Embedded Linux driver development

Embedded Linux kernel and driver development

Michael Opdenacker
Free Electrons
http://free-electrons.com/

Created with OpenOffice.org 2.0

(.\, Free Electrons

(]

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
Creative Commons Attribution-ShareAlike 2.5 license ,

http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://free-electrons.com/
http://openoffice.org/

Rights to copy

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
(.\« Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
© http://free-electrons.com Feb 3,2007

@creative
commons

COMMONS DEETD

Attribution — ShareAlike 2.5 © Copyrlght 2004-2007
You are free Free Electrons
® to copy, distribute, display, and perform the work feedback @free-electrons.com

© to make derivative works)
Document sources, updates and translations:

http://free-electrons.com/training/drivers

® to make commercial use of the work
Under the following conditions

Attribution. You must give the original author credit.
@ : . . Corrections, suggestions, contributions and
Share Alike. If you alter, transform, or build upon this work,

o . . i !
you may distribute the resulting work only under a license translations are welcome!
identical to this one.

® For any reuse or distribution, you must make clear to others the
license terms of this work.

© Any of these conditions can be waived if you get permission from
the copyright holder.

Your fair use and other rights are in no way affected by the above.

License text: http://creativecommons.org/licenses/by-sa/2.5/legalcode

http://free-electrons.com/
http://creativecommons.org/licenses/by-sa/2.5/legalcode
http://free-electrons.com/training/drivers

Best viewed with...

This document 1s best viewed with a recent PDF reader
or with OpenOffice.org itself!

» Take advantage of internal or external hyperlinks.
So, don’t hesitate to click on them! See next page.

» Find pages quickly thanks to automatic search
» Use thumbnails to navigate in the document in a quick way

If you’re reading a paper or HTML copy, you should get your
copy in PDF or OpenOffice.org format on
http://free-electrons.com/training/drivers!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://openoffice.org/
http://openoffice.org/
http://free-electrons.com/training/drivers

Hyperlinks in this document

» Links to external sites Usable in the PDF and ODP formats
Example: http://kernel.org/ Try them on this page!

» Kernel source files
Our links let you view them in your browser.
Example: kernel/sched.c

» Kernel source code:
Identifiers: functions, macros, type definitions...
You get access to their definition, implementation and vhere they are
used. This invites you to explore the source by yourself!
click —¥ wait queue head t queue;
—» init waitqueue head(&queue);

P Table of contents
Directly jump to the corresponding sections.
Example: Kernel configuration

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://kernel.org/
http://lxr.free-electrons.com/source/kernel/sched.c
http://lxr.free-electrons.com/ident?i=wait_queue_head_t
http://lxr.free-electrons.com/ident?i=init_waitqueue_head

Course prerequisites

Skills to make these lectures and labs profitable

Familiarity with Unix concepts and its command line interface

P Essential to manipulate sources and files
P Essential to understand and debug the system that you build

» You should read http://free-electrons.com/training/intro_unix_linux
This Unix command line interface training also explains Whix concepts
not repeated in this document.

Experience with C programming

P On-line C courses can be found on
http://dmoz.org/Computers/Programming/Languages/C/Tutorials/

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://free-electrons.com/training/intro_unix_linux
http://dmoz.org/Computers/Programming/Languages/C/Tutorials/

Contents (1)

Kernel overview

» Linux features

» Kernel code

» Kernel subsystems

» Linux versioning scheme and development process
» Legal issues

» Kernel user interface

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Contents (2)

@
Compiling and booting » Bootloaders
» Linux kernel sources » Linux device files
» Kernel source managers » Cross-compiling the kernel
» Kernel configuration Basic driver development
» Compiling the kernel » Loadable kernel modules
» Overall system startup » Module parameters

» Adding sources to the tree

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Contents (3)

Driver development » Sleeping, Interrupt management

» Memory management » mmap, DMA
» I/O memory and ports

» Character drivers

» Debugging

» Handling concurrency

» Processes and scheduling

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Contents (4)

@
Driver development Advice and resources
» New device model, sysfs » Choosing filesystems
» udev and hotplug » Getting help and contributions

» Bug report and patch submission
» References

» [ast advice

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Contents (5)

Annexes

» Quiz answers

» U-boot details

» Grub details

» Using Ethernet over USB

» Init runlevels

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Embedded Linux driver development

Kernel overview
Linux features

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Studied kernel version: 2.6

Linux 2.6
» Linux 2.6.0 was released in December 2003.

» Lots of features and new drivers
have been added at a quick page since then.

» It is getting more and more difficult to get support or drivers
for recent hardware in 2.4. No community support at all!

» These training slides are compliant with Linux 2.6.19.
It's best to start to learn about the most recent features and
Embedded Linux kernel and driver development

updates!
© Copyright 2004-2007, Free Electrons !' I f
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , ‘ 12

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Linux kernel key features

» Portability and hardware support # Security
Runs on most architectures. It can't hide its flaws. Its code is
b Scalability reviewed by many experts.

Can run on super computers as P Stability and reliability.
well as on tiny devices » Modularity

(4 MB of RAM is enough). Can include only what a system
» Compliance to standards and needs even at run time.

interoperability. » Easy to program

» Exhaustive networking support. You can learn from existing code.
Many useful resources on the net.

o

@
Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons !'I !
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Supported hardware architectures

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

» See the arch/ directory in the kernel sources
» Minimum: 32 bit processors, with or without MMU

» 32 bit architectures (arch/ subdirectories)
alpha, arm, arm26, avr32,cris, frv, h8300, 1386, m32r,
mé6 8k, m68knommu, mips, parisc, powerpc, ppc, s390, sh,
sparc, um, v850, xtensa

P 64 bit architectures:
1a64,mips64, powerpc, sh64, sparc64,x86 64

P See arch/<arch>/Kconfig, arch/<arch>/README, or
Documentation/<arch>/ for details

Embedded Linux kernel and driver development

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/arch/
http://lxr.free-electrons.com/source/arch/
http://lxr.free-electrons.com/source/arch/alpha/
http://lxr.free-electrons.com/source/arch/arm/
http://lxr.free-electrons.com/source/arch/arm26/
http://lxr.free-electrons.com/source/arch/avr32/
http://lxr.free-electrons.com/source/arch/cris/
http://lxr.free-electrons.com/source/arch/frv/
http://lxr.free-electrons.com/source/arch/h8300/
http://lxr.free-electrons.com/source/arch/i386/
http://lxr.free-electrons.com/source/arch/m32r/
http://lxr.free-electrons.com/source/arch/m68k/
http://lxr.free-electrons.com/source/arch/m68knommu/
http://lxr.free-electrons.com/source/arch/mips/
http://lxr.free-electrons.com/source/arch/parisc/
http://lxr.free-electrons.com/source/arch/powerpc/
http://lxr.free-electrons.com/source/arch/ppc/
http://lxr.free-electrons.com/source/arch/s390/
http://lxr.free-electrons.com/source/arch/s390/
http://lxr.free-electrons.com/source/arch/sparc/
http://lxr.free-electrons.com/source/arch/um/
http://lxr.free-electrons.com/source/arch/v850/
http://lxr.free-electrons.com/source/arch/xtensa/
http://lxr.free-electrons.com/source/arch/ia64/
http://lxr.free-electrons.com/source/arch/mips64/
http://lxr.free-electrons.com/source/arch/powerpc/
http://lxr.free-electrons.com/source/arch/sh64/
http://lxr.free-electrons.com/source/arch/sparc64/
http://lxr.free-electrons.com/source/arch/x86_64/

Embedded Linux driver development

Kernel overview
Kernel code

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Implemented in C

» Implemented in C like all Unix systems.
(C was created to implement the first Unix systems)

> A little Assembly is used too:
CPU and machine 1nitialization, critical library routines.

See http://www.tux.org/lkml/#s15-3
for reasons for not using C++
(main reason: the kernel requires efficient code).

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://www.tux.org/lkml/#s15-3

Compiled with GNU C

» Need GNU C extensions to compile the kernel.
So, you cannot use any ANSI C compiler!

» Some GNU C extensions used in the kernel:

P Inline C functions
» Inline assembly

» Structure member initialization
in any order (also in ANSI C99)

» Branch annotation (see next page)

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Help gcc to optimize your code!

» Use the 1ikely and unlikely statements (
include/linux/compiler.h)

» Example:
1f (unlikely(err)) {

}

» The GNU C compiler will make your code faster
for the most likely case.

Used 1n many places in kernel code!
Don't forget to use these statements!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=likely
http://lxr.free-electrons.com/ident?i=unlikely
http://lxr.free-electrons.com/source/include/linux/compiler.h
http://lxr.free-electrons.com/ident?i=unlikely

No C library

» The kernel has to be standalone and can't use user-space code.
Userspace 1s implemented on top of kernel services, not the opposite.
Kernel code has to supply its own library implementations
(string utilities, cryptography, uncompression ...)

» So, you can't use standard C library functions in kernel code.
(printf (), memset (), malloc()...).
You can also use kernel C headers.

» Fortunately, the kernel provides similar C functions for your
convenience, like printk (), memset (), kmalloc() ...

@
Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons !'I !
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,

© http://free-electrons.com Feb 3,2007

Y

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=printk
http://lxr.free-electrons.com/ident?i=memset
http://lxr.free-electrons.com/ident?i=kmalloc

Managing endianism

Linux supports both little and big endian architectures

» Each architecture defines BIG ENDIANor LITTLE ENDIAN
in <asm/byteorder.h>
Can be configured in some platforms supporting both.

» To make your code portable, the kernel offers conversion macros
(that do nothing when no conversion i1s needed). Most useful ones:
u32 cpu to be32(u32); //CPU byte order to big endian
u32 cpu to le32(u32); //CPU byte order to little endian
u32 be32 to cpu(u32); //Little endian to CPU byte order
u32 le32 to cpu(u32); //Bigendian to CPU byte order

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=__BIG_ENDIAN
http://lxr.free-electrons.com/ident?i=__LITTLE_ENDIAN
http://lxr.free-electrons.com/source/include/linux/byteorder/big_endian.h
http://lxr.free-electrons.com/ident?i=cpu_to_be32
http://lxr.free-electrons.com/ident?i=cpu_to_le32
http://lxr.free-electrons.com/ident?i=be32_to_cpu
http://lxr.free-electrons.com/ident?i=le32_to_cpu

Kernel coding guidelines

» Never use floating point numbers in kernel code. Your code
may be run on a processor without a floating point unit (like on
arm). Floating point can be emulated by the kernel, but this is
very slow.

» Define all symbols as static, except exported ones
(to avoid namespace pollution)

» See Documentation/CodingStyle for more guidelines

» It's also good to follow or at least read GNU coding standards:
http://www.gnu.org/prep/standards.html

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/CodingStyle
http://www.gnu.org/prep/standards.html

Embedded Linux driver development

Kernel overview
Kernel subsystems

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Kernel architecture

@
Appl App2
PP pPp User
space
C library
System call interface
Process Memory Filesystem Device -
management management support control Networking Kernel
space
Filesystem
types
CPU support CPU / MMU Storage Character Network
code support code drivers device drivers | = device drivers

CP '-IIII.III-IIIII.I RAM Storage

! —
°° E

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Kernel memory constraints

¢
Who can look after the kernel? User
» No memory protection process 5
Accessing 1llegal memory Attempt l SIGSEGY, ka
locations result 1n (often fatal) to access

kernel oopses.

» Kernel

P Fixed size stack (8 or 4 KB)

Illegall.‘“‘ Exception

Unlike in userspace, memory om® (MMU)

no way to make it grow. -
Y S location {jgerspace memory management
» Kernel memory cant be swapped Used to implement:
out (for the same reasons). - memory protection

- stack growth
- memory swapping to disk

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

I/0 schedulers

P Mission of I/O schedulers: re-order reads and writes to disk to
minimize disk head moves (time consuming!)

Slower Faster

» Not needed in embedded systems with no hard disks
(data access time independent of location on flash storage)
Build your kernel with no-op I/O scheduler then!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Embedded Linux driver development

Kernel overview
Linux versioning scheme and development process

@
Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons w
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g

© http://free-electrons.com Feb 3, 2007

y

http://free-electrons.com/

Linux stable releases

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

Major versions

» 1 major version every 2 or 3 years

Examples: 1.0,2.0,2.4,2.6 Even number

Stable releases i i i i |

P 1 stable release every 1 or 2 months
Examples: 2.0.40,2.2.26,2.4.27,2.6.7 ...

Stable release updates (since March 20035)

» Updates to stable releases up to several times a week
Address only critical 1ssues in the latest stable release
Examples: 2.6.11.1t02.6.11.7

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Linux development and testing releases

Testing releases

P Several testing releases per month, before the next stable one.
You can contribute to making kernel releases more stable by
testing them!

Example: 2.6.12-rcl

Development versions

» Unstable versions used by kernel developers
before making a new stable major release
Examples: 2.3.42, 2.5.74

Odd number
A A |
@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Changes since Linux 2.6

» Since 2.6.0, kernel developers have been able to introduce lots
of new features one by one on a steady pace, without having to
make major changes in existing subsystems.

» Opening a new Linux 2.7 (or 2.9) development branch will be
required only when Linux 2. 6 1s no longer able to accommodate
key features without undergoing traumatic changes.

» Thanks to this, more features are released to users at a faster pace.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

No stable Linux internal API (1)

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

» Of course, the external API must not change (system calls, /proc,
/sys), as it could break existing programs. New features can be
added, but Linux must stay backward compatible with earlier versions.

» The internal kernel API can now undergo changes between two
2 .6 .xreleases. A stand-alone module compiled for a given version
may no longer compile or work on a more recent one.
See Documentation/stable api nonsense.txt
in kernel sources or reasons why.

» Whenever a developer changes an internal API, (s)he also has to
update all kernel code which uses it. Nothing broken!

» Works great for code in the mainline kernel tree.

Difficult to keep 1n line for out of tree or closed-source drivers!

v

Embedded Linux kernel and driver development

i

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/Documentation/stable_api_nonsense.txt

No stable Linux internal API (2)

USB example

» Linux has updated its USB internal API at least 3 times (fixes,
security 1ssues, support for high-speed devices) and has now the
fastest USB bus speeds (compared to other systems)

» Windows XP also had to rewrite its USB stack 3 times. But, because
of closed-source, binary drivers that can't be updated, they had to
keep backward compatibility with all earlier implementation. This 1s
very costly (development, security, stability, performance).

See “Myths, Lies, and Truths about the Linux Kernel”, by Greg K.H.,
for details about the kernel development process:
http://kroah.com/log/linux/ols_2006_keynote.html

Embedded Linux kernel and driver development

w ! ;
© Copyright 2004-2007, Free Electrons w
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license E= ‘ 3 1
I.I

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://kroah.com/log/linux/ols_2006_keynote.html%20

More stability for the 2.6 kernel tree

» Issue: security fixes only released for last (or last two) stable
kernel versions (like 2.6.16 and 2.6.17), and of course by
distributions for the exact version that you're using.

» Some people need to have a recent kernel, but with long term
support for security updates.

» That's why Adrian Bunk proposed to maintain a 2.6.16 stable
tree, for as long as needed (years!).

®) ’/‘!
Embedded Linux kernel and driver development *
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , | 32
|

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

What's new in each Linux release? (1)

Author: Andi Kleen <ak@suse.de>

commit 3¢92c2ba33cd7d666c5f83cc32aa590e794e91b0
Date: Tue Oct 11 01:28:33 2005 +0200 ; 'P '
o e O

[PATCH] i386: Don't discard upper 32bits of HWCR on K8

Need to use long long, not long when RMWing a MSR. I think
it's harmless right now, but still should be better fixed
if AMD adds any bits in the upper 32bit of HWCR.

Bug was introduced with the TLB flush filter fix for i386

Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>

» The official list of changes for each Linux release is just a
huge list of individual patches!

» Very difficult to find out the key changes and to get the
global picture out of individual changes.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

What's new in each Linux release? (2)

» Fortunately, a summary of key changes f?
with enough details 1s available on o7 !
http://wiki.kernelnewbies.org/LinuxChanges

\ A
o

» For each new kernel release, you can also get the
changes 1n the kernel internal API:
http://lwn.net/Articles/2.6-kernel-ap1/

» What's next?
Documentation/feature-removal-schedule.txt
lists the features, subsystems and APIs that are
planned for removal (announced 1 year in advance).

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://wiki.kernelnewbies.org/LinuxChanges
http://lwn.net/Articles/2.6-kernel-api/
http://free-electrons.com/kerneldoc/latest/feature-removal-schedule.txt

Embedded Linux driver development

Kernel overview
Legal 1ssues

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Linux license

» The whole Linux sources are Free Software released
under the GNU General Public License (GPL)

» See our http://free-electrons.com/training/intro_unix_linux
training for details about Free Software and its licenses.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://free-electrons.com/training/intro_unix_linux

Linux kernel licensing constraints

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

Constraints at release time (no constraint before!)

» For any device embedding Linux and Free Software, you have to
release sources to the end user. You have no obligation to release
them to anybody else!

» According to the GPL, only Linux drivers with a GPL compatible
license are allowed.

» Proprietary modules are less and less tolerated.
Lawyers say that they are 1llegal.

» Proprietary drivers must not be statically compiled in the kernel.

» You are not allowed to reuse code from other kernel drivers (GPL)
in a proprietary driver.

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Advantages of GPL drivers

From the driver developer / decision maker point of view

P You don't have to write your driver
from scratch. You can reuse code
from similar free software drivers.

P You get free community
contributions, support, code review
and testing. Proprietary drivers
(even with sources) don't get any.

P Your drivers can be freely shipped
by others (mainly by distributions).

P Closed source drivers often support
a given kernel version. A system
with closed source drivers from 2
different sources is unmanageable.

P Users and the community get a
positive image of your company.
Makes it easier to hire talented
developers.

P You don't have to supply binary
driver releases for each kernel
version and patch version (closed
source drivers).

P Modules have all privileges. You
need the sources to make sure that
a module 1s not a security risk.

P Your drivers can be statically
compiled in the kernel.

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
Creative Commons Attribution-ShareAlike 2.5 license

http://free-electrons.com

(.\, Free Electrons

(]

38

Feb 3,2007

http://free-electrons.com/

Advantages of in-tree kernel modules

Advantages of having your drivers in the mainline kernel sources

» Once your sources are accepted in the mainline tree, they are
maintained by people making changes.

» Cost-free maintenance, security fixes and improvements.
» Easy access to your sources by users.

» Many more people reviewing your code.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

39

http://free-electrons.com/

Legal proprietary Linux drivers (1)

Working around the GPL by creating a GPL wrapper:

B Binary
2 = blob
Linux kernel &S —> 0
§ Q (proprietary
= driver)

The proprietary isnot broken when you recompile or update the kernel
and/or driver. Hence, the proprietary driver may not be considered as a
derivative work. However, the kernel 1s monolithic and the blob still belongs
to a single executable. This is still controversial!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Legal proprietary Linux drivers (2)

2 example cases

P Nvidia graphic card drivers

P Supporting wireless network cards
using Windows drivers.

The NdisWrapper project
(http://ndiswrapper.sourceforge.net/)
implements the Windows kernel API
and NDIS (Network Driver Interface
Specification) API within the Linux
kernel.

Useful for using cards for which no
specifications are released.

Drawbacks

P Still some maintenance issues.
Example: Nvidia proprietary driver
incompatible with X.org 7.1.

P Performance issues.
Wrapper overhead and optimizations
not available.

P Security issues. The drivers are
executed with full kernel privileges.

P ... and all other issues with proprietary
drivers. Users loose most benefits of
Free Software.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://ndiswrapper.sourceforge.net/

Software patent issues in the kernel

Linux Kernel driver issues because of patented algorithms
Check for software patent warnings when you configure your kernel!

P Patent warnings issued in the P Networking compression
documentation of drivers, shown in the drivers/net/bsd comp.c
kernel configuration interface. Can't send a CCP reset-request as a

result of an error detected after

» Flash Translation Layer decompression (Motorola patent).

drivers/mtd/ftl.c

In the USA, this driver can only be P Other drivers not accepted in Linux
used on PCMCIA hardware releases or algorithms not

(MSystems patent). implemented because of such patents!

Otherwise, more examples would be

available in the source code.

P Nand Flash Translation Layer
In the USA, can only be used on
DiskOnChip hardware.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/drivers/mtd/ftl.c
http://lxr.free-electrons.com/source/drivers/net/bsd_comp.c

Embedded Linux driver development

Kernel overview
Kernel user interface

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Mounting virtual filesystems

» Linux makes system and kernel information available in user-
space through virtual filesystems (virtual files not existing on any
real storage). No need to know kernel programming to access this!

» Mounting /proc:
mount -t proc none /proc

» Mounting /sys:
mount -t sysfs none /sys

/ booX

Filesystem type Raw device Mount point

or filesystem image
In the case of virtual
filesystems, any string is fine

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Kernel userspace interface

A few examples:

» /proc/cpuinfo: processor information

» /proc/meminfo: memory status

» /proc/version: version and build information
» /proc/cmdline: kernel command line

» /proc/<pid>/environ: calling environment

P /proc/<pid>/cmdline: process command line

... and many more! See by yourself!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Userspace interface documentation

» Lots of details about the /proc interface are available in
Documentation/filesystems/proc.txt

(almost 2000 lines) 1n the kernel sources.

» You can also find other details in the proc manual page:
man proc

» See the New Device Model section for details about /sys

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/filesystems/proc.txt

Userspace device drivers (1)

Possible to implement device drivers in user-space!

» Such drivers just need access to the devices through
minimum, generic kernel drivers.

» Examples:
Printer and scanner drivers
(on top of generic parallel port / USB drivers)
X drivers: low level kernel drivers + user space X drivers.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Userspace device drivers (2)

» Advantages
No need for kernel coding skills. Easier to reuse code between devices.
Drivers can be kept proprietary.
Driver code can be killed and debugged. Cannot crash the kernel.
Can be swapped out (kernel code cannot be).
Less in-kernel complexity.

» Drawbacks
Less straightforward to handle interrupts.
Increased latency vs. kernel code.

P See http://free-electrons.com/redirect/elc2006-uld.html
for practical details and techniques for overcoming the drawbacks.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://free-electrons.com/redirect/elc2006-uld.html

Embedded Linux driver development

Compiling and booting Linux
Linux kernel sources

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

kernel.org

b The Linux Kernel Archives - Mozilla Firefox

File Edit View Go Boockmarks Tools Help

@ - - ?@ ﬁ [5 http://kernel.org/ &8 Go [E. l

Red Hat Network Common UNIX Printin... @ OSK/uboot - CE Linux... f'api: Module text net Mikehall's Embedded ...

The Linux Kernel Archives

Welcome to the Linux Kernel Archives. This is the primary site for the Linux kernel source, but it has much more
than just Linux kernels.

Protocol Location

HTTP http:/fwww.kernel.org/pub/ I
FTP fip:/ffip.kernel.org/pub

RSYNC rsync:/frsync.kernel.org/pub/

The latest stable version of the Linux kernel is: 2.6.14 2005-10-28 00:27 UTC E ¥ VI C Changelog

The latest snapshot for the stable Linux kernel tree is: 2.6.14-gité 2005-11-03 1749 UTC ¥ C Changelog

The latest 2.4 version of the Linux kernel is: 2.4.31 2005-06-01 00:57 UTC E ¥ VI C Changelog

The latest prepatch for the 2.4 Linux kernel tree is: 2.4.32-rc2 2005-10-3121:16 UTC ¥ VI C Changelog

The latest 2.2 version of the Linux kernel is: 2.2.26 2004-02-25 0026 UTC F WV Changelog Download them from
The latest prepatch for the 2.2 Linux kemnel tree is: 2.2.27-rc2 2005-01-12 23:55 UTC V VI Changelog http://kernel.org

The latest 2.0 version of the Linux kernel is: 2.0.40 2004-02-08 07:13UTC EV VI Changelog

The latest -ac patch to the stable Linux kernels is: 2.6.11-ac? 2005-04-11 1836 UTC W

The latest -mm patch to the stable Linux kernels is: 2.6.14-rc5-mml 2005-10-24 08:10 UTC W Changelog

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license | 50
© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://kernel.org/

Linux sources structure (1)

arch/<arch>
arch/<arch>/mach-<mach>
COPYING

Architecture specific code
Machine / board specific code
Linux copying conditions (GNU GPL)

CREDITS Linux main contributors
crypto/ Cryptographic libraries
Documentation/ Kernel documentation. Don't miss it!
drivers/ All device drivers (drivers/usb/, etc.)
fs/ Filesystems (fs/ext3/, etc.)
include/ Kernel headers
include/asm-<arch> Architecture and machine dependent headers
include/linux Linux kernel core headers
init/ Linux initialization (includingmain.c)
ipc/ Code used for process communication
©
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/arch/
http://lxr.free-electrons.com/source/arch/
http://lxr.free-electrons.com/source/COPYING
http://lxr.free-electrons.com/source/CREDITS
http://lxr.free-electrons.com/source/crypto/
http://lxr.free-electrons.com/source/Documentation/
http://lxr.free-electrons.com/source/drivers/
http://lxr.free-electrons.com/source/drivers/usb/
http://lxr.free-electrons.com/source/fs/
http://lxr.free-electrons.com/source/fs/ext3/
http://lxr.free-electrons.com/source/include/
http://lxr.free-electrons.com/source/include/
http://lxr.free-electrons.com/source/include/
http://lxr.free-electrons.com/source/init/
http://lxr.free-electrons.com/source/init/main.c
http://lxr.free-electrons.com/source/ipc/

Linux sources structure (2)

©

kernel/ Linux kernel core (very small!)
lib/ Misc library routines (z1lib, crc32...)
MAINTAINERS Maintainers of each kernel part. Very useful!
Makefile Top Linux makefile (sets arch and version)
mm / Memory management code (small too!)
net/ Network support code (not drivers)
README Overview and building instructions
REPORTING-BUGS Bug report instructions
scripts/ Scripts for internal or external use
security/ Security model implementations SELinux...)
sound/ Sound support code and drivers
usr/ Early user-space code (initramfs)

©

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

52

http://free-electrons.com/
http://lxr.free-electrons.com/source/kernel/
http://lxr.free-electrons.com/source/lib/
http://lxr.free-electrons.com/source/MAINTAINERS
http://lxr.free-electrons.com/source/Makefile
http://lxr.free-electrons.com/source/mm/
http://lxr.free-electrons.com/source/net/
http://lxr.free-electrons.com/source/README
http://lxr.free-electrons.com/source/REPORTING-BUGS
http://lxr.free-electrons.com/source/scripts/
http://lxr.free-electrons.com/source/security/
http://lxr.free-electrons.com/source/sound/
http://lxr.free-electrons.com/source/usr/

Linux kernel size (1)

» Linux 2.6.17 sources:
Raw size: 224 MB (20400 files, approx 7 million lines of code)
bzip2 compressed tar archive: 40 MB (best choice)
gzip compressed tar archive: 50 MB

» Minimum compiled Linux kernel size (with Linux-Tiny patches)
approx 300 KB (compressed), 800 KB (raw)

» Why are these sources so big?
Because they include thousands of device drivers, many network
protocols, support many architectures and filesystems...

» The Linux core (scheduler, memory management...) is pretty small!

®) ’/‘!
Embedded Linux kernel and driver development *
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , | 5 3
|

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Linux kernel size (2)

Size of Linux source directories (KB)

arch |
block
crypto |
Documentation =
drivers
fs
include
init |
ipc
kernel |
lib |
mm |
net
!
J

scripts | Linux 2.6.17

security | Measured with:
sound du -s --apparent-size
usr

0 50000 100000 150000

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Getting Linux sources: 2 possibilities

Full sources

» The easiest way, but longer to download.

» Example:
http://kernel.org/pub/linux/kernel/v2.6/linux-2.6.14.1.tar.bz2

Or patch against the previous version

P Assuming you already have the full sources of the previous version

» Example:
http://kernel.org/pub/linux/kernel/v2.6/patch-2.6.14.bz22.6.13 to 2.6.14)
http://kernel.org/pub/linux/kernel/v2.6/patch-2.6.14.7.bzX2.6.14 to 2.6.14.7)

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://kernel.org/pub/linux/kernel/v2.6/linux-2.6.14.1.tar.bz2
http://kernel.org/pub/linux/kernel/v2.6/patch-2.6.14.bz2
http://kernel.org/pub/linux/kernel/v2.6/patch-2.6.14.7.bz2

Downloading full kernel sources

Downloading from the command line
» With a web browser, identify the version you need on http://kernel.org

» In the right directory, download the source archive and its signature
(copying the download address from the browser):

wget http://kernel.org/pub/linux/kernel/v2.6/linux-2.6.11.12.tar.bz2
wget http://kernel.org/pub/linux/kernel/v2.6/linux-2.6.11.12.tar.bz2.sign

» Check the electronic signature of the archive:

gpg --verify linux-2.6.11.12.tar.bz2.sign =/ -wgetrc config file for proxies:

http proxy = <proxy>:<port>
. . ftp proxy = <proxy>:<port>
» Extract the contents of the source archive: promy user = cusers (ifany)
proxy password = <passwd> (if any)

tar jxvf linux-2.6.11.12.tar.bz2

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons

(.\« Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://kernel.org/
http://kernel.org/pub/linux/kernel/v2.6/linux-2.6.11.12.tar.bz2
http://kernel.org/pub/linux/kernel/v2.6/linux-2.6.11.12.tar.bz2.sign

Downloading kernel source patches (1)

Assuming you already have the 1inux-x.y.<n-1> version
P Identify the patches you need on http://kernel.org with a web browser

» Download the patch files and their signature:

Patch from2.6.10t02.6.11
wget ftp://ftp.kernel.org/pub/linux/kernel/v2.6/patch-2.6.11.bz2
wget ftp://ftp.kernel.org/pub/linux/kernel/v2.6/patch-2.6.11.bz2.sign

Patchfrom2.6.11t02.6.11.12 (latest stable fixes)

wget http://www.kernel.org/pub/linux/kernel/v2.6/patch-2.6.11.12.bz2
wget http://www.kernel.org/pub/linux/kernel/v2.6/patch-2.6.11.12.bz2.sign

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://kernel.org/

Downloading kernel source patches (2)

» Check the signature of patch files:

gpg --verify patch-2.6.11.bz2.sign
gpg --verify patch-2.6.11.12.bz2.sign

» Apply the patches in the right order:

cd linux-2.6.10/

bzcat ../patch-2.6.11.bz2 | patch -pl
bzcat ../patch-2.6.11.12.bz2 | patch -pl
cd ..

mv linux-2.6.10 linux-2.6.11.12

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Checking the integrity of sources

Kernel source integrity can be checked throughOpenPGP digital signatures.
Full details on http://www .kernel.org/signature.html

P If needed, read http://www.gnupg.org/gph/en/manualhtml and create a new
private and public keypair for yourself.

» Import the public GnuPG key of kernel developers:
P gpg --keyserver pgp.mit.edu --recv-keys 0x517DOFOE

P If blocked by your firewall, look for 0x517D0FOE on http://pgp.mit.edu/,
copy and paste the key to alinuxkey.txt file:
gpg --import linuxkey.txt

P Check the signature of files:
gpg --verify linux-2.6.11.12.tar.bz2.sign

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://www.kernel.org/signature.html
http://www.gnupg.org/gph/en/manual.html
http://pgp.mit.edu/

Anatomy of a patch file

A patch file 1s the output of the diff command

diff -Nru a/Makefile b/Makefile <«— diff command line
-—- a/Makefile 2005-03-04 09:27:15 -08:00 | |
+++ b/Makefile 2005-03-04 09:27:15 -08:00 <+ Filedaeinfo

ee -1,7 +1,7 @@ <«— Line numbers in files
VERSION = 2 . .
PATCHLEVEL = 6 - Context info: 3 lines before the change

Useful to apply a patch when line numbers changed
SUBLEVEL = 11

—-EXTRAVERSION = <«4— Removed line(s) if any
+EXTRAVERSION = .1 4— Added line(s) if any
NAME=Woozy Numbat

<«4— Context info: 3 lines after the change
DOCUMENTATION

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Using the patch command

¢
The patch command applies changes to files in the current directory:

» Making changes to existing files

» Creating or deleting files and directories

patch usage examples: Vou can reverse @

P patch -p<n> < diff file a patch
o with the —R option
P cat diff file | patch -p<n>
P bzcat diff file.bz2 | patch -p<n>
» zcat diff file.gz | patch -p<n>

n: number of directory levels to skip in the file paths

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Applying a Linux patch

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

Linux patches...
P Always to apply to thex .y .<z-1> version
P Always produced forn=1 (that's what everybody does... do it too!)

» Downloadable ingzip and bzip2 (much smaller) compressed files.

P Linux patch command line example:
cd linux-2.6.10

bzcat ../patch-2.6.11.bz2 | patch -pl
cd ..; mv linux-2.6.10 linux-2.6.11

P Keep patch files compressed: useful to check their signature later.
You can still view (or even edit) the uncompressed data wth vi:
vi patch-2.6.11.bz2 (on the fly (un)compression)

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Accessing development sources (1)

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

P Kernel development sources are nowmanaged with git

» You can browse Linus' git tree (if you just need to check a fewfiles):
http://www.kernel.org/git/?pdinux/kernel/git/torvalds/linux-2.6.git;a=tree

P Get and compile git from http://kernel.org/pub/software/scm/git/

P Get and compile the cogito front-end from
http://kernel.org/pub/software/scm/cogito/

P If you are behind a proxy, set Lhix environment variables defining proxy
settings. Example:
export http proxy="proxy.server.com:8080"
export ftp proxy="proxy.server.com:8080"

Embedded Linux kernel and driver development

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://www.kernel.org/git/?p=linux/kernel/git/torvalds/linux-2.6.git;a=tree
http://kernel.org/pub/software/scm/git/
http://kernel.org/pub/software/scm/cogito/

Accessing development sources (2)

» Pick up a git development tree on http://kernel.org/git/

» Get a local copy (“clone”) of this tree.
Example (Linus tree, the one used for Linux stable releases):

cg-clone http://kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git
or cg-clone rsync://rsync.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git

» Update your copy whenever needed (Linus tree example):
cd linux-2.6
cg-update origin

More details available
on http://git.or.cz/ or http://linux.yyz.us/git-howto.html

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://kernel.org/git/
http://kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git
http://git.or.cz/
http://linux.yyz.us/git-howto.html

On-line kernel documentation

http://free-electrons.com/kerneldoc/
» Provided for all recent kernel releases
P Easier than downloading kernel sources to access documentation

» Indexed by Internet search engines
Makes kernel pieces of documentation easier to find!

» Unlike most other sites offering this service too, also includes an
HTML translation of kernel documents in the DocBook format.

Never forget documentation in the kernel sources! It's a very
valuable way of getting information about the kernel.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://free-electrons.com/kerneldoc/

Embedded Linux driver development

Compiling and booting Linux
Kernel source management tools

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Cscope

http://cscope.sourceforge.net/

P Tool to browse source code
(mainly C, but also C++ or Java)

» Supports huge projects like the Linux kernel - 5
Takes less than 1 min. to index Linux 2.6.17 .
Allows searching code for:
sources (fast!) - all references to a symbol

- global definitions
- functions called by a function
i i i - functions calling a function
» In Linux kernel sources, run it with: ~ {ex0sthing

cscope -Rk - regular expression pattern

(see man cscope for details)] ff‘ig:inclu ding adile

» Can be used from editors like vim and emacs.

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license 67

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://cscope.sourceforge.net/

Cscope screenshot

xterm

zymbal: request_irg

File Function Line

amap_udc, © amap_udc_probe 2821 =tatus

amap_udc,c amap_udc_probe 2830 =ztatus

amap_udc,c amap_udc_probe 2838 status

prad_udc, o pragy_udc_probe 2517 retwal

prada_udc, o pragy_udc_probe 2028 retval = request_irqiLUBBOCK_USB_DISC_IRQ,

prazxy_udc,c pxadxx_udc_probe 2529 retval = regquest_irq({LUBBOCK_USE_IR0,

ho_criswll,c etrax_usb_hc_init 4423 if (request_irqiETRAX_USE_HC_IRN, etrax_usb_hc_interrupt_top_half.
0,

ho_criswlo,c etrax_uzb_hc_init 4431 if (request_irg(ETRAX_USE_RX_IRD, etrax_usb_rx_interrupt, 0,

ho_criswll,c etrax_usb_hco_init 4439 if (request_irq(ETRAX_USE_TX_IRD, etrax_usb_tx_interrupt, 0,

amifb,c amifb_init 2431 if (request_irq{IR0_AMIGA_COPPER, amifb_interrupt, 0,

arcfhb,c arcfb_praobe BE4 if (request_irgipar—rirg, &arcfb_interrupt, SA_SHIRD,

atafb,c atatb_init 2720 request_irqt IRO_AUTO_4, falcon_wbl_switcher, IRO_TYPE_PRIO,

atyfb_basze.c aty_enable_irg 1562 if (request_irgipar-rirq, aty_irg, SA_SHIRD, "atyfb", par)) 1

request_irqlpdev->resource[1],start, omap_udc_irg,
request_irqlpdev—rresource[2],start, omap_udc_pio_irg.
request_irqlpdev—rresource[3],start, omap_udc_iso_irg,
request_irql IRO_USE, pxa2xx_udc_irg,

* 185 more lines — press the space bar to display more *
Find thiz C symbol:

Find thiz global definition:

Find functionz called by this function:

Find functions calling this function:

Find this text string:

Change thiz text string:

Find thiz egrep pattern:

Find this file:

Find files #including this file:

@
Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license
© http://free-electrons.com

Feb 3, 2007

http://free-electrons.com/

KScope

http://kscope.sourceforge.net

» A graphical front-end to Cscope

» Makes it easy to browse and edit the Linux kernel sources
» Can display a function call tree

» Nice editing features: symbol completion, spelling checker,
automatic indentation...

» Usage guidelines:
Use the Kernel setting to ignore standard C includes.
Make sure the project name doesn't contain blank characters!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://kscope.sourceforge.net/

KScope screenshots (1)

E linux-2.6.17 - fhome/mike/linux/linux-2.6.17/drivers/char/mem.c - KScope

Eile Edit Wiew Project

G [HOO000Q HH =4+

Cscope

Go Bookmarks Tools

[7] mem.c {Dgaccess.h ‘Dugccess.c I

Window

68 & &

Settings Help

10c000 EI3

| |

4]

Name

[Elread _zero
[Elread_zero

Eread port Symbols

[Elread_ oldmem

[Elread_null ln curren

[Elread mem

s

read_kmem

[Elpipe_to_null

[Ephys mem_access_prot
[Elopen_port

[Elnull_lseek

[Elmmap _zero
[Elmmap_zero
[Elmmap_mem
[Emmap_kmem

g

&

B/

static int mmap_kmem(struct file * file, struct vm_area_struct * vma) B

{
unsigned long pfn:

% Tuyrn & karnal-

__pal(usd)vma-=vm_pgoff << PAGE_SHIFT) == PAGE_SHIFT;

virtual

bfn =

(tpfn_valid(pfn))
return -EIDQ;

vma-=vm_pgoff = pfn;
i
#1fdef COMFIG_CRASH_DUMP

address into a physical

return mmap_mem(file, vma);

T h '\.r'\.

H-._-.: id checks

Main window

naga Frama %4

s E=REN

|EScrypto
~lcscope.out
[ESDocumentation
= E‘drivers
[Eacorn
[acpi
[Edamba
[E=2atm
[Ebase
[Eablock
[E2bluetooth
[Ecdrom
& [=jchar
[Eagp

[“lamiserial.c

Projec
files

5

|| Find File...

[Set Root...

() Definition of kmalloc l

FoX

Function File
kmalloc
kmalloc

kmalloc

fhome/mike/linux/linux-2.6.17/mm/slob.c
fhome/mike/linux/linux-2.6.17finclude/linux/slab. h
fhome/mikeflinux/linux-2.6.17fincludefasm-s380/debug.h

Line

Text

151 void *kmalloc(size_t size, gfp_t gfp)
90 static inline void *kmalloc(size_t size, gfp_t flags)

250 #define kmalloc(x...) (PRINT_INFO{" kmalloc %pin", b=kmalloc(x)),b)

Query window

Line: 370 Col: 1

Free Electrons

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons

Creative Commons Attribution-ShareAlike 2.5 license
i http://free-electrons.com

Feb 3, 2007

http://free-electrons.com/

KScope screenshots (2)

®
E Called Functions Tree
YEY B DN
Function File Line Text B
- kmalloc
®- slob_free fhome/mike/linuxlinux-2.6.17/mm/slob.c 187 slob_free(bb, sizeof(bigblock_t));
®- spin_unlock_irgrestore fhome/mikeflinux/linux-2.6.17/mm/slob.c 183 spin_unlock_irgrestore(&block_lock, flags);
®- spin_lock_irgsave fhome/mike/linuxflinux-2.6.17/mm/slob.c 180 spin_lock_irgsave(&block_lock, flags)
® _get free pages fhome/mikeflinux/linux-2.6.17/mm/slob.c 177 bb-=pages = (void ¥)_get free pagesigfp, bb-=orc
- find_order fhome/mike/linuxlinux-2.6.17/mm/slob.c 176 bb-=order = find_order(size);
® slob_alloc fhome/mike/linuxlinux-2.6.17/mm/slob.c 172 bb = slob_alloc(sizeof(bigblock_t), gfp, 0
®- slob_alloc fhome/mike/linux/linue-2.6.17/mm/slob.c 188 m = slob_alloc(size + SLOB_UNIT, gfp, O}
= kmalloc fhome/mikeflinux/linux-2.6.1 7 finclude/linux/slab. h 110 return __kmalloc(size, flags)
® __ builtin_return_address fhome/mike/linuxlinux-2.6.17/mm/slab.c 3300 return __do_kmalloc(size, flags, __builtin_return_add
® __do_kmalloc fhome/mikeflinux/linux-2.6.17/mm/slab.c 3300 return __do_kmalloc(size, flags, __builtin_return_add
® __do_kmalloc fhome/mike/linux/linue-2.6.17/mm/slab.c 3298 return __do_kmalloc(size, flags, NULL);
® kmem_cache_alloc fhome/mikeflinux/linux-2.6.1 7 finclude/linux/slab. h 106 return kmem_cache_alloc((flags & GFP_DMA) ? -
® _you_cannot_kmalloc_that_much fhome/mike/linuxlinux-2.6.1 7 finclude/linux/slab.h 103 _vyou_cannot_kmalloc_that_much();
®-_you_cannot_kmalloc_that_much /home/mike/linuxlinux-2.6.17finclude/flinux/slab.h 102 extern void __you_cannot_kmalloc_that_muchivoid)
- __builtin_constant_p fhome/mike/linuglinus-2.6.1 7 fincludeflinux/slab. h 82 if (__builtin_constant_p(size)) { @
L | D)
Right-click a tree item for more options.

Called functions tree

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons

. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license : ‘ 7 1
© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

LXR: Linux Cross Reference

http://sourceforge.net/projects/Ixr 2 Takes some time and patience to setup

, , , (configuration, indexing, server configuration).
Generic source indexing tool

and code browser 2 Initial indexing very slow:
Linux 2.6.17: several hours on a server
with an AMD Sempron 2200+ CPU.

Using Kscope i1s the easiest and fastest solution
P Identifier or text search available for modified kernel sources.

P Web server based
Very easy and fast to use

P Very easy to find the declaration, 2 You don't need to set up LXR by yourselt.
implementation or usages of symbols Use our http:/Ixr.free-electrons.com server!

Other servers available on the Internet:

» Supports C and C++ http://free-electrons.com/community/kernel/lxr/

» Supports huge code projects > This makes LXR the simplest solution

such as the Linux kernel to browse standard kernel sources.
(274 M 1n version 2.6.17).

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://sourceforge.net/projects/lxr
http://lxr.free-electrons.com/
http://free-electrons.com/community/kernel/lxr/

LXR screenshot

b Linux/kernel/user.c - M.

File Edit View Go PBookmarks Tools Help

<:§| - LL - @ @ L1 httpf{lxr.linux.no/source/kemelfuser.c © Go @,

| | Red Hat, Inc. | | Red Hat Network | 1Support ")Shop |"JProducts [} Training

[+]

[source navigation |
[diff markup |
[identifier search |

Cross-Referencing Linux

Linux/kernel/user.c [Frectext search |
[file search |
Version: [10.97]1.2.13][2.0.40][2.2.26] [2.4.18 | [2.4.20 | [2.4.28] [2.6.10 | [2.6.11]

[i386][alpha][arm] [ia64 | [m68k][mips | [mips64 | [ppe][s390] [sh] [sparc | [sparc64 |

Architecture:

[x86_64]
/%
2 # The "user cache"”.
3 #
4 # (C) Copyright 1991-2000 Linus Torvalds
5 %
6 * We have a per-user structure to keep track of how many
7 " processes, files etc the user has claimed, in order to be
8 # able to have per-user limits for system resources.
g
10
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <limux/slab.h>
14 #include <limug/bitops.h>
15 #include <linux/kev.h>
16
17 /=
18 +* UID task count cache, to get fast user lookup in "alloc_uid"
19 + when changing user ID's (ie setuid() and friends).
20 */
21 #define UIDHASH BITS 8
22 #define UIDHASH S7 (1 << UIDHASH BITS)
23 #define UIDHASH MASK (UIDHASH_SZ - 1)
24 #define __uidhashfn(uid) (((uid »> UIDHASH _BITS) + uid) & UIDHASH_MASK)
25 #define uidhashentry(uid) (uidhash_table + __uidhashfn{({uid)))
26
27 static kmem_cache t *uid_cachep;
28 static struct list head uidhash_table[UIDHASH SZ7];
29 static DEFINE SPINLOCK(uidhash_lock);
30
31 struct user struct root user = {
32 .__count = ATOMIC_TNIT(1),
33 .processes = ATOMIC_INIT(1), (]
Done

Free Electrons

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons

Creative Commons Attribution-ShareAlike 2.5 license
© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Ketchup - Easy access to kernel source trees

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

http://www.selenic.com/ketchup/wiki/

> Makes it easy to get the latest version of a given kernel source tree
(2.4,2.6,2.6-rc,2.6-git,2.6-mm, 2.6-rt...)

» Only downloads the needed patches.
Reverts patches when needed to apply a more recent patch.

> Also checks the signature of sources and patches.

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://www.selenic.com/ketchup/wiki/

Ketchup examples

» Get the version in the current directory:
> ketchup -m
2.6.10

» Upgrade to the latest stable version:
> ketchup 2.6-tip
2.6.10 => 2.6.12.5
Applying patch-2.6.11.bz2
Applying patch-2.6.12.bz2
Applying patch-2.6.12.5.bz2

» You can get backto 2.6. 8:
> ketchup 2.6.8

More on http://selenic.com/ketchup/wiki/index.cgi/ExampleUsage

e

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license
© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://selenic.com/ketchup/wiki/index.cgi/ExampleUsage

Practical lab — Kernel sources

Time to start Lab 1!

» Get the sources

» Check the authenticity of sources
» Apply patches

» Get familiar with the sources

» Use a kernel source indexing tool

(.\, Free Electrons

(]

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
Creative Commons Attribution-ShareAlike 2.5 license

http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Embedded Linux driver development

Compiling and booting Linux
Kernel configuration

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Kernel configuration overview

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
(.\« Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
© http://free-electrons.com Feb 3,2007

» Makefile edition
Setting the version and target architecture if needed

» Kernel configuration: defining what features to include in the kernel:

make [config|xconfig|gconfig|menuconfig|oldconfig]

P Kernel configuration file (Makefile syntax) stored
in the .config file at the root of the kernel sources

» Distribution kernel config files usually released in /boot /

http://free-electrons.com/
http://lxr.free-electrons.com/source/Makefile

Makefile changes

» To identify your kernel image with others build from the
same sources, use the EXTRAVERSION variable:

VERSION 2
PATCHLEVEL = 6
SUBLEVEL = 15
EXTRAVERSION = -acmel

» uname -r will return:
2.6.15-acmel

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

make xconfig

make xconfig

» New Qt configuration interface for Linux 2.6: gconf.
Much easier to use than in Linux 2.4!

» Make sure you read
help -> introduction: useful options!

» File browser: easier to load configuration files

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

make xconfig screenshot

File Option Help

o FHE |l E|

S

Option

|Name

[+

MName

é----Cude maturity level options
—-General setup

- oadable module support
--System Type

=-Intel PXA2xx Implementations
- [Toshiba e7xx | e8xx
[Asus 620/620BT

- hp iIPAQ h1910

s E=hp iPAQ h2200

- hp iIPAQ h3900

- hp iIPAQ h4000

- [l hp IPAQ h5400

- O Dell Axim X5

- [RoverP1 (Mitac Mio 336)
- [« RoverP5+
-Linux As Bootloader
- Compaq/iPAQ Options
--General setup
i PCMCIA/CardBus support
“-Generic Driver Options
- Parallel port support
=-Memory Technology Devices (MTD)
é----RAM.FROM.FFIaSh chip drivers
E----Mapping drivers for chip access

“~NAND Flash Device Drivers
-Plug and Play support

- Dell Axim X3 (non-functional)

5----Ccnfigure standard kernel features (for small systems) EMBEDDED

ARCH_ESERIES
MACH_AG20
ARCH_H1900
ARCH_H2200
ARCH_H3900
MACH_H4000
ARCH_H5400
ARCH_AXIMX5
ARCH_AXIMX3
ARCH_ROVERP1
ARCH_ROVERPSP

- Self-contained MTD device drivers

[<]

s

| Option
.

BIPAQ H2200 PCMCIA

EliPAQ H2200 MediaQ 1178 LCD
~[iPAQ H2200 battery interface

i BliPAQ H2200 touchscreen driver

‘- EiPAQ H2200 hardware audio contral

H2200_PCMCIA
H2200_LCD
H2200_BATTERY
H2200_TS
H2200_AUDIO

A

hp iPAQ h2200 (ARCH_H2200)

type: boolean
prompt: hp iPAQ h2200
dep: ARCH_PXA
select: PXA25x
dep: ARCH_PXA

defined at archfarm/mach-pxa/h2200/Kconfig:1

This enables support for HP iPAQ H22xx series of handhelds.
There are a number of H22xx-specific drivers under this submenu:

pcmcia, led, battery, touchscreen

[+]

Free Electrons

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons

Creative Commons Attribution-ShareAlike 2.5 license
http://free-electrons.com

Feb 3, 2007

http://free-electrons.com/

Compiling statically or as a module

Compiled as a module (separate file)
CONFIG IS09660 FS=m

Driver options 5-E§ISO 9660 CDROM file system support
CONFIG_JOLIET=y —®2Microsoft Joliet CDROM extensions
CONFIG_ZISOFS=y —-=Transparent decompression extension
-aUDF file system support

/

Compiled statically in the kernel
CONFIG UDF_FS=y

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

make menuconfig

Linux Kernel v2.6.128 Configuration .

el sssssss———— Mo ke menuconfig
Processor type and features -

Arrow keys navigate the menu. <=Enter> selects submenus ---=. Highlighted

letters are hotkeys. Pressing <Y> includes, <N= excludes, <M= modularizes E;ElII]f3 ()1(1 tfa)(t iIltfiffﬁi()Ei
features. Press <Esc=<Esc> to exit, =<?= for Help, =</= for Search.
as in Linux 2.4.

Legend: [*] built-in [] excluded <M= module <= = module capable

[] Symmetric multi-processing support
Subarchitecture Type (PC-compatible) --- .
Processor family (Pentium-Pro) ---= Useful When no graphlcs

] Generic x86 support
] HPET Timer Support

Preemption Model (Mo Forced Preemption (Server)) --- arc El\/EillElt)lfi. I)Ifitt)/

Local APIC support on uniprocessors . ‘
Machine Check Exception (:()Il\/f:Illf:Ilt t()().
Toshiba Laptop support
Deltllaptupbsupgurt e g
Enable X858 board speclfic Tlxups tor reboot

Jdev/cpu/microcode - Intel IA32 CPU microcode support 5;211I1€: IIltﬁirfﬁi(lfi fk)llll(i 1n
Jdev/cpu/*/msr - Model-specific register support

- fdev/cpu/*/cpuid - CPU information support Other tOOlS: BU.SYbOX,
Firmware Drivers --- .
buildroot...

< Exit = < Help =

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

° http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

make config / make gconfig

make config

» Asks you the questions 1 by 1. Extremely long!

make gconfig

» New GTK based graphical configuration interface.
Functionality similar to that of make xconfig.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

make oldconfig

make oldconfig
» Needed very often!

» Useful to upgrade a . config file from an earlier kernel
release

» Issues warnings for obsolete symbols
» Asks for values for new symbols

If you edit a .config file by hand, it's strongly recommended

to run make oldconfig afterwards!
- 85

@
Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons w
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

make allnoconfig

make allnoconfig

» Only sets strongly recommended settings to y.

» Sets all other settings to n.

» Very useful in embedded systems to select only the minimum
required set of features and drivers.

» Much more convenient than unselecting hundreds of features
one by one!

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

make help

make help
» Lists all available make targets

» Useful to get a reminder, or to look for new or advanced
options!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Embedded Linux driver development

Compiling and booting Linux
Compiling the kernel

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Compiling and installing the kernel

Compiling step

» make

Install steps (logged as root!)

» make install

» make modules_install

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Dependency management

» When you modify a regular kernel source file, make only
rebuilds what needs recompiling. That's what it 1s used for.

» However, the Makefile is quite pessimistic about
dependencies. When you make significant changes to the
.config file, make often redoes much of the compile job!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/Makefile

Compiling faster on multiprocessor hosts

» If you are using a workstation with n processors, you may roughly
divide your compile time by n by compiling several files in parallel

» make -j <n>
Runs several targets in parallel, whenever possible

» Using make -j 2 ormake -7 3 on single processor workstations.
This doesn't help much. In theory, several parallel compile jobs keep
the processor busy while other processes are waiting for files to be
read of written. In practice, you don't get any significant speedup (not
more than 10%), unless your I/Os are very slow.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Compiling faster with ccache

http://ccache.samba.org/

Compiler cache for C and C++, already shipped by some distributions
Much faster when compiling the same file a second time!

» Very useful when .config file change are frequent.

» Use it by adding a ccache prefix
to the CC and HOSTCC definitions in Makefile:

CC = ccache $(CROSS COMPILE)gcc
HOSTCC = ccache gcc

» Performance benchmarks:
-63%: with a Fedora Core 3 config file (many modules!)
-82%: with an embedded Linux config file (much fewer modules!)
Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons !' 5 !
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , ‘ 92
|

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://ccache.samba.org/
http://lxr.free-electrons.com/source/Makefile

Kernel compiling tips

» View the full (gcc, 1d...) command line:
make V=1

» Clean-up generated files
(to force re-compiling drivers):
make clean

1
f

(mainly to create patches)
: Caution: also removes your .config file!
make mrproper

' » Remove all generated files

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Generated files

Created when you run the make command

P vmlinux
Raw Linux kernel image, non compressed.

» arch/<arch>/boot/zImage (default image on arm)
z11ib compressed kernel image

P arch/<arch>/boot/bzImage (default image on 1386)
Also a z1ib compressed kernel image.
Caution: bz means “big zipped” but not “bzip2 compressed”!
(bzip2 compression support only available on 1386 as a tactical patch.
Not very attractive for small embedded systems though: consumes 1 MB
of RAM for decompression).

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Files created by make install

» /boot/vmlinuz-<version>
Compressed kernel image. Same as the one in arch/<arch>/boot

» /boot/System.map-<version>
Stores kernel symbol addresses

» /boot/initrd-<version>.img (when used by your distribution)
Initial RAM disk, storing the modules you need to mount your root
filesystem. make install runs mkinitrd for you!

» /etc/grub.conf or /etc/lilo.conf
make install updates your bootloader configuration files to support
your new kernel! It reruns /sbin/1ilo if LILO is your bootloader.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Files created by make modules_install (1)

/lib/modules/<version>/: Kernel modules + extras

» build/
Everything needed to build more modules for this kernel: Makefile,
.config file, module symbol information (module.symVers),
kernel headers (include/ and include/asm/)

» kernel/
Module . ko (Kernel Object) files, 1n the same directory structure as in
the sources.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Files created by make modules_install (2)

/lib/modules/<version>/ (continued)

P modules.alias
Module aliases for module loading utilities. Example line:
alias sound-service-?-0 snd mixer oss

P modules.dep
Module dependencies (see the Loadable kernel modules section)

P modules.symbols
Tells which module a given symbol belongs to.

All the files 1n this directory are text files.
Don't hesitate to have a look by yourself!

@ g
Embedded Linux kernel and driver development *a
© Copyright 2004-2007, Free Electrons
o Free Electrons A \ 97
1y

Creative Commons Attribution-ShareAlike 2.5 license
© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Compiling the kernel in a nutshell

» Edit version information in the Makefile file

» make xconfig
make
make install
make modules install

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/Makefile

Embedded Linux driver development

Compiling and booting Linux
Overall system startup

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Linux 2.4 booting sequence

Bootloader

- Executed by the hardware at a fixed location in ROM / Flash

- Initializes support for the device where the kernel image is found (local storage, network,
removable media)

- Loads the kernel image in RAM

- Executes the kernel image (with a specified command line)

Kernel

- Uncompresses itself

- Initializes the kernel core and statically compiled drivers (needed to access the root filesystem)
- Mounts the root filesystem (specified by the root kernel parameter)

- Executes the first userspace program

First userspace program
- Configures userspace and starts up system services

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Linux 2.6 booting sequence

Bootloader

- Executed by the hardware at a fixed location in ROM / Flash

- Initializes support for the device where the images are found (local storage, network, removable media)
- Loads the kernel image in RAM

- Executes the kernel image (with a specified command line)

Kernel

- Uncompresses itself

- Initializes the kernel core and statically compiled drivers

- Uncompresses the initramfs cpio archive included in the kernel file cache (no mounting, no filesystem).
- If found in the initramfs, executes the first userspace program: /init

Userspace: /init script (what follows is just a typical scenario)

- Runs userspace commands to configure the device (such as network setup, mounting /proc and /sys...)
- Mounts a new root filesystem. Switch to it (switch root)

- Runs /sbin/init (or sometimes a new /linuxrc script)

Userspace: /sbin/init
- Runs commands to configure the device (if not done yet in the initramfs)
- Starts up system services (daemons, servers) and user programs

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Linux 2.6 booting sequence with initrd

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

Bootloader

- Executed by the hardware at a fixed location in ROM / Flash

- Initializes support for the device where the images are found (local storage, network, removable media)
- Loads the kernel and init ramdisk (initrd) images in RAM

- Executes the kernel image (with a specified command line)

Kernel

- Uncompresses itself

- Initializes statically compiled drivers

- Uncompresses the initramfs cpio archive included in the kernel. Mounts it. No /init executable found.
- So falls back to the old way of trying to locate and mount a root filesystem.

- Mounts the root filesystem specified by the root kernel parameter (initrd in our case)

- Executes the first userspace program: usually /linuxrc

Userspace: /linuxrc script in initrd (what follows is just a typical sequence)

- Runs userspace commands to configure the device (such as network setup, mounting /proc and /sys...)
- Loads kernel modules (drivers) stored in the initrd, needed to access the new root filesystem.

- Mounts the new root filesystem. Switch to it (pivot root)

-Runs /sbin/init (or sometimes a new /linuxrc script)

Userspace: /sbin/init
- Runs commands to configure the device (if not done yet in the initrd)
- Starts up system services (daemons, servers) and user programs

° http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Linux 2.4 booting sequence drawbacks

Trying to mount the filesystem specified
by the root kernel parameter is complex:

P Need device and filesystem drivers to be loaded

» Specifying the root filesystem requires ugly black magic device
naming (such as /dev/ram0, /dev/hdal...), while / doesn't
exist yet!

» Can require a complex initialization to implement within the
kernel. Examples: NFS (set up an IP address, connect to the
server...), RAID (root filesystem on multiple physical drives)...

In a nutshell: too much complexity in kernel code!

Embedded Linux kernel and driver development

o ! ;
© Copyright 2004-2007, Free Electrons !' I
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

T o= 103

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Extra init ramdisk drawbacks

Init ramdisks are implemented as standard block devices
» Need a ramdisk and filesystem driver

P Fixed in size: cannot easily grow in size.
Any free space cannot be reused by anything else.

> Needs to be created and modified like any block device:
formatting, mounting, editing, unmounting.
Root permissions needed.

» Like in any block device, files are first read from the storage,
and then copied to the file cache.
Slow and duplication in RAM!!!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Initramfs features and advantages (1)

» Root file system built in in the kernel image
(embedded as a compressed cpio archive)

» Very easy to create (at kernel build time).
No need for root permissions (for mount and mknod).

» Compared to init ramdisks,
just 1 file to handle in the bootloader.

» Always present in the Linux 2.6 kernel (empty by default).

» Just a plain compressed cpio archive.
Neither needs a block nor a filesystem driver.

Embedded Linux kernel and driver development

o ! ;
© Copyright 2004-2007, Free Electrons !' I
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , ‘ 10 5
[}

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Initramfs features and advantages (2)

ramfs: implemented in the file cache. No duplication in RAM, no filesystem layer
to manage. Just uses the size of its files. Can growif needed.

Access
to file :
' \ Regular Access Ramdlsl.i Access ramfs
block device to file block device to file
V1rtua1 File |
System . .
| Virtual File
; System . :
Filesystem File y File File
driver cache | cache cache
| Filesystem
driver
Block | Copy
driver
| Co Block
Py driver Block stora
Block storage
RAM RAM

(.\, Free Electrons

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
Creative Commons Attribution-ShareAlike 2.5 license

http://free-electrons.com

Feb 3,2007

http://free-electrons.com/

Initramfs features and advantages (3)

P Loaded by the kernel earlier.
More 1nitialization code moved to user-space!

» Simpler to mount complex filesystems from flexible userspace
scripts rather than from rigid kernel code. More complexity
moved out to user-space!

» No more magic naming of the root device.
pivot root no longer needed.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Initramfs features and advantages (4)

P Possible to add non GPL files (firmware, proprietary drivers)
in the filesystem. This is not linking, just file aggregation
(not considered as a derived work by the GPL).

P Possibility to remove these files when no longer needed.
P Still possible to use ramdisks.

More technical details about initramfs:
see Documentation/filesystems/ramfs-rootfs-initramfs.txt
and Documentation/early-userspace/README in kernel sources.

See also http://www.linuxdevices.com/articles/AT'4017834659.html for a nice
overview of initramfs (by Rob Landley, newBusybox maintainer).

0 -
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/filesystems/ramfs-rootfs-initramfs.txt
http://free-electrons.com/kerneldoc/latest/early-userspace/README
http://www.linuxdevices.com/articles/AT4017834659.html

How to populate an initramfs

Using CONFIG INITRAMFS SOURCE
in kernel configuration (General Setup section)

» Either specify an existing cpio archive

» Or specify a list of files or directories
to be added to the archive.

» Or specify a text specification file (see next page)

» Can use a tiny C library: k1libc
(ftp://ftp.kernel.org/pub/linux/libs/klibc/)

0 -
Embedded Linux kernel and driver development > !
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g

=z 109

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
ftp://anonymous@ftp.kernel.org/pub/linux/libs/klibc/

Initramfs specification file example

dir /dev 755 0 0

nod /dev/console 644 0 0 c 5
nod /dev/loop0 644 0 0 b 7 0
dir /bin 755 1000 1000

slink /bin/sh busybox 777 0 0
file /bin/busybox initramfs/busybox 755 0 0
dir /proc 755 0 0

dir /sys 755 0 0

dir /mnt 755 0 0

file /init initramfs/init.sh 755 0 0

1

No need for root user access!

user 1d group 1d
Embedded Linux kernel and driver development >

© Copyright 2004-2007, Free Electrons

. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g

© http://free-electrons.com Feb 3, 2007 s

http://free-electrons.com/

How to handle compressed cpio archives

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
(.\« Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
© http://free-electrons.com Feb 3, 2007

Useful when you want to build the kernel with a ready-made cpio
archive. Better let the kernel do this for you!

» Extracting:
gzip -dc initramfs.img | cpio -id

» Creating:
find <dir> -print -depth | cpio -ov | gzip -c >
initramfs.img

http://free-electrons.com/

How to create an initrd

In case you really need an initrd (why?).

mkdir /mnt/initrd

dd if=/dev/zero of=initrd.img bs=1k count=2048
mkfs.ext2 -F initrd.img

mount -o loop initrd.img /mnt/initrd

Fill the ramdisk contents: busybox, modules, /1inuxrc script
More details in the Free Software tools for embedded systems training!

umount /mnt/initrd
gzip --best -c initrd.img > initrd

More details on Documentation/initrd.txt in the kernel
sources! Also explains pivot rooting.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://free-electrons.com/training/devtools
http://free-electrons.com/kerneldoc/latest/initrd.txt

Embedded Linux driver development

Compiling and booting Linux
Bootloaders

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

2-stage bootloaders

» At startup, the hardware automatically executes the bootloader
from a given location, usually with very little space (such as the
boot sector on a PC hard disk)

» Because of this lack of space, 2 stages are implemented:

P 1% stage: minimum functionality. Just accesses the second stage on
a bigger location and executes 1it.

P 2" stage: offers the full bootloader functionality. No limit in what
can be implemented. Can even be an operating system 1tself!

@
Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons !' l
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

x86 bootloaders

» LILO: LInux LOad. Original Linux bootloader. Still in use!
http://freshmeat.net/projects/lilo/
Supports: x86

» GRUB: GRand Unified Bootloader from GNU. More powerful.
http://www.gnu.org/software/grub/
Supports: x86
See our Grub details annex for details.

» SYSLINUX: Utilities for network and removable media booting
http://syslinux.zytor.com
Supports: x86

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons

(.\« Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://freshmeat.net/projects/lilo/
http://www.gnu.org/software/grub/
http://syslinux.zytor.com/

Generic bootloaders

» Das U-Boot: Universal Bootloader from Denk Software
The most used on arm.
http://u-boot.sourceforge.net/
Supports: arm, ppc, mips, x86
See our U-boot details annex for details.

» RedBoot: eCos based bootloader from Red-Hat a@
http://sources.redhat.com/redboot/
Supports: x86, arm, ppc, mips, sh, mé68k...

» uMon: MicroMonitor general purpose, multi-OS bootloader
http://microcross.com/html/micromonitor.html

Supports: ARM, ColdFire, SH2, 68K, MIPS, PowerPC, Xscale...%

@
Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons v
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license i ‘ 1 1 6

© http://free-electrons.com Feb 3, 2007 s

http://free-electrons.com/
http://u-boot.sourceforge.net/
http://sources.redhat.com/redboot/
http://microcross.com/html/micromonitor.html

Other bootloaders

» LAB: Linux As Bootloader, from Handhelds.org
http://handhelds.org/cgi-bin/cvsweb.cgi/linux/kernel26/1ab/
Idea: use a trimmed Linux kernel with only features needed in a
bootloader (no scheduling, etc.). Reuses flash and filesystem access,
LCD interface, without having to implement bootloader specific drivers.
Supports: arm (still experimental)

» And many more: lots of platforms have their own!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g | 1 17
® http://free-electrons.com Feb 3,2007 -

http://free-electrons.com/
http://handhelds.org/
http://handhelds.org/cgi-bin/cvsweb.cgi/linux/kernel26/lab/

Embedded Linux driver development

Compiling and booting Linux
Kernel booting

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Kernel command line parameters

As most C programs, the Linux kernel accepts command line
arguments

» Kernel command line arguments are part of the bootloader
configuration settings.

» Useful to configure the kernel at boot time, without having to
recompile it.

» Useful to perform advanced kernel and driver initialization,
without having to use complex user-space scripts.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Kernel command line example

HP 1PAQ h2200 PDA booting example:

root=/dev/ram0 \ Root filesystem (first ramdisk)
rw \ Root filesystem mounting mode
init=/linuxrc \ First userspace program
console=ttyS0,115200n8 \ Console (serial)
console=tty0 \ Other console (framebuffer)
ramdisk size=8192 \ Misc parameters...

cachepolicy=writethrough

Hundreds of command line parameters described on
Documentation/kernel-parameters.txt

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license 120

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/kernel-parameters.txt

Booting variants

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

XIP (Execute In Place)

» The kernel image is directly executed from the storage

®» Can be faster and save RAM
However, the kernel image can't be compressed

No 1nitramfs / initrd

» Directly mounting the final root filesystem
(root kernel command line option)

No new root filesystem

» Running the whole system from the initramfs.

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Usefulness of rootfs on NFS

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
@ | Free Electrons '

Once networking works, your root filesystem could be a directory on
your GNU/Linux development host, exported by NFS (Network File
System). This i1s very convenient for system development:

P Makes it very easy to update files (driver modules in particular) on
the root filesystem, without rebooting. Much faster than through the
serial port.

» Can have a big root filesystem even if you don't have support for
internal or external storage yet.

» The root filesystem can be huge. You can even build native compiler
tools and build all the tools you need on the target itself (better to

cross-compile though).

Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

NFKES boot setup (1)

On the PC (NEFES server)

» Add the below line to your /etc/exports file:

/home/rootfs 192.168.0.202(rw,insecure,sync,no _wdelay,no root squash)

. client address NFS server options
» If not running yet, you may need to start portmap

/etc/init.d/portmap start

P Start or restart your NFS server:

Fedora Core:
/etc/init.d/nfs restart

Debian (Ubuntu, Knoppix, KernelKit):

/etc/init.d/nfs-user-server restart

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

123

http://free-electrons.com/

NFS boot setup (2)

On the target (NFS client)

» Compile your kernel with CONFIG NFS FS=y,
CONFIG IP PNP=y (configure IP at boot time)
and CONFIG ROOT NFS=y

» Boot the kernel with the below command line options:
root=/dev/nfs

virtual device
ip=192.168.1.111:192.168.1.110:192.168.1.100:255.255.255.0:at91:etho
local IP address server IP address gateway netmask hostname device
nfsroot=192.168.1.110:/home/nfsroot
NFS server IP address Directory on the NFS server

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g | 124
® http://free-electrons.com Feb 3, 2007 i

http://free-electrons.com/

First user-space program

» Specified by the init kernel command line parameter
» Executed at the end of booting by the kernel

» Takes care of starting all other user-space programs
(system services and user programs).

» Gets the 1 process number (pid)
Parent or ancestor of all user-space programs
The system won't let you kill it.

» Only other user-space program called by the kernel:
/sbin/hotplug

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

/linuxrce

» 1 of the 2 default init programs
(if no 1nit parameter is given to the kernel)

» Traditionally used in initrds or in simple systems not using
/sbin/init.

» Is most of the time a shell script, based on a very lightweight
shell: nash or busybox sh

» This script can implement complex tasks: detecting drivers to
load, setting up networking, mounting partitions, switching
to a new root filesystem...

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

The init program

» /sbin/init is the second default init program

P Takes care of starting system services, and eventually the user
interfaces (sshd, X server...)

» Also takes care of stopping system services
» Lightweight, partial implementation available through busybox

See the Init runlevels annex section for more details about starting
and stopping system services with init.

However, simple startup scripts are often sufficient
in embedded systems.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Embedded Linux driver development

Compiling and booting Linux
Linux device files

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Character device files

» Accessed through a sequential flow of individual characters

» Character devices can be 1dentified by their c type (1s -1):

crw-rw---- 1 root uucp 4, 64 Feb 23 2004 /dev/ttySO
crw--w---- 1 jdoe tty 136, 1 Feb 23 2004 /dev/pts/1
CIW——————— 1 root root 13, 32 Feb 23 2004 /dev/input/mouse0

crw-rw-rw- 1 root root 1, 3 Feb 23 2004 /dev/null

» Example devices: keyboards, mice, parallel port, IrDA,
Bluetooth port, consoles, terminals, sound, video...

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

129

http://free-electrons.com/

Block device files

» Accessed through data blocks of a given size. Blocks can be
accessed 1n any order.

» Block devices can be 1dentified by their b type (1s -1):

brw-rw-—--- 1 root disk 3, 1 Feb 23 2004 hdal
brw-rw-—-- 1 jdoe floppy 2, 0 Feb 23 2004 £dO

brw-rw-—---— 1 root disk 7, 0 Feb 23 2004 loopO
brw-rw——-- 1 root disk 1, 1 Feb 23 2004 raml
brw—-—————- 1 root root 8, 1l Feb 23 2004 sdal

» Example devices: hard or floppy disks, ram disks, loop devices...

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Device major and minor numbers

As you could see in the previous examples,
device files have 2 numbers associated to them:

» First number: major number

» Second number: minor number

» Major and minor numbers are used by the kernel to bind a driver
to the device file. Device file names don't matter to the kernel!

» To find out which driver a device file corresponds to,
or when the device name is too cryptic,
see Documentation/devices.txt.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/devices.txt

Device file creation

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
(.\« Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
© http://free-electrons.com Feb 3, 2007

» Device files are not created when a driver 1s loaded.

» They have to be created in advance:
mknod /dev/<device> [c|b] <major> <minor>

» Examples:
mknod /dev/ttyS0 c 4 64
mknod /dev/hdal b 3 1

http://free-electrons.com/

Drivers without device files

They don't have any corresponding /dev entry you could read or
write through a regular Unix command.

» Network drivers
They are represented by a network device such as ppp0, ethl,
usbnet, irda0 (listed by ifconfig -a).

» Other drivers

Often intermediate or lowlevel drivers just interfacing with other
ones. Example: usbcore.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Practical lab — Configuring and compiling

Time to start Lab 2!

» Configure your kernel
» Compile it

» Boot it on a virtual PC

» Modify a root filesystem image by
adding entries to the /dev/ directory

o =
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Embedded Linux driver development

Compiling and booting Linux
Cross-compiling the kernel

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Makefile changes

» Update the version as usual

» You should change the default target platform.
Example: ARM platform, cross-compiler command: arm-1inux-gcc

ARCH ?7= arm
CROSS _COMPILE ?= arm-linux-
(The Maketile defines later CC = $(CROSS_ COMPILE)gcc)

See comments in Makefile for details

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/Makefile

Configuring the kernel

make xconfig
» Same as in native compiling.

» Don't forget to set the right board / machine type!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

137

http://free-electrons.com/

Ready-made config files

assabet defconfig
badged4 defconfig
bast defconfig
cerfcube defconfig
clps7500 defconfig
ebsall0 defconfig
edb7211 defconfig
enp2611 defconfig
ep80219 defconfig
epxalOdb defconfig
footbridge defconfig
fortunet defconfig
h3600 defconfig
h7201 defconfig
h7202 defconfig
hackkit defconfig

integrator defconfig
1g31244 defconfig
180321 defconfig
1ig80331 defconfig
1g80332 defconfig
ixdp2400 defconfig
ixdp2401 defconfig
ixdp2800 defconfig
ixdp2801 defconfig
ixp4xx defconfig
jornada720 defconfig
lart defconfig
1pd7a400 defconfig
1lpd7a404 defconfig
lubbock defconfig
lusl7200 defconfig

arch/arm/configs example

mainstone defconfig
mxlads defconfig
neponset defconfig
netwinder defconfig
omap h2 1610 defconfig
omnimeter defconfig
pleb defconfig
pxa255-idp defconfig
rpc_defconfig
s3c2410 defconfig
shannon defconfig
shark defconfig
simpad defconfig
smdk2410 defconfig
versatile defconfig

(.\, Free Electrons

(]

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
Creative Commons Attribution-ShareAlike 2.5 license

http://free-electrons.com

Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/arch/arm/configs/

Using ready-made config files

P Default configuration files available for many boards / machines!
Check if one exists in arch/<arch>/configs/ for your target.

» Example: if you found an acme defconfig file, you can run:
make acme defconfig

P Using arch/<arch>/configs/ is a very good good way of
releasing a default configuration file for a group of users or developers.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Cross-compiling setup

Example

» If you have an ARM cross-compiling toolchain
in/usr/local/arm/3.3.2/

» You just have to add it to your Unix search path:
export PATH=/usr/local/arm/3.3.2/bin:S$PATH

Choosing a toolchain

> See the Documentation/Changes file in the sources for details
about minimum tool versions requirements.

» More about toolchains: Free Software tools for embedded systems
training: http://free-electrons.com/training/devtools/

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/Changes
http://free-electrons.com/training/devtools/%20

Building the kernel

» Run
make

» Copy
arch/<platform>/boot/zImage

to the target storage

» You can customize arch/<arch>/boot/install. sh so that
make install does this automatically for you.

» make INSTALL MOD PATH=<dir>/ modules install
and copy <dir>/to /lib/modules/ on the target storage

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Cross-compiling summary

P Edit Makefile: set ARCH, CROSS_COMPILE and EXTRA VERSION

P Get the default configuration for your machine:
make <machine> defconfig (if existing inarch/<arch>/configs)

P Refine the configuration settings according to your requirements:
make xconfig

P Add the crosscompiler path to yourPATH environment variable
» Compile the kernel: make
P Copy the kernel image fromarch/<arch>/boot/ to the target

» Copy modules to a directory which you replicate on the target:
make INSTALL MOD PATH=<dir> modules install

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g | 1 42
® http://free-electrons.com Feb 3, 2007 -

http://free-electrons.com/
http://lxr.free-electrons.com/source/Makefile

Practical lab — Cross-compiling

Time to start Lab 3!
» Set up a cross-compiling environment

» Configure the kernel Makefile
accordingly

» Cross-compile the kernel for an arm
target platform

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Embedded Linux driver development

Driver development
Loadable kernel modules

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Loadable kernel modules (1)

» Modules: add a given functionality to the kernel (drivers,
filesystem support, and many others)

» Can be loaded and unloaded at any time, only when their
functionality 1s need. Once loaded, have full access to the
whole kernel. No particular protection.

» Useful to keep the kernel image size to the minimum
(essential in GNU/Linux distributions for PCs).

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Loadable kernel modules (2)

» Useful to support incompatible drivers (either load one or the
other, but not both)

» Useful to deliver binary-only drivers (bad 1idea) without
having to rebuild the kernel.

» Modules make it easy to develop drivers without rebooting:
load, test, unload, rebuild, load...

» Modules can also be compiled statically into the kernel.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Module dependencies

» Module dependencies stored in
/lib/modules/<version>/modules.dep

» They don't have to be described by the module writer.

P They are automatically computed during kernel building from
module exported symbols. module?2 depends on modulel if
module?2 uses a symbol exported by modulel.

» You can update the modules . dep file by running (as root)
depmod -a [<version>]

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

hello module

@

/* hello.c */

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

static int __ init hello init(void)

{ . .
printk (KERN ALERT "Good morrow"); init:
pranti(SERN_ALERT "to this fair AEEIBLo V) § removed after initialization

} (static kernel or module).

static void _ exit hello exit(void)

{ , exit: discarded when
printk (KERN ALERT "Alas, poor world, what treasure"); E— .)
printk (KERN ALERT "hast thou lost!\n"); module compiled statically

} into the kernel.

module init(hello init);

module exit(hello exit);

MODULE LICENSE ("GPL");

MODULE DESCRIPTION("Greeting module");
MODULE:AUTHOR("William Shakespeare");

Example available on http://free-electrons.com/doc/c/hello.c

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/linux/init.h
http://lxr.free-electrons.com/source/include/linux/module.h
http://lxr.free-electrons.com/source/include/linux/kernel.h
http://lxr.free-electrons.com/ident?i=__init
http://lxr.free-electrons.com/ident?i=printk
http://lxr.free-electrons.com/ident?i=KERN_ALERT
http://lxr.free-electrons.com/ident?i=printk
http://lxr.free-electrons.com/ident?i=KERN_ALERT
http://lxr.free-electrons.com/ident?i=__exit
http://lxr.free-electrons.com/ident?i=printk
http://lxr.free-electrons.com/ident?i=KERN_ALERT
http://lxr.free-electrons.com/ident?i=printk
http://lxr.free-electrons.com/ident?i=KERN_ALERT
http://lxr.free-electrons.com/ident?i=module_init
http://lxr.free-electrons.com/ident?i=module_exit
http://lxr.free-electrons.com/ident?i=MODULE_LICENSE
http://lxr.free-electrons.com/ident?i=MODULE_DESCRIPTION
http://lxr.free-electrons.com/ident?i=MODULE_AUTHOR
http://lxr.free-electrons.com/ident?i=__init
http://lxr.free-electrons.com/ident?i=__exit
http://free-electrons.com/doc/c/hello.c

Module license usefulness

» Used by kernel developers to identify issues coming from
proprietary drivers, which they can't do anything about.

» Useful for users to check that their system is 100% free

» Useful for GNU/Linux distributors for their release policy
checks.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Possible module license strings

Available license strings explained in include/linux/module.h

» GPL » Dual BSD/GPL

GNU Public License v2 or later GNU Public License v2 or

» GPL, v2 BSD license choice

GNU Public License v2 » Dual MPL/GPL
GNU Public License v2 or

» GPL and additional , , ,
Mouzilla license choice

rights
» Proprietary
Non free products

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/linux/module.h

Compiling a module

©

» The below Makefile should be reusable for any Linux 2.6 module.

» Just run make to build the hello. ko file

» Caution: make sure there is a [Tab] character at the beginning of

the S (MAKE) line (make syntax)
Either
- full kernel source
directory
Makefile for the hello module (configured and

compiled)

obj-m := hello.o
KDIR := /lib/modules/$(shell uname -r)/build
PWD := S$S(shell pwd)

[Tab]' default:

$(MAKE) -C $(KDIR) SUBDIRS=$(PWD) modules

- or just kernel
headers directory
(minimum needed)

(no spaces)

Example available on http://free-electrons.com/doc/c/Makefile

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons

(.\« Free Electrons Creative Commons Attribution-ShareAlike 2.5 license
o http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://free-electrons.com/doc/c/Makefile

Kernel log

» Of course, the kernel doesn't store its log into a file!
Files belong to user space.

P The kernel keeps printk messages in a circular buffer
(so that doesn't consume more memory with many messages)

» Kernel log messages can be accessed from user space through system
calls, or through /proc/kmsg

» Kernel log messages are also displayed in the system console.

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons

(.\« Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
© http://free-electrons.com Feb 3, 2007

152

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=printk

Accessing the kernel log

Many ways are available!

P Watch the system console » logread

Same. Often found in small
embedded systems with no
/var/log/messages or no
dmesg. Implemented by Busybox.

» syslogd
Daemon gathering kernel messages
in /var/log/messages
Follow changes by running:
tail -f /var/log/messages P cat /proc/kmsg

Caution: this file grows! Waits for kernel messages and
Use 1logrotate to control this displays them.
b dmesg Useful when none of the above user

space programs are available (tiny

Found in all systems
system)

Displays the kernel log buffer

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Using the module

Need to be logged as root

» Load the module:
insmod ./hello.ko

» You will see the following in the kernel log:
Good morrow
to this fair assembly

» Now remove the module:
rmmod hello

» You will see:

Alas, poor world, what treasure
hast thou lost!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Understanding module loading issues

» When loading a module fails,
insmod often doesn't give you enough details!

» Details are available in the kernel log.

» Example:
> insmod ./intr monitor.ko
insmod: error inserting './intr monitor.ko': -1
Device or resource busy
> dmesg
[17549774.552000] Failed to register handler for
irq channel 2

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Module utilities (1)

» modinfo <module name>
modinfo <module path>.ko

Gets information about a module: parameters, license,
description. Very useful before deciding to load a module or not.

» insmod <module name>
insmod <module path>.ko
Tries to load the given module, if needed by searching for its

. ko file throughout the default locations (can be redefined by
the MODPATH environment variable).

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

(]

http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Module utilities (2)

» modprobe <module name>
Most common usage of modprobe: tries to load all the
modules the given module depends on, and then this module.
Lots of other options are available.

» lsmod
Displays the list of loaded modules
Compare its output with the contents of /proc/modules!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Module utilities (3)

» rmmod <module name>
Tries to remove the given module

» modprobe -r <module name>
Tries to remove the given module and all dependent modules
(which are no longer needed after the module removal)

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Create your modules with kdevelop

http://kdevelop.org - Available in most distros.

b d helloworld - KDevelop
File Edit View Project Build Debug Scripts Bookmarks Window Tools Settings Help

4P BdPdEs DB ® § 1P

8‘ | (no function)

HEDIeO, ' Fd &

helloworld.c |

Irr‘
-~

New File

| [[iFile Tree | HVariables | 2File Groups

l
[

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.hs>

MODULE_DESCRIPTION("My kernel module");
MODULE_AUTHOR("Michael Opdenacker (michael@free-electrons.com)")};
MODULE_LICENSE("$LICENSES");

static int helloworld_init_module(void)

printk(KERN_DEBUG "Module helloworld init'n" J;
return 0;

static void helloworld_exit_module(void)

printk({ KERN_DEBUG "Module helloworld exit'n" J;

module_init(helloworld_init_module);
module_exit(helloworld_exit_module);

v]

| pplication | (Epiff | EMessages | #Find in Files | [EReplace | @K onsole | % Valgrind | ©Breakpoints |

| ‘[lasses | &R ookmarks | [JFile Selector | @File List |

EiCTags | &#Problems |

| sipddiug apo:@l uouEIUBLINJOE |

Line: 14 Col: 2 INS NORM

-

» Makes it easy to create
a module code skeleton
from a ready-made
template.

» Can also be used to
compile your module.

(.\, Free Electrons

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
Creative Commons Attribution-ShareAlike 2.5 license
http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://kdevelop.org/

Embedded Linux driver development

Driver development
Module parameters

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

hello module with parameters

[)
/* hello param.c */
#include <linux/init.h> Thanks to
#include <linux/module.h> Jonathan Corbet
#include <linux/moduleparam.h> for the example!

MODULE LICENSE("GPL");

/* A couple of parameters that can be passed in: how many times we say
hello, and to whom */

static char *whom = "world";
module param(whom, charp, 0);

static int howmany = 1;
module param(howmany, int,

static int init hello init(void)

L.
int 1;
for (i = 0; i < howmany; i++)
printk (KERN ALERT " (%d) Hello, %s\n", i, whom);
return 0;
}

static void _ exit hello exit(void)

printk (KERN_ALERT "Goodbye, cruel %s\n", whom);
module init(hello init);
module exit(hello exit);

Example available on http://free-electrons.com/doc/c/hello_param.c

@
Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license
© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/linux/init.h
http://lxr.free-electrons.com/source/include/linux/module.h
http://lxr.free-electrons.com/source/include/linux/moduleparam.h
http://lxr.free-electrons.com/ident?i=MODULE_LICENSE
http://lxr.free-electrons.com/ident?i=module_param
http://lxr.free-electrons.com/ident?i=module_param
http://lxr.free-electrons.com/ident?i=__init
http://lxr.free-electrons.com/ident?i=__printk
http://lxr.free-electrons.com/ident?i=KERN_ALERT
http://lxr.free-electrons.com/ident?i=__exit
http://lxr.free-electrons.com/ident?i=__printk
http://lxr.free-electrons.com/ident?i=KERN_ALERT
http://lxr.free-electrons.com/ident?i=module_init
http://lxr.free-electrons.com/ident?i=module_exit
http://free-electrons.com/doc/c/hello_param.c

Passing module parameters

» Through insmod or modprobe:

insmod ./hello param.ko howmany=2 whom=universe

» Through modprobe
after changing the /etc/modprobe.conf file:

options hello param howmany=2 whom=universe

» Through the kernel command line, when the module is built statically
into the kernel:

options hello param.howmany=2 hello param.whom=universe

module parameter name
module parameter value

module name —% ? T

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Declaring a module parameter

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

#include <linux/moduleparam.h>

module param(
name, /* name of an already defined variable */
type, /* either byte, short, ushort, int, uint, long,
ulong, charp, bool or invbool
(checked at compile time!) */
perm /[* for /sys/module/<module name>/<param>
0: no such module parameter value file */

) ;

Example

int 1rg=5;
module param(irqgq, int, S IRUGO);

Embedded Linux kernel and driver development

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/linux/moduleparam.h
http://lxr.free-electrons.com/ident?i=module_param
http://lxr.free-electrons.com/ident?i=byte
http://lxr.free-electrons.com/ident?i=short
http://lxr.free-electrons.com/ident?i=ushort
http://lxr.free-electrons.com/ident?i=uint
http://lxr.free-electrons.com/ident?i=ulong
http://lxr.free-electrons.com/ident?i=byte
http://lxr.free-electrons.com/ident?i=bool
http://lxr.free-electrons.com/ident?i=invbool
http://lxr.free-electrons.com/ident?i=module_param
http://lxr.free-electrons.com/ident?i=S_IRUGO

Declaring a module parameter array

#include <linux/moduleparam.h>

module param array (

name, /* name of an already defined array */
type, /* same as inmodule param */
num, /* number of elements in the array, or NULL (no check?) */
perm /* same as in module_param */
) i
Example

static int base[MAX DEVICES] = { 0x820, 0x840 };
module param array(base, int, NULL, 0);

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/linux/moduleparam.h
http://lxr.free-electrons.com/ident?i=module_param_array
http://lxr.free-electrons.com/ident?i=module_param_array

Embedded Linux driver development

Driver development
Adding sources to the kernel tree

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

New directory in kernel sources (1)

To add an acme drivers/ directory to the kernel sources:

» Move the acme drivers/ directory to the appropriate location
in kernel sources

» Create an acme drivers/Kconfig file

» Create an acme _drivers /Makefile file based on the
Kconfig variables

» In the parent directory Kconfig file, add
source “acme drivers/Kconfig”

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

New directory in kernel sources (2)

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

» In the parent directory Makefile file, add
obj-$(CONFIG ACME) += acme drivers/ (just 1l condition)
or
obj-y += acme drivers/ (several conditions)

» Run make xconfig and see your new options!
» Run make and your new files are compiled!

» See Documentation/kbuild/ for details

Embedded Linux kernel and driver development

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/kbuild/

How to create Linux patches

» Download the latest kernel sources

» Make a copy of these sources:
rsync -a linux-2.6.9-rc2/ linux-2.6.9-rc2-patch/

» Apply your changes to the copied sources, and test them.

» Create a patch file:
diff -Nurp linux-2.6.9-rc2/ \
linux-2.6.9-rc2-patch/ > patchfile

» Always compare the whole source structures
(suitable for patch -pl)

» Patch file name: should recall what the patch is about.

Thanks to Nicolas Rougier (Copyright 2003, http://webloria.loria.fr/~rougier/) for the Tux image

@
Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons w
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://webloria.loria.fr/~rougier/

Practical lab — Writing modules

Time to start Lab 4!

» Write a kernel module with parameters
» Setup the environment to compile it

P Access kernel internals

» Add a /proc interface

» Add the module sources to the kernel
source tree

» Create a kernel source patch

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Embedded Linux driver development

Driver development
Memory management

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Physical and virtual memory

Physical address space

Virtual address spaces

OxXFFFFFFFFF 0XFFFFFFFFF O0XFFFFFFFFF
I/O memory 3
Kernel Processl
I/O memory 2
/O memory 1 0x00000000 0x00000000
Flash MMU CPU
Memory O0XFFFFFFFFF
RAM 1 Management All the processes have
Unit their own virtual address pyocess2
RAMO space, and run as if they
had access to the whole
address space. 000000000
0x00000000
@

(.\, Free Electrons

(]

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
Creative Commons Attribution-ShareAlike 2.5 license ,

http://free-electrons.com Feb 3,2007

http://free-electrons.com/

kmalloc and kfree

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

» Basic allocators, kernel equivalents of glibc'smalloc and free.
P #include <linux/slab.h>

P static inline void *kmalloc(size t size, int flags);
size: number of bytes to allocate
flags: priority (see next page)

» void kfree (const void *objp);

» Example:
data = kmalloc(sizeof(*data), GFP_KERNEL);

kfree(data);

Embedded Linux kernel and driver development

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/linux/slab.h
http://lxr.free-electrons.com/ident?i=kmalloc
http://lxr.free-electrons.com/ident?i=size_t
http://lxr.free-electrons.com/ident?i=kfree
http://lxr.free-electrons.com/ident?i=kmalloc
http://lxr.free-electrons.com/ident?i=GFP_KERNEL
http://lxr.free-electrons.com/ident?i=kfree

kmalloc features

» Quick (unless it's blocked waiting for memory to be freed).

» Doesn't initialize the allocated area.
You can use kcalloc or kzalloc to get zeroed memory.

» The allocated area i1s contiguous in physical RAM.

» Allocates by 2" sizes, and uses a few management bytes.
So, don't ask for 1024 when you need 1000! You'd get 204 8!

» Caution: drivers shouldn't try to kmalloc
more than 128 KB (upper limit in some architectures). A

» Minimum allocation: 32 or 64 bytes (page size dependent).

0 -
Embedded Linux kernel and driver development > !
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license
|

173

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=kcalloc
http://lxr.free-electrons.com/ident?i=kzalloc
http://lxr.free-electrons.com/ident?i=kmalloc

Main kmalloc flags (1)

Defined in include/linux/gfp.h (GFP: __get_free_pages)

> GFP KERNEL
Standard kernel memory allocation. May block. Fine for most needs.

» GFP_ATOMIC

Allocated RAM from interrupt handlers or code not triggered by user
processes. Never blocks.

» GFP_USER
Allocates memory for user processes. May block. Lowest priority.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/linux/gfp.h
http://lxr.free-electrons.com/ident?i=__get_free_pages
http://lxr.free-electrons.com/ident?i=GFP_KERNEL
http://lxr.free-electrons.com/ident?i=GFP_ATOMIC
http://lxr.free-electrons.com/ident?i=GFP_USER

Main kmalloc flags (2)

Extra flags (can be added with |)

» GFP_DMAor GFP_DMA » GFP NORETRY
Allocate in DMA zone If allocation fails, doesn't try to

» GFP ZERO get free pages.

Returns a zeroed page. » Example:

P GFP NOFAIL GFP_KERNEL | _ GFP DMA
Must not fail. Never gives up. » Note: almost only GFP DMA
Caution: use only when or GFP_DMA used in device
mandatory! drivers.

@
Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons w
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=__GFP_DMA
http://lxr.free-electrons.com/ident?i=GFP_DMA
http://lxr.free-electrons.com/ident?i=__GFP_ZERO
http://lxr.free-electrons.com/ident?i=__GFP_NOFAIL
http://lxr.free-electrons.com/ident?i=__GFP_NORETRY
http://lxr.free-electrons.com/ident?i=GFP_KERNEL
http://lxr.free-electrons.com/ident?i=__GFP_DMA
http://lxr.free-electrons.com/ident?i=__GFP_DMA
http://lxr.free-electrons.com/ident?i=GFP_DMA

Slab caches

Also called lookaside caches
» Slab: name of the standard Linux memory allocator

» Slab caches: Objects that can hold any number
of memory areas of the same size.

» Optimum use of available RAM and reduced fragmentation.

» Mainly used in Linux core subsystems: filesystems (open files, inode
and file caches...), networking... Live stats on /proc/slabinfo.

» May be useful in device drivers too, though not used so often.
Linux 2.6: used by USB and SCSI drivers.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Slab cache API (1)

» #include <linux/slab.h>

» Creating a cache:
cache = kmem cache create (

name, /* Name for /proc/slabinfo */
size, /* Cache object size */
flags, /* Options: alignment, DMA... */

constructor, /* Optional, called after each allocation */
destructor); /* Optional, called before each release */

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/linux/slab.h
http://lxr.free-electrons.com/ident?i=kmem_cache_create

Slab cache API (2)

» Allocating from the cache:
object = kmem cache alloc (cache, flags);

orobject = kmem cache zalloc (cache, flags);

» Freeing an object:
kmem cache free (cache, object);

» Destroying the whole cache:
kmem cache destroy (cache);

More details and an example in the Linux Device Drivers book:
http://lwn.net/images/pdt/LDD3/ch08.pdf

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=kmem_cache_alloc
http://lxr.free-electrons.com/ident?i=kmem_cache_zalloc
http://lxr.free-electrons.com/ident?i=kmem_cache_free
http://lxr.free-electrons.com/ident?i=kmem_cache_destroy
http://lwn.net/images/pdf/LDD3/ch08.pdf

Memory pools

Useful for memory allocations that cannot fail

» Kind of lookaside cache trying to keep a minimum number
of pre-allocated objects ahead of time.

» Use with care: otherwise can result in a lot of unused
memory that cannot be reclaimed! Use other solutions
whenever possible.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

179

http://free-electrons.com/

Memory pool API (1)

» #include <linux/mempool.h>

» Mempool creation:
mempool = mempool create (
min nr,
alloc function,
free function,
pool data);

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/linux/mempool.h
http://lxr.free-electrons.com/ident?i=mempool_create

Memory pool API (2)

» Allocating objects:
object = mempool alloc (pool, flags);

» Freeing objects:
mempool free (object, pool);

» Resizing the pool:
status = mempool resize (
pool, new min nr, flags);

» Destroying the pool (caution: free all objects first!):
mempool destroy (pool);

Embedded Linux kernel and driver development

© http://free-electrons.com Feb 3, 2007

© Copyright 2004-2007, Free Electrons ! ' i f
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license i

=z 181

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=mempool_alloc
http://lxr.free-electrons.com/ident?i=mempool_free
http://lxr.free-electrons.com/ident?i=mempool_resize
http://lxr.free-electrons.com/ident?i=mempool_destroy

Memory pool implementation

Call alloc
mempool_create function min nr

times

No
Call alloc LELR

mempool alloc Success? object from
the pool

function

Yes

Yes
pool count Add freed

mempool free . .
POO=_ <min_nr? object to pool

New object

No

Call free
function
on object

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=mempool_create
http://lxr.free-electrons.com/ident?i=mempool_alloc
http://lxr.free-electrons.com/ident?i=mempool_free

Memory pools using slab caches

» Idea: use slab cache functions to allocate and free objects.

» The mempool alloc slab and mempool free slab
functions supply a link with slab cache routines.

» So, you will find many code examples looking like:
cache = kmem cache create (...);
pool = mempool create (
min nr,
mempool alloc_ slab,
mempool free slab,

.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

183

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=mempool_alloc_slab
http://lxr.free-electrons.com/ident?i=mempool_free_slab
http://lxr.free-electrons.com/ident?i=kmem_cache_create
http://lxr.free-electrons.com/ident?i=mempool_create
http://lxr.free-electrons.com/ident?i=mempool_alloc_slab
http://lxr.free-electrons.com/ident?i=mempool_free_slab

Allocating by pages

More appropriate when you need big slices of RAM:

P unsigned long get zeroed page(int flags);
Returns a pointer to a free page and fills it up with zeros

P unsigned long _ get free page(int flags);
Same, but doesn't initialize the contents

P unsigned long get free pages(int flags,
unsigned long order);
Returns a pointer on an area of several contiguous pages in physical RAM.
order: log2 (<number of pages>)

If variable, can be computed from the size with the get order function.
Maximum: 8192 KB (MAX ORDER=111n include/linux/mmzone.h)

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=get_zeroed_page
http://lxr.free-electrons.com/ident?i=__get_free_page
http://lxr.free-electrons.com/ident?i=__get_free_pages
http://lxr.free-electrons.com/ident?i=get_order
http://lxr.free-electrons.com/source/include/linux/mmzone.h

Freeing pages

» void free page(unsigned long addr);

» void free pages(unsigned long addr,
unsigned long order);

Need to use the same order as in allocation.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=free_page
http://lxr.free-electrons.com/ident?i=free_pages

vmalloc

vmalloc can be used to obtain contiguous memory zones in virtual

address space (even if pages may not be contiguous in physical
memory).

» void *vmalloc(unsigned long size);

» void vfree(void *addr);

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=vmalloc
http://lxr.free-electrons.com/ident?i=vmalloc
http://lxr.free-electrons.com/ident?i=vfree

Memory utilities

» void * memset(void * s, int c, size t count);
Fills a region of memory with the given value.

» void * memcpy(void * dest,
const void *src,
size t count);

Copies one area of memory to another.
Use memmove with overlapping areas.

» Lots of functions equivalent to standard C library ones defined in
include/linux/string.h

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=memset
http://lxr.free-electrons.com/ident?i=size_t
http://lxr.free-electrons.com/ident?i=memcpy
http://lxr.free-electrons.com/ident?i=size_t
http://lxr.free-electrons.com/ident?i=memmove
http://lxr.free-electrons.com/source/include/linux/string.h

Memory management - Summary

Small allocations Bigger allocations
» kmalloc, kzalloc » get free page[s],
(and kfree!) get zeroed page,

f
» Slab caches ree_page[s]

P> lloc, vE
» Memory pools vmalloc, viree

Libc like memory utilities

» memset, memcopy,

memmove...
@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
(.\« Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=kmalloc
http://lxr.free-electrons.com/ident?i=kzalloc
http://lxr.free-electrons.com/ident?i=kfree
http://lxr.free-electrons.com/ident?i=__get_free_page
http://lxr.free-electrons.com/ident?i=__get_free_pages
http://lxr.free-electrons.com/ident?i=get_zeroed_page
http://lxr.free-electrons.com/ident?i=free_page
http://lxr.free-electrons.com/ident?i=free_pages
http://lxr.free-electrons.com/ident?i=vmalloc
http://lxr.free-electrons.com/ident?i=vfree
http://lxr.free-electrons.com/ident?i=memset
http://lxr.free-electrons.com/ident?i=memcopy
http://lxr.free-electrons.com/ident?i=memmove

Embedded Linux driver development

Driver development
I/O memory and ports

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Requesting 1/0 ports

/proc/ioports example

P struct resource *request region(

0000-001f : dmal unsigned long start,
0020-0021 : picl .
0040-0043 : timer0 unsigned long len,
0060-006f : keyboard
0070-0077 : rtc
0080-008f : dma page reg
00a0-00al : pic2 Tries to reserve the given region and returnsNULL 1f
00c0-00df : dmaZ2 .
00£0-00£f : fpu unsuccessful. Example:
0100-013f : pcmcia socket0
0170-0177 : idel
01£0-01£7 : ide0 request region(0x0170, 8, "idel");
0376-0376 : idel -
0378-037a : parportO . .
0360-03df : ygar P void release region(
0IL6-03E6 ¢ dded unsigned long start,
- ¢« Serila
0800-087f : 0000:00:1f£.0 unsigned long len);
0800-0803 : PMla EVT BLK
0804-0805 : PMla CNT BLK . . .
0808-080b : DM THR P See include/linux/ioport.hand
0820-0820 : PM2 CNT BLK
0826-082¢ . GPED ALK kernel/resource.c
¢

(.\, Free Electrons

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=request_region
http://lxr.free-electrons.com/ident?i=request_region
http://lxr.free-electrons.com/ident?i=release_region
http://lxr.free-electrons.com/source/include/linux/ioport.h
http://lxr.free-electrons.com/source/kernel/resource.c

Reading / writing on 1I/O ports

The implementation of the below functions and the exact unsigned
type can vary from platform to platform!

bytes
unsigned inb(unsigned port);

void outb(unsigned char byte, unsigned port);

words
unsigned inw(unsigned port);
void outw(unsigned char byte, unsigned port);

"long" integers
unsigned 1inl(unsigned port);
void outl(unsigned char byte, unsigned port);

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=inb
http://lxr.free-electrons.com/ident?i=outb
http://lxr.free-electrons.com/ident?i=inw
http://lxr.free-electrons.com/ident?i=outw
http://lxr.free-electrons.com/ident?i=inl
http://lxr.free-electrons.com/ident?i=outl

Reading / writing strings on 1/0 ports

Often more efficient than the corresponding C loop,
if the processor supports such operations!

byte strings
void insb(unsigned port, void *addr, unsigned long count);
void outsb(unsigned port, void *addr, unsigned long count);

word strings
void insw(unsigned port, void *addr, unsigned long count);
void outsw(unsigned port, void *addr, unsigned long count);

long strings
void insl(unsigned port, void *addr, unsigned long count);
void outsl(unsigned port, void *addr, unsigned long count);

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=insb
http://lxr.free-electrons.com/ident?i=outsb
http://lxr.free-electrons.com/ident?i=insw
http://lxr.free-electrons.com/ident?i=outsw
http://lxr.free-electrons.com/ident?i=insl
http://lxr.free-electrons.com/ident?i=outsl

Requesting I/0 memory

@
/proc/iomem example P Equivalent functions with the same interface
00000000-0009e£f£f : System RAM
0009£000-0009ffff : reserved P struct resource * request mem region
000a0000-000bffff : Video RAM area unsigned long start,
000c0000-000cf££f : Video ROM .
000£0000-000£f££ff : System ROM unsigned long len,
00100000-3ffadfff : System RAM char *name);

00100000-0030afff : Kernel code
0030b000-003b4bff : Kernel data b void release mem region(

3ffae000-3fffffff : reserved .
40000000-400003ff : 0000:00:1f.1 unsigned long start,
40001000-40001fff : 0000:02:01.0 unsigned]_ong]_en);

40001000-40001fff : yenta socket
40002000-40002f£ff : 0000:02:01.1

40002000-40002fff : yenta socket
40400000-407fffff : PCI CardBus #03
40800000-40bfffff : PCI CardBus #03
40c00000-40ffffff : PCI CardBus #07
41000000-413fffff : PCI CardBus #07
a0000000-a0000fff : pcmcia socketO
a0001000-a0001fff : pcmcia socketl
e0000000-e7f£f£f£f£ff : 0000:00:00.0
e8000000-efffffff : PCI Bus #01

e8000000-efffffff : 0000:01:00.0

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

° http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=request_mem_region
http://lxr.free-electrons.com/ident?i=release_mem_region

Choosing 1/0 ranges

» I/O port and memory ranges can be passed as module
parameters. An easy way to define those parameters 1s through
/etc/modprobe.conf.

» Modules can also try to find free ranges by themselves
(making multiple calls to request region or
request mem region.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

- 194

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=request_region
http://lxr.free-electrons.com/ident?i=request_mem_region

Mapping I/0 memory in virtual memory

» To access I/O memory, drivers need to have a virtual address
that the processor can handle.

» The ioremap functions satisty this need:
#include <asm/io.h>;
void *ioremap(unsigned long phys addr,

unsigned long size);
volid iounmap(void *address);

» Caution: check that ioremap doesn't return a NULL address!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=ioremap
http://lxr.free-electrons.com/source/include/asm-i386/io.h
http://lxr.free-electrons.com/ident?i=ioremap
http://lxr.free-electrons.com/ident?i=iounmap
http://lxr.free-electrons.com/ident?i=ioremap

Differences with standard memory

» Reads and writes on memory can be cached

» The compiler may choose to write the value in a cpu register,
and may never write it In main memory.

» The compiler may decide to optimize or reorder read and
write instructions.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Avoiding 1/0 access issues

» Caching on I/O ports or memory already disabled, either by
the hardware or by Linux 1nit code.

» Memory barriers are supplied to avoid reordering

Hardware independent Hardware dependent

#include <asm/kernel.h>

void barrier(void); #include <asm/system.h>

void rmb(void);

Only impacts the behavior of the void wmb(void);
compiler. Doesn't prevent reordering void mb(void);
in the processor! Safe on all architectures!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons !' l
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
|

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/asm-i386/kernel.h
http://lxr.free-electrons.com/ident?i=barrier
http://lxr.free-electrons.com/source/include/asm-i386/system.h
http://lxr.free-electrons.com/ident?i=rmb
http://lxr.free-electrons.com/ident?i=wmb
http://lxr.free-electrons.com/ident?i=mb

Accessing 1/0 memory

(.\« Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

» Directly reading from or writing to addresses returned by ioremap
(“pointer dereferencing’) may not work on some architectures.

» Use the below functions instead. They are always portable and safe:
unsigned int ioread8(void *addr); (same for 16 and 32)
void iowrite8(u8 value, void *addr); (same for 16 and 32)

» To read or write a series of values:

void ioread8 rep(void *addr, void *buf, unsigned long count);
void iowrite8 rep(void *addr, const void *buf, unsigned long count);

» Other useful functions:
void memset io(void *addr, u8 value, unsigned int count);
void memcpy fromio(void *dest, void *source, unsigned int count);
void memcpy toio(void *dest, void *source, unsigned int count);

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=ioremap
http://lxr.free-electrons.com/ident?i=ioread8
http://lxr.free-electrons.com/ident?i=iowrite8
http://lxr.free-electrons.com/ident?i=ioread8_rep
http://lxr.free-electrons.com/ident?i=iowrite8_rep
http://lxr.free-electrons.com/ident?i=memset_io
http://lxr.free-electrons.com/ident?i=memcpy_fromio
http://lxr.free-electrons.com/ident?i=memcpy_toio

/dev/mem

» Used to provide user-space applications with direct access to
physical addresses.

» Actually only works with addresses that are non-RAM (I/0O
memory) or with addresses that have some special flag set in
the kernel's data structures. Fortunately, doesn't provide
access to any address in physical RAM!

» Used by applications such as the X server to write directly to
device memory.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Embedded Linux driver development

Driver development
Character drivers

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Usefulness of character drivers

» Except for storage device drivers, most drivers for devices with
input and output flows are implemented as character drivers.

» So, most drivers you will face will be character drivers
You will regret if you sleep during this part!

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
(.\« Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , | 20 1
© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Creating a character driver

User-space needs

» The name of a device file in/dev to interact Read Write
with the device driver through regular file buffer bl
operations (open, read, write, close...)

The kernel needs

. . .. i . /dev/foo
P To know which driver is in charge of device files y V

with a given major / minor number pair S
major / minor

» For a given driver, to have handlers (file
operations”) to execute when user-space opens,

reads, writes or closes the device file. Read Write
handler handler

Device driver

Copy to user
Copy from user

Kernel space
@

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Declaring a character driver

Device number registration

» Need to register one or more device numbers (major / minor pairs),
depending on the number of devices managed by the driver.

» Need to find free ones!

File operations registration

» Need to register handler functions called when user space programs
access the device files: open, read, write, ioctl, close...

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Information on registered devices

Registered devices are visible in /proc/devices:

Character devices: Block devices:

1 mem 1 ramdisk

4 /dev/vec/0 3 ideO

2 tg:s S ;g Can be used to
5 /dev/tty 22 idel find free major
5 /dev/console 65 sd numbers

5 /dev/ptmx 66 sd

6 1lp 67 sd

7 vcs 68 sd

10 misc 69 sd

13 input /}('\\\
14 sound

.. Major Registered

number name

(.\« Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons

© http://free-electrons.com Feb 3,

http://free-electrons.com/

dev_t data type

Kernel data type to represent a major / minor number pair
» Also called a device number.

» Defined in <linux/kdev t.h>
Linux 2.6: 32 bit size (major: 12 bits, minor: 20 bits)

» Macro to create the device number :
MKDEV(int major, int minor);

» Macro to extract the minor and major numbers:
MAJOR(dev_t dev);
MINOR(dev_t dev);

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/linux/kdev_t.h
http://lxr.free-electrons.com/ident?i=MKDEV
http://lxr.free-electrons.com/ident?i=MAJOR
http://lxr.free-electrons.com/ident?i=dev_t
http://lxr.free-electrons.com/ident?i=MINOR
http://lxr.free-electrons.com/ident?i=dev_t

Allocating fixed device numbers

(.\« Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

#include <linux/fs.h>

int register chrdev region(
dev_t from, /* Starting device number */
unsigned count, /* Number of device numbers */

const char *name); /* Registered name */
Returns 0 if the allocation was successful.

Example

if (register chrdev region(MKDEV (202, 128),
acme count, "“acme”)) {
printk (KERN ERR “Failed to allocate device number\n”);

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/linux/fs.h
http://lxr.free-electrons.com/ident?i=register_chrdev_region
http://lxr.free-electrons.com/ident?i=dev_t
http://lxr.free-electrons.com/ident?i=register_chrdev_region
http://lxr.free-electrons.com/ident?i=MKDEV
http://lxr.free-electrons.com/ident?i=printk
http://lxr.free-electrons.com/ident?i=KERN_ERR

Dynamic allocation of device numbers

Safer: have the kernel allocate free numbers for you!
#include <linux/fs.h>

int alloc_chrdev region(
dev_t *dev, /* Output: starting device number */
unsigned baseminor, /* Starting minor number, usually 0 */
unsigned count, /* Number of device numbers */
const char *name); /* Registered name */

Returns 0 if the allocation was successful.

Example

if (alloc_chrdev region(&acme dev, 0, acme count, “acme”)) ({
printk (KERN_ERR “Failed to allocate device number\n”);

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/linux/fs.h
http://lxr.free-electrons.com/ident?i=alloc_chrdev_region
http://lxr.free-electrons.com/ident?i=dev_t
http://lxr.free-electrons.com/ident?i=alloc_chrdev_region
http://lxr.free-electrons.com/ident?i=printk
http://lxr.free-electrons.com/ident?i=KERN_ALERT

Creating device files

» Issue: you can no longer create /dev entries in advance!
You have to create them on the fly after loading the driver according to
the allocated major number.

P Trick: the script loading the module can then use /proc/devices:

module=foo; name=foo; device=foo

rm -f /dev/$device :
» Caution: back quotes!

insmod S$module.ko
major="awk "\\$2==\“$name\“4ﬁigggf\\$1}" /proc/devi;EQF

mknod /dev/$device c $major 0

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

File operations (1)

Before registering character devices, you have to define
file operations (called fops) for the device files.
Here are the main ones:

» int (*open) (
struct inode *, /* Corresponds to the device file */

struct file *); /* Corresponds to the open file descriptor */
Called when user-space opens the device file.

» int (*release) (
struct inode *,
struct file *);

Called when user-space closes the file.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=file_operations
http://lxr.free-electrons.com/ident?i=inode
http://lxr.free-electrons.com/ident?i=file
http://lxr.free-electrons.com/ident?i=inode
http://lxr.free-electrons.com/ident?i=file

The file structure

Is created by the kernel during the open call. Represents open files.
Pointers to this structure are usually called "fips".

» mode t f mode;
The file opening mode (FMODE READ and/or FMODE WRITE)

» loff t £ pos;
Current offset in the file.

» struct file operations *f op;
Allows to change ftile operations for different open files!

P struct dentry *f dentry
Usetul to get access to the inode: £ilp->f dentry->d inode.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=mode_t
http://lxr.free-electrons.com/ident?i=loff_t
http://lxr.free-electrons.com/ident?i=file_operations
http://lxr.free-electrons.com/ident?i=dentry

File operations (2)

P ssize t (*read) (
struct file *, /* Open file descriptor */
char *, /* User-space buffer to fill up */
size t, /* Size of the user-space buffer */
loff t *); /* Offset in the open file */

Called when user-space reads from the device file.

P ssize t (*write) (
struct file *, /* Open file descriptor */
const char *, /* User-space buffer to write to the device */
size t, /* Size of the user-space buffer */

loff t *); /* Offset in the open file */
Called when user-space writes to the device file.

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

(]

http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=ssize_t
http://lxr.free-electrons.com/ident?i=file
http://lxr.free-electrons.com/ident?i=size_t
http://lxr.free-electrons.com/ident?i=loff_t
http://lxr.free-electrons.com/ident?i=ssize_t
http://lxr.free-electrons.com/ident?i=file
http://lxr.free-electrons.com/ident?i=size_t
http://lxr.free-electrons.com/ident?i=loff_t

Exchanging data with user-space (1)

In driver code, you can't just memcpy between
an address supplied by user-space and
the address of a buffer in kernel-space!

» Correspond to completely different
address spaces (thanks to virtual memory)

» The user-space address may be swapped out to disk

» The user-space address may be invalid
(user space process trying to access unauthorized data)

® ;
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=memcpy

Exchanging data with user-space (2)

You must use dedicated functions such as the following ones
in your read and write file operations code:

include <asm/uaccess.h>

unsigned long copy to user (void _ user *to,
const void *from,
unsigned long n);

unsigned long copy from user (void *to,
const void _ user *from,
unsigned long n);

Make sure that these functions return 0!
Another return value would mean that they failed.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/asm-i386/uaccess.h
http://lxr.free-electrons.com/ident?i=copy_to_user
http://lxr.free-electrons.com/ident?i=__user
http://lxr.free-electrons.com/ident?i=copy_from_user
http://lxr.free-electrons.com/ident?i=__user

File operations (3)

» int (*ioctl) (struct inode *, struct file *,
unsigned 1int, unsigned long);
Can be used to send specific commands to the device, which are neither
reading nor writing (e.g. formatting a disk, configuration changes).

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=inode
http://lxr.free-electrons.com/ident?i=file

File operations specific to each open file!

Using the possibility to redefine file operations for each open file.
get PAL get NTSC
video video!
Process 1 [Process 2
ioctl: change
read
read fop
Open file 1 Open file 2
open open

2 different processes
/dev/video can read different data
from the same device file!

=

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

File operations (4)

» int (*mmap) (struct file *,
struct vm area struct);
Asking for device memory to be mapped into the address space of a user
process

P struct module *owner;
Used by the kernel to keep track of who's using this structure and count
the number of users of the module.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=file
http://lxr.free-electrons.com/ident?i=vm_area_struct
http://lxr.free-electrons.com/ident?i=module

read operation example

static ssize t

acme_read(stfuct file *file, char user *buf, size t count, loff t * ppos)

{
/* The acme buf address corresponds to a device I/O memory area */
/* of size acme bufsize, obtained with ioremap() */
int remaining bytes;
/* Number of bytes left to read in the open file */
remaining bytes = min(acme bufsize - (int) (*ppos), (int) count);
if (remaining bytes == 0) {
/* All read, returning 0 (End Of File) */
return 0;
}
if (copy to user(buf /* to */, *ppos+acme buf /* from */, remaining bytes)) {
return -EFAULT;
} else {
/* Increase the position in the open file */
*ppos += remaining bytes;
return remaining bytes;
}
}
Read method Piece of code available on
http://free-electrons.com/doc/c/acme_read.c
@

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/linux/types.h#071
http://lxr.free-electrons.com/source/include/linux/fs.h#632
http://lxr.free-electrons.com/source/include/linux/compiler.h#007
http://lxr.free-electrons.com/source/include/linux/types.h#066
http://lxr.free-electrons.com/source/include/linux/types.h#057
http://lxr.free-electrons.com/source/include/linux/kernel.h#256
http://lxr.free-electrons.com/ident?i=copy_to_user
http://lxr.free-electrons.com/source/include/asm-generic/errno-base.h#017
http://free-electrons.com/doc/c/acme_read.c

write operation example

static ssize t
acme write(struct file *file, const char _ user *buf, size t count, loff t * ppos)

{

int remaining bytes;

/* Number of bytes not written yet in the device */
remaining bytes = acme bufsize - (*ppos);

if (count > remaining bytes) ({
/* Can't write beyond the end of the device */
return -EIO;

}

if (copy from user(*ppos+acme buf /* to */, buf /* from */, count)) ({
return -EFAULT;
} else {
/* Increase the position in the open file */
*ppos += count;
return count;

Write method Piece of code available on
http://free-electrons.com/doc/c/acme_write.c

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/linux/types.h#071
http://lxr.free-electrons.com/source/include/linux/fs.h#632
http://lxr.free-electrons.com/source/include/linux/compiler.h#007
http://lxr.free-electrons.com/source/include/linux/types.h#066
http://lxr.free-electrons.com/source/include/linux/types.h#057
http://lxr.free-electrons.com/source/include/asm-generic/errno-base.h#008
http://lxr.free-electrons.com/ident?i=copy_from_user
http://lxr.free-electrons.com/source/include/asm-generic/errno-base.h#017
http://free-electrons.com/doc/c/acme_write.c

file operations definition example (3)

Defining a file operations structure

#include <linux/fs.h>

static struct file operations acme fops =

{
.owner = THIS MODULE,
.read = acme read,
.write = acme write,

3

You just need to supply the functions you implemented!
Defaults for other functions (such as open, release...)

are fine if you do not implement anything special.

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/linux/fs.h
http://lxr.free-electrons.com/ident?i=file_operations

Character device registration (1)

» The kernel represents character drivers with a cdev structure

» Declare this structure globally (within your module):
#include <linux/cdev.h>
static struct cdev *acme cdev;

» In the init function, allocate the structure and set its file operations:
acme cdev = cdev_alloc();
acme cdev->0ps = &acme fops;
acme cdev->owner = THIS MODULE;

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g | 220
® http://free-electrons.com Feb 3,2007 :

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=cdev
http://lxr.free-electrons.com/source/include/linux/cdev.h
http://lxr.free-electrons.com/ident?i=cdev
http://lxr.free-electrons.com/ident?i=cdev_alloc

Character device registration (2)

¢
» Then, now that your structure is ready, add it to the system:
int cdev_add(

struct cdev *p, /* Character device structure */

dev t dev, /* Starting device major / minor number */

unsigned count); /* Number of devices */

» Example (continued):
if (cdev_add(acme cdev, acme dev, acme count)) {
printk (KERN_ERR “Char driver registration failed\n”);

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g | 22 1
® http://free-electrons.com Feb 3,2007 -

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=cdev_add
http://lxr.free-electrons.com/ident?i=cdev
http://lxr.free-electrons.com/ident?i=dev_t
http://lxr.free-electrons.com/ident?i=cdev_add
http://lxr.free-electrons.com/ident?i=printk
http://lxr.free-electrons.com/ident?i=KERN_ERR

Character device unregistration

P First delete your character device:
void cdev _del(struct cdev *p);

» Then, and only then, free the device number:
void unregister chrdev region(dev_t from,
unsigned count);

» Example (continued):
cdev_del(acme cdev);
unregister chrdev region(acme dev, acme count);

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=cdev_del
http://lxr.free-electrons.com/ident?i=cdev
http://lxr.free-electrons.com/ident?i=unregister_chrdev_region
http://lxr.free-electrons.com/ident?i=dev_t
http://lxr.free-electrons.com/ident?i=cdev_del
http://lxr.free-electrons.com/ident?i=unregister_chrdev_region

Linux error codes

Try to report errors with error numbers as accurate as possible!
Fortunately, macro names are explicit and you can remember
them quickly.

» Generic error codes:
include/asm-generic/errno-base.h

» Platform specific error codes:
include/asm/errno.h

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

223

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/asm-generic/errno-base.h
http://lxr.free-electrons.com/source/include/asm-generic/errno.h

Char driver example summary (1)

static void *acme buf;
static int acme bufsize=8192;

static int acme count=1;
static dev_t acme dev;

static struct cdev *acme cdev;
static ssize t acme write(...) {...}
static ssize t acme read(...) {...}

static struct file operations acme fops =

{
.owner = THIS_MODULE,
.read = acme_ read,
.write = acme write
}i

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/linux/types.h#023
http://lxr.free-electrons.com/source/include/linux/cdev.h#005
http://lxr.free-electrons.com/source/include/linux/types.h#071
http://lxr.free-electrons.com/source/include/linux/types.h#071
http://lxr.free-electrons.com/source/include/linux/fs.h#1015

Char driver example summary (2)

Shows how to handle errors and deallocate resources in the right order!

static int init acme init(void)

{

if (cdev_add(acme cdev, acme_dev,
acme_count)) {

int err; _ :
acme buf = kmalloc(acme bufsize, err=-ENODEV;
- K goto err free cdev;

GFP_KERNEL) ; y
if (lacme buf) ({
err = -ENOMEM;
goto err exit;

return 0;

err free cdev:

¥ kfree(acme_cdev);

err dev_unregister:
unregister chrdev region(

acme dev, acme count);

err_free buf: -
kfree(acme buf);

¥ err exit:

return err;

if (alloc_chrdev region(&acme dev, 0,
acme count, “acme”)) {
err=-ENODEV;
goto err free buf;

acme cdev = cdev_alloc();

}

if (lacme cdev) {
err=—ENOMEM; static void _ exit acme exit(void)

. , {
goto err dev unregister; cdev_del (acme_cdev);

} unregister chrdev_region(acme dev,

acme count);
acme cdev->ops = &acme fops; —)i

acme cdev->owner = THIS MODULE; REEER{EemE ot)]

}

Complete example code available on http://free-electrons.com/doc/c/acme.c

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=__init
http://lxr.free-electrons.com/ident?i=kmalloc
http://lxr.free-electrons.com/ident?i=GFP_KERNEL
http://lxr.free-electrons.com/ident?i=ENOMEM
http://lxr.free-electrons.com/ident?i=alloc_chrdev_region
http://lxr.free-electrons.com/ident?i=ENODEV
http://lxr.free-electrons.com/ident?i=cdev_alloc
http://lxr.free-electrons.com/ident?i=ENOMEM
http://lxr.free-electrons.com/ident?i=cdev_add
http://lxr.free-electrons.com/ident?i=ENODEV
http://lxr.free-electrons.com/ident?i=kfree
http://lxr.free-electrons.com/ident?i=unregister_chrdev_region
http://lxr.free-electrons.com/ident?i=kfree
http://lxr.free-electrons.com/ident?i=__exit
http://lxr.free-electrons.com/ident?i=cdev_del
http://lxr.free-electrons.com/ident?i=unregister_chrdev_region
http://lxr.free-electrons.com/ident?i=kfree
http://free-electrons.com/doc/c/acme.c

Character driver summary

Character driver writer

- Define the file operations callbacks for the device file: read, write, ioctl...

- In the module init function, get major and minor numbers with alloc chrdev region(),
init a cdev structure with your file operations and add it to the system with cdev add ().

- In the module exit function, call cdev_del () and unregister chrdev region()

Kernel

System administration

- Load the character driver module

- In /proc/devices, find the major number it uses.
- Create the device file with this major number

The device file is ready to use!

User-space

System user
- Open the device file, read, write, or send ioctl's to it.

Kernel
- Executes the corresponding file operations

Kernel

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Practical lab — Character drivers

Time to start Lab 5!

» Write simple file operations,fora
character device, including ioctl
controls

P Get a free device number
P Register the character device
P Use the kmalloc and kfree utilities

» Exchange data with userspace

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=file_operations
http://lxr.free-electrons.com/ident?i=kmalloc
http://lxr.free-electrons.com/ident?i=kfree

Embedded Linux driver development

% Driver development
Debugging

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Usefulness of a serial port

» Most processors feature a serial port interface (usually very
well supported by Linux). Just need this interface to be
connected to the outside.

» Easy way of getting the first messages of an early kernel
version, even before it boots. A minimum kernel with only
serial port support 1s enough.

» Once the kernel is fixed and has completed booting, possible
to access a serial console and 1ssue commands.

» The serial port can also be used to transfer files to the target.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

When you don't have a serial port

On the host

» Not an issue. You can get a USB to serial converter. Usually very
well supported on Linux and roughly costs $20. The device appears
as /dev/ttyUSBO on the host.

On the target

» Check whether you have an IrDA port. It's usually a serial port too.
» If you have an Ethernet adapter, try with it

» You may also try to manually hook-up the processor serial interface
(check the electrical specifications first!)

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Debugging with printk

» Universal debugging technique used since the beginning of
programming (first found in cavemen drawings)

» Printed or not in the console or /var/log/messages
according to the priority. This is controlled by the loglevel
kernel parameter, or through /proc/sys/kernel/printk
(see Documentation/sysctl/kernel.txt)

» Available priorities (include/linux/kernel.h):

#define
#define
#define
#define
#define
#define
#define
#define

KERN EMERG
KERN ALERT
KERN CRIT
KERN ERR
KERN WARNING
KERN NOTICE
KERN INFO
KERN DEBUG

II<O>II
n<1>n
ll<2>ll
ll<3>ll
n<4>n
"
II<6>II
N

/*
/*
/*
/*
/*
/*
/*
/*

system is unusable */

action must be taken immediately */
critical conditions */

error conditions */

warning conditions */

normal but significant condition */
informational */

debug-level messages */

(.\, Free Electrons

(]

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
Creative Commons Attribution-ShareAlike 2.5 license ,
http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/sysctl/kernel.txt
http://lxr.free-electrons.com/source/include/linux/kernel.h
http://lxr.free-electrons.com/ident?i=KERN_EMERG
http://lxr.free-electrons.com/ident?i=KERN_ALERT
http://lxr.free-electrons.com/ident?i=KERN_CRIT
http://lxr.free-electrons.com/ident?i=KERN_ERR
http://lxr.free-electrons.com/ident?i=KERN_WARNING
http://lxr.free-electrons.com/ident?i=KERN_NOTICE
http://lxr.free-electrons.com/ident?i=KERN_INFO
http://lxr.free-electrons.com/ident?i=KERN_DEBUG

Debugging with /proc or /sys (1)

Instead of dumping messages in the kernel log, you can have your
drivers make information available to user space

» Through a file in /proc or /sys, which contents are handled by
callbacks defined and registered by your driver.

» Can be used to show any piece of information
about your device or driver.

» Can also be used to send data to the driver or to control it.

» Caution: anybody can use these files.
You should remove your debugging interface in production!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Debugging with /proc or /sys (2)

Examples

P cat /proc/acme/stats (dummy example)
Displays statistics about your acme driver.

P cat /proc/acme/globals (dummy example)
Displays values of global variables used by your driver.

P echo 600000 > /sys/devices/system/cpu/cpul/cpufreq/scaling setspeed
Adjusts the speed of the CPU (controlled by the cpufreq driver).

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Debugging with ioctl

» Can use the 1octl () system call to query information
about your driver (or device) or send commands to it.

» This calls the ioct1l file operation that you can register in
your driver.

» Advantage: your debugging interface is not public.
You could even leave it when your system (or its driver) 1s in
the hands of its users.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Debugging with gdb

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

» If you execute the kernel from a debugger on the same machine,
this will interfere with the kernel behavior.

» However, you can access the current kernel state with gdb:
gdb /usr/src/linux/vmlinux /proc/kcore
uncompressed kernel kernel address space

®» You can access kernel structures, follow pointers... (read only!)

» Requires the kernel to be compiled with CONFIG DEBUG INFO
(Kernel hacking section)

Embedded Linux kernel and driver development

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

kgdb kernel patch

http://kgdb.linsyssoft.com/

» The execution of the patched kernel is fully controlled by
gdb from another machine, connected through a serial line.

» Can do almost everything, including inserting breakpoints in
interrupt handlers.

» Supported architectures: 1386, x86 64, ppc and s390.

w L ~}

- t ‘i'

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://kgdb.linsyssoft.com/

Kernel crash analysis with kexec

@
. . I Copy debug Standard kernel
» kexec system call: makes it possible to ~ kemelt© |
. . reserved 2. kernel panic,
call a new kernel, without rebooting and ram kexec debug
. . kernel
going through the BIOS / firmware. o
3. Analyze
» Idea: after a kernel panic, make the crashed Debug kernel
kernel automatically execute a new,
clean kernel from a reserved location in
RAM, to perform post-mortem analysis
of the memory of the crashed kernel.
» See Documentation/kdump/kdump.txt
in the kernel sources for details. Regular RAM

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/kdump/kdump.txt

Decrypting oops messages

P You often get kernel oops messages when
you develop drivers (dereferencing null
pointers, illegal accesses to memory...).
They give raw information about the
function call stack and CPU registers.

P You can make these messages more
explicit in your development kernel, for
example by replacing raw addresses by
symbol names, by setting:

General Setup
CONFIG KALLSYMS=y

P Replaces the ksymoops tool which
shouldn't be used any more with Linux 2.6

<1>Unable to handle kernel paging request at virtual address 4d
1b65e8

Unable to handle kernel paging request at virtual address 4d1b65
e8

<1>pgd = c0280000

pgd = c0280000

<1>[4d1b65e8] *pgd=00000000[4d 1b65e8] *pgd=00000000

Internal error: Oops: 5 [#1]

Internal error: Oops: 5 [#1]

Modules linked in:Modules linked in: hx4700 udc hx4700 udc
asic3 base asic3 base

CPU: 0

CPU: 0

PC is at set pxa fb _info+0x2c/0x44

PC is at set pxa fb_info+0x2c/0x44

LR is at hx4700 udc init+0x1c/0x38 [hx4700 udc]

LR is at hx4700 udc init+0x1c/0x38 [hx4700 udc]

pc : [<c00116¢8>] Ir:[<bf00901c>] Not tainted

sp : c076df78 ip : 60000093 fp : c076df84

pc : [<c00116¢8>] Ir:[<bf00901c>] Not tainted

sp : c076df78 ip : 60000093 fp : c076df84

r10: 00000002 r9:c076c000 r8:c001lc7e4

r10: 00000002 r9: c076c000 r8: c001lc7e4

r7 : 00000000 r6:c0176d40 r5:bf007500 r4 : c0176d58
r7 : 00000000 r6:c0176d40 r5:bf007500 r4 : c0176d58
r3:c0176828 r2: 00000000 rl: 00000f76 r0 : 80004440
r3:c0176828 r2: 00000000 rl: 00000f76 r0 : 80004440
Flags: nZCvFlags: nZCv IRQs on FIQs on Mode SVC 32 Segme
nt user

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Debugging with Kprobes

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

Described in Documentation/kprobes.txt in kernel sources

P Fairly simple way of inserting breakpoints in kernel routines.
Now available in standard kernels.

P Unlike printk debugging, you neither have to recompile nor reboot your
kernel. You only need to compile and load a dedicated module to declare the
address of the routine you want to probe.

P Non disruptive, based on the kernel interrupt handler
P Kprobes even lets you modify registers and global kernel internals.

» Supported architectures: 1386, x8 6 64,ia64,ppc64 and sparc64.
arm and mips patches available

from http://tree.celinuxforum.org/CelfPubWki/Patch Archive

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/kprobes.txt
http://tree.celinuxforum.org/CelfPubWiki/PatchArchive

Kernel debugging tips

» If your kernel doesn't boot yet or hangs without any message, it
can help to activate Low Level debugging
(Kernel Hacking section, only available on arm):
CONFIG DEBUG LL=y

» Techniques to locate the C instruction which caused an oops:
http://kerneltrap.org/node/3648

» More about kernel debugging in the free
Linux Device Drivers book (References section)!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://kerneltrap.org/node/3648

Embedded Linux driver development

Driver development
Concurrent access to resources

% ®

4 A

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Sources of concurrency issues

The same resources can be accessed by several kernel processes in
parallel, causing potential concurrency issues

P Several user-space programs accessing the same device data or
hardware. Several kernel processes could execute the same code on
behalf of user processes running in parallel.

P Multiprocessing: the same driver code can be running on another
processor. This can also happen with single CPUs with hyperthreading.

» Kernel preemption, interrupts: kernel code can be interrupted at any
time (Just a few exceptions), and the same data may be access by another
process before the execution continues.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Avoiding concurrency issues

» Avoid using global variables and shared data whenever possible
(cannot be done with hardware resources)

» Don't make resources available to other kernel processes until
they are ready to be used.

» Use techniques to manage concurrent access to resources.

See Rusty Russell's Unreliable Guide To Locking
Documentation/DocBook/kernel-locking/

1n the kernel sources.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/DocBook/kernel-locking/

Concurrency protection with locks

Process 1 Process 2
v Failed \‘
% Acquire lock — Wait lock release
Try again
Success Critical code section Success

Shared resource

k% Release lock }

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Linux mutexes

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
(.\« Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
© http://free-electrons.com Feb 3, 2007

» The main locking primitive since Linux 2.6.16.
Better than counting semaphores when binary ones are enough.

» Mutex definition:
#include <linux/mutex.h>

» Initializing a mutex statically:
DEFINE MUTEX(name);

» Initializing a mutex dynamically:
void mutex init(struct mutex *lock);

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/linux/mutex.h
http://lxr.free-electrons.com/ident?i=DEFINE_MUTEX
http://lxr.free-electrons.com/ident?i=mutex_init
http://lxr.free-electrons.com/ident?i=mutex

locking and unlocking mutexes

» void mutex lock (struct mutex *lock);
Tries to lock the mutex, sleeps otherwise.
Caution: can't be interrupted, resulting in processes you cannot kill!

» int mutex lock interruptible (struct mutex *lock);
Same, but can be interrupted. If interrupted, returns a non zero value and
doesn't hold the lock. Test the return value!!!

» int mutex trylock (struct mutex *lock);
Never waits. Returns a non zero value if the mutex 1s not available.

P int mutex is locked(struct mutex *lock);
Just tells whether the mutex 1s locked or not.

P void mutex unlock (struct mutex *lock);
Releases the lock. Make sure you do it as quickly as possible!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=mutex_lock
http://lxr.free-electrons.com/ident?i=mutex
http://lxr.free-electrons.com/ident?i=mutex_lock_interruptible
http://lxr.free-electrons.com/ident?i=mutex
http://lxr.free-electrons.com/ident?i=mutex_trylock
http://lxr.free-electrons.com/ident?i=mutex
http://lxr.free-electrons.com/ident?i=mutex_is_locked
http://lxr.free-electrons.com/ident?i=mutex
http://lxr.free-electrons.com/ident?i=mutex_unlock
http://lxr.free-electrons.com/ident?i=mutex

Reader / writer semaphores

Allow shared access by unlimited readers, or by only 1 witer. Writers get priority.
void init rwsem (struct rw_semaphore *sem);

void down read (struct rw _semaphore *sem);
int down read trylock (struct rw semaphore *sem);
int up read (struct rw semaphore *sem);

void down write (struct rw semaphore *sem);
int down write trylock (struct rw semaphore *sem);
int up write (struct rw_semaphore *sem);

Well suited for rare writes, holding the semaphore briefly. Qherwise, readers get
starved, waiting too long for the semaphore to be released.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=init_rwsem
http://lxr.free-electrons.com/ident?i=rw_semaphore
http://lxr.free-electrons.com/ident?i=down_read
http://lxr.free-electrons.com/ident?i=rw_semaphore
http://lxr.free-electrons.com/ident?i=down_read_trylock
http://lxr.free-electrons.com/ident?i=rw_semaphore
http://lxr.free-electrons.com/ident?i=up_read
http://lxr.free-electrons.com/ident?i=rw_semaphore
http://lxr.free-electrons.com/ident?i=down_write
http://lxr.free-electrons.com/ident?i=rw_semaphore
http://lxr.free-electrons.com/ident?i=down_write_trylock
http://lxr.free-electrons.com/ident?i=rw_semaphore
http://lxr.free-electrons.com/ident?i=up_write
http://lxr.free-electrons.com/ident?i=rw_semaphore

When to use mutexes or semaphores

» Before and after accessing shared resources

» Before and after making other resources available to other
parts of the kernel or to user-space (typically and module
1nitialization).

» In situations when sleeping is allowed.
Semaphores and mutexes must only be used in process
context (managed by the scheduler), and not in interrupt
context (managed by the CPU, sleeping not supported).

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Spinlocks

©
» Locks to be used for code that can't sleep (critical sections,
interrupt handlers... Be very careful not to call functions which
can sleep!
Still locked?

» Intended for multiprocessor systems
» Spinlocks are not interruptible,
don't sleep and keep spinning in a loop

until the lock 1s available.

» Spinlocks cause kernel preemption to be disabled on the CPU
executing them.

» May require interrupts to be disabled too.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Initializing spinlocks

P Static
spinlock t my lock = SPIN LOCK UNLOCKED;

» Dynamic
void spin lock init (spinlock t *lock);

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=spinlock_t
http://lxr.free-electrons.com/ident?i=SPIN_LOCK_UNLOCKED
http://lxr.free-electrons.com/ident?i=spin_lock_init
http://lxr.free-electrons.com/ident?i=spinlock_t

Using spinlocks

void spin [un]lock (spinlock t *lock);

void spin [un]lock irgsave (spinlock t *lock,
unsigned long flags);
Disables IRQs on the local CPU

void spin lock irqg (spinlock t *lock);
Disables IRQs without saving flags. When you're sure that nobody
already disabled interrupts.

void spin [un]lock bh (spinlock t *lock);
Disables software interrupts, but not hardware ones

Note that reader / writer spinlocks also exist.

@
Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons w
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g
|

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=spin_lock
http://lxr.free-electrons.com/ident?i=spinlock_t
http://lxr.free-electrons.com/ident?i=spin_lock_irqsave
http://lxr.free-electrons.com/ident?i=spinlock_t
http://lxr.free-electrons.com/ident?i=spin_lock_irq
http://lxr.free-electrons.com/ident?i=spinlock_t
http://lxr.free-electrons.com/ident?i=spin_lock_bh
http://lxr.free-electrons.com/ident?i=spinlock_t

Deadlock situations

They can lock up your system. Make sure they never happen!

Don't call a function that can try ~ Holding multiple locks is risky!
to get access to the same lock l l

l N [Get locklj [Get IOCKZJ
[Get lockl I >l l l

[Get lock2 J [Get lockl J
[Wait for locklj
Dead

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Kernel lock validator

From Ingo Molnar
http://people.redhat.com/mingo/lockdep-patches/

» Adds instrumentation to kernel locking code
» Detect violations of locking rules during system life, such as:

P Locks acquired in different order
(keeps track of locking sequences and compares them).

» Spinlocks acquired in interrupt handlers and also in process
context when interrupts are enabled.

» Not suitable for production systems
but acceptable overhead in development.

Overview: http://lwn.net/Articles/185078/
¢

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://people.redhat.com/mingo/lockdep-patches/
http://lwn.net/Articles/185078/

Alternatives to locking

As we have just seen, locking can have a strong negative impact on
system performance. In some situations, you could do without it.

» By using lock-free algorithms like Read Copy Update (RCU).
RCU API available in the kernel
(See http://en.wikipedia.org/wiki/RCU).

» When available, use atomic operations.

254

0 -
Embedded Linux kernel and driver development > !
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
|

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://en.wikipedia.org/wiki/RCU

Atomic variables

B Useful when the shared resource is an

. P Operations without return value:
integer value

void atomic_inc (atomic _t *v);
void atomic_dec (atomic t *v);

. . . : (
B Even an instruction like n++ is not void atomic_add (int i, atomic_t *v);
(

guaranteed to be atomic on all processors! void atomic sub (int i, atomic t *v);
Header P Simular functions testing the result:
_) int atomic inc and test (...);
P #include <asm/atomic.h> int atomic_dec_and test (...);
int atomic sub and test (...);
Type - -~

P Functions returning the new value:

b atomlc_t int atomic_inc and return (

. : : :)i

contains a signed integer (at least 24 bits) int atomic dec and return (...);
int atomic add and return (...);

Atomic operations (Imain ones) int atomic sub and return (...);

P Set or read the counter:
atomic_set (atomic_t *v, int 1i);
int atomic read (atomic t *v);

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/asm-i386/atomic.h
http://lxr.free-electrons.com/ident?i=atomic_t
http://lxr.free-electrons.com/ident?i=atomic_set
http://lxr.free-electrons.com/ident?i=atomic_t
http://lxr.free-electrons.com/ident?i=atomic_read
http://lxr.free-electrons.com/ident?i=atomic_t
http://lxr.free-electrons.com/ident?i=atomic_inc
http://lxr.free-electrons.com/ident?i=atomic_t
http://lxr.free-electrons.com/ident?i=atomic_dec
http://lxr.free-electrons.com/ident?i=atomic_t
http://lxr.free-electrons.com/ident?i=atomic_add
http://lxr.free-electrons.com/ident?i=atomic_t
http://lxr.free-electrons.com/ident?i=atomic_sub
http://lxr.free-electrons.com/ident?i=atomic_t
http://lxr.free-electrons.com/ident?i=atomic_inc_and_test
http://lxr.free-electrons.com/ident?i=atomic_dec_and_test
http://lxr.free-electrons.com/ident?i=atomic_sub_and_test
http://lxr.free-electrons.com/ident?i=atomic_inc_and_return
http://lxr.free-electrons.com/ident?i=atomic_dec_and_return
http://lxr.free-electrons.com/ident?i=atomic_add_and_return
http://lxr.free-electrons.com/ident?i=atomic_sub_and_return

Atomic bit operations

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

P Supply very fast, atomic operations

P On most platforms, apply to an unsigned long type.
Apply to a void type on a few others.

P Set, clear, toggle a given bit:
void set bit(int nr, unsigned long * addr);
void clear bit(int nr, unsigned long * addr);
void change bit(int nr, unsigned long * addr);

P Test bit value:
int test bit(int nr, unsigned long *addr);

P Test and modify (return the previous value):
int test and set bit (...);
int test and clear bit (...);
int test and change bit (...);

Embedded Linux kernel and driver development

- 256

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=set_bit
http://lxr.free-electrons.com/ident?i=clear_bit
http://lxr.free-electrons.com/ident?i=change_bit
http://lxr.free-electrons.com/ident?i=test_bit
http://lxr.free-electrons.com/ident?i=test_and_set_bit
http://lxr.free-electrons.com/ident?i=test_and_clear_bit
http://lxr.free-electrons.com/ident?i=test_and_change_bit

Embedded Linux Driver Development

Driver development
Processes and scheduling

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Processes

A process 1s an instance of a running program

» Multiple instances of the same program can be running.
Program code (“text section”) memory 1s shared.

» Each process has its own data section, address space,
processor state, open files and pending signals.

» The kernel has a separate data structure for each process.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Threads

In Linux, threads are just implemented as processes!

» New threads are implemented as regular processes,
with the particularity that they are created with the same
address space, filesystem resources, file descriptors and
signal handlers as their parent process.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

A process life

©
TASK ZOMBIE
ngﬁglff g]lg.ﬁc(e)ss Task terminated but its
and creates The process is elected resources arfe not freed yet.
a new process by the scheduler Waiting for its parent
to acknowledge its death.
4)
TAS%_IZUI[;II‘IING TASK RUNNING
no?iu%]milrllg Actually running
The process 1s preempted
by to scheduler to run N J
a higher priority task
The event occurs Decides to sleep
it
or the process receives TASK INTERRUPTIBLE] ona Wi‘fl. queui
a signal. Process becomes or TASK _UNINTERRUPTIBLE Of a specilic even
— Waiting

runnable again

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=TASK_RUNNING
http://lxr.free-electrons.com/ident?i=TASK_RUNNING
http://lxr.free-electrons.com/ident?i=TASK_INTERRUPTIBLE
http://lxr.free-electrons.com/ident?i=TASK_UNINTERRUPTIBLE
http://lxr.free-electrons.com/ident?i=TASK_ZOMBIE

Process context

User space programs and system calls are scheduled together

Process continuing in user space...
(or replaced by a higher priority process)
(can be preempted)

Process executing in user space...
(can be preempted)

System call
or exception

Kernel code executed
on behalf of user space
(can be preempted too!)

Still has access to process
data (open files...)

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Kernel threads

P The kernel does not only react from user-space (system calls, exceptions) or
hardware events (interrupts). It also runs its own processes.

P Kernel space are standard processes scheduled and preempted in the same
way (you can view them with top or ps!) They just have no special address
space and usually run forever.

P Kernel thread examples:

P pdflush: regularly flushes “dirty” memory pages to disk (file changes
not committed to disk yet).

P ksoftirgd: manages soft irgs.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Process priorities

Regular processes
» Priorities from -20 (maximum) to 19 (minimum)

» Only root can set negative priorities
(root can give a negative priority to a regular user process)

» Use the nice command to run a job with a given priority:
nice -n <priority> <command>

» Use the renice command to change a process priority:
renice <priority> -p <pid>

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

263

http://free-electrons.com/

Real-time processes

Real-time processes can be started byroot using the POSIX API
P Available through<sched.h> (seeman sched.h for details)
P 100 real-time priorities available

» SCHED FIFO scheduling class:

The process runs until completion unless it is blocked by an I/Qvoluntarily
relinquishes the CPU], or 1s preempted by a higher priority process.

» SCHED RR scheduling class:

Difference: the processes are scheduled in a Round Robin way.
Each process 1s run until it exhausts a max time quantum. Then other
processes with the same priority are run, and so and so...

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Timer frequency

Timer interrupts are raised every HZ th of second (= 1 jiffy)

P HZ is now configurable (in Processor type and features):
100, 250 (1386 default) or 1000.
Supported on 1386, 1a64, ppc, ppc64, sparc64,x86 64
See kernel/Kconfig.hz.

» Compromise between system responsiveness and global throughput.
» Caution: not any value can be used. Constraints apply!

Another idea 1s to completely turn off CPU timer interrupts when the
system 1s 1dle (“dynamic tick™): see http://muru.com/linux/dyntick.

This saves power. Supports arm and 1386 so far.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://muru.com/linux/dyntick

O(1) scheduler

» The kernel maintains 2 priority arrays:
the active and the expired array.

» Each array contains 140 entries (100 real-time priorities + 40
regular ones), 1 for each priority, each containing a list of
processes with the same priority.

» The arrays are implemented in a way that makes it possible to
pick a process with the highest priority in constant time
(whatever the number of running processes).

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Choosing and expiring processes

» The scheduler finds the highest process priority

» It executes the first process in the priority queue for this
priority.

» Once the process has exhausted its timeslice, it is moved to
the expired array.

» The scheduler gets back to selecting another process with the
highest priority available, and so on...

» Once the active array is empty, the 2 arrays are swapped!
Again, everything 1s done in constant time!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

When is scheduling run?

Each process has a need resched flag which is set:

P After a process exhausted its timeslice.

P After a process with a higher priority is awakened.

This flag 1s checked (possibly causing the execution of the scheduler)
» When returning to user-space from a system call

» When returning from an interrupt handler (including the cpu timer)

Scheduling also happens when kernel code explicitly runs
schedule () or executes an action that sleeps.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Timeslices

The scheduler also prioritizes high priority processes by giving
them a bigger timeslice.

» Initial process timeslice: parent's timeslice split in 2
(otherwise process would cheat by forking).

» Minimum priority: 5 ms or 1 jiffy (whichever is larger)
» Default priority in jiffies: 100 ms
» Maximum priority: 800 ms

Note: actually depends on HZ.
See kernel /sched. c for details.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/kernel/sched.c

Dynamic priorities

Only applies to regular processes

P For a better user experience, the Linux scheduler boots the priority
of interactive processes (processes which spend most of their time
sleeping, and take time to exhaust their timeslices). Such
processes often sleep but need to respond quickly after waking up
(example: word processor waiting for key presses).

Priority bonus: up to 5 points.

» Conversely, the Linux scheduler reduces the priority of compute
intensive tasks (which quickly exhaust their timeslices).
Priority penalty: up to 5 points.

@
Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons !'I !
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Embedded Linux driver development

Driver development
Sleeping

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

How to sleep (1)

Sleeping 1s needed when a user process 1s waiting for data which
are not ready yet. The process then puts itself 1n a waiting queue.

» Static queue declaration
DECLARE WAIT QUEUE HEAD (module queue);
» Dynamic queue declaration

wait queue head t queue;
init waitqueue head(&queue);

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g | 27 2
® http://free-electrons.com Feb 3, 2007 -

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=DECLARE_WAIT_QUEUE_HEAD
http://lxr.free-electrons.com/ident?i=wait_queue_head_t
http://lxr.free-electrons.com/ident?i=init_waitqueue_head

How to sleep (2)

Several ways to make a kernel process sleep

» wait event(queue, condition);
Sleeps until the given C expression is true.
Caution: can't be interrupted (i.e. by killing the client process in user-space)

[wait event interruptible(queue, condition);
Can be interrupted

» wait event timeout(queue, condition, timeout);
Sleeps and automatically wakes up after the given timeout.

P wait event interruptible timeout(queue, condition, timeout);
Same as above, interruptible.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=wait_event
http://lxr.free-electrons.com/ident?i=wait_event_interruptible
http://lxr.free-electrons.com/ident?i=wait_event_timeout
http://lxr.free-electrons.com/ident?i=wait_event_interruptible_timeout

How to sleep - Example

From drivers/ieeel394/videol394.c

wait event interruptible(
d->waitqg,
(d=>buffer status[v.buffer]
== VIDEOl394_BUFFER_READY)

)

if (signal pending(current))
return -EINTR;

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/drivers/ieee1394/video1394.c

Waking up!

Typically done by interrupt handlers when data sleeping
processes are waiting for are available.

» wake up(queue);
Wakes up all the waiting processes on the given queue

» wake up interruptible(queue);
Does the same job. Usually called when processes waited
usingwait event interruptible.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

275

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=wake_up
http://lxr.free-electrons.com/ident?i=wake_up_interruptible
http://lxr.free-electrons.com/ident?i=wait_event_interruptible

Sleeping and waking up - implementation

The scheduler doesn't keep evaluating the sleeping condition!

P wait event interruptible(queue, condition);
The process 1s put in the TASK INTERRUPTIBLE state.

» wake up interruptible(queue);
For all processes waiting in queue, condition is evaluated.
When it evaluates to true, the process is put back
to the TASK RUNNING state.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=wait_event_interruptible
http://lxr.free-electrons.com/ident?i=TASK_INTERRUPTIBLE
http://lxr.free-electrons.com/ident?i=wake_up_interruptible
http://lxr.free-electrons.com/ident?i=TASK_RUNNING

Embedded Linux driver development

Driver development
Interrupt management

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Need for interrupts

» Internal processor interrupts used by the processor, for
example for multi-task scheduling.

» External interrupts needed because most internal and external
devices are slower than the processor. Better not keep the
processor waiting for input data to be ready or data to be
output. When the device 1s ready again, 1t sends an interrupt
to get the processor attention again.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Interrupt handler constraints

» Not run from a user context:
Can't transfer data to and from user space
(need to be done by system call handlers)

» Interrupt handler execution is managed by the CPU, not by
the scheduler. Handlers can't run actions that may sleep,
because there 1s nothing to resume their execution.

In particular, need to allocate memory with GFP_ATOMIC.

» Have to complete their job quickly enough:
they shouldn't block their interrupt line for too long.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=GFP_ATOMIC

Registering an interrupt handler (1)

Defined in include/linux/interrupt.h

P int request irqg(Returns 0 if successful
unsigned int irq, Requested irq channel
irgreturn t handler, Interrupt handler
unsigned long irqg flags, Option mask (see next page)
const char * devname, Registered name
void *dev_id); Pointer to some handler data

Cannot be NULL and must be unique for shared irgs!

P void free irqg(unsigned int irqg, void *dev id);

Q ? Why does dev__id have to be unique?
. Answer...

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/linux/interrupt.h
http://lxr.free-electrons.com/ident?i=request_irq
http://lxr.free-electrons.com/ident?i=irqreturn_t
http://lxr.free-electrons.com/ident?i=free_irq

Registering an interrupt handler (2)

irqg flags bit values (can be combined, none is fine too)

» IRQF DISABLED
"Quick" interrupt handler. Run with all interrupts disabled on the current cpu (instead
of just the current line). For latency reasons, should only be used when needed!

» IRQF SHARED
Run with interrupts disabled only on the current irq line and on the local cpu.
The interrupt channel can be shared by several devices.
Requires a hardware status register telling whether an IRQ was raised or not.

» IRQF SAMPLE RANDOM
Interrupts can be used to contribute to the system entropy pool used by
/dev/random and /dev/urandom. Useful to generate good random numbers.
Don't use this if the interrupt behavior of your device is predictable!

» IRQF TIMER
Only used for timer interrupts.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=IRQF_DISABLED
http://lxr.free-electrons.com/ident?i=IRQF_SHARED
http://lxr.free-electrons.com/ident?i=IRQF_SAMPLE_RANDOM
http://lxr.free-electrons.com/ident?i=IRQF_TIMER

When to register the handler

» Either at driver initialization time:
consumes lots of IRQ channels!

» Or at device open time (first call to the open file operation):
better for saving free IRQ channels.
Need to count the number of times the device 1s opened, to
be able to free the IRQ channel when the device 1s no longer
in use.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Information on installed handlers

@
/proc/interrupts

CPUO
O: 5616905 XT-PIC timer # Registered name
1: 0828 XT-PIC 18042
2: 0 XT-PIC cascade
3: 1014243 XT-PIC orinoco_cs
7 184 XT-PIC 1Intel 82801DB-ICH4
8: 1 XT-PIC rtc
9: 2 XT-PIC acpi
11 566583 XT-PIC ehci hecd, uhci hcd,
uhci hed, uhci hed, yenta, yenta, radeon@PCI:1:0:0
12 5466 XT-PIC 18042
14 121043 XT-PIC 1ideO0
15: 200888 XT-PIC 1idel
NMI: 0 # Non Maskable Interrupts
ERR: 0

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Total number of interrupts

cat /proc/stat | grep intr

intr 8190767 6092967 10377 0 1102775 5 2 0 196 ...

Total number IRQI IRQ2 IRQ3
of interrupts total total

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Interrupt channel detection (1)

Useful when a driver can be used in different machines / architectures
» Some devices announce their IRQ channel in a register

» Manual detection

P Register your interrupt handler for all possible channels

> Ask for an interrupt

P Let the called interrupt handler store the IRQ number in a global variable.
P Try again if no interrupt was received

P Unregister unused interrupt handlers.

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
(.\« Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , | 28 5
© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Interrupt channel detection (2)

Kernel detection utilities

» mask = probe irq on();

» Activate interrupts on the device

» Deactivate interrupts on the device

» irqg = probe irq off(mask);
» > 0: unique IRQ number found
» = 0:no interrupt. Try again!

P < 0: several interrupts happened. Try again!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=probe_irq_on
http://lxr.free-electrons.com/ident?i=probe_irq_off

The interrupt handler's job

» Acknowledge the interrupt to the device
(otherwise no more interrupts will be generated)

» Read/write data from/to the device

» Wake up any waiting process waiting for the completion of

this read/write operation:
wake up interruptible(&module queue);

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=wake_up_interruptible

Interrupt handler prototype

irgreturn t (*handler) (
int, // irq number of the current interrupt
void *dev_id, //Pointer used to keep track
// of the corresponding device.
// Useful when several devices
/I are managed by the same module

) ;
Return value:

» IRQ HANDLED: recognized and handled interrupt

» IRQ NONE: not on a device managed by the module. Useful to share
interrupt channels and/or report spurious interrupts to the kernel.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=irqreturn_t
http://lxr.free-electrons.com/ident?i=IRQ_HANDLED
http://lxr.free-electrons.com/ident?i=IRQ_NONE

Top half and bottom half processing (1)

» Top half: the interrupt handler must complete as quickly as
possible. Once 1t acknowledged the interrupt, it just
schedules the lengthy rest of the job taking care of the data,
for a later execution.

» Bottom half: completing the rest of the interrupt handler job.
Handles data, and then wakes up any waiting user process.
Best implemented by tasklets.

® ﬂ
Embedded Linux kernel and driver development ¥
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ﬁ | 289
I.I

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

top half and bottom half processing (2)

P Declare the tasklet in the module source file:

DECLARE TASKLET (module tasklet, /* name */
module do tasklet, /*function */
0 /* data */

) 7

» Schedule the tasklet in the top half part (interrupt handler):
tasklet schedule(&module do tasklet);

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=DECLARE_TASKLET
http://lxr.free-electrons.com/ident?i=tasklet_schedule

Disabling interrupts

May be useful in regular driver code...

» Can be useful to ensure that an interrupt handler will not preempt your
code (including kernel preemption)

» Disabling interrupts on the local CPU:

unsigned long flags;
local irq save(flags); // Interrupts disabled

local irq restore(flags); //Interrupts restored to their previous state.
Note: must be run from within the same function!

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

(]

http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=local_irq_save
http://lxr.free-electrons.com/ident?i=local_irq_restore

Masking out an interrupt line

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

Useful to disable interrupts on a particular line

» void disable irg (unsigned int irq);
Disables the 1rqg line for all processors in the system.
Waits for all currently executing handlers to complete.

» void disable irg nosync (unsigned int irq);
Same, except it doesn't wait for handlers to complete.

» void enable irqg (unsigned int irq);
Restores interrupts on the irq line.

» void synchronize irq (unsigned int irq);

Embedded Linux kernel and driver development

Waits for 1rqg handlers to complete (if any).

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=disable_irq
http://lxr.free-electrons.com/ident?i=disable_irq_nosync
http://lxr.free-electrons.com/ident?i=enable_irq
http://lxr.free-electrons.com/ident?i=synchronize_irq

Checking interrupt status

Can be useful for code which can be run from both process or
interrupt context, to know whether it 1s allowed or not to call
code that may sleep.

» irgs disabled()
Tests whether local interrupt delivery is disabled.

» in interrupt()
Tests whether code 1s running in interrupt context
P in irq()
Tests whether code 1s running in an interrupt handler.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=irqs_disabled
http://lxr.free-electrons.com/ident?i=in_interrupt
http://lxr.free-electrons.com/ident?i=in_irq

Interrupt management fun

» In a training lab, somebody forgot to unregister a handler on
a shared interrupt line in the module exit function.

) ? Why did his kernel crash with a segmentation fault
| * at module unload?

Answer...

» In a training lab, somebody freed the timer interrupt handler
by mistake (using the wrong irq number). The system froze.
Remember the kernel 1s not protected against itself!

@
Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons v
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Interrupt management summary

Device driver Tasklet

P When the device file is first open, P Process the data
register an interrupt handler for the

: - P Wake up processes waiting for
device's interrupt channel. pp g

the data
Interrupt handler

Device driver

> : < raised.
Called when an interrupt is raised B When the device is no longer

P Acknowledge the interrupt opened by any process, unregister

the int t handler.
P If needed, schedule a tasklet taking © INTeLpt handict

care of handling data. Otherwise,
wake up processes waiting for the
data.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Practical lab — Interrupts

Time to start Lab 6!
» Implement a simple interrupt handler

P Register this handler on a shared interrupt
line on your GNU/Linux PC.

» See how Linux handles
shared interrupt lines.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Embedded Linux driver development

Driver development
mmap

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

mmap (1)

Possibility to have parts of the virtual address space of a program
mapped to the contents of a file!

> cat /proc/1l/maps (init process)

start end perm offset major:minor inode mapped file name
00771000-0077£000 r-xp 00000000 03:05 1165839 /1lib/libselinux.so.l
0077£000-00781000 rw-p 00004000 03:05 1165839 /lib/libselinux.so.1l
0097d000-00992000 r-xp 00000000 03:05 1158767 /1ib/1d-2.3.3.s0
00992000-00993000 r--p 00014000 03:05 1158767 /1ib/1d-2.3.3.s0
00993000-00994000 rw-p 00015000 03:05 1158767 /1ib/1d-2.3.3.s0
00996000-00aac000 r-xp 00000000 03:05 1158770 /1lib/tls/libc-2.3.3.s0
00aac000-00aad000 r--p 00116000 03:05 1158770 /1lib/tls/libc-2.3.3.s0
00aad000-00ab0000 rw-p 00117000 03:05 1158770 /1lib/tls/libc-2.3.3.s0
00ab0000-00ab2000 rw-p 00ab0000 00:00 O

08048000-08050000 r-xp 00000000 03:05 571452 /sbin/init (text)
08050000-08051000 rw-p 00008000 03:05 571452 /sbin/init (data, stack)

08b43000-08b64000 rw-p 08b43000 00:00 O
f6£fdf000-£f6fe0000 rw-p £6£df000 00:00 O
fefd4000-££000000 rw-p fefd4000 00:00 O
ffffe000-f££f£f£f000 ---p 00000000 00:00 O

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

mmap (2)

Particularly useful when the file 1s a device file!
Allows to access device I/0 memory and ports without having to go
through (expensive) read, write or 1octl calls!

X server example (maps excerpt)

start end perm offset major:minor inode mapped file name
08047000-081be000 r-xp 00000000 03:05 310295 /usr/X11R6/bin/Xorg
081be000-081f0000 rw-p 00176000 03:05 310295 /usr/X11R6/bin/Xorg
f4e08000-£4£f09000 rw-s e0000000 03:05 655295 /dev/dri/card0
£f4£09000-£4£f0b000 rw-s 4281a000 03:05 655295 /dev/dri/card0
f4f0b000-£6£0b000 rw-s e8000000 03:05 652822 /dev/mem
f6£f0b000-£6£8b000 rw-s fcff0000 03:05 652822 /dev/mem

A more user friendly way to get such information: pmap <pid>

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons

(.\« Free Electrons Creative Commons Attribution-ShareAlike 2.5 license
o http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

How to implement mmap - User space

©

» Open the device file

» Call the mmap system call (see man mmap for details):

volid * mmap (

void *start, /* Often 0, preferred starting address */
size t length, /*Length of the mapped area */
int prot , /* Permissions: read, write, execute */
int flags, /* Options: shared mapping, private copy... */
int fd, /* Open file descriptor */

off t offset /* Offset 1n the file */
) 7

P Read from the return virtual address or write to it.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

How to implement mmap - Kernel space

» Character driver: implement a mmap file operation

and add it to the driver file operations:

int (*mmap) (
struct file *, /* Open file structure */
struct vm area struct /* Kernel VMA structure */

)

» Initialize the mapping.
Can be done in most cases with the remap pfn range()
function, which takes care of most of the job.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=file
http://lxr.free-electrons.com/ident?i=vm_area_struct
http://lxr.free-electrons.com/ident?i=remap_fn_range

remap_pin_range()

©
P pfn: page frame number
The most significant bits of the page address
(without the bits corresponding to the page size).
P #include <linux/mm.h>
int remap pfn range(
struct vm area struct *, /* VMA struct */
unsigned long virt addr, /* Starting user virtual address */
unsigned long pfn, /* ptn of the starting physical address */
unsigned long size, /* Mapping size */
pgprot t /* Page permissions */

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/linux/mm.h
http://lxr.free-electrons.com/ident?i=remap_fn_range
http://lxr.free-electrons.com/ident?i=vm_area_struct
http://lxr.free-electrons.com/ident?i=pgprot_t

Simple mmap implementation

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

static int acme mmap (

{

struct file * file, struct vm area struct * vma)
size = vma->vm start - vma->vm end;

if (size > ACME SIZE)
return -EINVAL;

if (remap pfn range(vma,
vma->vm_start,
ACME PHYS >> PAGE SHIFT,
size,
vma->vm page prot))
return -EAGAIN;
return O0;

Embedded Linux kernel and driver development

303

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=file
http://lxr.free-electrons.com/ident?i=vm_area_struct
http://lxr.free-electrons.com/ident?i=EINVAL
http://lxr.free-electrons.com/ident?i=remap_pfn_range
http://lxr.free-electrons.com/ident?i=EAGAIN

devmem?2

http://free-electrons.com/pub/mirror/devmem?2.c, by Jan-Derk Bakker

Very usetul tool to directly peek (read) or poke (write) I/0 addresses
mapped in physical address space from a shell command line!

» Very useful for early interaction experiments with a device, without
having to code and compile a driver.

» Uses mmap to /dev/mem.
Need to run request mem region and setup /dev/mem first.

» Examples (b: byte, h: half, w: word)
devmem2 0x000c0004 h (reading)
devmem?2 0x000c0008 w Oxffffffff (writing)

0 -
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g
1

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://free-electrons.com/pub/mirror/devmem2.c

Embedded Linux driver development

Driver development
DMA

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

DMA situations

©
Synchronous Asynchronous
P A user process calls the read P The hardware sends an interrupt to
method of a driver. The driver announce new data.

allocates a DMA buffer and asks
the hardware to copy its data. The
process 1s put in sleep mode.

P The interrupt handler allocates a
DMA buffer and tells the hardware
where to transfer data.

P The hardware copies its data and

: . P The hardware writes the data and
raises an interrupt at the end.

raises a new interrupt.

P The interrupt handler gets the
data from the buffer and wakes up
the waiting process.

P The handler releases the newdata,
and wakes up the needed processes.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Memory constraints

» Need to use contiguous memory in physical space

» Can use any memory allocated by kmalloc (up to 128 KB)
or get free pages (up to SMB)

» Can use block I/O and networking buffers,
designed to support DMA.

» Can not use vmalloc memory
(would have to setup DMA on each individual page)

0 -
Embedded Linux kernel and driver development > !
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g

=2 307

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=kmalloc
http://lxr.free-electrons.com/ident?i=__get_free_pages
http://lxr.free-electrons.com/ident?i=vmalloc

Reserving memory for DMA

To make sure you've got enough RAM for big DMA transfers...
Example assuming you have 32 MB of RAM, and need 2 MB for DMA:

» Boot your kernel with mem=30
The kernel will just use the first 30 MB of RAM.

P Driver code can now reclaim the 2 MB left:

dmabuf = ioremap (
0x1e00000, /* Start: 30 MB */
0x200000 /* S1ze: 2 MB */

) 7

Embedded Linux kernel and driver development

o ! !
© Copyright 2004-2007, Free Electrons !' 5
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license i

= 308

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=ioremap

Memory synchronization issues

Memory caching could interfere with DMA

P Before DMA to device:
Need to make sure that all writes to DMA buffer are committed.

> After DMA from device:

Before drivers read from DMA buffer, need to make sure that memory
caches are flushed.

» Bidirectional DMA
Need to flush caches before and after the DMA transfer.

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license | 309

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Linux DMA API

The kernel DMA utilities can take care of:

» Either allocating a buffer in a cache coherent area,
» Or make sure caches are flushed when required,

» Managing the DMA mappings and IOMMU (if any)

» See Documentation/DMA-API.txt
for details about the Linux DMA generic APL

» Most subsystems (such as PCI or USB) supply their own DMA API,
derived from the generic one. May be sufficient for most needs.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/DMA-API.txt

Limited DMA address range?

» By default, the kernel assumes that your device can DMA to any
32 bit address. Not true for all devices!

P To tell the kernel that it can only handle 24 bit addresses:

if (dma set mask (dev, /* device structure */
Oxffffff /* 24 bits */
))
use dma = 1; /* Able to use DMA */
else
use dma = 0; /* Will have to do without DMA */

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=dma_set_mask

Coherent or streaming DMA mappings

» Coherent mappings
Can simultaneously be accessed by the CPU and device.
So, have to be in a cache coherent memory area.
Usually allocated for the whole time the module 1s loaded.
Can be expensive to setup and use.

» Streaming mappings (recommended)
Set up for each transfer.
Keep DMA registers free on the physical hardware registers.
Some optimizations also available.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Allocating coherent mappings

The kernel takes care of both the buffer allocation and mapping:
include <asm/dma-mapping.h>

void * /* Output: buffer address */
dma alloc coherent (

struct device *dev, /* device structure */

size t size, /* Needed buffer size in bytes */
dma addr t *handle, /* Output: DMA bus address */
gfp t gfp /* Standard GFP flags */

) ;

void dma free coherent(struct device *dev,
size t size, void *cpu addr, dma addr t handle);

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/asm-i386/dma-mapping.h
http://lxr.free-electrons.com/ident?i=dma_alloc_coherent
http://lxr.free-electrons.com/ident?i=device
http://lxr.free-electrons.com/ident?i=size_t
http://lxr.free-electrons.com/ident?i=dma_addr_t
http://lxr.free-electrons.com/ident?i=gfp_t
http://lxr.free-electrons.com/ident?i=device
http://lxr.free-electrons.com/ident?i=size_t
http://lxr.free-electrons.com/ident?i=dma_addr_t

DMA pools (1)

©
P dma alloc coherent usually allocates buffers with
__get free pages (minimum: I page).
» You can use DMA pools to allocate smaller coherent mappings:
<include linux/dmapool.h>
» Create a dma pool:
struct dma pool *
dma pool create (
const char *name, /* Name string */
struct device *dev, /* device structure */
size t size, /* Size of pool buffers */
size t align, /* Hardware alignment (bytes) */
size t allocation /* Address boundaries not to be crossed */

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=dma_alloc_coherent
http://lxr.free-electrons.com/ident?i=__get_free_pages
http://lxr.free-electrons.com/source/include/linux/dmapool.h
http://lxr.free-electrons.com/ident?i=dma_pool
http://lxr.free-electrons.com/ident?i=dma_pool_create
http://lxr.free-electrons.com/ident?i=device
http://lxr.free-electrons.com/ident?i=size_t
http://lxr.free-electrons.com/ident?i=size_t
http://lxr.free-electrons.com/ident?i=size_t

DMA pools (2)

» Allocate from pool
void * dma pool alloc (
struct dma pool *pool,
gfp t mem flags,
dma addr_ t *handle
) i

» Free buffer from pool
void dma pool free (
struct dma pool *pool,
void *vaddr,
dma addr t dma);

P Destroy the pool (free all buffers first!)
void dma pool destroy (struct dma pool *pool);

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=dma_pool_alloc
http://lxr.free-electrons.com/ident?i=dma_pool
http://lxr.free-electrons.com/ident?i=gfp_t
http://lxr.free-electrons.com/ident?i=dma_addr_t
http://lxr.free-electrons.com/ident?i=dma_pool_free
http://lxr.free-electrons.com/ident?i=dma_pool
http://lxr.free-electrons.com/ident?i=dma_addr_t
http://lxr.free-electrons.com/ident?i=dma_pool_destroy
http://lxr.free-electrons.com/ident?i=dma_pool

Setting up streaming mappings

Works on buffers already allocated by the driver
<include linux/dmapool.h>

dma addr t dma map single(

struct device *, /* device structure */
void *, /* input: buffer to use */
size t, /* buffer size */

enum dma data direction /* Either DMA BIDIRECTIONAL,
DMA TO DEVICE or DMA FROM DEVICE */

) ;

void dma unmap single(struct device *dev, dma addr t
handle, size t size, enum dma data direction dir);

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/linux/dmapool.h
http://lxr.free-electrons.com/ident?i=dma_addr_t
http://lxr.free-electrons.com/ident?i=dma_map_single
http://lxr.free-electrons.com/ident?i=device
http://lxr.free-electrons.com/ident?i=size_t
http://lxr.free-electrons.com/ident?i=dma_data_direction
http://lxr.free-electrons.com/ident?i=DMA_BIDIRECTIONAL
http://lxr.free-electrons.com/ident?i=DMA_TO_DEVICE
http://lxr.free-electrons.com/ident?i=DMA_FROM_DEVICE
http://lxr.free-electrons.com/ident?i=dma_unmap_single
http://lxr.free-electrons.com/ident?i=device
http://lxr.free-electrons.com/ident?i=dma_addr_t
http://lxr.free-electrons.com/ident?i=size_t
http://lxr.free-electrons.com/ident?i=dma_data_direction

DMA streaming mapping notes

» When the mapping is active: only the device should access the buffer
(potential cache 1ssues otherwse).

P The CPU can access the buffer only after unmapping!

P Another reason: if required, this API can create an intermediatebounce
buffer (used if the given buffer is not usable for IMA).

P Possible for the CPUto access the buffer without unmapping it, using the
dma sync single for cpu() (ownership to cpu) and
dma sync single for device() functions (ownership back to
device).

P The Linux API also support scatter / gather DMA streaming mappings.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=dma_sync_single_for_cpu
http://lxr.free-electrons.com/ident?i=dma_sync_single_for_device

Embedded Linux driver development

Driver development
New Device Model

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Device Model features (1)

» Originally created to make power management simpler
Now goes much beyond.

» Used to represent the architecture and state of the system

» Has a representation in userspace: sysfs
Now the preferred interface with userspace (instead of /proc)

» Easy to implement thanks to the device interface:
include/linux/device.h

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/source/include/linux/device.h

Device model features (2)

Allows to view the system for several points of view:

P From devices existing in the system: their pover state, the bus they are attached
to, and the driver responsible for them.

P From the system bus structure: which bus is connected to which bus (e.g. USB
bus controller on the PCI bus), existing devices and devices potentially
accepted (with their drivers)

P From available device drivers: which devices they can support, and vhich bus
type they know about.

P From the various kinds ("classes")of devices: input, net, sound... Existing
devices for each class. Convenient to find all the input devices wthout actually
knowing how they are physically connected.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

sysis

» Userspace representation of the Device Model.

» Configure it with
CONFIG SYSFS=y (Filesystems -> Pseudo filesystems)

» Mount it with
mount -t sysfs none /sys

» Spend time exploring /sys on your workstation!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

sysis tools

http://linux-diag.sourceforge.net/Systsutils.html

» libsysfs - The library's purpose is to provide a consistent and
stable interface for querying system device information exposed
through sysfs. Used by udev (see later).

» systool - A utility built upon 1ibsysfs that lists devices by
bus, class, and topology.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://linux-diag.sourceforge.net/Sysfsutils.html

The device structure

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

Declaration

» The base data structure 1s struct device, defined in
include/linux/device.h

» In real life, you will rather use a structure corresponding to
the bus your device 18 attached to: struct pci dev,
struct usb device..

Registration

» Still depending on the device type, specific register and
unregister functions are provided

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=device
http://lxr.free-electrons.com/source/include/linux/device.h
http://lxr.free-electrons.com/ident?i=pci_dev
http://lxr.free-electrons.com/ident?i=usb_device

Device attributes

Defining device attributes to be read/written from/by userspace

struct device attribute ({
struct attribute attr;
ssize t (*show) (struct device *dev, char *buf, size t count, loff t off);
ssize t (*store)(struct device *dev, const char *buf, size t count, loff t off);

}i

#define DEVICE ATTR(name,mode,show,store)

Adding / removing from the device directory

int device create file(struct device *dev, struct device attribute *entry);
void device remove file(struct device *dev, struct device attribute *attr);

Example

/* Creates a file named "power" with a 0644 (-rw-r--r--) mode */
DEVICE ATTR(power,0644,show power,store power);

device create file(dev,&dev_attr power);

device remove file(dev,&dev_attr power);

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=device_attribute
http://lxr.free-electrons.com/ident?i=attribute
http://lxr.free-electrons.com/ident?i=ssize_t
http://lxr.free-electrons.com/ident?i=device
http://lxr.free-electrons.com/ident?i=size_t
http://lxr.free-electrons.com/ident?i=loff_t
http://lxr.free-electrons.com/ident?i=ssize_t
http://lxr.free-electrons.com/ident?i=device
http://lxr.free-electrons.com/ident?i=size_t
http://lxr.free-electrons.com/ident?i=loff_t
http://lxr.free-electrons.com/ident?i=device_create_file
http://lxr.free-electrons.com/ident?i=device
http://lxr.free-electrons.com/ident?i=device_attribute
http://lxr.free-electrons.com/ident?i=device_remove_file
http://lxr.free-electrons.com/ident?i=device
http://lxr.free-electrons.com/ident?i=device_attribute
http://lxr.free-electrons.com/ident?i=DEVICE_ATTR
http://lxr.free-electrons.com/ident?i=device_create_file
http://lxr.free-electrons.com/ident?i=device_remove_file

The device driver structure

Declaration

struct device driver {
/* Omitted a few internals */

char *name;
struct bus type *bus;
int (*probe) (struct device *dev);
int (*remove) (struct device *dev);
void (*shutdown) (struct device *dev);
int (*suspend) (struct device *dev, u32 state, u32 level);
int (*resume) (struct device *dev, u32 level);
}i
Registration

extern int driver register(struct device driver *drv);
extern void driver unregister(struct device driver *drv);

Attributes
Available in a similar way

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=device_driver
http://lxr.free-electrons.com/ident?i=bus_type
http://lxr.free-electrons.com/ident?i=device
http://lxr.free-electrons.com/ident?i=device
http://lxr.free-electrons.com/ident?i=device
http://lxr.free-electrons.com/ident?i=device
http://lxr.free-electrons.com/ident?i=u32
http://lxr.free-electrons.com/ident?i=u32
http://lxr.free-electrons.com/ident?i=device
http://lxr.free-electrons.com/ident?i=u32
http://lxr.free-electrons.com/ident?i=driver_register
http://lxr.free-electrons.com/ident?i=device_driver
http://lxr.free-electrons.com/ident?i=driver_unregister
http://lxr.free-electrons.com/ident?i=device_driver

Device Model references

» Very useful and clear documentation in the kernel sources!
» Documentation/driver-model/

» Documentation/filesystems/sysfs.txt

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/driver-model/
http://free-electrons.com/kerneldoc/latest/filesystems/sysfs.txt

Embedded Linux driver development

udev

Driver development
udev and hotplug

@
Embedded Linux kernel and driver development ® o
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license | 327

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

/dev issues and limitations

» On Red Hat 9, 18000 entries in /dev!
All entries for all possible devices
had to be created at system installation.

» Needed an authority to assign major numbers
http://lanana.org/: Linux Assigned Names and Numbers Authority

» Not enough numbers in 2.4, limits extended in 2.6.

» Userspace neither knew what devices were present in the system,
nor which real device corresponded to each /dev entry.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lanana.org/

devfs solution and limitations

devfs: a first solution implemented in Linux 2.3.
» Only showed present devices
» But used different names as in /dev, causing issues in scripts.

» But no flexibility in device names, unlike with /dev/, e.g. the 1st
IDE disk device had to be called either /dev/hda or
/dev/ide/hd/c0b0t0u0.

» But didn't allow dynamic major and minor number allocation.

» But required to store the device naming policy in kernel memory.
Kept forever in kernel RAM even when no longer needed.

devfs was completely removed 1n Linux 2.6.18.

0 -
Embedded Linux kernel and driver development > !
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
|

- 329

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

The udeyv solution

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

Takes advantage of sysfs introduced by Linux 2.6.

P Created by Greg Kroah Hartman, a huge contributor.
Other key contributors: Kay Sievers, Dan Stekloff.

» Entirely in user space.

» Automatically creates / removes device entries
in /dev/ according to inserted / removed devices.

» Major and minor device transmitted by the kernel.
» Requires no change to driver code.

» Fast: written in C
Small size (udevd: 54 KB in Ubuntu 6.10).

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

hotplug history

udev was first implemented through the hotplug infrastructure:
» Introduced in Linux 2.4. Pioneered by USB.

» Whenever a device was inserted or removed, the kernel was executing
the /sbin/hotplug program to notify user space programs.

» For each subsystem (USB, PCI...), /sbin/hotplug was then running
scripts (agents) taking care of identifying the hardware and
inserting/removing the right driver modules.

» Linux 2.6: much easier device identification thanks to sysfs.

» udev was one of the agents run by /sbin/hotplug.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

udeyv issues with hotplug

P sysfs timing issues.
» Out of order execution of hotplug processes.

» Out of memory issues when too many processes
are run 1n a very short time.

Eventually, udev took over several parts of the hotplug infrastructure and
completely replaced it.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Starting udev (1)

P At the very beginning of user-space startup, the/dev/ directory is
mounted as a tmpfs filesystem.

P /dev/ is populated with static devices available in
/lib/udev/devices/ :

Ubuntu 6.10 example:

Crw——————— 1 root root 5, 1 2007-01-31 04:18 console

lrwxrwxrwx 1 root root 11 2007-01-31 04:18 core -> /proc/kcore
lrwxrwxrwx 1 root root 13 2007-01-31 04:18 fd -> /proc/self/fd
Crw—r————— 1 root kmem 1, 2 2007-01-31 04:18 kmem

brw--———-- 1 root root 7, 0 2007-01-31 04:18 loopO

lrwxrwxrwx 1 root root 13 2007-01-31 04:18 MAKEDEV -> /sbin/MAKEDEV
drwxr-xr-x 2 root root 4096 2007-01-31 04:18 net

CIW——————— 1 root root 1, 3 2007-01-31 04:18 null

Crw——————-— 1 root root 108, 0 2007-01-31 04:18 ppp

drwxr-xr-x 2 root root 4096 2006-10-16 14:39 pts

drwxr-xr-x 2 root root 4096 2006-10-16 14:39 shm

lrwxrwxrwx 1 root root 24 2007-01-31 04:18 sndstat -> /proc/asound/oss/sndstat
lrwxrwxrwx 1 root root 15 2007-01-31 04:18 stderr -> /proc/self/fd/2
lrwxrwxrwx 1 root root 15 2007-01-31 04:18 stdin -> /proc/self/£fd/0
lrwxrwxrwx 1 root root 15 2007-01-31 04:18 stdout -> /proc/self/fd/1

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Starting udev (2)

P The udevd daemon is started.
It listens to uevents from the driver core,
which are sent whenever devices are inserted or removed.

P The udevd daemon reads and parses all the rules found in /etc/udev/rules.d/
and keeps them in memory.

P Whenever rules are added, removed or modified,

) . i) The inotify mechanism lets
udevd receives an inotify event and updates its

userspace programs receive

ruleset in memory. notifications of filesystem
changes. Possibility to watch
P When an event is received, udevd starts a process to: individual files or directories.

P try to match the event against udev rules,
P create / remove device files,

P and run programs (to load / remove a driver,
to notify user space...)

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Event queue management

P udevd takes care of processing events in the right order.
This 1s useful to process events after the ones then depend on
(example: partition events need the parent block device event processing to be
complete, to access its information in the udev database).

P udevd also limits the number of processes it starts. Waen the limit is
exceeded, only events carrying theTIMEOUT key are immediately processed.

P The /etc/.udev/queue/ directory represents currently running or queued
events. It contains symbolic links to the corresponding sysfs devices. The
directory 1s removed after removing the last link.

P Event processes which failed are represented by /etc/.udev/failed/ .
Symbolic links in this directory are removed vhen an event for the same
device 1s successfully processed.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

netlink sockets

Kernel netlink sockets are used to carry uevents. Advantages:

» They are asynchronous. Messages are queued. The receiver can
choose to process messages at its best convenience.

» Other userspace - kernelspace communication means are
synchronous: system calls, ioctls, /proc/ and /sys.

» System calls have to be compiled statically into the kernel.
They cannot be added by module-based device drivers.

» Multicasting is available. Several applications can be notified.
See http://www .linuxjournal.com/article/7356

for a very nice description of netlink sockets.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://www.linuxjournal.com/article/7356

uevent message example

Example inserting a USB mouse

recv(4, // socket id
"add@/class/input/input9/mouse2\0 // message
ACTION=add\0 // action type
DEVPATH=/class/input/input9/mouse2\0 // path in /sys
SUBSYSTEM=input\0 // subsystem (class)
SEQNUM=1064\0 // sequence number

PHYSDEVPATH=/devices/pci0000:00/0000:00:1d.1/usb2/2-2/2-2:1.0\0
// device path in /sys

PHYSDEVBUS=usb\0 // bus
PHYSDEVDRIVER=usbhid\0 // driver
MAJOR=13\0 // major number
MINOR=34\0", // minor number
2048, // message buffer size
0) // flags

= 221 // actual message size

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

udev rules

When a udev rule matching event information 1s found, it can be used:

» To define the name and path of a device file.

» To define the group and permissions of a device file.

» To execute a specified program.

Rule files are processed in lexical order.

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license 338
(]

http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

udev naming capabilities

@
Device names can be defined
» from a label or serial number,
» from a bus device number,
» from a location on the bus topology,
» from a kernel name,
» from the output of a program.
See http://www.reactivated.net/writing_udev_rules.html
for a very complete description.
[¥)
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ‘ 339

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://www.reactivated.net/writing_udev_rules.html

udev naming rule examples

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

Input devices, group under /dev/input
BUS="scsi", PROGRAM=" /sbin/scsi_id" , RESULT="OEM 0815", NAME="diskl"

USB printer to be called lp color
BUS="usb", SYSFS{serial}="W09090207101241330", NAME="lp color"

SCSI disk with a specific vendor and model number will be called boot
BUS="scsi", SYSFS{vendor}="IBM", SYSFS{model}="ST336", NAME="boot%n"

sound card with PCI bus id 00:0b.0 to be called dsp
BUS="pci", ID="00:0b.0", NAME="dsp"

USB mouse at third port of the second hub to be called mousel
BUS="usb", PLACE="2.3", NAME="mousel"

ttyUSB1l should always be called pda with two additional symlinks
KERNEL="ttyUSB1", NAME="pda", SYMLINK="palmtop handheld"

multiple USB webcams with symlinks to be called webcam0, webcaml, ...
BUS="usb", SYSFS{model}="XV3", NAME="video%n", SYMLINK="webcam%n"

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

udev permission rule examples

Excerpts from /etc/udev/rules.d/40-permissions.rules

Block devices

SUBSYSTEM!="block", GOTO="block end"
SYSFS{removable}!="1",
SYSFS{removable}=="1",

BUS=="usb",
BUS=="ieeel394",
LABEL="block end"

Other devices, by name

KERNEL=="null",
KERNEL=="zero",
KERNEL=="full",

GROUP="disk"
GROUP="floppy"
GROUP="plugdev"
GROUP="plugdev"

MODE="0666"
MODE="0666"
MODE="0666"

(.\, Free Electrons

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
Creative Commons Attribution-ShareAlike 2.5
http://free-electrons.com

license
Feb 3, 2007

http://free-electrons.com/

Identifying device driver modules

Each driver announces which device and vendor
ids it supports. Information stored in module files.

v

The depmod -a command processes
module files and generates
/lib/modules/<version>/modules.alias

Kernel / module compiling

The driver core (usb, pci...) reads the device id,
vendor 1d and other device attributes.

\

The kernel sends an event to udevd, setting the
MODALIAS environment variable, encoding these data.

v

A udev event process runs
modprobe SMODALIAS

v

modprobe finds the module to load
in the modules.alias file.

System every

(.\, Free Electrons

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
Creative Commons Attribution-ShareAlike 2.5 license
© http://free-electrons.com

Feb 3,2007

http://free-electrons.com/

Module aliases

» MODALIAS environment variable example (BB mouse):
MODALIAS=usb:v046DpCO03Ed2000dc00dsc00dp00ic03isc01ip02

P Matching line in /1ib/modules/<version>/modules.alias:
alias usb:v*p*d*dc*dsc*dp*ic031isc01ip02* usbmouse

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

udev modprobe rule examples

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

Even module loading is done with udev!
Excerpts from /etc/udev/rules.d/90-modprobe.rules

ACTION!="add", GOTO="modprobe end"

SUBSYSTEM!="ide", GOTO=" ide_end"

IMPORT{program}="ide media --export S$devpath"

ENV{IDE MEDIA}=="cdrom", RUN+="/sbin/modprobe -Qba ide-cd"
ENV{ IDE_MEDIA}=="diSk" ’ RUN+="/sbin/modprobe -Qba ide-disk"
ENV{IDE MEDIA}=="floppy", RUN+="/sbin/modprobe -Qba ide-floppy"
ENV{IDE MEDIA}=="tape", RUN+="/sbin/modprobe -Qba ide-tape"
LABEL="ide_ end"

SUBSYSTEM=="input", PROGRAM="/sbin/grepmap --udev", \
RUN+="/sbin/modprobe -Qba S$result"

Load drivers that match kernel-supplied alias

ENV{MODALIAS}=="2*", RUN+="/sbin/modprobe -Q $env{MODALIAS}"

Embedded Linux kernel and driver development

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Coldplugging

» Issue: loosing all device events happening during kernel
initialization, because udev 1s not ready yet.

» Solution: after starting udevd, have the kernel emit uevents
for all devices present in /sys.

» This can be done by the udevtrigger utility.

» Strong benefit: completely transparent for userspace.
Legacy and removable devices handled and named 1n exactly
the same way.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Debugging events - udevmonitor (1)

udevmonitor visualizes the driver core events and theudev event processes.
Example event sequence connecting a (5B mouse:

UEVENT[1170452995.094476] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2
UEVENT[1170452995.094569] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2/4-3.2:1.0
UEVENT[1170452995.098337] add@/class/input/input28

UEVENT[1170452995.098618] add@/class/input/input28/mouse?2

UEVENT[1170452995.098868] add@/class/input/input28/event4

UEVENT[1170452995.099110] add@/class/input/input28/ts2

UEVENT[1170452995.099353] add@/class/usb device/usbdev4.30

UDEV [1170452995.165185] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2

UDEV [1170452995.274128] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2/4-3.2:1.0
UDEV [1170452995.375726] add@/class/usb device/usbdev4.30

UDEV [1170452995.415638] add@/class/input/input28

UDEV [1170452995.504164] add@/class/input/input28/mouse?

UDEV [1170452995.525087] add@/class/input/input28/event4

UDEV [1170452995.568758] add@/class/input/input28/ts2

It gives time information measured in microseconds.
You can measure time elapsed between the uevent (UEVENT line), and the
completion of the correspondingudev process (matching UDEV line).

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Debugging events - udevmonitor (2)

udevmonitor --env shows the complete event environment for each line.

UDEV [1170453642.595297] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2/4-3.2:1.0
UDEV_LOG=3

ACTION=add
DEVPATH=/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2/4-3.2:1.0
SUBSYSTEM=usb

SEQNUM=3417

PHYSDEVBUS=usb

DEVICE=/proc/bus/usb/004/031

PRODUCT=46d/c03d/2000

TYPE=0/0/0

INTERFACE=3/1/2
MODALIAS=usb:v046DpC03Dd2000dc00dsc00dp00ic03isc01ip02

UDEVD EVENT=1

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Misc udev utilities

» udevinfo
Lets users query the udev database.

» udevtest <sysfs device path>
Simulates a udev run to test the configured rules.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

348

http://free-electrons.com/

Firmware hotplugging

Also implemented with udev!
» Firmware data are kept outside device drivers

» May not be legal or free enough to distribute

» Firmware in kernel code would occupy memory permanently,
even 1f just used once.

» Kernel configuration: needs to be set in CONFIG FW LOADER
(Device Drivers -> Generic Driver Options -> hotplug firmware
loading support)

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Firmware hotplugging implementation

@
Kernel space Userspace
Driver /sys/class/firmware/xxx/{loading,data}
calls request firmware() appear
Sleeps

firmware subsystem event sent to udev
Calling /1ib/udev/firmware helper

Kernel
Discards any partial load /lib/udev/firmware helper
Grows a buffer to accommodate incoming data echo 1 > /sys/class/firmware/xxx/loading
cat fw _image > /sys/class/firmware/xxx/data
echo 0 > /sys/class/firmware/xxx/loading
Driver

wakes up after request firmware()
Copies the buffer to the hardware
Calls release firmware()

See Documentation/firmware_c lass/ for a nice overview

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/firmware_class/
http://lxr.free-electrons.com/ident?i=request_firmware
http://lxr.free-electrons.com/ident?i=request_firmware
http://lxr.free-electrons.com/ident?i=release_firmware

udeyv files

» /etc/udev/udev.conf
udev configuration file.
Mainly used to configure syslog reporting priorities.
Example setting: udev_log="err"

» /etc/udev/rules.d/*
udev event matching rules.

» /lib/udev/devices/*
static /dev content (such as /dev/console, /dev/null...).

» /lib/udev/*
helper programs called from udev rules.

» /dev/*
Created device files.
)

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Kernel configuration for udev

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

Created for 2.6.19

Caution: no documentation found, and not tested yet on a minimalistic system.
Some settings may still be missing.

Subsystems and device drivers (USB, PCI, PCMCIA...) should be added too!

General setup

CONFIG HOTPLUG=y

Networking, networking options

CONFIG NET=y

CONFIG UNIX=y Unix domain sockets
CONFIG NETFILTER NETLINK=y

CONFIG NETFILTER NETLINK QUEUE=y

Pseudo filesystems

CONFIG PROC FS=y

CONFIG SYSFS=y

CONFIG TMPFS=y Needed to manage /dev
CONFIG RAMFS=y

Embedded Linux kernel and driver development

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

udev summary - typical operation

. uevent
Kernel driver core

' > udevd
(usb, pci...)

#

udev event process

Matches event to rules

v

Creates / removes
device files

i

/1lib/udev/ programs or others

Load the right module

v

Notify userspace
programs (G%I...)

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

udev resources

» Home page
http://kernel.org/pub/linux/utils/kernel/hotplug/udev.html

» Sources
http://kernel.org/pub/linux/utils/kernel/hotplug/

P Recent state of udev, by Kay Sievers (very good article):
http://vriy.org/log/recent-state-of-udev.html

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://kernel.org/pub/linux/utils/kernel/hotplug/udev.html
http://kernel.org/pub/linux/utils/kernel/hotplug/
http://vrfy.org/log/recent-state-of-udev.html

Embedded Linux driver development

Advice and resources

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

System security

» In production: disable loadable kernel modules if you can.

» Carefully check data from input devices (if interpreted by the
driver) and from user programs (buffer overflows)

» Check kernel sources signature.
» Beware of uninitialized memory.

» Compile modules by yourself (beware of binary modules)

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Embedded Linux driver development

Advice and resources
Choosing filesystems

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Block device or MTD filesystems

¢
Block devices Memory Technology Devices (MTD)
» Floppy or hard disks » Flash, ROM or RAM chips

(SCSI, IDE)

» MTD emulation on block devices
» Compact Flash (seen as a
regular IDE drive)

» RAM disks
» Loopback devices

Filesystems are either made for block or MTD storage devices.
See Documentation/filesystems/ for details.

o ! !
© Copyright 2004-2007, Free Electrons !' 5
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license
[}

Embedded Linux kernel and driver development

- 358

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/filesystems/

Traditional block filesystems

Traditional filesystems

» Hard to recover from crashes. Can be left in a corrupted (“half
finished”) state after a system crash or sudden power-off.

P ext2: traditional Linux filesystem
(repair it with £sck.ext?2)

» vfat: traditional Windows filesystem

(repair it with £sck.vfat on GNU/Linux or Scandisk on
Windows)

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Journaled filesystems

» Designed to stay in a
correct state even after
system crashes or a
sudden power-off

» All writes are first
described 1n the journal
before being committed
to files

Application

User-space Write to file

Kernel space

(filesystem) Write an entry

in the journal

Clear
journal entry

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons

(.\« Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
http://free-electrons.com Feb 3, 2007

(]

- 360

http://free-electrons.com/

Filesystem recovery after crashes

Reboot \

J » Thanks to the journal,
the filesystem is never
left 1n a corrupted state

Journal
No empty? » Recently saved data

Discard could still be lost
incomplete
journal entries

Yes

Execute
journal

y

Filesystem OK

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons

(.\« Free Electrons Creative Commons Attribution-ShareAlike 2.5 license
o http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Journaled block filesystems

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

Journaled filesystems
» ext3: ext2 with journal extension

» reiserFS: most innovative (fast and extensible)
Caution: needs at least 32 MB!
reiser4: the latest version.
Available through patches (not in mainstream yet).

» Others: JFS (IBM), XFS (SGI)

» NTFS: well supported by Linux in read-mode.

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Compressed block filesystems (1)

Cramfs

» Simple, small, read-only compressed filesystem
designed for embedded systems .

» Maximum filesystem size: 256 MB
» Maximum file size: 16 MB

See Documentation/filesystems/cramfs.txt
in kernel sources.

® ; g
Embedded Linux kernel and driver development e
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g

=2 363

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/filesystems/cramfs.txt

Compressed block filesystems (2)

Squashfs: http://squashfs.sourceforge.net
» A must-use replacement for Cramfs! Also read-only.
» Maximum filesystem and file size: 2°* bytes!

» Achieves better compression and much better performance.
It supports block sizes up to 64 K (instead of 4K) for greater
compression, and even detects duplicate files!

» Fully stable but released as a separate patch so far
(waiting for Linux 2.7 to start).

» Successfully tested on 1386, ppc, arm and sparc.

Benchmarks: (roughly 3 times smaller than ext3, and 2-4 times faster)
http://tree.celinuxforum.org/CeltPubWiki/SquashFsComparisons

0 -
Embedded Linux kernel and driver development > !
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
|

- 364

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://squashfs.sourceforge.net/
http://tree.celinuxforum.org/CelfPubWiki/SquashFsComparisons

ram filesystems

Usetul to store temporary data not kept after power off or reboot: system
log files, connection data, temporary files...

P Traditional block filesystems: journaling not needed.
Many drawbacks: fixed in size. Remaining space not usable as RAM.
Files duplicated in RAM (in the block device and file cache)!

P tmpfs (Config: File systems ->Pseudo filesystems)
Doesn't waste RAM: grows and shrinks to accommodate stored files
Saves RAM: no duplication; can swap out pages to disk when needed.

See Documentation/filesystems/tmpfs.txt in kernel sources.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/filesystems/tmpfs.txt

Mixing read-only and read-write filesystems

Good 1dea to split your block storage into

» A compressed read-only partition (Squashfs)
Typically used for the root filesystem (binaries, kernel...).
Compression saves space. Read-only access protects your
system from mistakes and data corruption.

P A read-write partition with a journaled filesystem (like ext3)
Used to store user or configuration data.
Guarantees filesystem integrity after power off or crashes.

» Ram storage for temporary files (tmpfs)

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

Squashfs

read-only

compressed
root
filesystem

ext3

read-write

user and
configuration
data

tmpfs

read-write

volatile data

Block Storage

RAM

http://free-electrons.com/

The MTD subsystem

@
Linux filesystem interface
MTD “User” modules .
- Flash Translation Layers *
e Char devi Block devi - for block device emulation
JUS ar device ock device Caution: patented algorithms!
FTL NFTL INFTL
yaffs2 Read-only block device @~ ———— ——
MTD Chip drivers
CFI flash RAM ChipS 777
~ Block device Virtual memory
NAND flash DiskOnChip flash ROM chips Virtual devices appearing as
| MTD devices

Memory devices hardware m m m

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

MTD filesystems - jifs2

jffs2: Journaling Flash File System v2

» Designed to write flash sectors in an homogeneous way.
Flash bits can only be rewritten a relatively small number of times

(often < 100 000).

» Compressed to fit as many data as possible on flash chips. Also
compensates for slower access time to those chips.

» Power down reliable: can restart without any intervention

» Shortcomings: low speed, big RAM consumption (4 MB for 128
MB of storage).

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Mounting a jifs2 image

@
Useful to create or edit j££fs2 images on your GNU / Linux PC!
» Mounting an MTD device as a loop device is a bit complex task. Here's an
example for J£fs2:
modprobe loop
modprobe mtdblock
losetup /dev/loop0 <file>.jffs2
modprobe blkmtd erasesz=256 device=/dev/loop0
mknod /dev/mtdblock0 b 31 0 (if not done yet)
mkdir /mnt/jffs2 (example mount point, if not done yet)

mount -t jffs2 /dev/mtdblock0 /mnt/jffs2/

P It's very likely that your standard kernel misses one of these modules. Check
the corresponding . c file in the kernel sources and look in the corresponding
Makefile which option you need to recompile your kernel wth.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons !'I !
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

MTD filesystems - yaffs2

yaffs2: Yet Another Flash Filing System, version 2
» vaffs2 home: http://www.alephl.co.uk/yaffsoverview

» Features: NAND flash only. No compression. Several times
faster than jf££fs2 (mainly significant in boot time). Consumes
much less RAM. Also includes ECC and is power down reliable.

» License: GPL or proprietary

» Ships outside the Linux kernel. Get it from CVS:
http://alephl.co.uk/cgi-bin/viewcvs.cgi/yaffs2/

0 -
Embedded Linux kernel and driver development * !
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , | 370
|

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://www.aleph1.co.uk/yaffsoverview
http://aleph1.co.uk/cgi-bin/viewcvs.cgi/yaffs2/

Filesystem choices for block flash devices

Typically for Compact Flash storage

P Can'tuse jff£s2 or yaffs2 on CF storage (block device). MTD Block
device emulation could be used, but J£fs2 / yaf£s2 writing schemes
could interfere with on-chip flash management (manufacturer dependent).

P Never use block device journaled filesystems on unprotected flash chips!
Keeping the journal would write the same sectors
over and over again and quickly damage them.
» Can use ext2 or vfat, with the below mount options:

noatime: doesn't write access time information in file inodes
sync: to perform writes immediately (reduce power down failure risks)

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Filesystem choice summary

Yes Yes Y
choose jffs2 or yaffs2 choose ext2 Choose ext3, reiser4,
read-only or read-write noatime + sync mount options XFS or JFS
\J \J
choose Squashfs Choose tmpfs
read-only

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons ¢
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license = 1 372
© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Embedded Linux driver development

Advice and resources
Getting help and contributions

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Solving issues

P If you face an issue, and it doesn't look specific to your work but
rather to the tools you are using, it 1s very likely that someone else
already faced it.

» Search the Internet for similar error reports

» On web sites or mailing list archives
(using a good search engine)

» On newsgroups: http://groups.google.com/

®» You have great chances of finding a solution or workaround, or at
least an explanation for your issue.

» Otherwise, reporting the issue is up to you!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://groups.google.com/

Getting help

» If you have a support contract, ask your vendor
» Otherwise, don't hesitate to share your questions and issues
on mailing lists

P Either contact the Linux mailing list for your architecture (like linux-
arm-kernel or linuxsh-dev...)

» Or contact the mailing list for the subsystem you'e dealing with
(linux-usb-devel, linux-mtd...). Don't ask the maintainer directly!

» Most mailing lists come with a FAQ page. Make sure you read it
before contacting the mailing list

P Refrain from contacting the Linux Kernel mailing list, unless you're
an experienced developer and need advice

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Getting contributions

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

Applies if your project can interest other people:
developing a driver or filesystem, porting Linux on a new
processor, board or device available on the market...

External contributors can help you a lot by
» Testing

» Writing documentation

» Making suggestions

» Even writing code

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Encouraging contributions

» Open your development process: mailing list, Wiki, public CVS
read access

» Let everyone contribute according to their skills and interests.
P Release early, release often

P Take feedback and suggestions into account

» Recognize contributions

» Make sure status and documentation are up to date

» Publicize your work and progress to broader audiences

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Embedded Linux driver development

Advice and resources
Bug report and patch submission

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Reporting Linux bugs

» First make sure you're using the latest version

» Make sure you investigate the issue as much as you can:
see Documentation/BUG-HUNTING

» Make sure the bug has not been reported yet. A bug tracking system
(http://bugzilla.kernel.org/) exists but very few kernel developers use it.
Best to use web search engines (accessing public mailing list archives)

» If the subsystem you report a bug on has a mailing list, use it.
Otherwise, contact the official maintainer (see the MAINTAINERS file).
Always give as many useful details as possible.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/BUG-HUNTING
http://bugzilla.kernel.org/
http://lxr.free-electrons.com/source/MAINTAINERS

How to submit patches or drivers

» Don't merge patches addressing different issues

» You should identify and contact the official maintainer
for the files to patch.

P See Documentation/SubmittingPatches for details. For
trivial patches, you can copy the Trivial Patch Monkey.

» Sce also http://kernelnewbies.org/UpstreamMerge for very helpful
advice to have your code merged upstream (by Rik van Riel).

» Special subsystems:

» ARM platform: it's best to submit your ARM patches to Russell
King's patch system:
http://www.arm.linux.org.uk/developer/patches/

o ! !
© Copyright 2004-2007, Free Electrons !' 5
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license
[}

Embedded Linux kernel and driver development

- 380

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/SubmittingPatches
http://kernelnewbies.org/UpstreamMerge
http://www.arm.linux.org.uk/developer/patches/

How to become a kernel developer?

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
(.\« Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
© http://free-electrons.com Feb 3, 2007

Greg Kroah-Hartman gathered useful references and advice for
people interested 1n contributing to kernel development:

Documentation/HOWTO

Do not miss this very useful document!

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/HOWTO

Embedded Linux driver development

Advice and resources
References

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Specific training materials

Free Electrons 1s working on dedicated training materials for
specific device / driver types:

» Linux USB drivers
http://free-electrons.com/articles/linux-usb

More will be available 1n the next months: block, network,
input, audio, graphics...

Don't hesitate to ask us to create the ones you need for a
training session!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://free-electrons.com/articles/linux-usb

Information sites (1)

Linux Weekly News
http://lwn.net/

» The weekly digest off all Linux and free software
information sources

» In depth technical discussions about the kernel
» Subscribe to finance the editors ($5 / month)

» Articles available for non subscribers LWN
after 1 week. ;

Your Linux info source

o =
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://lwn.net/

Information sites (2)

P ?K ernelTra
http://kerneltrap.org/ - - R.org

» Forum website for kernel developers
» News, articles, whitepapers, discussions, polls, interviews

» Perfect if a digest is not enough!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://kerneltrap.org/

Useful reading (1)

Linux Device Drivers, 3™ edition, Feb 2005

» By Jonathan Corbet, Alessandro Rubini,

Greg Kroah-Hartman, O'Reilly
http://www.oreilly.com/catalog/linuxdrive3/

P Freely available on-line!
Great companion to the printed book
for easy electronic searches!
http://lwn.net/Kernel/LDD3/ (1 PDF file per chapter)
http://free-electrons.com/community/kernel/ldd3/ (single PDF file)

CYRELLY"

A must-have book for Linux device driver writers!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://www.oreilly.com/catalog/linuxdrive3/
http://lwn.net/Kernel/LDD3/
http://free-electrons.com/community/kernel/ldd3/

Useful reading (2)

» Linux Kernel Development, 2™ Edition, Jan 2005 <7 9 ¥
Robert Love, Novell Press
http://rlove.org/kernel_book/
A very synthetic and pleasant way to learn about kernel
subsystems (beyond the needs of device driver writers)

» Understanding the Linux Kernel, 3" edition, Nov 2005
Daniel P. Bovet, Marco Cesati, O'Reilly ﬁ ﬁ
_ http://oreilly.com/catalog/understandlk/
LIN[TX' An extensive review of Linux kernel internals,
covering Linux 2.6 at last.
Unfortunately, only covers the PC architecture.

Hovell

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://rlove.org/kernel_book/
http://oreilly.com/catalog/understandlk/

Useful on-line resources

» Linux kernel mailing list FAQ
http://www.tux.org/lkml/
Complete Linux kernel FAQ
Read this before asking a question to the mailing list

» Kernel Newbies
http://kernelnewbies.org/
Glossary, articles, presentations, HOWTOs,
recommended reading, useful tools for people
getting familiar with Linux kernel or driver
development.

>

y

» Kernel glossary:
http://kernelnewbies.org/KernelGlossary

0 -
Embedded Linux kernel and driver development > !
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
|

- 388

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://www.tux.org/lkml/
http://kernelnewbies.org/
http://kernelnewbies.org/KernelGlossary

CE Linux Forum resources

CE Linux Forum's Wiki -‘?mmzmzz-
-

1s full of useful resources for embedded systems developers:
» Kernel patches not available in mainstream yet
» Many howto documents of all kinds

» Details about ongoing projects, such as reducing kernel size,
boot time, or power consumption.

» Contributions are welcome!

http://tree.celinuxforum.org/CelfPubWiki

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://tree.celinuxforum.org/CelfPubWiki

ARM resources

» ARM Linux project: http://www.arm.linux.org.uk/

P Developer documentation: http://www.arm.linux.org.uk/developer/

P arm-linux-kernel mailing list:
http://lists.arm.linux.org.uk/mailman/listinfo/linux-arm-kernel

» FAQ: http://www.arm.linux.org.uk/armlinux/mlfaq.php

» How to post kernel fixes:
http://www.arm.uk.linux.org/developer/patches/

» ARMLinux @ Simtec: http://armlinux.simtec.co.uk/
A few useful resources: FAQ, documentation and Who's who!

» ARM Limited: http://www.linux-arm.com/
Wiki with links to useful developer resources

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://www.arm.linux.org.uk/
http://www.arm.linux.org.uk/developer/
http://lists.arm.linux.org.uk/mailman/listinfo/linux-arm-kernel
http://www.arm.linux.org.uk/armlinux/mlfaq.php
http://www.arm.uk.linux.org/developer/patches/
http://armlinux.simtec.co.uk/
http://www.linux-arm.com/

International conferences (1)

Useful conferences featuring Linux kernel presentations

» Ottawa Linux Symposium (July): http://linuxsymposium.org/

Right after the (private) kernel summit.
Lots of kernel topics. Many core kernel hackers still present.

&> £ O0sS0EM

» Fosdem: http://fosdem.org (Brussels, February)
For developers. Kernel presentations from well-known kernel hackers.

» CE Linux Forum: http://celinuxforum.org/ & Wz =

i

Organizes several international technical conferences, in particular in
California (San Jose) and in Japan. Now open to non CELF members!
Very interesting kernel topics for embedded systems developers.

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://linuxsymposium.org/
http://fosdem.org/
http://celinuxforum.org/

International conferences (2)

» linux.conf.au: http://conf.linux.org.au/ (Australia / New Zealand)
Features a few presentations by key kernel hackers.

Don't miss our free conference videos on
http://free-electrons.com/community/videos/conferences/!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

392

http://free-electrons.com/
http://conf.linux.org.au/
http://free-electrons.com/community/videos/conferences/

Embedded Linux driver development

Advice and resources
Last advice

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Use the Source, Luke!

Many resources and tricks on the Internet find you will, but
solutions to all technical 1ssues only 1n the Source lie.

Thanks to LucasArts

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons O
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ‘ 39 4
© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Embedded Linux driver development

Annexes
Quiz answers

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Quiz answers

P request irq, free irq
Q: Why does dev__id have to be unique for shared IRQs?
A: Otherwise, the kernel would have no way of knowing which handler to
release. Also needed for multiple devices (disks, serial ports...) managed by
the same driver, which rely on the same interrupt handler code.

» Interrupt handling
Q: Why did the kernel segfault at module unload (forgetting to unregister a
handler in a shared interrupt line)?
A: Kernel memory is allocated at module load time, to host module code.
This memory is freed at module unload time. If you forget to unregister a
handler and an interrupt comes, the cpu wll try to jump to the address of the
handler, which is in a freed memory area. Crash!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://lxr.free-electrons.com/ident?i=request_irq
http://lxr.free-electrons.com/ident?i=free_irq

Embedded Linux driver development

Annexes
U-boot details

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Postprocessing kernel image for U-boot

The U-boot bootloader needs extra information to be added to
the kernel and initrd image files.

» mkimage postprocessing utility provided in U-boot sources

» Kernel image postprocessing:
make ulmage

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license | 398

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Postprocessing initrd image for U-boot

@

mkimage

-n initrd \ Name

-A arm \ Architecture

-0 linux \ Operating System

-T ramdisk \ Type

-C gzip \ Compression

-d rd-ext2.gz \ Input file

uInitrd Output file

® ; g
Embedded Linux kernel and driver development e
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g

=2 399

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Compiling Das U-boot

» Get the U-boot sources from http://u-boot.sourceforge.net/

» In the U-boot source directory:
Find the name of the config file for your board in
include/configs (for example: omapl710h3.h)

» Configure U-boot:
make omapl710h3 config (.hreplacedby config)

» If needed, change the cross-compiler prefix in Makefile:
ifeq ($S(ARCH),arm)
CROSS COMPILE = arm-linux-
endif

» Compile:
make

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://u-boot.sourceforge.net/

Compiling U-boot mkimage

If you just need mkimage and U-boot is already installed on your board:

» Get the U-boot sources from
http://u-boot.sourceforge.net/

» Configure U-boot for any board on your platform (see previous slide)

» Compile:
make (or make -k if you have minor failures)

» Install mkimage:
cp tools/mkimage /usr/local/bin/

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://u-boot.sourceforge.net/

Configuring tftp (1)

Often 1in development: downloading a kernel image from the network.
Instructions for xinetd based systems (Fedora Core, Red Hat...)

» Install the tftp-server package if needed
» Remove disable = yesin /etc/xinetd.d/tftp

» Copy your image files to the /tftpboot/ directory (or to the
location specified in /etc/xinetd.d/tftp)

» You may have to disable SELinux in /etc/selinux/config

P Restart xinetd:
/etc/init.d/xinetd restart

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Configuring tftp (2)

On GNU/Linux systems based onDebian: Ubuntu, Knoppix, KernelKit...
P Install the t ftpd-hpa package if needed

» Set RUN DAEMON="yes"
in /etc/default/tftpd-hpa

» Copy your images to/var/lib/tftpboot

P /etc/hosts.allow:
Replace ALL : ALL@ALL : DENY by ALL : ALLQ@ALL : ALLOW

» /etc/hosts.deny:
Comment outALL: PARANOID

P Restart the server:
/etc/init.d/tftpd-hpa restart

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://debian.org/
http://ubuntu.com/
http://knoppix.net/
http://kernelkit.org/

U-boot prompt

» Connect the target to your PC through a serial console

» Power-up the board.
On the serial console, you will see something like:

U-Boot 1.1.2 (Aug 3 2004 - 17:31:20)
RAM Configuration:

Bank #0: 00000000 8 MB

Flash: 2 MB

In: serial
Out: serial
Err: serial
u-boot #

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Board information

u-boot # bdinfo

DRAM bank = 0x00000000

-> start = 0x00000000

-> size = 0x00800000
ethaddr = 00:40:95:36:35:33
ip addr = 10.0.0.11
baudrate = 19200 bps

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Environment variables (1)

u-boot # printenv
baudrate=19200

ethaddr=00:40:95:36:35:33 Network settings
netmask=255.255.255.0 For TFTP
ipaddr=10.0.0.11 and NFS

serverip=10.0.0.1
stdin=serial
stdout=serial
stderr=serial

u-boot # setenv serverip 10.0.0.2

u-boot # printenv serverip
serverip=10.0.0.2

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Environment variables (2)

» Environment variable changes can be stored
to flash using the saveenv command.

» You can even create small shell scripts

stored 1in environment variables:
setenv myscript tftp 0x21400000 uImage ; bootm
0x21400000

» You can then execute the script:
run myscript

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Network commands

u-boot # tftp 8000 u-boot.bin

From server 10.0.0.1; our IP address 1is
10.0.0.11

Filename 'u-boot.bin'.

Load address: 0x8000

Loading: #######4#4H#4#44H#4444

done
Bytes transferred = 95032 (17338 hex)

The size and location of the downloaded file are stored in the
fileaddr and £ilesize environment variables.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Flash commands (1)

u-boot # flinfo

Bank # 1:

Size:

S00
S02
S04
S06
S32
S34

@

@
@
@

™ ™

AMD Am29LV160DB 16KB,2x8KB,32KB,31x64KB

2048 KB in 35 Sectors
Sector Start Addresses:

0x01000000
0x01006000
0x01010000
0x01030000

0x011D00O0O0
0x011F0000

! S01 @ 0x01004000 !
! S03 @ 0x01008000 !
! S05 @ 0x01020000 !‘\\
S07 @ 0x01040000
Protected sectors

S33 @ 0x011E0000

(.\, Free Electrons

(]

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons

Creative Commons Attribution-ShareAlike 2.5 license ‘ 409

http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Flash commands (2)

u-boot # protect off 1:0-4
Un-Protect Flash Sectors 0-4 in Bank #

u-boot # erase 1:0-4
Erase Flash Sectors 0-4 in Bank # 1

Erasing
Erasing
Erasing
Erasing
Erasing

Sector
Sector
Sector
sSector
Sector

0 d

B W N -

0x01000000
0x01004000
0x01006000
0x01008000
0x01010000

... done
... done
... done
... done
... done

(.\, Free Electrons

(]

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
Creative Commons Attribution-ShareAlike 2.5 license

http://free-electrons.com

Feb 3, 2007

410

http://free-electrons.com/

Flash commands (3)

Storing a file in flash

» Downloading from the network:
u-boot # tftp 8000 u-boot.bin

» Copy to flash (0x01000000: first sector)
u-boot # cp.b S${fileaddr} 1000000
S{filesize}
Copy to Flash..e ceceeeccccccccss done

» Remove the protection of flash sectors
u-boot # protect on 1:0-4
Protect Flash Sectors 0-5 in Bank # 1

o =
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g
|

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

boot commands

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

» Specify kernel boot parameters:
u-boot # setenv bootargs mem=64M
console=ttyS0,115200 init=/sbin/init
root=/dev/mtdblock0

» Execute the kernel from a given physical address (RAM or flash)
bootm 0x01030000

Embedded Linux kernel and driver development

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Useful links

» Very nice overview about U-boot

(which helped to create this section):
http://linuxdevices.com/articles/AT5085702347.html

» The U-boot manual:
http://www.denx.de/wiki/view/DULG/UBoot

Ly

Back to the bootloaders section.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://linuxdevices.com/articles/AT5085702347.html
http://www.denx.de/wiki/view/DULG/UBoot

Embedded Linux driver development

Annexes
Grub details

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Grub features (1)

» Many features and a lot of flexibility!

» Supports booting many operating systems:
Linux, Hurd, *BSD, Windows, DOS, OS/2...

» Support for different boot devices: hard disk (of course), cdrom
(El Torito), network (tftp)

» Support for many filesystems (unlike LILO, it doesn't need to
store the physical location of each kernel):
ext2/3, xts, jfs, reiserfs, dos, fatl6, fat32...

» Configuration file: unlike LILO, no need to update the MBR after
making changes to the configuration file.

0 -
Embedded Linux kernel and driver development > !
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license
|

4135

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Grub features (2)

» Support for many network cards
(reusing drivers from the Etherboot bootloader).

» Menu interface for regular users.
Advanced command line interface for advanced users.

» Remote control from a serial console.

» Supports multiple executable formats:
ELF by also a.out variants.

» Can uncompress compressed files

» Small: possible to remove features and drivers
which are not used (. /configure --help).
Without recompiling: remove unused filesystem stages.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Grub size

Example from grub 0.97-1ubuntu9 (Ubuntu Dapper):

» Stage 1:
/1lib/grub/i386-pc/stagel: 512 bytes

» Stage 1.5:
/1ib/grub/i386-pc/e2fs stagel 5: 7508 bytes

» Stage 2:
/1ib/grub/i386-pc/stage2: 105428 bytes

Total: only 113448 bytes!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Installing grub (1)

Install Grub on an embedded target with a blank disk.
» Do it from a GNU/Linux PC with Grub installed.

» Access the disk for the embedded target as external storage:

» Compact Flash disk: use a USB CF card reader.
» Hard disk drive: use a USB hard disk driver enclosure.

» Create a partition on this disk (useful, but not mandatory):
fdisk /dev/sda (type m for a menu of commands)

» Format and mount this partition:
mkfs.ext3 /dev/sdal
mount /dev/sdal /mnt/sdal

Embedded Linux kernel and driver development

o ! ;
© Copyright 2004-2007, Free Electrons !' I
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ‘ 4 1 8
[}

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Installing grub (2)

» Install Grub:
grub-install --root-directory=/mnt/sdal /dev/sda

» /dev/sda: the physical disk. Grub is installed on its Master Boot
Record.

» /mnt/sdal: the directory under which grub-install creates a
boot/ directory containing the upper stage and configuration file.
Of course, you could have used another partition.

» Grub now needs a kernel to boot. Copy a kernel image to
/mnt/sdal/boot/ (for example) and describe this kernel in
/mnt/sdal/boot/grub/menu.lst.

» Once you also copied root filesystem files, you can put your storage device
back to the embedded target and boot from it.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Naming files

» Grub names partitions as follows: (hdn,p)
n: n" disk on the system
p: p" partition on this disk

» Files are described with the partition they belong to.
Example: (hd0,2)/boot/vmlinuz-2.6.18

» You can specify a default partition with the root command:
Example:
root (hd0,0)
/boot/vmlinuz-2.6.18

® ; g
Embedded Linux kernel and driver development e
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g

=2 420

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Sample configuration file

/boot/grub/menu.lst

default 0
timeout 10

title Ubuntu, kernel 2.6.15-27-386

root (hdo,2)

kernel /boot/vmlinuz-2.6.15-27-386 root=/dev/hda3 ro quiet
splash

initrd /boot/initrd.img-2.6.15-27-386

savedefault

boot

title Ubuntu, kernel 2.6.15-27-386 (recovery mode)

root (hdo,2)

kernel /boot/vmlinuz-2.6.15-27-386 root=/dev/hda3 ro single
initrd /boot/initrd.img-2.6.15-27-386

boot

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons

(.\« Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Network support

Grub can use the network in several ways

» Grub running from disk (floppy, hard drive, cdrom), and
downloading kernel images from a tftp server on the network.

» Diskless system:

P A first stage bootloader (typically Etherboot)
1s booted from ROM.

» It then downloads a second stage from Grub:
pxegrub for a PXE ROM, or nbgrub for a NBI loader).

» Grub can then get kernel images from the network.

0 -
Embedded Linux kernel and driver development > !
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license
|

422

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Grub security (1)

@
Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons
(.\« Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
© http://free-electrons.com Feb 3, 2007

» Caution: the Grub shell can be used to display any of your files!
» Example:

» Boot your system
» Type the ¢ command to enter command line mode.

»find /etc/passwd
Grub displays all partitions containing such a file.

P cat (hd0,2)/etc/passwd
You can see the names of users on the system!
Of course, you can access any file. Permissions are ignored.

http://free-electrons.com/

Grub security (2)

» Interactive commands can be protected with a password.

Otherwise, people would even be able to view the contents of
files from the Grub shell!

®» You can also protect menu entries with a password.
Useful to restrict failsate modes to admin users.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license g | 424
® http://free-electrons.com Feb 3,2007 -

http://free-electrons.com/

Grub resources

» Grub home page:
http://www.gnu.org/software/grub/manual/

» Grub manual:
http://www.gnu.org/software/grub/manual/

__> Back to the bootloaders section.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://www.gnu.org/software/grub/manual/
http://www.gnu.org/software/grub/manual/

Embedded Linux driver development

Annexes
Using Ethernet over USB

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Ethernet over USB (1)

If your device doesn't have Ethernet connectivity, but has a
USB device controller

» You can use Ethernet over USB through the g ether USB
device (“gadget”) driver (CONFIG USB_ GADGET)

» Of course, you need a working USB device driver. Generally
available as more and more embedded processors (well
supported by Linux) have a built-in USB device controller

» Plug-in both ends of the USB cable

®) ’/‘!
Embedded Linux kernel and driver development *
© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license , | 427
|

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Ethernet over USB (2)

» On the PC host, you need to have the usbnet module
(CONFIG USB_USBNET)

» Plug-in both ends of the USB cable. Configure both ends as
regular networking devices. Example:

P On the target device
modprobe g ether
ifconfig usb0 192.168.0.202
route add 192.168.0.200 dev usbO

P On the PC
modprobe usbnet

ifconfig usb0 192.168.0.200
route add 192.168.0.202 dev usbO

» Works great on iPAQ PDAs!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Embedded Linux driver development

Annexes
Init runlevels

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

System V init runlevels (1)

» Introduced by System V Unix

Much more flexible than in BSD
/etc/initab excerpt:

» Make it possible to start or stop
different services for each

id:5:initdefault:

System initialization.

runlevel si::sysinit:/etc/rc.d/rc.sysinit
. 10:0:wait:/etc/rc.d/ 0
> Correspond to the argument given 1312 /2Ee e 0 |
: : : 12:2:wait:/etc/rc.d/rc 2
to /Sbln/lnlt° 13:3:wait:/etc/rc.d/rc 3
.] l4:4:wait:/etc/rc.d/rc 4
P Runlevels defined in 15:5:wait:/etc/rc.d/rc 5
l6:6:wait:/etc/rc.d/rc 6

/etc/inittab.

Embedded Linux kernel and driver development
© Copyright 2004-2007, Free Electrons

(.\« Free Electrons Creative Commons Attribution-ShareAlike 2.5 license ,
© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

System V init runlevels (2)

©

Standard levels Customizable levels: 2, 3, 4, 5
» init O » init 3

Halt the system Often multi-user mode, with only
b init 1 command-line login

Single user mode for maintenance P init 5
b init 6 Often.multl—u.ser mode, with

graphical login

Reboot the system

» init S
Single user mode for maintenance.
Mounting only /. Often identical to 1

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

init scripts

According to /etc/inittab settings, init <n> runs:
» First /etc/rc.d/rc.sysinit for all runlevels
» Then scripts in /etc/rc<n>.d/

P Starting services (1, 3, 5, S):
runs S* scripts with the start option

» Killing services (0, 6):
runs K* scripts with the stop option

» Scripts are run in file name lexical order
Justuse 1s -1 to find out the order!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

/etc/init.d

» Repository for all available init scripts

» /etc/rc<n>.d/ only contains links to the /etc/init.d/
scripts needed for runlevel n

» /etc/rcl.d/ example (from Fedora Core 3)

KOlyum -> ../init.d/yum S00single -> ../init.d/single
K02cups-config-daemon -> ../init.d/cups- SO0lsysstat -> ../init.d/sysstat
config-daemon SO06cpuspeed -> ../init.d/cpuspeed

KO02haldaemon -> ../init.d/haldaemon
K02NetworkManager ->
../init.d/NetworkManager
KO3messagebus -> ../init.d/messagebus
K03rhnsd -> ../init.d/rhnsd
KO05anacron -> ../init.d/anacron
K05atd -> ../init.d/atd

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/

Handling init scripts by hand

Simply call the /etc/init.d scripts!
P /etc/init.d/sshd start

Starting sshd: [OK]

P /etc/init.d/nfs stop
Shutting down NFS mountd: [FAILED]
Shutting down NFS daemon: [FAILED]Shutting
down NFS quotas: [FAILED]
Shutting down NFS services: [OK]

P /etc/init.d/pcmcia status
cardmgr (pid 3721) is running...

» /etc/init.d/httpd restart
Stopping httpd: [OK
Starting httpd: [OK

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Init runlevels - Useful links

_‘(> Back to the slide about the 1nit program.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/

Training labs

Training labs are also available from the same location:
http://free-electrons.com/training/drivers

They are a useful complement to consolidate what you learned
from this training. They don't tell zow to do the exercises.
However, they only rely on notions and tools introduced by the
lectures.

If you happen to be stuck with an exercise, this proves that you
missed something in the lectures and have to go back to the
slides to find what you're looking for.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://free-electrons.com/training/drivers

Related documents

All the technical presentations and training materials created and used by Free Electrons,
available under a free documentation license (more than 1500 pages!).

http://free-electrons.com/training P Linux USB drivers

P Introduction to Unix and GNU/Linux P Real-time in embedded Linux systems
P Embedded Linux kernel and driver development » Introduction to uClinux

P Free Software tools for embedded Linux systems P Linux on TI OMAP processors

P Audio in embedded Linux systems P Free Software development tools

P Multimedia in embedded Linux systems » Java in embedded Linux systems
P Introduction to GNU/Linux and Free Software

P Linux and ecology

P Advantages of Free Software in embedded systems W What's new in Linux 2.6?

P Embedded Linux optimizations P How to port Linux on a new PDA
P Embedded Linux from Scratch... in 40 min!

http://free-electrons.com/articles

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3, 2007

http://free-electrons.com/
http://free-electrons.com/training
http://free-electrons.com/training/intro_unix_linux
http://free-electrons.com/training/drivers
http://free-electrons.com/training/devtools
http://free-electrons.com/training/audio
http://free-electrons.com/training/multimedia
http://free-electrons.com/articles
http://free-electrons.com/articles/reasons/
http://free-electrons.com/articles/optimizations
http://free-electrons.com/articles/elfs
http://free-electrons.com/articles/linux-usb
http://free-electrons.com/articles/realtime
http://free-electrons.com/articles/uclinux
http://free-electrons.com/articles/omap
http://free-electrons.com/articles/swdev
http://free-electrons.com/articles/java
http://free-electrons.com/articles/freesw/
http://free-electrons.com/articles/linux-ecology/
http://free-electrons.com/articles/linux26
http://free-electrons.com/articles/porting

How to help

If you support this work, you can help ...
» By sending corrections, suggestions, contributions and translations

» By asking your organization to order training sessions performed by
the author of these documents (see http://free-electrons.com/training)

» By speaking about it to your friends, colleagues
and local Free Software community.

» By adding links to our on-line materials on your website,
to increase their visibility in search engine results.

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://free-electrons.com/training

Thanks

P To the OpenOffice.org project, for their presentation and
word processor tools which satisfied all my needs To people who helped,
sent corrections or

P To http://openclipart.org project contributors for their nice soEEestions:

public domain clipart

Vanessa Conchodon,
Stéphane Rubino, Samuli
Jarvinen, Phil Blundell,

P To the members of the whole Free Software and Open Jeffery Huang, Mohit
Source community, for sharing the best of themselves: their Mehta, Matti Aaltonen.
work, their knowledge, their friendship.

P To the Handhelds.org community, for giving me so much
help and so many opportunities to help.

P To Bill Gates, for leaving us with so much room for
innovation!

Embedded Linux kernel and driver development

© Copyright 2004-2007, Free Electrons
. Free Electrons Creative Commons Attribution-ShareAlike 2.5 license

© http://free-electrons.com Feb 3,2007

http://free-electrons.com/
http://openoffice.org/
http://openclipart.org/
http://handhelds.org/

Embedded Linux Training Fl‘ee EIGCtronS SerViceS

Unix and GNU/Linux basics
Linux kernel and drivers development
Real-time Linux

uClinux Custom Development

Development and profiling tools System integration

Lightweight tools for embedded systems Embedded Linux demos and prototypes
Root filesystem creation System optimization

Audio and multimedia Linux kernel drivers

System optimization

Consulting

Help in decision making

System architecture

|dentification of suitable technologies
Managing licensing requirements
System design and performance review

and application support
n and solution follow-up with ‘

http://free-electrons.com

Free Electrons

Free Software for Embedded Systems

http://free-electrons.com/

