PWM follow the principles described in Section 9.5.1 of Chapter 9. They
behave exactly like the 16 Series module, hence acting exactly as described in Section 9.5.2 of that chapter,
and as seen in Figure 9.11.

13.5 The serial ports

The 18FXX2 has two major serial modules, the Master Synchronous Serial Port (MSSP) and the Address-
able Universal Synchronous Asynchronous Receiver Transmitter (USART), as seen in Figure 12.2. The
MSSP is identical to the 16 Series peripheral of the same name. Thus, it can be configured either in
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Figure 13.9 Compare mode operation

SPI (Serial Peripheral Interface) mode or in I2C mode. The action of both ports is summarised briefly in
the sections that follow.

13.5.1 The MSSP in SPI mode

In this mode the MSSP is configured as in Figure 10.7. Data is transferred into or out of the serial port
through the SSPBUF register, seen in Figure 12.6 at address FC9H. The port is controlled by two registers,
SSPCON1 and SSPSTAT. These are seen in Figures 10.8 and 10.9 respectively, while their position on the
18 Series memory map can be seen in Figure 12.5 (addresses FC6H and FC7H respectively). The behaviour of
the peripheral in this mode is exactly as described in Section 10.3 of Chapter 10. As interrupt prioritisation
is introduced in the 18 Series (see Section 12.7 of Chapter 12), the MSSP interrupt (SSPIF in PIR1,
Figure 12.11) can also be prioritised. This is controlled by the SSPIP bit in register IPR1 (also Figure 12.11).

13.5.2 The MSSP in I 2C mode

The MSSP in I2C mode behaves the same as the 16 Series MSSP. Thus, it applies all the principles of
I2C, as described in Section 10.6 of Chapter 10. It uses the same control registers, SSPCON1, SSPCON2,
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SSPSTAT and SSPADD. In Slave mode it configures as shown in Figure 10.17, and in Master mode as in
Figure 10.19. Overall, it behaves exactly as described in Section 10.7 of Chapter 10.

13.5.3 The USART

This module is the same as the 16 Series peripheral of the same name, and thus behaves as described in
Section 10.10 of Chapter 10. With the higher maximum oscillator frequency, it has the potential to run at
higher baud rates. Its interrupts (bits RCIF and TXIF in PIR1, Figure 12.11) can be prioritised and are
subject to the interrupt enabling mechanism of the 18 Series.

13.6 The analog-to-digital converter (ADC)

The 18FXX2 ADC module is effectively the same as that of the 16F873A, described in Section 11.3 of
Chapter 11. It has the block diagram of Figure 11.6, with eight inputs available in the 18F442 and 452,
and five on the 18F242 and 252. These are seen in Figure 12.1. The ADC is controlled by the ADCON0
and ADCON1 registers, now mapped in locations FC2H and FC1H (Figure 12.5). The conversion result is
placed in ADRESL and ADRESH (FC3H and FC4H, Figure 12.5). The analog input model is as shown in
Figure 11.10.

Figure 13.9 shows that the CCP module in Compare mode can be set to trigger an ADC conversion.
For this to occur the ADC module must be switched on, by the ADON bit in ADCON0 (Figure 11.7). The
input multiplexer must also have been preset, with sufficient time allowed for acquisition, as described in
Section 11.3.4 of Chapter 11. If the timer causing the special event trigger (Timer 1 or 3) is left running
continuously, this provides a useful means of performing a periodic analog-to-digital conversion.

13.7 Low-voltage detect

The ability to detect a falling power supply is very valuable in an embedded system. In a battery-powered
product this can be used to detect a failing battery. It can also be used to detect power being switched off.
In either case, the microcontroller may wish to activate a warning signal or exercise an orderly shutdown,
perhaps saving key operating variables to EEPROM. In the case of complete power loss, residual charge
on the system reservoir capacitor still provides some time to do this.

Low-voltage detect is available in many voltage regulator ICs, particularly those intended for battery supply.
These will generate an output if the low voltage is detected, which can be used as an interrupt to a
microcontroller. The 18FXX2, however, has its own low-voltage detect, with its own interrupt source.
The general concept is shown in Figure 13.10. The power supply voltage VDD is applied to the top of a
resistor chain. The other end of this can be connected to ground through the switching transistor, whose
gate voltage is labelled LVDEN. This can be seen to be bit 4 of the LVDCON register (Figure 13.11).

If LVDEN is set high, then the resistor chain acts as a potential divider, the different nodes of which are
taken to a multiplexer. One of these inputs is selected as the multiplexer output, controlled by the setting
of the lower 4 bits of LVDCON. This multiplexer output value is compared with an internally generated
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Figure 13.10 Low-voltage detect circuit

reference voltage of 1.2 V. If the multiplexer output voltage falls below the reference voltage, then the
comparator output, LVDIF, goes high. This is the low-voltage detect interrupt flag, which can be seen in
Figure 12.12. If enabled, an interrupt is generated and the microcontroller can make an appropriate response
to its failing power supply.

It is interesting to look at the ‘trip’ voltages which can be selected, as seen in Figure 13.11, and com-
pare these both with the legal operating range of the device and the possible brown-out settings, as
seen in Figure 12.13. Clearly, it would not be useful to set the low-voltage detect below the brown-
out reset, as the device would always reset before the low-voltage detect could kick in! A designer may
therefore choose not to use brown-out reset, but to place all power-line monitoring with the low-voltage
detect.

An alternative to using a voltage derived from the internal resistor divider chain is to use an external input.
This can be routed through the low-voltage detect input pin, LVDIN (pin 7 on either package, Figure 12.1).
The signal path is seen in Figure 13.10 and the necessary settings in Figure 13.11. If selected, this external
voltage is compared directly with the 1.2 V internal voltage.

As the low-voltage detect when enabled consumes some current (in the region of 30 µA), it is possible to
save power by enabling it only periodically. In this case the voltage reference requires some settling time.
The state of the reference is indicated by the IRVST bit in the LVDCON register. The interrupt should only
be enabled when this bit has been set.
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Figure 13.11 The LVDCON register

It should be noted that the effect of any reset is to clear the LVDEN bit and hence disable the low-voltage
detect.

13.8 Applying the 18 Series in the Derbot-18

Due to the pin compatibility between the 16F873A and the 18F242, the Derbot is immediately compatible
with the 18 Series device – no changes are needed whatsoever! This includes all parallel I/O, ADC, PWM,
counters and timers, and I2C. The Derbot, loaded with a 18F242 microcontroller, is used in the chapters
that follow for all program examples. To indicate this change of microcontroller (but no other change), it is
called ‘Derbot-18’.
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From a hardware point of view there is little that is done with the 18F242 that could not have been done with
the 16F873A. The big step forward lies in the use of C, which works much better with the 18 Series. This
in its turn leads to the use of the Real Time Operating System that we meet towards the end of the book.

13.9 The 18F2420 and the extended instruction set

The 18FXX2 microcontrollers are a successful and powerful group, yet they represent only one point of
achievement for the 18 Series microcontroller. There is an interesting 18 Series family which is very closely
related to the 18FXX2 family. It is made up of a set of devices which are numbered with an extra 0 on the
identifier. Thus, the 18F242 has an equivalent 18F2420, the 18F442 an equivalent 18F4420, and so on. Each
has the same memory capability, a similar set of peripherals and the same basic pin pattern as its equivalent.

We will just summarise the important developments in this sub-family, as it shows some of the other
characteristics that can be found in the 18 Series. Full details can be found in Ref. 13.1.

13.9.1 Nanowatt technology

Many embedded systems are battery powered and it is essential for them to consume as little power as
possible. We do not give in this book a detailed discussion of how power consumption can be reduced.
This can be found in Ref. 1.1. As explained there, three simple ways of reducing power consumption, for
a given circuit and technology, are:

• Reducing the supply voltage
• Reducing the clock frequency
• Switching off unused circuit sections.

The Sleep mode has been available in all microcontrollers we have looked at so far, as a means of reducing
power when the device was not in action. There are many situations, however, where the microcontroller
needs to keep running, but the power consumption must be minimised. The nanowatt Microchip approach
makes this possible. It includes the features summarised below.

Alternate run modes

Instead of running from the main clock oscillator, the microcontroller can be switched to run from the
Timer 1 oscillator. Therefore, when the CPU needs to run at full speed it can do this from the main
oscillator. For periods of time when there is little activity it only needs to run slowly. It can then switch to the
Timer 1 oscillator, running at a lower frequency. This concept has already been discussed in Section 12.9.4
of Chapter 12. It can result in considerable power saving. There is also in this microcontroller group an
internal oscillator block, which provides a further set of clock sources. Changes are under the control of the
program code, so all switches can be invoked as the program runs.

Multiple idle modes

It is not difficult to imagine situations when it is necessary to keep peripherals going, but allow the CPU
to stop running. This can happen in only a very limited way in Sleep mode, but is the basis of the
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idle modes. An idle mode is entered by presetting an Idle Enable SFR bit called IDLEN and then exe-
cuting the sleep instruction. In this case an idle mode is entered and the clock source which was in use
before executing sleep is retained. The different idle modes correspond to the different clock sources
available. Running in idle mode from a slow clock source results in a very striking reduction in power
consumption.

13.9.2 The extended instruction set

The 18F2420 has the regular 18 Series instruction set, with its 75 instructions, which we met in Chapter 12.
It has also an optional set of eight extra instructions. These must be enabled by setting an XINST bit
in the configuration setting. When using these instructions, the microcontroller is said to be operating in
extended mode.

The extra instructions are intended to enhance the efficiency of a C compiler. Therefore, it is unlikely that a
programmer would use them in an Assembler program, and we will not even list them here. They all relate
to the ability of the microcontroller to undertake indirect and indexed addressing, and hence to improve the
capability of the compiler in working with the software stack and other features.

It is important to recognise the existence of the extended instruction set, as the C18 C compiler, which we
are about to use, makes reference to it.

13.9.3 Enhanced peripherals

A number of peripherals in this sub-family are available in ‘enhanced’ form. These are summarised
below.

Enhanced CCP modules

These modules are available only on the larger 18F4420 and 18F4520 devices. They carry the basic CCP
features described in Section 13.4, but include four PWM outputs and the ability to ‘invert’ the output
polarity by having it active low instead of active high.

Enhanced Addressable USART

This serial communications module provides a number of important upgrades, which include automatic
baud rate detection, an automatic Wake-up mode and other features that make it suitable for the Local
Interconnect Network (LIN) bus.

ADC module

The ADC module now has an amazing 10 possible inputs for 28-pin versions and 13 for 40- or 44-pin
versions! With changes to the CCP modules, it is possible to set up a repetitive acquisition sequence with
minimal program interaction.



The PIC“ 18FXX2 peripherals 385

Summary

• 18 Series microcontrollers adopt the peripherals of the 16 Series, with some upgrades.
• This adoption is always within the context of the 18 Series architecture, most notably a revised register

map and interrupt structure.
• Aside from this, some peripherals are adopted wholesale and can be applied exactly like their 16 Series

counterpart.
• Other peripherals have been upgraded in the transfer to the 18 Series. A designer migrating from the 16

Series needs to check what these are and what their impact is.
• Generally, peripherals are designed to power up in the mode closest to the 16 Series version.
• A set of 18 Series enhancements is represented in the 18F2420 and its close relations. Significant among

these are its ‘nanowatt’ capability and the extended instruction set.

Reference

13.1. PIC18F2420/2520/4420/4520 Data Sheet. (2004). Microchip Technology Inc., Document
no. DS39631A.
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Introducing C

In recent chapters we have developed increasingly complicated programs; in doing this it has become more
and more difficult to apply Assembler programming. It was difficult to manage the complexity of the program,
program errors were hard to find, program flow was difficult to control and even quite simple mathematical
tasks (like the scaling in the light meter program) were laborious to implement.

The alternative is to change the programming strategy. Figure 4.1 showed the programmer’s dilemma, and
three alternative approaches were described. We initially adopted the third of these approaches, Assembler,
as it represented a way of writing programs which very directly controlled the system hardware. Because
of the problems just described, however, it is now sensible to explore another option. High-level languages
were invented to cope with program complexity and simplify debugging. Can we apply one to the embed-
ded environment? The answer is yes – for now we choose C, a language with outstanding credentials for
our purpose.

This chapter, and the three which follow, aim to introduce C from first principles, leading to a working
knowledge of its key features, as they apply to the embedded environment. Not every aspect of C is covered,
particularly not its more advanced features.

The Microchip C18 compiler, which is designed to work within the MPLAB® environment, is used as a
vehicle for this study. This can be purchased or a free student version downloaded from the Microchip
website. It is also on the book CD. It is assumed that readers have access to this.

Our study will operate at several levels. First of all, the language C itself is introduced. This knowledge is
fairly independent of embedded systems and can be applied at the desktop computer or elsewhere. In parallel
with this we explore how C is applied to the embedded system and particularly in the PIC® environment.
To allow these two strands to move forward in parallel, the C18 compiler is introduced at an early stage in the
chapter. The practice of writing C programs is then developed through graded examples, applied in part to the
Derbot-18 AGV. It does not take long, in this introduction to C, to begin to recognise some of its advantages
over Assembler.

At the end of this chapter you should have developed an understanding of:

• The core features of the programming language C
• The core features of the MPLAB C18 C compiler, including its libraries.

Readers with experience of C may wish to skip the first three sections of the chapter and will find some of
the later sections easy going.
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14.1 The main idea – why C?

Section 4.1 of Chapter 4 briefly introduced the concept of the high-level language (HLL). An HLL is a
programming language that makes use of language and structures that are easy for us human beings to
understand. At the same time it has clearly defined rules, so that a program can be written which has the
precision to be converted to machine code.

Whatever the HLL used, an intermediary computer program is required to convert the program as written
into the computer machine code. If the program is converted before program execution, then the converting
program is called a compiler. C is an example of a language using a compiler. If it is converted as the
program executes, it is called an interpreter. Basic is an example of a language using an interpreter.

One great advantage of the HLL is that it allows portability. The program that the programmer writes does
not depend on the computer that it is going to run on. It is the compiler or interpreter that is machine
dependent and creates the actual machine code. Thus, the same source code can (again theoretically – we
must stress this) be used to run on entirely different computers. This is, of course, quite unlike the Assembler
approach, which is entirely dependent on the target computer.

When adopting an HLL for embedded applications, we want the benefits that it can bring, of simpler and more
reliable coding. At the same time, however, we want to retain as far as possible the benefits of working close
to the hardware, which Assembler programming allowed us. C was written for the much simpler computers
of the 1970s. While it has in many cases been overtaken by other languages for applications on desktops
and workstations, it remains a very powerful language for working close to the computer hardware, as we
do in embedded systems. It shows the features that we want of an HLL, but still allows hardware elements
to be accessed.

14.2 An introduction to C

Although a comparatively simple language in today’s terms, C can lead to complex and sophisticated
programs. This section aims to provide the very basics of C, using a simple example program. The intention
is that the reader can then move as soon as possible to using the MPLAB C18 compiler and start writing
simple programs for PIC 18 Series microcontrollers.

14.2.1 A little history

C was developed in the late 1970s at the Bell Labs, in New Jersey, USA. Its first publicly available
documentation was in a publication by Brian Kernighan and Dennis Ritchie in 1978. This became so well
known that it is often called the ‘K&R’ version. In 1989 a version of C was adopted by the American
National Standards Institute (ANSI), as standard X3.159-1989. It is important to recognise this standard, as
it is the one that the Microchip C18 compiler is based upon. This standard became very widely recognised
and adopted, and one finds many references to ‘ANSI C’. In 1990, the International Organisation for
Standards (ISO) adopted the same version as an International Standard, with amendments made in 1995
and 1999. The 1999 version contains extensions which are not implemented in many compilers targeted at
embedded systems.
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14.2.2 A first program

A tradition has developed that books about C should start with an example program which outputs the
words ‘Hello world’ to a display. In many embedded systems we won’t have such a display to write to.
As an alternative, an early need in almost any embedded system is to be able to output data to a port.
Therefore, our first example program will just increment a number and output it to Port B of an 18 Series
microcontroller. This program is seen in Program Example 14.1.

/***************************************************************************
Example1.
Introductory Example of C Programming, with PIC 18 Series Microcontroller.
8-bit value output by Port B is continuously incremented.
Files c018i.o and p18f242.lib are included by the Linker Script.
TJW 21.10.05 Tested 23.10.05
***************************************************************************/

//Include 18F242 header file, for all processor-specific declarations
#include <p18f242.h>

unsigned char counter; //specify counter as unsigned character

void main (void) //main function starts here
{

TRISB = 0; // initialise all bits of PORTB as output
counter = 1; //counter value is initialised to 1

while (1)
{
PORTB = counter; // Move 'counter' value to Port B
counter = counter + 1; //Increment counter
}

}

Program Example 14.1 Incrementing the output value of Port B

14.2.3 Laying out the program – declarations, statements,
comments and space

C is a so-called free-form programming language. That means that there is not a strict layout format to which
programs must adhere. This is unlike Assembler, where the position of a word on the line can be crucial.

Crudely speaking, a C program is made up of: declarations, which set the scene and initialise things;
statements, where the programming action takes place; comments, which provide a commentary to the human
reader on what is going on; and space, which provides essential gaps between the words and symbols used,
and is also used to improve clarity through the way the code is laid out. Let us look at each of these in turn.

Comments

Comments start with the combination /* and end with */. In this form they can run over more than one line,
and can follow or precede statements or declarations.
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It can be seen that the first seven lines of the program example are made up of comments, even though
the comment delineators merge somewhat with the lines of asterisks. Following the title block there is
a blank line. This is not a problem with C – such lines can be used to improve the intelligibility of the
program.

An alternative comment format is to precede the comment with a double slash, //. Such a comment lasts
only for the remainder of the line in which it appears and needs no terminating symbol. It is convenient
to use both comment styles, the first for major blocks of comment, the second for single lines. This is the
practice adopted in this book; it can be seen in the example program.

As with Assembler programming, it is good to make liberal use of comments, indicating clearly but briefly
what is meant to be going on in the program.

Declarations

Declarations are used in a number of ways to create program elements, like variables and functions, and
to indicate their properties. This is important, as all variables and functions in C must be declared before
they can be applied. Characteristics specified include the type of data element (for example, whether fixed
or floating point), the allocation of memory storage or the characteristics of a function. A declaration is
terminated with a semicolon.

In the example program, the line

unsigned char counter; //specify counter as unsigned character

is a declaration, whose meaning will shortly be explained.

In simple programs, declarations tend to appear as one of the first things in the program, which seems to
make sense. As we meet more complex programs, however, we will see that declarations can occur within
the program, with significance attached to the location of the declaration.

Statements

Statements are where the action of the program takes place. They perform mathematical or logical
operations, and establish program flow. Every statement which is not a block (see below) ends with a
semicolon.

There are a number of different categories of statement. The commonest is the expression statement, which
includes mathematical manipulations. Example expression statements from Program Example 14.1 are:

TRISB = 0; //initialise all bits of PORTB as output
counter = 1; //counter value is initialised to 1

Statements are executed in the sequence they appear in the program, except where program branches
take place.
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Code blocks

Declarations and statements can be grouped together into blocks. A block is contained within braces (curly
brackets). An example block from Program Example 14.1 is seen here:

while (1)
{
PORTB = counter; //Move 'counter' value to Port B
counter = counter + 1; //Increment counter
}

Blocks can be written within other blocks, each within its own pair of braces. Keeping track of these pairs of
braces is an important pastime in C programming, as in a complex piece of software there can be numerous
ones nested within each other. It is common, and very good, practice to indent them such that matching
pairs fall directly below each other on the page, with each nested pair being indented deeper into the page.
In this way it is possible to keep track of brace pairs.

Space

The judicious use of space in a C program can make a big difference to its clarity. A space is required
to separate words which would otherwise merge into one, for example in the example declaration quoted
above. Further space, including blank lines, is ignored by the compiler and is used by the programmer to
optimise the program layout. This applies both to blank lines and to indents within lines. For example, in
the example block seen directly above, the braces are separated out onto their own lines and placed directly
above each other. The program would compile the same if it were written:

while (1){PORTB = counter; // Move 'counter' value to Port B
counter = counter + 1;} //Increment counter

It would, however, be less clear to read, in particular when looking for where the code block ended. The need
for good layout increases dramatically as program complexity increases.

14.2.4 C keywords

C has a set of just 32 keywords. These are shown in Tables A6.1–A6.3, each with summary description.
It can be seen that a good number relate to data type. In our example program, the declaration

unsigned char counter; //specify counter as unsigned character

declares a variable called counter and uses the keywords unsigned char to specify its type as an unsigned
character.

Other keywords (Table A6.2) relate to program flow. In this example the while keyword sets up a continuous
loop, as described in Section 14.2.8.

Keywords are recognised by the compiler, which expects them to be applied within a defined context. They
cannot be used for any other purpose, for example as the name of a variable.
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14.2.5 The C function

C programs are structured from functions. Every program must have at least one function, called main.
Program execution starts with this function and the program is contained within it.

Apart from the main function, functions are in some ways similar to Assembler subroutines. They are used
in a similar way, generally to contain an identifiable program action. Good program structures tend to
have much of the program contained within functions, with the main function calling subsidiary ones. Any
function may call another.

What distinguishes a C function from an Assembler subroutine is the control exercised in how data is passed
between calling program and function. Data elements, called arguments, can be passed to a function. They
must, however, be of a type which is declared in advance. Only one return variable is allowed, whose data
type must also be declared. The data passed to the variable is a copy of the original. Therefore, the function
does not itself modify the value of the variable named. The impact of the function should thus be predictable
and controlled. The terminology parameter is often used in place of argument. Distinction between the two
terms is made in detailed specifications of the C language. In these chapters we will, however, use them
interchangeably.

A function is defined in a program by a block of code having particular characteristics. Its first line forms the
function header. The function header from the example program, shown here, illustrates the general format:

void main (void) //main function starts here 
{ 

... 
(body of function goes here)
... 
} 

Return type

Function
name Argument(s) type(s)

Opening of function

Close of function

The return type is given first. In this example, the keyword void is used to indicate that there is no return
value expected. This is common practice for the main function – after all, to where or what would it return
a value? After the function name, in brackets, one or more data types may be listed, which identify the
arguments which must be passed to the function. In this case (again as may be expected with main) there
are no arguments transferred and the keyword void is again used to indicate this.

Following the function header, a pair of braces encloses the code which makes up the function itself. This
could be anything from a single line to many pages. The final statement of the function may be a return,
which will specify the value returned to the calling program. This is not essential if no return value is required.

It can be seen that, for clarity, the program is laid out so that the braces which enclose the main function
are aligned fully left and that the braces containing the while statement are indented.
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In Program Example 14.1 the main function is the only one. A number of further issues arise when multiple
functions are used. These are introduced in later chapters.

14.2.6 Data type and storage

Variables within a C program have four attributes: their name, type, value and storage location. It has
already been said that the type (for example, whether signed or unsigned, fixed or floating point) must be
declared before use. Once the type has been specified, the compiler can determine the amount of memory
needed to store the variable. Its value can then, if needed, be initialised.

The words used to define data type are shown in Table A6.1. The actual memory size applied to each
data type can vary between compilers. The data types available in the MPLAB C18 compiler, along with
their storage size, are shown in Table A6.4. For example, in Program Example 14.1 the variable counter
is defined as being an unsigned character. Table A6.4 shows that the C18 compiler will assign it an 8-bit
memory location. Although the name implies it must be a character, in fact it can be used for any 8-bit
number. This is a useful data type for the many single-byte variables that we use in the PIC environment.
We will see later that PORTB and TRISB are also defined as unsigned characters.

Data names must start with a letter. When writing complex programs it is common practice to start the name
with a letter or letters which identify the type of the variable, for example the name counter in the example
program could be changed to uicounter, to remind the programmer that it is an unsigned integer. This helps
the programmer remember its type and reduces programming errors. This practice is not, however, adopted
in the example programs in this book.

When writing numbers in a program, the default radix for integers is decimal, with no leading 0 (zero).
Octal numbers are identified with a leading 0. Hexadecimal numbers are prefixed with 0x.

14.2.7 C operators

C recognises a diverse set of operators, which are shown in Table A6.5. The symbols used are familiar,
but their application is not always the same as in conventional algebra. For example, a single ‘equals’
symbol, ‘=’, is used to assign a value to a variable. A double equals sign, ‘= =’, is used to represent the
conventional ‘equal to’. Thus, in Program Example 14.1, the line

TRISB = 0; // initialise all bits of PORTB as output

means that the variable called TRISB is assigned the value 0. This can be read as ‘the variable TRISB
takes the value 0’. In the 18F242 header file TRISB has been defined as an unsigned character, hence an
8-bit number. Due to the port action, the program line quoted above causes all bits of Port B to be set
as outputs.

Operators have a certain order of precedence, shown in the table. The compiler applies this order
when it evaluates a statement. If more than one operator at the same level of precedence occurs in
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a statement, then those operators are evaluated in turn, either left to right or right to left, as shown
in Table A6.5.

As a very simple example, the line in the example program

counter = counter + 1;

contains two operators. Table A6.5 shows that the addition operator has precedence level 4, while the assign
operator has precedence 14. The addition is therefore evaluated first, followed by the assign. The outcome
is that the variable counter is incremented by 1.

14.2.8 Control of program flow, and the while keyword

All the keywords of Table A6.2 are associated with program flow, for example looping and branching. As a
first example, the while keyword allows a statement, or block of statements, to be executed repeatedly, as
long as a particular condition holds true. This is the first of a number of branching and looping structures
that we will meet.

The general while structure is:

while (conditional expression)
statement;

This will cause the statement to be executed repeatedly, as long as the conditional expression evaluates
‘true’ (i.e. non-zero). If it is no longer true, then program execution after the loop proceeds.

If more than one statement needs to be associated with the while, then a series of statements can be enclosed
in curly brackets, as shown:

while (conditional expression)
{statement 1;
statement 2;
statement 3;
}

Note that the while condition is evaluated at the beginning of loop execution. If it holds true, then the whole
loop is executed, even if the condition changes as the loop executes.

In this example, a continuous loop is forced by putting ‘1’ for the conditional expression.

while (1)
{
PORTB = counter; // Move 'counter' value to Port B
counter = counter + 1;
}

The two statements which fall within the while braces thus repeat indefinitely.
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14.2.9 The C preprocessor and its directives

The process of compiling is made up of a number of distinct stages. The first of these is undertaken by
the preprocessor. This responds to any preprocessor directives which it finds. These act in a way similar to
Assembler directives, giving instructions to the compiler itself. Example preprocessor directives appear in
Table A6.6. The format of the preprocessor directive requires that each directive occupies a line to itself.
It is not terminated with a semicolon.

The line in the example program

#include <p18f242.h> //for all 18F242 declarations

uses the #include directive to include a processor-specific header file. This file, specific to the C18 compiler,
contains the declarations necessary for this particular 18 Series processor and saves having to spell them out
in the source code. It contains declarations for all the SFRs (Special Function Registers), including those
for Port B used in this program.

14.2.10 Use of libraries, and the Standard Library

Because C is a simple language, much of its functionality derives from standard functions and macros which
are available in the libraries accompanying any compiler. A C library is a set of precompiled functions, in
the form of object files, which can be linked in to the application. The contents of the Standard Library are
defined in the ANSI standard. It includes functions for input and output, a range of mathematical functions
(for example, all trigonometric functions) and other data handling functions.

In addition to the Standard Library, as we shall see, a compiler may have its own library of functions,
intended specifically for its target environment.

14.3 Compiling the C program

When the C source code is complete, it is compiled. This process leads eventually to the production of a
file containing the machine code equivalent of the source, which the target computer can execute.

We have already met the concept of header files and library files. These are extensively used, with the result
that hardly any C source files are stand-alone. Once the ‘extra’ files are incorporated, the final executable
program is built up from a number of contributing files, often in quite a complex way. In turn, the process
of compiling a C program creates a range of output files.

The process of compiling, along with the files used and generated, is illustrated in a general way in
Figure 14.1. The main program, the C source file, is written in the C language, in a file with the extension .c.
This is very likely to include (using the preprocessor #include directive) other standard files, for example
the processor-specific header file we have already seen. A source file, together with any included header
files, is known as a translation unit.
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Figure 14.1 A C file structure, with C18 file extensions

When the source program is complete, it is compiled using the C compiler to produce an object file. This
consists of relocatable code, not yet fully mapped to the processor memory map. Other files can also be
developed, including those in Assembler, and all compiled or assembled in a similar way, leading to object
files containing (mainly) relocatable code.

At this stage, in all but the simplest programs, it is likely to be combined with other files, which exist
already at the object file stage. These may be from the libraries which accompany the compiler, or they may
be previously developed files of the programmer or company. It is the task of the Linker to combine these
different files together, to create one single executable file. In doing this, it is guided by the Linker Script,
a file which defines the processor memory map and provides other information, including the possibility
of drawing in further precompiled files. The opening title block in Program Example 14.1 makes reference
to two object files, c018i.0 and p18f242.lib, which are linked in to the program by the Linker. How this is
done, and the role they play, is explained in Chapter 17.

After the linking process is complete, and assuming no errors in the process, a series of output files is
produced. Those for the Microchip C18 compiler are detailed in Section 14.5.4.

14.4 The MPLAB C18 compiler

The MPLAB C18 compiler is Microchip’s own C compiler, written especially for the PIC 18 Series micro-
controller. It follows the ANSI X3.159-1989 standard, except that it also contains a number of extensions,
designed to optimise its use with the PIC microcontroller.
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The C18 compiler operates within the main MPLAB IDE environment, working alongside its Assembler,
Linker and Librarian. Once installed, it can be linked in to this tool suite. Unlike MPLAB, the compiler
must be purchased, at a cost in the region of $150. At the time of writing, a student version is available
free, as a download from the Microchip website. There is also a copy on the book CD.

The compiler is reasonably well documented, primarily through Refs 14.1 and 14.2. These are available
from the Microchip website. In the sections which follow, the compiler is introduced to a level adequate to
run all the example programs given. Further details can then be found from this reference information.

14.4.1 Specification of radix

MPLAB C18 recognises the C radix specifications mentioned in Section 14.2.6. It also introduces the very
useful ‘0b’ prefix for binary numbers. For example:

TRISA = 0b’10000110’; // initialise PORTA
TRISB = 0x86; // initialise PORTB
TRISC = 134; // initialise PORTC

puts the same values into each TRIS register.

14.4.2 Arithmetic operations

The ISO/ANSI C standard requires that all arithmetic operations are done at int precision (i.e. 16 bits) or
higher. The C18 compiler, reflecting the 8-bit world it serves, steps outside this requirement and undertakes
arithmetic with char data types.

In the sections which follow it is assumed that the reader has installed MPLAB IDE and the MPLAB C18
compiler, following the simple procedure given in Ref. 14.1. Version 3.00 of the C18 compiler is used.

14.5 A C18 tutorial

Having described a simple yet plausible C program, let us try to compile it and simulate. In MPLAB open
a new project with suitable name; the images which follow use example1 as the entirely unoriginal name.
Open a new file and enter into it the code of Program Example 14.1. Save this with a file name, for example
example1.c, and add it to the project, using Project > Add Files to Project.

14.5.1 The Linker and Linker Scripts

As the compile process automatically uses the Linker, it is essential to include a Linker Script. We examine
the form of this in Chapter 17, for now we just need to specify it. On the project window, as seen in
Figure 14.2, right-click on the Linker Scripts line. An Add File prompt will appear. Click on this, and
searching through the Add Files to Project window, find the folder mcc18/lkr/. Within this, click on the
18f242.lkr file. The project window should now appear as in Figure 14.2.
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Figure 14.2 Incorporating the Linker Script

Note that we are invoking the Linker Script here in its original form and location. For more advanced
projects it is better to make a copy of it and place it in the project directory. This allows the possibility of
modifying the file and avoids the risk of corrupting the original.

14.5.2 Linking header and library files

Our example program itself invokes a header file, through the line

#include <p18f242.h>

It is therefore important to ensure that the search path for this is recognised. The Linker Script calls
up other library files, which must also be found. Check that these paths are set up correctly, using
Project > Build Options > Project > General. The window of Figure 14.3 should then appear. If
your compiler is installed to its default location, it should be possible just to click on Suite Defaults. This
selects the paths shown. Then click on OK.

14.5.3 Building the project

It should now be possible to build the project. As with Assembler, click on Project > Build All. If all is
correctly entered and linked, the Build Succeeded message should ultimately appear in the Output window,
as seen in Figure 14.4. Notice that the build process takes considerably longer than Assembler, even for
a tiny program like this, and that there are a number of distinct stages. These are shown in Figure 14.4.
At the compile stage the window shows that a number of compile options, indicated by -Ou- -Ot- -Ob-
and so on, are being implemented. These are the compiler defaults and are not of immediate interest at this
early stage of compiler use.

If the project did not build successfully, it will be necessary to explore the resulting error messages carefully.
The compiler first checks that the program has correct syntax, i.e. it is written to obey the formatting rules
of C. Even if you did not get any errors, try removing a semicolon or inserting some other small error,
and check the response of the compiler on build. If there is a syntax error, the compiler reports this in the



398 Introducing C

Figure 14.3 Setting search paths for header files

Output window, with a line number. Line numbers may be switched on using Edit > Properties > Editor,
in the MPLAB window, and clicking the Line Numbers box. It is worth noting that the line number
where the compiler perceives the error may not be the exact one where correction is needed. As a simple
example, try ‘commenting out’ the opening brace of main. You will see that the syntax error is reported as
being in the line which follows – which on its own is a perfectly good piece of C code!

When all syntax errors are removed, the compiler checks for other errors and reports an error reference
number. The error numbers, with brief descriptions of the error and possible solutions, are listed in Ref. 14.2.

14.5.4 Project files

A successfully built project will yield the files shown in Figure 14.5. Many can also be seen in the diagram
of Figure 14.1.

The input and output files within the project window are as follows:

• Source file (.c). This is the original source file, written in C.
• Symbol and debug file (.cod). This a file for debug purposes, used with MPLAB IDE version 5.xx and

earlier.



Introducing C 399

Figure 14.4 Output window following successful build

Figure 14.5 Files associated with a simple C project
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• COFF object module file (.cof). This file provides debugging information for MPLAB IDE v6.xx or later.
• Executable file (.hex). This is the actual program code, which can be downloaded to the microcontroller,

or used for simulation or emulation purposes.
• Listing file (.lst). This file shows the original source code alongside the object code. Symbol values,

memory usage information, and error and warning information are also provided.
• Object file (.o). This file contains the relocatable code. It is the output of the compiler or Assembler, and

forms the input to the Linker. Object files are also found in the library.

14.6 Simulating a C program

Explore now the simulation of Example 1. While the program itself is exceedingly simple, the simulation
will reveal a number of interesting things about how the overall C program is built, and will bring us back
again to Figure 14.1.

As in Section 4.7 of Chapter 4, select MPLAB’s simulator by invoking Debugger > Select Tool > MPLAB
SIM. Using View > Watch, open a Watch window, and display the values of counter, PortB and PCL.
Using the debugger toolbar (Figure 4.9), reset the program counter, noticing that the Program Counter (PCL)
clears to zero, as expected. Another program window opens on the screen, however, entirely unasked! This
is c018i.c, a start-up program which the Linker has invoked. It contains certain processor initialisation
essential for correct operation of C. We return to it in Chapter 17.

Single-step through the program (or use Animate) and you will find that execution transfers ultimately to
the source program. It is then possible to see in the Watch window the values of counter and PORTB being
incremented. From here, program execution stays indefinitely in the while loop.

An interesting way of seeing how the C program has been created is by viewing the Disassembly Listing,
by selecting View > Disassembly Listing. In this window (as seen in Figure 14.6) it is possible to see
both the original C source code and the Assembler which replaces it. It can be seen that some lines of C
code translate to a single line of Assembler. In most cases, however, a single line of C must be replaced by
several lines of Assembler. This is an early indication that programming in C will lead to simpler source
files. As more complex lines of C are introduced, the scale factor between the C code and the Disassembly
Listing will become more marked.

In Figure 14.6, it can be seen that the address of TRISB, 0F93H, is correctly applied, as seen in Figure 12.5.
The memory location 8AH in Bank 0 has been allocated to counter. The transfer of the counter value to
PORTB can be seen in the instruction

MOVFF 0x8a,0xf81

where 0xf81 is the address of Port B. The incrementing of counter can similarly be seen. Notice that the
Assembler instructions, as indicated by their memory locations, are placed out of sequence. The branch
instruction, at memory location 00F2H, actually forms the continuous loop and should lie at the end of
the listing.
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Figure 14.6 The Disassembly Listing for part of Program Example 14.1

14.7 A second C example – the Fibonacci program

Let’s now take our C programming a step further, with a program of slightly increased complexity. Program
Example 14.2 provides a C version of a program already familiar to us, the Fibonacci series generator.
This calculates a Fibonacci series, first by going up to a certain level and then working backwards again.
This action is repeated indefinitely.

/*************************************************************************
Fibonacci
In a Fibonacci series each number is the sum of the two previous numbers.
This program calculates Fibonacci numbers within an 8-bit range,
Files c018i.o and p18f242.lib are included by the Linker Script.
Program intended for simulation only, hence no input/output.
TJW 21.10.05 Tested 23.10.05
;************************************************************************/

#include <p18f242.h>

//these memory locations hold the Fibonacci series
unsigned char fib0; //lowest number

//(oldest when going up, newest when reversing down)

Program Example 14.2 The Fibonacci series generator
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unsigned char fib1; //middle number
unsigned char fib2; //highest number
unsigned char fibtemp; //temporary location for newest number
unsigned char counter; //indicates which value series has reached

void main (void)
{
fib0 = 0;
fib1 = 1;
fib2 = 1;
counter = 3; //have preloaded the first three numbers, so start at 3
loop:

do
{
fibtemp = fib1 + fib2;
counter = counter + 1;

//now shuffle numbers held, discarding the oldest
fib0 = fib1; //first move middle number, to overwrite oldest
fib1 = fib2;
fib2 = fibtemp;
}
while (counter<12);

//when reversing down, we will subtract fib0 from fib1 to form new fib0
do
{
fibtemp = fib1 - fib0; //latest number now placed in fibtemp
counter = counter - 1;

//now shuffle numbers held, discarding the oldest
fib2 = fib1; //first move middle number, to overwrite oldest
fib1 = fib0;
fib0 = fibtemp;
}
while (fib0>0);
goto loop;

}

Program Example 14.2 Continued

14.7.1 Program preliminaries – more on declaring variables

Following the opening comments, the early program lines declare five unsigned character variables, while
the first three lines within main initialise three of these to certain values. There are certain ways in which
this process can be shortened. Firstly, a declaration of one data type need not be confined to a single variable.
Therefore, the five variables could all be declared together, as

unsigned char fib0, fib1, fib2, fibtemp, counter;

It would be up to the programmer to decide whether this format was preferable. One disadvantage is that
it is less easy to add a comment per variable, should this be desired.
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It is also possible to initialise a variable at the time of declaration. The following would be a possible format:

unsigned char fib0 = 0; //lowest number
unsigned char fib1 = 1; //middle number
unsigned char fib2 = 1; //highest number

Again, it would be up to the programmer to decide whether this format gave any advantage.

14.7.2 The do–while construct

There are two loops in the Fibonacci program. These are constructed here using the do and while keywords.
The block of code following the do word is executed as long as the while condition (counter < 12 for the
first loop) is ‘true’, i.e. it has a non-zero value. In such a loop, the do code is always executed at least once
before the while condition is tested. This is different from a while loop, which will not execute even once
if its condition is not true on entry.

When reversing down the series, the loop is repeated until fib0 has been found to have reached a value of 0,
using another test in a while statement.

14.7.3 Labels and the goto keyword

Immediately before the first do loop there appears the expression loop:. This is a label, identified by
its terminating colon. The last line of the program returns execution to loop:, using the keyword goto.
The only application of such labels is as targets for goto instructions; they are not used for any other
purpose. A goto causes unconditional branching within a given function; it cannot branch to another
function. The goto branch is not much loved in C circles, as its uncontrolled use leads to unstructured
programs.

14.7.4 Simulating the Fibonacci program

As always, it is worth simulating this program. Copy the program from the book CD into an appro-
priate project and simulate with MPLAB SIM. Open a Watch window, with PCL and all variables
displayed. Single-step through the program and, once in main, observe how the looping is controlled.
Notice that when counter reaches 12, the do code block is completed before execution moves to the
lower loop. An alternative structure for this loop is explored in Chapter 15 and seen in Program
Example 15.2.

14.8 The MPLAB C18 libraries

We close this chapter with a survey of the library functions available in the C18 compiler. The compiler
has an extensive set of libraries, which reflects both the C Standard Library, as well as many functions
specific to the PIC environment. Most programs written using the compiler will almost inevitably use at
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least one of these functions, if not many. Certainly, all example programs from this point on use library
functions.

Each library function has its own entry in the libraries reference manual [Ref. 14.3]. This indicates the action
of the function, the arguments to be passed, the return type and any header file which must be included.
The functions fall into the categories described in the following sections.

14.8.1 Hardware peripheral functions

These are a set of functions which relate to the microcontroller peripherals. There are functions for enabling
and configuring a peripheral, changing its mode of operation, reading it and disabling it. For the ADC, for
example, the functions shown in Table 14.1 are available. It can be seen (by reference to Section 11.3 of
Chapter 11 if necessary) that these provide all the functionality which would normally be required when
using the ADC. The actual setting is conveyed in the function arguments, which are detailed in the libraries
manual [Ref. 14.3]. A number of these functions are used in program examples in Chapter 16.

The peripherals can, of course, still be manipulated directly through their SFRs, but usually the library
function makes programming easier, more visible and more reliable. Knowledge of the detail of the SFRs
remains important and in some cases still essential. This helps to interpret how the function parameters
should be set.

These functions are unique to the C18 compiler and do not exist in the C Standard Library.

14.8.2 The software peripheral library

This library provides drive functions for a number of external devices which can be included in a sys-
tem. These include the Hitachi HD44780 LCD driver (see Chapter 8), the MCP2510 CAN (Controller
Area Network – described in Chapter 20) interface, as well as functions for generating serial interchange
in software.

Like the hardware peripheral library, these functions are unique to the C18 compiler and do not exist in the
C Standard Library.

Table 14.1 C18 library ADC functions
Function Action
OpenADC( ) Configures the ADC
SetChanADC( ) Selects the channel to be used
ConvertADC( ) Starts an ADC conversion
BusyADC( ) Tests whether ADC is currently busy
ReadADC( ) Reads the result of an ADC conversion
CloseADC( ) Disables the ADC



Introducing C 405

14.8.3 The general software library

The functions in this library are a mix of functions from the C Standard Library and ones specific to
Microchip. They fall into the following categories:

Character classification

These functions match the requirements of the Standard C ctype Library and provide tests for characters to
determine their nature. Examples are shown in Table 14.2.

Data conversion

These functions provide conversion between one form of data representation and another. This can be
extremely useful in the embedded environment, as we convert data from binary form to a string of characters
for display, or alternatively read a string in from a keypad and convert to binary. Examples are shown in
Table 14.3. They represent a mix of standard C functions and C18 ‘specials’.

Memory and string manipulation

This set of functions allows manipulation of memory. Most are drawn from the C Standard Library, although
there are some small differences. Example functions are shown in Table 14.4.

Delays

All the delay functions available are listed in Table 14.5. The first is a fixed single-cycle delay, com-
piling just as a nop (no operation) instruction. All the others allow a programmable delay, based on

Table 14.2 Example character classification functions
Function Action
isalnum( ) Determines if character is alphanumeric
isalpha( ) Determines if character is alphabetic
iscntrl( ) Determines if character is control
isdigit( ) Determines if character is decimal digit

Table 14.3 Example string/character conversion functions
Function Action
atop( ) Converts string to signed byte
atof( ) Converts string to floating-point value
atoi( ) Converts string to 16-bit signed integer
atol( ) Converts string to long integer
itoa( ) Converts 16-bit signed integer to string
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Table 14.4 C18 general software library delay functions
Function Action
memchr( ) Searches for a value in specified memory area
memcmp( ) Compares the contents of two arrays
memcpy( ) Copies a buffer from data or program memory to data
memset( ) Initialises an array with repeated memory value

Table 14.5 C18 general software library delay functions
Function Action
Delay1TCY( ) Delay in one instruction cycle
Delay10TCYx( ) Delay in multiples of 10 instruction cycles
Delay100TCYx( ) Delay in multiples of 100 instruction cycles
Delay1KTCYx( ) Delay in multiples of 1000 instruction cycles
Delay10KTCYx( ) Delay in multiples of 10 000 instruction cycles

Table 14.6 Example C18 general software library reset functions
Function Action
isBOR( ) Determines if brown-out was the cause of reset
isLVD( ) Determines if low voltage was the cause of reset
isMCLR( ) Determines if master clear was the cause of reset
isPOR( ) Determines if power-on was the cause of reset

the instruction cycle time of the microcontroller. This provides a very useful facility in the embedded
environment.

Reset

These functions allow the programmer to test a source of reset, from information provided in the 18 Series
RCON register (Figure 12.14). Example functions are shown in Table 14.6.

14.8.4 The maths library

This library provides the mathematical functions required in the C Standard Library. Variables are generally
floating point. Examples are shown in Table 14.7.

14.9 Further reading

When studying C, it is worth noting the different types of references that are available, which can be
used to broaden one’s knowledge of the language. Some, like Ref. 14.4, give a general introduction to C.
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Table 14.7 Example C18 maths library functions
Function Action
sin( ) Computes the sine
cos( ) Computes the cosine
tan( ) Computes the tangent
sqrt( ) Computes the square root
log10( ) Computes the log to the base 10
pow( ) Computes the exponential xy

Often, these are very much in the context of programming with a desktop computer, with emphasis on
data input from keyboard and output to computer screen. There are also a number of useful reference
books, like Ref. 14.5. These give complete reference information on the language, without attempting to
structure the material as a teaching text. It can be very useful to have easy access to one of these, to check
details of syntax and so on. There are also a number of books targeted at the embedded environment,
such as Refs 14.6 and 14.7. These get much closer to our interest here. They do, however, tend to be
microcontroller or compiler specific, and in their detail are somewhat less useful when applied to a different
processor.

Summary

• Although it is a high-level language, C contains features that allow it be extremely effective at
the embedded system level. It remains the high-level language of choice for many embedded
applications.

• The core features of C are comparatively simple and logical, and can be learned without too much
difficulty.

• The MPLAB C18 C compiler is a powerful software tool, drawing on the strengths of the C language,
but optimised for the PIC 18 Series.

• The MPLAB C18 C compiler can be used as a tool within the MPLAB IDE. Thus, all the exper-
tise that a developer has with this environment can immediately be applied to the development of
C programs.

• Writing in C requires a combination of knowledge of the language itself, along with the library functions
that are available for the compiler and processor that are in use. There is a rich collection of library
functions in the C18 compiler, providing general utilities, peripheral control, data manipulation and
mathematical functions.
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15
C and the embedded environment

The C programming language was introduced, in overview, in Chapter 14. This chapter now aims to start
applying that skill to writing real embedded C programs. It begins with that most essential of embedded
requirements, the manipulation of individual bits, and then moves on to interaction with peripherals. While
doing this, many more details of C are introduced, as they come up in example programs.

Examples in this chapter are mostly applied to the Derbot-18 AGV. They can all be simulated, so it does not
matter too much whether or not you have the hardware. Most are unashamed reworkings of the Assembler
programs which have appeared earlier in the book. By adapting Assembler programs, a comparison can be
made between the different programming languages, and the reader who is working through the book is on
familiar territory as far as the target hardware is concerned.

By working through this chapter, you should develop a good understanding of:

• How to access and manipulate single bits
• How to write simple functions and call them
• How to invoke library functions, including those for control of the microcontroller peripherals
• How to give some structure to C programs, making appropriate use of functions, and looping and branching

constructs.

15.1 The main idea – adapting C to the embedded environment

Now we have adopted a high-level language (HLL), it is as if we are seeking the best of both worlds. We
want the benefits of the HLL, but we retain our determination to work close to the hardware – setting up
peripherals, setting or clearing individual port bits, and ultimately setting up and responding to multiple
interrupts. This tension is resolved in interesting ways, which we now begin to explore.

15.2 Controlling and branching on bit values

Program Example 14.1 illustrated in a very simple way the use of the microcontroller ports. This relied on
the port SFRs (Special Function Registers) being declared in the header file, the data direction being set up
by writing to the TRIS register, and then moving data to the port by writing a whole byte.

Fundamental to developing programs for embedded systems is, of course, the ability to read and set single
bits. Program Example 15.1, which moves the state of the microswitches on the Derbot to the LEDs,
demonstrates how this is done in C. Essentially, it rewrites Program Example 7.1. As it must, the program
contains a main function, as well as two user-defined functions, for initialisation initialise( ) and for



410 C and the embedded environment

diagnostics diagnostic( ). Locate each of these in the program listing. In implementing the diagnostic
flashing of the LEDs, the program also makes use of a C18 library function. The way the functions are used
will be discussed in Section 15.3.

/*********************************************************************
Sw_to_led_18C Uses PIC 18F242
Runs on Derbot-18. Moves state of front microswitches to leds
Files c018i.o and p18f242.lib are included by the Linker Script.
TJW 22.10.05 Tested 24.10.05
**********************************************************************
Clock is 4MHz
Configuration Word all default, except: crystal oscillator (HS),
power-up timer on, brown-out detect off, WDT off, LV Program disabled*/

#include <p18F242.h>

#include <delays.h> //header file for delays

//Function Prototypes (Library prototypes are in Header files)
void initialise (void);
void diagnostic (void);

void main (void)
{

initialise(); //call initialise function
diagnostic(); //call diagnostic function

//move microswitch states to diag leds
loop:

if (PORTBbits.RB4 == 0)
PORTCbits.RC6 = 0;
else PORTCbits.RC6 = 1;

if (PORTBbits.RB5 == 0)
PORTCbits.RC5 = 0;
else PORTCbits.RC5 = 1;

goto loop;
}

//Initialises SFRs, and sets initial outputs.
//Assumes hardware is "Build Stage 1". All unused port bits set to output.
void initialise (void)
{ TRISA = 0b00000000; //All bits output (none used in this program)

TRISB = 0b00110000; //Bits 5 and 4 (microswitches) only are input
TRISC = 0b10000000; //All bits output, except bit 7 (mode switch)

//Switch all outputs off
PORTA = 0;
PORTB = 0;
PORTC = 0;

}

Program Example 15.1 Derbot – moving microswitch states to LEDs
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//Diagnostic: switches leds on for 1s (Tcy = 1us)
void diagnostic (void)
{ PORTCbits.RC6 = 1;

PORTCbits.RC5 = 1;
Delay10KTCYx (100);
PORTCbits.RC6 = 0;
PORTCbits.RC5 = 0;
Delay10KTCYx (100);

}

Program Example 15.1 Continued

15.2.1 Controlling individual bits

The bits of each port are defined in the microcontroller header file, using a C structure that is described
in Section 17.9 of Chapter 17. For the purposes of this program, it is enough to recognise that a port bit
can be specified by the format PORTxbits.Rxy, where x indicates the port and y the bit in that port. As an
example, the diagnostic function lies at the end of the program listing. In it, we see bits 5 and 6 of Port C
being set to Logic 1 in the lines:

PORTCbits.RC6 = 1;
PORTCbits.RC5 = 1;

With this simple step we now have the ability to set or clear individual bits in a register, as long as they
have been previously declared. As all microcontroller SFRs and their bits are declared in the header file;
this represents a great step forward.

15.2.2 The if and if–else conditional branch structures

The action in this program is built around a conditional if–else branching structure. This allows a program
to contain a choice between two separate paths of action. An example of the structure appears in the main
function, as quoted here:

if (PORTBbits.RB4 == 0)
PORTCbits.RC6 = 0;
else PORTCbits.RC6 = 1;

This can be interpreted as: if bit 4 of Port B is at Logic 0, then set bit 6 of Port C to 0; otherwise (else) set
it to 1. A block of code, rather than just a single line, can also be associated with either the if and/or the
else, in which case it must be enclosed in curly brackets. For example:

if (PORTBbits.RB4 == 0)
{PORTCbits.RC6 = 0;
PORTCbits.RC0 = 1;
}
else PORTCbits.RC6 = 1;

This would cause two Port C bits to change, if Port B bit 4 was found to be zero.
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It is also possible to use the if structure on its own. In this case there is no alternative action if the condition
tested is not true. An example is:

if (PORTBbits.RB4 == 0)
PORTCbits.RC6 = 0;
if (PORTBbits.RB5 == 0)
PORTCbits.RC5 = 0;

In this case, Port C bit 6 is set to 0 if Port B bit 4 is at 0, but no action is taken if Port B bit 4 is at Logic 1.
The same can be seen to happen in the lines which follow, with bit 5 of each port.

Notice in these examples how the assignment operator ‘=’ and the equal to operator ‘==’ are used. As we
have seen, the first is used to assign a value to a variable. The second is used, within the if construct, to test
whether a variable is equal to a particular value.

15.2.3 Setting the configuration bits

Settings for the configuration bits are indicated in the program listing. For the time being, these should
be set in the MPLAB Configuration Bits window, as seen in Figure 12.15. This is not, of course, a very
satisfactory procedure and in Chapter 17 we will see a way of embedding the settings in the program. Note
that the settings in the window can be returned to their default condition by right-clicking in the window,
and clicking Reset to Defaults in the dialogue box.

15.2.4 Simulating and running the example program

It is interesting to simulate this program in the MPLAB® simulator. Having created and built the project,
set up the simulation with the following steps.

• In MPLAB, select the simulator with Debugger > Select Tool > MPLAB SIM.
• Open a Watch window, and select Port B and Port C as variables for display.
• Set up a stimulus controller and simulate inputs for the microswitch inputs, RB5 and RB4, with Toggle

as the Action.
• Place breakpoints in the diagnostic( ) function, as shown in Figure 15.1(a).
• Use Debugger > Settings > Osc/Trace, to set the Processor Frequency to 4 MHz.
• Use Debugger > Stopwatch to display the Stopwatch window, as shown in Figure 15.1(b).

Now reset and run the program to the first breakpoint, which will be the first in Figure 15.1(a). At this point
zero the Stopwatch and then run to the next breakpoint. This is just the line below. To get there, however,
the program has to execute the Delay10KTCYx( ) function. The Stopwatch should now be exactly as shown
in Figure 15.1(b). Exactly one second of simulated time has elapsed in execution of the function. This is a
satisfying confirmation of the accuracy of this function.

Now set one further breakpoint in the line below the label loop:. Run the program to here and then single-
step through the loop. Using the stimulus controller, change the values of the microswitch inputs (Port B
bits 4 and 5) and observe how the program loop responds.
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(a)

(b)

Figure 15.1 Simulation settings for Program Example 15.1. (a) Suggested breakpoints in diagnostic function.
(b) Stopwatch, after completion of delay function

If you have the Derbot-18 hardware, download the program in the usual way. The program function is
simple; the satisfaction comes from seeing your first C program running in hardware!

15.3 More on functions

Now that we have a program example with several functions, it is useful to pause to explore further the
way functions are used. In particular, we need to know how a function is written, how it is called, how data
is passed to it and how it is returned.

15.3.1 The function prototype

When main is not the only function in the program, it is necessary to include for every function a function
prototype. This is a declaration which informs the compiler the type of the function’s argument(s), if any,
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and its return type. It is similar to the function header seen earlier and has the same general format. For
example, the Delay10KTCYx( ) library function, described below, has the prototype:

void Delay10KTCYx (unsigned char);

Return Type Argument Type

Function
Name

It can be seen that one argument is sent, an unsigned character, while no return value is expected.

Prototypes for library functions appear in the library header files and do not need to be repeated in the user
code. In this case, the prototype just discussed can be found in the delays.h header file. Prototypes for the
two user-defined functions in the program example can be seen towards the top of the program. This shows
that neither expects a return value and neither carries any arguments.

15.3.2 The function definition

The actual code of a function is called the function definition. It follows the format described in
Section 14.2.5 of Chapter 14. The definition for the Delay10KTCYx( ) function is contained within the
general software library (Table 14.5) and is merged with the main program at the time of linking.

The definitions for the two user-defined functions can be seen towards the end of the program listing. They
are placed here for clarity. They can, however, be placed anywhere in the program listing, as long as they
are not inside another function definition. These definitions are easy to follow.

The initialise function sets up the SFRs and initialises the ports to 0. Strictly speaking initialising variables
to 0 should be unnecessary, as the ANSI standard requires it anyway. With C18 this is only done if the
c018iz.o start-up utility is used (described later, in Section 17.7.1 of Chapter 17). We do not use this in
the example programs in this book and variables are hence not initialised to zero as a matter of course.
The diagnostic function sets bits 5 and 6 of Port C (the two LED output bits) to 1 and calls the delay
function. It then clears the same bits to zero, before calling the same delay again.

15.3.3 Function calls and data passing

A function is called by quoting its name and placing the necessary arguments in the brackets which must
follow. Where there are no arguments, the brackets must still be there, but can be left empty. The function
calls in Program Example 15.1 are simple and self-explanatory. Notice that the parameter 100D is passed
to the delay function.

It is important to be aware of a number of features of function calls which are not evident from this particular
example. Importantly, a function call has the type and value of its return type. This is an assertion of some
significance! It means that a call can be inserted into an expression; the function is evaluated and its return
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value acts in its place in the expression. This is done several times in Program Example 16.1 and the
programs which follow. An example from there is as follows:

ldr_rt = ReadADC()&0x03FF; // read it, AND out unwanted bits

Here the function call ReadADC( ) is placed within a statement. It is evaluated first and its return value
then takes its place in the statement.

Remember also that any parameters passed to the function are copied to it, with the original value (if a
declared variable) retained. It uses these in its internal execution, to generate the return value. It does not
in itself modify the value of the variable.

15.3.4 Library delay functions, and Delay10KTCYx( )

All the delay functions available in the C18 general software library are shown in Table 14.5. These all have
a function prototype of the form seen already for Delay10KTCYx( ), with an unsigned character (i.e. 8-bit
word) acting as the multiplier to set the actual delay.

The Delay10KTCYx( ) function used here allows the longest of the delays. It introduces a software delay
in multiples of 10 000 instruction cycles, with a maximum of 255 × 104 cycles. Thus, with a clock running
at 4 MHz and the variable expressed as 100 (as in this example), the total delay is 10 000 ×100 × 1 µs,
i.e. 1 second.

The delays.h header file, required for this function, can be seen included in the early stages of this
program.

15.4 More branching and looping

15.4.1 Using the break keyword

Now that we have a mechanism in C which gives access to individual register bits, we can make use of this
in further bit testing and setting operations.

Returning to the Fibonacci program of Program Example 14.2, let us explore another way of constructing
the first loop. The purpose of this loop is to generate the Fibonacci series, within the limits of the 8-bit
number used (specified as type unsigned char). In Program Example 14.2 we did this in a rather artificial
way, by limiting the number of values calculated to a known ‘safe’ maximum.

Try now replacing the first loop with the program section in Program Example 15.2. This establishes what
appears to be a continuous loop, using a while (1) construct. Within the loop, however, is a possible exit
strategy, based on the break keyword. The statement that it is part of tests the value of the Carry bit and
causes an exit if it is high. If you simulate with this revised version, you will see that an exit from the loop
is forced immediately following this statement, once the Carry bit goes high.
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while (1)
{fibtemp = fib1 + fib2;
if (STATUSbits.C == 1) break; //exit loop if Carry bit set
counter = counter + 1;
//now shuffle numbers held, discarding the oldest
fib0 = fib1; //first move middle number, to overwrite oldest
fib1 = fib2;
fib2 = fibtemp;
}

Program Example 15.2 Alternative first loop for the Fibonacci program

Given a way of testing the Carry bit, one might ask – why not make this the while condition? The loop
could then be started:

while (STATUSbits.C != 1) //loop while the Carry bit is not 1
{fibtemp = fib1 + fib2;
...

The problem here is that the condition is only tested at the end of the loop. By this time the addition has
overflowed and incorrect numbers will have been loaded into at least one location in the Fibonacci series.
The loop could, of course, be restructured so that the addition was at the bottom of the loop and the test of
the Carry bit then took immediate effect.

15.4.2 Using the for keyword

The for keyword provides another means of ‘packaging’ conditions for a loop. It has the general format:

for (initialisation; condition; modification)
statement, or statements in braces

The three expressions within the for brackets, called here initialisation, condition and modification, are
all defined by the programmer. Moving immediately to an example, the first loop in Program Example 14.2
could be rewritten as shown here:

for (counter = 0;counter<12;counter = counter + 1)
{fibtemp = fib1 + fib2;

//now shuffle numbers held, discarding the oldest
fib0 = fib1; //first move middle number, to overwrite oldest
fib1 = fib2;
fib2 = fibtemp;

}

In the first expression, counter is initialised to 0. This occurs only once, when the loop is entered. The
condition tested is whether counter is less than 12, and the modification caused is an increment to the value
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of counter. This does not occur on the first loop iteration. When the program runs, the loop is repeatedly
executed, with counter being incremented each time. When it is incremented to 12, this is immediately
detected by the condition expression and no further loop iterations occur.

It is interesting to modify the Fibonacci program to contain this code, and simulate.

Any of the three expressions associated with for can be omitted. If the condition is left out, then there is
no test and the loop is continuous. Initialisation and modifications can still, however, apply. A simple way
of creating a continuous loop is by entering no expressions at all, giving:

for(;;)
{...

This is a direct alternative to:

while(1)
{...

15.5 Using the timer and PWM peripherals

We turn now to controlling microcontroller peripherals through the use of library functions. To do this
we will use the Derbot ‘blind navigation’ program, first introduced as Program Example 8.4. It is shown
in a C version in Program Example 15.3. The program makes use of library functions for Timer 2 and
PWM, and writes a number of functions of its own. These tend to replicate the subroutines of the original
program.

The program simply causes the Derbot to run forward until it hits an obstacle, detected by a microswitch. It
then reverses and turns, turning right if the left microswitch was hit and vice versa for the right microswitch.
After this it returns to running forward. These simple moves require the use of the microcontroller PWM
facility, which in turn requires the setting of Timer 2.

/************************************************************************
Dbt_blind_Nav_PWM_C
Derbot moves by “blind” navigation.
Moves forward, and reverses and turns on bump.
Files c018i.o and p18f242.lib are included by the Linker Script.
Fixed rate PWM applied to set reasonable speeds.
TJW 3.11.05 Tested 7.11.05
*************************************************************************
Clock is 4MHz
Configuration Word all default, except: crystal oscillator (HS),
power-up timer on, brown-out detect off, WDT off, LV Program disabled*/

#include <p18F242.h>

#include <delays.h> //header file for delays

Program Example 15.3 Derbot ‘blind navigation’ program
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#include <timers.h> //header file for Timers
#include <pwm.h> //header file for PWM

/*function prototypes, reproduced from Header Files for information
void OpenPWM1 (char);
void OpenPWM2 (char);
void OpenTimer2 (unsigned char);
void Delay10KTCYx (unsigned char); */

//User-defined function prototypes
void diagnostic (void);
void leftmot_fwd (void);
void rtmot_fwd (void);
void rev_left (void);
void rev_rt (void);

void main (void)
{
/*Initialises SFRs, and sets initial outputs. Assumes hardware is "Build
Stage 2". All unused port bits set to output. Used bits are identified.*/

TRISA = 0b00000000; //All bits output, 2 & 5 used for motor enables.
TRISB = 0b00110000; //Bits 5 and 4 (microswitches) only are input,
TRISC = 0b10000000; //All bits output except 7 (mode switch),

//1 & 2 used for PWM
ADCON1 = 0b00000110; //Set Port A for digital i/o

//Switch all outputs off
PORTA = 0;
PORTB = 0;
PORTC = 0;

//call diagnostic function
diagnostic();

//Enable PWM
OpenTimer2 (TIMER_INT_OFF & T2_PS_1_1 & T2_POST_1_1);
OpenPWM1 (0xFF); //Enable PWM1 and set period
OpenPWM2 (0xFF); //Enable PWM2 and set period

while (1)
{
//start motors
leftmot_fwd ();
rtmot_fwd ();

//test for bumps - reverse and turn if either microswitch closes
if (PORTBbits.RB4 == 0) //Test right uswitch
rev_left ();
if (PORTBbits.RB5 == 0) //Test left uswitch
rev_rt ();
Delay10KTCYx (10);
}

}

Program Example 15.3 Continued
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/**************************************************************
Motor Drive Functions
***************************************************************/

void leftmot_fwd (void) //sets left motor running forward
{ CCPR2L = 196;

PORTAbits.RA5 = 1; //enable motor
}

void rtmot_fwd (void) //sets right motor running forward
{ CCPR1L = 196;

PORTAbits.RA2 = 1; //enable motor
}

void leftmot_rev (void) //sets left motor running in reverse
{ CCPR2L = 60;

PORTAbits.RA5 = 1; //enable motor
}

void rtmot_rev (void) //sets right motor running in reverse
{ CCPR1L = 60;

PORTAbits.RA2 = 1; //enable motor
}

void rev_rt (void) //reverses and then turns to right
{ PORTCbits.RC6 = 1; //set right led

PORTAbits.RA5 = 0; //stop motors
PORTAbits.RA2 = 0;
PORTBbits.RB1 = 1; //small bleep from sounder
Delay10KTCYx (50);
PORTBbits.RB1 = 0; //clear sounder
leftmot_rev (); //reverse both motors
rtmot_rev ();
Delay10KTCYx (200);
leftmot_fwd (); //left motor forward to turn
Delay10KTCYx (100);
PORTCbits.RC6 = 0; //clear led

}

void rev_left (void) //reverses and then turns to left
{ PORTCbits.RC5 = 1; //set left led

PORTAbits.RA5 = 0; //stop motors
PORTAbits.RA2 = 0;
PORTBbits.RB1 = 1; //small bleep from sounder
Delay10KTCYx (50);
PORTBbits.RB1 = 0;
leftmot_rev (); //reverse both motors
rtmot_rev ();
Delay10KTCYx (200);
rtmot_fwd (); //right motor forward to turn

Program Example 15.3 Continued
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Delay10KTCYx (100);
PORTCbits.RC5 = 0; //clear led

}

...
diagnostic function same as Program Example 15.1.
...

Program Example 15.3 Continued

15.5.1 Using the timer peripherals

There are four 18FXX2 timers and for each of these there are four library functions. These are shown in
Table 15.1, where x can be 0, 1, 2 or 3. Full details of their associated arguments are given in Ref. 14.3.

This program uses just one timer-related function, OpenTimer2( ). It represents a style of peripheral drive
library function that we shall see again. In this, the argument is made up of a bit mask, created by performing
a logical AND of a number of settings. These are specified in the library reference [Ref. 14.3] and for this
function are reproduced in Table 15.2. In this case three such settings must be chosen, for interrupt enable,
prescale and postscale. These can be seen applied in the function call, as quoted here:

OpenTimer2 (TIMER_INT_OFF & T2_PS_1_1 & T2_POST_1_1);

Table 15.1 Timer library functions
Function Action
OpenTimerx( ) Configures Timer x

ReadTimerx( ) Reads Timer x

WriteTimerx( ) Writes to Timer x

CloseTimerx( ) Closes Timer x

Table 15.2 Settings options for OpenTimer2( )
Value Effect
Interrupt
TIMER_INT_ON Interrupt enabled
TIMER_INT_OFF Interrupt disabled
Prescaler
T2_PS_1_1 1:1 prescale
T2_PS_1_4 1:4 prescale
T2_PS_1_16 1:16 prescale
Postscaler
T2_POST_1_1 1:1 postscale
T2_POST_1_2 1:2 postscale
… …
T2_POST_1_16 1:16 postscale
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This enables the timer, disables its interrupt and sets pre- and postscaler to divide-by-one. It effectively
replaces the two Assembler lines shown below, quoted from Program Example 9.2:

movlw B'00000100' ;switch on Timer2, no pre or postscale
movwf t2con

In terms of code lines saved, the C version gives little advantage. The benefit lies elsewhere, however.
Using library functions like these, the programmer no longer needs to get into the detail of the peripheral
structure or of its SFR bits. Once the requirements of the function are understood, then a peripheral can be
applied with limited understanding of its internal working.

15.5.2 Using PWM

The concept of PWM, and use of the peripheral, was described in Section 9.5 of Chapter 9. The hardware
is built around Timer 2 and can initially be difficult to understand. However, it ends up being easy to use.
Table 15.3 shows the PWM library functions that are available for the 18FXX2 microcontroller, where x
can take the value 1 or 2.

The OpenPWMx( ) function is used in Program Example 15.3, in the two lines copied here:

OpenPWM1 (0xFF); //Enable PWM1 and set period
OpenPWM2 (0xFF); //Enable PWM2 and set period

The function enables the CCP module in PWM mode and loads the PR2 register, seen in Figure 9.11. Of
course, the PR2 register is shared between the CCP modules and can only be set to one value. Therefore, it
is to be expected that the argument to both function calls is the same. To set the repetition rate, equation (9.2)
is applied. In this case, with no prescale on Timer 2 and a function argument of 0xFFH, a PWM frequency
of 3.906 kHz results.

In this program example the SetDCPWMx( ) function is not used to set and change speed. As only 8-bit
resolution is applied, the CCPR1L and CCPR2L registers are written to directly.

15.5.3 The main program loop

The main program loop is formed again with a while (1) construct. The microswitches are tested in turn
with an if statement, as shown here:

if (PORTBbits.RB4 == 0) //Test right uswitch
rev_left ();

Table 15.3 PWM library functions
Function Action
OpenPWMx( ) Configures period and timebase of PWM x

SetDCPWMx( ) Writes a 10-bit duty cycle value to PWM x

ClosePWMx( ) Disables PWM x
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if (PORTBbits.RB5 == 0) //Test left uswitch
rev_rt ();

If either microswitch is activated, its associated input value is 0. Then either rev_left or rev_rt is called. It
should not be too difficult to follow either of these functions through. The AGV pauses and both motors are
then set in reverse for a fixed period. Then one or other is set forward (while the other continues in reverse)
to cause a turn. Program execution then returns to the main loop and the AGV moves forward again. This
loop makes use of the motor drive functions, as well as the Delay10KTCYx( ) function.

Summary

This chapter has begun to show how C can, in a practical way, be applied to the embedded environment
and the PIC® 18 Series microcontroller.

• Individual bits in memory registers can easily be accessed and manipulated.
• There are a variety of branching and looping constructs which allow clearly defined program flow.
• It is easy to identify and use library functions; these greatly simplify interaction with the microcontroller

peripherals.
• It is not difficult to write and use functions; a well-structured program will locate distinct tasks in functions,

with the main program showing a high number of function calls.
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Acquiring and using data with C

Having established a grounding in the world of embedded C, it is now appropriate to explore how C can be
applied to the acquisition – and then the manipulation – of data.

The first point of interest will be to interface to the ADC peripheral with C. We will find that there are a
number of useful library functions that ease this task. Having acquired some data, we will need to consider
how it can be stored and manipulated. This will lead us into the field of C arrays and strings. As we will
need to move data around, it will be appropriate to look at how to use the I2C peripheral. As overall this
can become a complex field of study, and we are only working at an introductory level, only integer data
manipulation will be considered.

As in the previous chapter, examples will mostly be applied to the Derbot-18 AGV, but all can be simulated
to good effect.

At the end of the chapter, you should have a good understanding of:

• How to invoke library functions for use with the 18FXX2 ADC and I2C peripherals
• How to work with arrays, strings and pointers
• How to invoke library functions which facilitate string manipulation.

16.1 The main idea – using C for data manipulation

One of the strengths of C lies in its ability to work with data. It defines data types, controls data movement
and protects data from unwanted changes. In its use in the desktop computer environment, it has many
library functions that are designed to make it easy to move blocks of data around. We will see a few of these
capabilities in this chapter, applied to the embedded environment. While it has already been mentioned
that we will be using only integer data in this chapter for reasons of simplicity, it is also worth stating that
floating-point routines on an 8-bit microcontroller like the 18 Series are rather time-consuming in execution.
This gives another reason to avoid them, except in situations where it is absolutely necessary.

16.2 Using the 18FXX2 ADC

Program Example 16.1 provides a more substantial example of C programming, again for the Derbot-18
AGV. It is the light-seeking program, first introduced in Assembler as Program Example 11.3. With its three
light-dependent resistors (LDRs), the Derbot seeks light, coming to a halt when all sensors are at a similar
light level. The program provides useful further examples of conditional branching and introduces use of
the ADC. Note that some line numbers are embedded within the comments.
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/***************************************************************************
Dbt_light_seek_c
Derbot seeks light. PWM applied. Speed is dependent on light difference
(front to back), so Derbot comes to a halt when light difference is minimal.
Microswitches used for bump detection.
Files c018i.o and p18f242.lib are included by the Linker Script.
TJW 12.11.05 Tested 27.11.05
****************************************************************************
Clock is 4MHz.
Configuration Word all default, except: crystal oscillator (HS),
power-up timer on, brown-out detect off, WDT off, LV Program disabled*/

#include <p18F242.h>

#include <adc.h>

#include <timers.h>

#include <pwm.h>

#include <delays.h>

/*function prototypes, reproduced from Header Files for information only
void OpenPWM1 (char);
void OpenPWM2 (char);
void OpenTimer2 (unsigned char);
void Delay10KTCYx (unsigned char);
void Delay10TCYx (unsigned char);
void OpenADC (unsigned char, unsigned char);
void SetChanADC (unsigned char);
void ConvertADC(void);
char BusyADC(void);
int ReadADC(void); */

//User-defined function prototypes
void leftmot_fwd (void);
void rtmot_fwd (void);
void leftmot_rev (void);
void rtmot_rev (void);
void rev_left (void);
void rev_rt (void);
void fwd_left (void);
void fwd_rt (void);
void rotate_rt (void);
void rotate_left (void);
void diagnostic (void);

//Declare Variables
int ldr_rt; //right ldr value
int ldr_left; //left ldr value
int ldr_rear; //rear ldr value
int ldr_ave; //computed average of front ldrs
int ldr_diff; //difference between front ldrs, left - right
int ldr_fwd; //ave fwd speed required
int fwd_dr_left; //offset added to left PWM for fwd motion
int fwd_dr_rt; //offset added to right PWM for fwd motion

Program Example 16.1 Derbot ‘light-seeking’ program
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//Main Program
void main (void)

{
//Line 57 Initialise. Active bits identified. Unused bits set as outputs.

TRISA = 0b00001011; //ADC channels set as inputs,
//bits 2&5 are motor enables

TRISB = 0b00110000; //bits 4 & 5 are uswitch inputs
TRISC = 0b10000000; //bit 7 is mode switch, 1 & 2 are PWM

//Enable Timer 2, with pre- and post-scalers divide-by-1
OpenTimer2 (TIMER_INT_OFF & T2_PS_1_1 & T2_POST_1_1);
OpenPWM1 (0xFF); //Enable PWM1 and set period
OpenPWM2 (0xFF); //Enable PWM2 and set period

//Enable ADC. Port A bits 0,1,3 are analog input, internal reference,
//right justify result

OpenADC(ADC_FOSC_8 & ADC_RIGHT_JUST & ADC_3ANA_0REF,ADC_CH0 & ADC_INT_OFF);
//Switch all outputs off

PORTA = PORTB = PORTC = 0;
//call diagnostic function

diagnostic();
//enable motors at idle speed

CCPR1L = CCPR2L = 0x80;
PORTAbits.RA5 = 1;
PORTAbits.RA2 = 1;

//**********************************************************************
//this is main loop.
//**********************************************************************
while (1)

{
//Line 83 check first for collisions

if (PORTBbits.RB4 == 0) //Test right uswitch
rev_left ();
if (PORTBbits.RB5 == 0) //Test left uswitch
rev_rt ();

//Read and store all ldr values
//left channel
SetChanADC (ADC_CH0);
Delay10TCYx (2); //delay for 20us approx acquisition time
ConvertADC();
while (BusyADC()); //wait for conversion to complete
ldr_left = ReadADC()&0x03FF; // read it, AND out unwanted bits
ldr_left = 1024 - ldr_left; //reverse polarity
//Line 96 right channel
SetChanADC (ADC_CH1);
Delay10KTCYx (2); //delay for 20us approx acquisition time
ConvertADC();
while (BusyADC());
ldr_rt = ReadADC()&0x03FF; // read it, AND out unwanted bits
ldr_rt = 1024 - ldr_rt; //reverse polarity
//rear channel
SetChanADC (ADC_CH3);
Delay10KTCYx (2); //delay for 20us approx acquisition time
ConvertADC();

Program Example 16.1 Continued
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while (BusyADC());
ldr_rear = ReadADC()&0x03FF; // read it, AND out unwanted bits
ldr_rear = 1024 - ldr_rear; //reverse polarity

//Line 110 Compute some intermediate variables
ldr_diff = (ldr_left - ldr_rt); //difference between ldrs
ldr_ave = (ldr_left + ldr_rt); //average front two ldrs
ldr_ave = (ldr_ave>>1); //divide this +ve no. by 2
ldr_fwd = ldr_ave - ldr_rear; //fr. to back difference, for fwd speed
if (ldr_fwd < 0) ldr_fwd = 0; //set minimum value

//Line 116 determine action, by comparing LDR readings
if (ldr_left > ldr_rt)
{if (ldr_left > ldr_rear)

fwd_left(); //ldr_left is brightest, go forward left
else rotate_left (); //rear is brightest, rotate towards light

}
else
{if (ldr_rt > ldr_rear)

fwd_rt(); //ldr_rt is brightest, go forward left
else rotate_rt ();

}
Delay10KTCYx (10);

} //end of while
} //end of main

/**************************************************************
Movement Functions
One of these four functions selected every loop iteration
***************************************************************/
/*light is front left, hence move forward left. Algorithm is:
fwd drive left = ldr_fwd - ldr_diff, fwd drive right = ldr_diff + ldr_fwd*/

void fwd_left (void)
{
fwd_dr_left = ldr_fwd - ldr_diff;
if (fwd_dr_left < 0) fwd_dr_left = 0; //set to zero if -ve
fwd_dr_left = fwd_dr_left>>1; //rotate right to scale down value
if (fwd_dr_left > 127) fwd_dr_left = 127; //limit maximum value
fwd_dr_rt = ldr_fwd + ldr_diff;
if (fwd_dr_rt < 0) fwd_dr_rt = 0; //set to zero if -ve
fwd_dr_rt = fwd_dr_rt>>1; //rotate right to scale down value
if (fwd_dr_rt >127) fwd_dr_rt = 127; //limit maximum value
CCPR1L = 0x80 + fwd_dr_rt; //set right motor, which is greater
CCPR2L = 0x80 + fwd_dr_left; //set left motor, which is less
}

/*light is front right, hence move forward right. Algorithm is:
fwd drive right = ldr_fwd + ldr_diff, fwd drive left = ldr_fwd - ldr_diff
(noting "polarity" of ldr_diff*/

void fwd_rt (void)
{
fwd_dr_rt = ldr_fwd + ldr_diff;
if (fwd_dr_rt < 0) fwd_dr_rt = 0; //set to zero if -ve
fwd_dr_rt = fwd_dr_rt>>1; //rotate right to scale down value
if (fwd_dr_rt > 127) fwd_dr_rt = 127; //limit maximum value
fwd_dr_left = ldr_fwd - ldr_diff;

Program Example 16.1 Continued
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if (fwd_dr_left < 0) fwd_dr_left = 0; //set to zero if -ve
fwd_dr_left = fwd_dr_left>>1; //rotate right to scale down value
if (fwd_dr_left >127) fwd_dr_left = 127; //limit maximum value
CCPR1L = 0x80 + fwd_dr_rt; //set right motor, which is less
CCPR2L = 0x80 + fwd_dr_left; //set left motor, which is greater
}

//fixed speed left rotation (light is at rear left)
void rotate_left (void)
{rtmot_fwd ();
leftmot_rev ();
}

//fixed speed right rotation (light is at rear right)
void rotate_rt (void)
{leftmot_fwd ();
rtmot_rev ();
}

/**************************************************************
Motor Drive Functions
***************************************************************/
...
(same functions as Program Example 15.3 - blind navigation program)
...

Program Example 16.1 Continued

With this increase in program complexity, it is useful to pause to look at the program layout. There are
varied practices adopted for this; the goal of each is program clarity. The practice adopted here, where
there are nested code blocks, is for the opening brace of each nested block to be indented one step to the
right. Notice first the opening brace of the main function, which is fully left. Then note the position of the
opening brace of the major while loop starting at line 83. This is indented one tab to the right. Further code
blocks within this are indented further right again, with matching braces always lying directly below each
other. The end of the while loop and end of main are both commented, and in this layout fairly easy to
see. The position of a ‘fully left’ pair of braces in this book is generally reserved for the main function.
Therefore, the braces for the smaller functions are indented, but still paired vertically. Major comments are
given a full line or lines, while smaller comments are just placed to the right of the code.

16.2.1 The light-seeking program structure

This program, with around 20 functions, illustrates how functions proliferate as complexity increases.
Around half are from the libraries, while the rest are user-defined. Function prototypes for the library
functions appear in the associated header files and are thus not needed in the source file. They are, however,
copied in as comments here, just for information. Prototypes for the others are included for real.

The main function starts with initialisation followed by the diagnostic function, in the usual way. The
program then enters a continuous loop, making use of the while keyword. Within this it first tests the
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front microswitches, responding if necessary in a way seen in Program Example 15.3. It then follows
broadly the flow diagram of Figure 11.13.

16.2.2 Use of the ADC

Chapter 11, Section 11.3, describes the ADC structure for both the 16F873A and the 18F242. Table 14.1
shows all six of the functions associated with the ADC. This program uses all but one of them. The most com-
plicated of these is OpenADC, whose function prototype is quoted early in the program and repeated here:

void OpenADC (unsigned char, unsigned char);

The two unsigned characters required as arguments are made up of bit masks, in a way similar to that
described for the OpenTimer2( ) function in Section 15.5.1 of Chapter 15. The options for the ADC are
more complex than for Timer 2. They are not reproduced here, but can easily be looked up in Ref. 14.3.
The function is used here as follows:

//Enable ADC. Port A bits 0,1,3 are analog input, internal reference,
//right justify result

OpenADC(ADC_FOSC_8 & ADC_RIGHT_JUST & ADC_3ANA_0REF,ADC_CH0 & ADC_INT_OFF);

As the comment indicates, this function makes the following settings:

• The ADC conversion speed is set, determined by the oscillator which drives it. With a minimum con-
version clock cycle time (TAD) of 1.6 µs, the 4 MHz internal oscillator is divided by 8 to give a TAD of
2.0 µs.

• The result is right justified, as seen in Figure 11.9.
• Three channels are used for input, and the voltage reference is internal. This sets up the lower 4 bits in

register ADCON1 to be 0100, as seen in Figure 11.8.
• Channel 0 is currently selected. This has no impact on the program that follows.
• The interrupt is turned off.

The use of this function effectively replaces these lines in Assembler:

bsf status,rp0
...

movlw B'10000100' ;select port A bits 0,1,3 for analog input
movwf adcon1 ;right justify result
bcf status,rp0
movlw B'01000001' ;set up ADC: clock Fosc/8, switch ADC on but not

;converting,
movwf adcon0 ;input channel selection currently irrelevant

The conversion process which follows reflects the data acquisition flow diagram of Figure 11.5. It is repeated
for each LDR and appears as reproduced here, in this case for channel 0:

SetChanADC (ADC_CH0);
Delay10TCYx (2); //delay for 20us approx acquisition time
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ConvertADC();
while (BusyADC()); //wait for conversion to complete
ldr_left = ReadADC()&0x03FF; // read it, AND out unwanted bits
ldr_left = 1024 - ldr_left; //reverse polarity

Here the functions used are fairly straightforward: SetchanADC( ) selects the input channel, after
which 20 µs ensures adequate acquisition time. The conversion is initiated with ConvertADC( ). The
BusyADC( ) function tests whether the conversion is still ongoing and returns a 1 if it is. Recall from
Section 15.3.3 of Chapter 15 that a function call acts as its return value. Here the function call is embed-
ded within the while construct. Its use causes the program to loop at that point until the conversion is
complete.

The result of the conversion is then read with the ReadADC( ) function. The function is embedded within
an expression, acting as its return value, which is the ADC result. This is a 10-bit value, with consequent
maximum possible value of 1023D. The result is ANDed with 03FFH to ensure that no higher bits are
present in the reading. While this is probably an unnecessary move, it helps to illustrate how the function
can be placed within an expression. Due to the hardware configuration of the LDRs, the magnitude of the
result decreases with increasing light intensity. To make the subsequent arithmetic simple, the result is then
subtracted from its 10-bit maximum, 1024D, so that the value of ldr_left increases with increasing light.

16.2.3 Further use of if–else

Following the data conversions, and having undertaken some intermediate calculations, the program then
determines, from line 116, which (out of four) possible paths of action to take. In doing this, it is following
the flow diagram of Figure 11.13. If one of the front LDRs is brightest, it will veer in that direction. If the
rear LDR is brightest, it will rotate, either clockwise or anticlockwise. These decisions are made with three
if–else tests, repeated below. It can be seen that the first if has an if–else nested within it, as does the
corresponding else.

//determine action, by comparing LDR readings
if (ldr_left > ldr_rt)
{if (ldr_left > ldr_rear)

fwd_left(); //ldr_left is brightest, go forward left
else rotate_left (); //rear is brightest, rotate towards light

}
else
{if (ldr_rt > ldr_rear)

fwd_rt(); //ldr_rt is brightest, go forward right
else rotate_rt ();

}

16.2.4 Simulating the light-seeking program

It is interesting to simulate this program with the MPLAB® simulator, whether or not you have a Derbot.
This allows examination of the branching that is used and the operations that are applied. Set up the
simulation with the following steps.
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Figure 16.1 Watch window for ‘light-seeking’ simulation

• In MPLAB, select the simulator with Debugger > Select Tool > MPLAB SIM.
• Open a Watch window and select the variables shown in Figure 16.1 for display.
• Set up a stimulus controller and simulate inputs for the microswitch inputs, RB5 and RB4.
• Using Debugger > Settings > Osc/Trace, set the Processor Frequency to 4 MHz. This is only important

here because if set too high, the simulator is clever enough to recognise and flag that the converter cycle
time, TAD (Chapter 11, Section 11.3.2), is too short.

• Insert breakpoints at lines 84 and 111.

Run the program to the first breakpoint. With the stimulus controller, ‘fire’ bits 4 and 5 of Port B
to 1, to simulate the microswitches being inactive. Now run the program again to the breakpoint at
line 111. The Output window will warn ‘No stimulus file attached to ADRESL for A/D’. Don’t worry
about this.

Now enter in the Watch window the first set of trial values, for ldr_left, ldr_right and ldr_rear, from
Table 16.1. (Enter the decimal value for each and the other columns will follow.) From here, single step
through the program, using the ‘Step Into’ Debugger button. See how the correct function is chosen,
fwd_left, in this first case, and in the Watch window see the outcome of the calculations made. The results
for each set of input figures are shown in the table. When you reach the first set of results, run the program
back to the first breakpoint and then down to the second, and enter another set of results. Continue to loop
in this way, entering different trial results and observing the program response in terms of its calculations
and looping.
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Table 16.1 Trial values in the ‘light-seeking’ simulation
Condition Input values from ADC (decimal) Resulting action and values (decimal)

ldr_left ldr_rt ldr_rear Function selected fwd_dr_left fwd_dr_rt
left>right>rear 0100 0080 0040 fwd_left 015 035
right>left>rear 0080 0100 0040 fwd_rt 035 015
left�right>rear 0200 0040 0020 fwd_left 00 127
rear>left>right 0080 0040 0100 rotate_left – –
rear>right>left 0040 0080 0100 rotate_right – –

If you have a Derbot AGV, this is an entertaining program to run. It is enhanced later in this chapter by the
addition of a display capability.

16.3 Pointers, arrays and strings

We saw in Chapter 14 how data elements were declared and used. Much data exists, however, in the form
of sets of variables, for example in a string of data being prepared to send to a display. In this section we
look therefore at how sets of data can be defined and used, introducing arrays and strings, and the pointers
which access them.

16.3.1 Pointers

Instead of specifying a variable by name, we can specify its address. In C terminology such an address is
called a pointer. A pointer can be loaded with the address of a variable by using the unary operator ‘&’,
like this:

my_pointer = &fred;

This loads the variable my_pointer with the address of the variable fred; my_pointer is then said to point
to fred.

Doing things the other way round, the value of the variable pointed to by a pointer can be specified by
prefixing the pointer with the ‘*’ operator. For example, *my_pointer can be read as ‘the value pointed
to by my_pointer’. The * operator, used in this way, is sometimes called the dereferencing or indirection
operator. The indirect value of a pointer, for example *my_pointer, can be used in an expression just like
any other variable.

A pointer is declared by the data type it points to. Thus,

int *my_pointer;

indicates that my_pointer points to a variable of type int.
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Table 16.2 C18 pointer sizes
Pointer type Pointer size
Data memory 16-bit
Near program memory 16-bit
Far program memory 24-bit

Reflecting the Harvard memory structure of the PIC® microcontroller, the C18 compiler allows pointers
to be set up both for program memory and for data memory. The resulting size of the pointer is shown in
Table 16.2. The meaning of near and far in this context is described in Section 17.6.5 of Chapter 17.

16.3.2 Arrays

An array in C is defined as a set of data elements, each of which has the same type. Any data type can be
used. Array elements are stored in consecutive memory locations. An array is declared with its name, data
type and (optionally) the number of elements in the array. For example, the declaration

unsigned char message1[8];

defines an array called message1, containing eight characters. It is easy to recognise arrays by the use of
the square brackets which follow the name.

Elements within an array can be accessed with an index, starting with value 0. Therefore, for the above
array, message[0] selects the first element and message[7] the last. The index can be replaced by any
variable which represents the required value.

Importantly, the name of an array is set equal to the address of the initial element. Therefore, when an
array name is passed in a function, what is passed is this address.

16.3.3 Using pointers with arrays

Pointers can be set up to point at arrays using the operators just introduced. For example, the statement

ADC_val_ptr = &ADC_val_BCD[0];

assigns the address of the first element of the array ADC_val_BCD to the pointer ADC_val_ptr. This
assignment, if desired, can be combined with the pointer declaration itself, as follows:

int *ADC_val_ptr = &ADC_val_BCD[0];

Following this assignment, the value of ADC_val_BCD[0] (the first element in the array) is equal to
*ADC_val_ptr (the value pointed to by ADC_val_ptr). It follows that the values of ADC_val_BCD[1]
and *(ADC_val_ptr + 1) are also equal, as are ADC_val_BCD[2] and *(ADC_val_ptr + 2), and so on.
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Because the name of the array is also its first address, the above assignment could be written as

ADC_val_ptr = ADC_val_BCD;

It follows further that ADC_val_BCD[i] is equivalent to *(ADC_val_BCD + i), the name of the array
effectively now being used as the pointer.

A further notational development is that the pointer can be used with an index. Thus, ADC_val_ptr[i] is
the same as *(ADC_val_ptr + i). It seems like the pointer and the array name are almost interchangeable,
and that the pointer may be barely necessary. Remember, however, that the array name is a constant – the
array is fixed in memory, whereas the pointer is a genuine variable, with all the properties of the variable.

16.3.4 Strings

A string is a particular type of array, made of characters of type char, ending with the null character ‘\0’.
The size of the string array must therefore be at least 1 byte more than the string itself, to accommodate
this final character.

16.3.5 An example program: using pointers, arrays and strings

The slightly improbable Program Example 16.2 demonstrates some of the ways in which arrays, strings
and pointers are used. It has nothing to do with embedded systems and is for simulation only. An array
of characters, called list, is declared, with each value preset to zero. A string, called item1, is declared,
containing the word ‘Apple’. A similar one is declared, with the word ‘Pear’. A single character is declared,
with the name plural. Notice that strings are contained within double inverted commas and characters
within a single. Two pointers are defined. The first, pntr1, is set to the address of the first element of the
item1 string. The second, pntr2, is set to the address of the variable number.

/***************************************************************************
Strings&chars_c
This program, for simulation only, explores characters, strings and pointers.
Files c018i.o and p18f242.lib are included by the Linker Script.
TJW 29.11.05 Tested 30.11.05
***************************************************************************/
//Configuration bits need not be set
#include <p18F242.h>

//data type definitions
char counter; //index for list
char list[8] = {0,0,0,0,0,0,0,0};
char number = 0;
char item1[] = "Apple";
char item2[] = "Pear";
char plural = 's';
char *pntr1 = &item1[0]; //Pointer to "Apple" string
char *pntr2 = &number;

Program Example 16.2 Working with pointers, arrays and strings
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// Main function
void main (void)

{
loop:
//Do apples

counter = 0; //set index to list
list[counter] = number; //indicate number of items
while (item1[counter] != 0) //indicate type of item
{list[counter+1] = *(pntr1+counter);
counter = counter + 1;
}
if (number >1)list[counter+1] = plural; //set the item to plural
else list[counter+1] = 0x20; //return item to single, with ASCII space

//Do pears
counter = 0; //set index to list
list[counter] = number; //indicate number of items
while (item2[counter] != 0) //indicate type of item
{list[counter+1] = *(item2+counter);
counter = counter + 1;
}
if (number >1)list[counter+1] = plural; //set the item to plural
else list[counter+1] = 0x20; //return item to single, with ASCII space
counter = counter + 1;
list[counter+1] = 0x20; //insert ASCII space
number = *pntr2 + 1;
if (number > 9)number = 0;
goto loop;

}

Program Example 16.2 Continued

16.3.6 A word on evaluating the while condition

The while keyword was introduced in Section 14.2.8 of Chapter 14. While we have used it a number of
times for endless loops, this is the first time that we use it in a conditional sense, in the line:

while (item1[counter] != 0) //indicate type of item

There is a similar usage a few lines later. Here we have spelled out the condition for looping, that the array
element identified by the value of counter must not be equal to zero. We can in fact simplify this, as was
explained in Chapter 14. The loop will continue executing as long as the conditional expression is ‘true’
(i.e. non-zero) and will be left when the expression is zero. Therefore, a simpler way of writing the while
statement is:

while (item1[counter]) //indicate type of item

This will have an effect in the program identical to the original version of the line.
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Figure 16.2 Watch window for simulation of Program Example 16.2

16.3.7 Simulating the program example

If you have the C18 compiler, create a project round Program Example 16.2 (the source code is on the book
CD), build it and simulate with the MPLAB simulator.

Open a Watch window, showing the variables seen in Figure 16.2. This gives an opportunity to see how the
simulator handles the display of arrays. The figure shows that they can be displayed by name only, as with
item2, or they can be expanded to a full listing, as with list and item1. Notice that item1 has been created
with six elements, the last one being a null character.

Set breakpoints at the locations shown in Figure 16.3 and run the program down to the first. Then single step
carefully through the program, noting the action of each line. There are two program sections, identified
by the comments ‘Do apples’ and ‘Do pears’. The action of each section is essentially to populate the array
list with a number and the type of commodity, i.e. apple or pear.

After initialising counter, the number is transferred to the first location in the array, with the line

list[counter] = number; //indicate number of items

This uses the simplest form of array accessing, where the number contained in the square brackets indicates
the array element. In this case, the first element of the array is assigned the value number.
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Figure 16.3 Suggested breakpoint locations for Program Example 16.2

A while loop is now set up. A string is known to terminate with a null character, so a test is made for this.
The ‘not equal to’ operator is used in this line:

while (item1[counter] != 0) //indicate type of item

As long as the character is not null, it is transferred from the string item1 to the array list, in this line:

{list[counter+1] = *(pntr1+counter);

The list element is again determined with an index in the squared bracket. Now the value of counter is
offset by 1, as its first element is already populated. The value assigned to it is the indirect value of pntr1,
offset by the value of counter.

A test follows for whether the number of apples is greater than 1. If so, an ‘s’ must be added to the commodity
type. Otherwise, a space is inserted.

if (number >1)list[counter+1] = plural; //set the item to plural
else list[counter+1] = 0x20; //return item to single, with ASCII space

Notice that in the ‘Pears’ section of the program, the string is transferred in a different way. Now the array
element in the item2 string is determined using the array name as the base address, offset in turn by the
value of counter. It is the indirect value of this calculated address which is transferred to the list.

{list[counter+1] = *(item2+counter);

Towards the end of the loop the value of number is incremented. On the right-hand side of the assignment,
number is accessed by using the indirect value of its pointer, i.e. number itself.

number = *pntr2 + 1;
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Table 16.3 Example I2C library functions
Function Action

OpenI2C( ) Configures the SSP module for I2C

StartI2C( ) Generates an I2C Start condition

WriteI2C( ) Writes a single byte to the I2C

ReadI2C( ) Reads a single byte from the I2C

StopI2C( ) Generates an I2C Stop condition

Single step through this program until you understand what each line of code is doing. Then run it from
breakpoint to breakpoint, and see how the contents of the list array update in each loop iteration.

One thing may strike you as a little odd – that the strings we have defined have found their way into data
memory, as the Watch window indicates. Normally, we expect to find such strings in program memory. We
return to this issue in the next chapter, when we explore how it is possible to control in which memory type
strings and other constants are placed.

16.4 Using the I2C peripheral

We saw in Chapter 8 that I2C is a useful standard for serial communication, but with some complexity in use.
The C18 compiler library provides us with some very useful functions, which allow most I2C functionality
to be implemented in a simple and reliable way. Reference 14.3 lists no less than 15 functions for use with
I2C, although some are synonyms of others. Examples are shown in Table 16.3, in the order in which they
might be used.

16.4.1 An example I 2C program

A simple program which uses the I2C microcontroller capability, and applies the functions of Table 16.3, is
shown in Program Example 16.3. The program is intended for the Derbot AGV, and sends a single character,
followed by a string, to the hand controller.

/**************************************************************************
Dbt_I2C_test_c
Sends single character, and then string, periodically on I2C.
Set up as Master.
Files c018i.o and p18f242.lib are included by the Linker Script.
TJW 12.11.05 Tested 4.12.05
**************************************************************************
Clock is 4MHz.
Configuration Word all default, except: crystal oscillator (HS),
power-up timer on, brown-out detect off, WDT off, LV Program disabled*/

#include <p18F242.h>

#include <i2c.h> //header file for I2C

Program Example 16.3 Using I2C to send a character and string to the Derbot hand controller
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#include <delays.h> //header file for delays
#define slave_addr1 0xA4 //Adress of Derbot Hand Controller I2C node.

//Function Prototypes. Library function prototypes are found in Header file
void diagnostic (void);

//constants & variables
unsigned char message[] = " Derbot";
unsigned char *i = &message[0]; //pointer to message[]
char loop_cntr = 0;

/***********************************************************************
This is main function.
/**********************************************************************/

void main (void)
{
//Initialise Ports

TRISA = 0b00001011; //ADC channels set as inputs
TRISB = 0b11001000;
TRISC = 0b10011000; //I2C bits are both set as ip

//Switch all outputs off
PORTA = PORTB = PORTC = 0;

//call diagnostic function (flash leds)
diagnostic();

//Initialise I2C
OpenI2C (MASTER, SLEW_OFF);
SSPADD = 0x07; //set up 125kHz baud rate

loop:
//Send single character

i = &message[0];
StartI2C(); //send start condition
WriteI2C (slave_addr1); //send address word, function waits until

//write is complete
loop_cntr = loop_cntr| 0x30; //convert counter to ASCII
WriteI2C (loop_cntr);
loop_cntr = loop_cntr&0x0F; //retrieve counter from ASCII
StopI2C(); //send stop condition
Delay10KTCYx (100);

//Send a string
StartI2C(); //send start condition
WriteI2C (slave_addr1); //send address word, function waits until

//write is complete
while (*i) //Test for null character
{
WriteI2C (*i);
i++;
Delay1KTCYx (5); //delay needed for hand controller
}
StopI2C(); //send stop condition
Delay10KTCYx (100);
loop_cntr++;
if (loop_cntr == 10) loop_cntr = 0;
goto loop;

} //end of main

Program Example 16.3 Continued
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//Diagnostic: switches leds on for 1s (Tcy = 1us)
void diagnostic (void)
...
(same as diagnostic function, Program Example 15.1)
...

Program Example 16.3 Continued

The opening lines of the program indicate which header files are to be included and defines A4H as being the
address of the hand controller slave node, as described in Section 10.8 of Chapter 10. They also declare the
character string which forms the message that is to be sent and declare a pointer for it.

The I2C port is partially initialised with the OpenI2C( ) function. This has two arguments, detailed in
Ref. 14.3, which determine the operating mode (whether Slave or Master) and select the slew rate. Note that
it is still necessary to set the baud rate by writing to the SSPADD register. An I2C message is initiated
with the StartI2C( ) function, which puts an I2C Start condition on the serial link. This is followed by
the address byte being sent, being passed as an argument to the WriteI2C( ) function. This sets the R/�W
bit in the transmitted word low, as seen in Figure 10.13. The ASCII version of the loop counter value is
formed, which is then sent through another use of the WriteI2C( ) function. The message is terminated
with a StopI2C( ) function.

The string is sent by techniques which are mainly familiar, although certain developments of these are
applied. A new I2C message is initiated with the StartI2C( ) function, followed by another sending of the
slave address. A while loop is then set up, with the condition

while (*i)

With i as the pointer to the string, *i indicates an element of the string. Remembering that the last string
element is always a null character, the loop will be repeated until the end is reached, whereupon it will be
exited.

16.4.2 Use of ++ and −− operators

Towards the end of the program example we see the ++ operator applied to both the index i and to loop_cntr.
The operator, which causes an increment to the variable to which it is applied, can be seen in Table A6.5.
Therefore,

i++; is apparently the same as i = i + 1;

There are, however, some important differences. This operator can be placed before the variable, in which
case it indicates pre-increment. If it is placed after the variable, it indicates post-increment. The difference
is not of significance in this program. It can, however, be understood by looking at these two examples:

index = 4; index = 4;
new_val = index++; new_val = ++index;
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In the example on the left, new_val takes the value 4 and index is then incremented. In the example on the
right, index is (pre-)incremented and new_val then takes the value 5.

The decrement operator, −−, is applied in exactly the same way.

16.5 Formatting data for display

We have seen now how characters, and character strings, can be sent over an I2C link to an LCD display.
What we have not yet done is generate some meaningful data to be displayed. This section develops the
Derbot ‘light-seeking’ program (Program Example 16.1), so that the values read by the light-dependent
resistors are shown on the hand controller display.

16.5.1 Overview of example program

In Program Example 16.1, values are read from the ADC as 10-bit numbers. To convert this to a character
string we need to convert the value to BCD and then to ASCII. We did this in Assembler, in Program
Example 11.2, and very laborious it proved to be. Can C work better for us?

The answer to this question is a resounding ‘yes’. C has many functions that are designed to convert data
from one format to another. A few examples are shown in Table 14.3. What we need for this application is a
function that will take our 10-bit ADC output and convert it into a character string. This is very conveniently
provided by the function itoa (read this as i-to-a – integer to ASCII), seen in the table.

Program Example 16.4 shows sections of the program light_seek_&_disp, which appears in full on the
book CD. The sections shown are extensions to Program Example 16.1. Two new functions have been
written. One, disp_int( ), formats the ADC output value and sends the resulting character string on the I2C
link. The other, send_space( ), simply sends a series of spaces to the display, to optimise information layout
on the LCD.

The data is displayed only once every 10 iterations of the main loop. To do it any faster makes the
data flicker in an annoying way. A loop counter, loop_cntr, has been inserted in the main loop and is
incremented for every loop iteration. When data is to be displayed, it can be seen that disp_int( ) is
called three times, once for each of the LDRs. These two results will be placed on the first line of the
two-line display. Spaces are sent before and after the display of the rear LDR, to centre it on the second
display line.

...
#include <stdlib.h> //for itoa function
#include <string.h> //for strlen function

...
(this program section is placed within the main program loop, after the ADC
values have been read)

Program Example 16.4 Formatting data for LCD display
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//Display ldr values every 10 loops
if (loop_cntr == 10)
{
disp_int (ldr_left); //display left ldr value on lcd
disp_int (ldr_rt); //display right ldr value on lcd
send_space (2); //centre rear display
disp_int (ldr_rear); //display rear ldr value on lcd
send_space (2); //fills second line, forcing line feed
loop_cntr = 0;
}

...

...
/********************************************
Display Functions
********************************************/
//Converts an integer to string, and sends to lcd via I2C, filling with spaces to
ensure 4 digits are always sent

void disp_int (int op_int)
{

char disp_val[5]; //will hold the string representation of
//any ldr value

char *disp_val_ptr; //pointer to disp_val[]
char space_no; //number of spaces to be inserted
disp_val_ptr = &disp_val[0];
itoa (op_int, disp_val_ptr);//first convert to a BCD string
space_no = 4 - strlen(disp_val_ptr); //find how many spaces needed

//Now send the message
StartI2C(); //send start condition
WriteI2C (slave_addr1); //send address word
while (space_no) //fill up with leading spaces
{WriteI2C (' ');
Delay1KTCYx(5); //little delay needed by hand controller
space_no--;
}

//send the string
while (*disp_val_ptr)
{
WriteI2C (*disp_val_ptr);
disp_val_ptr++;
Delay1KTCYx(5); //delay needed for hand controller
}
StopI2C(); //send stop condition

}

//Sends space to lcd via I2C
void send_space (char space_no)

{
StartI2C(); //send start condition
WriteI2C (slave_addr1); //send address word,

//send space
while (space_no)
{
WriteI2C (' ');

Program Example 16.4 Continued
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Delay1KTCYx(5); //delay needed for hand controller
space_no--;
}
StopI2C(); //send stop condition

}

Program Example 16.4 Continued

16.5.2 Using library functions for data formatting

Let’s take a close look at the function disp_int( ), in Program Example 16.4, as it includes some important
features. Notice first that an array, a pointer and a character variable are declared at the beginning. These
will exist only for the duration of the function. The array is set for five locations, as the maximum digit
count from a 10-bit number will be 4 (1023D) and a fifth byte is needed for the terminating null character.
The argument transferred to the function is labelled op_int. The pointer is initialised to point to the start of
the array.

The itoa( ) function is then called. This has the function prototype:

char * itoa (int value, char * string);

where value is the integer to be converted, string is the string where the result is to be placed and the return
value is the pointer to the string. Its implementation is in the line:

itoa (op_int, disp_val_ptr);//first convert to a BCD string

It can be seen that op_int is the variable to be converted and that the resulting string is to be placed, by use
of its previously declared pointer disp_val_ptr, in the array disp_val.

It would seem that this character string could be sent straight away to the display. It may, however, be
of any length from one to four digits. To ensure that it always occupies the same location on the display,
it is necessary first to find out how long it is. This is done with the strlen( ) function, found in the general
software library. The function measures the length of a string and returns its value. Its prototype is:

size_t strlen(const char *string);

Here string is the string to be measured and the return value, size_t, contains the string length. The function
is used to compute a value for space_no, which holds the number of spaces which must be sent to make
up the value to four digits. These are sent before the data itself. The string is then sent and the function
terminates.

16.5.3 Program evaluation

This program combines the function of the earlier light meter (Program Example 11.2) and light-seeking
programs in one. It can be simulated in a similar way to that described in Section 16.2.4, inserting trial values
into ldr_left, ldr_rt and ldr_rear, observing their conversion to a string, and the string length being tested.
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It is also a very satisfying program to run on the Derbot, as both its action and the data displayed provide
a very explicit demonstration of what the program is doing.

Summary

This chapter aimed to show how C can be applied in acquiring and using integer data in embedded systems.
The main points were:

• The 18FXX2 ADC and the I2C serial port can be driven in a straightforward way using library functions.
• Arrays and strings, with their associated pointers, provide powerful ways of dealing with sets of data.

Some care is needed in understanding the way C deals with these.
• There are some useful library functions for manipulating data strings. These are particularly useful for

formatting data in readiness for display.



17
More C and the wider C

environment

We have now reached a stage where we should have some level of confidence in writing simple C programs
for the PIC® microcontroller. There still remain gaps in our knowledge, however. One of these is the use of
interrupts. An exploration of this takes us to the very boundary of how C is used and actually makes us step
outside the language altogether. Furthermore, as our programs become bigger, it is useful to know about the
wider environment in which we are programming, for example those other files which we link in or include.
We have used these so far with little knowledge of how they work.

The aim of this chapter is therefore twofold. One is to develop knowledge of language aspects which enable
closer working with the hardware. This includes use of assembler inserts and interrupts. The other is to expand
our knowledge of the wider context within which C operates. To allow this to happen, we will need to develop
our knowledge of certain other aspects of C itself.

On completion of this chapter you should have developed a good understanding of:

• The use of assembler inserts
• The use of interrupts
• Further aspects of data definition and storage, and how memory usage can be controlled
• The files usually linked in to an application, including header and start-up files
• The Linker and Linker Script.

As in other chapters, examples are used as widely as possible.

17.1 The main idea – more C and the wider C environment

While this chapter is meant to develop your expertise further in C, the one thing it will probably not
do much is develop your skill in writing C code itself. Instead, we meet C at its limits, confronting
the need to work very close to the hardware through interrupts or out-of-the-ordinary memory maps.
We will also look at those files outside the source code, as well as the Linker, which pulls them all
together.

To help relate these different elements, a number of examples will be taken from the file which starts all the C
program examples in this book, the c018i.c start-up file. This contains a number of interesting programming
features. Through studying these, we will at the same time learn something about this important program
component. It is not simple code, however, and you don’t need to understand it all. It is suggested that you
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print out the source version of it and have it to hand as you work through the chapter. It is a comparatively
short piece of code – a print-out will require about two and a half pages. To find it, simulate any C file in
this book with MPLAB® and it automatically pops up on the screen as the simulation starts. Otherwise,
find it in the mcc18\src\traditional\startup folder of the C18 installation.

17.2 Assembler inserts

Despite the usefulness of C in the embedded environment, there remain times when it is still better to use
Assembler. These times include:

• When certain instructions cause very processor-specific actions, for which C simply has no equivalent –
in the PIC world these include the instructions SLEEP or CLRWDT

• Where the timing requirements of program execution are very specific and the programmer needs to have
direct control over how a certain program section is written

• Where a section of program must execute very fast and the programmer wishes to write it in the most
efficient way possible.

It is therefore useful to be able to switch to assembler programming, when necessary, within a C pro-
gram. This is called in-line assembler. It presents an opportunity distinct from writing a whole program
section in Assembler and linking it into the main program through the build process, as illustrated in
Figure 14.1.

The MPLAB C18 compiler allows assembler inserts to be placed in a C program. These can range from a
single instruction to a whole block. One might expect the C compiler to refer blocks of in-line assembler
code back to MPASMTM, the regular MPLAB assembler. However, it doesn’t. The C18 compiler has its
own internal assembler, which is applied to these sections of in-line code.

The C18 in-line assembler differs from the regular MPLAB Assembler in a number of significant ways.
The major differences are:

• The assembler section must be contained between the identifiers _asm and _endasm
• Assembler directives may not be used
• Comments must be in C or C++ format
• No operand defaults are applied; operands must be fully specified
• Full text versions of Table Read/Write instructions (as seen at the end of Table A5.1) must be used
• The default radix is decimal
• Literals are specified using C radix notation
• Labels must end with a colon.

An example of in-line assembler code is given in Program Example 17.1. While at first glance it looks like
a regular piece of code, there are in fact no less than six of the characteristics of in-line assembler coding
applied. All are labelled and relate directly to the list above. The example is taken from the start-up file
c018i.c.
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_asm 
 // determine if we have any more bytes to copy 
movlb curr_byte 
movf curr_byte,1,1 

copy_loop: 
bnz 2  // copy_one_byte 
movf curr_byte+1, 1, 1
bz 7   // done_copying 

copy_one_byte: 
tblrdpostinc 
movf TABLAT, 0, 0 
movwf POSTINC0, 0 

// decrement byte counter 
decf curr_byte, 1, 1 

... 
_endasm 

start of
Assembler insert

end of
Assembler insert

C style 
comment 

full text version
of TBLRD*+

default operand
value specified

label ends
with colon

Program Example 17.1 A fragment of the start-up code c018i.c

In-line assembler should be used with some care, especially if the block of Assembler is any length. As we
know, Assembler imposes less discipline than C. It is easy to step outside this discipline, even unknowingly,
while writing a section in Assembler, and in so doing corrupt the structure of the host program. As a beginner
it is unwise to write inserts that impact on variables or functions that are declared in the C file. If a big
block of Assembler is to be written, it is better to write it as a separate file, assemble it with the MPASM
assembler and link it into the main program. This will help to ensure that order is maintained in memory
mapping, usage of variables and calling of functions.

17.3 Controlling memory allocation

One of the benefits of working with a high-level language should be that the programmer does not need
to worry about the memory map or how memory is allocated. The C compiler will, if we want it to,
look after almost all this. Somewhere, of course, the compiler needs to be given information about the
memory of the computer for which it is compiling. This is hidden in the Linker Script, which is described
in Section 17.10.

There are situations in the embedded environment, however, when we want to take back control of memory
allocation. These include those very hardware-specific activities, like dealing with interrupts or configuration
bits, as well as the broader issues of optimising use of the memory map.

The techniques that are available in the C18 compiler for control of memory allocation are varied. Some
are complex and should only be used by experienced programmers. A few need to be recognised by all.
These are now explored.
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17.3.1 Memory allocation pragmas

We have already (in Chapter 14, Section 14.2) come across the concept of the preprocessor directive.
A special type of directive is the #pragma. This allows C to be customised by a specific compiler – every
time #pragma is used, the statement which follows it is specific for that compiler.

The C18 compiler has four pragmas to control memory allocation. These change the section (i.e. a specifi-
cally identified memory block) into which the compiler puts data. They are shown in Table 17.1. The full
format of each allows for a number of different options, given in full in Ref. 14.2. These can be quite
complex, so we only go into limited detail here.

The #pragma met most often is the first in the table, which has the general format of:

#pragma code (section name) (=address)

This acts in a way like the org directive in Assembler, specifying – if it is needed – where program code
should be placed in memory. Both the terms in brackets are optional. It is one of these pragmas which starts
every C18 program we write, coming at the beginning of the c018i.c start-up file. The opening lines are
shown here:

#pragma code _entry_scn=0x00
void _entry (void)
{
_asm goto _startup _endasm
}
#pragma code _startup_scn
void
_startup (void)
{
...

Here the specified format for #pragma code is applied with a section name of _entry_scn and the address
of 0x00. A few lines down the pragma is used again, with a section name of _startup_scn, although this time
an address is not specified. This allows the Linker to set the address. Both _entry_scn and _startup_scn
are names reserved by C18, the former to locate the reset vector and the latter to hold the start-up code.

17.3.2 Setting the Configuration Words

With the large number of configuration bits in the PIC 18 Series microcontrollers, it is attractive to set
them within the program. Version 3.0 of the C18 compiler allows Configuration Words to be set simply,

Table 17.1 Pragmas for memory allocation
Pragma Effect
# pragma code … Locates program code in program memory
# pragma romdata … Locates data in program memory
# pragma udata … Locates uninitialised user variables in data memory
# pragma idata … Locates initialised user variables in data memory
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using the #pragma config directive. The actual settings to be used are processor specific. The options,
even for one microcontroller, are surprisingly extensive. Therefore they are not reproduced here, but can be
found for all 18 Series PIC microcontrollers in Ref. 17.1.

Program Example 17.2 illustrates settings appropriate for the Derbot-18. It is useful to look back at Table 12.4
to check the configuration options. One #pragma config line is used per Configuration Word, with the format
of the directive drawn from Ref. 17.1. Any configuration bits not defined are left at their default value.

#pragma config OSC = HS, OSCS = OFF //oscillator type is HS, oscillator switch is off
#pragma config PWRT = ON, BOR = OFF //power-up timer is on, brown-out detect is off
#pragma config WDT = OFF //watchdog timer is off
#pragma config STVR = ON, LVP = OFF //Stack overflow reset enable is on,

//low voltage programming is off

Program Example 17.2 Setting configuration bits for the Derbot

Once a configuration bit is set with a pragma directive, it overrides any setting in the MPLAB IDE Con-
figuration Bits window. During a project build, the compiler sets the bits according to their setting in
the program. It is interesting to check this in practice by setting some configuration bits ‘wrong’ in the
Configuration Bits window and then building the program. Note, however, that if a bit is not specified in the
source code, but is set in a particular way in the Configuration Bits window, then the build process does not
force the bits back to their default value. As in Section 7.11.3 of Chapter 7, click Configure > Settings >

Program Loading in MPLAB and check the Clear configuration bits upon loading the program box.
This ensures that on program download the window setting is cleared, and that it is only the configuration
bits defined in the program which are downloaded.

17.4 Interrupts

Interrupts present a number of challenges in the C environment. When working with interrupts we are
working very close to the hardware, yet a high-level language tends to distance us from it. A number of
distinct and important actions must be taken in order to allow the 18 Series interrupts to work successfully.
The interrupt must be enabled and allocated to the desired priority. The ISR must be located in program
memory at the right start address (noting that there are two interrupt vectors in the 18 Series structure) and
context saving must be managed. Check Figure 12.7 and the accompanying description for a reminder of
these points if needed.

17.4.1 The Interrupt Service Routine

Interrupt Service Routines in C are similar to C functions, except of course they are called by occurrence
of an interrupt and terminate with a return from interrupt instruction. They can have local variables (i.e.
variables declared within the ISR) and access global ones. Global variables which are accessed by an ISR
should, however, be designated volatile. This indicates that the variable value can be changed outside
normal program operation. As the ISR can be called anywhere, it is not allowed to transfer any parameters
or return values.
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17.4.2 Locating and identifying the ISR

The C18 compiler uses several pragmas, first to locate the start of the ISR at the reset vector and then to
distinguish the ISR from a regular function.

Like the reset vector, the C18 compiler does not automatically start the ISR at the high or low interrupt
vector in program memory. This requires the use of the #pragma code, already described. This is used to
locate the start of the ISR correctly.

The ISR is identified in the program through use of a pragma. Two are available for ISR definition:

• #pragma interrupt function_name (save = save_list). This pragma declares function_name to be a high
priority ISR. The Fast Register Stack (Section 12.6.3 of Chapter 12) is used to save the minimum context –
the STATUS, WREG and BSR registers. The interrupt is ended with a fast return from interrupt.

• #pragma interruptlow function_name (save = save_list). This pragma declares function_name to be a
low priority ISR. The software stack is used to save the minimum context. This slows response to the
interrupt. The interrupt is ended with a normal return from interrupt.

Further context saving, beyond the minimum, can be achieved in either interrupt type by specifying
register(s) to be saved in the optional save section of the pragma.

17.5 Example with interrupt on overflow – flashing LEDs
on the Derbot

Program Example 17.3 uses the 18F242 Timer 0 interrupt on overflow to flash the LEDs on the Derbot.
This seemingly simple application allows us to take some useful further steps in C programming.

/*****************************************************************************
Flashing LEDS
Flashes Derbot LEDs, driven by Timer 0 interrupt on overflow.
Demonstrates: Use of Timer 0 peripheral, Interrupts, and inline assembly.
TJW 30.10.05
****************************************************************************/

#include <p18F242.h>

#include <timers.h>

#pragma config OSC = HS, OSCS = OFF // HS oscillator, oscillator switch off
#pragma config PWRT = ON, BOR = OFF //power-up timer on, brown-out detect off
#pragma config WDT = OFF //watchdog timer off
#pragma config STVR = ON, LVP = OFF //Stack overflow reset enable on,

//low voltage programming off
//function prototype, repeated for info
void timer0_isr (void);

unsigned char counter = 0;

Program Example 17.3 ‘Flashing LEDs’ program, using Timer 0 interrupts
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//Define the high interrupt vector to be at 0008h
#pragma code high_vector=0x08
void interrupt (void)
{

_asm GOTO timer0_isr _endasm //jump to ISR
}

#pragma code //Return to default code section

//Function timer0_isr specified as high-priority ISR
#pragma interrupt timer0_isr

//timer0_isr function. No transfer of parameters, as required by ISRs
void timer0_isr (void)
{

counter = counter + 1;
PORTC = counter<<5; //Shift Counter left, and move to PORT C
INTCONbits.TMR0IF = 0; //Clear TMR0 interrupt flag

}
void main (void)
{

//Initialise
TRISC = 0b10000000;
PORTC = 0; //Switch outputs off

/*Initialise TMR0: interrupt enabled,16-bit operation, internal clock,
prescaler divide by 4, hence (with 4MHz clock)period of 1usx64kx4 = 262ms*/

OpenTimer0 (TIMER_INT_ON & T0_SOURCE_INT & T0_16BIT & T0_PS_1_4);
INTCONbits.GIE = 1; //Enable global interrupt

while (1) //Await interrupts
{
}

}

Program Example 17.3 Continued

It can be seen that the main function of this program is very short – once initialisation is complete all
significant action is contained within the ISR. All the main function does is to initialise Port C and set its
value to zero, initialise Timer 0 (see below), set the Global Interrupt Enable and finally enter an endless
while loop, waiting for interrupts to occur.

17.5.1 Using Timer 0

We have already met the library functions available for the 18 Series timers in Section 15.5.1 of Chapter 15.
Timer 0 itself is described in Section 13.3.1 of Chapter 13, with its various modes of operation evident
from Figure 13.2. The timer’s header file timers.h must be included in any program that will use it, as is
seen here.
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It can be seen that this program uses the function OpenTimer0 in the initialisation section of main, as
shown below:

OpenTimer0 (TIMER_INT_ON & T0_SOURCE_INT & T0_16BIT & T0_PS_1_4);

Timer set-up data is specified in the argument of this function. Information on the full range of options
for this can be found in Ref. 14.3. This implementation enables the timer interrupt on overflow, sets the
clock source to be the internal oscillator, selects 16-bit operation (as opposed to 8-bit) and sets the prescaler
to be divide-by-4. Once this is set, the timer free runs and generates a series of interrupts to which the
microcontroller can respond. With these settings, the counter requires 65 536 cycles to count through its
range and each input cycle has a duration of 4 µs. The interval between interrupts is therefore 65 536 × 4 µs,
or 262.144 ms.

17.5.2 Using interrupts, and the ISR action

This program example uses a single interrupt, from Timer 0. Prioritisation has not been enabled, so by
default the high priority vector is used. As mentioned, the interrupt vectors need to be specified in the
program listing, making use of the #pragma code option. To set the high priority vector (Figure 12.6), the
following is used:

#pragma code high_vector = 0x08

This specifies that the code section which follows is to be placed in code memory starting at memory
location 08H. It has been named high_vector by the programmer. This is not a reserved name and another
could be chosen. Alternatively, for the low priority vector:

#pragma code low_vector=0x18

specifies that code which follows is to be located at code memory location 18H. It has been named low_vector
by the programmer.

With the vector correctly placed, there follows in the program a single line of in-line assembler code, forcing
a jump to the main body of the ISR:

_asm GOTO timer0_isr _endasm //jump to ISR

To ‘undo’ the action of the earlier pragmas, and allow the compiler to control code location again, the
pragma:

#pragma code

is applied. This returns code location to the default.

The ISR, timer0_ISR, appears as a function prototype near the start of the program. The action of the ISR
is simple. The value of counter is first incremented. It is then shifted left five times and assigned to Port C.
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The effect of this is to transfer the least significant 2 bits of counter to the LEDs, which are located at bits
5 and 6 of Port C. The Timer 0 interrupt flag is then cleared.

This simple interrupt example uses just a single interrupt and does not enable the 18 Series interrupt
prioritisation. The use of two, prioritised, interrupts is illustrated in Program Example 19.6.

17.5.3 Simulating the flashing LEDs program

It is interesting to simulate Program Example 17.3, whether or not it is downloaded to hardware. Create
a project round the program using the source code on the book CD. Build it and simulate with the
MPLAB simulator. Open a Watch window, and display PCL, counter, PORTC and INTCON, as seen in
Figure 17.1(a). Step quickly through the early stages of the program, noting how the OpenTimer0 function
appears. Once main is entered and the user initialisation is complete, the program enters the continuous
while loop, waiting for the interrupt.

Now force an interrupt by setting high the Timer 0 interrupt flag (bit 2 of the INTCON register) in the
Watch window. With further single stepping, program execution jumps to the ISR, via the assembler insert
at the high priority interrupt vector. The actions of the ISR can be observed by continued single stepping.

Let us now examine the action of the timer interrupt. First, place a breakpoint at the very start of the
interrupt routine, as shown in Figure 17.1(b). If run, the program will now stop whenever it reaches this
point, i.e. every time the timer interrupt occurs. From the toolbar, select Debugger > Settings > Osc/Trace

(a)

(b)

Figure 17.1 Suggested settings for ‘flashing LEDs’ simulation. (a) Watch window. (b) Breakpoint location
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Figure 17.2 Stopwatch for ‘flashing LEDs’ simulation

and set the oscillator frequency to 4 MHz. Open the Stopwatch window, as seen in Figure 17.2, from the
Debugger pull-down menu.

From wherever you are in the program, run to the breakpoint. Zero the Stopwatch and run again. After a
moment, program execution should again stop at the breakpoint. The Stopwatch time displayed should be
262.144 ms, exactly as shown in Figure 17.2. This confirms the calculated time between overflows. At the
same time, the Watch window values should appear similar to Figure 17.1(a). Timer 0 has just overflowed
and is beginning to step up from zero again; the lower byte of the Program Counter (PCL) has been set to
the high priority reset vector, 08H, and the timer interrupt flag, bit 2 of INTCON, is set.

If you have the Derbot-18 hardware, then you can use this program to provide a pleasing display of
flashing LEDs.

17.6 Storage classes and their application

The rest of this chapter aims to look at the wider environment within which a C source file is placed. Notable
among these are three files used by just about every program: the microcontroller header file, the start-up
file and the Linker Script. To understand these, it is necessary to explore a few more aspects of C. We start
that process here, with storage classes.

17.6.1 Storage classes

As we have begun to see, the C language controls the use of data carefully, in terms of how it is declared
and how it can be used. This is necessary partly because C programs can be complex things, made up of
different files and functions, written at different times by different people, and saved in different stages of
compilation. Functions and data may, for example, be declared in one file, but need to be accessible to others.

A characteristic of data used in C is therefore its storage class. This defines its status within and across
blocks of code, functions and files. Table A6.3 shows the four C keywords which are used in this connection.
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Table 17.2 Storage classes: effect of specifier and position
Storage class
specifier

Declared outside
all functions

Declared inside
a function

none File scope
Static duration
External linkage

Block scope
Automatic duration
No linkage

auto – Block scope
Automatic duration
No linkage

static File scope
Static duration
Internal linkage

Block scope
Static duration
No linkage

extern File scope
Static duration
External linkage

Block scope
Static duration
External linkage

The C18 compiler uses only three of these, auto, static and extern. These are somewhat peculiar terms
and don’t seem to make much sense, even when we realise that auto is short for automatic and extern
for external. It is useful to know that the use of the word automatic was borrowed from other computer
languages, and implies a variable which comes into existence for a particular purpose within a certain
function, but does not exist at other times. Static, on the other hand, implies a variable which has some
form of continuous existence. External implies a variable which has continuous existence and that can be
accessed by any function.

Returning to the storage class, it determines three things: the scope, duration and linkage of the data. Let
us examine each of these in turn. Table 17.2 summarises the points made, for all possible combinations of
application. Some of these are, of course, more widely used than others and we only make use of a selection
in the example programs of this book.

17.6.2 Scope

The scope of a variable determines the part of the program in which it can be used. Two possible scopes are:

• Block scope. The variable can only be used in the block of code within which it is declared, starting
with the point of declaration. Variables of this type are called local variables. The same name for local
variables can be used in different blocks of the program and they will be unrelated.

• File scope. The variable can only be used in the file within which it is declared, starting with the point
of declaration. The variable must be declared outside all blocks.

17.6.3 Duration

The duration of a variable can be one of two:

• Automatic storage duration. An automatic variable is declared within a block of code and is recreated
every time program execution enters that block. When the block ends, the variable ceases to exist and
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the memory occupied by it is freed. The C keyword auto defines this storage duration. As it is the default
duration when a variable is defined within a block, the keyword is not often used.

• Static storage duration. A static variable exists throughout program execution and is identified by the
keyword static. Static variables may still be local to a block, but retain their existence outside that
block. Variables declared outside all blocks, whether or not the keyword is explicitly used, are interpreted
as static.

17.6.4 Linkage

Both within files, and in the case where several files are used, it is important to consider how variable names
can be recognised as referring to the same variable. There are thus three possible types of linkage:

• External linkage. If a variable or function is externally linked, it is recognised throughout the program,
wherever it is declared. The name is recognised by the Linker. A variable has external linkage if it is
declared with the storage class specifier extern, or if it is declared outside all functions, with no storage
class specified.

• Internal linkage. A variable has internal linkage if it is declared static, outside all functions. The variable
remains internal to the translation unit, but is recognised throughout it. The Linker has no ‘knowledge’
of it.

• No linkage. This is the state of all other variables, for example those with automatic duration.

17.6.5 Working with 18 Series memory

A further complication – or opportunity – arises with the specification of storage in the C18 compiler. Due
to its Harvard memory structure and flexible use of memory, the PIC microcontroller presents a challenge to
how C treats memory allocation. The C18 compiler therefore introduces the storage qualifiers far and near.
These act as keywords and are effectively C18-specific extensions to C. They indicate the microcontroller
memory size or the way memory should be used. Each can be applied to two more keyword extensions,
rom and ram. These are used if the type of memory must be specified in the declaration of a variable or
constant. When data is declared without storage qualification, the default is ram and far. The action of all
of these is summarised in Table A6.8, along with a brief description.

Two memory models can also be specified, small and large. The properties of each of these is summarised
in Table A6.9. They are selected by command line options, with small being the default. The only difference
is in pointer size needed. Only the small model, which is the default, is needed for programs of introductory
or medium length.

17.6.6 Storage class examples

In the first of two code fragments from the c018i.c file, taken from towards the top, we see variables being
declared. Here the word extern is explicitly being used, indicating variables which have external linkage.
All three variables also appear in the 18f242.h header file. The use of the qualifier near indicates that they
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are to be placed in Access RAM. The data types, some of which we have not met before, can be checked
by reference to Table A6.4.

extern volatile near unsigned long short TBLPTR;
extern near unsigned FSR0;
extern near char FPFLAGS;

The second example, below, shows the start of the _do_cinit( ) function, with comments removed. Four
variables are declared at the head of the function. Each is static, so it will have continuous existence. Being
declared within a block, i.e. the function, they will be local to that function.

void _do_cinit (void)
{

static short long prom;
static unsigned short curr_byte;
static unsigned short curr_entry;
static short long data_ptr;

...

The implications of the way these variables are declared is explored further when we come to simulate the
c018i.c file, in Section 17.7.3.

17.7 Start-up code: c018i.c

We come now at last to viewing the c018i.c file in its entirety. It comes as a surprise when simulating a
first C program that the simulator doesn’t go straight to main. Surely this is what all the textbooks tell us,
and shouldn’t main just start at the reset vector? There are, however, things which need to be set up for
the C program to run correctly, even before it starts. These include anything needed for correct operation
of the C program, for example software stacks for transfer of data, and the initialisation of all variables
and constants. This may be due to a requirement of C itself, or because values have been initialised in the
program itself.

Initialisation routines that perform these functions are included with every compiler and may be nearly
invisible to the programmer. If we depend on something, however, it is worth developing at least some sort
of acquaintance with it.

17.7.1 The C18 start-up files

The C18 compiler provides three start-up program files, at varying levels of complexity. These are available
as pre-compiled object files, which are linked to the main program at the build stage. They are normally
linked in to the user application with the Linker Script. A source file version is also available. The start-up
routine is the program element that is placed at the reset vector, so it is the very first thing that the CPU
executes. It initialises the software stack and initialises all data which has a defined starting value. It then
jumps to the user’s main function.
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The programs illustrated so far have all made use of the c018i.c file. When you simulate any of the example
C programs with MPSIMTM, this is what you see if you start to single step through the program. It is
intended for programs with the processor operating in non-extended mode. The c018i_e.c version is for
extended mode operation.

A simpler version of the start-up file is c018.c. This simply sets up the software stack and jumps to main,
without any data memory initialisation. A more complex version is c018iz.c. This does the same as c018i.c,
but also sets all uninitialised variables to zero, as required in strict ANSI C. These two versions are for
non-extended mode operation. Their extended mode equivalents are c018_e.c and c018iz_e.c.

17.7.2 The c018i.c structure

The opening of the c018i.c program section has already been quoted in Section 17.3.1.

Its first action is to initialise FSR1 and FSR2, which are used for the software stack (and hence not available
to the programmer). It then calls a function called _do_cinit. This initialises variables in RAM, if there are
any that need it. At the end of this function, the main function is called, in the lines shown below.

loop:
// Call the user’s main routine
main ();
goto loop;

It is interesting to see from this that if main ever executes a return, then it is immediately called again.

17.7.3 Simulating c018i.c

You will have passed through c018i.c many times if you are simulating the programs in this book. Let us
now, however, step through it with a little more interest as to what is going on. We can also use it to check
up on the storage class of certain variables that we have already seen in examples.

Open the project you made for Program Example 14.1 and enable the MPLAB simulator. Open the Watch
window and select the variables shown in Figure 17.3. Reset the simulator. It is interesting to observe that the
variables declared in the source code appear to be valid, as does TBLPTR, declared towards the beginning
of the program. The other variables in the Watch window, those declared inside the _do_cinit function,
are specified as being ‘out of scope’, as seen in the figure. This is in accordance with the description of
Section 17.6.2. Single step through the program until the _do_cinit function is entered. Notice how these
three variables suddenly come into scope and take on a (zero) value. If you continue to single step through
the program, you will see that execution returns from the function at an early stage. This simple program
requires no initialisation. The main function is then called.

Now, in the source code, move the declaration of counter, in the line

unsigned char counter; //specify counter as unsigned character
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Figure 17.3 Watch window for c018i.o execution, Program Example 14.1

to just inside the main function. Build the program again and simulate. Notice now that, at the beginning
of program execution, counter is ‘out of scope’. By declaring it within a function, it has lost its external
linkage, as shown in Table 17.2. If you single step through the program, you will find it becomes in scope
once main is entered.

Open now the project of Program Example 16.2, which has plenty of lists to initialise. Set up a Watch window
with the variables shown in Figure 17.4. The lowest three variables will again initially be out of scope.

Figure 17.4 Watch window for c018i.o execution, Program Example 16.2
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Figure 17.5 Watch window for Program Example 16.2 – use of rom keyword

Single step through the program, into the _do_cinit function. As before, the lower three variables take on
numerical values. Continue single stepping and notice that program execution enters a major loop within
the function. Ultimately, you will see the character strings being populated as data is moved over into data
memory from program memory. The figure shows the ‘Apple’ string partially completed.

The character strings we have been looking at are only placed in data memory because that is the default
location, as Section 17.6.5 has indicated. Let us explore using the rom extension keyword to put (or in fact
leave) one of them in program memory, which is much more sensible. In the declaration of the ‘Apple’
string in the source file, insert the word rom as follows:

rom char item1[] = "Apple";

Rebuild the program and reset the simulator. Notice now (from the addresses used) that the ‘Apple’ string has
been placed into program memory, as seen in Figure 17.5. It is immediately available and no initialisation
of memory is needed for it.

17.8 Structures, unions and bit-fields

In the section that follows this, we will be looking at microcontroller header files. A large part of these
apply certain data types which we have yet to meet. These are therefore now introduced.

Structures and unions are both sets of related variables, defined through the C keywords struct and union.
In a way they are like arrays, but in both cases they can be of data elements of different types.
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Structure elements, called members, are arranged sequentially, with the members occupying successive
locations in memory. A structure is declared by invoking the struct keyword, followed by an optional
name (called the structure tag), followed by a list of the structure members, each of these itself forming a
declaration. For example:

struct resistor {int val; char pow; char tol;};

declares a structure with tag resistor, which holds the value (val), power rating (pow) and tolerance (tol)
of a resistor. The tag may come before or after the braces holding the list of structure members.

Structure elements are identified by specifying the name of the variable and the name of the member,
separated by a full stop (period). Therefore, resistor.val identifies the first member of the example structure
above.

Like a structure, a union can hold different types of data. Unlike the structure, union elements all begin
at the same address. Hence the union can represent only one of its members at any one time, and the size
of the union is the size of the largest element. It is up to the programmer to track which type is currently
stored! Unions are declared in a format similar to that of structures.

Unions, structures and arrays can occur within each other. We will see an example of this in the following
section.

In embedded systems we are very interested in identifying and accessing individual bits. The bit-field
capability of C assists with just that, where a bit-field is a set of adjacent bits within a single word.
Bit-fields can only be declared as members of a structure or union. The format for declaring the bit-field is:

type [name]:width

Here type is either a signed or unsigned integer, width is the number of bits and name is an optional name.

17.9 Processor-specific header files

The processor-specific header files are very important in embedded C. They include definitions for all the
Special Function Registers (SFRs) and their bits, as well as some useful extras, for example extra features
for working with Assembler. It is instructive to look further at one of the processor header files. We will do
this with the 18f242.h file. You can find it in the mcc18\h folder of the C18 software.

17.9.1 SFR definitions

An excerpt of the 18F242 header file is shown as Program Example 17.4. In this we see Port B and its bits
being declared. The first line of the excerpt uses no less than four of the C keywords to define the PORTB
type. Use of unsigned char specifies it as single byte, while volatile indicates that it can be changed outside
program control. Finally, extern indicates that the variable can be accessed outside this file. The use of
near indicates that it is placed within Access RAM.
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By looking carefully at this program example it is possible to see that the declaration of port bits is arranged
as a union named PORTBbits, containing two structures. Like Port B the union is specified as extern
volatile near. It can be seen that the first structure within the union is a list of the conventional names of
the port bits, each declared as a single-bit bit-field.

The second structure lists the alternative uses of the port bits, each again being a bit-field. As both these
structures belong to a union, they effectively occupy the same memory space and can be used as alternatives
to each other.

extern volatile near unsigned char PORTB;
extern volatile near union {

struct {
unsigned RB0:1;
unsigned RB1:1;
unsigned RB2:1;
unsigned RB3:1;
unsigned RB4:1;
unsigned RB5:1;
unsigned RB6:1;
unsigned RB7:1;

};
struct {

unsigned INT0:1;
unsigned INT1:1;
unsigned INT2:1;
unsigned CCP2:1;
unsigned :1;
unsigned PGM:1;
unsigned PGC:1;
unsigned PGD:1;

};
} PORTBbits;

Program Example 17.4 Port B declaration – part of the 18F242.h file, version 1.6

We are now at last in a position to understand the format we have used for several chapters to identify port
and other SFR bits. When we write, for example

PORTBbits.RB7 = 1;

we now know that this invokes the member RB7 (a bit-field) of a structure, which in turn is a member of
the union PORTBbits.

17.9.2 Assembler utilities in the header file

Program Example 17.5 shows the #define preprocessor directive being used to define certain 18 Series
Assembler instructions. By doing this they can be used in a C program, without even invoking the usual
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in-line assembler procedure. To the casual observer their use will appear as functions. We find this technique
applied again in Chapter 19, with the Salvo Real Time Operating System.

...
#define Nop() {_asm nop _endasm}
#define ClrWdt() {_asm clrwdt _endasm}
#define Sleep() {_asm sleep _endasm}
#define Reset() {_asm reset _endasm}
...

Program Example 17.5 Part of the 18F242.h file – Assembler utilities

17.10 Taking things further – the MPLAB Linker
and the .map file

Figure 14.1 shows the central part that the Linker plays in any build process. For straightforward applications
it is not necessary to understand how the Linker works. An approximate understanding of the Linker is,
however, useful even in simple applications to appreciate how a program is put together, particularly in
terms of finding and understanding those ‘hidden’ files which are linked in. For more advanced applications
the programmer may want to modify or rewrite the Linker file provided. This section introduces the MPLAB
Linker, MPLINKTM. Reference information on this can be found in Ref. 17.2.

17.10.1 What the Linker does

As the build process of Figure 14.1 shows, the Linker takes object files as its input and combines these
together to create executable code, which can be downloaded to the microcontroller. It also provides
background information on how it has allocated memory, which can be used for debug purposes. The object
files may be application code, generated first as C or Assembler. Alternatively, they may be general-purpose
library files. In either case, the code they contain is largely relocatable. That means that addresses in memory,
whether data or program, have not yet been assigned. It is the function of the Linker to locate all the object
files into memory and ensure that they link across to each other correctly. It can also control allocation of
the software stack. It is guided in all this by the Linker Script, which contains essential information about
the memory map of the microcontroller that is to be used. In undertaking its task, the Linker may well
uncover programming faults, for example addresses which clash, or inadequate information.

17.10.2 The Linker Script

The Linker Script is a text file made up of a series of Linker directives, which tell the Linker where the
available memory is and how it should be used. Thus, they reflect exactly the memory resources and memory
map of the target microcontroller. Standard Linker Scripts are provided in MPLAB for all available PIC 18
Series microcontrollers. In a standard C18 installation they can be found in the mcc\lkr folder. The script
for the 18F242, the 18f242.lkr file, is used in every C program example in this book. It is reproduced as
Program Example 17.6. An alternative but very similar version, not specific to a C18 implementation, can
also be found in any MPLAB installation.
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// $Id: 18f242.lkr,v 1.1 2003/12/16 14:53:08 GrosbaJ Exp $
// File: 18f242.lkr
// Sample linker script for the PIC18F242 processor

LIBPATH .

FILES c018i.o
FILES clib.lib
FILES p18f242.lib

CODEPAGE NAME=vectors START=0x0 END=0x29 PROTECTED
CODEPAGE NAME=page START=0x2A END=0x3FFF
CODEPAGE NAME=idlocs START=0x200000 END=0x200007 PROTECTED
CODEPAGE NAME=config START=0x300000 END=0x30000D PROTECTED
CODEPAGE NAME=devid START=0x3FFFFE END=0x3FFFFF PROTECTED
CODEPAGE NAME=eedata START=0xF00000 END=0xF000FF PROTECTED

ACCESSBANK NAME=accessram START=0x0 END=0x7F
DATABANK NAME=gpr0 START=0x80 END=0xFF
DATABANK NAME=gpr1 START=0x100 END=0x1FF
DATABANK NAME=gpr2 START=0x200 END=0x2FF
ACCESSBANK NAME=accesssfr START=0xF80 END=0xFFF PROTECTED

SECTION NAME=CONFIG ROM=config

STACK SIZE=0x100 RAM=gpr2

Program Example 17.6 Linker Script for 18F242

Let us now explore this example Linker Script. Our goal at this stage is to appreciate what it is saying, not
to write a new file. Therefore, we will not worry about exact formats.

• Linker comments. All comments are preceded by //. All text following this on a line is ignored by the
Linker. As may be expected, the comments seen here provide title and version information.

• Directive LIBPATH. This provides an optional search path for files to be included. It is not used in this
example.

• Directive FILES. This directive specifies object files for linking. Three files are specified here:

– c018i.o. This is the object code version of the start-up file, already described in this chapter
– clib.lib. This contains the standard C library supported by the C18 compiler
– p18f242.lib. This file contains processor-specific information and effectively works alongside the

processor-specific header file.

• Directive CODEPAGE. This directive is used to allocate program memory. It is used no less than six
times in this example, with the primary purpose of conveying the microcontroller memory maps. The
main block of memory, to which the Linker can allocate program code, is located from address 02AH to
03FFH. This accords with the memory map of Figure 12.6. A space above this is reserved for vectors.
Blocks for configuration data and device identification are also reserved, corresponding to the locations
shown in Table 12.4. Further space is reserved for EEPROM and identification.

• Directive ACCESSBANK. This directive, used twice in this example, allocates access data memory. The
first time it is used, the RAM located in access memory is labelled accessram and is correctly located in
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the address range 0 to 7FH. In the second, the SFR memory block is identified, located in the memory
map and labelled accesssfr. This memory block is specified as being protected, which stops the Linker
allocating it for general-purpose usage. The absolute memory allocations made elsewhere for the SFRs
are thus preserved.

• Directive DATABANK. This directive is similar to ACCESSBANK and uses the same format. It is
used to specify banked RAM. Its implementation in this example can be seen to follow exactly the data
memory map seen in Figure 12.4. Each block is available to be used by the Linker, so none is protected.

• Directive SECTION. This directive allows a name identified in the source code with a #pragma directive
to be linked across to a block of memory identified in the Linker Script. In this case the connection is
being made for configuration memory, so that data generated by use of #pragma config (as illustrated in
Program Example 17.2) is placed in the right location.

• Directive STACK SIZE. This directive allows the software stack location and size to be specified.
In this example it can be seen that a stack of size 100H is specified, located in RAM Bank 2.

17.10.3 The .map file

The result of the Linker’s action is that all code is mapped correctly into the different categories of memory.
How can this be checked? The answer lies in the .map file, an optional file which we can ask the compiler
to generate. This file shows all memory allocation. For a given project, it can be generated by clicking
Project > Build Options > Project > MPLINK Linker > Generate map File.

Following a successful project build, the .map file can be found along with other output files, with name
project_name.map. The .map file is not a pretty sight for the casual observer, as it contains all the address
locations of all symbols used, as well as the memory mapping derived from the Linker Script. How-
ever, it can be useful as a diagnostic tool if one is having trouble working out how a variable has been
treated, or what has happened to a memory location or block of memory. Another useful feature of the
.map file is that it shows the proportion of memory used. This, of course, becomes very important as
programs grow.

Fragments of the .map file for Program Example 14.1 are shown in Program Example 17.7. It shows where
some of the main program sections are placed and goes on to indicate that program memory usage is a
modest 1 per cent!

Section Info
Section Type Address Location Size(Bytes)

--------- --------- --------- --------- ---------
_entry_scn code 0x000000 program 0x000006

.cinit romdata 0x00002a program 0x000002
_cinit_scn code 0x00002c program 0x00009e

.code_example1.o code 0x0000ca program 0x000024
_startup_scn code 0x0000ee program 0x000018

...

Program Example 17.7 Fragments of .map file for Program Example 14.1
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Program Memory Usage
Start End

--------- ---------
0x000000 0x000005
0x00002a 0x000105

226 out of 16664 program addresses used, program memory utilization is 1%

Program Example 17.7 Continued

Summary

• It may still be necessary from time to time to step outside the strict confines of C to make use of Assembler.
• It is not difficult to use interrupts in C, but an understanding is needed of how the interrupt vectors are

defined and how the service routine is constructed.
• To work with larger programs, it is useful to develop further knowledge of different data types and storage

classes.
• The development of a program in C involves far more than simply writing source code. A wide selection

of other files can (and effectively must) be used. It is useful to have some understanding of what these
are, how they work and how they relate to each other.

• The Linker brings the various contributing files together. Knowledge of the Linker at an appreciation
level is useful for simple programs. A detailed knowledge becomes important when writing major pieces
of software.

At the end of these four chapters on C, we have reached an introductory but useful understanding of the
C language, as applied to embedded systems. This should allow you to go on to write increasingly complex
C programs, as indeed is done in Chapter 19. While the basics of C have been introduced, there are plenty
of features of C which haven’t. A deeper and wider knowledge of C can be gained by more programming
experience, studying good example programs and reading from the various specialist C books that are
available.
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18
Multi-tasking and the Real Time

Operating System

Almost every embedded system has more than one activity that it needs to perform. A program for the Derbot
AGV, for example, may need to sense its environment through bump and light sensors, measure the distance
it has moved, and hence calculate and implement drive values for its motors. As a system becomes more
complicated, it becomes increasingly difficult to balance the needs of the different things it does. Each will
compete for CPU time and may therefore cause delays in other areas of the system. The program needs a way
of dividing its time ‘fairly’ between the different demands laid upon it.

An important parallel aspect of the need to time-share the CPU is the need to ensure that things are happening
in time. This is very important in almost every embedded system, and the problem just gets worse when there
are multiple activities competing for CPU attention.

This chapter explores the demands of systems which have many things on their minds. It investigates the
underlying challenges and comes up with a strategy for dealing with them – the Real Time Operating System.
This leads to a completely new approach to programming – it’s no longer the program sequence which
determines what happens next, but the operating system that is controlling it!

Having worked through the chapter, you should have a good understanding of:

• The challenges posed by multi-tasking
• The meaning and implication of ‘real time’
• How simple multi-tasking can be achieved through sequential programming
• The principles of the Real Time Operating System.

As this chapter forms a broad introduction to real time programming, there are no actual program examples
in it. However, the chapter acts as preparation for Chapter 19, which has a number of significant examples.

18.1 The main ideas – the challenge of multi-tasking
and real time

Many of us in this busy modern world feel we spend our lives multi-tasking. A parent may need to get two
or three children ready for school – one has lost a sock, one feels sick and the other has spilt the milk. And
the dog needs feeding, the saucepan is boiling over, the mailman is at the door and the phone is ringing.
Many things need to be done, but we can only do one thing at a time. The microcontroller in an embedded
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system can feel similarly harassed. It can be surrounded by many things, each demanding its attention.
It will need to decide what to do first and what can be left till later.

Let us start this chapter by exploring the nature both of multi-tasking and of real time.

18.1.1 Multi-tasking – tasks, priorities and deadlines

Figure 18.1 shows a simplified flow diagram of a program we were looking at in Chapter 16, the Derbot
light-seeking program. This program was used at the time primarily to introduce certain concepts in C, and
we did not spend much time thinking of its structure.

The program is made up of a number of distinct activities, each of which appears in the figure. Let us
immediately adopt the practice of calling such activities tasks. A task is a program strand or section which
has a clear and distinct purpose and outcome. Multi-tasking simply describes a situation where there are
many tasks which need to be performed, ideally simultaneously. Four tasks are identified in this example.

The program is structured so that each task is placed in a super loop and each is executed in turn. One task,
the display (where data is sent to the hand controller for display on the LCD), executes only once every
10 cycles of the loop. The loop is ended by a delay, which determines the loop repetition rate and hence
influences the program timing characteristics.

Read LDRs

Calculate motor
settings and output

Display values
every 10 cycles

Test microswitches
Reverse and turn

if activated

Delay

Key: LDR = Light-dependent resistor 

Figure 18.1 Simplified flow diagram of the Derbot light-seeking program
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This is a very simple multi-tasking example. The program has a number of tasks. It performs them strictly
in rotation, taking a little rest before it starts over again.

In reality, of course, the tasks are not all of equal importance. Going back to the harassed parent: if the
phone rings, the dog probably has to wait for its dinner. Therefore, we recognise that different tasks have
different priorities. A high priority task should have the right to execute before a low priority task. Each task
also has a deadline, or could have one estimated for it. The phone has to be answered within 30 seconds,
otherwise the caller rings off; the children have to be ready to leave home by 8.30 a.m., otherwise they
miss the bus, and so on. The concept of priorities is linked to that of deadlines. Generally, a task with a
tight deadline requires a high priority – but more of that later.

The tasks of this example program are shown in Table 18.1, together with some preliminary classification.
Three levels of priority are used, with three estimated deadlines. In assigning these priorities, a microswitch
being pressed is viewed as an emergency; the AGV has collided with something and the motor has probably
stalled. It is therefore of high priority. In contrast, the human user will barely notice if the display function
is delayed by a second or so. It can therefore be of lower priority.

18.1.2 So what is ‘real time’?

How does the Derbot light-seeking program, or indeed the harassed parent, relate to the concept of real
time? The concept is widely talked about, but seems often to be surrounded by a certain mystique.

A simple but completely effective definition of operating in real time, already adopted in Ref. 1.1, is as
follows:

A system operating in real time must be able to provide the correct results at the required time deadlines.

Notice that this definition carries no implication that working in real time implies high speed, although this
can often help. It simply states that what is needed must be ready at the time it is needed. Therefore, if
the parent gets all the children to school on time, feeds the dog before it starts to howl, opens the door
to the postman before he goes away and answers the phone before the caller hangs up, then the real time
requirements of this environment have been met. Similarly, if the Derbot meets all deadlines quantified in
Table 18.1, it too is operating in real time.

Underlying this simple definition, and all it implies, lies a multitude of program design challenges. The rest
of this chapter forms an introduction to these, and to how they can be resolved.

Table 18.1 Tasks in the Derbot light-seeking program
Task Priority Deadline (ms)
Respond to microswitches 1 20
Read LDRs 2 50
Calculate and set motor speed 2 50
Display 3 500
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18.2 Achieving multi-tasking with sequential programming

The type of programming we have engaged in to date, whether in Assembler or C, is sometimes called
sequential programming. This simply implies that the program executes in the normal way, each instruction
or statement following the one before, unless program branches, or subroutine or function calls, take place.
Later in this chapter we will make a departure from this type of program. For now, let us explore how we
can optimise it for multi-tasking applications, addressing some of the weaknesses of the program structure
of Figure 18.1.

18.2.1 Evaluating the super loop

This program appears to run quite well, but that is mainly because it is not very demanding in its needs.
Let us consider some of its drawbacks, all related to each other:

• Loop execution time is not constant. The time it takes to run through the loop once is equal to the sum of
the times taken by each task, plus the delay time. Clearly, this could vary. If, for example, a microswitch
is activated, the Derbot reverses and then turns. This results in a particularly long loop execution, which
may upset some other activity in the loop.

• Tasks interfere with each other. Once a task gets the chance to execute, it will keep the CPU busy until
it has completed what it needs to do. Agreed, each is written so that it shouldn’t take too long. Suppose,
however, that the display task starts to execute and the AGV suddenly hits a wall. The processor will
continue sending data to the display and will then complete the delay routine before it finds out that an
emergency has occurred.

• High priority tasks don’t get the attention they need. We have already recognised that some tasks are
more important than others. They should therefore have higher priority, a concept we have already met
in the context of interrupts. In this continuous loop structure, every task has the same priority.

We need to find a way of structuring programs to recognise the nature and needs of the tasks they contain,
and to meet their real time demands.

18.2.2 Time-triggered and event-triggered tasks

It is easy to recognise that some tasks are time triggered and others event triggered. A time-triggered task
occurs on completion of a certain period of time and is usually periodic. An example of this is the reading
of the LDRs in this program. Event-triggered tasks occur when a certain event takes place. In this case the
pressing of a microswitch is a good example.

18.2.3 Using interrupts for prioritisation – the foreground/
background structure

To address the problem of lack of prioritisation among the tasks in the light-seeking program, it would
be possible to transfer high priority task(s) to interrupts. These would then gain CPU attention as soon
as it was needed, particularly if only one interrupt was used. The program structure would then appear
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Figure 18.2 Using an interrupt for prioritisation in the Derbot light-seeking program

as in Figure 18.2. It is quite likely that tasks in the loop would be time triggered, where they would be
able to use the repetition rate of the loop as a time base. Tasks driven by interrupts are likely to be event
triggered.

With this simple program structure we have achieved a reliable repetition rate for tasks in the loop, and
prioritisation for tasks that need it. This is sometimes called a foreground/background program structure.
Tasks with higher priority and driven by interrupts are in the foreground (when they need to be), while the
lower priority tasks in the loop can run almost continuously in the background.

18.2.4 Introducing a ‘clock tick’ to synchronise program activity

To minimise the impact of the variable task execution times on the overall loop execution time, it is
possible to trigger the whole loop from a timed interrupt, say from a timer overflow. The program would
then have the structure of Figure 18.3. The main loop is now triggered by a timer overflow, so occurs at
a fixed and reliable rate. Time-triggered tasks can base their own activity on this repetition rate. Event-
triggered tasks, through the interrupts, can occur when needed. Task timings, of course, have to be calculated
and controlled, so that the loop has adequate time to execute within the time allowed and the event-triggered
tasks do not disturb too much the repetitive nature of the loop timing.

The idea of a regular timer interrupt used in this way to synchronise program activity was introduced in
Chapter 9 and illustrated in Figure 9.3. As mentioned there, it is usually called a ‘clock tick’. The idea is
simple, but it becomes fundamental to many program structures we are about to consider. The clock tick
should not be confused with the clock oscillator itself, even though the tick is usually derived from the
oscillator.
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Figure 18.3 Using a timed interrupt in the Derbot light-seeking program

18.2.5 A general-purpose ‘operating system’

The structure which emerges in Figure 18.3 can be abstracted into a general-purpose ‘operating system’, as
shown to the right in Figure 18.4. Here the main loop contains a series of low or medium priority tasks.
It is driven by a ‘clock tick’. The general structure of each task is shown on the left. As needed, each task
has an enable flag (a bit in a memory location) and each has a task counter. Tasks which need to execute
every clock tick will do so. Many will only need to execute less frequently, at an interval set by the value
of their task counter. Tasks can be enabled or disabled by the setting or clearing of their enable flag, by
each other or by the ISRs.

This general-purpose operating system structure can be adapted to form the framework of a multi-tasking
program. Its general concepts are applied in practical designs in Refs 18.1 and 18.2. The former describes
the complete design of a multi-tasking metronome based on the PICTM 16F84.

If several tasks are allocated to interrupts, then interrupt latency obviously suffers, as one ISR has to wait
for another to complete. This must be analysed carefully in a very time-sensitive system. Reference 1.1
explores this topic in some depth.

18.2.6 The limits of sequential programming when multi-tasking

The approach to programming for multi-tasking just described will generally be acceptable, as long as:

• There are not too many tasks
• Task priorities can be accommodated in the structure
• Tasks are moderately well behaved, for example their requirement for CPU time is always reasonable,

and interrupt-driven tasks don’t occur too often.
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Figure 18.4 A general-purpose ‘operating system’ structure, using sequential programming

If these conditions are not met, it is necessary to consider a radically different programming strategy.
The natural candidate is the Real Time Operating System.

18.3 The Real Time Operating System (RTOS)

When using a true operating system, we move away from the assumptions of normal sequential program-
ming, as outlined in Section 18.2 above. Instead, we hand over control of the CPU and all system resources
to the operating system. It is the operating system which now determines which section of the program is to
run and for how long, and how it accesses system resources. The application program itself is subservient
to the operating system and is written in a way that recognises the requirements of the operating system.
Because we are concerned to meet real time needs, we make use of a particular type of operating system
which meets this requirement, the Real Time Operating System (RTOS).

A program written for an RTOS is structured into tasks, usually (but not always) prioritised, which are
controlled by the operating system. The RTOS performs three main functions:

• It decides which task should run and for how long
• It provides communication and synchronisation between tasks
• It controls the use of resources shared between the tasks, for example memory and hardware peripherals.
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An RTOS itself is a general-purpose program utility. It is adapted for a particular application by writing
tasks for it and by customising it in other ways. While you can write your own RTOS, it is pretty much
a specialist activity and generally done by specialists. There are a number of companies which develop
and supply such operating systems, usually targeted towards one particular type of market and scale of
processor. If you buy one of these, then you are buying a ‘COTS RTOS’ – a commercial off-the-shelf real
time operating system! We explore using such an RTOS in Chapter 19.

18.4 Scheduling and the scheduler

A central part of the RTOS is the scheduler. This determines which task is allowed to run at any particular
moment. Among other things, the scheduler must be aware of what tasks are ready to run and their priorities
(if any). There are a number of fundamentally different scheduling strategies, which we consider now.

18.4.1 Cyclic scheduling

Cyclic scheduling is simple. Each task is allowed to run to completion before it hands over to the next.
A task cannot be discontinued as it runs. This is almost like the super loop operation we have seen earlier
in this chapter.

A diagrammatic example of cyclic scheduling is shown in Figure 18.5. Here the horizontal band represents
CPU activity and the numbered blocks the tasks as they execute. Tasks are seen executing in turn, with
Task 3 initially the longest and 2 the shortest. In the third iteration, however, Task 1 takes longer and the
overall loop time is longer. Cyclic scheduling carries the disadvantages of sequential programming in a
loop, as outlined above. At least it is simple.

18.4.2 Round robin scheduling and context switching

In round robin scheduling the operating system is driven by a regular interrupt (the ‘clock tick’). Tasks are
selected in a fixed sequence for execution. On each clock tick, the current task is discontinued and the next
is allowed to start execution. All tasks are treated as being of equal importance and wait in turn for their
slot of CPU time. Tasks are not allowed to run to completion, but are pre-empted, i.e. their execution is
discontinued mid-flight. This is an example of a pre-emptive scheduler.

The implications of this pre-emptive task switching, and its overheads, are not insignificant and must be
taken into account. When the task is allowed to run again, it must be able to pick up operation seamlessly,
with no side-effect from the pre-emption. Therefore, complete context saving (all flags, registers and other

1 2 3 1 2 3 1 2 3

Figure 18.5 Cyclic scheduling – Tasks 1, 2 and 3 execute in turn
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Figure 18.6 Round robin scheduling

memory locations) must be undertaken as the task switches. Time-critical program elements should not be
interrupted, however, and this requirement will need to be written into the program.

A diagrammatic example of round robin scheduling is shown in Figure 18.6. The numbered blocks once
more represent the tasks as they execute, but there is a major difference from Figure 18.5. Now each
task gets a slot of CPU time, which has a fixed length. The clock tick, which causes this task switch, is
represented in the diagram by an arrow. When that time is up, the next task takes over, whether the current
one has completed or not. At one stage Task 2 completes and does not need CPU time for several time
slices. It then becomes ready for action again and takes its turn in the cycle.

As the task and context are switched, there is an inevitable time overhead, which is represented by the black
bars. This is the time taken serving the requirements of the RTOS, which is lost to the application program.

18.4.3 Task states

It is worth pausing at this moment to consider what is happening to the tasks now they are being controlled
by a scheduler. Clearly, only one task is running at any one time. Others may need to run, but at any one
instant do not have the chance. Others may just need to respond to a particular set of circumstances and
hence only be active at certain times during program execution.

It is important, therefore, to recognise that tasks can move between different states. A possible state diagram
for this is shown in Figure 18.7. The states are described below. Note, however, that the terminology used
and the way the state is effected vary to some extent from one RTOS to another. Therefore, in some cases
several terms are used to describe a certain state.

• Ready (or eligible). The task is ready to run and will do so as soon as it is allocated CPU time. The task
leaves this state and enters the active state when it is started by the scheduler.

• Running. The task has been allocated CPU time and is executing. A number of things can cause the task
to leave this state. Maybe it simply completes and no longer needs CPU time. Alternatively, the scheduler
may pre-empt it, so that another task can run. Finally, it may enter a blocked or waiting state for one of
the reasons described below.

• Blocked/waiting/delayed. This state represents a task which is ready to run, but for one reason or another
is not allowed to. There are a number of distinct reasons why this may be the case, and indeed this single



Multi-tasking and the Real Time Operating System 475

Ready/
eligible

Running

Stopped/
suspended

start

release

pre-empt

complete wait

activate

Unitialised/
destroyed 

Blocked/
waiting/
delayed 

Figure 18.7 Task states

state on the diagram could be replaced by several, if greater detail was wanted. The task could be waiting
for some data to arrive or for a resource that it needs, which is currently being used by another task,
or it could be waiting for a period of time to be up. The state is left when the task is released from the
condition which is holding it there.

• Stopped/suspended/dormant. The task does not at present need CPU time. A task leaves this state and
enters the ready state when it is activated again, for whatever reason.

• Unitialised/destroyed. In this state the task no longer exists as far as the RTOS is concerned. An implication
of this is that a task does not need to have continuous existence throughout the course of program
execution. Generally, they have to be created or initialised in the program before they can run. If necessary
they can later be destroyed and possibly another created instead. Removing unneeded tasks from the task
list simplifies scheduler operation and reduces demands on memory.

18.4.4 Prioritised pre-emptive scheduling

We return now to our survey of scheduling strategies, armed with a greater understanding of the lifestyle
of tasks. In round robin scheduling tasks become subservient to a higher power – the operating system –
as we have seen. Yet all tasks are of equal priority, so an unimportant task gets just as much access to the
CPU as one of tip-top priority. We can change this by prioritising tasks.

In the prioritised pre-emptive scheduler, tasks are given priorities. High priority tasks are now allowed to
complete before any time whatsoever is given to tasks of lower priority. The scheduler is still run by a clock
tick. On every tick it checks which ready task has the highest priority. Whichever that is gets access to the
CPU. An executing task which still needs CPU time, and is highest priority, keeps the CPU. A low priority
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Figure 18.8 Prioritised pre-emptive scheduling

task which is executing is replaced by one of higher priority, if that has become ready. The high priority
task becomes the ‘bully in the playground’. In almost every case it gets its way.

The way this scheduling strategy works is illustrated in the example of Figure 18.8. This contains a number
of the key concepts of the RTOS and is worth understanding well. The diagram shows three tasks, each of
different priority and different execution duration. At the beginning, all are ready to run. Because Task 1
has the highest priority, the scheduler selects it to run. At the next clock tick, the scheduler recognises that
Task 1 still needs to run, so it is allowed to continue. The same happens at the next clock tick and the task
completes during the following time slice. Task 1 does not now need CPU time and becomes suspended.
At the next clock tick the scheduler therefore selects the ready task which has the highest priority, which is
now Task 3. This also runs to completion.

At last Task 2 gets a chance to run! Unfortunately for it, however, during its first time slice Task 1 becomes
ready again. At the next clock tick the scheduler therefore selects Task 1 to run again. Once more, this is
allowed to run to completion. When it has, and only because no other task is ready, Task 2 can re-enter the
arena and finally complete. Following this, for one time slice, there is no active task and hence no CPU
activity. Task 1 then becomes ready one more time and starts to run again to completion.

18.4.5 Cooperative scheduling

The scheduling strategy just discussed, prioritised pre-emptive scheduling, represents classic RTOS action.
It is not without disadvantage, however. The scheduler must hold all context information for all tasks that
it pre-empts. This is generally done in one stack per task and is memory intensive. The context switching
can also be time-consuming. Moreover, tasks must be written in such a way that they can be switched at
any time during their operation.
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An alternative to pre-emptive scheduling is cooperative scheduling. Now each task must relinquish, of its
own accord, its CPU access at some time in its operation. This sounds like we’re blocking out the operating
system, but if each task is written correctly this need not be. The advantage is that the task relinquishes
control at a moment of its choosing, so it can control its context saving and the central overhead is not
required.

Cooperative scheduling is unlikely to be quite as responsive to tight deadlines as pre-emptive scheduling.
It does, however, need less memory and can switch tasks quicker. This is very important in the small system,
such as one based on a PIC microcontroller.

18.4.6 The role of interrupts in scheduling

So far, we have not mentioned interrupts in connection with the RTOS. Should ISRs themselves form tasks,
as was done in structures like that of Figure 18.4? The answer is no. The first use of interrupts is almost
always to provide the clock tick, through a timer interrupt on overflow. Beyond this, ISRs are usually used
to supply urgent information to the tasks or scheduler. The interrupt could, for example, be set to signal
that a certain event has occurred, thereby releasing a task from a blocked state (Figure 18.7). The ISRs
themselves are not normally used as tasks.

18.5 Developing tasks

Having established the concept of the task and how they are scheduled, let us now consider how they are
written.

18.5.1 Defining tasks

It is an interesting early requirement of the programmer to actually choose which activities of the system
will be defined as tasks. The number of tasks created should not be too many. More tasks generally imply
more programming complexity, and for every task switch there is a time and memory overhead.

A useful starting point is to consider what the deadlines are and then to allocate one task per deadline. A set
of activities which are closely related in time are likely to serve a single deadline and should therefore be
grouped together into a single task. A set of activities which are closely related in function and interchange
a large amount of data should also be grouped into a single task.

For example, in the Derbot light-seeking program of Figure 18.1, the super loop at one stage reads the
three LDRs, then makes some calculations, then sets the motor speed. It also periodically sends data to
the display. At any time, the microswitches may be activated. How many RTOS tasks should there be?
The central activities are closely related in time and in function, and do share data. Writing to the display
could be set as a distinct task – it occurs less often than the others and is of comparatively low priority.
As the reading of the LDRs supplies data directly to the motor calculations and the motor control, all these
activities could be grouped into a single task. Alternatively, the LDR reading could be separated into its
own task. Finally, the microswitch response could be allocated as a further task.
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18.5.2 Writing tasks and setting priority

Tasks should be written as if they are to run continuously, as self-contained and semi-autonomous programs,
even though they may be discontinued by the scheduler. They cannot call on a section of another’s code,
but can access common code, for example C libraries. They may depend on services provided by each other
and may need to be synchronised with each other. In either case, the RTOS will have special services to
allow this to happen.

In all cases but the most simple, the RTOS allows the programmer to set task priorities. In the case of static
priority, priorities are fixed. In the case of dynamic priority, priorities may be changed as the program runs.
One way of looking at priority is to consider how important a task is to the operation and well-being of the
system, its user and environment. Priority can then be allocated:

• Highest priority: tasks essential for system survival
• Middle priority: tasks essential for correct system operation
• Low priority: tasks needed for adequate system operation – these tasks might occasionally be expendable

or a delay in their completion might be acceptable.

Priorities can also be considered by evaluating the task deadlines. In this case high priority is given to tasks
which have very tight time deadlines. If, however, a task has a demanding deadline, but just isn’t very
important in the overall scheme of things, then it may still end up with a low priority.

18.6 Data and resource protection – the semaphore

Several tasks may need to access the same item of shared resource. This could be hardware (including
memory or peripheral) or a common software module. This requires some care. A method for dealing with
this is by the semaphore. A semaphore is allocated to each shared resource, which is used to indicate if it
is in use.

In a binary semaphore, the first task needing to use the resource will find the semaphore in a GO state and
will change it to WAIT before starting to use the resource. Any other task in the mean time needing to use
the resource will have to enter the blocked state (Figure 18.7). When the first task has completed accessing
the resource, it changes the semaphore back to GO. This leads to the concept of mutual exclusion; when
one task is accessing the resource, all others are excluded.

The counting semaphore is used for a set of identical resources, for example a group of printers. Now the
semaphore is initially set to the number of units of resource. As any task uses one of the units, it decrements
the semaphore by one, incrementing it again on completion of use. Thus, the counting semaphore holds the
number of units that are available for use.

As an effect of setting a semaphore to the WAIT state is that another task becomes blocked, they can
be used as a means of providing time synchronisation and signalling between different tasks. One task
can block another by setting a semaphore and can release it at a time of its choosing by clearing the
semaphore.
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Remember the ‘bully in the playground’, the high priority task mentioned in Section 18.4.4? By using a
semaphore, a low priority task can turn the tables on the bully! If a low priority task sets a semaphore for a
resource that the high priority task needs, it can block that task. This leads to a dangerous condition known
as priority inversion. This is beyond the scope of this book, but is also illustrative of the many finer details
in the world of real time programming, which are well worth further exploration. Reference 18.3 is a useful
starting point for more detailed reading.

18.7 Where do we go from here?

The theory of the RTOS goes well beyond what has been discussed in this chapter and becomes specialised
to different types of application. As with so many things, the theory takes on meaning when applied to a
real situation. This is what happens in the chapter that follows.

Summary

• The requirement of multi-tasking, common to almost every embedded system, carries with it some
valuable concepts – of tasks, deadlines and priorities.

• A system operating in real time is one that is able to meet its deadlines.
• Simple multi-tasking real time systems can be achieved using conventional sequential programming.
• More sophisticated multi-tasking real time systems require the use of a Real Time Operating System.
• Use of a Real Time Operating System requires that programs are structured in a different way, with the

programmer clearly understanding the underlying principles of the operating system.
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The SalvoTM Real Time

Operating System

All the concepts introduced about the RTOS (Real Time Operating System) in Chapter 18 are a theoretical
nicety unless we can apply them to a working system. Preferably, this should be one that can be run on a
PIC®-based embedded system. Our chance to do this comes with SalvoTM – ‘the RTOS that runs in tiny
placesTM’. Salvo is a commercially available RTOS specially intended for the small embedded system, with
a version which works with the Microchip C18 compiler. Best of all, there is a free Salvo LITE version!
This gives us the opportunity to enter the exciting yet challenging world of the RTOS, and without too much
trouble to write simple, illustrative and working programs.

The main aim of this chapter is to provide an introduction to Salvo, to a level at which effective yet simple
programs can be written. The purpose of this is to see a real RTOS applied to practical situations, rather than
to become an expert user of Salvo. Therefore, the deeper detail of using Salvo is left to the User’s Guide.

The chapter is essentially built around three example programs, which progress through applications of key
RTOS concepts. Having reached the end of the chapter, you should have a good understanding of:

• The basics of Salvo, an example RTOS
• The operation of a real RTOS from a practical point of view
• The advantages and disadvantages of working with an RTOS.

19.1 The main idea – Salvo, an example RTOS

Salvo was originally developed, in Assembler, for the data acquisition system of a racing car. Once its wider
applicability was recognised, it was rewritten in C and adapted for general use. Its target application is the
small embedded system. Salvo now needs to run with a C compiler, it no longer works with Assembler.
Versions of it are available for many of the major embedded system compilers. Salvo is supplied by Pumpkin
Real Time Software Inc.

Selected information on Salvo is given in the sections that follow, intended to be enough to write some
interesting introductory programs. For full details on Salvo, you should refer to the supplier’s reference
information, notably Refs 19.1–19.3.

19.1.1 Basic Salvo features

Salvo can run multiple prioritised tasks and works with a cooperative scheduler. This is one of the keys
to its low memory demands – as discussed in Section 18.4.5 of Chapter 18, cooperative scheduling is less
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demanding of memory. The number of tasks (in the fully featured version) is limited only by available
RAM, while 16 priority levels are available. Tasks can also share priority levels. Salvo supports a range of
different ‘events’, including binary and counting semaphores, messages and message queues.

Salvo is supplied as a very extensive set of files – source, header, library and others. These effectively
act as extra services that are added to the host compiler. The programmer works with the host compiler in
the usual way, but incorporates the Salvo files as needed. In so doing, he/she must of course follow the
requirements of the Salvo RTOS. The program as developed by the programmer is finally a combination of
original source code, Salvo and compiler header and source files, and Salvo and compiler library files. The
build process and the main contributory files are summarised in Figure 19.1. The output is an executable
file, which can be downloaded to program memory.

19.1.2 Salvo versions and references

There are a number of versions of Salvo available. At the de luxe end is Salvo Pro, a highly configurable, fully
featured version. The freeware version of Salvo, called Salvo Lite, contains a subset of Salvo functionality.
At the time of writing this may be downloaded from the Pumpkin website: http://www.pumpkininc.com/ –
a copy is also available on the book CD. The version which matches the compiler in use, in our case the
Microchip C18 compiler, must be chosen. Salvo Lite permits three tasks and five events. This sounds like
a modest limit. In fact, it allows surprisingly useful and advanced programs to be developed.

Assembler
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User files
.c   .h

Assembler

C compiler

Object file
.o

Object files
.o

Compiler
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.lib

Salvo
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salvo.h

salvocfg.h
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salvolib.h

Salvo
Files

Other output
files

Figure 19.1 Salvo build process
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Salvo comes with a big but readable user manual [Ref. 19.1]. This is written to support use of all versions
of Salvo, right up to Salvo Pro. For the beginner, aiming to use Salvo Lite, some of it can be daunting.
Nevertheless, it has good and informative introductory chapters. It contains all general information for the
RTOS, but nothing that is compiler specific. This is contained within further reference manuals. For the
Microchip C compiler the important ones are (at the time of writing) Refs 19.2 and 19.3.

19.2 Configuring the Salvo application

One of Salvo’s principal features is that it is highly reconfigurable. It is therefore important early on to
have a picture of how this configuration takes place. This section introduces some of the essential features
of Salvo files and configuration, and will lead to a better understanding of the build process shown in
Figure 19.1.

19.2.1 Building Salvo applications – the library build

There are two main ways to build a Salvo application: library build and source-code build. The latter
requires manipulation of the Salvo source code and is for advanced players only. Anyway, it can only be
undertaken with Salvo Pro, so we will not consider it here. That leaves us with library build – building the
application using the library features available.

Different libraries are available for use, each one with a different set of features. For a given application,
the most suitable library must be chosen. Once this is done, the library services are fixed. The user source
code then makes calls to the Salvo functions contained in the chosen library.

Apart from the library files, certain other source and header files must be incorporated, as seen in Figure 19.1.
The most important ones are as follows.

• salvo.h. This is Salvo’s main header file and must be included in any source file that uses Salvo services.
It should not be modified by the user. This file in turn includes salvocfg.h.

• mem.c. This is a major file, supplied with Salvo. It holds global objects, which define characteristics for
the features used, like tasks, semaphores and so on. It should not be modified by the user, although the
contents of salvocfg.h impact upon it.

• salvocfg.h. This file, written by the user, determines much of the configuration of the system for the
application. It sets certain key elements, like which library is to be used, and how many tasks and events
there will be. Further details are given in Section 19.4.4.

19.2.2 Salvo libraries

Salvo has a large set of standard libraries, which contain much of the RTOS functionality. There are
different library sets for each compiler and different versions within compilers. These support different
memory models and different combinations of features. One of the skills in configuring a Salvo application
lies with selecting the library which has the features needed and nothing more.
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Figure 19.2 Salvo library naming, for C18 compiler

Table 19.1 Library services available for
each library configuration

Library configuration
a d e m t

Multi-tasking + + + + +
Delays + + − − +
Events + − + − +
Idling + + + − +
Task priorities + + + − +
Time-outs − − − − +

+ = enabled; − = not enabled.

Salvo Lite is provided with a set of freeware libraries. These are like the standard libraries, but have limited
capability. The coding used for the C18 compiler is shown in Figure 19.2. The final letter of the library
name indicates its ‘configuration’, which is defined in Table 19.1. The sfc18sfa.lib library, for example, has
all features except time-outs. This makes it a comparatively large library. If only multi-tasking was needed
in an application, it would be better to use a library with ‘m’ configuration. This would lead to more efficient
coding and less memory utilisation.

19.2.3 Using Salvo with C18

When using Salvo, it is essential to ensure that a compatible combination of MPLAB® IDE, C18 compiler
and Salvo is used. This book uses MPLAB version 7.22, with C18 version 3.00 and Salvo version 3.2.3.c.
To install Salvo, it should be downloaded from the Salvo website and the usual installation procedure
followed. This is straightforward, but is detailed in Ref. 19.1. The installation will result in the set of folders
shown in Figure 19.3.

19.3 Writing Salvo programs

This section gives an introduction to programming with the Salvo RTOS, before we look at a first program
example in the section which follows.
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Figure 19.3 Salvo Lite folders

19.3.1 Initialisation and scheduling

Many of the features of the Salvo RTOS are contained within its C functions, found in the Salvo libraries.
Part of the skill of programming with Salvo lies in knowing these functions and understanding what they do.
Some examples, exactly the ones that will be used in our first program example, are given in Table 19.2.
This gives the name of the function or service, a summary of its action and the parameters (if any) that it
takes. The contents of the table will be referred to and explained repeatedly over the next few pages – do
not worry if all its details are not immediately clear.

Table 19.2 Example core Salvo services
Function/service Action and parameter(s)
OSInit( ) Initialises the operating system, including data structures, pointers and counters. Must be

called before any other Salvo function.
No parameters.

OSSched( ) The Salvo scheduler. On every call it chooses – from those which are eligible – the next
task to run. Multi-tasking can occur when this is called repeatedly.
No parameters.

OS_Yield( )* Unconditional return to scheduler
(1) Context switch label, often defined through use of _OSLabel( ).

OSCreateTask( , , ) Creates a task and starts it (i.e. makes it eligible).
(1) Pointer to task starting address – usually the task’s name.
(2) Pointer to task TCB (task control block).
(3) Priority – a number from 0 (highest) to 15 (lowest).

OSStartTask( ) Makes a stopped task eligible.
(1) Pointer to the task TCB (task control block).

_OSLabel( ) Defines a unique label required for each context switch.
(1) Label name.

OSTCBP( ) Defines a pointer to specified control block, in this case to the task control block.
(1) An integer from 1 to OSTASKS, where OSTASKS appears in the salvocfg.h file and

specifies the number of tasks.

*Can cause a context switch.
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Some of the functions shown can cause a context switch; by this means the cooperative scheduling is
implemented. All Salvo functions that the user can call are prefixed with ‘OS’ or ‘OS_’. The latter is used
if the service contains a conditional or unconditional context switch.

To enable and initialise the RTOS the function OSInit( ) must be called before any other Salvo function.
Tasks can then be created with a call to OSCreateTask( ), ensuring that all arguments are properly specified.

The scheduler is contained within the OSSched( ) function. On every call, this does three things, as
listed below:

• It selects and runs the most eligible (i.e. highest priority) task. Tasks with the same priority are run on a
round robin basis.

• It processes the event queue, if events are being used. Remember, events include semaphores and
messages. As a result of this, certain tasks may become eligible to run.

• It processes the delay queue, where delays in Salvo are an important means of controlling when a task
executes. Again, a task may become eligible to run.

19.3.2 Writing Salvo tasks

Each Salvo task is written as a C function and follows the general pattern for the writing of tasks described
in Section 18.5 of Chapter 18. There are further important requirements, specific to Salvo. These are
summarised below:

• All tasks are initially ‘destroyed’. Tasks must be created using the Salvo OSCreateTask( ) function. They
can be created anywhere in the program. In practice, many are created early in the main function.

• Tasks are generally made up of an optional initialisation, followed by an infinite loop, which must contain
at least one context switch.

• The context switch can be provided by a call to the function OS_Yield( ), although there are other
functions which also cause a switch. With this (or equivalent) call, the task relinquishes access to the
CPU and hands control back to the scheduler. This is the basis of the cooperative scheduling used by Salvo.

• Tasks cannot take any parameters.
• Tasks use static variables, therefore task data is unchanged when the task is not running. Variables of

type auto can be used if the data does not need to be retained following a context switch.

The operating characteristics of a task are contained within its task control block (TCB). This is a block of
memory allocated uniquely to the task, which contains (among other things) the task’s start address, state
and priority.

Tasks can, in general, follow the state diagram of Figure 18.7, with Salvo-specific interpretations of each
state. These are introduced in the following pages.

19.4 A first Salvo example

A first example of a Salvo-based program is shown in Program Example 19.1. It uses exactly the Salvo
services summarised in Table 19.1. It contains just two tasks, of equal priority. One, Count_Task, increments
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a counter. The other, Display_Task, displays two bits of the counter value on two bits of Port C. As the
Derbot hardware can be used, the two least significant bits of the counter are shifted over to the Derbot
LEDs, which are on bits 5 and 6 of Port C.

/**************************************************************************
rtos_ex1 An introductory Salvo example.

There are two tasks, of equal priority. One counts, the other displays the count.
Salvo Lite RTOS with sfc18sfm.lib library used.
Mainly for simulation but can run on Derbot.
TJW 21.12.05 Tested 21.12.05
***************************************************************************/

#include <salvo.h>

#undef OSC //necessary for this Salvo version, as it also defines this name
#include <p18f242.h>

#pragma config OSC = HS, OSCS = OFF //HS oscillator, oscillator switch off
#pragma config PWRT = ON, BOR = OFF //pwr-up timer on, brown-out detect off
#pragma config WDT = OFF //watchdog timer off
#pragma config STVR = ON, LVP = OFF //Stack overflow reset enable on,

//low voltage programming off

//function prototypes. These functions are tasks.
void Count_Task( void );
void Display_Task( void );

//Define labels for context switches
_OSLabel(Count_Task1)
_OSLabel(Display_Task1)

//Define and initialise variable
unsigned char counter = 0;

/*************************************************************************
Task Definitions (configured as functions)
**************************************************************************/
void Count_Task( void )
{

for (;;) //infinite loop
{
counter++;
OS_Yield(Count_Task1); //context switch
}

}
//
void Display_Task( void )
{

for (;;)
{
PORTC = counter<<5; //Shift Counter left, and move to PORT C

Program Example 19.1 A first Salvo RTOS application
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OS_Yield(Display_Task1);
}

}

/************************************************************************
Main
*************************************************************************/
void main( void )
{
//Initialise

TRISC = 0b10000000; //Setall Port C bits to output, except bit 7.
PORTC = 0; //Setall Port C outputs low

//Initialise the RTOS
OSInit();

//Create Tasks
OSCreateTask(Count_Task, OSTCBP(1), 10);
OSCreateTask(Display_Task, OSTCBP(2), 10);

//Set up continuous loop, within which scheduling will take place.
for (;;)
OSSched();

}

Program Example 19.1 Continued

19.4.1 Program overview and the main function

Looking down the program listing, this example looks at first like a regular small C program. The first
indication that it is a Salvo program comes in the inclusion of salvo.h. A few lines lower, the _OSLabel
macro is applied twice. This provides a means of defining labels that are used in the task context switches.
There are only two context switches in this program, one in each task. We will see that the labels chosen,
CountTask1 and DisplayTask1, are applied for this purpose within the tasks.

The main function starts conventionally enough, with a little initialisation for Port C, the only port to be
used. It then calls the OSInit( ) function, which initialises the operating system and sets the scene for all
RTOS action to come. The tasks themselves are then created, with two calls to OSCreateTask( ). The
format of this is summarised in Table 19.1, where we see that three arguments must be provided. The task
start address is identified simply by the task name, from its function prototype. The TCB start address is
defined using the OSTCBP( ) macro. Numbering the argument to this from 1 upwards allocates a TCB
block to each task. Both tasks are then set to the same priority. Any value from 1 to 16 could be chosen;
arbitrarily the value 10 is used. A continuous loop is then established, causing a repeated call to the scheduler
OSSched( ). The action of this will be to activate the most eligible task.

Configuration bits can be set in the program in the way described in Chapter 17. The version of
Salvo used leads to a small clash, however, as the name OSC is defined for two different purposes
in salvo.h and p18F242.h. Pumpkin Inc. advise that it is not needed for the C18 implementation.
Therefore, it is undefined, using the #undef preprocessor directive in the line before p18F242.h is
included.
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19.4.2 Tasks and scheduling

It can be seen that the tasks themselves are written as functions. Each is a continuous loop, with each
loop containing an OS_Yield( ) function call. The argument to this function call is the context switch
label, already defined at the top of the program. Every time the task is activated, it will execute until it
reaches the OS_Yield( ) call. Here it returns control back to the scheduler, and the task moves from the
‘running’ state to the ‘ready’ or ‘eligible’ state (Figure 18.7). When the scheduler activates the task again,
it picks up execution at the line immediately following the OS_Yield( ) call and returns to the ‘running’
state.

19.4.3 Creating a Salvo/C18 project

Creating a project with Salvo is initially just like creating any other C18 project. The steps outlined here
are similar to those described in Ref. 19.3, where some troubleshooting advice is given as well. This is an
application note for MPLAB Version 6, but is reasonably applicable to Version 7.22. At the time of writing,
there is not an Application Note for this later version.

If you wish to build this project for yourself, and you are strongly encouraged to do so, you should start
by creating an MPLAB project in the normal way. The name rtos_ex1 was used for this project. Create a
folder just for this project (there will be a number of files in it), and copy to it the source file and salvocfg.h
file from the folder on the book CD. From the C18 Directory, add the 18F242 Linker Script, and from
the Salvo directory, add the sfc18sfm.lib library. Also from the Salvo directory, add the mem.c file. Your
MPLAB project window should then appear as shown in Figure 19.4.

Look back at Figure 19.2 and Table 19.1 to determine the characteristics of the sfc18sfm.lib library.
It should not be difficult to work out that this is a freeware library for the C18 compiler, applying the
small memory model, with capability for multi-tasking only. This is an appropriate choice for this very
simple program.

Figure 19.4 Files applied in Salvo_Ex1
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19.4.4 Setting the configuration file

The Salvo RTOS is configured for a particular application by the settings in the salvocfg.h file, written by
the programmer. The file is made up of a series of C define statements. A limited set of these is available
in Salvo Lite, while many more are available in the fully featured versions. There are default values for
every configuration option, so some (or all) of these can be adopted. The more tightly the configuration
file matches the actual application, however, the more efficient is the final coding likely to be. There is, for
example, no point in having memory set up for six tasks when only three are required.

The salvocfg.h file used for the rtos_ex1 project is shown in Program Example 19.2. Comments are written
to explain each line. It can be seen that the settings in this simple file relate either to library configuration or
to program features, the latter including tasks, events and messages. The first line selects the fundamental
option that pre-compiled libraries are to be used. It is important that the further library configuration options
that follow actually match the library that has been selected. In this case, the sfc18sfm.lib library already
selected is matched by the corresponding configuration setting, using the OSM code.

/************************************************************************
salvocfg.h file for rtos_ex1

TJW 8.1.06
*************************************************************************/
//Library configuration
#define OSUSE_LIBRARY TRUE //Use precompiled Salvo library
#define OSLIBRARY_TYPE OSF //use freeware library

//(OSL is standard library)
#define OSLIBRARY_GLOBALS OSF //Salvo objects far, in banked RAM
#define OSLIBRARY_CONFIG OSM //Set library configuration,

//OSM = support multitasking only
#define OSLIBRARY_VARIANT OSNONE //No library variant

//Tasks, Events and Messages Configuration
#define OSEVENTS 0 //define maximum number of events
#define OSEVENT_FLAGS 0 //define maximum number of event flags
#define OSMESSAGE_QUEUES 0 //define maximum number of message queues
#define OSTASKS 2 //define maximum number of tasks

Program Example 19.2 The salvocfg.h file for the rtos_ex1 program

19.4.5 Building the Salvo example

A build using Salvo follows the same process as a normal C18 build. There are, however, more things which
must be right for the program to build. Alongside all the possible errors of writing and linking a C program
are the further requirements of a Salvo configuration.

The files shown in Figure 19.4 should all be selected. The correct search path for Salvo Include Files
should be specified in the Build Options dialogue box, as shown in Figure 19.5(a). The options specified
in Figure 19.5(b) should also be entered. The SYSE option is used by Salvo to identify the C18 compiler,
within certain general-purpose files written for multiple compilers.
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(a) (b)

Figure 19.5 Setting build options for Salvo. (a) General. (b) MPLAB C18

If the files provided on the book CD are applied, then a build should proceed without problem. If errors
persist, it may be necessary to refer to Salvo reference material or the Salvo User Forum (at the Pumpkin
website). Check also the book website (www.embedded-knowhow.co.uk).

19.4.6 Simulating the Salvo program

This first example RTOS program can be simulated just like any other. Having successfully built the program,
select MPLAB SIM.

Open a Watch window, and select counter and PortC for display. Insert the breakpoints shown in
Figure 19.6. These are placed at the key points in this simple RTOS program. Then run the simulator
to the first breakpoint, which is just before the RTOS initialises. Run it again, which takes you to the
OSSched( ) call. A further run will move to Count_Task, which runs first as it was created first. If you
single step from here, you will see that execution remains sequentially within the task, until the OS_Yield( )
function call is reached.

Further presses of run cause execution to alternate between tasks, visiting OSSched( ) in between each task
call. Every time execution returns to a task, it picks up exactly where it left off. As the tasks are of equal
priority, they are being executed in round robin scheduling.
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Figure 19.6 Setting breakpoints for the RTOS simulation

Every time Count_Task runs, the value of counter in the Watch window increments, and every time
Display_Task runs, the value of Port C is updated. In terms of functionality, we have achieved nothing
startling. In terms of the way the program executes, it is a major new departure.

The program can also be run on the Derbot hardware. It is not particularly interesting to run it
this way, however. As it is running at effectively uncontrolled speed, the LEDs just appear to be
continuously on.

19.5 Using interrupts, delays and semaphores with Salvo

A key feature of any Real Time Operating System is, of course, its ability to manage real time activity.
To do this, it is more or less essential to set up a continuous ‘clock tick’, at a fixed and reliable frequency,
which can be used as the time base against which other things can happen. Once the clock tick is there,
many Salvo features become possible.
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Table 19.3 Example Salvo functions and services used with interrupts, timers and delays
Function/service Action and parameter(s)
OSTimer( ) Checks to see if any delayed or waiting tasks have timed out. If yes, they are rendered

eligible. Must be called at the desired tick rate if delay, time-out or elapsed time services are
required. Often placed within timer interrupt ISR.
No parameters.

OS_Delay( , )* Causes current task to return to scheduler and delay by amount specified. Requires
OSTimer( ) to be in use.
(1) Integer giving desired delay in system ticks, 8-bit value only.
(2) Context switch label, often defined through use of _OSLabel( ).

OSEi( ) Enables interrupts (sets GEI and PEIE in INTCON; see Figure 12.8)
OSDi( ) Disables interrupts.

*Can cause a context switch.

To establish the clock tick we need to use a timer interrupt, and we then need services to count and respond
to tick-based durations. Table 19.3 gives examples of Salvo services related to interrupts and timing, which
we will be using.

19.5.1 An example program using an interrupt-based clock tick

Program Example 19.3, called rtos_ex2, is a development of our first RTOS example. It keeps the same two
tasks, still of equal priority, but introduces an interrupt-driven clock tick, a delay and a binary semaphore.
Each of these is discussed in detail in the sections that follow. The ISR for the clock tick appears in the
program example that follows.

The program is structured in a way that should be recognisable, even though the new features are added. The
main function initialises the microcontroller through a call to the function Micro_Init( ). This is followed
by the RTOS initialisation, through a call to OSInit( ). After creating tasks and semaphore, the program
enters the expected scheduling loop.

/***************************************************************************
rtos_ex2 A further Salvo example.

Applies Timer interrupt, clock tick, delays, and binary semaphore.
There are two tasks, of equal priority. One counts, the other displays the count.
Salvo Lite RTOS, with Library sfc18sfa used.
Can be simulated, or run on Derbot.
TJW 28.12.05 Tested 30.12.05
***************************************************************************/

#include <salvo.h>

#undef OSC //necessary for this Salvo version, as it also defines this name
#include <p18f242.h>

#include <timers.h>

Program Example 19.3 Applying delays and semaphores
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#pragma config OSC = HS, OSCS = OFF //HS oscillator, oscillator switch off
#pragma config PWRT = ON, BOR = OFF //pwr-up timer on, brown-out detect off
#pragma config WDT = OFF //watchdog timer off
#pragma config STVR = ON, LVP = OFF //Stack overflow reset enable on,

//low voltage programming off

#define BINSEM_Display OSECBP(1)

//function prototypes.
void Micro_Init(void);

//These functions are tasks.
void Count_Task( void );
void Display_Task( void );

//Define and initialise variable
unsigned char counter;

//Define labels for context switches
_OSLabel(Count_Task1)
_OSLabel(Display_Task1)

/***************************************************************************
User-defined Functions, including RTOS Tasks.
***************************************************************************/
void Count_Task(void)
{

for (;;) { //infinite loop
counter++;
OSSignalBinSem(BINSEM_Display);
OS_Delay (20,Count_Task1); //Task switch, delay for 20x10ms, (200ms)

//Use smaller delay for simulation
}

}

void Display_Task(void)
{

for (;;) { //infinite loop
OS_WaitBinSem(BINSEM_Display, 100, Display_Task1);
PORTC = counter<<5; //Shift Counter left, and move to PORT C
OS_Yield(Display_Task1);
}

}
void Micro_Init(void)
{
//Initialise Port C

TRISC = 0b10000000;
PORTC = 0; //Switch outputs off

/*Initialise TMR0: interrupt enabled,16-bit operation, internal clock,
prescaler divide by 16, hence (with 4MHz clock) input cycle period of 16us*/

OpenTimer0 (TIMER_INT_ON & T0_SOURCE_INT & T0_16BIT & T0_PS_1_16);
counter = 0;

}

Program Example 19.3 Continued
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/***************************************************************************
Main
***************************************************************************/
void main( void )
{
//Initialise Microcontroller

Micro_Init();
//Initialise RTOS

OSInit();
OSCreateTask(Count_Task, OSTCBP(1), 10); //Create the Count_Task Task
OSCreateTask(Display_Task, OSTCBP(2), 10); //Create the Display_Task Task
OSCreateBinSem(BINSEM_Display, 0); //Create the Binary Semaphore

//Enable interrupts
OSEi();

//Scheduling Loop
for (;;)

OSSched();
}

Program Example 19.3 Continued

19.5.2 Selecting the library and configuration

In the rtos_ex1 example, the sfc18sfa.lib library was used. Now, however, we want to introduce delays
and semaphores, the latter a type of ‘event’. Looking at Table 19.1 tells us that the ‘m’ suffix library is
no longer adequate. The best we can do is to go to an ‘a’ suffix library, even though this gives idling and
priority capability, which we do not yet need.

With a different library, and new features, a new salvocfg.h file is needed for this project. This is the same
as the one for rtos_ex1, except that two differences, the changed library and the inclusion of a semaphore
(an ‘event’), must be identified. The lines shown below are therefore inserted in place of the equivalent
lines in the previous file. The full file is available on the book CD.

#define OSLIBRARY_CONFIG OSA //Set library configuration,
//OSA = support multitasking, delays & events

...
#define OSEVENTS 1 //define maximum number of events

19.5.3 Using interrupts and establishing the clock tick

Interrupts can be introduced to a Salvo-based program by adding USE_INTERRUPTS in the Macro
Definitions window (Figure 19.5(b)). This identifies to Salvo that a file called isr.c acts as the system
ISR. Interrupts are then written as normal, as described in Section 17.4 of Chapter 17.

Program Example 19.4 shows the ISR for rtos_ex2. It follows the pattern of Program Example 17.3, except
that it includes the all-important call to OSTimer( ). This function, seen in Table 19.3, allows the time-based
features of Salvo to work. A variable tick_counter is also incremented on every ISR iteration. This is used
in the simulation.
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A clock tick period of 10 ms was chosen (somewhat arbitrarily) for this example program. It is established
using the Timer 0 interrupt on overflow. This is enabled and configured through the OpenTimer0( ) call,
with settings as shown in the comments. With a 4 MHz clock oscillator and the prescaler set to divide-by-16,
the clock input to the timer has a period of 16 µs. Theoretically, it therefore needs 625 cycles to produce the
10 ms period. The value reloaded into the timer must therefore be 65 536−625, or 64 911. After the program
was simulated and measurements made using the Stopwatch feature, this number was adjusted upwards to
take into account the not inconsiderable interrupt latency that was observed.

The timer interrupt is enabled within the call to OpenTimer0( ). The Global Interrupt Enable is set within
the call to OSEI( ), in the main function. There is nothing Salvo-specific within this macro, it is just used
here for convenience.

/***************************************************************************
ISR for rtos_ex2
Timer 0 interrupt is high priority source.
Reloads Timer, and calls OSTimer()
TJW 30.12.05 Tested 30.12.05
***************************************************************************/

#include <salvo.h>

#include <p18F242.h>

#include <timers.h>

//function prototype(s)
void timer0_isr (void);

static unsigned int tick_counter = 0;

//Define the high priority interrupt vector to be at 0008h
#pragma code high_vector=0x08

void interrupt (void)
{

_asm GOTO timer0_isr _endasm //jump to ISR
}

#pragma code //Return to default code section

//Function timer0_isr specified as high-priority ISR
#pragma interrupt timer0_isr

//timer0_isr function.
void timer0_isr (void)
{

WriteTimer0 (64918); //Reload value gives 625 cycles to overflow,
//less compensation for interrupt latency

OSTimer();
tick_counter++; //increment tick counter, (for simulation)
INTCONbits.TMR0IF = 0; //Clear TMR0 interrupt flag

}

Program Example 19.4 ISR for ‘clock tick’
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While we have now established a useful, if not essential, clock tick feature, we need to remember that
in this form it will only be approximate. The RTOS does routinely disable interrupts, for example during
OSSched( ). This worsens the interrupt latency and will cause delay in the response to the timer ISR. A timer
with hardware auto-reload would give a more accurate time base. In either case, the time base formed is an
approximation as, due to the cooperative scheduling, tasks can only respond to the clock tick when allowed
by the action of other tasks. We will be able to assess the extent of this approximation in the simulation
that is coming up.

19.5.4 Using delays

Now that we have a clock tick, we can synchronise tasks to this. One way of doing this is by using the
OS_Delay( ) function, with parameters as shown in Table 19.3. This function forces a context switch when
called and can thus replace OS_Yield( ). It also introduces a delay before the next time the task can run,
determined by the setting of the first parameter.

The OS_Delay( ) function call is seen in the Count_Task function in Program Example 19.3, used in the
following way:

OS_Delay (20,Count_Task1); //Task switch, delay for 20x10ms, (200ms)
//Use smaller delay for simulation

As the comment indicates, use of this delay causes the Count_Task function to occur periodically, every
200 ms.

19.5.5 Using a binary semaphore

The concept of the semaphore was introduced in Section 18.6 of Chapter 18. It can be used for resource
protection or simply for signalling between tasks. It is a powerful feature, as it is effectively the simplest
way of establishing communication between tasks. Program Example 19.3 uses a binary semaphore.

Salvo semaphores, like tasks, must first be created in the program. This allocates them an event control
block (ECB) in memory, similar to the TCB for tasks. Here, essential information on the semaphore is
stored. Semaphores can then be written to by one task and waited on by another. The functions that do these
three things are shown in Table 19.4.

Our program example uses a single semaphore. As it is the only event in the program, it is allocated the
ECB pointer OSECB(1). The ECB pointer is used more than the TCB pointer in function calls, so it is
worth allocating it a name. It is therefore given the name BINSEM_Display in this program line:

#define BINSEM_Display OSECBP(1)

The semaphore is created in the main( ) function immediately after the tasks are created, in the line:

OSCreateBinSem(BINSEM_Display, 0);
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Table 19.4 Example Salvo functions and services for binary semaphores
Function Action and parameter(s)
OSCreateBinSem( , ) Creates binary semaphore.

(1) Pointer to ECB (event control block).
(2) Initial value (0 or 1).

OSSignalBinSem( ) Signals a binary semaphore. If no task is waiting it increments. If one or more tasks are
waiting, then the one with highest priority is made eligible.
(1) Pointer to semaphore ECB.

OS_WaitBinSem( , , )* Task waits (in ‘wait’ state) until binary semaphore is signalled. Wait state is exited
when semaphore signals and task is highest priority, or if time-out expires. Semaphore
is then automatically cleared. Time-out must be specified.
(1) Pointer to ECB.
(2) Time-out value (in system ticks).
(3) Context switch label.

OSECB( ) Defines pointer to specified control block, in this case to the event control block.
Similar to OSTCB( ) in Table 18.2. An integer from 1 to OSEVENTS, where
OSEVENTS defines the number of events in the salvocfg.h file.

OSNO_TIMEOUT Used for time-out value if there is to be no time-out.

*Can cause a context switch.

This uses the ECB pointer name previously defined. The semaphore is initially set to 0.

The actual mechanics of this simple use of the binary semaphore can be understood by looking at the two
tasks. Remember first of all that Count_Task only runs every 20 clock ticks, due to its use of OS_Delay( ).
When it runs, it signals to the semaphore through its call to OSSignalBinSem( ). The action of signalling
to the semaphore sets its value high. If a task is waiting for it, then that task becomes ready to run and the
semaphore is cleared.

Meanwhile, Display_Task is waiting for the semaphore to go high, with the line:

OS_WaitBinSem(BINSEM_Display, 100, Display_Task1);

This indicates the name of the semaphore awaited, the time-out value and the context switch label. A time-
out value must be indicated, even if it is not implemented (as in this case). The overall effect is that as soon
as the count is updated in Count_Task, it is then displayed by Display_Task.

With the steps just taken, we have established simple inter-task communication and synchronisation. This is
a great step forward, but there is a further advantage. A task that is waiting for a semaphore is not activated
in any way by the scheduler. Hence CPU usage is made much more efficient.

19.5.6 Simulating the program

It is very interesting to simulate this program, and see how clock tick, tasks and the semaphore interact.
Copy the source and salvocfg.h files from the Book CD, create it as a project and build.
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Figure 19.7 Watch window and Stopwatch used to track RTOS clock ticks

The following simulation settings are then suggested. Select MPLAB SIM as the Debugger and insert three
breakpoints, one within each task and one in the ISR. Open a Watch window and select for display the
variables shown in Figure 19.7. From the toolbar, select Debugger > Settings > Osc/Trace and set the
oscillator frequency to 4 MHz. Open the Stopwatch window, as seen in the upper half of Figure 19.7, from
the Debugger pull-down menu.

Using the simulator controls, run the program. It will halt at the first breakpoint it encounters. Assuming
the timer interrupt has not yet occurred, this will be the breakpoint within Count_Task. This is the task
created first, and the delay does not take effect until the first iteration of OSDelay( ). The value of counter
is incremented to 1. The semaphore is then set and a further run will reach the breakpoint in Display_Task.
The value of Port C here is set by the program to 20H. The next run will find the breakpoint in the
timer ISR.

At this point, Zero the time in the Stopwatch window. Further runs will repeatedly return to the timer ISR.
These are the clock ticks. It can be seen that the Stopwatch time increments by almost exactly 10 ms every
time. It is interesting to note that the error is not constant, but depends on other activities of the program,
which are asynchronous with the timer. This reflects the approximation discussed in Section 19.5.3. After
20 clock ticks, the Count_Task delay is up and the task is revisited. In turn it sets its semaphore and
Display_Task follows. It can be seen from the Stopwatch that both of these occur comfortably within one
time slice.
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Count_Task

Display_Task

Clock tick
(Timer 0 ISR)

Figure 19.8 Breakpoint occurrences in program simulation

This general pattern of behaviour, as just described, is illustrated in Figure 19.8. This shows the broad
overall sequencing of activity within the program; a precise horizontal time axis is not implied.

Tutorial task

The two screen shots in Figure 19.7 were taken from within a program simulation. From the information
given, deduce in as much detail as possible where program execution has halted.

19.5.7 Running the program

If you have a Derbot, download the program and run it. The LEDs will flash in a pleasing manner. As you
watch this, remember: each LED change is due to an accumulation of clock ticks taking place, leading to a
task being released, leading to a counter being incremented, leading to a semaphore being switched, leading
to an LED display being changed. We have achieved a very simple outcome, but the elegance and power
of the underlying process is extremely satisfying. This elegance and power is also available for much more
challenging applications.

19.6 Using Salvo messages and increasing RTOS complexity

The next step we take involves learning about just one new Salvo resource, the message. This leads us,
however, into a program of significantly greater complexity than the earlier ones, in which we can exercise
the RTOS features in a more practical and realistic way.

Messages provide a convenient way both of transferring data between tasks and of synchronising activity
between them. They have some characteristics similar to semaphores – they need to be created and can then
take a piece of data from one point in the program and transfer it to another, possibly releasing a task at the
same time.

Terminology with messages can be a little confusing. We can create a ‘message’ (i.e. a Salvo data-carrying
structure), which can then carry any number of messages (i.e. pieces of data moved from one part of the
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Table 19.5 Example Salvo functions and services for messages
Function/service Action and parameter(s)
OSCreateMsg( , ) Creates message, with ECB (event control block) pointer and initial value.

(1) Pointer to message ECB.
(2) Pointer to message.

OSSignalMsg( , ) Signals a message, i.e. attaches a data element to it. If one or more tasks are waiting, then
the one with highest priority is made eligible.
(1) Pointer to message ECB.
(2) Pointer to message.

OS_WaitMsg( , , , )* Task waits (in ‘wait’ state) until message is signalled. Then makes message pointer
(param. 2) point to it, waiting task then continues with execution. Task also continues if
timed out. Time-out must be specified.
(1) Pointer to message ECB.
(2) Pointer for message.
(3) Time-out value (in system ticks).
(4) Label.

OSECB( ) As in Table 19.4
OSNO_TIMEOUT As in Table 19.4.
OStypeMsgP Define data type as message pointer. One of a number of predefined Salvo data types,

which must be used as appropriate.

*Can cause a context switch.

program to another). Therefore, we call the actual Salvo service the message and then talk about ‘signalling’
the message when a piece of data is actually attached to it.

In Salvo the message signal itself can be of any data type, from character to array. The information that
is actually passed is the pointer to the signal. It is up to the programmer to ensure that this is pointing to
the data required when it is signalled and that it is dereferenced properly at the receiving end. Note that a
message can be sent from anywhere in the program. Thus, for example, an interrupt can signal a message,
which is then received by a task.

Sample Salvo message functions and services are given in Table 19.5. These will all be applied in Program
Example 19.5. As a Salvo message is a type of ‘event’, an ECB is set up for each message, just as it was
for a semaphore.

19.7 A program example with messages

Program Example 19.5 gives the listing of a fairly substantial Salvo-based program. It builds on the Derbot
‘blind navigation’ program of Program Example 15.3, but includes the use of an ultrasound sensor, of the
type described in Section 18.6.5 of Chapter 8. This was mounted pointing upwards, as shown in Figure 19.9.
Note that the sensor shares port bits with the LEDs, so these are not available in this program. The program
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Figure 19.9 Derbot with upward-facing ultrasound sensor

acts as the ‘blind navigation’ program, except that when the Derbot runs under an overhanging object, for
example under a chair, it detects this, rotates and moves away.

The program has two tasks, now of different priorities, and two interrupts, also of different priorities.
Unlike earlier examples, each task forms a substantial block of code and each contains more than one
context switch. A single ‘message’ is defined; this is used to carry signals to the motor control task from
both an interrupt and from the other task. A number of delays are also used.

The main function is very similar to that of the previous program example, except that a message is created
instead of a semaphore.

/**************************************************************************
rtos_ex3
Implements Derbot Blind Navigation, with upward-looking US sensor to
detect if AGV is going under an overhang.
Tasks are: Ultrasound Sensor (higher priority), Motor_set (lower priority).
Interrupts are: Microswitch (Low priority) & Timer 0 (High, for clock tick).
One message and numerous delays are also used.
Applies Salvo LITE with Library sfc18sfa. Can run on Derbot, or be simulated.
TJW 3.1.06 Tested 4.1.06
***************************************************************************
//Clock is 4MHz

#include <salvo.h>

#undef OSC //necessary for this Salvo version, as it also defines this name
#include <p18f242.h>

Program Example 19.5 Derbot ‘blind navigation’ with ultrasound overhang detector
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#include <timers.h> //header file for delays
#include <delays.h> //header file for delays
#include <pwm.h> //header file for PWM

#pragma config OSC = HS, OSCS = OFF //HS oscillator, oscillator switch off
#pragma config PWRT = ON, BOR = OFF //pwr-up timer on, brown-out detect off
#pragma config WDT = OFF //watchdog timer off
#pragma config STVR = ON, LVP = OFF //Stack overflow reset enable on,

//low voltage programming off

//User-defined function prototypes
void Micro_Init(void);
void leftmot_fwd (void);
void rtmot_fwd (void);
void leftmot_rev (void);
void rtmot_rev (void);

Line 32
//These functions are tasks.

void Motor_Task( void ); //Sets motor according to messages received
void USnd_Task( void ); //Fires Ultrasound Sensor periodically

//Define labels for context switches
_OSLabel(Motor_Task1)
_OSLabel(Motor_Task2)
_OSLabel(Motor_Task3)
_OSLabel(Motor_Task4)
_OSLabel(Motor_Task5)
_OSLabel(USnd_Task1)
_OSLabel(USnd_Task2)
_OSLabel(USnd_Task3)
_OSLabel(LED_Task1)
_OSLabel(LED_Task2)

//Carries messages from microswitch and ultrasound
#define Msg_to_Motor OSECBP(1)

char Hole = 0x18; //This value used, but never tested
Line 53
/***************************************************************************
User-defined Functions, including RTOS Tasks.
****************************************************************************/
//This task controls motor action, determined by messages recd from elsewhere
void Motor_Task( void )
{ static char msge; //hold message once recd

OStypeMsgP msgP; //Declare msgP as special Salvo pointer type
for (;;) //set up the infinite Task loop
{
rtmot_fwd (); //set motors running forward. This is status quo
leftmot_fwd (); //until message arrives
//Wait for message
OS_WaitMsg(Msg_to_Motor,&msgP,OSNO_TIMEOUT,Motor_Task1);

Program Example 19.5 Continued
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// Line 67 Proceed when message arrives
msge = *(char*)msgP;
PORTAbits.RA5 = 0; //stop motors for 500ms
PORTAbits.RA2 = 0;
OS_Delay (50,Motor_Task1);
if( (msge == 0x80)| | (msge == 0x01) ) //was it a microswitch?

{
rtmot_rev (); //Yes, so both motors reverse
leftmot_rev ();
OS_Delay (100,Motor_Task2);
if(msge == 0x80) //was left uswitch hit?

{leftmot_fwd (); //Yes, so turn right
OS_Delay (80,Motor_Task3);
}
else //right uswitch was hit
{rtmot_fwd (); //so turn left
OS_Delay (80,Motor_Task4);
}

}
Line 86 else //We’re under an overhang, hence turn on spot

{rtmot_rev ();
leftmot_fwd ();
OS_Delay (200,Motor_Task5);
}

} //end of "for" loop
}
Line 93
/*Task periodically pulses Ultrasound, and sends a message if an overhang
detected. In this case, it suspends pulsing, to allow Derbot to exit*/
void USnd_Task(void)
{ int echo_time = 0; //counts ultrasound distance measurement

for (;;) //set up the infinite Task loop
{
OS_Delay (20,USnd_Task1); //Task switch, and delay for 20x10ms, (200ms)
OSDi(); //disable interrupts, this measurement is time sensitive
echo_time = 0;
PORTCbits.RC5 = 1; //output us pulse.
Delay10TCYx(2); //20us delay approx, gives pulse width
PORTCbits.RC5 = 0;
Delay10TCYx(30); //pause for op to be set high; ie blank for 5cm

Line 107
//Values in this loop are adjusted experimentally to give detection threshold
//of 30cm approx

while (echo_time < 50) //limit the measurement to close objects
{Delay10TCYx(1); //10us delay
echo_time++; //increment the counter
if(PORTCbits.RC6 == 0) //send message if target detected

{OSSignalMsg(Msg_to_Motor,(OStypeMsgP)&Hole);
OSEi(); //enable interrupts before delay
OS_Delay (250,USnd_Task2); //Suspend the USnd,

//to allow Derbot to exit "hole"

Program Example 19.5 Continued
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OS_Delay (250,USnd_Task3);
break;
}

}
OSEi(); //enable interrupts
OS_Yield(USnd_Task2);

} //end of "for" loop
}

// Line 126 This function initialises the Microcontroller peripherals
void Micro_Init(void)
{
//Initialise Ports

TRISA = 0b00000000; //All bits output, 2 & 5 used for motor enables.
TRISB = 0b00110000; //Bits 5 and 4 (microswitches) only are input,
TRISC = 0b11000000; //All bits output except 7 (mode switch) & 6

//(USnd echo), 1 & 2 used for PWM
ADCON1 = 0b00000110; //Set Port A for digital i/o

//Switch all outputs off
PORTA = PORTB = PORTC = 0;

Line 137
/*Initialise Timer 0: interrupt enabled,16-bit operation, internal clock,
prescaler divide by 16, hence (with 4MHz clock) input cycle period of 16us*/

OpenTimer0 (TIMER_INT_ON & T0_SOURCE_INT & T0_16BIT & T0_PS_1_16);
WriteTimer0 (64918); //and initialise

//Initialise PWM
OpenTimer2 (TIMER_INT_OFF & T2_PS_1_1 & T2_POST_1_1);
OpenPWM1 (0xFF); //Enable PWM1 and set period
OpenPWM2 (0xFF); //Enable PWM2 and set period

//Set Port B Interrupt on change to be low priority
RCONbits.IPEN = 1; //Enable low priority interrupts
INTCON2bits.RBIP = 0; //Set port change bit to be low priority
INTCONbits.RBIE = 1;//Enable Port B change interrupt

}
Line 151
/***************************************************************************

Main

****************************************************************************/

void main( void )
{
//Initialise Microcontroller

Micro_Init();
Delay10KTCYx (250); //pause 2.5secs with conventional delay

//Initialise RTOS
OSInit();

//Create Tasks and Message
OSCreateTask(Motor_Task, OSTCBP(1), 4);
OSCreateTask(USnd_Task, OSTCBP(2), 2);
OSCreateMsg(Msg_to_Motor, (OStypeMsgP)0);

//Enable Global interrupts
OSEi();

Program Example 19.5 Continued
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//Scheduling Loop
for (;;)
OSSched();

}

/***************************************************************************
Motor Drive Functions
***************************************************************************/
...
(Same motor drive functions as Program Example 15.3.

Program Example 19.5 Continued

19.7.1 Selecting the library and configuration

As far as configuration is concerned, this program is no different from the previous one. They both have
two tasks and one event. In this case the event is a message. Therefore, the sfc18sfa.lib library remains the
right one to use and the salvocfg.h file from rtos_ex2 can be copied in to this project.

19.7.2 The task: USnd_ Task

This task periodically pulses the ultrasound sensor, to detect whether there is an overhang above the AGV.
If an overhang is detected, it sends a message, which is received by the Motor_Task task. As the action of
the motors depends on a measurement made in this task, it was accordingly given the higher priority.

The structure of the USnd_Task is drawn from Program Example 9.7, using software delays to first generate
the pulse and then to time the response. It starts from line 96 in the listing. The task uses the OS_Delay( )
function, placed at the start of its ‘infinite’ loop, to make the function occur every 20 clock ticks. When a
delay period is up, it outputs a pulse by setting Port C bit 5 high, calling a delay of 20 µs and then setting
it low again.

The measurement timing loop, from line 110, needs be approximate only, and is only used for short-range
measurement. Therefore, an effective time-out of 50 cycles is incorporated in the while loop. If the echo
pulse (on Port C, bit 6) is seen to fall low during this timing loop, a message is generated. In this case the
task then enters a significant delay. This uses two iterations of the OS_Delay( ) function, as it can only
apply 8-bit delay values. This inhibits the ultrasound action while the Derbot turns (under the control of the
other task) and moves away from the overhang that it has detected. If, however, the echo pulse does not
fall low, then the timing loop simply times out and the task yields through a call to OS_Yield( ).

19.7.3 The task: Motor_ Task

The Motor_Task task undertakes all motor settings, doing this based on the messages it receives from the
Port B interrupt and the USnd_Task task. It starts from line 58 in the listing. The task opens by declaring
the variable msge, where the incoming message will be stored. It then defines the message pointer msgP
using a special Salvo data type OSTypeMsgP (Table 19.5).
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Having started the two motors, the task waits for a message to arrive, through a call to the OS_WaitMsg( )
function. Depending on the message received, execution moves to different states. As new motor states
are set up, delays are forced using the OS_Delay( ) function. During waiting for both message and delay,
the task is completely inactive, as it is the scheduler which initially receives the message and determines
whether the task should be enabled.

19.7.4 The use of messages

Part of the power of this program lies in its use of messages. Significant lines are replicated below. In every
case they make use of the services summarised in Table 19.5. Only one Salvo message, Msg_to_Motor,
is created, but it is used to carry different messages from different places in the program. All are received
by the Motor_Task function.

...
//Carries messages from microswitch and ultrasound
#define Msg_to_Motor OSECBP(1)
...
From main
OSCreateMsg(Msg_to_Motor, (OStypeMsgP)0);
...
From Motor_Task Function
static char msge; //hold message once recd
OStypeMsgP msgP; //Declare msgP as special Salvo pointer type
...
//Wait for message
OS_WaitMsg(Msg_to_Motor,&msgP,OSNO_TIMEOUT,Motor_Task1);
//Proceed when message arrives
msge = *(char*)msgP;
...

Early in the program listing (line 50) the name of the message, Msg_to_Motor, is defined. As with the
semaphore, it is actually the pointer to the ECB (event control block) which is being named, as this is used
to identify the message in all three of the Salvo functions that are used.

The message is created in main using OSCreateMsg( ). Very early in the first call to Motor_Task( ),
program execution reaches an OS_WaitMsg( ) call. This causes a context switch and forces the task to
wait until the message identified, Msg_to_Motor, is signalled. Time-out is explicitly not applied, through
use of the OSNO_TIMEOUT. The pointer for the incoming message signal is specified as msgP, which is
declared at the beginning of the function.

The message is signalled from within the uswitch_isr (one example shown below) and from the USnd_Task
function. The format is as shown. The predefined name, Msg_to_Motor, is again used to supply the message
pointer. The value of the message signal, named Rt_usw, has been defined earlier. The pointer to the message
signal is then supplied, using the special Salvo OStypeMsgP data type.

From uswitch_isr Function
...
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char Rt_usw = 0x01;
...
if (PORTBbits.RB4 == 0) //Test right uswitch
OSSignalMsg(Msg_to_Motor,(OStypeMsgP)&Rt_usw); //Send message
...

19.7.5 The use of interrupts, and the ISRs

This is the first (and only) example in the book where both a high and a low priority 18 Series interrupt are
applied, so it is worth checking the settings. A Timer 0 interrupt is used, exactly as in Program Example 19.3,
to establish a 10 ms clock tick. To this is added a Port B interrupt on change, to detect microswitch presses.

The interrupts are configured mainly at the end of the Micro_Init( ) function. The registers applied are seen
in Figures 12.8–12.10 and the role of the IPEN bit is seen in Figure 12.7. This bit is first set high (line 147),
enabling the low priority interrupt path. In the next two lines the Port Change Interrupt is enabled and set
to low priority. The Global Interrupt is enabled through the call to OSEi( ) in main.

The two ISRs are shown in Program Example 19.6. The Microswitch ISR, uswitch_isr( ), starts with a
delay call of 8 ms, to allow microswitch bounce to settle. Both switches are then tested. If one is found to
be low, the corresponding message is generated. It is quite possible that neither is found to be low, as the
ISR is called on switch release, as well as switch activation. The ISR ends with the interrupt flag being
cleared.

/**************************************************************************
ISR for rtos_ex3
There are two interrupt sources:
High Priority: Timer 0 for "clock tick",
Low Priority: microswitch (Port B change)for collision

TJW 3.1.06 Tested 5.1.06
***************************************************************************/
#include <salvo.h>

#include <p18F242.h>

#include <timers.h> //header file for timers
#include <delays.h> //header file for delays

//function prototypes
void timer0_isr (void);
void uswitch_isr (void);

static unsigned int tick_counter = 0;

//These are values for messages
char Rt_usw = 0x01;
char Left_usw = 0x80;

//Carries messages from microswitch and ultrasound
#define Msg_to_Motor OSECBP(1)

Program Example 19.6 ISRs for Program Example 19.5
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/**************************************************************************

Timer Interrupt (High Priority)

**************************************************************************/

//Define the high priority interrupt vector to be at 0008h
#pragma code high_vector=0x08
void interrupt_at_high (void)
{

_asm GOTO timer0_isr _endasm //jump to ISR
}

#pragma code //Return to default code section

//Function timer0_isr specified as high-priority ISR
#pragma interrupt timer0_isr

//timer0_isr function.
void timer0_isr (void)
{

WriteTimer0 (64918); //Timer reload value gives 625 cycles to
//overflow, less compensation for interrupt latency

OSTimer();
tick_counter++; //increment tick counter, (for simulation)
INTCONbits.TMR0IF = 0; //Clear TMR0 interrupt flag

}
/**************************************************************************

Microswitch Interrupt (Low Priority)

**************************************************************************/

//Define the low priority interrupt vector to be at 0018h
#pragma code low_vector=0x18
void interrupt_at_low (void)
{

_asm GOTO uswitch_isr _endasm //jump to ISR
}
#pragma code //Return to default code section

//Function uswitch_isr specified as low-priority ISR
#pragma interruptlow uswitch_isr

//uswitch_isr function.
void uswitch_isr (void)
{

Delay1KTCYx(8); //8ms delay to ensure debounce
if (PORTBbits.RB4 == 0) //Test right uswitch
OSSignalMsg(Msg_to_Motor,(OStypeMsgP)&Rt_usw); //Send message
if (PORTBbits.RB5 == 0) //Test left uswitch
OSSignalMsg(Msg_to_Motor,(OStypeMsgP)&Left_usw); //Send message

//quite possible to land here with neither switch low any more, as interrupt
//will sense switch release

INTCONbits.RBIF = 0; //Clear Port B interrupt flag
}

Program Example 19.6 Continued
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19.7.6 Simulating or running the program

This is a very pleasing program to run if you have a Derbot AGV. With its dependence on the ultrasound
sensor and its extensive use of delays, it is less easy to simulate it in a satisfactory way.

19.8 The RTOS overhead

This chapter has aimed to give an introduction to the power of working with an RTOS. It is important to
recognise that in making use of Salvo Lite we have only used a limited subset of what Salvo has to offer,
or what is available in the wider world of the RTOS.

While appreciating the power of this type of programming, it is important also to recognise the costs. These
fall into three categories:

(1) Financial cost. Once we move beyond using a free RTOS like Salvo Lite or equivalent, it will be
necessary to buy a commercially available RTOS or else to spend time (and hence money) in designing
an RTOS from scratch.

(2) Program size cost. A program written with an RTOS inevitably occupies more memory space.
(3) Execution time cost. With significantly more code to execute, due to the RTOS overheads, the program

will run slower.

These costs are similar to those experienced in moving from Assembler to C programming. The programming
technique is more powerful, but it comes with a cost. The last two of the above list, of course, determine the
actual performance of the program. It is desirable, but not easy, to quantify these. The difficulty lies in the
fact that both code size and execution time are dependent on the precise implementation of the program in
question. One cannot, for example, simply say that an RTOS-based program occupies twice as much memory
as a convention sequential program or runs at half the speed. A practice that is applied sometimes is to use
‘benchmark’ programs to allow comparisons to be drawn between different programming implementations
of the same functional outcome.

The Salvo user manual [Ref. 19.1] has a useful chapter on ‘Performance’ (Chapter 9). This gives, in some
detail, performance characteristics of the Salvo RTOS and its component parts.

As far as this book is concerned, we have a small number of programs that could be used as informal
benchmarks. The Derbot ‘blind navigation’ program appeared in Assembler version as Program Example 8.4
and in C as Program Example 15.3, albeit with a different microcontroller. An interrupt-based ‘flashing
LEDs’ program appeared first in a conventional C version as Program Example 17.3 and then in an RTOS-
based version as Program Example 19.3. One simple comparison can be made between each of these pairs
by looking at their memory usage, as seen in their .map files, described in Section 17.10.3 of Chapter 17.
If you do this, you may then like to go on to explore optimising either the C or the RTOS-based versions.
There is scope to do this in both cases, with some options being described in both the C compiler manual
and the Salvo manual.
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Summary

• Salvo is an effective Real Time Operating System for the small embedded environment; it illustrates in
a practical way all key RTOS features and is very well suited to the PIC environment.

• Working with an RTOS leads to a new approach to programming, where tasks, priorities and events
become the key features.

• There is a cost associated with using the RTOS, including financial, memory space and execution time.
These need to be understood and evaluated when deciding whether to use an RTOS.
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Section 5
Techniques of Connectivity

and Networking

This closing chapter surveys techniques of connectivity and networking, an essential field of activity in the
current world of embedded systems.
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20
Connectivity and networks

Despite all that has been covered in the past 19 chapters, there are still important areas in embedded systems
which have been little mentioned. One area is so important that this final chapter is dedicated to it.

If you implemented the hand controller board on the Derbot AGV, and maybe another I2C device, then you
created a little network. This approach is being replicated in every sort of situation, where different systems
or subsystems are communicating with each other. In the home, workplace, motor vehicle, factory and across
the world, thinking things are organising themselves into networks. The means of communication in these
are becoming increasingly diverse: not just electrical, but also optical fibre, infrared or radio.

This chapter deals with issues of connectivity and networking – the medium of connection used to create data
links, and the means by which data is actually formatted, moved and interpreted over those links. Essentially,
the chapter is a survey of certain communication techniques and technologies. Like the diverse life-forms
which inhabit the earth, we will find that network mechanisms are incredibly varied, each adapting itself to
the needs of its very particular environment.

In this chapter, you will learn about:

• Some underlying concepts of setting up a network
• Alternatives for connectivity, including the wireless options of infrared and radio
• A range of network protocols
• How PIC® microcontrollers can be applied in these areas.

As each topic is a major field in itself, the chapter does not aim to provide complete solutions. It just gives
overviews and ideas for further exploration. There are no design examples.

20.1 The main idea – networking and connectivity

There are many situations where we need to provide connection between different systems or subsystems.
In the domestic environment, the automated household is on the verge of becoming a reality. Here dif-
ferent household appliances and gadgets may all be connected together, for example through the Internet.
Elsewhere, there are other needs for networking. The modern motor vehicle may contain dozens of embed-
ded systems, all engaged in very specific activity, but all interconnected. In the home or car situation,
connections may be long term and stable. However, other networks or connections are transitory, for exam-
ple when data is downloaded from a personal organiser to a laptop over a wireless link. All of these are of
interest to the embedded designer and they pose very diverse challenges.

The traditional means of providing network connectivity has been through cabling, allowing electrical
signals to flow from one subsystem to another. The computer I am currently writing at, no longer one of
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the newest, is festooned with cables, linking mouse, printer, scanner, Internet connection, speakers and
all my PIC development tools! This need not be the only way. It is, of course, possible to make a data
connection without any physical link. The most common alternatives to a cable connection are light or radio.
There are many variations on each. We have long had TV remote controls, communicating by infrared. We
have also had radio communication for many years; this has been adapted most effectively for data links
within the computer environment.

Providing a network is about much more than just providing connectivity, important though this is. In a
complex system it is also essential to deal in depth with how data is formatted and interpreted, how addressing
is achieved, and how error correction can be implemented. All of this is pretty much independent of the
physical interconnection itself. In order for different nodes to communicate on a network, there must
therefore be very clear rules about how they create and interpret messages. We have already seen aspects
of this with definitions of standards like I2C. This set of rules is called a protocol, taking the word from its
diplomatic and legal origins. Let us explore the concept of the protocol.

20.1.1 A word on protocols

With large networked systems, protocols can become incredibly complex, defining every aspect of the
communication link. Some of these aspects are obvious and others less so. To aid in the complex process
of defining a protocol, the International Organisation for Standardisation (ISO) devised a ‘protocol for
protocols’, called the Open Systems Interconnect (OSI) model. This is shown in Figure 20.1. The OSI model
sweeps up from the mundane and physical (defining what type of connectors we use or what voltages are
recognised), to the more abstract (defining, for example, how data is encrypted and how error correction
can be achieved).

Each layer of the OSI model provides a defined set of services to the layer above, and each therefore depends
on the services of the layer below. The lowest three layers depend on the network itself and are sometimes
called the media layers. The physical layer defines the physical and electrical link, specifying, for example,
what sort of connector is used and how the data is represented electrically. The link layer is meant to provide

Application layer

Presentation layer

Session layer

Transport layer

Network layer

Data link layer

Physical layer

Host layers

Media layers

Figure 20.1 The ISO Open Systems Interconnect model
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reliable data flow, and includes activities such as error checking and correcting. The network layer places
the data within the context of the network and includes activities such as node addressing.

The upper layers of the OSI model are all implemented in software. This takes place on the host computer,
and the layers are sometimes called the host layers. The software implementation is often called a protocol
stack. For a given protocol and hardware environment, it can be supplied as a standard software package.
A designer adopting a protocol stack may need to interface with it at the bottom end, providing physical
interconnect, and at the top end, providing a software interface with the application.

This model forms a framework against which new protocols can be defined and a useful point of reference
when studying the various protocols already available. Further information on the ISO OSI model may be
found in Ref. 20.1. In practice, any one protocol is unlikely to prescribe for every layer of the OSI model,
or it may only follow it in an approximate way.

A number of network protocols and means of connection are outlined in the sections that follow. To imple-
ment any of these, a physical and a software system will, of course, be required. We will look at a number
of options for these, focusing on available hardware subsystems and available software drivers.

20.2 Infrared connectivity

Infrared (IR) data communication has been with us for many years, becoming widely seen first in applications
like TV remote controls. Infrared signals are easy to generate and detect, using low-cost semiconductor
devices. Being out of the visible spectrum, it is comparatively easy to apply optical filters which exclude
visible light and hence to avoid interference.

The characteristics of all IR links are that data is communicated by a modulated beam of light. The link must
therefore be line of sight. It is generally short range and communication is on a one-to-one basis. In this
simple characterisation lie a number of interesting advantages and disadvantages. Because it is directional
and local, the risk of interference is little and security is good. Because it must be line of sight, however, the
ability to engage in wider networks is restricted. Infrared communication can be very low cost and enjoys
the advantage of not being regulated by law.

While the early applications were mainly in control, like the TV remote, it was equally evident that IR
was good for data communication. This has become a huge growth area for the technology, particularly in
situations where a single cable can be replaced, for example in transfers of data from a hand-held device
(like a personal organiser or digital camera) to a computer, or between computer and printer.

The Infrared Data Association (IrDA) [Ref. 20.2] is a group of manufacturers who have defined a series of
standards for IR links, ranging from simple control to intensive data transfer.

20.2.1 The IrDA and the PIC microcontroller

Infrared communication is a natural area of activity for the small embedded system. Microchip offers
several IR encoder/decoder ICs. An example is the MCP2122 [Ref. 20.3], whose pin connections are shown
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Figure 20.2 The Microchip MCP2122 infrared encoder/decoder

in Figure 20.2. This is intended to interface between a microcontroller on one side, and infrared source and
receiver on the other. Thus, the TXIR pin can directly drive an IR LED, while the RXIR can connect to a
sensor. Four interconnections are required with the host microcontroller: TX, RX, Reset and 16x Clock. The
TX and RX lines connect to the USART of the host microcontroller, just as described in Section 10.10 of
Chapter 10. A clock source, running at 16 times the intended baud rate, is also required. This is connected to
the 16x Clock line. It can be generated through the microcontroller CCP module, as described in Ref. 20.4.
A Reset input allows the host microcontroller to return the IC to its reset condition.

The previous paragraph demonstrates that the physical connection of an infrared port to a PIC microcontroller
is simple, and from this stage informal links can be explored between two such nodes. The usual application
is to implement data communication under an IrDA standard. The detail of this is beyond the scope of this
book, but can be found in a number of Microchip application notes, for example Ref. 20.5.

20.3 Radio connectivity

While IR communication has some clear advantages, its need for line-of-sight communication is in many
cases a significant disadvantage. Therefore, radio links are of very great interest. A low-power radio system
can have local connectivity and can communicate through walls or other (non-conductive) obstructions.
Yet now it is not line of sight, there is a major risk of interference between networks trying to occupy
the same space. Imagine a place, say a hotel lobby, full of people with radio-enabled data communication
devices. How do we avoid the risk of massive interference between them all? This section surveys a couple
of approaches used.

20.3.1 Bluetooth

A major new player in the field of radio data communication is Bluetooth, which faces the challenges of
data communication by radio in an interesting way. The development of Bluetooth is controlled by a group
of electronics manufacturers, the Bluetooth Special Interest Group [Ref. 20.6]. It operates between 2.402
and 2.480 GHz, a band originally reserved by international agreement for industrial, scientific and medical
(ISM) applications, but now also widely used for local wireless data networks.

Bluetooth provides data links between such devices as cell phones, computers, digital cameras or
headphones. It has these characteristics:

• A low-power radio link – power is around 1 mW, compared to that of a mobile phone of 3 W
• A typical range of 10 m
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• A data rate originally of 1 Mbps and currently (Bluetooth 2.0) of 3 Mbps
• Up to eight devices can be linked simultaneously
• Spread-spectrum frequency hopping is applied, with the transmitter changing frequency in pseudo-random

manner 1600 times per second.

When Bluetooth devices detect one another, they determine automatically whether they need to interact with
each other, for example through data exchange. This is without any user interaction. Each device has an
address, and it is by the address that it determines whether another device that it has detected is of interest
to it. Bluetooth systems in contact with each other in this way then form a piconet. Once communication
is established, members of the piconet synchronise their frequency hopping, so they remain in contact.
A single room could contain several piconets, each containing devices which relate to each other. Each
piconet is switching together. For the occasions of momentary clash, there is software that can detect and
reject the corrupted data.

There is considerable cleverness in Bluetooth, in the way it can autonomously configure a network and main-
tain high data rates. This does, however, make it costly and complex for the small or simple system. There-
fore, we turn to look at an alternative, Zigbee. This carries some of the Bluetooth attributes, but is far simpler.

20.3.2 Zigbee

Zigbee is a very recent standard, managed by members of the Zigbee Alliance [Ref. 20.7]. It gains its inspir-
ation from Bluetooth, but aims to be simpler and cheaper, with a smaller software overhead requirement.
It applies the IEEE 802.15.4 Low-Rate Wireless Personal Area Network standard. Like Bluetooth it operates
in the ISM bands of the radio spectrum.

Zigbee is particularly appropriate for home automation, and other measurement and control systems, with
the ability to use small, cheap microcontrollers. Data rates are low and power consumption minimal.

There are three types of Zigbee node:

• Zigbee Coordinator – each network has only one coordinator, which is the most powerful Zigbee type.
It can communicate with other networks and store information about its own network.

• Full Function Device (FFD) – this can pass data from other devices, so can take on a routing role.
• Reduced Function Device (RFD) – this is the simplest device. It can communicate with the network, but

do nothing else.

As the capability of each device reduces, so does its needs for memory and processing power, and hence
its cost.

The minimal power requirement is possible because slave nodes can spend most of their time in Sleep
mode. A slave wakes up briefly, just to confirm it is still part of the network.

20.3.3 Zigbee and the PIC microcontroller

Zigbee is an emerging standard and an interesting one to engage with. It is also a natural one to apply with
PIC microcontrollers. A possible physical implementation of a Zigbee node is illustrated in Figure 20.3.
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Figure 20.3 Possible PIC-based Zigbee implementation

The link is through a single-chip radio transceiver, such as the Chipcon CC2420 [Ref. 20.8]. A microntroller
interfaces to this through an SPI link and certain control lines. Microchip has made available a Stack which
can be adapted to apply the protocol. This is described in Ref. 20.9 and allows a Zigbee Coordinator or
Reduced Function Device to be implemented.

20.4 Controller Area Network (CAN) and Local Interconnect
Network (LIN)

We met in Chapter 10 the three main ‘work horses’ of serial communication in the embedded environment –
SPI, I2C and asynchronous. While these are good standards, they each have their own limitations. In
particular, none are fault tolerant. This section looks at two serial standards which are developed for very
specific applications, where high reliability is a key requirement.

20.4.1 Controller Area Network (CAN)

The concept of CAN was developed as the demand was growing for data communication in the motor
vehicle environment. With its high level of electromagnetic interference, wide temperature and humidity
range, this is a hostile environment for any signal and indeed for any electronic device. Moreover, very high
reliability is essential. The serial standards developed for the benign environment of home or office were
completely inappropriate and a new standard was therefore needed. Initially, CAN was developed by the
German company Bosch. They published Version 2.0 of the standard in 1991, and in 1993 it was adopted
by the ISO as an international standard, ISO 11898. At the time of writing Version 2.0 can be downloaded
from the Bosch website [Ref. 20.10].

The CAN standard addresses only the lower two levels of the ISO/OSI model of Figure 20.1, but takes
some fairly revolutionary approaches in so doing. With its very high level of data security, it is inevitably
complex and we do not go into every detail here. The main features are listed below:

• Communication is asynchronous, half duplex, with (for a given system) a fixed bit rate. The maximum
for this is 1 Mbit/s.



Connectivity and networks 519

• The configuration is ‘peer to peer’, i.e. all nodes are viewed as equals. There is, however, a mechanism
for prioritisation. Master and slave designation is not used.

• Logic values on the bus are defined as ‘dominant’ or ‘recessive’, where dominant overrides recessive.
Physical interconnect is not otherwise defined.

• The bus access is flexible. With all nodes being peers, any can start a message. An ingenious arbitration
process is applied in the case of simultaneous access, which does not lead to loss of time or data. The
arbitration process recognises prioritisation.

• There are an unlimited number of nodes.
• Bus nodes do not have addresses, but apply ‘message filtering’ to determine whether data on the bus is

relevant to them.
• Data is transferred in frames, which have a complex format. This starts with identifier bits, during which

arbitration can take place. Eight data bytes are allowed per frame.
• There is an exceptionally high level of data security, with exhaustive error checking. A node that recognises

that it is faulty can disconnect itself from the bus.

CAN is now very widely applied in the motor vehicle environment. Figure 20.4 shows the block diagram of
just part of a hypothetical car network. Each of the blocks represents a small embedded system – the radio,
door, seat and so on. One of these, the door, we met right at the very beginning of the book, in Figure 1.2.
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& CD

Climate
control

Steering
Driver’s
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Central
control

CAN bus
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Figure 20.4 Part of car body control network
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All subsystems are networked together, by the CAN bus. Another network, not shown, also connects to the
Central Control module. It controls the vehicle locomotion – for example, engine, brakes and transmission.

20.4.2 CAN and the PIC microcontroller

Just as we have seen PIC microcontrollers with I2C or SPI ports, so there are others with on-chip CAN
modules. The current version of the Microchip CAN module is called the ECANTM – the Enhanced CAN
module, which distinguishes it from earlier Microchip CAN modules. An example is the PIC 18F2480. Its
data sheet [Ref. 20.11] contains details of the ECAN module.

The ECAN module is complex, containing features to buffer data, to format it in the required way and to
check for errors. It has numerous control registers. It would be extremely time-consuming to write code
for it from scratch. Therefore, Microchip supplies a set of C routines, described in Ref. 20.12, which can
immediately be used to build up a program.

Whichever microcontroller is used, it must still be interfaced to the physical bus, meeting the electrical
needs of the connection. This is usually done with a special interface IC, of which the Microchip MCP2551
is an example. Its pin connection diagram is shown in Figure 20.5 and data in Ref. 20.13. The CAN
bus implementation used is differential, and connects to the CANH and CANL pins. An external resistor
connected at Rs controls the slew rate of the data signal, with a slower rate minimising electromagnetic
interference. The microcontroller connects from its ECAN module to the RXD and TXD pins.

20.4.3 Local Interconnect Network (LIN)

While CAN has proved itself as the provider of very high reliability data communication, it is therefore
complex and costly. Not all links in the motor vehicle environment actually require the full capability
of CAN. Therefore, LIN was developed to work alongside CAN. The standard is managed by the LIN
consortium [Ref. 20.14]. First released in 1999, the current LIN version is 2.0.

The LIN bus is intended to be small and slow, communicating mainly with intelligent sensors and actu-
ators. The network topology is fixed. There is a single master and all other nodes are slaves. The master
consequently has greater processing power. The slaves need only have very limited processing power or
can just be dedicated hardware. This makes them potentially very low cost. An interesting way that cost is
minimised is that slaves can use simple RC oscillators, continuously resynchronising themselves as data is
exchanged. The maximum data rate is a very modest 20 Kbit/s. The master initiates all data transfers and
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Figure 20.5 The MCP2551 CAN transceiver
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Figure 20.6 The LIN physical interface

only one slave may respond. There is no mechanism to cope with multiple access to the bus. The data link
is single wire, with the concept shown in Figure 20.6. Like the CAN bus, logic states are recessive (logic
high) and dominant (logic low).

A LIN data frame consists of header and response. The header is always from the master and data response
from a single slave. The speed can be chosen from 1 to 20 Kbaud. The header consists of:

• A Break field, which alerts the slaves to a coming message
• A Sync byte at the intended data rate, containing the value 55H, against which slaves calibrate their own

clock period
• an Identifier, which identifies a slave or slaves and specifies an action to be undertaken.

The response is a message of up to 8 bytes, placed on the bus by just one slave. This is followed by a
Checksum. In earlier versions of the bus only data bytes were checked; in the most recent the Identifier
value is included in the checking process.

There are two bus states, Sleep and Active. Nodes enter sleep after a time-out period and can be reactivated
by the Wakeup frame.

Interestingly, the LIN standard also includes software elements. The LIN API (Applications Programmers
Interface) provides a set of standard C function calls, which between them implement all LIN functionality.
This makes it easy to develop the software and then to test it.

In many environments, a LIN bus system may be designed to interface with a CAN bus system. A possible
LIN/CAN system is shown in Figure 20.7. Central to this is a microcontroller, such as the 18F2480, which
has both CAN and USART capability. The microcontroller shown acts as the LIN master and as a peer node
on the CAN bus.

20.4.4 LIN and the PIC microcontroller

To implement a LIN master or slave in hardware, all that is needed is a microcontroller with USART
capability and a bus interface IC. An example is the Microchip MCP201, shown in Figure 20.8.
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Figure 20.8 Example interface chip, the MCP201

This implements the buffering seen in Figure 20.6. Connection is made between the host microcontroller’s
USART, and the RXD and TXD pins of the MCP201. Power is supplied to the 201 via the VBAT pin. There
is an internal voltage regulator on board and the interface chip is able to supply power from its VREG pin
to the host microcontroller. The Fault/SLPS pin is used both to flag a fault, in which case it acts as output,
and to set the data slope. The LIN line connects to the LIN bus. Full data on this device can be found in
Ref. 20.15.

As with most other standards discussed, Microchip has published example firmware as a starting point
for developing code. Reference 20.16 provides code for both master and slave, in the (currently) latest
2.0 version of the bus.

20.5 Embedded systems and the Internet

Needless to say, the Internet has transformed communication worldwide over the past decade. The interest
of this book is very much with the small embedded system, and the internet is viewed commonly as
being something linked to the latest of desktop computers. Do the two have anything in common? The
answer, maybe surprisingly, is yes! It is possible to link the small embedded system to the Internet and
thence to network devices which are under embedded control. Once the link is there, it can be used for
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Figure 20.9 Internet protocol stack

many things: to monitor status or to exert control, or even to cause program or data downloads. Examples
include the washing machine that can alert the repair man to an impending fault, the vending machine that
can tell the Head Office it is empty, the manufacturer who can download a new version of firmware to an
installed burglar alarm, or the home owner who can switch on the oven from the office or check that the
garage door is closed.

Internet communication makes use of a suite of protocols, usually called collectively after the two most
important: TCP/IP (Transmission Control Protocol/Internet Protocol). An example Internet protocol stack
is shown in Figure 20.9. The relationship of this to the ISO/OSI model is also shown.

20.5.1 Connecting to the Internet with the PIC microcontroller

The Internet is the most complex of the protocols reviewed in this chapter. Microchip, however, provides
good support, in terms of Application Notes, demonstration hardware (the PICDEM.netTM board) and,
importantly, a modular TCP/IP stack. This is implemented in C and intended for 18 Series microcontrollers.
It can be downloaded from the Microchip website and is described in Ref. 20.17. The great benefit of this is
that the user does not need to get involved in the fine detail of the protocol. The stack forms a set of utilities
that service the needs of the TCP/IP protocol, forming an equivalent to Figure 20.9. It is responsive to both
the user’s program, as well as to events on the external connection. The stack occupies around 20 Kbytes
of code.

To gain familiarity with networking PIC microcontrollers to the Internet, use of the PICDEM.net board
and/or its accompanying documentation is recommended.

20.6 Conclusion

We have covered a remarkable range of ground over the past 19 chapters. Starting from almost nowhere, we
have gradually developed a sophisticated picture of the structure of a microcontroller. We have programmed
it in both Assembler and C, have interfaced it to a range of sensors and actuators, and linked it with a second
microcontroller, itself linked to another microcontroller, thus creating a tiny network. We have gone on to
place our programs under the discipline of a real time operating system. We have successfully powered
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all of this from a modest battery supply. All this represents a tremendous achievement, and if you have
followed it all, you have done well. This final chapter has given some possible directions for future activity.

I hope you have enjoyed this voyage of exploration in the world of embedded systems, and wish you much
enjoyment as you go on to design, build and program many more ‘thinking things’ of your own.

Summary

• Modern systems place very great demands on the need to communicate and network. The characteristic
of the chosen network will be driven by the application. Considerations of flexibility, reliability, ease of
use, data speed, power consumption and cost are all very important.

• Embedded systems often, but not exclusively, have an interest in low-speed, low-data-volume systems.
High reliability is essential in a number of situations.

• Interconnection traditionally is electrical. Other techniques are possible and frequently advantageous.
These include infrared and radio.

• In some situations embedded systems need to access small and local networks, in other cases major
networks, including the Internet.

• Small networks may be dedicated and fixed, like an LIN system, or they may be flexible and possibly
transitory, like a Bluetooth or Zigbee system.

• Very high reliability, accompanied by some complexity, is available in the CAN network.
• Microchip supply valuable support to implement a range of networks and interconnections, in the form

of microcontrollers with dedicated communication modules, recommended circuits and free published
firmware.
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Appendix 1
The PIC® 16 Series instruction set

Table A1.1 PIC 16 Series Instruction Set Summary



Appendix 2
The electronic ping-pong

This small embedded system is a game for two players, each of whom has a push-button ‘paddle’. Either
player can start the game by pressing his/her paddle. The ball, represented by the row of eight LEDs, then
flies through the air to the opposing player, who must press his/her paddle only when the ball is at the end
LED and at none other. The ball continues in play until either player violates this rule of play. Once this
happens, the non-violating player scores and the associated LED is briefly lit up. When the ball is out of
play, an ‘out-of-play’ LED is lit.

A picture of the ping-pong is shown in Figure 1.3. Its circuit diagram appears in Figure A2.1, with its
program listing forming the remainder of this appendix.
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Figure A2.1 The electronic ping-pong circuit diagram
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;*************************************************************
;ELECTRONIC PING-PONG!
;This program drives the electronic ping-pong game,
;fixed speed, single mode of play.
;TJW 21.6.01
;*************************************************************
;
;Clock freq 800kHz approx (RC osc.)
;Port A 4 right paddle (ip)
; 3 left paddle (ip)
; 2 "out of play" led (op)
; 1 "Score Left" led (op)
; 0 "Score Right" led (op)
;Port B 7–0 "play" leds (all op)
;
;Config Word: RC oscillator, WDT off,
; power-up timer on, code protect off
;No Interrupts used
;

list p=16F84A
;specify SFRs
status equ 03
porta equ 05
trisa equ 05
portb equ 06
trisb equ 06
;
;specify a constant
led_durn equ 20 ;no. of time inner loop is iterated, hence

;time duration each led is lit.
;
;specify RAM locations
delcntr1 equ 10 ;used in 5ms delay SR
delcntr2 equ 11 ;used in 500ms delay SR
led_posn equ 12 ;holds current ball led posn.
loop_cntr equ 13 ;preloaded with value led_durn for every

;led illumination, and counts down to 0 before
;ball moves on

;
org 00
goto start

;
; **“Initialise” State**
; Initialise

org 0010
start bsf status,5 ;select memory bank 1

movlw B'00011000'
movwf trisa ;port A according to above pattern
movlw 00
movwf trisb ;all port B bits op
bcf status,5 ;select bank 0

;

Program Example A2.1 The electronic ping-pong program
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;**”Wait”** State
;set up initial led patterns
wait movlw 04

movwf porta ;switch on "out of play" led
movlw 00
movwf portb ;all play leds off

;
;check that both paddles are clear before allowing play to commence

btfss porta,4 ;right paddle pressed?
goto wait ;yes, so wait
btfss porta,3 ;left paddle pressed?
goto wait ;yes, so wait

;
;now ready for action, now wait until paddle pressed
wait1 btfss porta,4 ;right paddle pressed?

goto r_to_l ;yes, so start play
btfss porta,3 ;left paddle pressed?
goto l_to_r ;yes, so start play
goto wait1

;
;**”Right-to-Left” State**
;play has started
r_to_l movlw 00 ;switch off "out of play"

movwf porta
movlw 80 ;define ball start posn.
movwf led_posn

;loop to here every time led is to change
rtl_0 movlw led_durn

movwf loop_cntr ;preset length of led illumination
movf led_posn,w ;output new ball posn
movwf portb

;loop to here n times for every led, where n = led_durn.
;Check for rule violations. Special conditions apply if
;ball is at start or end.
rtl_1 btfss led_posn,7 ;is ball at start (ie posn 7)?

goto rtl_2 ;no, so move on
;yes, it’s OK if right paddle still pressed, so don’t test
btfss porta,3 ;left paddle pressed?
goto rt_myscore ;yes, so score
goto rtlend

rtl_2 btfss led_posn,0 ;is ball at end (ie posn 0)?
goto rtl_3 ;no, so move on

;here if ball at end, left paddle can force direction change
btfss porta,3 ;left paddle pressed?
goto l_to_r ;yes, so change direction - **state exit**
btfss porta,4 ;right paddle pressed?
goto rt_yrscore ;yes, so left scores
goto rtlend

;here if neither start nor end posn.
rtl_3 btfss porta,4 ;right paddle pressed?

goto score_left ; yes, so score
btfss porta,3 ;left paddle pressed?
goto rt_myscore ;yes, so score

Program Example A2.1 Continued
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;at then end of each loop call a delay
rtlend call delay5

decfsz loop_cntr ;decrement loop counter, check if led is to move
goto rtl1

;here if ball moving on
bcf status,0
rrf led_posn,1
btfsc status,0 ;ball off end?
goto rt_myscore ;yes, right’s point
goto rtl0

;**state exit**
rt_myscore goto score_right
rt_yrscore goto score_left
;
;**”Left-to-Right” State**
l_to_r movlw 00 ;switch off "out of play"

movwf porta
movlw 01 ;define ball start posn.
movwf led_posn

ltr_0 movlw led_durn
movwf loop_cntr ;determine length of led illumination

;go round this loop “duration” times, for every ball position
ltr_1 movf led_posn,w ;output new ball posn

movwf portb
btfss led_posn,0 ;is ball at start (ie posn 0)?
goto ltr_2 ;no, so move on
;yes, OK if left paddle still pressed (so only test rt paddle)
btfss porta,4 ;right paddle pressed?
goto lft_myscore ;yes, so score
goto ltrend

ltr_2 btfss led_posn,7 ;is ball at end (ie posn 7)?
goto ltr_3 ;no, so move on

;here if ball at end, right paddle will change dirn, score right if left paddle
btfss porta,4 ;right paddle pressed?
goto r_to_l ;yes, so change direction
btfss porta,3 ;left paddle pressed?
goto lft_yrscore ;yes, so right score
goto ltrend

;here if neither start nor end posn.
ltr_3 btfss porta,4 ;right paddle pressed?

goto lft_myscore ;yes, so score
btfss porta,3 ;left paddle pressed?
goto lft_yrscore ;yes, so score

ltrend call delay5
decfsz loop_cntr ;decrement loop counter, check if led is to move
goto ltr_1

;here if ball moving on
bcf status,0 ;Clear Carry, as rlf rotates through it
rlf led_posn,1
btfsc status,0 ;ball off end?
goto lft_myscore ;yes, left’s point
goto ltr_0

Program Example A2.1 Continued
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;**state exit**
lft_myscore goto score_left
lft_yrscore goto score_right
;
;**”Score” State**
;here if Left has scored
score_left

movlw 00
movwf portb ;all play leds off
bsf porta,1
call delay500
bcf porta,1
goto wait

;here if Right has scored
score_right

movlw 00
movwf portb ;all play leds off
bsf porta,0
call delay500
bcf porta,0
goto wait

;
;**********************************************
;SUBROUTINES
;**********************************************
;Delay of 5ms approx. Instruction cycle time is 5us.
delay5 movlw D'200' ;200 cycles called,

;each taking 5x5=25us
movwf delcntr1

del1 nop ;5 inst cycles in this loop
nop
decfsz delcntr1,1
goto del1
return

;
; Delay of 500ms (approx) - 100 calls to delay5
delay500 movlw D'100'

movwf delcntr2
del2 call delay5

decfsz delcntr2,1
goto del2
return

;
end

Program Example A2.1 Continued
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The Derbot AGV – hardware

design details
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Figure A3.1 The Derbot circuit diagram
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Figure A3.3 A Derbot with hand controller fitted (hand controller connector is disconnected to show mating connector
detail)

The Derbot incremental shaft encoder

Chapter 8 describes how a reflective opto-sensor is used to create a simple incremental shaft encoder. Three
patterns are shown, with eight, 16 and 32 black/white cycles. All can be used, although the spacing between
wheel pattern and sensor must be very carefully controlled for the 32-cycle pattern. The wheel diameter
used in all prototypes is 56.0 mm and circumference hence 176.0 mm. The wheel patterns therefore provide
forward resolutions of 176.0/8 = 22.0 mm, 176.0/16 = 11.0 mm and 176.0/32 = 5.5 mm respectively.
Furthermore, if the wheel is rotating at n r.p.m. and the 16-cycle encoder disc is used, then the shaft encoder
frequency is 16n/60.

Reference data [Ref. 8.8] for the motor used in the Derbot prototype, reproduced in Tables A3.1 and A3.2,
indicates that the motors when supplied with 9 V run at 210 r.p.m. This is therefore the expected maximum
motor speed for the Derbot. The resulting maximum shaft encoder frequency, using the 16-cycle disc, would
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Figure A3.4 Patterns for incremental shaft encoder: eight, 16 and 32 cycles

Table A3.1 Published data for MFA/Como motor/gearbox type 918D30112 – RE280/1 motor characteristics
Operating
voltage

No load At maximum efficiency
Stall torque
(g-cm)

Speed
(r.p.m.)

Current
(A)

Speed
(r.p.m.)

Current
(A)

Torque
(g-cm)

Output
(W)

Efficiency
(%)

12 V 8400 0.1 6300 0.3 25.0 1.62 45 100

Table A3.2 Published data for MFA/Como motor/gearbox type
918D30112 – with 30:1 reduction gearbox: speed variation with
supply voltage

6V 12V 18V 24V
140 280 420 560

be 16 ×210/60 = 56 Hz. In practice, the free-running in-circuit motor speed was measured to be 154 r.p.m.,
when supplied from 9 V. This translates to a maximum shaft encoder frequency of 41 Hz. The fact that the
speed is less than the value predicted for a 9 V supply is primarily due to the voltage drops in the L293D
drive IC.



Appendix 4
Some basics of Autonomous

Guided Vehicles

This appendix covers certain introductory aspects of the design of Autonomous Guided Vehicles, such as
are essential for developing the Derbot project.

Locomotion and wheel layout

It is interesting to take note of wheeled vehicles around us before speculating on the optimum arrangement
for a small AGV. We note, of course, in passing that wheels are not our only option for locomotion – there
are tracked and walking vehicles of different sorts, but these are either too complex or inefficient for our
purposes. The most common wheel layout is certainly the motor car, generally with two fixed driven wheels
at the back and two steerable wheels at the front. This gives very high stability, attractive for a vehicle
that carries humans. It also gives moderate, but not outstanding, manoeuvrability – remember all those
difficulties with parking a car in a narrow space.

Of the many wheel configurations possible (see Ref. A4.1), a very popular one has been chosen for the
Derbot. The vehicle is supported at three points. Two are independently driven wheels and the third a low-
friction roller-ball or slider. The latter could be replaced by a caster, but this tends to influence steering, so
is worth avoiding if possible. The centre of gravity is placed just behind the wheels. To the spacing between
the centre-line of the wheels we give the variable A.

The advantage of this configuration is its simplicity, combined with its extreme manoeuvrability. A disad-
vantage is its limited stability; with only three points of support, it is not too difficult to tip it over. A second
slider can be placed at the opposite end of the vehicle, in front of the wheels. In this case, if the vehicle
tilts forward, its front simply rests on this other slider.

Motor, gearbox and wheel

The Derbot uses small DC motors for its drive. Stepper motors, the alternative, are more power hungry and
were therefore not selected. DC motors generally rotate at a speed that is too high for the purposes of the
application. A step-down gearbox is therefore used. This is depicted in Figure A4.2.

An AGV having motors running at a steady speed of ωm rad s−1, with gearbox ratio of N and wheel radius r ,
will move forward at a steady speed v, given by:

v = (ωm/N)rm s−1.
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Wheel
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Roller-ball or slider

AGV body

A

Figure A4.1 The Derbot wheel layout
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ωwωm

r

Motor Gearbox

Wheel

N

(a) (b)

Figure A4.2 Interaction between motor, gearbox and wheel

Turning geometries

The generalised diagram of a vehicle such as the Derbot making a turn, by driving the wheels at different
speeds, is shown in Figure A4.3. The wheels are each driven a certain different amount, with the left wheel
travelling distance dL and the right wheel distance dR. The result is that the vehicle turns through the arc
of a circle, centred on point O, and with radius R. It turns an angle θ. As dL and dR are the variables that
can be controlled as the wheels are driven, it is useful to relate other variables back to them.

As the angle subtended by arcs dL and dR are the same, we can say:

dL

(R + A/2)
= dR

(R − A/2)
= θ

leading to:

dL × (R − A/2) = dR × (R + A/2)
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θ
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O xf

P Q
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S

θ

Figure A4.3 Derbot turning through θ◦ (final position of slider not shown)

and finally:

R = A

2
× (dL + dR)

dL − dR
.

Moreover, knowing

θ = dL

(R + A/2)
,

we substitute for R into this, to get:

θ = (dL − dR)

A
.

Also, by inspecting triangle OTS, the distance moved ‘forward’ from the initial frame of reference, xf , can
be seen to be R sin θ.

There are two important special cases of this turn, illustrated in Figure A4.4. One is when only one wheel
is driven and the AGV rotates approximately round the other wheel. For a turn of 90◦, dL is πA/2 and dR
is zero. The approximation is due to the asymmetry of the AGV mass about the point of rotation and the
drag of the slider, which may cause some slippage. A 90◦ turn is shown, though any angle can easily be
implemented.

The other special case of a turn, shown in Figure A4.4(b), is when both wheels rotate equally in opposite
directions. Again, some slippage may occur. The AGV rotates theoretically about a point midway between
the wheels, and dL = −dR.
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(a) (b)

Figure A4.4 Derbot turning through 90◦. (a) Pivoting on one wheel. (b) Turning on the spot – wheels turning equally
(final positions of chassis outline and slider not shown in either case)

In the current implementation of the Derbot, distance A is measured as 16 cm. For a 180◦ turn on the spot,
R = 0 and dL = −dR = πA/2 = 25.1 cm (for the Derbot).

Odometry

Odometry is the technique of measuring distance travelled by a vehicle, generally by measuring wheel
revolutions or parts thereof. A shaft encoder, as described in Appendix 3, is able to measure angular
displacement of a wheel. By knowing the wheel dimensions it is not difficult to calculate the actual distance
moved. It is a simple technique and reasonably accurate. However, it can take no account of wheel slippage,
or inaccuracies in wheel dimension or other parts of the measurement chain. Odometry can be used both
for measuring forward motion and for implementing controlled turns, such as are described above.

In Appendix 3 the circumference of the Derbot wheel was calculated to be 176.0 mm. With a 16-cycle
pattern adopted on the ‘home-made’ shaft encoder, each resultant pulse represents a forward move of
11 mm. Applying this, forward displacement or controlled turns can be implemented, the latter using the
formulae derived above.

Reference

A4.1. Siegwart, R. and Nourbaksh, I. (2004). Introduction to Autonomous Mobile Robots. MIT Press,
Cambridge, MA. ISBN 0-262-19502-X.
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PIC® 18 Series instruction set
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Table A5.1 PIC 18 Series Instruction Set Summary

continued
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Table A5.2 Summary of Opcode Operand Symbols
Symbol Description (MPLAB Assembler default value underlined)
a RAM Access bit.

a = 0: Memory location is in Access RAM
a = 1: RAM Bank specified by Bank Select Register (BSR)

b bit number in byte
d Destination select bit.

d = 0: result stored in W Register
d = 1: result stored in file register f (i.e. data memory location)

f 8-bit data memory address
fd 12-bit data memory address, destination address in a data move
fs 12-bit data memory address, source address in a data move
k Literal value, constant data or label (8, 12 or 20-bit)
n relative address (2’s complement) for relative branch instructions,

OR direct address for Call and Return instructions
s Fast Call/Return mode select bit.

s = 0: do not update into or from shadow registers
s = 1: update W, Status and BSR registers into or from shadow
registers



Appendix 6
Essentials of C

This appendix provides summary information on key aspects of the C programming language, as a set
of tables. Example usage and further explanation of most of these features appears in Chapters 14–19 of
this book.

Table A6.1 C keywords associated with data type and structure definition
Word Summary meaning Word Summary meaning
char A single character, usually 8-bit signed A qualifier applied to char or int (default for

char and int is signed)
const Data that will not be modified sizeof Returns the size in bytes of a specified item,

which may be variable, expression or array
double A ‘double precision’ floating-point number struct Allows definition of a data structure
enum Defines variables that can only take certain

integer values
typedef Creates new name for existing data type

float A ‘single precision’ floating-point number union A memory block shared by two or more
variables, of any data type

int An integer value unsigned A qualifier applied to char or int (default for
char and int is signed)

long An extended integer value; if used alone,
integer is implied

void No value or type

short A short integer value; if used alone, integer
is implied

volatile A variable which can be changed by factors
other than the program code

Table A6.2 C keywords associated with program flow
Word Summary meaning Word Summary meaning
break Causes exit from a loop for Defines a repeated loop – loop is executed

as long as condition associated with for
remains true

case Identifies options for selection within a
switch expression

goto Program execution moves to labelled
statement

continue Allows a program to skip to the end of a
for, while or do statement

if Starts conditional statement; if condition is
true, associated statement is executed

default Identifies default option in a switch
expression, if no matches found

return Returns program execution to calling
routine, causing also return of any data
value specified by function

do Used with while to create loop, in which
statement following do is repeated as long
as while condition is true

switch Used with case to allow selection of a
number of alternatives; switch has an
associated expression which is tested against
a number of case options

else Used with if, and precedes alternative
statement used if if condition is not true

while Defines a repeated loop – loop is executed
as long as condition associated with while
remains true
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Table A6.3 C keywords associated with data storage class
Word Summary meaning Word Summary meaning
auto Variable exists only within block within

which it is defined. This is the default class
register Variable to be stored in a CPU register; thus,

address operator (&) has no effect
extern Declares data defined elsewhere static Declares variable which exists throughout pro-

gram execution; the location of its declaration
affects in what part of the program it can be
referenced

Table A6.4 C data types, as implemented by the MPLAB C18 C compiler
Data type Description Length (bytes) Range
char Character 1 −128 to +127
signed char Character 1 −128 to +127
unsigned char Character 1 0 to 255
int Integer 2 −32 768 to +32 767
unsigned int Integer 2 0 to 65 535
short Integer 2 −32 768 to +32 767
unsigned short Integer 2 0 to 65 535
short long Integer 3 −8 388 608 to 8 388 607
unsigned short long Integer 3 0 to 16 777 215
long Integer 4 −2 147 483 648 to 2 147 483 647
unsigned long Integer 4 0 to 4 294 967 295
float Floating point 4 From 1.17549 × 10−38

to 6.80565 × 10+38

double Floating point, double precision 4 From 1.17549 × 10−38

to 6.80565 × 10+38
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Table A6.5 C operators
Prec. and order Operation Symbol Prec. and order Operation Symbol
Parethenses and array access operators
1, L to R Function calls ( ) 1, L to R Point at member X−>Y
1, L to R Subscript [ ] 1, L to R Select member X.Y
Arithmetic operators
4, L to R Add X+Y 3, L to R Multiply X∗Y
4, L to R Subtract X−Y 3, L to R Divide X/Y
2, R to L Unary plus +X 3, L to R Modulus %
2, R to L Unary minus −X
Relational operators
6, L to R Greater than X>Y 6, L to R Less than or equal to X<=Y
6, L to R Greater than or equal to X>=Y 7, L to R Equal to X==Y
6, L to R Less than X<Y 7, L to R Not equal to X!=Y
Logical operators
11, L to R AND (1 if both X and Y

are not 0)
X&&Y 2, R to L NOT (1 if X=0) !X

12, L to R OR (1 if either X or Y
are not 0)

X||Y

Bitwise operators
8, L to R Bitwise AND X&Y 2, L to R Ones complement

(bitwise NOT)
∼X

10, L to R Bitwise OR X|Y 5, L to R Right shift. X is
shifted right Y times

X�Y

9, L to R Bitwise XOR XˆY 5, L to R Left shift. X is
shifted left Y times

X�Y

Assignment operators
14, R to L Assignment X=Y 14, R to L Bitwise AND assign X&=Y
14, R to L Add assign X+=Y 14, R to L Bitwise inclusive OR

assign
X|=Y

14, R to L Subtract assign X−=Y 14, R to L Bitwise exclusive OR
assign

Xˆ=Y

14, R to L Multiply assign X∗=Y 14, R to L Right shift assign X�=Y
14, R to L Divide assign X/=Y 14, R to L Left shift assign X�=Y
14, R to L Remainder assign X%=Y
Increment and decrement operators
2, R to L Preincrement ++X 2, R to L Postincrement X++
2, R to L Predecrement −−X 2, R to L Postdecrement X−−
Conditional operators
13, R to L Evaluate either X (if

Z�=0) or Y (if Z=0)
Z?X:Y 15, L to R Evaluate X first,

followed by Y
X,Y

‘Data interpretation’ operators
2, R to L The object or function

pointed to by X
*X 2, R to L The address of X &X

2, R to L Cast – the value of X,
with (scalar) type
specified

(type) X 2, R to L The size of X, in
bytes

Sizeof X

Key: Prec. = precedence; L = left; R = right.
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Table A6.6 Example preprocessor directives
Directive Summary description Directive Summary description
#if Used for conditionally compiling code,

based on evaluation of associated
expression. Must be terminated by #endif

#define Defines string constants which are used in
source code and are substituted before
code line is compiled

#ifdef Similar to #if, but tests if specified symbol
has been defined. Terminated by #endif

#error Generates user-defined error message

#ifndef Identical to #ifdef, but tests if specified
symbol has not been defined

#include Include at this point the full text from file
specified, which may contain unlimited
C code, and is then compiled with the
source program

#else Used with #if to provide alternative
section for compilation

#line Allows user to specify line number within
code

#elif Used within an #if section to test a new
expression

#pragma Allows further directive-like information
to be sent to the preprocessor, generally
compiler specific

#endif Terminates an #if section. #undef Reverses the action of #define, on string
constant specified

Table A6.7 Some applications of punctuation marks
Symbol Application Example
: Terminates a label loop:
: Used in bit-field format (seen also in Table A6.5) unsigned RB0:1;
; Terminates a statement or declaration unsigned RB0:1;
. Used to denote member of a structure (seen also in Table A6.5) PORTAbits.RA2 = 1;
\ Next line is continuation of this one –
{ } Defines block of code –

Table A6.8 MPLAB C18 additional storage qualifiers
rom ram

far Variable can be anywhere in program memory Variable can be anywhere in data memory; bank
switching instruction needed to access, far and ram
is the default combination

near Variable is in program memory, with address <64K Variable is in Access RAM

Table A6.9 MPLAB C18 memory models
Memory model Pointer size Default ROM qualifier Memory size
small (default) 16 bit near Program memory ≤ 64K
large 24 bit far Program memory > 64K
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12F508, introduction to, 18–20
16F84A, introduction to, 26
16F873A, introduction to, 26
18F242, introduction to, 336
18F2420, introduction to, 383

Access RAM, 343, 347
Acquisition time, see Sample and hold
ADC, see Analog-to-digital converter
ADC module:

of 16F873A, 312–319
of 18F242, 380

Addressing, indirect, 97, 104–106
Agilent, see Oscilloscope
AGV, see Autonomous Guided Vehicle
ALU, see Arithmetic Logic Unit
Analog multiplexer, 308
Analog quantities, 304
Analog-to-digital converter (ADC):

principles of, 306–308
resolution, 307, 324
signal conditioning for, 308
see also Successive Approximation ADC, ADC

module, and Voltage reference
Architecture:

of 12F508, 18–20
of 16F84A, 27
of 16F873A, 146–149
of 18F242, 337–340

Arithmetic Logic Unit (ALU), 9
of PIC 16 Series, 69

Assembler programming:
format, 71
High Level Language comparison, 66
principles, 66–69
simplifying, 106
see also MPASM

Asynchronous, see serial communication

Atmel:
AT89C2051, 40

interrupts, 140
Autonomous Guided Vehicle (AGV), 537–540

see also Derbot AGV

Background Debug Mode (BDM), 170
Banked addressing, 33
BCD, see Binary Coded Decimal
BDM, see Background Debug Mode
Binary:

binary to BCD conversion, 323
fractional numbers, 322
see also Fixed Point

Binary Coded Decimal (BCD), 323
see also Binary

Bit banging, see Serial communcation
Bluetooth, 516
Breakpoints, 109
Brown-out, see Power supply

C programming language:
arrays, 431–434
bit-fields, 459
bit testing and setting, 411
break keyword, 415
compiler, 394
declarations, 388
decrement operator, 439
do keyword, 403
duration, 454
else keyword, 411, 429
essential elements, 544–548
for keyword, 416
function prototype, 413
functions, 391, 413–415
goto keyword, 403
header files, 394, 460–462
if keyword, 411, 429
increment operator, 439
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C programming language (continued)
introduction to, 387
keywords, 390
libraries, 394
linkage, 454
linker, 395
main keyword, 391
object file, 395
operators, 392
pointers, 431–434
preprocessor, 394
radix specification, 396
scope, 454
statements, 388
storage classes, 453–456
strings, 431, 433
structures, 459
translation unit, 394
unions, 459
variables in, 390
while keyword, 393, 403, 434

C18 C compiler:
ADC module, use of, 423, 428
Assembler inserts, 445
configuration word setting, 447
data formatting with, 440–442
delays, implementing, 415
I2C, use of, 437–439
interrupts, use of, 448–452
introduction to, 395
libraries, 403–406
linker, 396, 462–465
memory allocation, 446
memory models, 455
pragmas, 447
PWM, use of, 417–422
simulating with, 400, 412, 429–431, 435–437,

452, 457–459
start-up files, 444, 456
Timers, use of, 417–421, 450
tutorial, 396–400

CAN, see Controller Area Network
Capture/Compare/PWM (CCP) module:

of 16F873A, 235–237
of 18F242, 376–378

Carry flag, 102
CCP, see Capture/Compare/PWM module
Central Processing Unit (CPU), 9–11

of 12F508, 18
of 16F84A, 29
of 16F873A, 146
of 18F242, 337

Ceramic, see Clock
CISC, see Complex Instruction Set Computer
Clock:

ceramic oscillator, 60
impact on timing, 37
of 16F84A, 60
of 16F873A, 161
of 18F242, 360–364
quartz oscillator, 59, 168
R-C oscillator, 59, 168

Clock tick, 229, 468
CMOS, see Complementary Metal Oxide

Semiconductor
Commissioning, 165–167
Comparator, 327

of 16F873A, 329
Compare, see Capture/Compare/PWM module
Complementary Metal Oxide Semiconductor

(CMOS), 16
Complex Instruction Set Computer

(CISC), 9, 86
Computed goto:

with PIC 16 series, 99
with PIC 18 series, 349

Computer, 8–11
Configuration word/register:

of 16F84A, 35
of 16F873A, 154, 179
of 18F242, 350

Connectivity, see Networks
Controller Area Network (CAN), 518–520, 522

PIC applications, 520
see also Local Interconnect Network

Counting:
Counter, 131–134
object or event counting, 136
see also Timer
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DAC, see Digital to analog conversion
Data acquisition system, 305

in microcontroller, 311
see also Analog-to-digital converter

Data memory, see Memory, data
DC Motor, 212
Debugger, 170

in-circuit debugger (ICD), 170
Delay, see Timing
Derbot AGV:

ADC application, 319–321
blind navigation program:

in Assembler, 222–224
in C, 417–420

circuit diagram (main), 533
hand controller, 186–188, 194, 201

circuit diagram, 534
initial builds, 172–175
I2C application, 286–292
intermediate builds, 220, 261, 303
introduction to, 7
light-seeking program:

in Assembler, 326, 332
in C, 424–428

load switching on, 217
motor switching on, 220
odometry example, 228–231
program, 176–178
PWM application, 241–244
shaft encoder, 535
speed control, 255–257
speed measurement, 252–255
with 18 Series microcontroller, 382

Diagnostics, see Commissioning
Digital quantities, 304
Digital to analog conversion, see Pulse Width

Modulation
Displays:

liquid crystal (LCD), 199–202
design example, 200–202

seven segment LED, 193
design example, 194–199

Downloading program, 83
see also In-Circuit Serial Programming

EEPROM, see Electrically Erasable Programmable
Read Only Memory

Electrically Erasable Programmable Read Only
Memory (EEPROM), 31

of 16F84A, 35–37
of 16F873A, 155

Electronic ping-pong, see Ping-pong
Embedded System, 3–8

definition, 3
examples of, 4–8

EPROM, see Erasable Programmable Read Only
Memory

Erasable Programmable Read Only Memory
(EPROM), 31

Extended instruction set, see Instruction set

Fault finding, see Commissioning
Fibonacci series, 103, 401
File Select Register (FSR):

of 16F84A, 97
of 18F242, 347

Filtering (analog), 306
Fixed point, 322

see also Binary
Flash (Memory), 31
Floating point, 322
Flow diagram, 89
Foreground/background structure, see Multi-tasking
Freescale, 20

interrupt strategy, 140
Frequency measurement, 252
FSR, see File Select Register

H Bridge, see Switching
Hand controller, see Derbot
Harvard Architecture, 11
High Level Language (HLL), 67
Hitachi, 199
Human Interface, 184–187

ICD, see Debugger
ICD 2, 171

applying, 178–180
ICE, see In-Circuit Emulator
ICSP, see In-Circuit Serial Programming
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IDE, see Integrated Development Environment
I2C bus, see Inter-Integrated Circuit bus
In-Circuit Emulator (ICE), 170
In-Circuit Serial Programming (ICSP):

of 16F873A, 156–158
Include files, 106
Indirect addressing, see File Select Register
Inductive Loads, switching of, see Switching
Infrared connectivity, 515
Infrared Data Association (IrDA), 515

PIC applications, 515
Input conditioning, digital, see Interface, digital
Instruction set:

of PIC 16 series, 70, 74, 87, 527
arithmetic instructions, 102–104
branching instructions, 92–94
logical instructions, 101
subroutines, use of, 94

of PIC 18 series, 340–345, 365, 541–543
extended, 384

Instruction cycle, 37
Integrated Development Environment (IDE), 69

see also MPLAB
Interface, digital, 208–212
Inter-Integrated Circuit bus:

principles of, 275–277
see also Master Synchronous Serial Port

Internet, 522
PIC applications, 523

Interrupts:
context saving, 127–130, 161
critical regions, 130
introduction to, 121, 124
latency, 141
masking, 122, 130
of 16F84A, 122

INTCON register, 123
programming with, 125–131

of 16F873A, 158–161
INTCON register, 159

of 18F242, 353–358
INTCON register, 357

on change, 55
prioritisation in hardware, 353–354
repetitive, 231

vector, 124
see also Salvo Real Time Operating System

Interrupt Service Routine (ISR), 124
see also Interrupts

IrDA, see Infrared Data Association
ISO Open System Interconnect, 514
ISR, see Interrupt Service Routine

Keypad, 187
design example, 188–192

Kingbright, 53, 193

Latency, see Interrupt
LCD, see Displays
LED, see Light Emitting Diode
LDR, see Light Dependent Resistor
Light Dependent Resistor (LDR), 204
Light Emitting Diode (LED), 53

see also Displays
Light meter (Derbot configured as), 331
LIN, see Local Interconnect Network
Liquid Crystal Display, see Displays
Local Interconnect Network (LIN), 520–522

PIC applications, 521
Logic analyser, 167–169
Look-up table:

with 16 Series, 98–101
with 18 Series, 349

Low voltage detect
of 18F242, 380–382

Machine cycle, 37
Macro, see MPASM
Master Synchronous Serial Port (MSSP)

of 16F873A:
in I2C mode, 277–281
in I2C master mode, 283–285
in I2C slave mode, 281
in SPI mode, 267–274

of 18F242, 378–380
see also Serial communication

Memory:
non-volatile, 10
of 16F84A, 32–35
of 16F873A, 147–150
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of 18F242, 345–353
technologies, 29
volatile, 10

Memory, data, 9–11
of 16F84A, 33, 34
of 16F873A, 152
of 18F242, 345–347

Memory, program, 9–11
of 16F84A, 32
of 16F873A, 150–152, 155
of 18F242, 347–349

Microchip Technology Inc.:
PIC 12 Series family, 17
PIC 16 Series family, 25–27
PIC 18 Series family, 336
PIC Microcontrollers, 15–17

Microcontroller:
general features, 12–15
packaging, 14

Microprocessor, 11
Microswitch, 204
Microwire, 266–275
Motor (DC), see DC Motor
MPASM:

directives, 72, 248
introduction to, 71
introductory programming with, 73–76
macros, 107
number representation, 73
see also Assembler

MPLAB:
file structure, 77
introduction to, 76
special instructions, 108
tutorial with, 77–81
with PIC 18 series, 364
see also C18 C compiler

MPSIM, introduction to, 81–83
Multiplexer, analog, see Analog

multiplexer
Multiplication, 324
Multi-tasking:

deadlines, 465
foreground/background structure, 467
introduction to, 464–466

priorities, 465–468
sequential programming implementation,

467–470
tasks, 465–468
see also Real time, and Real Time Operating

System
MSSP, see Master Synchronous Serial Port

Nanowatt technology, 383
Networks, introduction to, 513

Odometry, see Derbot
One Time Programmable (OTP), 31
Open Drain, 50–52
Operating System, general purpose, 471

see also Real Time Operating System
OPTION register, 134
Opto-isolator, 211
Opto-sensor, reflective, 205
Oscillator (clock), see Clock
Oscilloscope, 167–169

Agilent, 168
OTP, see One Time Programmable

Parallel input/output port:
electrical characteristics, 49–52
introduction to, 46–49
of 16F84A, 55–58
of 16F873A, 161–165

input characteristics, 207
of 16F874A/877A (Ports D, E),

180–182
of 18F242, 369–371

Parallel slave port, see Parallel
input/output port, Ports D, E

Philips Semiconductors, 275
PIC, see Microchip Technology Inc.
PICSTART Plus, 84–86
Ping-pong (electronic), 6

circuit diagram, 528
hardware design, 63
program, 112–116, 529–531
simulating, 116–118

Pipelining, 38
Port, see Parallel Input/Output Port
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Power supply, 61
brown-out, 161
of 16F84A, 62
of 16F873A, 161
of 18F242, 358
power-up, 38

Priority/prioritization, see Interrupts and/or
Multi-tasking

Program Counter:
of 16F84A, 32
of 16F873A, 147, 150
of 18F242, 349

Program memory, see Memory, program
Programming:

principles, 66
structure, 89–92

Protocols, 514
Pulse Width Modulation:

digital to analog converter application,
249–252

generating with 16F873A, 239–241
low pass filtering of, 249
principles of, 237–239
software generation of, 244–248

PWM, see Pulse Width Modulation

Quartz Crystal see Clock

Radio connectivity, 516
Random Access Memory (RAM), 10

see also Memory, data
Read Only Memory (ROM), 10

see also Memory, program
Real time:

introduction to, 466
Real Time Operating System (RTOS):

Introduction to, 472
Overhead, 509
Scheduler/Scheduling, 473–477
Semaphore, 478
Tasks, developing, 477

Task states, 474
see also Multi-tasking

Reduced Instruction Set Computer
(RISC), 9, 86

Reference (Voltage), see Voltage Reference
Reset, 38

of 16F84A, 39, 41–43
of 16F873A, 161
of 18F242, 358, 360

Reset Vector:
of 16F84A, 32
of 16F873A, 150
of 18F242, 349

RISC, see Reduced Instruction Set Computer
ROM, see Read Only Memory
RS-232, 293
RTOS, see Real Time Operating System

Salvo Real Time Operating System:
clock tick with, 491–496
configuration file, 482, 489, 494
delays with, 496
interrupts with, 491–496, 507–508
introduction to, 480–485

example program, 485–490
libraries, 482
messages, 499, 506
scheduling with, 484
semaphores, use of, 496
simulating, 490, 497–499
tasks with, 485, 488
see also Real Time Operating System

Sample and hold, 309
acquisition time, 309

Samsung, 199
Schmitt Trigger, 50
Semaphore, see Real Time Operating

System
Serial communication:

asynchronous, 264, 293–295
bit banging, 303
principles of, 263–266
protocols, 264
synchronous, 264, 266, 293
see also Master Synchronous Serial Port, and

Universal Synchronous Asynchronous
Receiver Transmitter
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Serial Peripheral Interface, 266–275
see also Master Synchronous

Serial Port
Servo, 214
SFR, see Special Function Registers
Shaft Encoder, 205
Simulation, 81

graphical, 118
see also MPSIM, and C18 C compiler

Sleep mode:
of 16F84A, 139
of 16F873A, 260
of 18F2420, 383

Special Function Registers:
of 16F84A, 33, 34
of 16F873A, 152
of 18F242, 345–347

SPI, see Serial Peripheral Interface
SRAM, see Static RAM
Stack:

action of, 94
of 16F84A, 32
of 16F873A, 150
of 18F242, 352

State diagram, 91
Static RAM (SRAM), 30
Status Register:

of 16F84A, 29
of 16F873A, 146
of 18F242, 340

Stepping (Stepper) Motor, 212
Stopwatch (simulator), 110
Strings (data), see C programming

language
Subroutines, 94
Successive approximation ADC, 306
Superloop, 90, 469

see also Multi-tasking
Switch (electro-mechanical), 52

debouncing, 212
interfacing, 52
see also Keypad

Switching:
inductive loads, 217
reversible (H bridge), 218

simple DC, 215–217
transistors as switches, 215

Synchronous, see serial communication

Tables (data), see Look-up table
Tape measure (Derbot configured as), 329
Tasks, see Multi-tasking
Test, see Commissioning
Timer, 131–134
Timer 0 module:

of 16F84A, 134–138
of 16F873A, 226
of 18F242, 371–373

Timer 1 module:
of 16F873A, 226–228
of 18F242, 373

Timer 2 module:
of 16F873A, 232–234
of 18F242, 373

Timer 3 module:
of 18F242, 373–375

Timing:
delays, hardware-generated, 137
delays, software-generated, 95–97,

99–101
time measurement in software,

258–260
Trace (simulator), 110
Track and hold, see Sample and hold
Transistor transistor logic (TTL), 61
Trouble-shooting, see Commissioning

Universal Synchronous Asynchronous Receiver
Transmitter (USART):

of 16F873A, 295–302
example program, 300

of 18F242, 378, 380
TTL, see Transistor transistor logic

Ultrasonic sensor, 207
USART, see Universal Synchronous

Asynchronous Receiver Transmitter
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Voltage reference:

of ADC, 308

of ADC module, 312

of 16F873A, 329

Voltmeter (Derbot configured as), 331

Von Neumann, 10

Watchdog Timer (WDT):
of 16F84A, 138
of 18F242, 376

Weak Pull-up, 55

Zigbee, 517
PIC applications, 517
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