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Preface

This volume contains the 37 papers presented at the 9th International Confe-
rence on Real-Time and Embedded Computing Systems and Applications (RT-
CSA 2003). RTCSA is an international conference organized for scientists and
researchers from both academia and industry to hold intensive discussions on
advancing technologies topics on real-time systems, embedded systems, ubiqui-
tous/pervasive computing, and related topics. RTCSA 2003 was held at the
Department of Electrical Engineering of National Cheng Kung University in
Taiwan. Paper submissions were well distributed over the various aspects of
real-time computing and embedded system technologies. There were more than
100 participants from all over the world.

The papers, including 28 regular papers and 9 short papers are grouped into
the categories of scheduling, networking and communication, embedded systems,
pervasive/ubiquitous computing, systems and architectures, resource manage-
ment, file systems and databases, performance analysis, and tools and deve-
lopment. The grouping is basically in accordance with the conference program.
Earlier versions of these papers were published in the conference proceedings.
However, some papers in this volume have been modified or improved by the
authors, in various aspects, based on comments and feedback received at the
conference. It is our sincere hope that researchers and developers will benefit
from these papers.

We would like to thank all the authors of the papers for their contribution.
We thank the members of the program committee and the reviewers for their
excellent work in evaluating the submissions. We are also very grateful to all
the members of the organizing committees for their help, guidance and support.
There are many other people who worked hard to make RTCSA 2003 a success.
Without their efforts, the conference and this volume would not have been pos-
sible, and we would like to express our sincere gratitude to them. In addition,
we would like to thank the National Science Council (NSC), the Ministry of
Education (MOE), and the Institute of Information Science (IIS) of Academia
Sinica of Taiwan, the Republic of China (ROC) for their generous financial sup-
port. We would also like to acknowledge the co-sponsorship by the Information
Processing Society of Japan (IPSJ) and the Korea Information Science Society
(KISS).

Last, but not least, we would like to thank Dr. Farn Wang who helped in-
itiate contact with the editorial board of LNCS to publish this volume. We also
appreciate the great work and the patience of the editors at Springer-Verlag. We
are truly grateful.

Jing Chen and Seongsoo Hong



History and Future of RTCSA

The International Conference on Real-Time and Embedded Computing Systems
and Applications (RTCSA) aims to be a forum on the trends as well as inno-
vations in the growing areas of real-time and embedded systems, and to bring
together researchers and developers from academia and industry for advancing
the technology of real-time computing systems, embedded systems and their
applications. The conference assumes the following goals:

~— to investigate advances in real-time and embedded systems;

— to promote interactions among real-time systems, embedded systems and
their applications;

— to evaluate the maturity and directions of real-time and embedded system
technology;

— to bridge research and practising experience in the communities of real-time
and embedded systems.

RTCSA started from 1994 with the International Workshop on Real-Time
Computing Systems and Applications held in Korea. It evolved into the Interna-
tional Conference on Real-Time Computing Systems and Applications in 1998.
As embedded systems is becoming one of the most vital areas of research and
development in computer science and engineering, RTCSA changed into the In-
ternational Conference on Real-Time and Embedded Computing Systems and
Applications in 2003. In addition to embedded systems, RTCSA has expanded
its scope to cover topics on pervasive and ubiquitous computing, home compu-
ting, and sensor networks. The proceedings of RTCSA from 1995 to 2000 are
available from IEEE. A brief history of RTCSA is listed below. The next RTCSA
is currently being organized and will take place in Sweden.

1994 to 1997: International Workshop on Real-Time
Computing Systems and Applications

RTCSA 1994  Seoul, Korea
RTCSA 1995 Tokyo, Japan
RTCSA 1996  Seoul, Korea
RTCSA 1997 Taipei, Taiwan

1998 to 2002: International Conference on Real-Time
Computing Systems and Applications

RTCSA 1998 Hiroshima, Japan
RTCSA 1999 Hong Kong, China
RTCSA 2000 Cheju Island, Korea
RTCSA 2002 Tokyo, Japan

From 2003: International Conference on Real-Time
and Embedded Computing Systems and
Applications

RTCSA 2003 Tainan, Taiwan
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Scheduling-Aware Real-Time Garbage Collection
Using Dual Aperiodic Servers

Tachyoun Kim' and Heonshik Shin®

' SOC Division, GCT Research, Inc.,
Seoul 150-877, Korea
thkime@gctsemi.com
2 School of Electrical Engineering and Computer Science, Seoul National University,
Seoul 151-742, Korea
shinhs@snu.ac.kr

Abstract. Garbage collection has not been widely used in embedded real-time
applications since traditional real-time garbage collection algorithm can hardly
bound its worst-case responsiveness. To overcome this limitation, we have pro-
posed a scheduling-integrated real-time garbage collection algorithm based on
the single aperiodic server in our previous work. This paper introduces a new
scheduling-aware real-time garbage collection which employs two aperiodic
servers for garbage collection work. Our study aims at achieving similar per-
formance compared with the single server approach whilst relaxing the limitation
of the single server approach. In our scheme, garbage collection requests are
scheduled using the preset CPU bandwidth of aperiodic server such as the spo-
radic server and the deferrable server. In the dual server scheme, most garbage
collection work is serviced by the secondary server at low priority level. The
effectiveness of our approach is verified by analytic results and extensive simu-
lation based on the trace-driven data. Performance analysis demonstrates that the
dual server scheme shows similar performance compared with the single server
approach while it allows flexible system design.

1 Introduction

As modern programs require more functionality and complex data structures, there is a
growing need for dynamic memory management on heap to efficiently utilize the memory
by recycling unused heap memory space. In doing so, dynamic memory may be managed
explicitly by the programmer through the invocation of “malloc/free” procedures which
is often error-prone and cumbersome.

For this reason, the system may be responsible for the dynamic memory reclamation
to achieve better productivity, robustness, and program integrity. Central to this auto-
matic memory reclamation is the garbage collection (GC) process. The garbage collector
identifies the data items that will never be used again and then recycles their space for
reuse at the system level.

In spite of its advantages, GC has not been widely used in embedded real-time
applications. This is partly because GC may cause the response time of application
to be unpredictable. To guarantee timely execution of a real-time application, all the

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 1-17, 2004.
© Springer-Verlag Berlin Heidelberg 2004



2 T. Kim and H. Shin

components of the application must be predictable. A certain software component is
predictable means that its worst-case behavior is bounded and known a priori.

This is because garbage collectors should also run in real-time mode for predictable
execution of real-time applications. Thus, the requirements for real-time garbage col-
lector are summarized and extended as follows [1]; First, a real-time garbage collector
often interleaves its execution with the execution of an application in order to avoid in-
tolerable pauses incurred by the stop-and-go reclamation. Second, a real-time collector
must have mutators ' report on any changes that they have made to the liveness of heap
objects to preserve the consistency of a heap. Third, garbage collector must not interfere
with the schedulability of hard real-time mutators. For this purpose, we need to keep
the basic memory operations short and bounded. So is the synchronization overhead
between garbage collector and mutators. Lastly, real-time systems with garbage collec-
tion must meet the deadlines of hard real-time mutators while preventing the application
from running out of memory.

Considering the properties that are needed for real-time garbage collector, this pa-
per presents a new scheduling-aware real-time garbage collection algorithm. We have
already proposed a scheduling-aware real-time GC scheme based on the single server
approach in [ 1 ]. Our GC scheme aims at guaranteeing the schedulability of hard real-time
tasks while minimizing the system memory requirement. In the single server approach,
an aperiodic server services GC requests at the highest priority level. It has been proved
that, in terms of memory requirement, our approach shows the best performance com-
pared with other aperiodic scheduling policies without missing hard deadlines [1].

However, the single server approach has a drawback. In terms of rate monotonic
(RM) scheduling, the server must have the shortest period in order to be assigned for
the highest priority. Usually, the safe server capacity for the shortest period may not
be large enough to service a small part of GC work. For this reason, the single server
approach may be sometimes impractical. To overcome this limitation, we propose a
new scheduling-aware real-time GC scheme based on dual aperiodic servers. In the dual
server approach, GC requests are serviced in two steps. The primary server atomically
processes the initial steps such as flipping and memory initialization at the highest priority
level. The secondary server scans and evacuates live objects. The effectiveness of the
new approach is verified by simulation studies.

The rest of this paper is organized as follows. Sect. 2 presents a system model and
formulates the problem addressed in this paper. The real-time GC technique based on the
dual aperiodic servers is introduced in Sect. 3. Performance evaluation for the proposed
schemes is presented in Sect. 4. This section proves the effectiveness of our algorithm by
estimating various memory-related performance metrics. Sect. 5 concludes the paper.

2 Problem Statement

We now consider a real-time system with a set of n periodic priority-ordered mutator
tasks, M = {M;, ..., M, } where M,, is the lowest-priority task and all the tasks
follow rate monotonic scheduling [2]. The task model in this paper includes an additional

! Because tasks may mutate the reachability of heap data structure during the GC cycle, this
paper uses the term “mutator” for the tasks that manipulate dynamically-allocated heap.
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Table 1. Notations

[ Symbol | Description
M;, M; ; |Periodic mutator task 7 and its 5" instance
Ci, Ty, D;, R;|Worst-case execution time, period, deadline, and response time of M;
A; Maximum amount of memory allocated by M; during T}
G k" garbage collection request
Ccc, Rec |Worst-case execution time of and response time of G
Ly, Ly Amount of live memory processed by Gy, and its maximum value
Mresu Memory reservation for hard real-time tasks
M System Memory requirement
Ts1, Te2  |Periods of the primary server and the secondary server
Cs1, Cs2  |Capacities of the primary server and the secondary server
Si(k), Fi(k) |Start/Completion time of the k*" instance of M;
8:(t) Idle time at priority level 7 at time ¢
Li(w) Interference of tasks with higher priority than that of M during the time interval
[0, w)

property, memory allocation requirement of M ;. M; is characterized by a tuple M; =
(Ci,T;, Dy, A;) (see Table 1 for notations). Our discussion will be based on the following
assumptions:

— Assumption 1: There are no aperiodic mutator tasks.

— Assumption 2: The context switching and task scheduling overhead are negligibly
small.

— Assumption 3: There are no precedence relations among M;s. The precedence con-
straint placed by many real-time systems can be easily removed by partitioning tasks
into sub-tasks or properly assigning the priorities of tasks.

-~ Assumption 4: Any task can be instantly preempted by a higher priority task, i.e.,
there is no blocking factor.

— Assumption 5: C;, T;, Dy, and A; are known a priori.

Although estimation of A4; is generally an application-specific problem, A; can be spec-
ified by the programmer or can be given by a pre-runtime trace-driven analysis [3]. The
target system is designed to adopt dynamic memory allocation with no virtual memory.
In this paper, we consider a real-time copying collector proposed in [3], [4] for its sim-
plicity and real-time property. This paper treats each GC request as a separate aperiodic
task {Gr(t¥, t5), k > 1} where t* and ¥ denote the release time and completion time
of the k** GC request Gy, respectively.

In our memory model, the cumulative memory consumption m.(M;, k,t) by a
mutator task, defined for the interval [t’;,t’;“), is a monotonic increasing function.
Although the memory consumption function for each mutator can be various types
of functions, we can easily derive the upper bound of memory consumption of M;
during ¢ time units from the worst-case memory requirement of M;, which amounts to
a product of A; and the worst-case invocation number of M; during ¢ time units. Then,
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the cumulative memory consumption by all the mutator tasks at #’ (t* < ¢ < tk+1yis
bounded by the following equation.

s Emonro=E{([£]-[H) 4} o

i=1

On the contrary, the amount of available memory depends on the reclamation rate of
the garbage collector. For the copying collector, half of the total memory is reclaimed
entirely at flip time. Actually, the amount of heap memory reproduced by Gi depends
on M and the size of live objects Ly, and is bounded by (% — Ly).

We now consider the property of real-time GC request G. First, Gy, is an aperiodic
request because its release time is not known a priori. It is released when the cumula-
tive memory consumption exceeds the amount of free (recycled) memory. Second, Gy
is a hard real-time request. The k** GC request Gx (t*, t¥) must be completed before
Gry1 (tFTY, tE+1) is released. In other words, the condition t* < 51 should always
hold. Suppose that available memory becomes less than a certain threshold while pre-
vious GC request has not been completed yet. In this case, the heap memory is fully
occupied by the evacuated objects and newly allocated objects. Thus, neither the garbage
collector nor mutators can continue to execute any longer.

On the other hand, the system may also break down if there is no CPU bandwidth
left for GC at t**+ even though the condition ¥ < 5+ holds. To solve this problem,
we propose that the system should reserve a certain amount of memory spaces in order
to prevent system break-down due to memory shortage. We also define a reservation
interval, denoted by Rg, to bound the memory reservation. The reservation interval
represents the worst-case time interval [t¥,%,), where t,(> t¥) is the earliest time
instant at which the CPU bandwidth for GC becomes available. Hence, the amount of
memory reservation M,..s, can be computed by the product of R¢g and the memory
requirement of all the mutator tasks during Rg. There should also be memory spaces in
which currently live objects are copied. As a result, for the copying collector addressed
in this paper, the system memory requirement is given by:

T

« ~ [Rg .
M = 2(Myesw + Li) = 2(;1 { T 1 A+ L) 2)
where M,eq, and L}, denote the worst-case memory reservation and the worst-case live

memory, respectively. The reservation interval Rg is derived from the worst-case GC
response time R e and the GC scheduling policy.

3 Dual Server Approach

3.1 Background

We have presented a scheduling-aware garbage collection scheme using single aperiodic
serverin [1], [3]. In the single server approach, GC work is serviced by an aperiodic server
with a preset CPU bandwidth at the highest priority. The aperiodic server preserves its
bandwidth waiting for the arrival of aperiodic GC requests. Once a GC request arrives in
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the meantime, the server performs GC as long as the server capacity permits; if it cannot
finish within one server period, it will resume execution when the consumed execution
time for the server is replenished. By assigning the highest priority, the garbage collector
can start immediately on arriving G, preempting the mutator task running.

However, the single server approach has a drawback. Under the aperiodic server
scheme, the server capacity tends to be very small at the highest priority. Although the
server capacity may be large enough to perform the initial parts of GC procedure such as
flipping and memory initialization, it may not be large enough to perform single copying
operation of a large memory block. Guaranteeing the atomicity of such operation may
yield another unpredictable delay such as synchronization overhead. For this reason, this
approach may be sometimes impractical.

3.2 Scheduling Algorithm

In this section, we present a new scheduling-aware real-time GC scheme based on dual
aperiodic servers. In the dual server approach, GC is performed in two steps. The primary
server performs flip operation and atomic memory initialization at the highest priority.
The secondary server incrementally traverses and evacuates live objects. The major
issue of dual server approach is to decide the priority of the secondary server and its safe
capacity. We mean maximum server capacity which can guarantee the schedulability of
given task set by safe capacity. The dual server approach can be applied to the sporadic
server (SS) and the deferrable server (DS).

The first step is to find the safe capacity of the secondary server. This procedure
is applied to each priority level of periodic tasks in given task set for simplicity. In
doing so, we assume that the priority of the secondary server is assigned according
to the RM policy. There is always a task of which period is identical to the period of
the secondary server because we compute the capacity of the secondary server for the
periods of periodic tasks. In this case, the priority of secondary server is always higher
than that of such a task.

The maximum idle time at priority level 7, denoted by §(.D;). is set to the initial value
of the capacity. For each possible capacity of the secondary server Cso € [1, 6(D;)], we
can find the maximum capacity at priority level 2 which can guarantee the schedulability
ofgiven task set using binary search. As aresult, we have n alternatives for the parameters
of the secondary server. The selection of the parameter is dependent on the primary
consideration of system designer. In general, the primary goal is to achieve maximum
server utilization. However, our goal is to minimize the memory requirement as long as
there exists a feasible schedule for hard real-time mutators.

As mentioned in Sect. 2, the system memory requirement is derived from M,¢s,
and L}. The worst-case memory reservation is derived from Rgc under the scheduling
policy used. Hence, we need a new algorithm to find R under the dual server approach
to derive the memory requirement.

For this purpose, we use the schedulability analysis which is originally presented by
Bernat [5]. Let the pair of parameters (period, capacity) = (T, Cs) of the primary server
and the secondary server be (Ts1, Cs1) and (Ts2, Cs2), respectively. Then, we assign
Ts1 = Ty and C5; = o such that o is the smallest time required for flipping and atomic
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Fig. 1. Response time of Gy, (Ts1 = 6,051 = 1,752 = 10,Ce0 = 2,Cqo = 4)

memory initialization. Traditional worst-case response time formulation can be used to
compute Rgc.
In Theorem 1, we show the worst-case response time of GC under the SS policy.

Theorem 1. Under the SS, for fixed Cac, Cs1, Ts1, Csz,and Tys, the response time of
the garbage collector Rgc of the dual server approach is bounded by the k** completion
time of a virtual server task SSsq with The = T2 + R, period, Cl, = 9 capacity, and
(Ts2 — Cs2) offset such that R, is the worst-case response time ofa task M, which
is the lowest priority task among the higher priority tasks than the secondary server,

¥ =Coo —Cyy — ((%—ﬂ —1) Cez and k = (ﬁ%ﬁw
s 82

Proof. Let ¢(> 0) be the available capacity of the secondary server when a new GC
request is released. If the condition Cgeo — Cs1 < € is satisfied, then the GC request G,
is completely serviced within one period of the secondary server. Otherwise, additional
server periods are required to complete Gy. The remaining GC work must be processed
after the capacity of the secondary server is replenished. We assume that there is always
Cl; capacity available when a new GC request arrives. This is because the replenishment
period of the primary server will always be shorter than or equal to that of the secondary
server. If this assumption is not valid, GC requests will always fail.

The interval, say A, between the beginning of G and the first replenishment of the
secondary server is at most (Ts3 — Cs2). In other words, the first period ofthe secondary
server is released A time units after G, was requested because the secondary server may
not be released immediately due to interference caused by higher priority tasks. In the
proof of Theorem 1, R is computed by using the capacity of the sporadic server and
the replenishment period.

Roughly, the worst-case response time of G, coincides with the &% completion time
Cece —~ Cs1

(732

of the secondary server with A offset such that k = [ 1 More correctly,
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it is the sum of A, any additional server periods required for replenishment, and the
CPU demand remaining at the end of GC cycle. It results from the assumption that
all the mutator tasks arrive exactly at which the first replenishment of the secondary
server occurs. In this case, the second replenishment of the secondary server occurs at
the time when all the higher priority tasks have been completed. Formally, in the worst-
case, the longest replenishment period of the secondary server is equal to the worst-case
response time of M, denoted by R, where M, is the lowest priority task among the
higher priority tasks. Because the interference is always smaller than the worst-case
interference at the critical instant, the following replenishment periods are always less
than or equal to the first replenishment period. Hence, we can safely set the period of
a virtual task S5 to (T2 + R, ). The CPU demand remaining at the end of GC cycle,

say ¥, is given by:
9= Coc— Co - ([C—G?C;zc—l] —1) Caz

It follows that the sum of the server periods required and the CPU demand remaining
at the end of GC cycle actually corresponds to the worst-case response time of the k"
response time of a virtual server task 5SS, with 7", period and ¥ capacity. Because
a task’s response time is only affected by higher priority tasks, this conversion is safe
without loss of generality. Fig. 1 illustrates the worst-case situation.
O

Since the DS has different server capacity replenishment policy, we have the follow-
ing theorem.

Theorem 2. Under the DS, for fixed Cac, Cs1, Ts1, Csa, and Tz, the response time of
the garbage collector Rgc ofthe dual server approach is bounded by the k** completion
time of a virtual server task SSsp with T!y = Tya period, Cty = ¥ capacity, and

C - s
(Ts2 — Cys2) offset such that 9 = Cge — Cy1 — <[G0701-' — 1) Cso and k =

Cs2
CGC - Csl
CsZ ’

Proof. The server capacity for the DS is fully replenished at the beginning of server’s
period while the SS replenishes the server capacity exactly 7 time units after the ape-
riodic request was released. For this reason, the period of a virtual task 77, equals 7%s.
O

For the dual server approach, we do not need to consider the replenishment of server
capacity in computing M,.s,. This is because there is always sufficiently large time
interval to replenish the capacity of the primary server between two consecutive GC
cycles. Finally we have:

“~[R
Mresv = Z [ ;C
. i

=1

] A 3)

Let F/,(k) denote the k** completion time of a virtual secondary server task SS,5.
As shown above, Fi,(k) is equal to Rgc. To derive the memory requirement, we now
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present how we can find F,(k) with given parameters of the secondary server. We
now apply Bernat’s ana1y51s to find F5 (k). Bernat presents an extended formulation to
compute the worst-case completion time of M; at its k** invocation.

We explain briefly the extended worst-case response time formulation. Let us first
consider the worst-case completion time of M; at the second invocation. The completion
time ofthe second invocation F;(2) includes its execution time and interference caused by
higher priority tasks. The interference is always smaller than the worst-case interference
at the critical instant. Formally, the idle time at priority level ¢ at w, denoted by §&;(w),
is defined as the amount of CPU time can be used by tasks with lower priority than A
during the period [0, w) in [5]. Again, the amount of idle time at the start of each task
invocation is written as:

Based on the above definitions, F;(2) includes the time required to complete two invo-
cations of M, the CPU time used by lower priority tasks (level-: idle time), and the
interference due to higher priority tasks. Thus, it is given by the following recurrence
relation:

w(© Si(2) + C; 4
W) = 90, 4+ 6,(2) + Ti(w™) @)

where I;(w(™) denotes the interference caused by tasks with higher priority than task
1. The correctness of Eq. (4) is proved in [5].

Similarly, the completion time of the k** invocation of M;, F;(k) is the sum of the
time required to complete k£ invocations of M;, the CPU time used by lower priority
tasks, and the interference due to higher priority tasks. Thus, we have F;(k) as the
smallest w (> 0) such that:

More formally, F;(k) corresponds to the smallest solution to the following recurrence
relation:

As mentioned earlier, the worst-case response time of garbage collector equals
F/,(k). Following the definition of FJ,(k), it can be found by the worst-case response
time analysis at the critical instant. For this reason, we can apply the Bernat’s extended
worst-case response time formulation to our approach without loss of generality. Fi, (k)
is the smallest solution w (> 0) where w(™*+1) = w(™ to the following recurrence
relation:

w(o) = Ssg(k) + C;2 7
WD) = kCly + 840(k) + Isp(w™),
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where Ssa(k) = (k — )Ty, C'y = Coc — Co1 — ([%] ~ 1) Css,
s
(n)
0s2(k) = 652(Ss2(k)), and Lp(w™) = Y [“’Tw Cj. In Eq. (7), Sea(k)
M;ehp(85z) -
and [ (w(")) can be easily computed because 17, is known a priori. Hence, we need
only to compute d,2(k) in order to compute F7, (k).
To compute 652(k), we assume another virtual task M as follows:

T? D)? .

M=(C,T, D
CT:SSQ(]{J),D:T.

wher
At the beginning of this section, we compute the safe capacity of the secondary server
at priority level ¢ by computing 6;(D;). Similarly, the amount of idle time between
[0, Ss2(k)) which has been unused by the tasks with priorities higher than or equal to
M; corresponds to the upper bound for the execution time of the virtual task M. Then,
ds2(k) is computed by obtaining the maximum C which can guarantee that the virtual
task M is schedulable. Formally, we have:

8s2(Ss2(k)) = max{C | M is schedulable} . (8)

The maximum C which satisfies the condition in Eq. (8) is the solution w where
w1 = (™ and w™ < D to the following equation:

w=C+ I[(w) 9)

where I/(w) denotes the interference caused by the tasks with higher than or equal
priority to task 4. A simple way of finding C is to perform binary search for the interval
[0, D) of which complexity is O(logy D). Actually, this approach may be somewhat
expensive because, for each value ¢t € [0, D), the worst-case response time formulation
must be done for higher priority tasks. To avoid this complexity, Bernat also presents an
effective way of computing d; (k) by finding more tighter bounds. However, his approach
is not so cost-effective for our case which targets at finding a specific F; (k).

We present a simple approach to reduce the test space. It is possible by using the fact
that C is actually the idle time unused by the tasks with higher than or equal to priorities
than the secondary server. Using the definition of I, (w), the interference of tasks with
higher than or equal priority to Mj, the upper bound for C is given by:

€ < Salt) - Lsat) <52 - > |Z2E]e, a0

j€hep(SS2) J

where hep(SS2) denotes the set of tasks with higher than or equal priority to the sec-
ondary server.

The lower bound for C can also be tightened as follows. Given any time interval w =
[t1, t2), the worst-case number of instances of M ; within the interval can approximate

to—t .
[ 2 T. ! ] + 1. We can optimize this trivial bound using the analysis in [3]. The analysis

J
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uses the worst-case response time of M, R;. It classifies the instances into three cases
according to their invocation time. As a result of analysis, it follows that the number of
instances of M within a given time interval w, denoted by ¢; is given by:

¢ = [%17%”(]'), where
i) = 1iijZTj—{w—({%Jn+1)} (11)

0 otherwise .

For details, refer to [3].
The above formulation can be directly applied to finding the lower bound for §; (k)
by substituting w for Ss2(k). Finally, we have:

czsa- ¥ (|28 4500 (12)

j€hep(SSz) 7

3.3 Live Memory Analysis

We have proposed a three-step approach to find the worst-case live memory for the
single server approach in [4]. According to the live memory analysis, the worst-case live
memory Ly equals the sum of the worst-case global live memory L, and the worst-
case local live memory L ;.- Usually, the amount of global live objects is relatively
stable throughout the execution of application because global objects are significantly
longer-lived than local objects. On the other hand, the amount of local live objects
continues to vary until the time at which the garbage collector is triggered. For this
reason, we concentrate on the analysis of the worst-case local live memory.

The amount oflive objects for each task depends not on the heap size but on the state
of each task. Although the amount of live memory is a function of A; and varies during
the execution of a task instance, it is stabilized at the end of the instance. Therefore, we
find the worst-case live local memory by classifying the task instances into two classes:
active and inactive’. Accordingly, we set the amount of live memory for an active task
M;to A; in order to cover an arbitrary live memory distribution. By contrast, the amount
of live memory for an inactive task M ; converges ; A; where y; denotes the stable live
factor out of A;. Consequently, the worst-case live local live memory is bounded by:

L 1ocar = maa( Z Ai+ Z viA4;5) (13)

M;Eactive(tk) M Einactive(th)

where active(t) and inactive(t) denote the set of active tasks and the set of inactive
tasks at time ¢, respectively. We also assume the amount of global live memory to be a
constant Ly, ,,, because it is known to be relatively stable throughout the execution of
the application. Then, L}, equals the sum of L, .., and L, ;.

We now modify the live memory analysis slightly to cover the dual server approach.

We first summarize the three-step approach as follows:

2 We regard a task as active if the task is running or preempted by higher priority tasks at time
instant . Otherwise, the task is regarded as inactive.
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— Step 1. Find the active windows: For each tasks, find the time intervals in which the
task instances are running or preempted by higher priority tasks, i.e., active. Those
time intervals are referred as active windows and represented by A; ; = [S; ;, Fi ;]
where 8; ; and F; ; denote the earliest start time and the latest completion time
of M ;, respectively. First, we put a restriction on the periods of mutators; M; is
harmonic with respect to M [6]. This constraint helps to prune the search space.
Second, the search space is limited to a hyperperiod H. We compute S; ; from
the worst-case completion time of a task instance M, ; where M, is the lowest
priority task among the tasks such that their priorities are higher than that of M; and
A, G- =T for1 <1< Tik We also compute F; ; under the assumption
that the total capacity of aperiodic server is used for GC, i.e., the garbage collector
behaves like a periodic task. Then, F; ; equals the sum of (§ — 1)T; and the worst-
case response time of M, denoted by R?, including the interference caused by
another periodic task with (C;, T, D;, A;) = (server capacity, T1,T1,0).

— Step 2. Find the transitive preemption windows: Using the active windows
found in Step 1, this step finds the preemption windows. The preemption win-
dow P g,z = a1, 1s the set of time intervals in which tasks M;, ..., My are all
active. They are equivalent to the intervals overlapped among active windows for
mutator tasks. Those tasks are active because one of them is running and the others
are preempted by higher priority tasks.

— Step 3. Compute the worst-case live memory: This step computes the worst-case
local live memory using Eq. (13).

As to the live memory, the worst-case scenario is that a GC request is issued when all the
tasks are active. Generally, the possibility of a certain task being active” is proportional
to CPU utilization of given task set. Hence, we try to find the worst-case local live
memory under the highest utilization attainable. For this purpose, we assume the CPU
bandwidth reserved for GC is fully utilized because the CPU utilization of periodic tasks
for given task set is fixed.

And therefore, we need a simple modification on the computation of active windows
in order that it may include the interference caused by the secondary server. In Step
1 of our live-memory analysis, S; ; and F; ; determine the active window of M; ;.
Because the computation of S; ; ignores the bandwidth reserved for GC, only the latest
completion time JF; ; should be recomputed. Suppose that Rfl denotes the worst-case
response (completion) time of M. Then, we can compute Rf/ = w using the following
recurrence relation:

w=Ci+ Y. [%1 1o/ (14)

tehp(iy |

where hp(i) is the set of tasks, including the aperiodic servers, whose priorities are
higher than that of M;. The only difference from the single server approach is that hp(z)
does not always include the secondary server although it does include the primary server.
This is because the secondary server may not have higher priority than that of M; whilst

* In most cases, it means that the task is preempted by a higher priority task.
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the primary server has the highest priority. Steps 2 and 3 are applied to the dual server
approach without any modification. Example 1 clarifies the modified approach.

Example 1. Consider the task set whose parameters are as given in Table 2.

Table 2. Example task set: Ts1 = 10, Cs1 = 1, Te2 = 30, Coa =

| |C|r |1)TA
M2 988 04'; )
M;| 4 30 30 1028[0.36[ 16
Ma|10] 60 | 60 |1200/0.38] 29
M,[15[120[120]1696]0.27]108

— Step 1. The active windows of periodic tasks in the example are

Ay =[10(j - 1), 10(j — 1) + 3],

Az = [30(j — 1) + 2, 30(j — 1) + 16],

Az ;= [60(j — 1) +6, 60(j — 1) + 29],

Ay =1[120(5 — 1) + 18, 120(j — 1) + 108], where 1 < j < 120

4

— Step 2. Using the active windows found in Step 1, we can determine the preemption
windows for the following combinations: M1 = My, M; = Mz, M; =
My, Mg = My, M3 = My, and M1 = M3z = My,

— Step 3. As a result of Eq. (13), M; = M3 = My is the combination that max-
imizes the amount of local live memory. In this case, L}, ;,.,; is reduced by up to
13% compared with the trivial bound.

34 Worst-Case Memory Requirement

As mentioned in Sect. 3.2, the worst-case memory requirement is derived from the sum of
the amount of memory reserved for hard real-time periodic mutators and the worst-case
live memory. Because the reserved memory depends on the worst-case GC time Cg¢
and vice versa, we need to compute the amount of reserved memory, M,.¢s,, iteratively.
First, we set the amount of memory allocated by all the mutators during a hyperperiod
to the initial value of M,..s,. This is because, even in the worst-case, a GC cycle must be
completed within a hyperperiod. Thereafter, the algorithm computes Mg, using Coe
and Rge recursively until MT(QS{,I) Mﬁggv We can easily compute Cgc using L}
obtained from the off-line live memory analysis [4]. The worst-case response time for
GC can also be computed using Theorem 1 and 2. In summary, Mg, is the smallest
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solution to the following recurrence relation:

n
H
() R AL
Y ;TZ '

" [Rgo(w™)
(n+1) — DGO\ 7). )
wored =3 | Hecl )]

%

(15)
i=1

where Rge(w(™) denotes the worst-case GC response time derived from the amount
of memory reservation computed in the previous iteration. Finally, we can compute the
system memory requirement using Eq. (15) in Sect. 2.

4 Performance Evaluation

This section presents the performance evaluation of our scheme. We show the efficiency
of our approach by evaluating memory requirement through extensive analysis. Analytic
results are verified by simulation based on trace-driven data. Experiments are performed
on the trace-driven data acquired from five control applications written in Java and three
sets of periodic tasks created out of the sample applications. The CPU utilization for
those three task sets of TS1, TS2, and TS3 are 0.673, 0.738, and 0.792, respectively.
The parameters used in the computation of the worst-case garbage collection work are
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Fig. 2. Capacity of the secondary server at each priority level.
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Fig. 3. Live memory of each task sets for the dual server approach.

derived from a static measurement of the prototype garbage collector running on 50
MHz MPC860 with SGRAM. For details on the experiment environment, refer to [1].
Because the major goal of our approach is to reduce the worst-case memory requirement,
our interest lies in the following three parameters. First, we compare the worst-case live
memory of the dual server with that of the single server. Second, we analyze the worst-
case memory reservation of both schemes. Third, we conduct a series of simulations to
compare the feasible memory requirement. Figs. 3,4, and 5 show performance evaluation
results.

We first compute the capacity of the secondary server at each priority level using
traditional worst-case response time formulation. For this purpose, the capacity of the
primary server is set to Cs; = 1 for simplicity. The only job of the primary server is to
flip two semispaces and to initialize the heap space. As shown in [3], efficient hardware
support enables the memory initialization to be done within hundreds of microseconds.
Hence, we make this assumption without loss of generality. Fig. 2 illustrates the capacity
of the secondary server for the SS and the DS. The z axis is the priority level and the
y axis is the maximum utilization that can be allocated to the secondary server. In all
the graphs shown in this section, the lower the priority level in the graph the higher the
actual priority is. And, the secondary server has higher priority than that of a periodic
task which has identical period with it. The DS algorithm can also be directly applied
to our approach. The graphs in Fig. 2 show that the capacity of the secondary server for
the DS is generally smaller than that of the SS. As pointed out in [7], for the DS, the
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maximum server utilization occurs at low capacities; in other words, at high priorities
under the RM policy. This is because the larger the capacity the larger the double hit
effect, and therefore the lower the total utilization. However, as can be seen in Fig. 2,
there is little difference in maximum server utilization of both schemes.

Fig. 3 illustrates the worst-case local live memory derived from the simulation and
the analysis for the dual server approach. For comparison, the worst-case local live
memory acquired from the simulation and the analysis for the single server approach is
also presented. These results demonstrate that the analytic bound accords well with the
simulation bound. The dual server approach also may reduce the worst-case local live
memory by up to 8 % compared with the single server approach. It results from the fact
that the dual server approach causes smaller interference over mutator tasks compared
with the single server approach.

We also compare the memory reservation of the dual server approach with that of
the single server approach. Fig. 4 illustrates the worst-case memory reservation for each
task set. The graphs show that, at relatively high priority level, the dual server approach
can provide comparable performance to the single server approach. The results also
demonstrate that noticeable differences in memory reservation are observed from the
priority levels 5 in TS1,7 in TS2, and 7 in TS3, respectively. For the DS, we can find that
at those priority levels the server utilization starts to decrease. Following Theorem 2 in
Sect. 3.2, this server utilization has a great impact on the worst-case GC response time,
and thus memory reservation. On the other hand, for the SS, the performance begins
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Fig. 4. Memory reservation of given task sets.
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to degrade at certain priority level though the server utilization has relatively uniform
distribution. This is because the period of a virtual task representing the SS dual server
is much longer than that of the DS server, which yields longer GC response time. For
details, see Theorem 1 in Sect. 3.2.

Fig. 5 compares the feasible memory requirements of both schemes. We mean fea-
sible memory requirement by the amount of heap memory to guarantee hard deadlines
without memory shortage under a specific memory consumption behavior. In our study,
the feasible memory requirement is found by iterative simulation runs. We regard a given
memory requirement as feasible if no garbage collection errors and deadline misses are
reported after 100 hyperperiods runs. In Fig. 5, the SS-based dual server approach pro-
vides feasible memory requirement comparable to the single server approach for all the
task sets. For TS3, the single server approach remarkably outperforms the dual server
approach. This is because the periodic utilization of TS3 is relatively high, and therefore
the CPU utilization allocated for the secondary server is smaller than the cases for TS1
and TS2. A noticeable performance gap between the SS-based single server and the
SS-based dual server is found in Fig. 5 (c). At the priority level 18, the performance
gap between two approaches is maximized because the CPU utilization allocated for
the secondary server is minimized at this priority level as shown in Fig. 2. It results in
longer GC response time, and thus large heap memory is needed.

The results also report that the DS provides comparable performance to the SS at
high priorities although, at low priorities, the SS generally outperforms the DS. For TS1,
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Fig. 5. Feasible memory requirement of given task sets for the dual server.
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the performance gap between two schemes is within 2.8 %. Although the capacities of
the SS is much larger than those of the DS at low priority levels, the double hit effect
offsets the difference. However, for TS3, a noticeable performance gap is observed at low
priority levels. This is because the periodic utilization of TS3 is quite high, and therefore
the double hit effect diminishes at low priorities. Although the DS may not provide
stable performance compared with the SS, it can provide comparable performance to,
even better than at some configuration, the SS. And, it has another advantage over the
SS; its implementation and run-time overheads are quite low. In summary, the DS is still
an attractive alternative to the SS in terms of scheduling-based garbage collection.

5 Conclusions

We have proposed a new scheduling-aware real-time garbage collection scheme. Our pre-
vious work [1] employed single aperiodic server to service garbage collection requests.
By integrating task scheduling with garbage collection algorithm, the scheme achieves
small memory footprint while guaranteeing hard deadlines. However, this scheme is
sometimes impractical because it may inevitably not reserve sufficiently large server
capacity. A new scheduling-aware garbage collection scheme based on dual aperiodic
servers is introduced to overcome the limitation of the single server approach while
achieving similar performance compared with the single server approach. The results
obtained in this paper are summarized as follows. In general, the dual server approach
shows comparable performance to the single server whilst it enables more flexible system
design. In addition, the DS can be an alternative solution to the scheduling-aware garbage
collection scheme. Simulation results show that it can provide similar performance to
the SS with smaller implementation and run-time overheads.
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Abstract. A complex real-time embedded system may consist of multi-
ple application components each of which has its own timeliness require-
ments and is scheduled by component-specific schedulers. At run-time,
the schedules of the components are integrated to produce a system-
level schedule of jobs to be executed. We formalize the notions of sched-
ule composition, task group composition and component composition.
Two algorithms for performing composition are proposed. The first one
is an extended Earliest Deadline First algorithm which can be used as
a composability test for schedules. The second algorithm, the Harmonic
Component Composition algorithm (HCC) provides an online admis-
sion test for components. HCC applies a rate monotonic classification
of workloads and is a hard real-time solution because responsive supply
of a shared resource is guaranteed for in-budget workloads. HCC is also
efficient in terms of composability and requires low computation cost for
both admission control and dispatch of resources.

1 Introduction

The integration of components in complex real-time and embedded systems has
become an important topic of study in recent years. Such a system may be made
up of independent application (functional) components each of which consists
of a set of tasks with its own specific timeliness requirements. The timeliness
requirements of the task group of a component is guaranteed by a scheduling
policy specific to the component, and thus the scheduler of a complex embedded
system may be composed of multiple schedulers. Ifthese components share some
common resource such as the CPU, then the schedules of the individual compo-
nents are interleaved in some way. In extant work, a number of researchers have
proposed algorithms to integrate real-time schedulers such that the timeliness
requirements of all the application task groups can be simultaneously met. The
most relevant work in this area includes work in “open systems” and “hierarchi-
cal schedulers” which we can only briefly review here. Deng and Liu proposed
the open system environment, where application components may be admitted
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online and the scheduling of the component schedulers is performed by a ker-
nel scheduler [2]. Mok and Feng exploited the idea of temporal partitioning [6],
by which individual applications and schedulers work as if each one of them
owns a dedicated ‘“real-time virtual resource”. Regehr and Stankovic investi-
gated hierarchical schedulers [8]. Fohler addressed the issue of how to dynami-
cally schedule event-triggered tasks together with an offline-produced schedule
for time-triggered computation [3]. In [10] by Wang and Mok, two popular sched-
ulers: the cyclic executive and fixed-priority schedulers form a hybrid scheduling
system to accommodate a combination of periodic and sporadic tasks.

All of the works cited above address the issue of schedule/scheduler composi-
tion based on different assumptions. But what exactly are the conditions under
which the composition of two components is correct? Intuitively, the minimum
guarantee is that the composition preserves the timeliness of the tasks in all
the task groups. But in the case an application scheduler may produce differ-
ent schedules depending on the exact time instants at which scheduling decisions
are made, must the composition of components also preserve the exact schedules
that would be produced by the individual application schedulers if they were to
run on dedicated CPUs? Such considerations may be important if an application
programmer relies on the exact sequencing of jobs that is produced by the ap-
plication scheduler and not only the semantics of the scheduler to guarantee the
correct functioning of the application component. For example, an application
programmer might manipulate the assignment of priorities such that a fixed pri-
ority scheduler produces a schedule that is the same as that produced by a cyclic
executive for an application task group; this simulation of a cyclic executive by a
fixed priority scheduler may create trouble if the fixed priority scheduler is later
on composed with other schedulers and produces a different schedule which does
not preserve the task ordering in the simulated cyclic executive. Hence, we need
to pay attention to semantic issues in scheduler composition.

In this paper, we propose to formalize the notions of composition on three
levels: schedule composition, task group composition and component compo-
sition. Based on the formalization, we consider the questions of whether two
schedules are composable, and how components may be efficiently composed.
Our formalization takes into account the execution order dependencies (explicit
or implicit) between tasks in the same component. For example, in cyclic exec-
utive schedulers, a deterministic order is imposed on the execution of tasks so
as to satisfy precedence, mutual exclusion and other relations. As is common
practice to handle such dependencies, sophisticated search-based algorithms are
used to produce the deterministic schedules offline, e.g., [9]. To integrate such
components into a complex system, we consider composition with the view that:
First, the correctness of composition should not depend on knowledge about how
the component schedules are produced, i.e., compositionality is fundamentally a
predicate on schedules and not schedulers. Second, the composition of schedules
should be order preserving with respect to its components, i.e., if job x is sched-
uled before job y in a component schedule, then job z is still scheduled before
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y in the integrated system schedule. Our notion of schedule composition is an
interleaving of component schedules that allows preemptions between jobs from
different components.

The contributions of this paper include: formal definitions of schedule compo-
sition, task group composition and component composition, an optimal schedule
composition algorithm for static schedules and a harmonic component composi-
tion algorithm that has low computation cost and also provides a responsiveness
guarantee. The rest of the paper is organized as follows. Section 2 defines basic
concepts used in the rest of the paper. Section 3 addresses schedule composition.
Section 4 defines and compares task group composition and component com-
position. Section 5 defines, illustrates and analyzes the Harmonic Component
Composition approach. Section 6 compares HCC with related works. Section 7
concludes the paper by proposing future work.

2 Definitions

2.1 Task Models

Time is defined on the domain of non-negative real numbers, and the time
interval between time b and time e is denoted by (b, e}. We shall also refer to a
time interval (¢,44 1) where ¢ is a non-negative integer as a time unit. A resource
is an object to be allocated to tasks. It can be a CPU, a bus, or a packet switch,
etc. In this paper, we shall consider the case of a single resource which can be
shared by the tasks and components, and preemption is allowed. We assume that
context switching takes zero time; this assumption can be removed in practice
by adding the appropriate overhead to the task execution time.

A job is defined by a tuple of three attributes (c,r,d) each of which is a
non-negative real number:

— c is the execution time of a job, which defines the amount of time that must
be allocated to the job;

— r is the ready time or arrival time of the job which is the earliest time at
which the job can be scheduled;

— d is the deadline of the job which is the latest time by which the job must
be completed.

A task is an infinite sequence of jobs. Each task is identified by a unique ID
i. A task is either periodic or sporadic.

The set of periodic tasks in a system is represented by T},. A periodic task is
denoted by (4, (¢, p, d)), where ¢ identifies the task, and tuple (¢, p, d) defines the
attributes of its jobs. The jth job of ¢ is denoted by job (4, j).

Suppose X identifies an object and Y is one of the attributes of the object.
we shall use the notation X.Y to denote the attribute Y of X. For instance, if
(4,7) identifies a job, then (¢, 7).d denotes the deadline ofjob (3, 7).

The attributes in the definition of a periodic task, ¢, p and d, are non-negative
real numbers:
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— c 1is the execution time of a task, which defines the amount of time that must
be allocated to each job of the task;

— p is the period of the task;

— d is the relative deadline of the task, which is the maximal length of time by
which a job must be completed after its arrival. We assume that for every
periodic task, ¢ < d < p.

If a periodic task 4 is defined by (c,p, d), job (4, j) is defined by (c,j-p,j-p+d).

A sporadic task is denoted by a tuple (4, (¢, p, d)), where 7 identifies the task,
and (¢, p,d) defines the attributes of its jobs, as follows: The jth job of sporadic
task ¢ is identified asjob (i, 7), 7 > 0. The arrival times ofjobs of a sporadic task
are not known q priori and are determined at run time by an arrival function A
that maps each job of a sporadic task to its arrival time for the particular run:

A :: Ty x N — R, where N is the set of natural numbers and R is the set of
real numbers.

A(i,j) =t if the job (¢, 7) arrives at time ¢.

A(i,j) =L if the job (4, ) never arrivals.

The attributes ¢ and d of a sporadic task are defined the same as those of
a periodic task. However, attribute p of a sporadic task represents the minimal
interval between the arrival times of any two consecutive jobs. In terms of the
function A, A(i, (§ + 1)) — A(4,5) > p if A(Z,(§ + 1)) is defined.

For a sporadic task (i, (¢, p,d)), job (4,7) is defined as (¢, A(, 5), A(%,j) + d).

A task group TG consists of a set of tasks (either periodic or sporadic). We
shall use S7TG to denote a set of task groups. The term component denotes a
task group and its scheduler. Sometimes we call a task group an application
task group to emphasize its association with a component which is one of many
applications in the system.

2.2 Schedule

A resource supply function Sup defines the maximal time that can be supplied to
a component from time 0 to time ¢. Time supply function must be monotonically
non-decreasing. In other words, ift < ¢, then Sup(t) < Sup(¢').

The function S maps each job to a set of time intervals:

S:: TG x N — {(R, R)} where TG is a task group, and N and R represent
the set of natural numbers and the set of real numbers respectively.
S(t,7) = {(b;i jk,€i k)0 <k < h} where k and h are natural numbers.

S is a schedule of TG under supply function Sup if and only if all of the
following conditions are satisfied:

— Constraint 1: For every job (i,j), every time interval assigned to it in the
schedule must be assigned in a time interval allowed by the supply function,
i.e., for all (b,e) € S(i,7), Sup(e) — Sup(b) =e —b.
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— Constraint 2: The resource is allocated to at most one job at a time, i.e.,
time intervals do not overlap: For every (b; ; ,€i k) € S(4,7) and for every
(byr jo iy €i,j7k7) € S(#,5"), one of the following cases must be true:

® ek < bk or
® e ik < bijk; or
ei=4 j=j7 and k =k

— Constraint 3: A job must be scheduled between its ready time and deadline:
for every (b,e) € S(i, 7),

(4,5)r <b<e<(i,j)d

— Constraint 4: For every job (4, ), the total length of all time intervals in
S(i,7) is sufficient for executing the job, i.e.,

Z (e—=b)>(3,5).c

(b,e)€S(3,5)

Given a time ¢, if there exists a time interval (b,e) in S(4,7) such that b <
t < e, then job (%, ) is scheduled at time t, and task ¢ is scheduled at time t.

An algorithm Sch is a scheduler if and only if it produces a schedule S for
T under A and Sup.

A component C of a system is defined by a tuple (TG, Sch) which specifies the
task group to be scheduled and the task group’s scheduler. A set of components
will be written as SC.

3 Schedule Composition

Suppose S is a schedule of a component task group TGp. We say that the
schedule S integrating the component schedules in | JT'Gp, is a composed schedule
of all component schedules {Sy|0 < h < n — 1} if and only if there exists a
function M which maps each scheduled time interval in Sy to a time window
subject to the following conditions:

— For each time interval (b, e) € Sp(¢,7), M(h, (b,e)) = (b, ep), and (bn, en) is
within the ready time and deadline ofjob (%, j);
— The time scheduled to job (7, ) by S between (bp,ep) is equal to e — b:

Z (y—x)=e—b

(2,9)€S(5,5) and by <z<y<e,

— M(h,(b,e)) is before M(h,(¥',¢’)) if and only if (b,e) € Si(i,7) is before
(v, ¢e") e Sp(¢', 7).

The notion of schedule composition is illustrated in Figure 1 where the compo-
nent schedule Sy is interleaved with other component schedules into a composed
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Fig. 1. Definition of Schedule Composition

schedule S. Notice that the time intervals occupied by Sy can be mapped into
S without changing the order of these time intervals.

To test whether a set of schedules can be integrated into a composed sched-
ule, we now propose an extended Earliest Deadline First algorithm for schedule
composition. From the definition of a schedule, the execution of ajob (%, j) can be
scheduled into a set of time intervals by a schedule S. We use the term S(i, j) to
denote the set of time intervals job (g, j) occupies. In the following, we shall refer
to a time interval in S(i,5) as ajob fragment of the job (i, 7). The schedule com-
position algorithm works as follows. A job fragment is created corresponding to
the first time interval of the first job in each component schedule S, that has not
been integrated into S, and the job fragments from all schedules are scheduled
together by EDF. After the job fragment, say for schedule Sy has completed,
the job fragment is deleted and another job fragment is created corresponding
to the next time interval in schedule Sj.

The schedule composition algorithm is defined below.

— Initially, all job fragments from all component schedules are unmarked.

— At any time ¢, Ready is a set that contains all the job fragments from all
the component schedules that are ready to be composed. Initially, Ready is
empty.

— At any time ¢, if there is no job fragment from component schedule Sy in
Ready, construct one denoted as (h,c,r,d) by the following steps:

e Let (b,e) be an unmarked time interval such that (b,e) € Si(4,7) and
for all unmarked time interval (¥',¢e') € Sp(i',5'), b < V;

o Define the execution time of the job fragment as the length of the sched-
uled time interval: ¢ := e — b;

e Define ready time of the job fragment as the ready time of the job sched-
uled at (b,e): r:= (4, j).r;

e Define deadline of the job fragment as the earliest deadline among all
jobs scheduled after time b by Si:

d = min({(¢,7).d|(¥,¢') € Sn(i',5') and b < b'})

e Mark interval (b,e).
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— Allocate the resource to the job fragment in Ready that is ready and has
the carliest deadline.

— If the accumulated time allocated to job fragment is equal to the execution
time of the job fragment, delete the job fragment from Ready.

— Ift is equal to the deadline of a job fragment before the completion of the
corresponding job in Ready, the schedule composition fails.

In the above, the time intervals within a component schedule S}, are trans-
formed into job fragments and put into Ready one by one in their original order
in Sp,. At any time ¢, just one job fragment from S}, is in Ready. Therefore, the
order of time intervals in a component schedule is preserved in the composed
schedule.

The extended EDF is optimal in terms of composability. In other words, if
a composed schedule exists for a given set of component schedules, then the
extended EDF produces one.

Theorem 1. The extended EDF is an optimal schedule composition algorithm.

Proof: If the extended EDF for composition fails at time f, then let s be
the latest time that following conditions are all true: for any Sj, there exists
(b,e) € Su(s,j), (4,5).r > s, all time intervals before b in Sy are composed
into S no later than time s, and for all (', ¢’) composed between s and f, the
corresponding job fragment has deadline no later than f. Then for any time ¢
between (s, f), there is a (', €’) € S(¢',j') and ¥’ <t < ¢’. The aggregate length
of time intervals from component schedules that must be integrated between
(s, f) is larger than f — s, therefore no schedule composition exists. B

Because of its optimality, the extended EDF is a composability test for any
set of schedules. Although extend EDF is optimal, this approach, however, has
a limitation: the input component schedules must be static. In other words, to
generate system schedule at time £, the component schedules after time ¢ need to
be known. Otherwise, the deadline of the pseudo job in Ready cannot be decided
optimally. Therefore, the extended EDF schedule composition approach cannot
be applied optimally to dynamically produced schedules.

4 Task Group Composability and Component
Composability

We say that a set of task groups STG={TGo, .., TG_1} is weakly composable if
and only if the following holds: Given any set of arrival functions {Ag, .., An—1}
for the task groups in STG, for any 0 < k < n — 1, there exists a schedule
Si for TGy, under Ay, and SS = {Sp, .., Sn—1} is composable. Obviously, weak
composability is equivalent to the schedulability of task group gy TGk We
say that a set of task groups STG is strongly composable if and only if the
following holds: Given any schedule S of TG}, under any A, SS = {So,.., Sn-1}
is composable. The following is a simple example of strong composability.
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Suppose there are two task groups. TGy consists of a periodic task 7p =
(1,5,5), and TG consists of a sporadic task 73 = (1,5,5). Then an arbitrary
schedule Spfor TGy and an arbitrary schedule S; of T'G; can always be composed
into a schedule S by the extended EDF no matter what the arrival function is.
Therefore, this set of task groups are strongly composable.

Not all weakly composable sets of task groups are strongly composable. Sup-
pose we change the above example of strongly composable set of task groups by
adding another periodic task Tz = (4,10, 10) to task group T'Gy. Two schedules
can be produced for TGy by a fixed priority schedulers: Sy and Sj. In Sp, suppose
we give a higher priority to Ty, and therefore for all j, Sy(0,7) = (5-4,5-7+ 1),
and So(2,5) = (10- 45 + 1,10 - j + 5). For S, suppose we give higher prior-
ity to Tu, and therefore for any number j, S§(0,25) = (10-5 + 4,10 - § + 5),
56(0,254+1) =(10-5+5,10- 5+ 6); S3(2,7) = (10-5,10- 5 + 4).

So is composable with any schedule S; of TG, but S} is not. In S, for any
j, the deadline of job (0,2 - 5) is at 10 - j + 5, and yet it is scheduled after job
(2, 7) whose deadline is at 10- 5+ 10. Because of the order-preserving property of
schedule composition, it follows that every time interval (10- 3, 10- 7 + 5) must
be assigned to Sj. Thus, if ajob of T} arrives at time 10- 7, schedule composition
becomes impossible.

We say that a set of supply functions SSup={Supo, .., Sup,—1} is consistent
ifand only if the aggregate time supply of all functions between any time interval
(b, e) is less than or equal to the length:

> (Supk(e) — Supi(b)) <e—b

Suppose SC = {(Scho,TGy), .., (Sch,_1,TG,-1)} is a set of components.
SC is composable if and only if given any set of arrival functions SA =
{Ag,.., An_1}, there exists a set of consistent supply functions SSup =
{Supy, .., Sup,_1} such that Schy produces schedule S; of TGy under arrival
function A and supply function Supy, and SS = {Sp, .., Sp-1} is composable.

Component composability lies between weak composability and strong com-
posability of task groups in the following sense. A component has its own sched-
uler which may produce for a given arrival function, a schedule among a number
of valid schedules under the arrival function. Therefore, given a set of compo-
nents, if the corresponding set of task groups of these components are strongly
composable, then the components are composable; if the task groups are not
even weakly composable, the components are not composable. However, when
the task groups are weakly but not strongly composable, component compos-
ability depends on the specifics of component schedulers.

To illustrate these concepts, we compare weak task group composability,
strong task group composability and component composability in the following
example which is depicted in Figure 2. Suppose there are two components Cy =
(T'Go, Scho) and Cy = (T'Gy, Schy). For any valid arrival function A for each of
the task groups, there exists in general a set of schedules that may correspond to
the execution of the task group under the arrival function set. In Figure 2, the
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circle marked as 55,0 represents the set for all possible schedules of TG under
Ap; and 55,1, S51,0, S51,1 are defined similarly. If T'Go and T'G; are strongly
composable, then randomly pick a schedule Sy from S5y, and a schedule 5;
from 85, where = and y are variable and Sy and S; are composable. If T'Gq
and TG are weakly composable, then for any z and y, there exists a schedule
So from S5y . and there exists a schedule S; from S5 4 such that Sp and S; are
composable. The small circle marked as 559 0,5 is the set of all schedules that can
be produced by the scheduler Schy under Ag. Each point in §5; ¢ s corresponds
to one schedule, and one or multiple supply functions upon which Schy produces
550,05~ Circle $89,1,s, S51,0,6, 551,1,s are defined similarly. If components Cy
and C; are composable, then for any pair of z and y, there exists a schedule Sy
in 85p.4,5, and a schedule S; in 81,4, So and S; are composable, and there
exists a supply function Supg corresponding to Sy and a supply function Sup,
corresponding to S, and Supp and Sup; are consistent.

Fig. 2. Composability

In many scheduler composition paradigms, the resource supply functions can
be determined only online for components that have unpredictable arrivals of
jobs. Therefore it is often hard to define resource supply function a priori. How-
ever, we can introduce the notion of contracts to express the requirements im-
posed on the supply function by a component, as the interface between a com-
ponent and the composition coordinator. In the next section, we shall discuss
Harmonic Component Composition which makes use of explicit supply function
contracts.

5 Harmonic Component Composition

We consider the tradeoff between composability and the simplicity in the design
of the system-level scheduler to be a significant challenge in component com-
position. As an extreme case in pursuing simplicity, a coordinator may allocate
resources among components based on a few coarse-grain parameters of each
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component, such as the worst case response time and bandwidth requirement.
This type of solutions often does not achieve composability, i.e., admission of
new components may be disallowed even when the aggregate resource utiliza-
tion is low because of previous overly conservative capacity commitments. At
the opposite extreme, the coordinator may depend on details about the com-
ponents to perform complex analysis and may take on too many obligations
from individual components, such that the system performance may eventually
be degraded. We now propose a solution to meet the challenge by introducing

class-based workloads. We call this approach Harmonic Component Composition
(HCC).

5.1 Coordinator Algorithm

The system designer will select a constant K as the number of resource classes. A
class k (k € [0,K)) is defined by a class period Py = m*, where m is a designer-
selected constant. We require a rate monotonic relation between the periods of
classes: For any 0 < [ < k < K — 1, %’; = m!~*. Lower class has larger class
number and longer class period.

When a component C is ready to run, it generates a supply contract and sends
it to the coordinator. The supply contract is a list of workload defined as (&, {, w),
where k < [.The workload permits that up to wtime units of resource supply
can be on demand within any time interval of length m!; and once a demand
occurs, it must be met within m* time units. Upon receiving a supply contract,
the coordinator will admit a component if and only if it can satisfy the contract
without compromising the contracts with previously admitted components.

When a demand is proposed to class k, it will be served within m* time. To
keep this guarantee, HCC maintains a straightforward invariant to make sure
that supply needed online for class & or higher in any time interval with length
mF is less than or equal to m*. To accomplish this, the aggregate workload
admitted to class & or higher is constrained as if there is a conceptual resource
associated with class & which is consumed by admitting any workload with class
k or higher. Suppose that Ry represents the conceptual resource of class k. Ry
is initiated as Py. A workload (k, !, w) requires no conceptual resource from the
classes higher than k, but requires that from every class lower than or equal to
k. The value of the conceptual resource requirement of a workload (k,!,w) on
class 4 is derived from the worst case occupation in a time interval of length F;
by the workload.

If a component C}, is admitted, the coordinator establishes a server identified
with (h, k, 1) for each workload (%, [, w) in the contract. The component to which
the server belongs is identified by A, the class of the server is &, and (k,1) defines
a subclass. All servers of class ¢ are in a list L;. The server is defined with a
budget limit w and replenishment period of m!. A server have four registers,
load, carry, budget and replenish.
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Initialization:

(1) foreach 0<k< K -1
(3) Ly, is set as an empty list

Contract Admission:

(1) Upon component C, proposes a contract V,, which is a
list of (k,{,w)
foreach0<i< K -1
foreach (k,l,w) € V}
foreach k <i <]
R,:=R,—w
foreach | +1<i< K -1
R, =R, —w- (m')
if AR, <0
) reject component Cj, and terminate this run of
contract admission;
(11) foreach i€ [0, K — 1]
(12) R;:=R!
(13) foreach (k,l,w) € V,
(14) construct server (h,k,l) and add to the end of Ly,
with the following initial values:
(15) budget = w, loaded = carry = 0, replenish as
empty queue.

A,\A,\A,\A/_\,_\
= O 00~ O U i W N
O = e e T L NN

Referring to the algorithm specification above, a component Cj, may load a
server (h,k,l) by adding a value to its register load when the component Cj,
demands usage on the resource. If the value of the load register is positive, the
server is loaded. If a loaded server has budget(budger > 0), then the budget
is consumed on the load and all or part of the loaded value becomes carried
(carry > 0). At the start of a time unit (¢,¢ + 1) (which means ¢ is a non-
negative integer), if class k is the highest class with a carried server, then the
first carried server in Ly supplies resource in the time unit (¢,¢ 4 1).

The existing budget of a server is held in budget. When load and budget are
both positive and v = min(load, budget), both of them are reduced by v and
carry is increased by v. Consumed budget will be replenished after m! units of
time. The queue replenish records the scheduled replenishments in the future.
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Online Execution:

TN SN TN TN TN TN TN TN TN TN
= © 00~ e ot b =
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Upon the start of time unit (¢, ¢+ 1):
foreach server (h,k,!)
Replenish budget:
if the head of queue in replenish is (¢, val)
budget := budget + val
dequeue (t, val) from repenish
Carry work load:
if load > 0 and budget > 0
v 1= min(load, budget)
carry 1= carry + v
budget := budget — v
load = load — v
enqueue (v,t +m!) to replenish
Supply Resource:
Select server (h,k,1), such that & is the highest class
with at least one carried server, and (h, k, 1) is the first
carried server in Ly.
carry :=carry — 1
Supply resource to component, Cy, in time unit (¢, ¢+

1

29

When a component terminates, the coordinator reclaims the conceptual re-
sources from the component.

Component termination:

Upon the termination of component C},
foreach (k,l,w) e V,
delete server (h, k,l) from Ly,
foreach £ <1 <
R, =R;+w
foreach [+ 1 <i<K-1
Ri:=R;+w- (m'Y)

5.2 Component Algorithm

In the HCC approach, a component generates a supply contract, and if admitted,
it may demand supply from its servers. Different algorithms may be applied for
different components in a composition. We describe one solution here as an

example.
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Assume that there is a component Cp, and its component scheduler is EDF.
A task (c,p,d) is categorized to subclass (|logmd], |logmp]), and its execution
time is added to the weight w of the workload with that subclass.

Supply Contract Generation:

foreach (k,l) such that 0 < k<I< K -1
Wk, = 0
foreach i € Ty
k.= |log,,i.d|
[ :=|log,,ip]
W, ‘= Wg,| + i.C
foreach wy; # 0
add workload (k, !, wg,;) into contract V},

00 ~J O Uk W N~
PN AN RN N

At run time, upon the arrival of ajob (, ), a demand for resource supply is
added to the server corresponding to task i at the start of the next time unit.

Online execution:

Initialization:
foreach (k,1)
Wi, = 05
Upon the arrival of job (4, j),
k := |log,, i.d]
l:=|log,,i.p|
W, = Wk, +1.C
Upon the start of time unit (¢, + 1)
foreach server (k,!) such that wy; >0
load := load + wy 13
wy, = 0;
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5.3 Example

Having described how HCC works, we illustrate the HCC approach by an exam-
ple below.

In this example, we design a system with four components with the following
specifications.

— Component Cy consists of one task for emergency action and 2 periodic
routine tasks. The emergency action takes little execution time and rarely
happens, but when a malfunction occurs, the action must be performed
immediately. We abstract this action by a sporadic task Tp = (1,00,1),
which means that the execution time and relative deadline are both 1, and
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the minimum interval between consecutive arrivals are infinite. The periodic
routine tasks are given by 77 = (1,80, 8), T» = (1, 100, 10).

— Component C; is a group of periodic routine tasks defined as follows: T3 =
(1,3,3), Ty = (1,10, 10).

— Component Cs is a bandwidth-intensive application, which needs 25 percent
of the resource. It can be modeled as T5 = (16,64, 64).

— Component C3 has one periodic task Ty = (3, 30, 30).

The value of m and K are arbitrarily selected as 2 and 6 by the system
designer, based on estimations of the potential workloads. Let us apply the
contract generation as defined in this paper. Four contracts will be produced as
follows. Recall that workload is defined as (k, [, w).

- Vo ={(0,6,1),(3,6,2)}, where Ty is mapped to workload (0, 6,1), Ty and 7%
are mapped to (3,6,2).

Vi ={(1,1,1),(3,3,1)}, where T3 is mapped to (1,1,1), and T4 is mapped
to (3,3,1).

- Vo= {(6767 16)}

V3 = {(4547 3)}

|

Suppose that all components become ready at time 0, and the admission
decisions are made according to their index order. For all 0 < k < 6, R, remains
non-negative when Cy, C;, Co are admitted. However, during the admission of
C3, R < 0,therefore C3 is not admitted. Table 1 shows the change of Ry
during admission procedure, and Table 2 shows the established servers on all
classes after that.

Assume that the first job of Ty arrives at time 4 and the online executions
of all components are defined as in this paper. We now show a step by step
execution from time 0 to time 4.

At time 0, the budget registers of all servers have been initialized according to
their weights, and the components add their current demands to the correspond-
ing load registers, as shown in Table 3. Coordinator moves the in-budget loads
into register carry, and the consumed budget are recorded for replenishments in

Table 1. Component Admission

Component 0 {Component 1 [Component 2 Component 3
initial|(0, 6, 1)|(3, 6, 2)|(1, 1, 1)|(3, 3, 1)| (6, 6, 16) (4, 4, 3)
Ro| 1 0 0 0 0 0 R} 0
R 2 1 1 0 0 0 1 0
Ra| 4 3 3 1 1 1 RS 1
Rs| 8§ 7 5 1 0 0 A 0
Ri| 16 15 13 5 3 3 R} 0
Rs| 32 31 29 13 9 9 2 3
Rs| 64 63 61 29 21 5 Ry -7
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Table 2. Servers on All Classes

Lo|{(0,0,6)}

L, [{(1,1,1)}

Lo
L3|{(0,3,6),(1,3,3)}
Ly

Ls

L6 {(2!6!6)}

Table 3. Register Image Right After Component Loading At Time 0

budget|load|carry|replenish
(0,0, 6)|1 0 1|0
1, 1, 1)[1 1 |0
(0, 3, 6)[2 2 |0
(1, 3, 3)[1 1 |0
(2, 6, 6)|16 16 |0

the future. The carried value of server (1,1,1) becomes 1. Server (0,0, 6) is not
carried, therefore server (1,1,1) is selected to supply time between time (0,1).
Its carry is then decremented back to 0. Table 4 shows the register image after
the execution of the coordinator.

Between time (0,1), no load is added from any component. At time 1, server
(0,3,6) is selected to supply between (1,2) so its carry is decremented, as shown
in Table 5.

At time 2, server (1, 1, 1) replenishes its budget, and server (0, 3, 6) is selected
as supplier and so its value of carry is decremented, as shown in Table 6.

At time 3, the second job of T3 is ready, so C; loads server (1,1,1) by 1,
as shown in Table 7. On the coordinator side, budget is available for server
(1,1,1), therefore budget is consumed for the load and carry is incremented by
1. Budget is consumed, and therefore future replenishment is added to replenish.
Then server (1,1,1) is selected as supplier, and its carry is decremented by 1.
Table 8 shows the register image after the coordinator execution.

At time 4, a job of task T arrives. Therefore server (0,0, 6) is loaded by 1,
as shown in Table 9. During the coordinator execution, budget is available for
(0,0,6) and consumed, future replenishment is stored, and the value of carry
is incremented by 1. Then server (0,0,6) is selected to supply, and its carry is
decremented back to 0. Table 10 shows the register image after these executions.

It is noteworthy that a simple fixed-priority composition scheme cannot even
compose Cy and C; together for the following reason. Because of the short dead-
line of task Ty, Cp must have the highest priority. Then there is a possibility
that 3 continuous time units may be supplied to Cp, in which case task T3 in
Cy may miss its deadline. The low composability is a result of not distinguish-
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Table 4. Register Image Right After Coordinator Execution At Time 0

budget|load|carry|replenish
(0, 0, 6)[1 0 |0
(1,1, [0 0 0 [{(1,2)]
(0, 3, 6)[0 0 |2 {(2,64)}
(1, 3, 3)[0 0 |1 |{(1,8)}
(2,6, 6)[0 0 |16 [{(16,64)}

Table 5. Register Image Right After Coordinator Execution At Time 1

budget |load|carry|replenish
(0, 0, 6)[1 0 0
(1, 1, 1)|0 0 |0 {(1,2)}
(0, 3, 6)[0 0 |1 |{(2,64)}
(1, 3, 3)|0 0 1 |{(1,8)}
(2, 6, 6)[0 0 |16 [{(16,64)}

Table 6. Register Image Right After Coordinator Execution At Time 2

budget |load |carry|replenish
(0, 0, 6)|1 0 |0
(1,1, D1 0 |0
(0, 3,6)[0 0 [0 |{(2,64)}
(1, 3, 3)[0 0 |1 (1,8)}
(2,6, 6)0 0 |16 |{(16,64)}

Table 7. Register Image Right After Component Loading At Time 3

budget|load|carry|replenish
(0, 0, 6){1 0 |0
(1,1, 1)1 1 o
(0, 3, 6)[0 0 [0 |{(2,64)}
(1, 3, 3)[0 0 |1 |{(,8)}
(2, 6, 6)[0 0 |16 |{(16,64)}

ing the different types of workloads in Cjy. In contrast, by Harmonic scheduler
composition, Cy, C; and Cy can be admitted one by one and served in the same
time.

5.4 Analysis

If a component C}, is admitted by the coordinator, then the coordinator will
supply resources to Cp according to the supply contract V},. Assuming that
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Table 8. Register Image Right After Coordinator Execution At Time 3

budget|load|carry|replenish
(0, 0, 6)|1 0 |0
(1, 1, 1)|0 0 |0 (1,5)}
(0, 3, 6)[0 0 |0 (2,64)}
(1, 3, 3)[0 0 I (1,8)}
(2, 6, 6)[0 0 |16 |{(16,64)}

Table 9. Register Image Right After Component Loading At Time 4

budget {load|carry|replenish
(0, 0, 6)1 1 |0
(1,1, 1)0 0 [0 [{(L5)}
0,3,6[0 __[0_[0__[{(2,64)]
(1, 3, 3)|0 0 |1 {(1,8)}
(2, 6, 6)[0 0 |16 |{(16,64)}

Table 10. Register Image Right After Coordinator Execution At Time 4

budget|load |carry{replenish
(0, 0, 6)|0 0 |0 {(1,68)}
(1, 1, 1)|0 0 0 {(1,5)}
(0, 3, 6)[0 0 0 [{(2,64)}
(1, 3, 3)[0 0 [T [{(L,8)}
(2, 6,6)0 0 |16 [{(16,64)}

there is a workload (k,l,w) in Vj, then a server (h,k,!) is established. Within
any time interval of length m!, up to w time units of supply may be loaded to
the server, and every demand will obtain supply within m* units of time since
the demand is loaded. We call this the responsiveness guarantee. However, if
the accumulated load exceeds w time units within a time interval of length m!,
the server is overloaded and the responsiveness guarantee will not be provided
anymore. The rationale here is that if the component breaks the supply contract
by overloading, the coordinator cannot guarantee prompt supply. On the other
hand, A non-overloaded server always provides the responsiveness guarantee,
even when other servers (including other servers of the same component) are
overloaded. We shall prove the responsiveness guarantee.

First, we prove that in a non-overloaded server, load never waits for budget.

Lemma 1. For a non-overloaded server (h,k,l), load < budget at any non-
negative integer time t after budget replenishment.
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Proof: Base Case: At time 0, Register budget is initialized to w, and a non-
overloading component loads less than or equal to w at time 0. The lemma is
true.

Induction case: Assume that for any non-negative integer ¢ < n, the lemma
is true. We now prove that the lemma is still true at time n+1 by contradiction.

Assume the contrary: The value of load and the value of budget at time n+1
after replenishment is  and y, and = > y.

Let n' = maz(0, (n+1—m')). Assume that the budget consumed after time
n/ but before or at time n is z, then y + z = w;

Because the lemma is true at time n’, all loads arrived before or equal to
time n’ are carried before or at time n/, so budget consumed between (n',n) is
for load arrived after n’ and before or at time n. Because the lemma is true for
time n, load is decreased to 0 after the execution of the coordinator at time n.
Therefore, the aggregate load after time n’ and before or at time n is equal to
the budget consumption during the the same interval of time, which is z.

Also, the aggregate arrival of load after time n but before or at time n + 1
is x. The aggregate arrival of load after time n’and before or at time n + 1is
z+ 2. Thus x + z > y + z = w, and the server is overloaded, a contradiction. B

A non-negative integer time t is class k un-carried if all servers of class k or
higher have zero value for carry before the coordinator execution at time t. At
a class k£ un-carried time ¢, all previously loaded in-budget work for servers of
class k or higher is completely supplied.

Lemma 2. [ft is a class k un-carried time, then there exists another class k
un-carried time t' such that t' <t +mk.

Proof: According to the admission control algorithm, the aggregation of exist-
ing budget from all servers of class k or higher at time ¢ before the coordinator
execution and replenishment at or after time ¢ and before ¢+ m* will not exceed
P, = m®. Therefore, the maximal aggregate value that can be added to carry
of all servers of class k or higher will not exceed m”. At any integer time t, if
there exists a server of class k or higher with carry > 0, a supply is drawn from
a server with class k& or higher made and a carry is decreasing. If ¢’ does not
exist after time t and before time ¢ + mF, then carry is decreased by m* at or
after time ¢ and before t + m*, and time t + m* must be an class & un-carried
time. Therefore the lemma holds. B

Theorem 2. If server (h,k,l) is not overloaded at any time, it provides the
responsiveness guarantee.

Proof: Time 0 is a class k& un-carried time. According to Lemma 2, at any
time t, there exists another un-carried time ¢’ for class k before or at time t+m?”.
According to Lemma 1, if component Cp, adds load at time ¢, the complete load is
moved to carry at time ¢. Because carry = 0 at time ¢/, the supply corresponding
to the demand loaded at time ¢ is made before time t'. Therefore responsiveness
guarantee is maintained. ®
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The computational complexity of admission for a component C}, is bounded
by O(K -|V,]), where K is the maximal number of classes, and |V},] is the number
of workloads in the contract which is bounded by K?. The online coordinator
overhead for each time unit is bounded by O(n - s), where n is the number of
components and s is the maximal number of servers for a component which is
bounded by K2. Because the period of classes increases exponentially, K should
be a small number.

6 Comparison with Related Work

There has been a significant amount of work on compositions in the last few years
as has been pointed out in Section 1 ofthis paper. Instead of using EDF online for
scheduling resource supply among components such as is in [2] and [5], our HCC
approach distinguishes itself from these previous works by using a rate monotonic
classification of workloads; the coordinator applies a fixed priority policy among
workload classes. The urgency of workloads from components is expressed by
their classes instead of explicit deadlines. The rate monotonic design of HCC
makes admission control and budget management simple, yet maintains good
composability. Many hard and/or soft real-time scheduling approaches depend
on a server budget to control the resource supply to a component to maintain
a fair share. Total Bandwidth Server [7] is one example of this approach. Like
servers, HCC also makes use of the budget idea. Because HCC is not deadline-
based and temporal workload control depends totally on budget control, HCC
does not require as much communication (e.g., deadlines of newly arrived jobs)
between the system-level scheduler and the component schedulers and is hence
a less costly and easier to implement budget-enforcement strategy.

POSIX.4 [4] defines two fixed priority schedulers, which are SCHD_FIFO
and SCHD_RR. For both of them, there may exist multiple fixed priorities, and
multiple tasks may be assigned to each priority. The tasks with the same priority
are scheduled with First-In-First-Out by SCHD_FIFO, and with Round Robin
by SCHD_RR. However, POSIX.4 defines neither priority assignment algorithm
nor schedulability guarantee mechanism. Cayssials et al. propose an approach
to minimize the number of priorities in a rate-monotonic fixed priority scheme,
assuming that multiple tasks may be scheduled on the same priority [1]. HCC
not only classifies tasks into priorities but also regulates tasks by servers.

7 Future Work

Whereas the Harmonic Component Composition is a dynamic approach in which
the coordinator does not depend on internal knowledge of components, we are
also investigating another approach to composition that improves composability
and online resource supply efficiency by exploiting a priori knowledge ofthe com-
ponents. Unlike the approach described in this paper, this alternative approach
requires extensive offline computation. We believe that these two composition
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approaches span the two far ends of a wide spectrum of practical solutions for
composing real-time schedulers. There is still much to be explored in the spec-
trum of solutions by a combination of the approaches. This is a subject for
further investigation.
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Abstract. Network of workstation (NOW) is a cost-effective alternative
to massively parallel supercomputers. As commercially available off-the-
shelf processors become cheaper and faster, it is now possible to build
a PC or workstation cluster that provides high computing power within
a limited budget. However, a cluster may consist of different types of
processors and this heterogeneity within a cluster complicates the design
of efficient collective communication protocols.

This paper shows that a simple heuristic called fastest-node-first
(FNF) [2] is very effective in reducing broadcast time for heterogeneous
cluster systems. Despite the fact that FNF heuristic does not guarantee
an optimal broadcast time for general heterogeneous network of work-
station, we prove that FNF always gives near optimal broadcast time
in a special case of cluster, and this finding helps us show that FNF
delivers guaranteed performance for general clusters. In a previous pa-
per we showed a similar bound on the competitive ratio in a send-only
communication model. This paper extends the result to a more realis-
tic sender-receiver model. We show that FNF gives a total broadcast of
2T + 3, where T is the optimum time and S is a constant. This improves
over the previous bound on 2T + § [17], where « is a theoretically
unbounded ratio of the processor performance in the cluster.

1 Introduction

Network of workstation (NOW) is a cost-effective alternative to massively paral-
lel supercomputers [1]. As commercially available off-the-shelf processors become
cheaper and faster, it is now possible to build a PC or workstation cluster that
provides high computing power within a limited budget. High performance par-
allelism is achieved by dividing the computation into manageable subtasks, and
distributing these subtasks to the processors within the cluster. These off-the-
shelf high-performance processors provide a much higher performance-to-cost
ratio so that high performance clusters can be built inexpensively. In addition,
the processors can be conveniently connected by industry standard network com-
ponents. For example, Fast Ethernet technology provides up to 100 Mega bits
per second of bandwidth with inexpensive Fast Ethernet adaptors and hubs.

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 38-52, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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Parallel to the development of inexpensive and standardized hardware com-
ponents for NOW, system software for programming on NOW is also advancing
rapidly. For example, the Message Passing Interface (MPI) library has evolved
into a standard for writing message-passing parallel codes [9,8,13]. An MPI pro-
grammer uses a standardized high-level programming interface to exchange in-
formation among processes, instead of native machine-specific communication
libraries. An MPI programmer can write highly portable parallel codes and run
them on any parallel machine (including network of workstation) that has MPI
implementation.

Most of the literature on cluster computing emphasizes on homogeneous clus-
ter — a cluster consisting of the same type of processors. However, we argue that
heterogeneity is one of the key issues that must be addressed in improving par-
allel performance of NOW. Firstly, it is always the case that one wishes to
connect as many processors as possible into a cluster to increase parallelism and
reduce execution time. Despite the increased computing power, the scheduling
management of such a heterogeneous network of workstation (HNOW) becomes
complicated since these processors will have different performances in computa-
tion and communication. Secondly, since most of the processors that are used to
build a cluster are commercially off-the-shelf products, they will very likely be
outdated by faster successors before they become unusable. Very often a cluster
consists of “leftovers” from the previous installation, and “new comers” that are
recently purchased. The issue of heterogeneity is both scientific and economic.

Every workstation cluster, be it homogeneous or heterogeneous, requires ef-
ficient collective communication [2]. For example, a barrier synchronization is
often placed between two successive phases of computation to make sure that all
processors finish the first phase before any can go to the next phase. In addition,
a scatter operation distributes input data from the source to all the other pro-
cessors for parallel processing, then a global reduction operation combines the
partial solutions obtained from individual processors into the final answer. The
efficiency of these collective communications will affect the overall performance,
sometimes dramatically.

Heterogeneity of a cluster complicates the design of efficient collective com-
munication protocols. When the processors send and receive messages at different
rates, it is difficult to synchronize them so that the message can arrive at the
right processor at the right time for maximum communication throughput. On
the other hand, in homogeneous NOW every processor requires the same amount
of time to transmit a message. For example, it is straightforward to implement
a broadcast operation as a series of sending and receiving messages, and in each
phase we double the number of processors that have received the broadcast mes-
sage. In a heterogeneous environment it is no longer clear how we should proceed
to complete the same task.

This paper shows that a simple heuristic called fastest-node-first (FNF), in-
troduced by Banikazemi et. al. [2], is very effective in designing broadcast proto-
cols for heterogeneous cluster systems. The fastest-node-first technique schedules
the processors to receive the broadcast in the order of their communication speed,
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that is, the faster node should be scheduled earlier. Despite the fact that the FNF
heuristic does not guarantee optimal broadcast time for every heterogeneous net-
work of workstations, we show that FNF does give near optimal broadcast time
when the communication time of any slower processor in the cluster is a multiple
of any faster processor. Based on this result, we show that FNF is actually an
approximation algorithm that guarantees a broadcast time within 27"+ 3, where
T is the optimal broadcast time and § is the maximum difference between two
processors. This improves over the previous bound 2aT + 3 [17] where « is the
maximum ratio between receiving and sending costs, and can be arbitrarily large
theoretically. In a previous paper [19] we show a similar result for a communi-
cation model where the communication cost is determined by the sender only.
This paper shows that FNF can still achieve guaranteed performance when the
model determines the communication costs based on both the sender and the
receiver.

We also conduct experiments on the performance of the fastest-node-first
technique. The cluster we construct in our simulation consists of three types of
processors, and the number of nodes is 100. We construct the schedules from a
random selection and FNF, and apply them on the heterogeneous cluster model.
Experimental results indicate that FNF gives superior performance over random
selection, for up to 2 times of throughput.

The rest of the paper is organized as follows: Section 2 describes the com-
munication model in our treatment of broadcast problem in HNOW. Section 3
describes the fastest-node-first heuristic for broadcast in HNOW. Section 4 gives
the theoretical results for broadcast. Section 5 describe the experimental results
that we compare the completion time of our heuristics(FNF) with the random-
select algorithms, and Section 6 concludes.

2 Communication Model

There have been two classes of models for collective communication in homo-
geneous cluster environments. The first group of models assumes that all the
processors are fully connected. As a result it takes the same amount of time for
a processor to send a message to any other processor. For example, both the
Postal model [5] and LogP model [15] use a set of parameters to capture the
communication costs. In addition the Postal and LogP model assume that the
sender can engage in other activities after a fixed startup cost, during which
the sender injects the message into the network and is ready for the next mes-
sage. Optimal broadcast scheduling for these homogeneous models can be found
in [5,15]. The second group of models assume that the processors are connected
by an arbitrary network. It has been shown that even when every edge has a
unit communication cost (denoted as the Telephone model), finding an opti-
mal broadcast schedule remains NP-hard [10]. Efficient algorithms and network
topologies for other similar problems related to broadcast, including multiple
broadcast, gossiping and reduction, can be found in [7,11,12,14,18,21,22,23].
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Various models for heterogeneous environments have also been proposed in
the literature. Bar-Nod et al. introduced a heterogeneous postal model [4] in
which the communication costs among links are not uniform. In addition, the
sender may engage another communication before the current one is finished,
just like homogeneous postal and LogP model. An approximation algorithm for
multicast is given, with a competitive ratio logk where k is the number of destina-
tion of the multicast [4]. Banikazemi et al. [2] proposed a simple model in which
the heterogeneity among processors is characterized by the speed of sending pro-
cessors, and show that a broadcast technique called fastest-node-first works well
in practice. We will refer to this model as the sender-only model. Based on the
sender-only model, an approximation algorithm for reduction with competitive
ratio 2 is reported in [20], and the fastest- node-first technique is shown to be
also 2-competitive [19]. Despite the fact that the sender-only model is simple
and has a high level abstraction of network topology, the speed of the receiving
processor is not accounted for. In a refined model proposed by Banikazemi et al.
[3], communication overheads consists of both sending and receiving time, which
we will refer to as the sender-receiver model. For the sender-receiver model the
same fastest- node-first is proven (Libeskind-Hadas and Hartline [17]) to have
a total time of no more than 2aT + 3, where « is the maximum ratio between
receiving and sending time, 3 is the maximum difference between two receiving
time, and 7 is the optimal time. We adopt the sender- receiver model in this pa-
per and improve this bound to 27"+ S. Other models for heterogeneous clusters
include [6,16].

2.1 Model Definition

The model is defined as follows: A heterogeneous cluster is defined as a collection
of processors pg, 01, ---, Pn—1, €ach capable of point-to-point communication with
any other processor in the cluster. Each processor is characterized by its speed
of sending and receiving messages, and the network is characterized by the speed
to route a message from the source to the destination. Formally, we define the
sending time of a processor p, denoted by s(p), to be the time it needs for p
to send a unit of message into the network. The network is characterized by
its latency L, which is the time for the message to go from its source to its
destination. Finally we define the receiving time of a processor p, denoted by
r(p), to be the time it takes for p to retrieve the message from the network
interface. We further assume that the processor speed is consistent, that is, if
a processor p can send messages faster than another processor ¢, it can also
receive the messages faster. Formally we assume that for two processors p and
g, s(p) < s(g) if and only if r(p) < r(q).

The communication model dictates that the sender and receiver processors
cannot engage in multiple message transmissions simultaneously. That is, a
sender processor must complete its data transmission to the network before
sending the next message, that is, a processor can only inject messages into the
network at an interval specified by its sending time. This restriction is due to
the fact that processor and communication networks have limited bandwidth,
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therefore we would like to exclude from our model the unrealistic algorithm that
a processor simply sends the broadcast message to all the other processors simul-
taneously. Similarly, the model prohibits the simultaneous receiving of multiple
messages by any processor.

o o]
pl |1. ripl)
.

Fig. 1. A broadcast send-receive communication model.

2.2 Broadcast Problem Description

We consider an example with two fast processors pg, and p;, and one slow pro-
cessor pz. The fast processors have sending time 1 and receiving time 2, the slow
processor has sending time 2 and receiving time 3, and the network latency L is
1. We assume that pg is the source and that it sends a message to ps at time 0.
The message enters the network at time 1 since s{pp) is 1, and leaves the network
at time 1 + L = 2, and is received by ps at time 2 + r(p2) = 5. After sending a
message into the network at time 1, pg can immediately send another message
to p1 and inject it into the network at time 1+ s(po) = 2. The message is finally
received by p; at time 2+ L + r(p1) = 5. See Figure 1 for an illustration.

2.3 Simplified Model Description

We can simplify the model as follows: Since a receiving node p always has to wait
for L + r(p) time steps before it actually receives the message, we can add the
network latency L into the receiving time. The processor ps therefore receives
its message at time s(po) + r(p2) =1+ 4 =5, and p; receives its message from
po at time 2s(po) + r(p1) = 5. See Figure 2 for an illustration.

Assume that a processor ¢ sends a message to the other processor p at time
t, then p becomes ready to receive at time t + s{q), since p now can start re-
ceiving the message, and we denote the ready to receive time of p by R(p).
At time t + s(q) + r(p) p becomes ready to send because it can start sending
its own message now, and we use S(p) to denote the ready to send time of p.
That is, a processor p can finish sending messages into the network at time
S(p) + s(p), S(p) + 2s(p), ..., S(p) + ¢ * s(p), where i is a positive integer, until
the broadcast is finished.
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Fig. 2. A simplified send-receive communication model.

3 Fastest-Node-First Technique

It is difficult to find the optimal broadcast tree that minimizes the total broadcast
time in a heterogeneous cluster, therefore a simple heuristic called fastest-node-
first (FNF) is proposed in [2] to find a reasonably good broadcast schedule for
the original sender-only heterogeneous model [2].

3.1 Fastest-Node-First Scheduling for Broadcast

The FNF heuristic works as follows: In each iteration the algorithm chooses
a sender from the set of processors that have received the broadcast message
(denoted by A), and a receiver from the set that have not (denoted by B). The
algorithm picks the sender s from A because, as the chosen one, it can inject the
message into the network as early as possible. The algorithm then chooses the
fastest processor in B as the destination of s. After the assignment,  is moved
from B to A and the algorithm iterates to find the next sender/receiver pair.
Note that this same technique can be applied to both models — the sender only
and the sender-receiver heterogeneous models — since we assume that the sending
and receiving times are consistent among processors. The intuition behind this
heuristic is that, by sending the message to those fast processors first, it is likely
that the messages will propagate more rapidly.

The fastest-node-first technique is very effective in reducing broadcast
time [2,17,19]. The FNF has been shown in simulation to have a high probability
to find the optimal broadcast time when the transmission time is randomly cho-
sen from a given table [2]. The FNF technique also delivers good communication
efficiency in actual experiments. In addition, FNF is simple to implement and
easy to compute.

3.2 FNF Not Guarantee Optimal Broadcast Time

Despite its efficiency in scheduling broadcast in heterogeneous systems, the FNF
heuristic does not guarantee optimal broadcast time [2,6] in sender-only model.
Since the sender-only model is a special case of the sender-receiver model, FNF
is not optimal in the sender-receiver model either. For example, in the situation
of Figure 1 FNF will not achieve optimal time, as Figure 3 indicates.
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Fig. 3. A counterexample that FNF always produces the optimal broadcast time since
the fast processor pg sends message to the faster p; first, instead of the slower po.

4 Theoretical Results

Despite the fact that FNF cannot guarantee optimal broadcast time, we show
that FNF is optimal in some special cases of heterogeneous clusters. Based on
the results of these special cases, we show that the fastest-node-first algorithm
produces a schedule with guaranteed performance.

Theorem 1. /2]

There exists an optimal schedule in which all processors sends messages with-
out delay. That is, for allprocessor p in T, starting from its ready to send time,
p repeatedly sends a message with a period of its sending time until the broadcast
ends.

With Theorem 1, we can simply discard those schedules that will delay mes-
sages, and still find the optimal one. Since there is no delay, we can characterize
a schedule as a sequence of processors sorted in their ready to receive time. Since
no delay is allowed, any scheduling method must schedule s, the processor in A
that could have completed the sending at the earliest time, to send a message
immediately. Formally we define P = (pg, ..., pn—1) to be a sequence of n pro-
cessors sorted in their ready to receive time and the processors appear in P in
non-decreasing sending speed, except for the source sy. The total broadcast
time of P (denoted by T(P)) is by definition max?z_ll S(p;), the latest ready to
send time among all the processors'. A broadcast sequence P is optimal if and
only if for any other permutation of P (denoted by P'), T(P) < T(P’).

Let p be a processor and NSp(p,t) be the number of messages successfully
sent at and before time ¢ by p in the sequence P. Formally, NSp(p,t) = Lt;a()p ) IE
fort > S(p). We can define ready to receive time R(p;) and ready to send time
S(p;) recursively (Eqn. 1). that is, the ready to receive time of the i-th processor
in P is the earliest time when the total number of messages sent by the first : -1
processors reaches i.

! Note that the processor that has the latest ready to receive time may not have the
latest ready to send time.



An Approximation Algorithm for Broadcast Scheduling 45

R(po) =0 and S(po) =0

i—1
R(p;) =min{t| > NSp(pj;,t) > i}, 1<i<n-—1
=0
S(pi) = R(pi) +r(pi), 1<i<n-—1 (1)

4.1 Power 2 Clusters

In this section we consider a special case of heterogeneous clusters in which all
the sending and receiving costs are power of 2, and we refer to such clusters as
power 2 clusters [19]. Similar notation is also used in [17]. We show that FNF
technique does guarantee minimum ready to receive time for the last processor
receiving the broadcast message in a power 2 cluster, and this is the foundation
of our competitive ratio analysis.

Henceforth we will focus on minimizing the ready to receive time of the
last processor in a sequence P = (pg, ..., Pn—1), Which is denoted as TR(P) =
R(pn—1). We will later relate our finding with the latest ready to send time
among all the processors, denoted by T'S(P) = max}_; S(p;), which is the time
the broadcast actually takes. We choose this approach since TR(P) is much
easier to handle in our mathematical analysis than TS(P).

We first establish a lemma that it is always possible to switch a processor p
with a slower processor g that became ready to receive right ahead of p (with
the exception that ¢ is the source) so that p and ¢ will contribute more on the
NS function after the switch. We then use an induction to show that this mod-
ification will not increase the ready to receive time of the processors thereafter,
including the last one in the sequence. This leads to the optimality of FNF for
the last ready to receive time in a power 2 cluster.

Lemma 1. Let p be a first faster processor that became ready to receive right
after a slower processor q in a sequence P, thatis, R(p) =t1 > R(q) = to, and
s(p) < s(q). By switching p with q in P we obtain a new sequence P’. Then, in
this new sequence P’, R(p) is moved forward from t1 to ty, and R(q) isdelayed
fromtg to no later than t1, and NSp:(p,t)+NSp:(q,t) > NSp(p,t)+ NSp(q,t),
for t > tg.

Proof. Let’s consider the time interval from ¢y to ¢;. Since p is the first faster
processor that becomes ready to receive right after a slower processor g, no
processor becomes ready to receive between to and #;. Since, in P/, p is moved
to ¢'s position in P, p has R(p) = to. As p is faster in sending and receiving, ¢
becomes ready at or before ¢; from Equation 1. For our purpose we will assume
that ¢ becomes ready to receive at time £; since if the time is earlier, it is more
likely that N.Sp:(p, t) + NSpi(g,t) > NSP( ,t) + NSp(q,t), for t > to.

Let d = t; — to. Since all the ready to receive time is integer, d is at least
1. Tt is easy to see that when d is larger, NSp/(p,t) + NSp/(g,t) is more likely
to be larger than NSg(p,t) + NSg(q,t), when t > tg. In fact, from p’s point of
view, when the sequence changes from P to P/, the N.S(p) increases between
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Fig. 4. An illustration that the NS function in P and P’.The black squares indicate
where the NS function increases by 1. Note that the NS function in P’ is no less than
in P for all time later than to. In this example 7(p) = r(q) = 4, s(p) = 2, s(q) = 4, and
d=1.

L?‘iﬁj and [%ﬂ, but the decrease in N.S(g) is only between l.ﬁf;“)J and [%1)]'
The increase in N.S(p) is larger than the decrease in NS(g) when d is sufficiently
large, since s(g) is at least twice as large as s{p). In addition, r(p) is no larger
than r(q), and that means N S(p) increases earlier than the decrease of NS(q).
Therefore, by moving p further ahead in time, it becomes easier for the increase
of the NS function from p to compensate the decrease of the NS function from
g, when the sequence changes from P to P’. Therefore it suffices to consider the
worst case when d = 1.

Let us consider the change of NS function from ¢’s point of view. g is delayed
by only one time step, so NSs(q) is at most greater than N.Sg/(g) by 1, which
only happens at time interval [to +7(q) + ks(q), to +r(q) + ks(g) + 1), where k is
a positive integer, r(qg) is the receiving time of ¢, and s(g) is the sending time of
q. See Figure 4 for an illustration. However, during this interval N Sp/(p) will be
larger than N Sp(p) by one since s(g) is a multiple of s(p), and r(g) is a multiple
of r(p) due to speed consistency. This increase compensates the decrease due to
q and the Lemma follows.

After establishing the effects of exchanging the two processors on the NS
function, we argue that the ready to receive time of the processors after p and ¢
will not be delayed from P to P’. We prove this statement by an induction and
the following lemma serves as the induction base:

Lemma 2. Let p and q bethe (j — 1)** and j** processor in P, then the ready
to receive time of pj+1 in P' is no later than in P.

Proof. The lemma follows from Lemma 1 and the fact that the ready to receive
time of the first j + 1 processors in the sequence is not changed, except for p and
g. Here we use the subscript to indicate whether the NS function is defined on
P or P, and for ease of notation we remove the same second parameter ¢ from
all occurrences of NS functions.



An Approximation Algorithm for Broadcast Scheduling 47

Rp(pj+1) = min{¢| g NSp/(p) 2 j+1}
- min{tl(j_i: NSpi(p) + NSp (p) + NSpr(a) 2 j +1)
_ min{tl(g NSp(p)) + NSpi(p) + NSp(a) 2 5+ 1}
< winftl(S" NSp(p0) + NS»(0) + NSn(a) > 7 1)
= RP(pj+l1:)0

Lemma 3. The ready to receive time of py in P’ is no later than in P, for
j+1<l<n-—1.

Proof. We complete the proof by the induction step. Assume that the ready to
receive time of p;+m in P’ is no later than in P, for 1 < m < n—j—1. Again for
ease of notation, we remove the same second parameter ¢ from all occurrences
of NS functions.

Rp/(Pjtm+1)

= min{¢| ii_s:NSp/(pl) >j+m+1}

= min{tl((j—i: NSpi(p)) + NSp(p) + NSp:(q) + 121 NSpi(p)) > j+m+1}
< min{tl((]g NSp(p)) + NSp(p) + NSp(q) + ljii NSp/(p)) 2 j+m+1}
< min{t[((ji NSp(p)) + NSp(p) + NSp(q) + Jin NSp(p)) = j+m+1}

= RP(pj-Hrl:i) o

The second-to-the-last inequality follows from Lemma 1, and the last in-
equality follows from the induction hypothesis that all the processors from p;
to pj+m have earlier ready to receive time (hence earlier ready to send time) in
P’ than in P, so they will have larger NS function, and a smaller ¢ to satisfy
Equation 1. One immediate result from Lemma 2 and 3 is that for any processor
sequence of a power 2 cluster, including the optimal ones, the final ready to
receive time will never be increased by making the faster processors ready to
receive earlier than slower ones. Now we have the following theorem:
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Theorem 2. The fastest-node-first algorithm gives optimal final ready to receive
time for a power 2 cluster.

4.2 An Approximation Algorithm

We can use Theorem 2 to show that FNF is actually an approximation algorithm
of competitive ratio 2 for the final ready to receive time. By increasing the
transmission time of processors, we can transform any heterogeneous cluster into
a power 2 cluster. We increase the sending and receiving time of each processor
p to be 2110851 and 208 7(P)] respectively. We will show that FNF, optimal for
the transformed cluster, also gives a schedule at most twice that of the optimal
final ready to receive time for the original cluster.

Theorem 3. The fastest-node-first scheduling has a final ready to receive time
no greater than twice that of the optimal final ready to receive time.

Proof. Let P be a sequence that gives optimal final ready to receive time for
a heterogeneous cluster C, and C’ be the power 2 cluster transformed from C.
We apply the same sequence P on C and C' and let T and 7" be the final
ready to receive time TR respectively, that is, before and after the power 2
cluster transformation. We argue that this increase in transmission time will at
most double the 7R, that is, 7’ < 27 This is achieved by an induction on the
processor index ¢. We argue that p;, which is ready to receive at time R(p;) for
C, becomes ready to receive no later then 2R(p;) for C’. The induction step
follows from the fact that all the previous p; for j < 4, become ready no later
than 2R(p;) for C’, and that both the sending time of the previousp;, j < 1,
and the receiving time of p; are, at most doubled from C to C".

Now we apply FNF scheduling on C’ and let T” be the resulting final ready
to receive time. Since C' is a power 2 cluster, it follows from Theorem 2 that T
is no more than 7”. Finally, we apply the same FNF scheduling on C and let T*
be the resulting final ready to receive time. T* should be no more than T" since
the sending and receiving times of each corresponding processor are higher in
C’ than in C. As aresult T* is no greater than 7", which in turn is no greater
than 77, which in turn is no more than 27.

Theorem 4. The total broadcast time from fast-node-first technique is at most
2T + 3, where T is the optimal total broadcast time, and 8 is max{r(p;)} —

2min{r(p;)}.

Proof. Let P be an optimal schedule in total broadcast time. Let p be the
last processor that became ready to receive in P. As a result the optimal to-
tal broadcast time T is at least Rp(p) + r(p). Let p’ be the last processor
that became ready to receive according to FNF. From Theorem 3 we have
Rp:(p') < 2Rp(p). Note that this inequality holds when P is any sched-
ule, and not necessarily the optimal schedule for the final ready to receive
time. The total broadcast time using FNF is Rp/(p’) + 7(p’), which is at most
2Rp(p) +r(p') = 2Rp(p) + 2r(p) +r(p) — 2r(p) < 2T + 6.
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S Experimental Results

This section describes the experimental results and compare the completion
times of our heuristics (FNF) with those of a random-selection algorithm and
a trivial lower bound. The experimental results indicate that FNF outperforms
the random-selection algorithm by a factor of 2 in average, and is not very far
away from the lower bound.

5.1 Experimental Environment

The input cluster configurations for our experiments are generated as follow: We
assume that the number of classes in a cluster is 3. We vary the cluster size
from 6 to 100, and set one third of the nodes to be fast processors, one third to
be normal processors, and the others to be slow processors. For each processor
in the same class, we assign the same sending time and receiving cost to it, that
is, each node in the fast processor group has sending time 1 and receiving time
2, the sending and receiving time for normal processors are 5 and 6 respectively,
finally the time for slow processors are 10 and 11.

We compare the results from FNF and random selection. We repeat the ex-
periments for random-selection algorithm for 200 times and compute the average
broadcast time. On the other hand since FNF is a deterministic algorithm, for
each cluster size we test the FNF algorithm for only once.

5.2 FNF Heuristics and Random-Select Algorithm

We describe our implementation of FNF as follows: The program uses an array
to represent the set of processors that have not yet received broadcast message
(denoted by R-set), and a priority queue for the set of processors that have
received the broadcast message (denoted by S-set). The elements in the R-set
array are sorted according to their communication speed, and the elements in
the S-set are ordered so that the processor that could send out the next message
fastest has the highest priority. In other words, the processors in the S-set are
sorted according to their availability in time. Initially the S-set has the broadcast
source and the R-set is empty, and the simulation time is set to zero. The priority
queue design simplifies and speeds up the simulation, since the simulator can be
driven by events, not by time.

In each iteration we check if all nodes have received the broadcast message.
If this is not the case then we will schedule the next message. We pick the next
sender (with the highest priority) from the S-set priority queue, and the receiver
that has the minimum receiving time from the R-set. After choosing the sender
and the receiver, we calculate the updated available time for the sender and new
available time for the receiver, and place them into the S-Set (the chosen receiver
is therefore removed from the R-set). At the end the R-set will be empty and
the ready-to-send time of the last receiver is the total broadcast time. Figure 5
gives an example of a broadcast scheduling among 6 node.
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Fig. 5. The example of FNF algorithm under 6 node case.

We now describe the random-selection algorithm. Due to the random nature
of'this algorithm, we will not need to maintain any priority queue or sorted array.
We randomly choose a sender from the S-set and a receiver from the R-set for
the next message. We repeatedly schedule the transmission until all processors
receive the message. The average time for the last receiver to receive its messages
is the time that we are interested in.

5.3 Timing Comparison

Figure 6 shows the experimental results. The completion time of FNF is about
half of the average time of random-selection algorithm.

Fig. 6. The comparison of two scheduling algorithms.

We also give a lower bound on the optimal communication time for our
experimental cluster. No matter how the processors are scheduled, the broadcast
source must spend at least one unit of time to send the message, and a slow
destination processor must at least spend eleven units of time to receive the
message. As a result, the lower bound is at least 12 Figure 6 shows that the total
time of FNF is no more than twice that of the lower bound in our experiments.

From our experiments, we observed that it is almost impossible to find a single
case from 200 times of random-selection that gives a better broadcast time than
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the FNF algorithm. In addition, the broadcast time of the FNF algorithm might
be very close to optimal since our lower bound estimate is very rough. These
timing results also indicate that the completion time grows very slowly when the
size of the cluster increases, even when the cluster has up to 100 processors. Our
experimental results are consistent with those obtained by previous theoretical
sections. In addition, the FNF schedule is very easy to compute and efficient to
use.

6 Conclusion

FNF is a very useful technique in reducing broadcast time. In a previous paper
we show that FNF gives a broadcast schedule at most twice that of the optimal
time for the sender-only communication model[19]. For a more realistic sender-
receiver model adapted by this paper, we show that FNF gives a broadcast
schedule at most twice that of the optimal time plus a constant. This improves
over the previous bound by a performance ratio factor. In practice this factor is
bounded by 1.85 [17], but could be unbounded theoretically.

We also describe the experimental results in which we compare the com-
pletion time of our heuristics (FNF) with a random-selection algorithm. The
experimental results indicate that FNF outperforms the random-selection algo-
rithm by a factor of 2 in average. In addition, we also compare the timing results
of FNF with a very roughly estimated lower bound, and FNF always gives a total
broadcast time within twice of the lower bound.

There are many research issues open for investigation. For example, it will
be interesting to extend this technique to other communication protocols, in-
cluding reduction and all-to-all communication. For example, we showed that
for reduction there is a technique called “slowest-node-first” [20] that also guar-
antees 2-competitiveness in sender-only model. It would be interesting to extend
the result to the sender-receiver model, as we did for broadcasting in this paper.
In addition, it will be worthwhile to investigate the possibility to extend the
analysis to similar protocols like parallel prefix, all-to-all reduction, or all-to-all
broadcasting. These questions are very fundamental in designing collective com-
munication protocols in heterogeneous clusters, and will certainly be the focus
of further investigations in this area.
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Abstract. This paper addresses the problem of scheduling real-time
jobs that have multiple feasible intervals. The problem is NP-hard. We
present an optimal branch-and-bound algorithm. When there is time
to compute the schedule, this algorithm can be used. Otherwise, the
simple heuristics presented here can be used. In addition, a priority-
boosting EDF algorithm is designed to enhance the timeliness of jobs.
Simulation results show that the combined use of the heuristics and the
priority boosting EDF algorithm performs nearly as well as the optimal
algorithm.

1 Introduction

In some real-time applications, a job may have more than one feasible interval.
Such ajob can be scheduled to begin its execution in any of its feasible intervals.
It is said to complete in time if the job completes by the end of the interval. If the
job remains incomplete at the end of the interval, the scheduler terminates the
job, and the partial work done by the job is lost. The scheduler then schedules
the job to execute from the start in a later feasible interval. The job misses its
deadline if it remains incomplete by the end of its latest feasible interval.

An example of such an application is missile jamming. A missile jamming
system tries to intercept each cruise missile before it hits its target by jamming
the missile’s guidance system. In general, a cruise missile flies for a long distance
and may pass several jamming-prohibited areas, such as metropolitan areas,
before reaching its target. Destroying the missile’s guidance system close to such
an area may cause unacceptably large collateral damages. Hence, the missile can
be jammed only before or after it flies over these areas. The time intervals when
the missile is not over or close to any jamming-prohibited area are the feasible
intervals of the job. The starts and ends of the intervals are either known a prior
or can be estimated from past information. The jamming job only needs to be
executed to completion once in one of its feasible intervals.

The optional jobs in the error-cumulative imprecise computation model stud-
ied by Choeng[1] are also examples of jobs with multiple feasible intervals. In the
imprecise computation model, a job consists of two parts: mandatory and op-
tional part. The mandatory part must complete by its deadline and the optional
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part can be skipped if there are not enough resources. Skipping the optional
part introduces error into the result produced by the job. In some real-time ap-
plications like radar tracking, the error from the incomplete optional parts of
jobs in a periodic task accumulates. The error-cumulative model introduces a
threshold for the cumulative error of the task. When the cumulative error be-
comes greater than the threshold, the task fails. (In a radar tracking system,
the system may lost the tracked target if the cumulative error becomes greater
than a given threshold.) To confine the error within the threshold, the optional
part must execute completely at least once in every predetermined number N of
periods. We can view the optional part of one job in N periods as a job with N
feasible intervals, which are intervals left over after the mandatory parts of the
jobs complete. As long as the job with N feasible intervals completes in time,
the error of the periodic task is under the allowed threshold.

Our model resembles real-time workload models that allow some jobs to be
skipped. Examples of these models are the skip-over model [2], reward-based
model [3], (error-cumulative) imprecise computation model [1,4], and (m,k)-firm
guarantee model [5]. However, these models are concerned with periodic tasks.
The relative deadlines of (optional) jobs in all periods of a task are the same.
Optional jobs are not required to complete in some of these models: These jobs
can be terminated at any time or discarded entirely and produce results with
different levels of precision. In contrast, our model assumes that the length of
feasible intervals (i.e., the relative deadlines) are arbitrary. This factor introduces
another dimension of complexity. In addition, jobs are not optional: Each job
must execute from start to completion in one of its feasible intervals, and the
job fails to meet its timing requirement if it does not complete by the end of its
latest feasible interval.

This paper presents an exponential optimal algorithm and several simple
heuristics for finding a feasible schedule for jobs with multiple feasible intervals.
The optimal algorithm uses the branch and bound approach to reduce the time
required for finding a feasible schedule for a given job set. This algorithm is
optimal in the sense that there is no feasible schedule if the algorithm cannot
find one. These heuristics are extensions of traditional bin-packing heuristics:
First Fit Decreasing (FFD), Last Fit Decreasing (LFD), Best Fit Decreasing
(BFD), and Worst Fit Decreasing (WFD).

The paper also presents a priority-boosting EDF algorithm that is designed to
enhance the timeliness ofjobs. The algorithm makes use of the result produced by
the optimal algorithm or a heuristic algorithm, which is the selection of a feasible
interval for each job that is schedulable. According to the priority-boosting EDF
algorithm, jobs are prioritized based on (1) the feasible interval selected for each
job and (2) job deadlines: The closer the selected feasible interval of ajob is to the
scheduling time, the higher priority of the job. The heuristics and the priority-
boosting algorithm are evaluated by extensive simulations. The performances
are compared against that of the optimal algorithm.

Following this introduction, Section 2 describes the task model and defines
the terms used here. The section also states the problems of scheduling jobs with
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multiple feasible intervals. Section 3 presents an exponential optimal algorithm,
several polynomial-time heuristics, and the priority-boosting EDF algorithm.
Section 4 evaluates the heuristics and the combined use of the heuristics and the
priority-boosting EDF algorithm. Finally, Section 5 summarizes the paper.

2 Formal Models and Problem Statements

Thus far, and in our subsequent discussion, we use the term job as it is commonly
used in real-time systems literature [6,7,8]: A job is an instance of computation,
or the transmission of a data packet, or the retrieval of a file, and so on. We
focus here on scheduling jobs and call the jobs Jy, J2, and so on.

Multiple Feasible Interval Jobs. Each multiple feasible interval job is char-
acterized by its temporal parameters including its execution time, release time,
and a set of feasible intervals. The execution time, denoted by e, is the amount
of time required to complete the execution of the job when it executes alone
and has all the resources it requires. Throughout our discussion, we assume that
for the purpose of determining whether each job can complete by its deadline,
knowing its worst case execution time (WCET) is sufficient. By the execution
time of a job, we mean its WCET.

The release time of ajob, denoted by r, is the instant of time at which the job
becomes known to the scheduler. A job is said to be eligible in the time interval
from its release time to the instant when the job completes.

Associated with each job is a set of disjoint time intervals, called feasible
intervals. The earliest feasible interval of a job begins at or after its release time.
The job can be scheduled and executed only in its feasible intervals. Once a
job begins to execute in a feasible interval, it must complete by the end of the
interval in order to produce a correct result. The scheduler may terminate the
job (and the partial work done by the job is lost) if the job remains incomplete
at the end of the interval. In that case, the scheduler will reschedule the job to
execute from the start in a later feasible interval of the job if such an interval
exists. In this paper, we assume that the scheduler always terminates the job at
the end of its feasible interval if it remains incomplete at the time, regardless
whether it has a later feasible interval or not.

We denote each feasible interval by FI = (L, R] where L and R represents
the start time and end time of the interval, respectively. We use FI; ; to denote
the j-th feasible interval of job J;. The set of feasible intervals of job J; is denoted
by FY; = {FI;),Flps,..., F; o)} where n(i) is the number of feasible intervals
ofjob J; and intervals in the set are indexed in ascending order of their start
times. We represent a multiple feasible interval job .J; by J; = (r;,e;, FI;). We
focus on this kind of jobs. Hereafter, we omit “multiple feasible interval” as long
as there is no ambiguity.

Figure 1 shows an example. Each box above a time line represents a feasible
interval. In this example, job J; has only one feasible interval; job .J, has two
feasible intervals; and job Js and J4 have three feasible intervals. Traditional
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J = {Ji.Ja Js Ju}
Jr=(0,1.5, {(0,5]})
J2 = (2,2, {(2,6],(7,101})
Jy= (0,2, {(0,3.5], (5, 10], (14, 20]})
Jy = (0,3,{(0,4.5],(5,10],(12,18]})
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Fig. 1. Example of multiple feasible interval jobs

real-time workload models consider only jobs exemplified by job J;. At any time
t, the term current feasible interval of a job refers to the interval which begins
before ¢t and ends after or at t. Clearly, a job may not have a current feasible
interval at t.

The absolute deadline of a job is the instant of time by which its execution
is required to be completed. For a multiple feasible interval job, we can consider
the end time of each feasible interval as an absolute deadline of that job. In
other words, a job with n(¢) feasible intervals has n(¢) absolute deadlines. By
the absolute deadline of a job at time ¢, we mean the end time of the current
feasible interval of the job if the job has current feasible interval at time ¢. The
deadline of a job at ¢ is infinite if the job does not have current feasible interval
at t. Hereafter, we use the term deadline to mean absolute deadline and denote
it by d.

System workload, denoted by u(t), is the total instantaneous utilization of
eligible jobs in the system at time ¢. The instantaneous utilization of a multiple
feasible interval job at time ¢ is equal to its execution time divided by the length
of its current feasible interval if it has current feasible interval at time ¢. The
instantaneous utilization of the job is zero if it does not have a current feasible
interval.

We call a failed attempt to complete the execution of a job in one of its
feasible intervals a deadline miss. More precisely, a deadline miss occurs at the
end of a feasible interval if a job executes in the feasible interval and remains
incomplete at that time. The following definition states the timing constraint of
a job with multiple feasible intervals.
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Definition 1 (In-Time Completion).

An execution of a job J completes in time if and only if there is no deadline
miss between the time when it starts and the time when it completes. A job J
meets its timing constraint, or simply that it completes in time, if and only if
one of its execution completes in time.

When every job only has one feasible interval, Definition 2.1 is same as the
traditional definition of in-time completion.

Problem Formulation. The problem of scheduling jobs with multiple feasible
intervals can be divided into two problems: feasible interval selection and job
scheduling. Since each job must be executed entirely in one of its feasible inter-
vals, the scheduler may first choose for the job an interval among all the feasible
intervals of the job. The feasible interval selection problem is concerned with
how to make this selection. At any time in a system containing jobs with mul-
tiple feasible intervals, eligible jobs may or may not be in their selected feasible
intervals and all eligible jobs compete for the same resources. The job scheduling
problem is concerned with how to schedule these jobs if the scheduler aims to
achieve other performance goals in addition to ensuring the in-time completion
of every job.
These problems are stated more formally below.

1. Feasible Interval Selection: Given a set of multiple feasible interval jobs,
J ={J,Js,...,Jp}, we want to find a feasible interval F'I; € FI; for each
job J; such that all jobs can meet their real-time requirements defined by
Definition 2.1 when every job executes only in its selected feasible interval.
We refer to such a set of selected intervals collectively as a feasible (interval)
selection.

2. Multiple Feasible Interval Job Scheduling: Given a set of multiple-feasible
interval jobs, J = {J1, J2, ..., Jm}, and the selected feasible interval FI; for
each job J;, we want to schedule these jobs so that they all complete in-time
and their response times are small.

If scheduling is done off-line or the release times of all jobs are identical,
the timing parameters of all jobs are known when the scheduler selects feasible
intervals for them. For this case, we seek a branch-and-bound optimal algorithm
for use when there is time to search for a feasible selection and simple heuristics
for use when there is little time to do search for a selection. In general, the jobs
are not released at the same time or the timing parameters are not available
until the jobs are released. In this case, the branch-and-bound feasible interval
selection algorithm is not suitable. The heuristics are simple enough for use
repeatedly when jobs are released.

In our subsequent discussion, we assume that the jobs are to be executed on
a single processor. Since the preemptive EDF algorithm is known to be optimal
for uniprocessor scheduling, we assume that the scheduler uses this algorithm.
This simplifying assumption can be easily removed by including a schedulability

analysis algorithm that is appropriate for the scheduling scheme used by the
system.
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3 Algorithms

In this section, we first show that the problem of selecting a feasible interval for
every job in a set of multiple feasible interval jobs so that all jobs complete in
time is NP-hard. We then present an exponential optimal algorithm that chooses
a feasible intervals for each job in the job set whenever the job set is schedulable
and a set of heuristics that attempt to find feasible intervals in polynomial time.
Finally, we present an EDF-based algorithm for scheduling the jobs after feasible
intervals have been selected for them.

3.1 NP-Hardness

The following theorem states that finding a feasible schedule for a set of multiple
feasible interval jobs is NP-hard.

Theorem 3.1. Finding a feasible schedule for a set of multiple feasible interval
jobs when timing parameters of the jobs are all known is NP-hard.

Proof. We prove the theorem by showing that a restricted version of this problem
is as hard as the bin-packing problem [9], a NP-complete problem. To do so,
consider a set of multiple feasible interval jobs J = {J1, Ja, ..., Jar}. The sets
of feasible intervals for all jobs are identical, i.e., FI; = FI, = ... = Fl,.
Moreover, the lengths of all feasible intervals are identical.

Each feasible interval can be considered as a bin in the bin-packing problem.
The length of each feasible interval is the bin capacity. Each job is an object
to be packed into a bin; the size of the object is the execution time of the job.
To complete all jobs selected to complete in an interval without any deadline
miss, the sum of execution times of the jobs in the interval must be no greater
than the length of the feasible interval. Clearly, the problem of finding a feasible
interval for each job such that every job can complete within its selected feasible
interval is as same as finding a bin for each object such that all objects can be
packed into the bins.

Since the restricted version of the problem of finding a feasible schedule of
multiple feasible interval jobs is a bin-packing problem, we can conclude that
the problem is as hard as a NP-complete problem. Hence, the problem is NP-
hard. O

3.2 Branch and Bound Algorithm

We now describe a branch-and-bound (BB) algorithm. It selects a feasible in-
terval for every job in the given set of jobs when all the jobs are schedulable or
declares the job set infeasible when some jobs in the set are not schedulable.
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Pruning Condition. The condition of pruning the search space is the schedu-
lability condition'. When analyzing the schedulability of a subset of jobs, the
BB algorithm checks whether the jobs in the subset are schedulable (i.e., they
have no deadline miss) when they are scheduled to execute in the EDF order
in their selected feasible intervals. A subset of jobs is said to be feasible if all
the jobs in the subset are schedulable and infeasible if otherwise. When a subset
of jobs is infeasible, the BB algorithm can eliminate all subsets containing the
infeasible subset. This obvious fact allows the BB algorithm to disregard parts
of the search tree.

Branch and Bound Strategy. Figure 2 shows the search tree for a job set
J of M jobs. Each node u in the tree is labeled with a M-tuple vector X. The
vector represents feasible interval selections for a subset of jobs. Specifically, the
i-th element of a vector X is either F'[;, or FI;; forsome j = 1,2,...,n(i).
The element being F'I; , means that a feasible interval has not yet been selected
for job J;. The element being FI; ; means that the j-th feasible interval of J; is
selected. The vector (F'I1 ., Fla,...,FIp ) labeling the root represents that
no feasible interval has been selected.

{Flia,Flya,....Flpd)

(FhiaFlye, .., Fina) b (Flyugy Flae, ..., Flae) Job Jy

(Pl Flag, Flaa,... . Flaa) V- (Flo, Flyngay Flae,. . Fluas) Job Ja

{Fhoa,Flag, Flig Flas, ..., Flsa) {Fh.l.ﬁ'h.].Fh_..(.\; ----- .F'J'M,.) Job Jy
(Fli, Flay,... Flua) ve (FT g1y Fla gz oo Flaenan) Job Jy

Fig. 2. Search Tree

On the first level of the tree, there are m(1) nodes. Each node represents a
different feasible interval selection for job J;. For a set J of M jobs, the length

' This condition can be considered as the lower bound in a branch-and-bound algo-
rithm: A solution is disregarded when its bound is greater than the lower bound.
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of the longest path from the root to a leaf node is M. The leaf nodes enumerate
all possible combinations of selected feasible intervals for jobs in the set J. (For
example, the vector labeling the leftmost leaf node indicates that the earliest
feasible interval of every job is selected for that job in the combination.)

The BB algorithm visits the search tree in the depth-first manner starting
from the root. When visiting node u, the algorithm checks if the schedule cor-
responding to X, (i.e., the schedule of jobs in the selected feasible intervals
represented by X,) is feasible. While conducting schedulability analysis, the
algorithm ignores the jobs whose feasible intervals are not yet selected. If the
schedule corresponding to X, is not feasible, the children of node u are not vis-
ited because none of the schedules corresponding to these nodes can be feasible.
Hence, the algorithm returns to the parent of node ». If the schedule correspond-
ing to X, is feasible, the algorithm continues visiting the children of node w if
there exists any. If node u is a leaf node, the algorithm stops and returns X, as
a feasible interval selection for the job set J. If none of the children of node «
has a feasible schedule and its parent is not the root, the algorithm returns to its
parent to consider other sibling nodes. Ifits parent is the root, the algorithm has
exhausted the search space; the algorithm stops and reports a failure of finding
a feasible schedule for the job set J.

Figure 3 shows the pseudo code of the branch-and-bound algorithm. Function
DFSCHECK performs a depth-first search starting from job J;, when given a com-
bination of feasible intervals that have been selected for .Ji, Jo, ..., Jy—1. Function
DFSCHECK selects one feasible interval at each iteration for job Ji. It selects
Jj-th feasible interval FIj ; where 1 < j < n(k) for job Ji on line 3 and analyzes
the schedulability of the job set {J1, ..., Ji} on line 4. Ifthe job set is infeasible,
it continues the next iteration. Otherwise, it continues to visits a child node. If
feasible intervals have been selected for all jobs, the function stops and returns
the selection on line 8. If not, it calls Function DFSCHECK to select a feasible
interval for job Jg41.

Function BRANCH_AND_BOUND_FISELECTION initializes the array of se-
lected feasible intervals and calls Function DFSCHECK to visit the search tree
starting from job J;. The function completes and returns the array of selected
feasible intervals produced by Function DFSCHECK if the array exists or declares
the given job set infeasible if the array does not exist.

3.3 Fewer Feasible Interval First (FFIF) Based Algorithm

We present in this section several heuristics that are extensions of traditional
bin-packing heuristics such as First Fit Decreasing (FFD), Last Fit Decreasing
(LFD), Best Fit Decreasing (BFD), and Worst Fit Decreasing (WFD) [9]. While
the feasible interval selection problem and the bin-packing problem are similar,
they are differ in many fundamental ways: Feasible intervals are not identical
in length. The feasible interval selected for each job must be from the feasible
interval set of the job. Different jobs may have different feasible intervals. These
factors make it necessary for us to extend the traditional bin-packing heuristics
so they can be used for feasible interval selection.
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DFSCHECK (SelectedF|, k)

Input. SelectedFl: the array of the indexes of selected feasible intervals.
k: select one feasible interval for job .Jj.

Output. SelectedFl: the array of selected feasible intervals.

for each feasible interval F'Iy ; of job Ji

1

2 do

3 Select. feasible interval FIy ; for job Ji;

i if {J1,..., Ji} is schedulable in their selected feasible intervals
5 then

6 if feasible intervals for all jobs are selected

7 then

8 Return SelectedFl;

9 else
10 Call DFSCHECK to select one feasible interval for Jiy1;
11 Return SelectedF| if the array exists;
12 end

13 Return NULL as no feasible schedule is founded;

BrANCH_AND_BoOUND_FISELECTION(FI|M])
Input. Fl: the array of feasible intervals for M jobs
Qutput. SelectedFl: the array of selected feasible intervals if exists.

1 Initialize the selection array;
2 Call DFSCHECK(SelectedFl, 1) to select the feasible interval for job Ji;
2 return SelectedFl or the declaration that the job set is not feasible;

Fig. 3. Optimal algorithm for selecting feasible intervals

Fewer Feasible Interval First (FFIF) Based Algorithms process the jobs in
non-descending order according to the number of feasible intervals. Intuitively,
the algorithms may have a better chance to find a feasible schedule of all jobs by
processing jobs having fewer feasible intervals first. This is the rationale behind
the FFIF-based algorithms. All FFIF-based algorithms sort all the eligible jobs
according to the numbers of their feasible intervals and process them in non-
descending order. Similar to the optimal algorithm, when checking whether a
job is schedulable in a feasible interval, the algorithms consider only the job
being processed and jobs for which feasible intervals have already been selected.

As stated earlier, the scheduler uses EDF algorithm. It is well known that all
jobs can be scheduled to complete by their deadlines if at any time ¢, the total
instantaneous utilization of all eligible jobs that are ready for execution is no
greater than 1 [10] (also Theorem 7.4 in [11]). To reduce the time complexity of
the heuristic algorithms, the scheduler uses this sufficient condition for schedu-
lability analysis. In other words, the scheduler checks the system workload w(t)
fort > 0 to determine whether this condition is met when deciding whether
a job is schedulable in a feasible interval. (More precisely, the scheduler checks
whether u(t) < 1 whenever the system workload changes.)
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The individual algorithms among the FFIF-based algorithms differ in their
selections of a feasible interval for each job. When selecting a feasible interval
for a job, FFIF-First Fit algorithm selects the first feasible interval of the job
in which the job is schedulable. In contrast, FFIF-Last Fit algorithm selects the
last feasible interval in which the job is schedulable. FFIF-First Fit algorithm
should work well when the system is lightly loaded and the release times of jobs
are generally fall apart. Choosing the first schedulable feasible interval allows
eligible jobs to complete before new jobs are released. However, when the system
is heavily loaded, FFIF-First Fit algorithm may not be able to find a feasible
schedule for jobs with fewer feasible intervals. FFIF-Last Fit algorithm generally
delays the executions of jobs if possible. In this case, a job that is released later
and has few feasible intervals is more likely to be schedulable when the system
is heavily loaded.

FFIF-First Fit and FFIF-Last Fit algorithm should work well when feasible
intervals of a job are similar in length. However, these two algorithms may not
work well when the job’s feasible intervals have dramatically different lengths.
FFIF-Best Fit and FFIF- Worst Fit algorithm take into account of this factor.
FFIF-Best Fit algorithm selects the feasible interval which has the largest max-
imal system workload. Specifically, the algorithm computes the maximal system
workload for each feasible interval of the job being processed, assuming that the
job is scheduled in the interval. Then, the algorithm selects the feasible inter-
val which produces the largest maximal system workload among all intervals in
which the job is schedulable. In contrast, FFIF-Worst Fit algorithm selects the
feasible interval during which the maximal system workload is the smallest and
in which the job is schedulable. Hence, FFIF-Worst Fit algorithm distributes
the system workload over the time line.

The time complexity of these four heuristics is O(nM?) where n is the maxi-
mum number of feasible intervals of a job and M is the number ofjobs in the job
set: The complexity of sorting the jobs is O(M log M). For each job, the sched-
uler checks if the system workload «(¢) is greater than 1 for ¢ > 0. In the worst
case, the scheduler has to check the system workload for M—1 time instants.
Hence, the time complexity of conducting the schedulability analysis for one job
is O(nM). The decision of selecting the feasible interval takes constant time.
Therefore, the time required to find a feasible interval for all jobs is O(nM?).
The complexity can be reduced to O(ndM log M) when a range tree is used to
speed up schedulability analysis.

Figure 4 gives an illustrative example. The given job set is the same as the
one given in Figure 1. Feasible intervals (0, 5], (7,10], and (14, 20] have already
been selected for job Jy, Jo, and Js, respectively. The system workload «(t) of
this schedule is shown as the solid line in Figure 4(a) and (b). Job Jy is the next
job to be processed. The dash line in Figure 4(b) shows the system workload if
job J, executes in one of these three intervals. FFIF-First Fit and FFIF-Last Fit
algorithm selects the first interval (0,4.5] and the last interval (12, 18] for job J4,
respectively. FFIF-Best Fit algorithm selects the first interval (0,4.5] because
its maximal system workload is less than 1 and is the largest. FFIF-Worst Fit
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(a) System workload for Jy, J2, and J3
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(b) System workload assuming J; executes in one of its feasible intervals

Fig. 4. FFIF-based algorithms

algorithm selects the last interval because its maximum system workload is the
smallest.

The optimal algorithm and four FFIF-based heuristics are better suited when
the release times of all jobs are identical or when scheduling is off-line. For on-
line scheduling, the scheduler may repeatedly apply such an algorithm as each
job is released on the new job and all the eligible jobs if the number of jobs
is small. Alternatively, it may process jobs in First-Come-First-Serve (FCFS)
order. Depending on the rule used to select a feasible interval for each job, we
have FCFS-First Fit, FCFS-Last fit, FCFS-Best Fit, and FCFS-Worst Fit.

3.4 Priority Boost EDF Algorithm

We now describe an algorithm, called Priority-Boosting EDF algorithm, that
makes use of the information on selected feasible intervals produced in the selec-
tion step to ensure the in-time completion of every job and to reduce the response
time of the job. One may question why not simply extend the EDF algorithm
a natural way: The scheduler considers each eligible job ready for execution in
each of the job’s feasible intervals and schedules all ready jobs on the EDF basis
based on the current deadlines of the jobs. In other words, the scheduler 