

LINUX KERNEL
IN A NUTSHELL

Other Linux resources from O’Reilly

Related titles Building Embedded Linux
Systems

Linux Device Drivers
Linux in a Nutshell
Linux Pocket Guide

Running Linux
Understanding Linux

Network Internals
Understanding the Linux

Kernel

Linux Books
Resource Center

linux.oreilly.com is a complete catalog of O’Reilly’s
books on Linux and Unix and related technologies, in-
cluding sample chapters and code examples.

Conferences O’Reilly brings diverse innovators together to nurture
the ideas that spark revolutionary industries. We spe-
cialize in documenting the latest tools and systems,
translating the innovator’s knowledge into useful skills
for those in the trenches. Visit conferences.oreilly.com
for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier on-
line reference library for programmers and IT
professionals. Conduct searches across more than
1,000 books. Subscribers can zero in on answers to
time-critical questions in a matter of seconds. Read the
books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

LINUX
KERNEL

IN A NUTSHELL

Greg Kroah-Hartman

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Linux Kernel in a Nutshell
by Greg Kroah-Hartman

Copyright © 2007 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com). For more information, contact
our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Adam Witwer
Copyeditor: Mary Anne Weeks Mayo
Proofreader: Adam Witwer

Indexer: Ellen Troutman
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and

Jessamyn Read

Printing History:

December 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly Media, Inc. The In a Nutshell series designations, Linux Kernel in a
Nutshell, the image of cup coral, and related trade dress are trademarks of O’Reilly Media, Inc.

This work is licensed under the Creative Commons Attribution-ShareAlike 2.5 License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/2.5/ or send a letter
to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media,
Inc. was aware of a trademark claim, the designations have been printed in caps or initial
caps.

While every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-10079-5

ISBN-13: 978-0-596-10079-7

[M]

v

Chapter 1

Table of Contents

Preface . ix

Part I. Building the Kernel

1. Introduction . 3
Using This Book 4

2. Requirements for Building and Using the Kernel 5
Tools to Build the Kernel 5
Tools to Use the Kernel 6

3. Retrieving the Kernel Source . 12
What Tree to Use 12
Where to Find the Kernel Source 13
What to Do with the Source 15

4. Configuring and Building . 17
Creating a Configuration 17
Modifying the Configuration 18
Building the Kernel 23
Advanced Building Options 26

5. Installing and Booting from a Kernel . 29
Using a Distribution’s Installation Scripts 30
Installing by Hand 31
Modifying the Bootloader for the New Kernel 32

vi | Table of Contents

6. Upgrading a Kernel . 35
Download the New Source 36
Applying the Patch 38
Reconfigure the Kernel 40
Can’t This Be Automated? 42

Part II. Major Customizations

7. Customizing a Kernel . 45
Using a Distribution Kernel 45
Determining the Correct Module from Scratch 52

8. Kernel Configuration Recipes . 63
Disks 63
Devices 66
CPU 71
Networking 75
Filesystems 80
Security 82
Kernel Debugging 83

Part III. Kernel Reference

9. Kernel Boot Command-Line Parameter Reference 87
Module-Specific Options 87
Console Options 88
Interrupt Options 91
Memory Options 92
Suspend Options 94
CPU Options 95
Scheduler Options 97
Ramdisk Options 98
Root Disk Options 99
Init Options 101
kexec Options 101
RCU Options 102
ACPI Options 103
SCSI Options 106
PCI Options 107

Table of Contents | vii

Plug and Play BIOS Options 109
SELinux Options 110
Network Options 111
Network File System Options 111
Hardware-Specific Options 113
Timer-Specific Options 114
Miscellaneous Options 115

10. Kernel Build Command-Line Reference . 117
Informational Targets 117
Cleaning Targets 118
Configuration Targets 118
Build Targets 119
Packaging Targets 120
Documentation Targets 121
Architecture-Specific Targets 121
Analysis Targets 121

11. Kernel Configuration Option Reference . 122

Part IV. Additional Information

A. Helpful Utilities . 161
Managing Your Patches with quilt 163
git 165
ketchup 166

B. Bibliography . 168

Index . 171

ix

Chapter 2

Preface

When the topic of this book was first presented to me, I dismissed it as some-
thing that was already covered by the plentiful documentation about the Linux
kernel. Surely someone had already written down all of the basics needed in order
to build, install, and customize the Linux kernel, because it seemed to be a very
simple task to me.*

After digging through the different HOWTOs and the Linux kernel Documenta-
tion directory, I came to the conclusion that there was no one place where all of
this information could be found. It could be gleaned by referencing a few files
here, and a few outdated web sites there, but this was not acceptable for anyone
who did not know exactly what they were looking for in the first place.

So this book was created with the goal of consolidating all of the existing informa-
tion already scattered around the Internet about building the Linux kernel, as well
as adding a lot of new and useful information that was not written down
anywhere but had been learned by trial and error over my years of doing kernel
development.

My secret goal of this book is to bring more people into the Linux kernel develop-
ment fold. The act of building a customized kernel for your machine is one of the
basic tasks needed to become a Linux kernel developer. The more people that try
this out, and realize that there is not any real magic behind the whole Linux
kernel process, the more people will be willing to jump in and help out in making
the kernel the best that it can be.

* Disclaimer: I’m a Linux kernel developer by trade, so things that seem basic and simple to me at
times are completely incomprehensible by most people, as my family continues to remind me.

x | Preface

Who This Book Is For
This book is intended to cover everything that is needed to know in order to prop-
erly build, customize, and install the Linux kernel. No programming experience is
needed to understand and use this book.

Some familiarity with how to use Linux, and some basic command-line usage is
expected of the reader.

This book is not intended to go into the programming aspects of the Linux kernel;
there are many other good books listed in the Bibliography that already cover this
topic.

How the Book Is Organized
This book is organized into four parts.

Part I, Building the Kernel, includes Chapters 1 through 6, which cover everything
you need to know about retrieving, building, installing, and upgrading the Linux
kernel, in more or less step-by-step fashion.

Chapter 1, Introduction
This chapter explains when and why you would want to build the kernel.

Chapter 2, Requirements for Building and Using the Kernel
This chapter covers the different programs and tools that are needed in order
to properly build the kernel. It also covers a number of different programs
that are tied very closely to the kernel, how to determine the needed version
of the programs, and where to find them.

Chapter 3, Retrieving the Kernel Source
This chapter discusses how the different Linux kernel versions relate to each
other, where to retrieve the Linux kernel source code, and how to download
it properly.

Chapter 4, Configuring and Building
This chapter explains how to configure and properly build the Linux kernel.

Chapter 5, Installing and Booting from a Kernel
This chapter shows how to install the kernel that has been built properly, and
then boot into that kernel version.

Chapter 6, Upgrading a Kernel
This chapter explains how to upgrade a kernel that was previously built to a
newer version without having to start over from nothing.

Part II, Major Customizations, consists of Chapters 7 and 8, which describe how
to properly configure the kernel based on the hardware present in the system, and
provides a number of different “recipes” for common configurations.

Chapter 7, Customizing a Kernel
This chapter discusses how to customize the kernel for the hardware that is
present on the system. It goes over a variety of different ways to determine

Preface | xi

what options should be selected and provides some simple scripts to help
with the task.

Chapter 8, Kernel Configuration Recipes
This chapter explains how to configure the kernel for a variety of common
situations.

Part III, Kernel Reference, consists of Chapters 9 through 11. These chapters
provide a reference to the different kernel command line options, the kernel build
options, and a select few of the different kernel configuration options.

Chapter 9, Kernel Boot Command-Line Parameter Reference
This chapter details all of the different command-line options that can be
passed to the kernel, and what the different options do.

Chapter 10, Kernel Build Command-Line Reference
This chapter describes the different command line options that are available
when building the kernel and how to use them.

Chapter 11, Kernel Configuration Option Reference
This chapter focuses on a few of the more popular and important Linux
kernel configuration options.

Part IV, Additional Information

Appendix A, Helpful Utilities
This chapter introduces a number of very good and handy tools that everyone
who wishes to track the latest Linux kernel version should use.

Appendix B, Bibliography
This chapter offers a list of useful references that you can use to track down
more information on building your Linux kernel.

Online Version and License
This book is freely available under the Creative Commons “Attribution-
ShareAlike” license, Version 2.5. This license can be seen in its entirety at http://
creativecommons.org/licenses/by-sa/2.5/. The full book is also available online at
http://www.kroah.com/lkn.

Conventions Used in This Book
This book uses the following typographical conventions:

Italic
Indicates progams, tools, commands and command options, distribution
packages, files, directories, usernames, and hostnames. Also indicates
nomenclature that we’ve not previously used and emphasized words.

Constant Width
Indicates strings used for kernel configuration, as well as a few special terms
such as device names. Also used to show command output and the contents
of text and program files.

xii | Preface

Constant Width Bold
Used in examples to indicate commands or other text that should be typed
literally by the user.

Constant Width Italic
Indicates text that you should replace with your own values; for example,
your own name or password. When this appears as part of text that you
should type in, it is shown as Constant Width Italic Bold.

#, $
Used in some examples as the root shell prompt (#) and as the user prompt
($) under the Bourne or bash shell.

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

Using Shell Scripts
This book is here to help you get your job done. In general, you may use the shell
scripts in this book in your own scripts and documentation. You do not need to
contact us for permission. The major scripts can be downloaded from the book’s
web site on O’Reilly Media, http://www.oreilly.com/catalog/9780596100797.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Linux Kernel in a Nutshell by
Greg Kroah-Hartman. Copyright 2007 O’Reilly Media, Inc., 978-0-596-10079-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Enabled
When you see a Safari® enabled icon on the cover of your favorite
technology book, that means the book is available online through
the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual
library that lets you easily search thousands of top tech books, cut and paste code
samples, download chapters, and find quick answers when you need the most
accurate, current information. Try it free at http://safari.oreilly.com.

Preface | xiii

How to Contact Us
We have tested and verified all of the information in this book to the best of our
ability, but you may find that features have changed (or even that we have made
mistakes!). Please let us know about any errors you find, as well as your sugges-
tions for future editions, by writing:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

You can also send us messages electronically. To be put on the mailing list or
request a catalog, send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we’ll list examples, errata, and any plans
for future editions. You can access this page at:

http://www.oreilly.com/catalog/9780596100797

Acknowledgments
Thanks first go to my wonderful wife Shannon and my beautiful children Made-
line and Griffin for their understanding and patience while I took the time to work
on this book. Without their support and prodding, this book would have never
been completed. Special thanks to Shannon for getting me into Linux kernel
development in the first place. Without her effort, I would be still doing some odd
embedded programming job, and would have never discovered this great commu-
nity in which to work in.

My editor, Andy Oram, is the driving force behing this book, shaping it into
something that is both readable and informative. His editing skills and patience as
deadlines flew by were instrumental in the creation and completion of this book.

Also a big thanks go to the original editor of this book, David Brickner, for giving
me the chance to work on this project and believing that I could complete it,
despite the first version weighing in at over 1,000 pages.

The technical reviewers for this book were amazing, catching all of the numerous
mistakes and pointing out omissions that needed to be filled. The reviewers were
(in alphabetic order by first name), Christian Benvenuti, Christian Morgner,
Golden G. Richard III, Jean Delvare, Jerry Cooperstein, Michael Boerner, Rik van
Riel, and Robert Day. Any remaining problems are due to me, and not their excel-
lent skills.

A special thanks to Randy Dunlap for going over the kernel boot parameters with
a fine-tooth comb and pointing out issues in that chapter. Also to Kay Sievers,
who helped immensely with all of the chapter on customizing the kernel, and who
provided the script at the end of that same chapter. Without his sysfs help and
knowledge, that chapter would not have been feasible.

And a final special thanks to my sixth grade English teacher, Ms. Gruber, for
teaching me that writing was something that was possible to do, and showing me
the enjoyment in doing it. Without that start, none of this would have been
attainable.

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

I
Building the Kernel

This part of the book shows how to download, build, and install the kernel. It is
largely a step-by-step guide.

Chapter 1, Introduction

Chapter 2, Requirements for Building and Using the Kernel

Chapter 3, Retrieving the Kernel Source

Chapter 4, Configuring and Building

Chapter 5, Installing and Booting from a Kernel

Chapter 6, Upgrading a Kernel

3

Chapter 1

1
Introduction

Despite its large code base (over seven million lines of code), the Linux kernel is
the most flexible operating system that has ever been created. It can be tuned for a
wide range of different systems, running on everything from a radio-controlled
model helicoptor, to a cell phone, to the majority of the largest supercomputers in
the world. By customizing the kernel for your specific environment, it is possible
to create something that is both smaller and faster than the kernel provided by
most Linux distributions. This book will go into how to build and install a custom
kernel, and provide some hints on how to enable specific options that you will
probably wish to use for different situations.

No Linux distribution provides the exact kernel most of its users want. Modern
distributions have gotten very accommodating, compiling in support for every
known device, for sound, and even for power conservation. But you will likely
have a need that’s different from the majority of users (and every distribution has
to try to meet the needs of the majority). You may just have different hardware.
And when a new kernel comes out, you may want to start using it without waiting
for a distribution to be built around it.

For a host of reasons, you will want during your Linux career to sometimes build
a kernel, or to tweak the parameters of one you are running. This book gives you
the information you need to understand the kernel from a user’s point of view,
and to make the most common changes.

There are also good reasons to remove features from the kernel, particularly if you
are running it on an embedded system or one with a small form factor.

When tweaking, it’s helpful to understand the internals of kernel behavior. These
are beyond the scope of this book, except for brief summaries that appear with
certain options. Appendix B includes references to other books and material that
can give you more background.

4 | Chapter 1: Introduction

Using This Book

Do not configure or build your kernel with superuser permissions
enabled!

This warning is the most important thing to remember while working through the
steps in this book. Everything in this book—downloading the kernel source code,
uncompressing it, configuring the kernel, and building it—should be done as a
normal user on the machine. Only the two or three commands it takes to install a
new kernel should be done as the superuser (root).

There have been bugs in the kernel build process in the past, causing some special
files in the /dev directory to be deleted if the user had superuser permissions while
building the Linux kernel.* There are also issues that can easily arise when uncom-
pressing the Linux kernel with superuser rights, as some of the files in the kernel
source package will not end up with the proper permissions and will cause build
errors later.

The kernel source code should also never be placed in the /usr/src/linux/ direc-
tory, as that is the location of the kernel that the system libraries were built
against, not your new custom kernel. Do not do any kernel development under
the /usr/src/ directory tree at all, but only in a local user directory where nothing
bad can happen to the system.

* This took quite a while to fix, as none of the primary kernel developers build kernels as root, so
they did not suffer from the bug. A number of weeks went by before it was finally determined that
the act of building the kernel was the problem. A number of kernel developers half-jokingly sug-
gested that the bug remain in, to help prevent anyone from building the kernel as root, but calmer
heads prevailed and the bug in the build system was fixed.

5

Chapter 2Requirements

2
Requirements for Building and

Using the Kernel

This chapter describes the programs you need to configure a kernel, build it, and
successfully boot it. It’s a smart idea to consult the file Documentation/Changes to
verify the specific version number you should have of each tool described in this
chapter. This chapter was based on the 2.6.18 kernel, and describes the versions
of tools that work with that kernel. If you are using a different kernel, please verify
that you have the required versions as specified in this file, or things might not
work properly and it can be very hard to determine what went wrong.

Tools to Build the Kernel
Most Linux distributions offer an installation option to install a range of kernel
hacking packages. If your distribution offers this option, it is easiest to install this
instead of trying to track down all of the individual programs that are needed for
this task.

Only three packages that are needed in order to successfully build a kernel: a
compiler, a linker, and a make utility. This section describes the contents of each
package.

Compiler

The Linux kernel is written in the C programming language, with a small amount
of assembly language in some places. To build the kernel, the gcc C compiler
must be used. Most Linux distributions have a package entitiled gcc that should
be installed. If you wish to download the compiler and build it yourself, you can
find it at http://gcc.gnu.org.

As of the 2.6.18 kernel release, the 3.2 version of gcc is the oldest that can prop-
erly build a working kernel. Be warned that getting the most recent gcc version is
not always a good idea. Some of the newest gcc releases don’t build the kernel

6 | Chapter 2: Requirements for Building and Using the Kernel

properly, so unless you wish to help debug compiler bugs, it is not recommended
that you try them out.

To determine which version of gcc you have on your system, run the following
command:

$ gcc --version

Linker

The C compiler, gcc, does not do all of the compiling on its own. It needs an addi-
tional set of tools known as binutils to do the linking and assembling of source
files. The binutils package also contains useful utilities that can manipulate object
files in lots of useful ways, such as to view the contents of a library.

binutils can usually be found in a distribution package called (not surprisingly)
binutils. If you wish to download and install the package yourself, you can find it
at http://www.gnu.org/software/binutils.

As of the 2.6.18 kernel release, the 2.12 release of binutils is the oldest that can
successfully link the kernel. To determine which version of binutils you have on
your system, run the following command:

$ ld -v

make

make is a tool that walks the kernel source tree to determine which files need to be
compiled, and then calls the compiler and other build tools to do the work in
building the kernel. The kernel requires the GNU version of make, which can
usually be found in a package called make for your distribution.

If you wish to download and install make youself, you can find it at http://www.
gnu.org/software/make.

As of the 2.6.18 kernel release, the 3.79.1 release of make is the oldest that can
properly build the kernel. It is recommended that you install the latest stable
version of make, because newer versions are known to work faster at processing
the build files.

To determine which version of make you have on your system, run the following
command:

$ make --version

Tools to Use the Kernel
While the version of the kernel that is running does not usually affect any user
application, there are a small number of program for which the kernel version is
important. This section describes a number of tools that are probably already
installed on your Linux system. If you upgrade your kernel to a version different
from the one that came with your distribution, some of these packages may also
need to be upgraded in order for the system to work properly.

Tools to Use the Kernel | 7

Requirem
ents

util-linux

The util-linux package is a collection of small utilities that do a wide range of
different tasks. Most of these utilities handle the mounting and creation of disk
partitions and manipulation of the hardware clock in the system.

If you wish to download and install the util-linux package yourself, you can find it
at http://www.kernel.org/pub/linux/utils/util-linux.

As of the 2.6.18 kernel release, the 2.10 release of util-linux is the oldest that
works properly. It is recommended that you install the latest version of this
package, because new version support new features added to the kernel. Bind
mounts are one example of an option in newer kernels, and a newer version of
util-linux is needed in order to have them work properly.

To determine which version of the util-linux package you have on your system,
run the following command:

$ fdformat --version

module-init-tools

The module-init-tools package is needed if you wish to use Linux kernel modules.
A kernel module is a loadable chunk of code that can be added to or removed from
the kernel while the kernel is running. It is useful to compile device drivers as
modules and then load only the ones that correspond to the hardware present in
the system. All Linux distributions use modules in order to load only the needed
drivers and options for the system based on the hardware present, instead of being
forced to build all possible drivers and options in the kernel in one large chunk.
Modules save memory by loading just the code that is needed to control the
machine properly.

The kernel module loading process underwent a radical change in the 2.6 kernel
release. The linker for the module (the code that resolves all symbols and figures
out how to put the pieces together in memory) is now built into the kernel, which
makes the userspace tools quite small. Older distributions have a package called
modutils that does not work properly with the 2.6 kernel. The module-init-tools
package is what you need to get the 2.6 kernel to work properly with modules.

If you wish to download and install the module-init-tools package yourself, you
can find it at http://www.kernel.org/pub/linux/utils/kernel/module-init-tools.

As of the 2.6.18 kernel release, the 0.9.10 release of module-init-tools is the oldest
version that works properly. It is recommended that the latest version of this
package be installed, as new features added to the kernel can be used by newer
versions of this package. Blacklisting modules to prevent them from being auto-
matically loaded by the udev package is one such option that is present in newer
versions of module-init-tools, but not older ones.

To determine which version of the module-init-tools package you have on your
system, run the following command:

$ depmod -V

8 | Chapter 2: Requirements for Building and Using the Kernel

Filesystem-Specific Tools

A wide range of tools specific to particular filesystems are necessary to create,
format, configure, and fix disk partitions. The util-linux package has a few of
these utilities, but some of the more popular filesystems have separate packages
that contain the necessary programs.

ext2/ext3/ext4

The ext3 and experimental ext4 filesystems are upgrades of ext2 and can be
managed with the same tools; any recent version of an ext2-based tool can work
with the other two filesystems as well.

To work with any of these filesystems, you must have the e2fsprogs package. If
you wish to download and install this package yourself, you can find it at http://
e2fsprogs.sourceforge.net.

As of the 2.6.18 kernel release, the 1.29 release of e2fsprogs is the oldest that
works properly with the kernel. It is highly recommended that you use the newest
version in order to take advantage of newer features in the ext3 and ext4
filesystems.

To determine which version of e2fsprogs you have on your system, run the
following command:

$ tune2fs

JFS

To use the JFS filesystem from IBM, you must have the jfsutils pacakge. If you
wish to download and install this package yourself, you can find it at http://jfs.
sourceforge.net.

As of the 2.6.18 kernel release, the 1.1.3 release of jfsutils is the oldest that works
properly with the kernel. To determine which version of jfsutils you have on your
system, run the following command:

$ fsck.jfs -V

ReiserFS

To use the ReiserFS filesystem, you must have the reiserfsprogs package. If you
wish to download and install this package yourself, you can find it at http://www.
namesys.com/download.html.

As of the 2.6.18 kernel release, the 3.6.3 release of reiserfsprogs is the oldest that
works properly with the kernel. To determine which version of reiserfsprogs you
have on your system, run the following command:

$ reiserfsck -V

Tools to Use the Kernel | 9

Requirem
ents

XFS

To use the XFS filesystem from SGI, you must have the xfsprogs package. If you
wish to download and install this package yourself, you can find it at http://oss.sgi.
com/projects/xfs.

As of the 2.6.18 kernel release, the 2.6.0 release of xfsprogs is the oldest that
works properly with the kernel. To determine which version of xfsprogs you have
on your system, run the following command:

$ xfs_db -V

Quotas

To use the quota functionality of the kernel, you must have the quota-tools
package.* This package includes programs that let you set quotas on users,
provide statistics on the amount of quota being used by different users, and issue
warnings when people get too close to using up their available filesystem quota.

If you wish to download and install this package yourself, you can find it at http://
sourceforge.net/projects/linuxquota.

As of the 2.6.18 kernel release, the 3.09 release of quota-tools is the oldest that
works properly with the kernel. To determine which version of quota-tools you
have on your system, run the following command:

$ quota -V

NFS

To use the NFS filesystem properly, you must have the nfs-utils package.† This
package includes programs that let you mount NFS partitions as a client, and run
an NFS server.

If you wish to download and install this package yourself, you can find it at http://
nfs.sf.net.

As of the 2.6.18 kernel release, the 1.0.5 release of nfs-utils is the oldest that works
properly with the kernel To determine which version of nfs-utils you have on your
system, run the following command:

$ showmount --version

Other Tools

There are a few other important programs that are closely tied to the kernel
version. These programs are not usually required in order for the kernel to work
properly, but they enable access to different types of hardware and functions.

* Some distributions, notably Debian, call this package quota instead of quota-tools.

† Some distributions, notably Debian, call this package nfs-common instead of nfs-utils.

10 | Chapter 2: Requirements for Building and Using the Kernel

udev

udev is a program that enables Linux to provide a persistent device-naming system
in the /dev directory. It also provides a dynamic /dev, much like the one provided
by the older (and now removed) devfs filesystem. Almost all Linux distributions
use udev to manage the /dev directory, so it is required in order to properly boot
the machine.

Unfortunately, udev relies on the structure of /sys, which has been known to
change from time to time with kernel releases. Some of these changes in the past
have been known to break udev, so that your machine will not boot properly. If
you have the latest version of udev recommended for your kernel and have prob-
lems with it working properly, please contact the udev developers on the mailing
list available at linux-hotplug-devel@lists.sourceforge.net.

It is highly recommended that you use the version of udev that comes with your
Linux distribution, as it is tied into the distribution specific boot process very
tightly. But if you wish to upgrade udev on your own, you can find it at http://
www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html.

As of the 2.6.18 kernel release, the 081 release of udev is the oldest that works
properly with the kernel. It is recommended that you use the latest version of
udev, because it will work better with newer kernels, due to changes in how udev
and the kernel communicate.

To determine which version of udev you have on your system, run the following
command:

$ udevinfo -V

Process tools

The package procps includes the commonly used tools ps and top, as well as many
other handy tools for managing and monitoring processes running on the system.

If you wish to download and install this package yourself, you can find it at http://
procps.sourceforge.net.

As of the 2.6.18 kernel release, the 3.2.0 release of procps is the oldest that works
properly with the kernel. To determine which version of procps you have on your
system, run the following command:

$ ps --version

PCMCIA tools

In order to properly use PCMCIA devices with Linux, a userspace helper program
must be used to set up the devices. For older kernel versions, this program was
called pcmcia-cs, but that has been replaced with a much simpler system called
pcmciautils. If you wish to use PCMCIA devices, you must have this package
installed for them to work properly.

Tools to Use the Kernel | 11

Requirem
ents

If you wish to download and install this package yourself, you can find it at ftp://
ftp.kernel.org/pub/linux/utils/kernel/pcmcia.

As of the 2.6.18 kernel release, the 004 release of pcmciautils is the oldest that
works properly with the kernel. But the latest version is recommended in order to
take advantage of newer features in the PCMCIA subsystem, such as automatic
driver loading when new devices are found.

To determine which version of pcmciautils you have on your system, run the
following command:

$ pccardctl -V

12

Chapter 3Retrieving the Kernel Source

3
Retrieving the Kernel Source

When you’re building your own kernel, you want the latest stable release. Many
distributions provide their own packages of kernel sources, but these are rarely
the most cutting-edge, recent versions. The distribution packages have the advan-
tage of being built to be compatible with the compiler and other tools provided by
the distribution (Chapter 2 explains the importance of their being compatible) but
they may not end up providing the functionality or performance you want. If you
can create your own environment with the latest kernel, compiler, and other tools,
you will be able to build exactly what you want. This chapter focuses on deter-
mining which kernel sources to download, and how to obtain them.

What Tree to Use
In the past, the Linux kernel was split into only two trees, the “development”
branch and the “stable” branch. The development branch was denoted by an odd
number for the second release number, while the stable branch used even
numbers. So, as an example, the 2.5.25 release was a development kernel, while
the 2.4.25 release is a stable release.

But after the 2.6 series was created, the kernel developers decided to abandon this
method of having two separate trees, and declared that all 2.6 kernel releases
would be considered “stable,” no matter how quickly development was
happening. The few months between the major 2.6 releases would allow kernel
developers the time to add new features and then stabilize them in time for the
next release. Combined with this, a “-stable” kernel branch has been created that
releases bug fixes and security updates for the past kernel release, before the next
major 2.6 release happens.

This is all best explained with some examples, illustrated in Figure 3-1. The
kernel team released the 2.6.17 kernel as a stable release. Then the developers
started working on new features and started releasing the -rc versions as devel-
opment kernels so that people could help test and debug the changes. After

Where to Find the Kernel Source | 13

Retrieving
the

Kernel Source

everyone agreed that the development release was stable enough, it was released
as the 2.6.18 kernel. This whole cycle usually takes about two to three months,
depending on a variety of factors.

While the development of the new features was happening, the 2.6.17.1, 2.6.17.2,
and other stable kernel versions were released, containing bug fixes and security
updates.

If you wish to just use the latest kernel for your work, it is recommended that you
use the stable kernel releases. If you wish to help the kernel developers test the
features of the next kernel release and give them feedback, use the development
kernel release. For the purpose of this chapter, we will assume that you are using a
stable kernel release.

Where to Find the Kernel Source
All of the source code for the Linux kernel can be found on one of the kernel.org
sites, a worldwide network of servers that mirror the Linux source code, enabling
anyone to find a local server close to him. This allows the main kernel servers to

Figure 3-1. Kernel development release cycle

2.6.17

2.6.18-rc1

2.6.18-rc2

2.6.18-rc3

2.6.18-rc4

2.6.18-rc5

2.6.19-rc1

2.6.19-rc2

2.6.19-rc3

2.6.19-rc4

2.6.19-rc5

2.6.18

2.6.17.1

2.6.17.2

2.6.17.3

2.6.17.4

2.6.18.1

2.6.18.2

2.6.18.3

2.6.18.4

Stable release

Development release

14 | Chapter 3: Retrieving the Kernel Source

be responsive to the mirror sites, and lets users download the needed files as
quickly as possible.

The main http://www.kernel.org site shows all of the current kernel versions for
the various different kernel trees, as shown in Figure 3-2.

To download the latest stable kernel version, click on the F character on the line
for the kernel version. This will download the full source tree. Or you can navi-
gate to the proper subdirectory for all of the 2.6 kernel versions, http://www.us.
kernel.org/pub/linux/kernel/v2.6/, shown in Figure 3-3.

It is also possible to download the kernel source from the command line, using
the wget or curl utilities, both of which should come with your Linux distribution.

To download the 2.6.17.8 kernel version using wget, enter:

$ wget http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.17.8.tar.gz
--17:44:55-- http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.17.8.
tar.gz
 => `linux-2.6.17.8.tar.gz'
Resolving www.kernel.org... 204.152.191.5, 204.152.191.37
Connecting to www.kernel.org|204.152.191.5|:80... connected.
HTTP request sent, awaiting response... 200 OK

Figure 3-2. The main kernel.org web site

What to Do with the Source | 15

Retrieving
the

Kernel Source

Length: 51,707,742 (49M) [application/x-gzip]
100%[===>] 51,707,742 35.25K/s
ETA 00:00
18:02:48 (47.12 KB/s) - `linux-2.6.17.8.tar.gz' saved [51707742/51707742]

To download it using curl:

$ curl http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.17.8.tar.gz \
-o linux-2.6.17.8.tar.gz
 % Total % Received % Xferd Average Speed Time Time Time
Current
 Dload Upload Total Spent Left
Speed
100 49.3M 100 49.3M 0 0 50298 0 0:17:08 0:17:08 --:--:--
100k

For a quick and easy way to determine the latest kernel versions, use the informa-
tion available at http://www.kernel.org/kdist/finger_banner, illustrated by Figure 3-4.

What to Do with the Source
Now that you have downloaded the proper kernel source, where is it supposed to
go? We suggest creating a local directory in your home directory called linux to
hold all of the different kernel source files:

$ mkdir ~/linux

Figure 3-3. The 2.6 kernel source directory

16 | Chapter 3: Retrieving the Kernel Source

Now move the source code into this directory:

$ mv ~/linux-2.6.17.8.tar.gz ~/linux/

And go into the linux directory:

$ cd ~/linux
$ ls
linux-2.6.17.8.tar.gz

Now that the source code is in the proper directory, uncompress the tree:

$ tar -xzvf linux-2.6.17.8.tar.gz

The screen will be filled with files that are uncompressed, and you will be left with
the following in the linux/ directory:

$ ls
linux-2.6.17.8.tar.gz
linux-2.6.17.8/

Figure 3-4. Latest kernel version

17

Chapter 4Configuring and Building

4
Configuring and Building

Now that you have downloaded the source for your selected kernel version and
installed it into a local directory, it is time to build the code. The first step is to
configure the kernel with the appropriate options; the kernel can then be
compiled. Both tasks are done through the standard make utility.

Creating a Configuration
The kernel configuration is kept in a file called .config in the top directory of the
kernel source tree. If you have just expanded the kernel source code, there will be
no .config file, so it needs to be created. It can be created from scratch, created by
basing it on the “default configuration,” taken from a running kernel version, or
taken from a distribution kernel release. We will cover the first two methods here,
and the last two methods in Chapter 7.

Configuring from Scratch

The most basic method of configuring a kernel is to use the make config method:

$ cd linux-2.6.17.10
$ make config
 make config
scripts/kconfig/conf arch/i386/Kconfig
*
* Linux Kernel Configuration
*
*
* Code maturity level options
*
Prompt for development and/or incomplete code/drivers (EXPERIMENTAL) [Y/n/?]
Y
*
* General setup
*

18 | Chapter 4: Configuring and Building

Local version - append to kernel release (LOCALVERSION) []
Automatically append version information to the version string
(LOCALVERSION_AUTO) [Y/n/?] Y
...

The kernel configuration program will step through every configuration option
and ask you if you wish to enable this option or not. Typically, your choices for
each option are shown in the format [Y/m/n/?] The capitalized letter is the
default, and can be selected by just pressing the Enter key. The four choices are:

y Build directly into the kernel.

n Leave entirely out of the kernel.

m Build as a module, to be loaded if needed.

? Print a brief descriptive message and repeat the prompt.

The kernel contains almost two thousand different configuration options, so
being asked for every individual one will take a very long time. Luckily, there is an
easier way to configure a kernel: base the configuration on a pre-built
configuration.

Default Configuration Options

Every kernel version comes with a “default” kernel configuration. This configura-
tion is loosely based on the defaults that the kernel maintainer of that architecture
feels are the best options to be used. In some cases, it is merely the configuration
that is used by the kernel maintainer himself for his personal machines. This is
true for the i386 architecture, where the default kernel configuration matches
closely what Linus Torvalds uses for his main development machine.

To create this default configuration, do the following:

$ cd linux-2.6.17.10
$ make defconfig

A huge number of configuration options will scroll quickly by the screen, and a
.config file will be written out and placed in the kernel directory. The kernel is
now successfully configured, but it should be customized to your machine in
order to make sure it will operate correctly.

Modifying the Configuration
Now that we have a basic configuration file created, it should be modified to
support the hardware you have present in the system. For details on how to find
out which configuration options you need to select to achieve this, please see
Chapter 7. Here we will show you how to select the options you wish to change.

There are three different interactive kernel configuration tools: a terminal-based
one called menuconfig, a GTK+-based graphical one called gconfig, and a QT-
based graphical one called xconfig.

Modifying the Configuration | 19

Configuring
and Building

Console Configuration Method

The menuconfig way of configuring a kernel is a console-based program that offers
a way to move around the kernel configuration using the arrow keys on the
keyboard. To start up this configuration mode, enter:

$ make menuconfig

You will be shown a screen much like Figure 4-1.

The instructions for navigating through the program, and the meanings of the
different characters, are shown at the top of the screen. The rest of the screen
containing the different kernel configuration options.

The kernel configuration is divided up into sections. Each section contains
options that correspond to a specific topic. Within those sections can be sub-
sections for various specialized topics. As an example, all kernel device drivers can
be found under the main menu option Device Drivers. To enter that menu, move
the arrow key down nine times until the line Device Drivers ---> is highlighted,
as shown in Figure 4-2.

Then press the Enter key. It will move you into the Device Drivers submenu and
show it as illustrated in Figure 4-3.

You can continue to move down through the menu hierarchy the same way. To
see the Generic Driver Options submenu, press Enter again, and you will see the
three options shown in Figure 4-4.

The first two options have a [*] mark by them. That means that this option is
selected (by virtue of the * being in the middle of the [] characters), and that this
option is a yes-or-no option. The third option has a < > marking, showing that
this option can be built into the kernel (Y), built as a module (M), or left out alto-
gether (N).

Figure 4-1. Initial menuconfig screen

20 | Chapter 4: Configuring and Building

If the option is selected with Y, the angle brackets will contain a * character. If it is
selected as a module with an M, they will contain an M character. If it is disabled
with N, they will show only a blank space.

So, if you wish to change these three options to select only drivers that do not
need external firmware at compile time, disable the option to prevent firmware
from being built, and build the userspace firmware loader as a module, press Y for
the first option, N for the second option, and M for the third, making the screen
look like Figure 4-5.

After you are done with your changes to this screen, press either the Escape key or
the right arrow followed by the Enter key to leave this submenu. All of the
different kernel options can be explored in this manner.

Figure 4-2. Device Drivers option selected

Figure 4-3. Device Drivers submenu

Modifying the Configuration | 21

Configuring
and Building

When you are finished making all of the changes you wish to make to the kernel
configuration, exit the program by pressing the Escape key on the main menu.
You will be shown the screen in Figure 4-6, asking whether you wish to save your
changed kernel configuration.

Press Enter to save the configuration, or if you wish to discard any changes made,
press the right arrow to move to the <No> selection and then press Enter.

Figure 4-4. Generic Driver Options submenu

Figure 4-5. Generic Driver Options submenu changed

Figure 4-6. Saving kernel options

22 | Chapter 4: Configuring and Building

Graphical Configuration Methods

The gconfig and xconfig methods of configuring a kernel use a graphical program
to allow you to modify the kernel configuration. The two methods are almost
identical, the only difference being the different graphical toolkit with which they
are written. gconfig is written using the GTK+ toolkit and has a two-pane screen
looking like Figure 4-7.

The xconfig method is written using the QT toolkit and has a three-pane screen
looking like Figure 4-8.

Use the mouse to navigate the submenus and select options. For instance, you can
use it in Figure 4-8 to select the Generic Driver Options submenu of the Device
Drivers menu. This will change the xconfig screen to look like Figure 4-9. The
corresponding gconfig screen is Figure 4-10.

Changing this submenu to disable the second option and make the third option
be built as a module causes the screens to look like Figures 4-11 and 4-12.

Please note that in the gconfig method, a checked box signifies that the option will
be built into the kernel, whereas a line though the box means the option will be
built as a module. In the xconfig method, an option built as a module will be
shown with a dot in the box.

Both of these methods prompt you to save your changed configuration when
exiting the program, and offer the option to write that configuration out to a
different file. In that way you can create multiple, differing configurations.

Figure 4-7. make gconfig screen

Building the Kernel | 23

Configuring
and Building

Building the Kernel
Now that you have created a kernel configuration that you wish to use, you need
to build the kernel. This is as simple as entering a one-word command:

$ make
 CHK include/linux/version.h
 UPD include/linux/version.h
 SYMLINK include/asm -> include/asm-i386
 SPLIT include/linux/autoconf.h -> include/config/*
 CC arch/i386/kernel/asm-offsets.s
 GEN include/asm-i386/asm-offsets.h
 CC scripts/mod/empty.o
 HOSTCC scripts/mod/mk_elfconfig
 MKELF scripts/mod/elfconfig.h
 HOSTCC scripts/mod/file2alias.o
 HOSTCC scripts/mod/modpost.o
 HOSTCC scripts/mod/sumversion.o
 HOSTLD scripts/mod/modpost
 HOSTCC scripts/kallsyms
 HOSTCC scripts/conmakehash
 HOSTCC scripts/bin2c
 CC init/main.o

Figure 4-8. make xconfig screen

24 | Chapter 4: Configuring and Building

Figure 4-9. make xconfig Generic Driver Options

Figure 4-10. make gconfig Generic Driver Options

Building the Kernel | 25

Configuring
and Building

Figure 4-11. make xconfig Generic Driver Options changed

Figure 4-12. make gconfig Generic Driver Options changed

26 | Chapter 4: Configuring and Building

 CHK include/linux/compile.h
 UPD include/linux/compile.h
 CC init/version.o
 CC init/do_mounts.o
...

Running make causes the kernel build system to use the configuration you have
selected to build a kernel and all modules needed to support that configuration.*
While the kernel is building, make displays the individual filenames of what is
currently happening, along with any build warnings or errors.

If the kernel build finished without any errors, you have successfully created a
kernel image. However, it needs to be installed properly before you try to boot
from it. See Chapter 5 for how to do this.

It is very unusual to get any build errors when building a released kernel version.
If you do, please report them to the Linux kernel developers so they can be fixed.

Advanced Building Options
The kernel build system allows you to do many more things than just build the
full kernel and modules. Chapter 10 includes the full list of options that the kernel
build system provides. In this section, we will discuss some of these advanced
build options. To see a full description of how to use other advanced build
options, refer to the in-kernel documentation on the build system, which can be
found in the Documentation/kbuild directory of the sources.

Building Faster on Multiprocessor Machines

The kernel build system works very well as a task that can be split up into little
pieces and given to different processors. By doing this, you can use the full power
of a multiprocessor machine and reduce the kernel build time considerably.

To build the kernel in a multithreaded way, use the -j option to the make
program. It is best to give a number to the -j option that corresponds to twice the
number of processors in the system. So, for a machine with two processors
present, use:

$ make -j4

and for a machine with four processors, use:

$ make -j8

If you do not pass a numerical value to the -j option:

$ make -j

the build system will create a new thread for every subdirectory in the kernel tree,
which can easily cause your machine to become unresponsive and take a much
longer time to complete the build. Because of this, it is recommended that you
always pass a number to the -j option.

* Older kernel versions prior to the 2.6 release required the additional step of make modules to build
all needed kernel modules. That is no longer required.

Advanced Building Options | 27

Configuring
and Building

Building Only a Portion of the Kernel

When doing kernel development, sometimes you wish to build only a specific
subdirectory or a single file within the whole kernel tree. The kernel build system
allows you to easily do this. To selectively build a specific directory, specify it on
the build command line. For example, to build the files in the drivers/usb/serial
directory, enter:

$ make drivers/usb/serial

Using this syntax, however, will not build the final module images in that direc-
tory. To do that, you can use the M= argument:

$ make M=drivers/usb/serial

which will build all the needed files in that directory and link the final module
images.

When you build a single directory in one of the ways shown, the final kernel
image is not relinked together. Therefore, any changes that were made to the
subdirectories will not affect the final kernel image, which is probably not what
you desire. Execute a final:

$ make

to have the build system check all changed object files and do the final kernel
image link properly.

To build only a specific file in the kernel tree, just pass it as the argument to make.
For example, if you wish to build only the drivers/usb/serial/visor.ko kernel
module, enter:

$ make drivers/usb/serial/visor.ko

The build system will build all needed files for the visor.ko kernel module, and do
the final link to create the module.

Source in One Place, Output in Another

Sometimes it is easier to have the source code for the kernel tree in a read-only
location (such as on a CD-ROM, or in a source code control system), and place
the output of the kernel build elsewhere, so that you do not disturb the original
source tree. The kernel build system handles this easily, by requiring only the
single argument O= to tell it where to place the output of the build. For example, if
the kernel source is located on a CD-ROM mounted on /mnt/cdrom/ and you wish
to place the built files in your local directory, enter:

$ cd /mnt/cdrom/linux-2.6.17.11
$ make O=~/linux/linux-2.6.17.11

All of the build files will be created in the ~/linux/linux-2.6.17.11/ directory. Please
note that this O= option should also be passed to the configuration options of the
build so that the configuration is correctly placed in the output directory and not
in the directory containing the source code.

28 | Chapter 4: Configuring and Building

Different Architectures

A very useful feature is building the kernel in a cross-compiled manner to allow a
more powerful machine to build a kernel for a smaller embedded system, or just
to check a build for a different architecture to ensure that a change to the source
code did not break something unexpected. The kernel build system allows you to
specify a different architecture from the current system with the ARCH= argument.
The build system also allows you to specify the specific compiler that you wish to
use for the build by using the CC= argument or a cross-compile toolchain with the
CROSS_COMPILE argument.

For example, to get the default kernel configuration of the x86_64 architecture,
you would enter:

$ make ARCH=x86_64 defconfig

To build the whole kernel with an ARM toolchain located in /usr/local/bin/, you
would enter:

$ make ARCH=arm CROSS_COMPILE=/usr/local/bin/arm-linux-

It is useful even for a non-cross-compiled kernel to change what the build system
uses for the compiler. Examples of this are using the distcc or ccache programs,
both of which help greatly reduce the time it takes to build a kernel. To use the
ccache program as part of the build system, enter:

$ make CC="ccache gcc"

To use both distcc and ccache together, enter:

$ make CC="ccache distcc"

29

Chapter 5Installing and Booting

5
Installing and Booting from a

Kernel

Previous chapters showed you how to download and build your kernel. Now that
you have an executable file—along with any modules you built—it is time to
install the kernel and attempt to boot it. In this chapter, unlike earlier ones, all of
the commands need to be run as the root user. This can be done by prefixing each
command with sudo, by using the su command to become root, or actually by
logging in as root.

To see whether you have sudo installed and the proper access set up, do the
following:

$ sudo ls ~/linux/linux-2.6.17.11/Makefile
Password:
Makefile

Enter either your own password at the password prompt, or the password of the
system administrator (root). The choice depends on how the sudo command is set
up. If this is successful, and you see the line containing:

Makefile

then you can skip to the next section.

If sudo is not installed or giving you the proper rights, try using the su command:

$ su
Password:
exit
exit
$

At the password prompt, enter the password of the system administrator (root).
When the su program successfully accepts the password, you are transferred to
running everything with full root privileges. Be very careful while as root, and do
only the minimum needed; then exit the program to continue back as your
normal user account.

30 | Chapter 5: Installing and Booting from a Kernel

Using a Distribution’s Installation Scripts
Almost all distributions come with a script called installkernel that can be used by
the kernel build system to automatically install a built kernel into the proper loca-
tion and modify the bootloader so that nothing extra needs to be done by the
developer.*

Distributions that offer installkernel usually put it in a package
called mkinitrd, so try to install that package if you cannot find the
script on your machine.

If you have built any modules and want to use use this method to install a kernel,
first enter:

make modules_install

This will install all the modules that you have built and place them in the proper
location in the filesystem for the new kernel to properly find. Modules are placed
in the /lib/modules/kernel_version directory, where kernel_version is the kernel
version of the new kernel you have just built.

After the modules have been successfully installed, the main kernel image must be
installed:

make install

This will kick off the following process:

1. The kernel build system will verify that the kernel has been successfully built
properly.

2. The build system will install the static kernel portion into the /boot directory
and name this executable file based on the kernel version of the built kernel.

3. Any needed initial ramdisk images will be automatically created, using the
modules that have just been installed during the modules_install phase.

4. The bootloader program will be properly notified that a new kernel is
present, and it will be added to the appropriate menu so the user can select it
the next time the machine is booted.

5. After this is finished, the kernel is successfully installed, and you can safely
reboot and try out your new kernel image. Note that this installation does not
overwrite any older kernel images, so if there is a problem with your new
kernel image, the old kernel can be selected at boot time.

* Notable exceptions to this rule are Gentoo and other “from scratch” types distributions, which
expect users to know how to install kernels on their own. These types of distributions include
documentation on how to install a new kernel, so consult it for the exact method required.

Installing by Hand | 31

Installing and
Booting

Installing by Hand
If your distribution does not have a installkernel command, or you wish to just do
the work by hand to understand the steps involved, here they are:

The modules must be installed:

make modules_install

The static kernel image must be copied into the /boot directory. For an i386-based
kernel, do the following:

make kernelversion
2.6.17.11

Note that the kernel version will probably be different for your kernel. Use this
value in place of the text KERNEL_VERSION in the following steps:

cp arch/i386/boot/bzImage /boot/bzImage-KERNEL_VERSION
cp System.map /boot/System.map-KERNEL_VERSION

Modify the bootloader so it knows about the new kernel. This involves editing a
configuration file for the bootloader you use, and is covered later in “Modifying
the Bootloader for the New Kernel” for the GRUB and LILO bootloaders.

If the boot process does not work properly, it’s usually because an initial ramdisk
image is needed. To create this properly, use the steps in the beginning of this
chapter for installing a kernel automatically, because the distribution install
scripts know how to properly create the ramdisk using the needed scripts and
tools. Because each distribution does this differently, it is beyond the scope of this
book to cover all of the different methods of building the ramdisk image.

Here is a handy script that can be used to install the kernel automatically instead
of having to type the previous commands all the time:

#!/bin/sh
#
installs a kernel
#
make modules_install

find out what kernel version this is
for TAG in VERSION PATCHLEVEL SUBLEVEL EXTRAVERSION ; do
 eval `sed -ne "/^$TAG/s/ //gp" Makefile`
done
SRC_RELEASE=$VERSION.$PATCHLEVEL.$SUBLEVEL$EXTRAVERSION

figure out the architecture
ARCH=`grep "CONFIG_ARCH " include/linux/autoconf.h | cut -f 2 -d "\""`

copy the kernel image
cp arch/$ARCH/boot/bzImage /boot/bzImage-"$SRC_RELEASE"

copy the System.map file
cp System.map /boot/System.map-"$SRC_RELEASE"

echo "Installed $SRC_RELEASE for $ARCH"

32 | Chapter 5: Installing and Booting from a Kernel

Modifying the Bootloader for the New Kernel
There are two common Linux kernel bootloaders: GRUB and LILO. GRUB is the
one more commonly used in modern distributions, and does some things a little
more easily than LILO, but LILO is still seen as well. We’ll cover both in this
section.

To determine which bootloader your system uses, look in the /boot/ directory. If
there is a grub subdirectory:

$ ls -F /boot | grep grub
grub/

then you are using the GRUB program to boot with. If this directory is not
present, look for the presence of the /etc/lilo.conf file:

$ ls /etc/lilo.conf
/etc/lilo.conf

If this is present, you are using the LILO program to boot with.

The steps involved in adding a new kernel to each of these programs are different,
so follow only the section that corresponds to the program you are using.

GRUB

To let GRUB know that a new kernel is present, all you need to do is modify the
/boot/grub/menu.lst file. For full details on the structure of this file, and all of the
different options available, please see the GRUB info pages:

$ info grub

The easiest way to add a new kernel entry to the /boot/grub/menu.lst file is to copy
an existing entry. For example, consider the following menu.lst file from a Gentoo
system:

timeout 300
default 0

splashimage=(hd0,0)/grub/splash.xpm.gz

title 2.6.16.11
 root (hd0,0)
 kernel /bzImage-2.6.16.11 root=/dev/sda2 vga=0x0305

title 2.6.16
 root (hd0,0)
 kernel /bzImage-2.6.16 root=/dev/sda2 vga=0x0305

The line starting with the word title defines a new kernel entry, so this file
contains two entries. Simply copy one block of lines beginning with the title line,
such as:

title 2.6.16.11
 root (hd0,0)
 kernel /bzImage-2.6.16.11 root=/dev/sda2 vga=0x0305

Modifying the Bootloader for the New Kernel | 33

Installing and
Booting

Then, add the block to the end of the file, and edit the version number to contain
the version number of the new kernel you just installed. The title does not matter,
so long as it is unique, but it is displayed in the boot menu, so you should make it
something meaningful. In our example, we installed the 2.6.17.11 kernel, so the
final copy of the file looks like:

timeout 300
default 0

splashimage=(hd0,0)/grub/splash.xpm.gz

title 2.6.16.11
 root (hd0,0)
 kernel /bzImage-2.6.16.11 root=/dev/sda2 vga=0x0305

title 2.6.16
 root (hd0,0)
 kernel /bzImage-2.6.16 root=/dev/sda2 vga=0x0305

title 2.6.17.11
 root (hd0,0)
 kernel /bzImage-2.6.17.11 root=/dev/sda2 vga=0x0305

After you save the file, reboot the system and ensure that the new kernel image’s
title comes up in the boot menu. Use the down arrow to highlight the new kernel
version, and press Enter to boot the new kernel image.

LILO

To let LILO know that a new kernel is present, you must modify the /etc/lilo.conf
configuration file and then run the lilo command to apply the changes made to
the configuration file. For full details on the structure of the LILO configuration
file, please see the LILO manpage:

$ man lilo

The easiest way to add a new kernel entry to the /etc/lilo.conf file is to copy an
existing entry. For example, consider the following LILO configuration file from a
Gentoo system:

boot=/dev/hda
prompt
timeout=50
default=2.6.12

image=/boot/bzImage-2.6.15
 label=2.6.15
 read-only
 root=/dev/hda2

image=/boot/bzImage-2.6.12
 label=2.6.12
 read-only
 root=/dev/hda2

34 | Chapter 5: Installing and Booting from a Kernel

The line starting with the word image= defines a new kernel entry, so this file
contains two entries. Simply copy one block of lines beginning with image=, such
as:

image=/boot/bzImage-2.6.15
 label=2.6.15
 read-only
 root=/dev/hda2

Then, add the block to the end of the file, and edit the version number to contain
the version number of the new kernel you just installed. The label does not
matter, so long as it is unique, but it is displayed in the boot menu, so you should
make it something meaningful. In our example, we installed the 2.6.17.11 kernel,
so the final copy of the file looks like:

boot=/dev/hda
prompt
timeout=50
default=2.6.12

image=/boot/bzImage-2.6.15
 label=2.6.15
 read-only
 root=/dev/hda2

image=/boot/bzImage-2.6.12
 label=2.6.12
 read-only
 root=/dev/hda2

image=/boot/bzImage-2.6.17
 label=2.6.17
 read-only
 root=/dev/hda2

After you save the file, run the /sbin/lilo program to write the configuration
changes out to the boot section of the disk:

/sbin/lilo

Now the system can be safely rebooted. The new kernel choice can be seen in the
list of kernels that are available at boot time. Use the down arrow to highlight the
new kernel version, and press Enter to boot the new kernel image.

35

Chapter 6Upgrading a Kernel

6
Upgrading a Kernel

Inevitably it happens: you have a custom-built kernel, working just wonderfully
except for one little thing that you know is fixed in the latest release from the
kernel developers. Or a security problem is found, and a new stable kernel release
is made public. Either way, you are faced with the issue of upgrading the kernel
and you do not want to lose all the time and effort that went into making that
perfect kernel configuration.

This chapter is going to show how easy it is to update a kernel from an older
versions, while still retaining all of the configuration options from the previous
one.

First off, please back up the .config file in the kernel source directory. You have
spent some time and effort into creating it, and it should be saved in case some-
thing goes wrong when trying to upgrade.

$ cd ~/linux/linux-2.6.17.11
$ cp .config ../good_config

Only five simple steps are needed to upgrade a kernel from a previously built one:

1. Get the new source code.

2. Apply the changes to the old source tree to bring it up to the newer level.

3. Reconfigure the kernel based on the previous kernel configuration.

4. Build the new kernel.

5. Install the new kernel.

The last two steps work the same as described before, so we will only discuss the
first three steps in this chapter.

In this chapter, we are going to assume that you have built a successful 2.6.17.9
kernel release, and want to upgrade to the 2.6.17.11 release.

36 | Chapter 6: Upgrading a Kernel

Download the New Source
The Linux kernel developers realize that users do not wish to download the entire
source code to the kernel for every update. That would be a waste of bandwidth
and time. Because of this, they offer a patch that can upgrade an older kernel
release to a newer one.*

On the main kernel.org web site, you will remember that it contained a list of the
current kernel versions that are available for download, as shown in Figure 6-1.

Previously, you used the link pointed to you by the F to download the entire
source code for the kernel. However, if you click on the name of the kernel
release, it will download a patch file instead, as shown in Figure 6-2.

* It is called patch because the program patch takes the file and applies it to the original tree, creat-
ing the new tree. The patch file contains a representation of the changes that are necessary to re-
construct the new files, based on the old ones. Patch files are readable, and contain a list of the
lines that are to be removed and the lines that are to be added, with some context within the file
showing where the changes should be made.

Figure 6-1. The main kernel.org web site

Download the New Source | 37

U
pgrading a

Kernel

This is what we want to do when upgrading. But we need to figure out what patch
to download.

Which Patch Applies to Which Release?

A kernel patch file will upgrade the source code from only one specific release to
another specific release. Here is how the different patch files can be applied:

• Stable kernel patches apply to the base kernel version. This means that the
2.6.17.10 patch will only apply to the 2.6.17 kernel release. The 2.6.17.10
kernel patch will not apply to the 2.6.17.9 kernel or any other release.

• Base kernel release patches only apply to the previous base kernel version.
This means that the 2.6.18 patch will only apply to the 2.6.17 kernel release.
It will not apply to the last 2.6.17.y kernel release, or any other release.

• Incremental patches upgrade from a specific release to the next release. This
allows developers to not have to downgrade their kernel and then upgrade it,
just to switch from the latest stable release to the next stable release (remem-
ber that the stable release patches are only against the base kernel, not the
previous stable release). Whenever possible, it is recommended that you use
the incremental patches to make your life easier.

Figure 6-2. Downloading a patch from kernel.org

38 | Chapter 6: Upgrading a Kernel

Finding the Patch

As we want to go from the 2.6.17.9 kernel release, to the 2.6.17.11 release, we will
need to download two different patches. We will need a patch from the 2.6.17.9
release to the 2.6.17.10 release, and then from the 2.6.17.10 release to the 2.6.17.11
release.*

The stable and base kernel patches are located in the same directory structure as
the main source trees. All incremental patches can be found one level lower, in the
incr subdirectory. So, to find the patch that goes from 2.6.17.9 to 2.6.17.10, we
look in the /pub/linux/kernel/v2.6/incr directory to find the files we need:†

$ cd ~/linux
$ lftp ftp.kernel.org/pub/linux/kernel/v2.6/incr
cd ok, cwd=/pub/linux/kernel/v2.6/incr
lftp ftp.kernel.org:/pub/linux/kernel/v2.6/incr> ls *2.6.17.9*.bz2
-rw-rw-r-- 1 536 536 2872 Aug 22 19:23 patch-2.6.17.9-10.
bz2
lftp ftp.kernel.org:/pub/linux/kernel/v2.6/incr> get patch-2.6.17.9-10.bz2
2872 bytes transferred
lftp ftp.kernel.org:/pub/linux/kernel/v2.6/incr> get patch-2.6.17.10-11.bz2
7901 bytes transferred
lftp ftp.kernel.org:/pub/linux/kernel/v2.6/incr> exit
$ ls -F
good_config linux-2.6.17.9/ patch-2.6.17.10-11.bz2 patch-2.6.17.9-10.bz2

Applying the Patch
As the patches we have downloaded are compressed, the first thing to do is
uncompress them with the bzip2 command:

$ bzip2 -dv patch-2.6.17.9-10.bz2
 patch-2.6.17.9-10.bz2: done
$ bzip2 -dv patch-2.6.17.10-11.bz2
 patch-2.6.17.10-11.bz2: done
$ ls -F
good_config linux-2.6.17.9/ patch-2.6.17.10-11 patch-2.6.17.9-10

Now we need to apply the patch files to the kernel directory. Go into the
directory:

$ cd linux-2.6.17.9

Now run the patch program to apply the first patch moving the source tree from
the 2.6.17.9 to the 2.6.17.10 release:

$ patch -p1 < ../patch-2.6.17.9-10

* If you need to upgrade more than two versions, it is recommended as a way to save steps, to go
backward and then upgrade forward. In this case, we could go backward from 2.6.17.9 to 2.6.17
and then forward from 2.6.17 to 2.6.17.11.

† In this example, we use the very good lftp FTP program to download the patch files. Any FTP pro-
gram or a web browser can be used to download the same files. The important thing here is to
show where the files are located.

Applying the Patch | 39

U
pgrading a

Kernel

patching file Makefile
patching file block/elevator.c
patching file fs/udf/super.c
patching file fs/udf/truncate.c
patching file include/net/sctp/sctp.h
patching file include/net/sctp/sm.h
patching file net/sctp/sm_make_chunk.c
patching file net/sctp/sm_statefuns.c
patching file net/sctp/socket.c

Verify that the patch really did work properly and that there are no errors or
warnings in the output of the patch program. It is also a good idea to look at the
Makefile of the kernel to see the kernel version:

$ head -n 5 Makefile
VERSION = 2
PATCHLEVEL = 6
SUBLEVEL = 17
EXTRAVERSION = .10
NAME=Crazed Snow-Weasel

Now that the kernel is at the 2.6.17.10 release level, do the same thing as before,
and apply the patch to bring it up to the 2.6.17.11 level:

$ patch -p1 < ../patch-2.6.17.10-11
patching file Makefile
patching file arch/ia64/kernel/sys_ia64.c
patching file arch/sparc/kernel/sys_sparc.c
patching file arch/sparc64/kernel/sys_sparc.c
patching file drivers/char/tpm/tpm_tis.c
patching file drivers/ieee1394/ohci1394.c
patching file drivers/md/dm-mpath.c
patching file drivers/md/raid1.c
patching file drivers/net/sky2.c
patching file drivers/pci/quirks.c
patching file drivers/serial/Kconfig
patching file fs/befs/linuxvfs.c
patching file fs/ext3/super.c
patching file include/asm-generic/mman.h
patching file include/asm-ia64/mman.h
patching file include/asm-sparc/mman.h
patching file include/asm-sparc64/mman.h
patching file kernel/timer.c
patching file lib/spinlock_debug.c
patching file mm/mmap.c
patching file mm/swapfile.c
patching file net/bridge/netfilter/ebt_ulog.c
patching file net/core/dst.c
patching file net/core/rtnetlink.c
patching file net/ipv4/fib_semantics.c
patching file net/ipv4/netfilter/arp_tables.c
patching file net/ipv4/netfilter/ip_tables.c
patching file net/ipv4/netfilter/ipt_ULOG.c
patching file net/ipv4/route.c
patching file net/ipx/af_ipx.c
patching file net/netfilter/nfnetlink_log.c

40 | Chapter 6: Upgrading a Kernel

Again verify that the output of the patch program did not show any errors and
look at the Makefile:

$ head -n 5 Makefile
VERSION = 2
PATCHLEVEL = 6
SUBLEVEL = 17
EXTRAVERSION = .11
NAME=Crazed Snow-Weasel

Now that the source code is successfully updated to the version you wish to use, it
is a good idea to go back and change the directory name to refer to the kernel
version number to avoid confusion at a later time:

$ cd ..
$ mv linux-2.6.17.9 linux-2.6.17.11
$ ls -F
good_config linux-2.6.17.11/ patch-2.6.17.10-11 patch-2.6.17.9-10

Reconfigure the Kernel
Previously, we used the make menuconfig or gconfig or xconfig method to change
different configuration options. But once you have a working configuration, the
only thing that is necessary is to update it with any new options that have been
added to the kernel since the last release. To do this, the make oldconfig and make
silentoldconfig options should be used.

make oldconfig takes the current kernel configuration in the .config file, and
updates it based on the new kernel release. To do this, it prints out all configura-
tion questions, and provides an answer for them if the option is already handled
in the configuration file. If there is a new option, the program stops and asks the
user what the new configuration value should be set to. After answering the
prompt, the program continues on until the whole kernel configuration is
finished.

make silentoldconfig works exactly the same way as oldconfig, but it does not print
anything to the screen, unless it needs to ask a question about a new configura-
tion option.

Usually, when upgrading between different versions of the stable releases, no new
configuration options are added, as this is supposed to be a stable kernel series. If
this happens, there are no new questions that need to be answered for the kernel
configuration, so the program continues successfully without any need for user
intervention. An example of this is moving from the 2.6.17.9 to 2.6.17.11 release:

$ cd linux-2.6.17.11
$ make silentoldconfig
scripts/kconfig/conf -s arch/i386/Kconfig
#
using defaults found in .config
#

Reconfigure the Kernel | 41

U
pgrading a

Kernel

The following example shows what happens when a new kernel option shows up
in a new release. The kernel option to enable Mutex debugging is a new one for
certain kernel releases. Here is the output when this happened:

$ make silentoldconfig
scripts/kconfig/conf -s arch/i386/Kconfig
#
using defaults found in .config
#
*
* Restart config...
*
*
* Kernel hacking
*
Show timing information on printks (PRINTK_TIME) [Y/n/?] y
Magic SysRq key (MAGIC_SYSRQ) [Y/n/?] y
Kernel debugging (DEBUG_KERNEL) [Y/n/?] y
 Kernel log buffer size (16 => 64KB, 17 => 128KB) (LOG_BUF_SHIFT) [16] 16
 Detect Soft Lockups (DETECT_SOFTLOCKUP) [Y/n/?] y
 Collect scheduler statistics (SCHEDSTATS) [N/y/?] n
 Debug slab memory allocations (DEBUG_SLAB) [Y/n/?] y
 Memory leak debugging (DEBUG_SLAB_LEAK) [Y/n] y
 Mutex debugging, deadlock detection (DEBUG_MUTEXES) [N/y/?] (NEW) y

The configuration program stops at this option and asks for the user to choose an
option. Press y, and the program continues on:

 Spinlock debugging (DEBUG_SPINLOCK) [Y/n/?] y
 Sleep-inside-spinlock checking (DEBUG_SPINLOCK_SLEEP) [Y/n/?] y
 kobject debugging (DEBUG_KOBJECT) [N/y/?] n
 Highmem debugging (DEBUG_HIGHMEM) [N/y/?] n
 Compile the kernel with debug info (DEBUG_INFO) [N/y/?] n
Debug Filesystem (DEBUG_FS) [Y/?] y
Debug VM (DEBUG_VM) [N/y/?] n
Compile the kernel with frame pointers (FRAME_POINTER) [N/y/?] n
Compile the kernel with frame unwind information (UNWIND_INFO) [N/y/?] n
Force gcc to inline functions marked 'inline' (FORCED_INLINING) [N/y/?] n
torture tests for RCU (RCU_TORTURE_TEST) [N/m/y/?] n
Check for stack overflows (DEBUG_STACKOVERFLOW) [N/y/?] n
Stack utilization instrumentation (DEBUG_STACK_USAGE) [N/y/?] n
Stack backtraces per line (STACK_BACKTRACE_COLS) [2] 2
*
* Page alloc debug is incompatible with Software Suspend on i386
*
Write protect kernel read-only data structures (DEBUG_RODATA) [N/y/?] n
Use 4Kb for kernel stacks instead of 8Kb (4KSTACKS) [N/y/?] n

So upgrading the kernel configuration for a new release is as simple as using a
different configuration option to make. With this method, you do not need to use
the graphical or text-oriented configuration programs for any new kernel update.

42 | Chapter 6: Upgrading a Kernel

Can’t This Be Automated?
The whole process of downloading the proper patch file, uncompressing it, and
then applying it seems to be ripe for automating. Kernel developers being the type
that like to automate repetitive tasks, the program ketchup has been created to
handle all of this automatically. See Appendix A for more details on how this
program works and how to use it.

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

II
Major Customizations

This part explains the most common customizations that Linux users perform,
and useful combinations of options to customize.

Chapter 7, Customizing a Kernel

Chapter 8, Kernel Configuration Recipes

45

Chapter 7Customizing a Kernel

7
Customizing a Kernel

One of the hardest parts of building your own version of the Linux kernel is deter-
mining exactly which drivers and configuration options are needed for your
machine to work properly. This chapter will walk you through this process of
finding and selecting the correct drivers.

Using a Distribution Kernel
One of the easiest ways to determine which modules are necessary is to start with
the kernel configuration that comes with your distribution’s kernel package. It is
also much easier to determine which drivers are needed on a running system,
where the proper drivers are already bound to the hardware.

If you do not already have a Linux distribution installed on the machine that you
are building the kernel for, use a LiveCD version of a distribution. This allows you
to boot Linux on the machine and determine what kernel configuration options
are needed in order to get the hardware working properly.

Where Is the Kernel Configuration?

Almost all distributions provide the kernel configuration files as part of the distri-
bution kernel package. Read the distribution-specific documentation for how to
find these configurations. It is usually somewhere below the /usr/src/linux/ direc-
tory tree.

If the kernel configuration is hard to find, look in the kernel itself. Most distribu-
tion kernels are built to include the configuration within the /proc filesystem. To
determine if this is true for your running kernel, enter:

$ ls /proc/config.gz
/proc/config.gz

46 | Chapter 7: Customizing a Kernel

If the /proc/config.gz filename is present, copy this file to your kernel source direc-
tory and uncompress it:

$ cp /proc/config.gz ~/linux/
$ cd ~/linux
$ gzip -dv config.gz
config.gz: 74.9% -- replaced with config

Copy this configuration file into your kernel directory and rename it to .config.
Then use it as the basis of the kernel configuration to build the kernel as described
in Chapter 4.

Using this configuration file should always generate a working kernel image for
your machine. The disadvantage of this kernel image is that you will have built
almost every kernel module and driver that is present in the kernel source tree.
This is almost never needed for a single machine, so you can start to turn off
different drivers and options that are not needed. It is recommended that you
disable only those options that you are sure you do not need, as there might be
parts of the system that rely on specific options being enabled.

Finding Which Module Is Needed

A configuration file that comes from a distribution takes a very long time to build,
because of all of the different drivers being built. You want to build only the
drivers for the hardware that you have, which will save time on building the
kernel, and allows you to build some or all of the drivers into the kernel itself,
possibly saving a bit of memory, and on some architectures, making for a faster
running system. To cut your drivers down, you need to determine which modules
are needed to drive your hardware. We will walk though two examples of how to
find out what driver is needed to control what piece of hardware.

Several locations on your system store useful information for determining which
devices are bound to which drivers in a running kernel. The most important loca-
tion is a virtual filesystem called sysfs. sysfs should always be mounted at the /sys
location in your filesystem by the initialization scripts of your Linux distribution.
sysfs provides a glimpse into how the different portions of the kernel are hooked
together, with many different symlinks pointing all around the filesystem.

In all of the following examples, real sysfs paths and hardware types are shown.
Your machine will be different, but the relative locations of information will be
the same. Do not be alarmed if the filenames in sysfs are different from your
machine; it is to be expected.

Additionally, the internal structure of the sysfs filesystem constantly changes
around, due to the reorganization of devices and rethinking by the kernel devel-
opers about how to best display internal kernel structures to userspace. Because of
this, over time, some of the symlinks previously mentioned in this chapter might
not be present. However, the information is all still there, just moved around a
little bit.

Using a Distribution Kernel | 47

Custom
izing a

Kernel

Example: Determining the network driver

One of the most common and important devices in the system is the network
interface card. It is imperative to figure out which driver is controlling this device
and enable it in your kernel configuration so that networking works properly.

First, work backward from the network connection name to find out which PCI
device is controlling it. To do this, look at the different network names:

$ ls /sys/class/net/
eth0 eth1 eth2 lo

The lo directory represents the network loopback device, and is not attached to
any real network device. The eth0, eth1, and eth2 directories are what you should
pay attention to, as they represent real network devices.

To look further at these network devices in order to figure out which you care
about, use the ifconfig utility:

$ /sbin/ifconfig -a
eth0 Link encap:Ethernet HWaddr 00:12:3F:65:7D:C2
 inet addr:192.168.0.13 Bcast:192.168.0.255 Mask:255.255.255.0
 UP BROADCAST NOTRAILERS RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:2720792 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1815488 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:3103826486 (2960.0 Mb) TX bytes:371424066 (354.2 Mb)
 Base address:0xdcc0 Memory:dfee0000-dff00000
eth1 Link encap:UNSPEC HWaddr 80-65-00-12-7D-C2-3F-00-00-00-00-00-00-
 00-00-00
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
eth2 Link encap:UNSPEC HWaddr 00-02-3C-04-11-09-D2-BA-00-00-00-00-00-
 00-00-00
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:60 errors:0 dropped:0 overruns:0 frame:0
 TX packets:60 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:13409 (13.0 Kb) TX bytes:13409 (13.0 Kb)

From this list, you can tell that the eth0 device is the network device that is active
and working, as can be seen by the lines:

eth0 Link encap:Ethernet HWaddr 00:12:3F:65:7D:C2
 inet addr:192.168.0.13 Bcast:192.168.0.255 Mask:255.255.255.0

48 | Chapter 7: Customizing a Kernel

The ouput shows this is an Ethernet device with valid IP (inet) address assigned
to it.

Now that we have determined that we want to make sure the eth0 device will be
working in our new kernel, we need to find which driver is controlling it. This is
simply a matter of walking the different links in the sysfs filesystem, which can be
done in a one-line command:

$ basename `readlink /sys/class/net/eth0/device/driver/module`
e1000

The output shows that the module named e1000 is controlling the eth0 network
device. The basename command shown compresses the following steps into a
single command line:

1. Follow the /sys/class/net/eth0/device symlink into the directory within the /sys/
device/ tree that contains the information for the device that controls eth0.
Note that the /sys/class/net/eth0 directory might also be a symlink on the
newer versions of the kernel.

2. Within the directory that describes the device in sysfs, there is a symlink to
the driver bound to this device. That symlink is called driver, so we follow
that link.

3. Within the directory that describes the driver in sysfs, there is a symlink to
the module that this driver is contained within. That symlink is called module.
We want the target of that symlink. To get the target, we use the readlink
command, which produces output such as:

$ readlink /sys/class/net/eth0/device/driver/module
../../../../module/e1000

4. Because we care only about the name of the module, we want to strip the rest
of the path off the output of the readlink command, and only save the right-
most portion. That is what the basename command does. Executed directly
on a pathname, it would produce:

$ basename ../../../../module/e1000
e1000

So we put the output of the long symlink traversal to the readlink location into the
basename program, enabling the whole process to be done in one line.

Now that we have the module name, we need to find the kernel configuration
option that controls it. You can look through the different network device config-
uration menus or search the kernel source code itself to make sure you have the
right option:

$ cd ~/linux/linux-2.6.17.8
$ find -type f -name Makefile | xargs grep e1000
./drivers/net/Makefile:obj-$(CONFIG_E1000) += e1000/
./drivers/net/e1000/Makefile:obj-$(CONFIG_E1000) += e1000.o
./drivers/net/e1000/Makefile:e1000-objs := e1000_main.o e1000_hw.o e1000_
ethtool.o e1000_param.o

Remember to replace the e1000 used for this example with the name of the
module that you are looking to find.

Using a Distribution Kernel | 49

Custom
izing a

Kernel

The important thing to look for in the output of the previous find command is any
line that has the term CONFIG_ in it. That is the configuration option that the
kernel needs to have enabled in order to build the module. In the above example,
the option CONFIG_E1000 is the configuration option that you are looking for.

Now you have the information you need to configure the kernel. Run the menu
configuration tool:

$ make menuconfig

Then press the / key (which initiates a search) and type in the configuration
option, minus the CONFIG_ portion of the string. This process is shown in
Figure 7-1.

The kernel configuration system will then tell you exactly where to select the
option to enable this module. See Figure 7-2.

The first item in the display exactly matches what you searched for. The location
information in the display tells you that to build the module E1000 into the kernel,
and the following configuration option must be enabled:

Device Drivers
 Network device support
 [*] Network device support

Figure 7-1. Searching in menuconfig

Figure 7-2. Result of searching in menuconfig

50 | Chapter 7: Customizing a Kernel

 Ethernet (1000 Mbit)
 [*] Intel(R) PRO/1000 Gigabit Ethernet support

These steps will work for any type of device active in the kernel.

Example: A USB device

As another example, let’s look at a USB-to-serial converter that is present in our
example system. It is currently connected to the /dev/ttyUSB0 port, so you need to
look in the sysfs tty section:

$ ls /sys/class/tty/ | grep USB
ttyUSB0

You can trace through sysfs for this device to find the controlling module, as
shown in the previous section:

$ basename `readlink /sys/class/tty/ttyUSB0/device/driver/module`
pl2303

Then search the kernel source tree to find the configuration option that you need
to enable:

$ cd ~/linux/linux-2.6.17.8
$ find -type f -name Makefile | xargs grep pl2303
./drivers/usb/serial/Makefile:obj-$(CONFIG_USB_SERIAL_PL2303) += pl2303.o

Use the kernel configuration tool, as shown in Figure 7-3, to find the proper
option to enable in order to set the CONFIG_USB_SERIAL_PL2303 option.

In our case, this displays the screen shown in Figure 7-4.

This shows exactly where to find the USB Prolific 2303 Single Port Serial Driver
option that is needed to control this device properly.

Summary of device discovery

In summary, here are the steps needed to find the driver for a device that has a
working driver already bound to it:

1. Find the proper sysfs class device that the device is bound to. Network
devices are listed in /sys/class/net and tty devices in /sys/class/tty. Other types
of devices are listed in other directories in /sys/class, depending on the type of
device.

Figure 7-3. Searching for USB_SERIAL_PL2303

Using a Distribution Kernel | 51

Custom
izing a

Kernel

2. Trace through the sysfs tree to find the module name that controls this
device. It will be found in the /sys/class/class_name/device_name/device/driver/
module, and can be displayed using the readlink and basename applications:

$ basename `readlink /sys/class/class_name/device_name/device/driver/
module`

3. Search the kernel Makefiles for the CONFIG_ rule that builds this module name
by using find and grep:

$ find -type f -name Makefile | xargs grep module_name

4. Search in the kernel configuration system for that configuration value and go
to the location in the menu that it specifies to enable that driver to be built.

Let the kernel tell us what we need

Now that we have gone through all of the steps of poking around in sysfs and
following symlinks to module names, here is a very simple script that will do all of
that work, in a different way:

#!/bin/bash
#
find_all_modules.sh
#
for i in `find /sys/ -name modalias -exec cat {} \;`; do
 /sbin/modprobe --config /dev/null --show-depends $i ;
done | rev | cut -f 1 -d '/' | rev | sort -u

You can download an example file containing this script from the book’s web site,
provided in the “How to Contact Us” section of the Preface.

This script goes through sysfs and finds all files called modalias. The modalias file
contains the module alias that tells the modprobe command which module should
be loaded to control this device. The module alias is made up of a combination of
device manufacturer, ID, class type, and other unique identifiers for that specific
type of device. All kernel driver modules have an internal list of devices that they

Figure 7-4. Result of searching for USB_SERIAL_PL2303

52 | Chapter 7: Customizing a Kernel

support that is generated automatically by the list of devices the driver tells the
kernel it supports. The modprobe looks through this list of devices by all drivers
and tries to match it up with the alias it has. If it finds a match, it will then load
the module (this procedure is how the automatic driver loading functionality in
Linux works).

The script has the modprobe program stop before actually loading the module,
and just print out what actions it would take. This gives us a list of all of the
modules that are needed to control all devices in the system. A little cleaning up of
the list, by sorting it and finding the proper field to display, results in this output:

$ find_all_modules.sh
8139cp.ko
8139too.ko
ehci-hcd.ko
firmware_class.ko
i2c-i801.ko
ieee80211.ko
ieee80211_crypt.ko
ipw2200.ko
mii.ko
mmc_core.ko
pcmcia_core.ko
rsrc_nonstatic.ko
sdhci.ko
snd-hda-codec.ko
snd-hda-intel.ko
snd-page-alloc.ko
snd-pcm.ko
snd-timer.ko
snd.ko
soundcore.ko
uhci-hcd.ko
usbcore.ko
yenta_socket.ko

This is a list of all of the modules that are needed to control the hardware in the
machine.

The script will also probably print out some error messages that look like:

FATAL: Module pci:v00008086d00002592sv000010CFsd000012E2bc03sc00i00 not
found.
FATAL: Module serio:ty01pr00id00ex00 not found.

Which means that it could not find a module that can control that device. Do not
be concerned about this, as some devices do not have kernel drivers that will work
for them.

Determining the Correct Module from Scratch
Sometimes you do not have the option of getting a distribution kernel working on
a machine in order to determine what kernel modules are needed to drive the
hardware. Or you have added new hardware to your system, and you need to

Determining the Correct Module from Scratch | 53

Custom
izing a

Kernel

figure out what kernel configuration option needs to be enabled to get it to work
properly. This section will help you determine how to find that configuration
option to get the hardware up and running.

The easiest way to figure out which driver controls a new device is to build all of
the different drivers of that type in the kernel source tree as modules, and let the
udev startup process match the driver to the device. Once this happens, you
should be able to work backwards using the steps just discussed to determine the
proper driver needed, and then go back and enable just that driver in the kernel
configuration.

But if you do not want to build all drivers, or this does not work for some reason,
it will require a bit more work to determine the proper driver that is needed. The
following steps are complex and require digging in the kernel source code at
times. Do not be afraid of this; it will only help you understand your hardware
and the kernel source better.

The steps involved in matching the driver to the device differ depending on the
type of device that you are working with. We will discuss the two most common
forms of devices in this chapter: PCI and USB devices. The methods described
here will also work with other types of devices.

Also, it is very important for the kernel to be able to find all of the filesystems in
the system, the most important one being the root filesystem. We will go into how
to do this later in “Root Filesystem.”

PCI Devices

PCI devices are distinguished by vendor ID and device ID; each combination of
vendor and device ID could require a unique driver. This is the basis for the
research this section shows you.

For this example, let’s use a PCI network card that is not working with the
currently running kernel version. This example will be different from your situa-
tion, with different PCI device and bus ID values, but the steps involved should be
relevant to any type of PCI device you wish to find a working driver for.

First, find the PCI device in the system that is not working. To get a list of all PCI
devices, use the lspci program. Because we care only about Ethernet PCI devices,
we will narrow our search of the PCI devices by searching only for strings
containing the term Ethernet (case-insensitive):

$ /usr/sbin/lspci | grep -i ethernet
06:04.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL-8139/
8139C/8139C+ (rev 10)

This is the device we wish to get working.*

* Note that you can just try searching through the kernel configuration for a device that matches
the string described here, a device from Realtek Semiconductor with a product name of RTL-
8139/8139C/8139C+, but this does not always work. That is why we are taking the long way
around in this chapter.

54 | Chapter 7: Customizing a Kernel

Almost all distributions place the lspci program in the /usr/sbin/
directory, but some place it in other locations. To find out where it
is located, enter:

$ which lspci
/usr/sbin/lspci

If you are using a distribution that puts it somewhere else, please use that path
whenever we discuss using lspci.

The first few bits of the lspci output show the PCI bus ID for this device, 06:04.0.
That is the value we will use when looking through sysfs in order to find out more
information about this device.

Go into sysfs where all of the different PCI devices are listed, and look at their
names:

$ cd /sys/bus/pci/devices/
$ ls
0000:00:00.0 0000:00:1d.0 0000:00:1e.0 0000:00:1f.3 0000:06:03.3
0000:00:02.0 0000:00:1d.1 0000:00:1f.0 0000:06:03.0 0000:06:03.4
0000:00:02.1 0000:00:1d.2 0000:00:1f.1 0000:06:03.1 0000:06:04.0
0000:00:1b.0 0000:00:1d.7 0000:00:1f.2 0000:06:03.2 0000:06:05.0

The kernel numbers PCI devices with a leading 0000: that do not show up in the
output of the lspci program.* So add the leading 0000: onto the number that you
found using lspci and go into that directory:

$ cd 0000:06:04.0

In this directory, you want to know the values of the vendor and device filenames:

$ cat vendor
0x10ec
$ cat device
0x8139

These are the vendor and device IDs for this PCI device. The kernel uses these
values to match a driver to a device properly. PCI drivers tell the kernel which
vendor and device IDs they will support so that the kernel knows how to bind the
driver to the proper device. Write them down somewhere, as we will refer to them
later.

Now that we know the vendor and product ID for this PCI device, we need to find
the proper kernel driver that advertises that it supports this device. Go back to the
kernel source directory:

$ cd ~/linux/linux-2.6.17.8/

The most common location for PCI IDs in the kernel source tree is include/linux/
pci_ids.h. Search that file for our vendor product number:

$ grep -i 0x10ec include/linux/pci_ids.h
#define PCI_VENDOR_ID_REALTEK 0x10ec

* Some 64-bit processors will show the leading bus number for PCI devices in the output of lspci,
but for the majority of the common Linux machines, it will not show up by default.

Determining the Correct Module from Scratch | 55

Custom
izing a

Kernel

The defined value here, PCI_VENDOR_ID_REALTEK is what will probably be used in
any kernel driver that purports to support devices from this manufacturer.

To be safe, also look in this file for our device ID, as it is also sometimes described
there:

$ grep -i 0x8139 include/linux/pci_ids.h
#define PCI_DEVICE_ID_REALTEK_8139 0x8139

That definition will be useful later.

Now look for driver source files referring to this vendor definition:

$ grep -Rl PCI_VENDOR_ID_REALTEK *
include/linux/pci_ids.h
drivers/net/r8169.c
drivers/net/8139too.c
drivers/net/8139cp.c

We don’t need to look at the first file listed here, pci_ids.h, because that is where
we found the original definition. But the files r8139.c, 8139too.c, and 8169cp.c in
the drivers/net/ subdirectory should be examined more closely.

Open one of these files in an editor and search for PCI_VENDOR_ID_REALTEK. In the
file drivers/net/r8169.c, it shows up in this section of code:

static struct pci_device_id rtl8169_pci_tbl[] = {
 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8169), },
 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8129), },
 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4300), },
 { PCI_DEVICE(0x16ec, 0x0116), },
 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0024, },
 {0,},
};

All PCI drivers contain a list of the different devices that they support. That list is
contained in a structure of struct pci_device_id values, just like this one. That is
what we need to look at in order to determine whether our device is supported by
this driver. The vendor value matches here, but the second value after the vendor
is the device value. Our device has the value 0x8139, while this driver supports the
device values of 0x8169 and 0x8129 for devices with the vendor ID of PCI_VENDOR_
ID_REALTEK. So this driver will not support our device.

Moving on to the next file, drivers/net/8139too.c, we find the string PCI_VENDOR_
ID_REALTEK in the following bit of code:

if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pci_rev >= 0x20) {
 dev_info(&pdev->dev,
 "This (id %04x:%04x rev %02x) is an enhanced 8139C+ chip\n",
 pdev->vendor, pdev->device, pci_rev);
 dev_info(&pdev->dev,
 "Use the \"8139cp\" driver for improved performance and
stability.\n");
}

56 | Chapter 7: Customizing a Kernel

The use of the PCI_VENDOR_ID_REALTEK value here also corresponds with the code
that checks whether the PCI device ID matches the PCI_DEVICE_ID_REALTEK_8139
value. If it does, the driver is to print out a message that says: “Use the 8139cp
driver for improved performance and stability.” Perhaps we should look at that
driver next. Even if we did not have such a visible clue, the 8139too.c driver does
not have the vendor and device ID pair that we are looking for in a struct pci_
device_id variable, so that gives us the clue that it will not support our device.

Finally, look at the drivers/net/8139cp.c file. It uses the PCI_VENDOR_ID_REALTEK
definition in the following code segment:

static struct pci_device_id cp_pci_tbl[] = {
 { PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139,
 PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
 { PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322,
 PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
 { },
};
MODULE_DEVICE_TABLE(pci, cp_pci_tbl);

Here is a use of both our vendor and device ID values in a struct pci_device_id
variable. This driver should support our device.

Now that we have the driver name, we can work backward, as shown in the first
section in this chapter, to find the proper kernel configuration value that should
be enabled to build this driver.

In summary, here are the steps needed in order to find which PCI driver can
control a specific PCI device:

1. Find the PCI bus ID of the device for which you want to find the driver, using
lspci.

2. Go into the /sys/bus/pci/devices/0000:bus_id directory, where bus_id is the
PCI bus ID found in the previous step.

3. Read the values of the vendor and device files in the PCI device directory.

4. Move back to the kernel source tree and look in include/linux/pci_ids.h for the
PCI vendor and device IDs found in the previous step.

5. Search the kernel source tree for references to those values in drivers. Both
the vendor and device ID should be in a struct pci_device_id definition.

6. Search the kernel Makefiles for the CONFIG_ rule that builds this driver by
using find and grep:

$ find -type f -name Makefile | xargs grep DRIVER_NAME

7. Search in the kernel configuration system for that configuration value and go
to the location in the menu that it specifies to enable that driver to be built.

USB Devices

Finding the specific driver for a USB device is much like finding the driver for a
PCI device as described in the previous section, with only minor differences in
finding the bus ID values.

Determining the Correct Module from Scratch | 57

Custom
izing a

Kernel

In this example, let’s find the driver that is needed for a USB wireless device. As
with the PCI device example, the details in this example will be different from
your situation, but the steps involved should be relevant to any type of USB device
for which you wish to find a working driver.

As with the PCI device, the bus ID must be found for the USB device you wish to
find the driver for. To do this, you can use the lsusb program that comes in the
usbutils package.

The lsusb program shows all USB devices attached to the system. As you do not
know what the specific device you’re looking for is called, start by looking at all
devices:

$ /usr/sbin/lsusb
Bus 002 Device 003: ID 045e:0023 Microsoft Corp. Trackball Optical
Bus 002 Device 001: ID 0000:0000
Bus 005 Device 003: ID 0409:0058 NEC Corp. HighSpeed Hub
Bus 005 Device 001: ID 0000:0000
Bus 004 Device 003: ID 157e:300d
Bus 004 Device 002: ID 045e:001c Microsoft Corp.
Bus 004 Device 001: ID 0000:0000
Bus 003 Device 001: ID 0000:0000
Bus 001 Device 001: ID 0000:0000

The devices with an ID of 0000:0000 can be ignored, as they are USB host control-
lers that drive the bus itself. Filtering them away leaves us with four devices:

$ /usr/sbin/lsusb | grep -v 0000:0000
Bus 002 Device 003: ID 045e:0023 Microsoft Corp. Trackball Optical
Bus 005 Device 003: ID 0409:0058 NEC Corp. HighSpeed Hub
Bus 004 Device 003: ID 157e:300d
Bus 004 Device 002: ID 045e:001c Microsoft Corp.

Because USB devices are easy to remove, unplug the device you want to find the
driver for and run lsusb again:

$ /usr/sbin/lsusb | grep -v 0000:0000
Bus 002 Device 003: ID 045e:0023 Microsoft Corp. Trackball Optical
Bus 005 Device 003: ID 0409:0058 NEC Corp. HighSpeed Hub
Bus 004 Device 002: ID 045e:001c Microsoft Corp.

The third device is now missing, which means the device shown as:

Bus 004 Device 003: ID 157e:300d

is the device you want to find the driver for.

If you replace the device and look at the output of lsusb again, the device number
will have changed:

$ /usr/sbin/lsusb | grep 157e
Bus 004 Device 004: ID 157e:300d

This is because the USB device numbers are not unique, but change every time a
device is plugged in. What is stable is the vendor and product ID, shown here by
lsusb as two four-digit values with a : between them. For this device, the vendor
ID is 157e and the product ID is 300d. Write down the values you find, as you will
use them in future steps.

58 | Chapter 7: Customizing a Kernel

As with the PCI device, we will search the kernel source code for the USB vendor
and product IDs in order to find the proper driver to control this device. Unfortu-
nately, no single file contains all of the USB vendor IDs, as PCI has. So a search of
the whole kernel source tree is necessary:

$ grep -i -R -l 157e drivers/*
drivers/atm/pca200e.data
drivers/atm/pca200e_ecd.data
drivers/atm/sba200e_ecd.data
drivers/net/wireless/zd1211rw/zd_usb.c
drivers/scsi/ql1040_fw.h
drivers/scsi/ql1280_fw.h
drivers/scsi/qlogicpti_asm.c

We know this is a USB wireless device, and not an ATM or SCSI device, so we can
safely ignore the files found in the atm and scsi directories. That leaves the drivers/
net/wireless/zd1211rw/zd_usb.c filename to investigate.

zd_usb.c shows the string 157e in the following chunk of code:

static struct usb_device_id usb_ids[] = {
 /* ZD1211 */
 { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
 { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
 { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
 { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
 { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
 { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
 /* ZD1211B */
 { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
 { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
 {}
};

Like PCI drivers, USB drivers tell the kernel what devices they support in order for
the kernel to bind the driver to the device. This is done by using a struct usb_
device_id variable, as shown here. This is a list of the different vendor and
product IDs that are supported by this driver. The line:

 { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },

shows that our vendor and product IDs are supported by this driver.

Once you have the driver name that is necessary to control this device, work back-
ward through the kernel Makefiles, as described earlier in the chapter, to
determine how to enable this driver to be built properly.

In summary, the steps needed in order to find which USB driver will control a
specific USB device are:

1. Find the USB vendor and product ID of device for which you want to find the
driver, using lsusb after adding and then removing the device to see what
changes in the list.

2. Search the kernel source tree for the vendor and product ID of the USB
device. Both the vendor and product ID should be in a struct usb_device_id
definition.

Determining the Correct Module from Scratch | 59

Custom
izing a

Kernel

3. Search the kernel Makefiles for the CONFIG_ rule that builds this driver by
using find and grep:

$ find -type f -name Makefile | xargs grep DRIVER_NAME

4. Search in the kernel configuration system for that configuration value and go
to the location in the menu that it specifies to enable that driver to be built.

Root Filesystem

The root filesystem is the filesystem from which the main portion of the running
system boots. It contains all of the initial programs that start up the distro, and
also usually contains the entire system configuration for the machine. In short, it
is very important, and must be able to be found by the kernel at boot time in
order for things to work properly.

If your newly configured kernel dies at boot time with an error such as:

VFS: Cannot open root device hda2 (03:02)
Please append a correct "root=" boot option
Kernal panic: VFS: Unable to mount root fs on 03:02

then the root filesystem wasn’t found. If you are not using a ramdisk image at
boot time, it is usually recommended that you build both the filesystem that you
use for your root partition, and the disk controller for that disk, into the kernel,
instead of having it as a module. If you use a ramdisk at boot time, you should be
safe building these portions as modules.

How can you determine whether you are using a ramdisk at boot
time? In Chapter 5 we mention using the distribution installation
script to install the kernel versus doing the installation on your
own. If you are using the distribution installation script, you are
probably using a ramdisk. If you are installing it on your own, you
are probably not.

The following subsections show how to let the kernel find the root filesystem
during boot.

Filesystem type

First, the type of filesystem that the root partition is using needs to be deter-
mined. To do that, look in the output of the mount command:

$ mount | grep " / "
/dev/sda2 on / type ext3 (rw,noatime)

We are interested in the type of the filesystem, which is shown after the word
type. In this example, it is ext3. This is the type of filesystem that the root parti-
tion is using. Go into the kernel configuration system and make sure that this
filesystem type is enabled, as described in Chapter 8.

60 | Chapter 7: Customizing a Kernel

Disk controller

In the output of the mount command shown earlier, the first portion of the line
shows which block device the root filesystem is mounted on. In this example,
it’s /dev/sda2. Now that the filesystem is configured properly in your kernel, you
must also make sure that this block device will also work correctly. To find out
which drivers are needed for this, you need to look at sysfs again.

All block devices show up in sysfs in either /sys/block or in /sys/class/block,
depending on the version of the kernel you are using. In either location, the block
devices are a tree, with the different partitions being children of the main device:

$ tree -d /sys/block/ | egrep "hd|sd"
|-- hdc
|-- hdd
`-- sda
 |-- sda1
 |-- sda2
 |-- sda3

Given the information in the mount command, you need to ensure that the sda2
device is configured properly. Because this is a partition (disk partitions are
numbered, while main block devices are not), the whole sda device must be
configured. (Without the main block device, there is no way to access the indi-
vidual partitions on that device.)

The sda block device is represented just like the network device we looked at
earlier in this chapter. There is a symlink in the device’s directory called device
that points to the logical device that controls this block device:

$ ls -l /sys/block/sda
 ...
device -> ../../devices/pci0000:00/0000:00:1f.2/host0/target0:0:0/0:0:0:0
 ...

Now you need to start walking up the chain of devices in sysfs to find out which
driver is controlling this device:

$ ls -l /sys/devices/pci0000:00/0000:00:1f.2/host0/target0:0:0/0:0:0:0
 ...
driver -> ../../../../../../bus/scsi/drivers/sd
 ...

Here we see that the SCSI disk controller driver is responsible for making this
device work. So we know we need to configure SCSI disk support into our kernel
configuration.

Continuing up the directory chain in sysfs, try to find where the driver is that
controls the hardware:

$ ls -l /sys/devices/pci0000:00/0000:00:1f.2/host0/target0:0:0
 ...

There is no link called driver in this directory, so go back up one more level:

$ ls -l /sys/devices/pci0000:00/0000:00:1f.2/host0
 ...

Again, no driver here. Continuing on up one more level:

Determining the Correct Module from Scratch | 61

Custom
izing a

Kernel

$ ls -l /sys/devices/pci0000:00/0000:00:1f.2
 ...
driver -> ../../../bus/pci/drivers/ata_piix
 ...

There! This is the disk controller we need to ensure is in our kernel configuration.

So for this root filesystem, we need to enable the ext3, sd, and ata_piix drivers in
our kernel configuration so that we will be able to successfully boot our kernel on
this hardware.

Helper Script

As mentioned near the beginning of this chapter, files and directories within sysfs
change from one release of the kernel to another. Here is a script that is handy in
determining the needed kernel driver and module module name for any device
node in the system. It has been developed with the kernel developers responsible
for sysfs and should successfully work on all future versions of the 2.6 kernel.

For instance, it makes short work of the previous example, when you had to get
all of the proper drivers for the sda block device:

$ get-driver.sh sda
looking at sysfs device: /sys/devices/pci0000:00/0000:00:1f.2/host0/
target0:0:0/0:0:0:0
found driver: sd
found driver: ata_piix

I can also find all of the proper drivers needed for complex things such as USB-to-
serial devices:

$ get-driver.sh ttyUSB0
looking at sysfs device: /sys/devices/pci0000:00/0000:00:1d.3/usb4/4-2/4-2.
3/4-2.3:1.0/ttyUSB0
found driver: pl2303 from module: pl2303
found driver: pl2303 from module: pl2303
found driver: usb from module: usbcore
found driver: usb from module: usbcore
found driver: usb from module: usbcore
found driver: uhci_hcd from module: uhci_hcd

You can download an example file containing this script from the book’s web site,
provided in the “How to Contact Us” section of the Preface.

The script follows:

#!/bin/sh
#
Find all modules and drivers for a given class device.
#
if [$# != "1"] ; then
 echo
 echo "Script to display the drivers and modules for a specified sysfs
class device"
 echo "usage: $0 <CLASS_NAME>"
 echo
 echo "example usage:"

62 | Chapter 7: Customizing a Kernel

 echo " $0 sda"
 echo "Will show all drivers and modules for the sda block device."
 echo
 exit 1
fi
DEV=$1
if test -e "$1"; then
 DEVPATH=$1
else
 # find sysfs device directory for device
 DEVPATH=$(find /sys/class -name "$1" | head -1)
 test -z "$DEVPATH" && DEVPATH=$(find /sys/block -name "$1" | head -1)
 test -z "$DEVPATH" && DEVPATH=$(find /sys/bus -name "$1" | head -1)
 if ! test -e "$DEVPATH"; then
 echo "no device found"
 exit 1
 fi
fi
echo "looking at sysfs device: $DEVPATH"
if test -L "$DEVPATH"; then
 # resolve class device link to device directory
 DEVPATH=$(readlink -f $DEVPATH)
 echo "resolve link to: $DEVPATH"
fi
if test -d "$DEVPATH"; then
 # resolve old-style "device" link to the parent device
 PARENT="$DEVPATH";
 while test "$PARENT" != "/"; do
 if test -L "$PARENT/device"; then
 DEVPATH=$(readlink -f $PARENT/device)
 echo "follow 'device' link to parent: $DEVPATH"
 break
 fi
 PARENT=$(dirname $PARENT)
 done
fi
while test "$DEVPATH" != "/"; do
 DRIVERPATH=
 DRIVER=
 MODULEPATH=
 MODULE=
 if test -e $DEVPATH/driver; then
 DRIVERPATH=$(readlink -f $DEVPATH/driver)
 DRIVER=$(basename $DRIVERPATH)
 echo -n "found driver: $DRIVER"
 if test -e $DRIVERPATH/module; then
 MODULEPATH=$(readlink -f $DRIVERPATH/module)
 MODULE=$(basename $MODULEPATH)
 echo -n " from module: $MODULE"
 fi
 echo
 fi
 DEVPATH=$(dirname $DEVPATH)
done

63

Chapter 8Kernel Configuration Recipes

8
Kernel Configuration Recipes

Previous chapters taught the mechanics of reconfiguring the kernel; the payoff
comes in this chapter where you can find all the most common kinds of changes
people need to make to their kernels, with specific instructions on how to do so.

Disks
The Linux kernel supports a wide range of different disk types. This section shows
how to configure the kernel so that it supports most of the more common types of
disk controllers.

USB Storage

To use a USB storage device (commonly referred to as USB “flash” device, or an
external USB disk drive) USB support must be first working properly. Refer to the
recipe in the section called “USB” for how to do this.

A USB storage device can be identified by using the lsusb program. If the following
command sequence produces the results shown, a USB storage device is present
on the system:

$ /usr/sbin/lsusb -v | grep Storage
 bInterfaceClass 8 Mass Storage

Enable it as follows.

1. A USB Storage device is in reality a USB SCSI device that talks over a USB
connection. Because of this, the SCSI subsystem must be enabled:

Device Drivers
 SCSI Device Support
 [*] SCSI Device Support

64 | Chapter 8: Kernel Configuration Recipes

2. Also in the SCSI system, the “SCSI disk support” must be enabled in order
for the device to be mounted properly:

Device Drivers
 SCSI Device Support
 [*] SCSI disk support

3. Enable USB Storage support:
Device Drivers
 USB Support
 [M] USB Mass Storage support

A number of specific USB storage devices are listed as separate configuration
items, as they do not follow the standard USB specification and require special
code. If you have one of these devices, please enable support for them.

IDE Disks

IDE disks are the most common type of PC disks. The device that enables them to
work properly is an IDE disk controller. To determine whether you have a IDE
disk controller on the system, use the lspci command in the following manner:*

$ /usr/sbin/lspci | grep IDE
00:1f.1 IDE interface: Intel Corporation 82801EB/ER (ICH5/ICH5R) IDE
Controller (rev 02)
00:1f.2 IDE interface: Intel Corporation 82801EB (ICH5) SATA Controller (rev
02)

Note that your response will probably not be identical; what is important is that
the command shows some an IDE controller (the first device in the previous
example.) If you find only SATA controllers, please see the next section “Serial
ATA (SATA).” Now perform the following steps.

1. Enable PCI support for the kernel:
Bus options (PCI, PCMCIA, EISA, MCA, ISA)
 [*] PCI Support

2. Enable the IDE subsystem, and IDE support:
Device Drivers
 [*] ATA/ATAPI/MFM/RLL support
 [*] Enhanced IDE/MFM/RLL disk/cdrom/tape/floppy support

3. In the ATA system, the specific type of IDE controller that you have must be
enabled in order for it to work properly. To provide a good backup in case
you choose the wrong type, select the “generic” IDE controller:

Device Drivers
 ATA/ATAPI/MFM/RLL support
 [*] generic/default IDE chipset support

* Almost all distributions place the lspci program in the /usr/sbin/ directory, but some place it in
other locations. To find out where it is located, enter:

$ which lspci
/usr/sbin/lspci

If you are using a distribution that puts it somewhere else, please use that path for whenever we
discuss using lspci.

Disks | 65

Kernel
Configuration

4. Enable the different PCI IDE controllers:
Device Drivers
 ATA/ATAPI/MFM/RLL support
 [*] PCI IDE chipset support

This opens up a lengthy submenu of the different IDE controller types. Select the
proper one based on the name of the device you found in the lspci step.

Serial ATA (SATA)

SATA is a type of disk controller that is the successor to the IDE disk controller.
To determine if you have a SATA disk controller on the system, run the following
command:

$ /usr/sbin/lspci | grep SATA
00:1f.2 IDE interface: Intel Corporation 82801EB (ICH5) SATA Controller (rev
02)

Note that your response will probably not be identical; what is important is that
the command shows some SATA devices.

SATA disks use a kernel library called libata that handles most of the SATA-
specific functionality. That library uses the SCSI layer to talk to the block layer, so
several different kernel options need to be enabled in order for SATA disks to
work properly.

1. Enable PCI support for the kernel:
Bus options (PCI, PCMCIA, EISA, MCA, ISA)
 [*] PCI Support

2. Enable the SCSI subsystem:
Device Drivers
 SCSI Device Support
 [*] SCSI Device Support

3. Also in the SCSI system, the SCSI disk support option must be enabled in
order for the device to be mounted properly:

Device Drivers
 SCSI Device Support
 [*] SCSI disk support

4. The SATA options are under the “SCSI low-level drivers” section:
Device Drivers
 SCSI Device Support
 SCSI low-level drivers
 [*] Serial ATA (SATA) support

5. In that section, enable the specific SATA controller type that you have. Look
at the output of the previously mentioned lspci command for a list of the
types of SATA controllers that are present on your system. For example, most
motherboards from Intel require the PIIX/ICH SATA driver (as the previous
example showed):

Device Drivers
 SCSI Device Support
 SCSI low-level drivers

66 | Chapter 8: Kernel Configuration Recipes

 [*] Serial ATA (SATA) support
 [*] Intel PIIX/ICH SATA support

Burning a CD-ROM

Burning a CD-ROM is very simple on Linux. If your kernel can support reading
from a CD-ROM, it can also support burning a CD-ROM. There are two ways to
enable CD-ROM support in Linux, one for IDE drives and one for SCSI and
SATA drives.

IDE CD-ROM drives

IDE CD-ROM drives are controlled by the same IDE controller as your main IDE
disk drives. Make sure the IDE controller is properly supported as described
earlier in “IDE Disks.” If it is properly supported, only one other configuration
item needs to be selected:

Device Drivers
 [*] ATA/ATAPI/MFM/RLL support
 [*] Enhanced IDE/MFM/RLL disk/cdrom/tape/floppy support
 [M] Include IDE/ATAPI CDROM support

SCSI and SATA CD-ROM drives

SATA and SCSI CD-ROM drives are controlled by the same controller as your
main disk drives. Make sure the SATA or SCSI controller is properly supported.
For SATA disks, see the earlier section “Serial ATA (SATA).”

To support SATA or SCSI CD-ROM drives, the SCSI CD-ROM driver must be
enabled:

Device Drivers
 SCSI Device Support
 [*] SCSI CDROM support

Once that is enabled, the SATA or SCSI CD-ROM drive should work properly.

Devices
Linux supports a vast range of different types of devices (more than any other
operating system ever has). This section shows how to enable some of the more
common types.

USB

Linux supports many different types of USB devices. To enable USB support, you
must first enable support for a USB controller, which drives the USB connection
on the machine.

To determine if your machine has a USB controller, and which type it is, run the
following command:

Devices | 67

Kernel
Configuration

$ /usr/sbin/lspci | grep USB
00:1d.0 USB Controller: Intel Corporation 82801EB/ER (ICH5/ICH5R) USB UHCI
Controller #1 (rev 02)
00:1d.1 USB Controller: Intel Corporation 82801EB/ER (ICH5/ICH5R) USB UHCI
Controller #2 (rev 02)
00:1d.2 USB Controller: Intel Corporation 82801EB/ER (ICH5/ICH5R) USB UHCI
Controller #3 (rev 02)
00:1d.3 USB Controller: Intel Corporation 82801EB/ER (ICH5/ICH5R) USB UHCI
Controller #4 (rev 02)
00:1d.7 USB Controller: Intel Corporation 82801EB/ER (ICH5/ICH5R) USB2 EHCI
Controller (rev 02)

Note that your response will probably not be identical; what is important is that
the command shows some USB controllers.

1. Enable PCI support for the kernel:
Bus options (PCI, PCMCIA, EISA, MCA, ISA)
 [*] PCI Support

2. Enable USB support for the kernel:
Device Drivers
 USB Support
 [M] Support for Host-side USB

3. Enable the specific USB Host controllers for your machine (it is safe to enable
them all if you do not know which you have):

Device Drivers
 USB Support
 --- USB Host Controller Drivers
 [M] EHCI HCD (USB 2.0) support
 [M] OHCI HCD support
 [M] UHCI HCD (most Intel and VIA) support

4. Individual USB devices also need their drivers to be enabled. A large majority
of them are under the main USB driver section:

Device Drivers
 USB Support

But some devices, such as USB video and DVB and sound, are listed in the
section controlling all of these types of devices. For example, the USB sound
driver can be found under the Sound menu:

Device drivers
 Sound
 [*] Sound card support
 [*] Advanced Linux Sound Architecture
 USB Devices
 [M] USB Audio/MIDI driver

If you want to insert USB storage devices (USB flash), look now at the section
called “USB Storage,” at the beginning of this chapter.

68 | Chapter 8: Kernel Configuration Recipes

IEEE 1394 (FireWire)

IEEE 1394 is commonly known by the name FireWire, the name by which Apple
Computer publicized it. IEEE 1394 is a high-speed bus that connects external
devices, much as USB does.

To determine whether your machine has a FireWire controller and which type it
is, run the following command:

$ /usr/sbin/lspci | grep FireWire
06:0c.0 FireWire (IEEE 1394): Texas Instruments TSB43AB22/A IEEE-1394a-2000
Controller (PHY/Link)
06:0d.2 FireWire (IEEE 1394): Creative Labs SB Audigy FireWire Port (rev 04)

Note that your response will probably not be identical; what is important is that
the command shows some FireWire controllers.

1. Enable PCI support for the kernel:
Bus options (PCI, PCMCIA, EISA, MCA, ISA)
 [*] PCI Support

2. Enable IEEE 1394 support for the kernel:
Device Drivers
 IEEE 1394 (FireWire) support
 [*] IEEE 1394 (FireWire) support

3. Enable the specific type of FireWire host controller you have:
Device Drivers
 IEEE 1394 (FireWire) support
 [*] IEEE 1394 (FireWire) support
 --- Device Drivers
 [M] Texas Instruments PCILynx support
 [M] OHCI-1394 support

4. Finally, enable the specific type of FireWire devices you have:
Device Drivers
 IEEE 1394 (FireWire) support
 [*] IEEE 1394 (FireWire) support
 --- Protocol Drivers
 [M] OHCI-1394 Video support
 [M] SBP-2 support (Harddisks etc.)
 [] Enable Phys DMA support for SBP2 (Debug)
 [M] Ethernet over 1394
 [M] OHCI-DV I/O support
 [M] Raw IEEE1394 I/O support

PCI Hotplug

PCI hotplug systems are becoming more popular with the use of ExpressCard and
laptop docking stations.

To determine whether your machine has an ExpressCard controller, look at the
hardware to see whether an ExpressCard card can be plugged into it.

Devices | 69

Kernel
Configuration

1. Enable PCI support for the kernel:
Bus options (PCI, PCMCIA, EISA, MCA, ISA)
 [*] PCI Support

2. Enable PCI hotplug support for the kernel:
Bus options (PCI, PCMCIA, EISA, MCA, ISA)
 [*] PCI Support
 PCI Hotplug Support
 [M] Support for PCI Hotplug (EXPERIMENTAL)

3. There is a wide range of different types of PCI hotplug controllers. For most
laptops and for ExpressCard support, enable the ACPI controller:

Bus options (PCI, PCMCIA, EISA, MCA, ISA)
 [*] PCI Support
 PCI Hotplug Support
 [M] Support for PCI Hotplug (EXPERIMENTAL)
 [M] ACPI PCI Hotplug driver

4. Also enable the PCI Express controller:
Bus options (PCI, PCMCIA, EISA, MCA, ISA)
 [*] PCI Support
 [*] PCI Express Support
 [M] PCI Express Hotplug driver

PCMCIA/CardBus

PCMCIA and CardBus device support is in almost every laptop manufactured.
Newer laptops, however, are switching to the ExpressCard format (see the PCI
Hotplug recipe in the previous section, “PCI Hotplug”).

To determine whether your machine has a PCMCIA controller, look at the hard-
ware to see whether a PCMCIA card can be plugged into it.

1. Enable PCI support for the kernel:
Bus options (PCI, PCMCIA, EISA, MCA, ISA)
 [*] PCI Support

2. Enable PCCARD support for the kernel:
Bus options (PCI, PCMCIA, EISA, MCA, ISA)
 PCCARD (PCMCIA/CardBus) support
 [M] PCCard (PCMCIA/CardBus) support

3. Enable both PCMCIA and CardBus support to cover the widest range of
devices:

Bus options (PCI, PCMCIA, EISA, MCA, ISA)
 PCCARD (PCMCIA/CardBus) support
 [M] PCCard (PCMCIA/CardBus) support
 [M] 16-bit PCMCIA support
 [*] 32-bit CardBus support

Enable the card bridge type for your laptop. The most common one is the
“yenta-like” controller:

Bus options (PCI, PCMCIA, EISA, MCA, ISA)
 PCCARD (PCMCIA/CardBus) support
 [M] PCCard (PCMCIA/CardBus) support

70 | Chapter 8: Kernel Configuration Recipes

 [M] CardBus yenta-compatible bridge support
 [] Cirrus PD6729 compatible bridge support
 [] i82092 compatible bridge support
 [] i82365 compatible bridge support
 [] Databook TCIC host bridge support

Sound (ALSA)

Advanced Linux Sound Architecture (ALSA) is the current sound system for the
Linux kernel. An earlier sound system (OSS) has been deprecated, and almost all
of the older drivers have been removed from the kernel source tree.

To determine which type of sound controller is present in your machine, and
what type it is, run the following command:

$ /usr/sbin/lspci | grep -i audio
00:1f.5 Multimedia audio controller: Intel Corporation 82801EB/ER (ICH5/
ICH5R) AC'97 Audio Controller (rev 02)
06:0d.0 Multimedia audio controller: Creative Labs SB Audigy (rev 04)

Note that your response will probably not be identical; what is important is that
the command shows some Audio controllers.

1. Enable basic sound support:
Device Drivers
 Sound
 [M] Sound Card Support

2. Enable ALSA:
Device Drivers
 Sound
 [M] Sound Card Support
 [M] Advanced Linux Sound Architecture

3. There are a number of different base ALSA options, such as support for the
older OSS sound protocol. If you have older applications, you should enable
the related options:

Device Drivers
 Sound
 [M] Sound Card Support
 [M] Advanced Linux Sound Architecture
 [M] OSS Mixer API
 [M] OSS PCM (digital audio) API
 [] OSS PCM (digital audio) API - Include plugin system

4. Enable the specific type of sound device that you have. PCI sound cards are
under the PCI submenu:

Device Drivers
 Sound
 [M] Sound Card Support
 [M] Advanced Linux Sound Architecture
 PCI Devices

CPU | 71

Kernel
Configuration

CPU
If you wish to have the Linux kernel run as fast as possible for your specific
processor and hardware type, there are a few options that you can set to get the
last bit of performance out of the hardware. This section will show some of the
different processor-specific options that you can tune for your processor.

Processor Types

A wide range of specific processor options are available to be changed in the
Linux kernel. The most important one for our purpose specifies the exact type of
CPU you are using this kernel for. To determine the type of processor you are
using, run the following command:

$ cat /proc/cpuinfo | grep "model name"
model name : Intel(R) Xeon(TM) CPU 3.20GHz

Note that your response will probably not be identical; what is important is that
the command shows the model name of the processor present on the system.

1. Select the subarchitecture type of the processor:
Processor type and features
 Subarchitecture Type
 (X) PC-compatible
 () AMD Elan
 () Voyager (NCR)
 () NUMAQ (IBM/Sequent)
 () Summit/EXA (IBM x440)
 () Support for other sub-arch SMP systems with more than 8 CPUs
 () SGI 320/540 (Visual Workstation)
 () Generic architecture (Summit, bigsmp, ES7000, default)
 () Support for Unisys ES7000 IA32 series

Only if your machine is one of the other types in the preceding list should
you select anything other than the PC-compatible option. However, if you
wish to create a single kernel that will run on all of the types of machines
shown, select the Generic architecture option. Some of the above options
might not be present if you have not also selected the Symmetric multi-
processing support option.

2. Select the processor family type. The PC-compatible option needs to be
selected from the previous options for this submenu to be displayed:

Processor type and features
 Processor family
 () 386
 () 486
 () 586/K5/5x86/6x86/6x86MX
 () Pentium-Classic
 () Pentium-MMX
 () Pentium-Pro
 () Pentium-II/Celeron(pre-Coppermine)
 () Pentium-III/Celeron(Coppermine)/Pentium-III Xeon
 () Pentium M
 (X) Pentium-4/Celeron(P4-based)/Pentium-4 M/Xeon

72 | Chapter 8: Kernel Configuration Recipes

 () K6/K6-II/K6-III
 () Athlon/Duron/K7
 () Opteron/Athlon64/Hammer/K8
 () Crusoe
 () Efficeon
 () Winchip-C6
 () Winchip-2
 () Winchip-2A/Winchip-3
 () GeodeGX1
 () Geode GX/LX
 () CyrixIII/VIA-C3
 () VIA C3-2 (Nehemiah)
 () Generic x86 support

For more details on this configuration item, please refer to the entry for M386 in
Chapter 11 for a full description of how to pick the proper processor type
depending on what processor you have, and what range of machines you wish the
kernel to run on.

SMP

If your system contains more than one CPU, or a Hyperthreaded or Dual Core
CPU, you should select the multiprocessor option for the Linux kernel in order to
take advantage of the additional processors. Unless you do, you will be wasting
the other processors by not using them at all.

Enable multiprocessing:

Processor type and features
 [*] Symmetric multi-processing support

Preemption

Systems running as servers have very different workload requirements from those
being used as a desktop for video and audio applications. The kernel allows
different modes of “preemption” in order to handle these different workloads.
Preemption is the ability of the kernel to interrupt itself while it is doing some-
thing else, in order to work on something with a higher priority, such as updating
a sound or video program.

To change to a different preemption model, use this menu:

Processor type and features
 Preemption Model
 (X) No Forced Preemption (Server)
 () Voluntary Kernel Preemption (Desktop)
 () Preemptible Kernel (Low-Latency Desktop)

If you wish to make the kernel even more responsive to higher priority tasks than
the general preemption option provides, you can also allow interruptions to one
of the main internal kernel locks:

Processor type and features
 [*] Preempt The Big Kernel Lock

CPU | 73

Kernel
Configuration

This option is able to be selected only if you have already selected either the
Preemptible Kernel or Symmetric multi-processing support options.

Suspend

The Linux kernel has the ability to suspend itself to disk, allowing you to discon-
nect the power, and then at a later time, power up and resume exactly where the
machine was when it was suspended. This functionality is very useful on laptops
that run Linux.

Enable this by selecting:

Power management options (ACPI, APM)
 [*] Software Suspend

The kernel needs to know where to save the suspended kernel image to, and then
later where to resume it from. This location is usually a kernel swap partition on
the disk. To specify which partition this should be set:

Power management options (ACPI, APM)
 (/dev/hda3) Default resume partition

Make sure you specify the proper partition to suspend the machine to, and do not
use a partition that is being used by the system for data. The proper partition
name can be found by running the following command:

$ /sbin/swapon -s | grep dev | cut -f 1 -d ' '
/dev/hda3

Use the output of the preceding command in this kernel configuration option, and
on the kernel boot line where it specifies where the kernel should be resumed
from. After the machine has been suspended, to have it resume properly, pass the
resume=/dev/swappartition argument to the kernel command line to have it use
the proper image. If you do not want to have the suspended image restored, use
the noresume kernel command-line argument.

CPU Frequency Scaling

Most modern processors can slow down the internal clock of the processor to
conserve power and battery life. Linux supports this ability and offers a variety of
power “governors.” Different governors implement different heuristics in order to
determine how to vary the processor speed depending on the system load and
other variables.

1. Enable the basic frequency scaling functionality:
Power management options (ACPI, APM)
 [*] CPU Frequency scaling

2. Select the different type of frequency governors you wish to use:
Power management options (ACPI, APM)
 [*] CPU Frequency scaling
 [*] 'performance' governor
 [*] 'powersave' governor
 [*] 'userspace' governor for userspace frequency scaling
 [*] 'ondemand' cpufreq policy governor
 [*] 'conservative' cpufreq governor

74 | Chapter 8: Kernel Configuration Recipes

For more information on what the different governors do, see the entry for
CPU_FREQ in Chapter 11.

3. Select the default governor you wish to have running when the machine
boots:

Power management options (ACPI, APM)
 [*] CPU Frequency scaling
 Default CPUFreq governor (performance)

4. Select the specific processor type on the machine. For details on how to
determine the processor type of the machine, see the earlier section,
“Processor Types.”

Power management options (ACPI, APM)
 [*] CPU Frequency scaling
 --- CPUFreq processor drivers
 [] ACPI Processor P-States driver
 [] AMD Mobile K6-2/K6-3 PowerNow!
 [] AMD Mobile Athlon/Duron PowerNow!
 [] AMD Opteron/Athlon64 PowerNow!
 [] Cyrix MediaGX/NatSemi Geode Suspend Modulation
 [*] Intel Enhanced SpeedStep
 [*] Use ACPI tables to decode valid frequency/voltage pairs
 [*] Built-in tables for Banias CPUs
 [] Intel Speedstep on ICH-M chipsets (ioport interface)
 [] Intel SpeedStep on 440BX/ZX/MX chipsets (SMI interface)
 [] Intel Pentium 4 clock modulation
 [] nVidia nForce2 FSB changing
 [] Transmeta LongRun

Different Memory Models

Linux on 32-bit Intel hardware can access up to 64 GB of memory, but the
address space of the 32-bit processor is only 4 GB. To work around this limita-
tion, Linux can map the additional memory into another area and then switch to
it when other tasks need it. But if your machine has a smaller amount of memory,
it is easier for Linux not to have to worry about handling the bigger areas, so it is
beneficial to tell the kernel how much memory you want it to support. For a more
detailed description of this option, please see the entry for HIGHMEM in
Chapter 11.

Linux supports three different memory models for 32-bit Intel processors,
depending on the memory available:

• Under 1 GB of physical memory

• Between 1 and 4 GB of physical memory

• Greater than 4 GB of physical memory

To select the amount of memory:

Processor type and features
 High Memory Support
 (X) off
 () 4GB
 () 64GB

Networking | 75

Kernel
Configuration

ACPI

On almost all modern Intel-based systems, ACPI is required in order for the
machine to work properly. ACPI is a standard that allows the BIOS of the
computer to work with the operating system in order to access the hardware in an
indirect manner, in the hope of handling a wide range of devices with relatively
little code specific to each operating system. ACPI also provides a facility to help
suspend and resume a machine and control the speed of the processor and fans. If
you have a laptop, it is recommended that you enable this option.

To enable ACPI:

Power management options (ACPI, APM)
 ACPI (Advanced Configuration and Power Interface) Support
 [*] ACPI Support

There are a wide range of different ACPI “drivers” that control different types of
ACPI devices. You should enable the specific ones that you have on your
machine:

Power management options (ACPI, APM)
 ACPI (Advanced Configuration and Power Interface) Support
 [*] ACPI Support
 [*] AC Adapter
 [*] Battery
 [*] Button
 [*] Video
 [*] Generic Hotkey (EXPERIMENTAL)
 [*] Fan
 [*] Processor
 [*] Thermal Zone
 [] ASUS/Medion Laptop Extras
 [] IBM ThinkPad Laptop Extras
 [] Toshiba Laptop Extras

Networking
Networking is required for almost all machines today, and Linux supports almost
every networking option available. Here I am going to show only a few of the wide
variety that are present.

For all networking options, including different drivers, the main network configu-
ration option must be enabled:

Networking
 [*] Networking support

The TCP/IP option should also be selected so that the machine can talk to other
machines on the Internet:

Networking
 [*] Networking support
 Networking options
 [*] TCP/IP networking

76 | Chapter 8: Kernel Configuration Recipes

Netfilter

The Netfilter portion of the Linux kernel is a framework for filtering and manipu-
lating all network packets that pass through the machine. It is commonly used if
you wish to enable a firewall on the machine to protect it from different systems
on the Internet, or to use the machine as a proxy for other machines on the
network. For more details on what Netfilter is good for, please see the entry for
NETFILTER in Chapter 11.

1. To enable the main Netfilter option:
Networking
 [*] Networking support
 Networking options
 [*] Network packet filtering (replaces ipchains)

2. It is recommended that you enable the Netfilter netlink interface and Xtables
support when using netlink:

Networking
 [*] Networking support
 Networking options
 [*] Network packet filtering (replaces ipchains)
 Core Netfilter Configuration
 [*] Netfilter netlink interface
 [*] Netfilter Xtables support (required for ip_
 tables)

3. The different protocols that you wish to filter should also be selected:
Networking
 [*] Networking support
 Networking options
 [*] Network packet filtering (replaces ipchains)
 IP: Netfilter Configuration
 [M] Connection tracking (required for masq/NAT)
 [] Connection tracking flow accounting
 [] Connection mark tracking support
 [] Connection tracking events (EXPERIMENTAL)
 [] SCTP protocol connection tracking support
 (EXPERIMENTAL)
 [M] FTP protocol support
 [] IRC protocol support
 [] NetBIOS name service protocol support
 (EXPERIMENTAL)
 [M] TFTP protocol support
 [] Amanda backup protocol support
 [] PPTP protocol support
 [] H.323 protocol support (EXPERIMENTAL)

Network Drivers

Linux supports a wide array of different network devices. The most common one
is a PCI network device, into which an Ethernet cable can be plugged. To deter-
mine whether you have a PCI network device on the system, and what type it is,
run the following command:

Networking | 77

Kernel
Configuration

$ /usr/sbin/lspci | grep Ethernet
03:0c.0 Ethernet controller: D-Link System Inc RTL8139 Ethernet (rev 10)
03:0e.0 Ethernet controller: Intel Corporation 82545GM Gigabit Ethernet
Controller (rev 04)

Note that your response will probably not be identical; what is important is that
the command shows some PCI Ethernet devices.

1. Enable PCI support for the kernel:
Bus options (PCI, PCMCIA, EISA, MCA, ISA)

 [*] PCI Support

2. Enable basic network device support:
Device Drivers
 Network device support
 [*] Network device support

3. Then comes the fun task of finding the specific device drivers for your hard-
ware. The most common place to find Ethernet devices for modern hardware
is in the gigabit section of the driver selection:

Device Drivers
 Network device support
 [*] Network device support
 Ethernet (1000 Mbit)

Some older ethernet devices will be found in the 10- and 100-Mbit section:
Device Drivers
 Network device support
 [*] Network device support
 Ethernet (10 or 100Mbit)

Look through those sections to find the proper driver for your specific
devices.

IrDA

IrDA is an infrared protocol used by a number of laptops and PDAs to communi-
cate over very short distances. It is prevalent on older hardware, with newer
hardware using Bluetooth to communicate instead. See the later section, “Blue-
tooth,” for configuring Bluetooth.

1. IrDA is a network protocol, so it can be found under the networking main
menu:

Networking
 [*] Networking support
 [*] IrDA (infrared) subsystem support

2. A number of different IrDA protocols can be selected, depending on the type
of device you wish to communicate with and the program used to do the
communication:

Networking
 [*] Networking support
 --- IrDA (infrared) subsystem support
 --- IrDA protocols
 [*] IrLAN protocol (NEW)

78 | Chapter 8: Kernel Configuration Recipes

 [*] IrCOMM protocol (NEW)
 [*] Ultra (connectionless) protocol (NEW)

3. There are a wide range of different types of IrDA devices, some serial, some
PCI, and others based on USB. To select the specific type of IrDA device you
have, choose it under the driver submenu for IrDA:

Networking
 [*] Networking support
 --- IrDA (infrared) subsystem support
 Infrared-port device drivers
 --- SIR device drivers
 [] IrTTY (uses Linux serial driver)
 --- Dongle support
 --- Old SIR device drivers
 --- Old Serial dongle support
 --- FIR device drivers
 [] IrDA USB dongles
 [] SigmaTel STIr4200 bridge (EXPERIMENTAL)
 [] NSC PC87108/PC87338
 [] Winbond W83977AF (IR)
 [] Toshiba Type-O IR Port
 [] SMSC IrCC (EXPERIMENTAL)
 [] ALi M5123 FIR (EXPERIMENTAL)
 [] VLSI 82C147 SIR/MIR/FIR (EXPERIMENTAL)
 [] VIA VT8231/VT1211 SIR/MIR/FIR

Bluetooth

Bluetooth is a wireless technology that was created to replace IrDA to talk
between devices over a very short distance. It is a short-range wireless technology
that was designed as a replacement for cables, operates within a 10 meter radius,
and is commonly used in mobile phones.

1. Bluetooth is a network protocol, so it can be found under the networking
main menu:

Networking
 [*] Networking support
 [*] Bluetooth subsystem support

2. There are two main protocol selections for Bluetooth. Both of these should be
enabled in order to work with all types of Bluetooth devices:

Networking
 [*] Networking support
 --- Bluetooth subsystem support
 [*] L2CAP protocol support
 [*] SCO links support

3. There are relatively few individual Bluetooth devices drivers available,
because almost all of these devices follow the Bluetooth specification
detailing how devices should operate. The drivers marked in the following list
must be selected in order for Bluetooth to work with the device:

Networking
 [*] Networking support
 --- Bluetooth subsystem support

Networking | 79

Kernel
Configuration

 Bluetooth device drivers
 [M] HCI USB driver
 [*] SCO (voice) support
 [] HCI UART driver
 [M] HCI BCM203x USB driver
 [M] HCI BPA10x USB driver
 [] HCI BlueFRITZ! USB driver
 [] HCI DTL1 (PC Card) driver
 [] HCI BT3C (PC Card) driver
 [] HCI BlueCard (PC Card) driver
 [] HCI UART (PC Card) device driver
 [] HCI VHCI (Virtual HCI device) driver

Wireless

Wireless networking is very popular, with almost all modern laptops having a
built-in wireless network device. Linux supports a wide range of wireless drivers,
with more being added every week. To determine whether you have a PCI wire-
less device on the system, and what type it is, run the following command:

$ /usr/sbin/lspci | grep -i wireless
06:05.0 Network controller: Intel Corporation PRO/Wireless 2915ABG MiniPCI
Adapter (rev 05)

Note that your response will probably not be identical; what is important is that
the command shows some PCI wireless devices.

1. To enable wireless support in Linux, the IEEE 802.11 network configuration
option must be enabled. (802.11 is the number of the wireless specification
that all these devices follow.)

Networking
 [*] Networking support
 [*] Generic IEEE 802.11 Networking Stack

2. Also enable the different 802.11 protocol options and the Software MAC option
to provide full support for all different types of wireless devices in Linux:

Networking
 [*] Networking support
 [*] Generic IEEE 802.11 Networking Stack
 [*] IEEE 802.11 WEP encryption (802.1x)
 [M] IEEE 802.11i CCMP support
 [M] IEEE 802.11i TKIP encryption
 [M] Software MAC add-on to the IEEE 802.11 networking stack

3. Support for the different PCI types of wireless network devices is found under
the Network driver section of the configuration:

Device Drivers
 Network device support
 Wireless LAN (non-hamradio)
 [*] Wireless LAN drivers (non-hamradio) & Wireless
 Extensions
 [*] Wireless Extension API over RtNetlink

There is a wide range of different PCI drivers in this section. Select the proper
one depending on the device you have.

80 | Chapter 8: Kernel Configuration Recipes

The USB wireless networking device drivers are in a different section of the
configuration:

Device Drivers
 USB Support
 USB Network Adapters

Filesystems
Linux supports a wide range of traditional filesystem types and a number of
different types of filesystems (volume managers, clustered filesystems, etc.). The
traditional filesystem types (normal or journaled) can be selected from the main
File systems configuration menu:

File systems
 [*] Second extended fs support
 [*] Ext3 journalling file system support
 [] Reiserfs support
 [] JFS filesystem support
 [] XFS filesystem support

This section will show a few of the nontraditional filesystem types that Linux
supports and how to enable them.

RAID

RAID offers the option of combining numerous disks together so that they look
like one logical disk. This can help in providing ways of providing redundancy or
speed by spreading the data across different disk platters. Linux supports both
hardware and software RAID. Hardware RAID is handled by the disk controller,
without any help needed from the kernel.

1. Software RAID is controlled by the kernel, and can be selected as a build
option:

Device Drivers
 Multi-device support (RAID and LVM)
 [*] Multiple devices driver support (RAID and LVM)
 [*] RAID support

2. There are many different types of RAID configurations. At least one needs to
be selected in order for RAID to work properly:

Device Drivers
 Multi-device support (RAID and LVM)
 [*] Multiple devices driver support (RAID and LVM)
 [*] RAID support
 [*] Linear (append) mode
 [*] RAID-0 (striping) mode
 [*] RAID-1 (mirroring) mode
 [*] RAID-10 (mirrored striping) mode (EXPERIMENTAL)
 [*] RAID-4/RAID-5 mode
 [*] RAID-6 mode

Filesystems | 81

Kernel
Configuration

Logical Volume Manager and Device Mapper

Much like RAID, Logical Volume Manager (LVM) allows the user to combine
different block devices to look like one logical device. However, it does not work
on a device level like RAID, but through a block and sector mapping mechanism.
It allows different portions of different disks to be combined together to look like
one large block device to the user. To do this, the kernel uses something called
Device Mapper (DM).

1. Enable DM support in the kernel:
Device Drivers
 Multi-device support (RAID and LVM)
 [*] Multiple devices driver support (RAID and LVM)
 [*] Device mapper support

2. There are a number of helper modules that work with DM to provide addi-
tional functionality. You should enable them if you wish to encrypt your
devices, or allow snapshot functionality:

Device Drivers
 Multi-device support (RAID and LVM)
 [*] Multiple devices driver support (RAID and LVM)
 [*] Device mapper support
 [*] Crypt target support
 [*] Snapshot target (EXPERIMENTAL)
 [*] Mirror target (EXPERIMENTAL)
 [*] Zero target (EXPERIMENTAL)
 [*] Multipath target (EXPERIMENTAL)

File Sharing with Windows

Samba is a program that allows Linux users to access Windows machines natively
across the network, providing a way to share drives and devices in a transparent
manner. It also allows Linux to work as a Windows server, allowing Windows
clients to connect to it thinking that it is a real Windows machine.

Two different filesystems that allow a Linux machine to connect with a Windows
machine: the SMB filesystem and the CIFS filesystem. For the ability to connect to
older Windows for Workgroups or Windows 95 or 98 machines, select the SMB
filesystem:

File systems
 Network File Systems
 [*] SMB file system support (to mount Windows shares etc.)

For the ability to connect to newer Windows machines, the CIFS filesystem is
recommended instead:

File systems
 Network File Systems
 [*] CIFS support

For more details on the differences between these two filesystems, and when one
should be used instead of the other, please see the SMB_FS and CIFS entries in
Chapter 11.

82 | Chapter 8: Kernel Configuration Recipes

OCFS2

OCFS2 is a cluster filesystem from Oracle that works for large network installa-
tions and small local systems at the same time. This filesystem is recommended
when using large databases, such as Oracle or DB2, because it can be moved over
time to different backing disks across the network quite easily as more storage is
needed.

To enable the filesystem:

File systems
 [*] OCFS2 file system support

Security
The Linux kernel supports different security models by providing hooks and
letting you build in your choice of model. At the moment, only a few models
come with the default kernel source tree, but developers of new models are
working on getting more accepted.

Default Linux Capabilities

The standard type of security model for Linux is the “capability” model. You
should always select this option unless you really want to run an insecure kernel
for some reason.

To enable it:

Security options
 [*] Enable different security models
 [*] Default Linux Capabilities

SELinux

A very popular security model is called SELinux. This model is supported by a
number of different Linux distributions.

SELinux requires that the networking option be enabled. See the earlier section,
“Networking,” to enable this.

SELinux also requires that audit be enabled in the kernel configuration. To do
this:

General setup
 [*] Auditing support

Also, the networking security option must be enabled:

Security options
 [*] Enable different security models
 [*] Socket and Networking Security Hooks

Now it is possible to select the SELinux option:

Kernel Debugging | 83

Kernel
Configuration

Security options
 [*] Enable different security models
 [*] NSA SELinux Support

There are also a number of individual SELinux options that you might wish to
enable. Please see the help for the individual different items for more descriptions
on what they do:

Security options
 [*] Enable different security models
 [*] NSA SELinux Support
 [] NSA SELinux boot parameter
 [] NSA SELinux runtime disable
 [*] NSA SELinux Development Support
 [*] NSA SELinux AVC Statistics
 (1) NSA SELinux checkreqprot default value

Kernel Debugging
A wide range of different kernel options can help in debugging what is going on
within the kernel. Following is a list of some of the more common ones that can
be useful for discovering new things about how the kernel works, or help find
potential problems within the current kernel source code.

Kernel Log Timestamps

The kernel outputs a wide range of messages to its logfile. These messages can be
seen by looking at the system logfile (usually located in /var/log/messages), or by
running the dmesg command.

Sometimes it is useful to see exactly when those messages were created. dmesg,
however, does not put any timestamps on the events it shows, and the time reso-
lution of /var/log/messages is only to the nearest second. You can configure the
kernel to assign each message a timestamp that is accurate down to the smallest
measurable kernel time value (usually in the microsecond range).

To enable timestamp options on kernel messages:

Kernel hacking
 [*] Show timing information on printks

Magic SysRq Keys

The SysRq key on the keyboard can be used to control the kernel in a number of
different ways while the kernel is running, or after it has crashed.

To enable this option:

Kernel hacking
 [*] Magic SysRq key

For a full description of the different actions that can be triggered by this option,
please see the file Documentation/sysrq.txt in the kernel source tree.

84 | Chapter 8: Kernel Configuration Recipes

Debug Filesystem

A RAM-based filesystem can be used to output a lot of different debugging infor-
mation. This filesystem is called debugfs and can be enabled:

Kernel hacking
 [*] Debug filesystem

After you enable this option and boot the rebuilt kernel, it creates the direc-
tory /sys/kernel/debug as a location for the user to mount the debugfs
filesystem. Do this manually by:

$ mount -t debugfs none /sys/kernel/debug

Or have the filesystem mounted automatically at boot time by adding the
following line to the /etc/fstab file:

debugfs /sys/kernel/debug debugfs 0 0

After you mount debugfs, a large number of different directories and files will turn
up in the /sys/kernel/debug/ directory. These are all virtual and dynamically gener-
ated by the kernel, like the files in procfs or sysfs. The files can be used to help
debug different kernel subsystems, or just to see what is happening to the system
as it runs.

General Kernel Debugging

Here are a range of other good kernel configuration options that you might wish
to enable if you want to help kernel developers debug different problems, or just
learn more about how the kernel works by looking at the messages that these
options print out. Note that if you enable almost any of these options, the kernel
will slow down a small amount, so if you notice any decrease in performance, you
might wish to disable the options:

Kernel hacking
 [*] Kernel debugging
 [*] Detect Soft Lockups
 [] Collect scheduler statistics
 [*] Debug slab memory allocations
 [*] Memory leak debugging
 [*] Mutex debugging, deadlock detection
 [*] Spinlock debugging
 [*] Sleep-inside-spinlock checking
 [] kobject debugging
 [] Highmem debugging
 [] Compile the kernel with debug info

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

III
Kernel Reference

This section provides reference information on kernel parameters of all types.

Chapter 9, Kernel Boot Command-Line Parameter Reference

Chapter 10, Kernel Build Command-Line Reference

Chapter 11, Kernel Configuration Option Reference

87

Chapter 9Boot Reference

9
Kernel Boot Command-Line

Parameter Reference

The majority of this chapter is based on the in-kernel documentation for the
different kernel boot command-line reference options, which were written by the
kernel developers and released under the GPL.

There are three ways to pass options to the kernel and thus control its behavior:

• When building the kernel. Most of this book discusses these options.

• When starting the kernel. Usually, parameters are passed to the kernel when
it is invoked from a boot file such as the GRUB or LILO configuration file.

• At runtime, by writing to files in the /proc and /sys directories.

This chapter describes the second method of passing options. The chapter breaks
the boot time options into different logical sections. A number of architecture-
specific and individual driver options are not listed here. For a complete list of all
known options, please see the file Documentation/kernel-parameters.txt in the
kernel source tree and the individual architecture-specific documentation files.

Not all of the listed options are always available. Most are associated with
subsystems and work only if the kernel is configured with those subsystems built
in. They also depend on the presence of the hardware with which they are
associated.

All of these parameters are case-sensitive.

Module-Specific Options
In addition to the options listed in this chapter, parameters for modules that are
built in to the kernel can also be passed on the command line. (Dynamically
loaded modules, of course, are not in memory when the kernel boots and there-
fore cannot be passed as parameters at boot time.) The syntax for passing
parameters consists of the module name followed by a dot (.) and the parameter.

88 | Chapter 9: Kernel Boot Command-Line Parameter Reference

For example, the usbcore module accepts the parameter blinkenlights to display
flashing lights on all supported USB 2.0 hubs (don’t ever say the kernel devel-
opers don’t have a sense of humor). To set this parameter when loading the
module dynamically, you would enter:

$ modprobe usbcore blinkenlights=1

But if the usbcore module is built into the kernel, you achieve the same effect by
invoking the kernel with the following option:

usbcore.blinkenlights=1

Most module options for modules that are built into the kernel can also be
changed at runtime by writing to files in the subdirectory named after the module
under the /sys/module directory. Thus, the blinkenlights option is represented by
the file /sys/module/usbcore/blinkenlights.

Console Options
These options deal with the console or kernel log, where kernel debugging and
error information are displayed.

console Output console device and options.

console=Options

ttyn
Use the virtual console device n.

ttySn[,options], ttyUSB0[,options]
Use the specified serial port. The options are of the form
bbbbpnf, where bbbb is the baud rate, p is parity (n, o, or e), n is
number of bits, and f is flow control (r for RTS or omitted).
Default is 9600n8.

See the file Documentation/serial-console.txt for more informa-
tion on how to use a serial console. If you wish to have access
to the kernel console information and do not have a serial
port, see the netconsole command-line option.

uart,io,addr[,options], uart,mmio,addr[,options]
Start an early, polled-mode console on the 8250/16550 UART
at the specified I/O port or MMIO address, switching to the
specified ttyS device later. The options are the same as for ttyS
shown earlier.

netconsole Output console data across the network.

netconsole=[src-port]@[src-ip]/[dev],[target-port]@target-ip/[target-
mac-address]

Send kernel console data across the network using UDP packets to
another machine. Options are:

earlyprintk | 89

Boot
Reference

src-port
Source port for the UDP packets. The default value is 6665.

src-ip
Source IP address of the interface to use.

dev
Network interface to use. eth0 is an example. The network
interface can also run normal network traffic, because the
netconsole data is not intrusive and should cause no slow-
down in other network operations.

target-port
Port that the logging agent will use. The default value is 6666.

target-ip
IP address for the logging agent.

target-mac-address
Ethernet MAC address for the logging agent.

To listen to this data, the remote machine can use the syslogd
program, or run the netcat program as follows:

netcat -u -l -p port

For more background on how to use this option, see the file Docu-
mentation/networking/netconsole.txt.

debug Enable kernel debugging.

Cause the kernel log level to be set to the debug level, so that all
debug messages will be printed to the console at boot time.

quiet Disable all log messages.

Set the default kernel log level to KERN_WARNING (4), which
suppresses all messages during boot except extremely serious ones.
(Log levels are defined under the loglevel parameter.)

earlyprintk Show early boot messages.

earlyprintk=[vga|serial][,ttySn[,baudrate]][,keep]

Show kernel log messages that precede the initialization of the
traditional console. These messages are typically never seen on the
console unless you use this option. Enabling this can be very useful
for tracking down hardware issues. Currently, the option can
specify either the VGA device or the serial port, but not both at the
same time. Also, only the ttyS0 or ttyS1 serial devices will work.
Interaction with the standard serial driver is not very good, and the
VGA output will eventually be overwritten by the real console.

Append ,keep in order not to disable the messages shown by this
option when the real kernel console is initialized and takes over the
system.

90 | Chapter 9: Kernel Boot Command-Line Parameter Reference

loglevel Set the default console log level.

loglevel=level

Specify the initial console log level. Any log messages with levels
less than this (that is, of higher priority) will be printed to the
console, whereas any messages with levels equal to or greater than
this will not be displayed.

The console log level can also be changed by the klogd program, or
by writing the specified level to the /proc/sys/kernel/printk file.

The kernel log levels are:

0 (KERN_EMERG)
The system is unusable.

1 (KERN_ALERT)
Actions that must be taken care of immediately.

2 (KERN_CRIT)
Critical conditions.

3 (KERN_ERR)
Noncritical error conditions.

4 (KERN_WARNING)
Warning conditions that should be taken care of.

5 (KERN_NOTICE)
Normal, but significant events.

6 (KERN_INFO)
Informational messages that require no action.

7 (KERN_DEBUG)
Kernel debugging messages, output by the kernel if the devel-
oper enabled debugging at compile time.

log_buf_len Set the size of the kernel log buffer.

log_buf_len=n[KMG]

Set the size of the kernel’s internal log buffer. n must be a power of
2, if not, it will be rounded up to be a power of 2. This value can
also be changed by the CONFIG_LOG_BUF_SHIFT kernel configuration
value.

initcall_debug Debug the initcall functions in the kernel.

Cause the kernel to trace all functions that are called by the kernel
during initialization of the system as the kernel boots. This option
is useful for determining where the kernel is dying during startup.

noirqbalance | 91

Boot
Reference

kstack How many words of the stack to print in kernel oopses.

kstack=n

Specify how many words from the kernel stack should be printed in
the kernel oops dumps. n is an integer value.

time Show timing data on every kernel log message.

Cause the kernel to prefix every kernel log message with a
timestamp.

Interrupt Options
Interrupts are a complex aspect of kernel behavior. The boot time options deal
mostly with the interface between the kernel and the hardware that handles inter-
rupts, such as the Intel chip’s Advanced Programmable Interrupt Controller
(APIC).

apic Change the verbosity of the APIC subsystem when booting.

apic=[quiet|verbose|debug]

Control how much information the APIC subsystem generates
when booting the kernel. The default is quiet.

noapic Do not use any IOAPICs.

Prevent the kernel from using any of the IOAPICs that might be
present in the system.

lapic Enable the local APIC.

Cause the kernel to enable the local APIC even if the BIOS had
disabled it.

nolapic Do not use the local APIC.

Tell the kernel not to use the local APIC.

noirqbalance Disable kernel IRQ balancing.

Disable all of the built-in kernel IRQ balancing logic.

92 | Chapter 9: Kernel Boot Command-Line Parameter Reference

irqfixup Basic fix to interrupt problems.

When an interrupt is not handled, search all known interrupt
handlers for it. This is intended to get systems with badly broken
firmware running.

irqpoll Extended fix to interrupt problems.

When an interrupt is not handled, search all known interrupt
handlers for it and also check all handlers on each timer interrupt.
This is intended to get systems with badly broken firmware
running.

noirqdebug Disable unhandled interrupt detection.

By default, the kernel attempts to detect and disable unhandled
interrupt sources because they can cause problems with the respon-
siveness of the rest of the kernel if left unchecked. This option
disables this logic.

Memory Options
The kernel handles memory in many different chunks and categories for different
purposes. These options allow you to tweak the sizes and settings.

highmem Specify the size of the highmem memory zone.

highmem=n

Force the highmem memory zone to have an exact size of n bytes.
This will work even on boxes that have no highmem zones by
default. It can also reduce the size of the highmem zone for
machines with a lot of memory.

hugepages Set the number of hugetlb pages.

hugepages=n

The hugetlb feature lets you configure Linux to use 4 MB pages,
one thousand times the default size. If Linux is configured this way,
this options sets the maximum number of hugetlb pages to be n.

memmap | 93

Boot
Reference

ihash_entries Set the number of inode hash buckets.

ihash_entries=n

Override the default number of hash buckets for the kernel’s inode
cache. Recommended only for kernel experts.

max_addr Ignore memory.

max_addr=n

Cause the kernel to ignore all physical memory greater than or
equal to the physical address n.

mem Force memory usage.

mem=n[KMG]

Set the specific ammount of memory used by the kernel. When
used with the memmap= option, physical address space collisions can
be avoided. Without the memmap= option, this option could cause
PCI devices to be placed at addresses that belong to unused RAM.
n specifies the amount of memory to force and is measured in units
of kilobytes (K), megabytes (M), or gigabytes (G).

mem Disable the use of 4 MB pages for kernel memory.

mem=nopentium

Disable the use of huge (4 MB) pages for kernel memory.

memmap Enable setting of an exact E820 memory map.

memmap=exactmap

Use a specific memory map. The exactmap lines can be constructed
based on BIOS output or other requirements.

memmap Force specific memory to be used.

memmap=n[KMG]@start[KMG]

Force the kernel to use a specific memory region. n is the size of the
memory location, and start is the start location in memory of the
range. Units can be kilobytes (K), megabytes (M), or gigabytes (G).

94 | Chapter 9: Kernel Boot Command-Line Parameter Reference

noexec Enable or disable nonexecutable mappings.

noexec=[on|off]

Enable or disable the kernel’s ability to map sections of memory as
nonexecutable. By default, the mapping is enabled (on).

reserve Reserve some I/O memory.

reserve=n[KMG]

Force the kernel to ignore some of the I/O memory areas.

vmalloc Force the vmalloc area to have a specific size.

vmalloc=n[KMG]

Force vmalloc to have the exact size specified by n. This can be
used to increase the minimum size of the vmalloc area (which is
128 MB on the x86 processor). It can also be used to decrease the
size and leave more room for directly mapped kernel RAM.

norandmaps Do not use address space randomization.

By default, the kernel randomizes the address space of all programs
when they are started. This option disables this feature. It is equiva-
lent to writing 0 to the file /proc/sys/kernel/randomize_va_space.

vdso Enable or disable the VDSO mapping.

vdso=[0|1]

Disable (0) or enable (1) the VDSO (Virtual Dynamic Shared
Object) mapping option. By default, it is enabled.

Suspend Options
These options change the way the kernel handles suspension for power-saving
purposes.

resume Specify the partition device for the suspend image.

resume=suspend_device

Tell the kernel which disk device contains the suspended kernel
image. If the data on the image is a valid kernel image created by
the software suspend subsystem, it will be loaded into memory and

lpj | 95

Boot
Reference

the kernel will run it instead of continuing on with the normal boot
process. suspend_device is the kernel device name, which might be
different from what userspace thinks the device name is, so be
careful with this option.

noresume Disable resume.

Disable the resume functionality of the kernel. Any swap partitions
that were being used to hold system images to which the kernel
could be restored will revert back to available swap space.

CPU Options
These options control a wide range of behavior regarding timing, processor use in
multiprocessor systems, and other processor issues.

cachesize Override level 2 CPU cache size detection.

cachesize=n

Sometimes CPU hardware bugs make them report the cache size
incorrectly. The kernel will attempt to work around and fix known
problems with most CPUs, but for some CPUs it is not possible to
determine what the correct size should be. This option provides an
override for these situations. n is measured in bytes.

lpj Set the loops per jiffy.

lpg=n

Specify the loops per jiffy that should be used by the kernel, and
thus have the kernel avoid the time-consuming boot-time autode-
tection of this value. If n is 0, the value will be autodetected as
usual.

On SMP systems, this value will be set on all CPUs,
which might cause problems if the different CPUs need
different settings. An incorrect value will cause incorrect
delays in the kernel, which can lead to unpredictable I/O
errors and other breakage. Although unlikely, in extreme
cases this might damage your hardware.

96 | Chapter 9: Kernel Boot Command-Line Parameter Reference

nmi_watchdog Set the NMI watchdog value.

nmi_watchdog=[0|1|2|3]

This is a debugging feature that allows the user to override the
default nonmaskable interrupt (NMI) watchdog value. 0 specifies
that no NMI watchdog should be used. 1 specifies that the APIC
should be used if present. 2 specifies that the local APIC should be
used if present. 3 means that the NMI watchdog is invalid, so do
not use it.

no387 Always use the 387 emulation library.

Always use the 387 math emulation library, even if a 387 math
coprocessor is present in the system.

nofxsr Disable x86 floating-point save and restore.

Disable the x86 floating-point extended register save and restore.
The kernel will save only legacy floating-point registers on a task
switch.

no-hlt Do not use the HLT instruction.

This option is available because the HLT instruction does not work
correctly for some x86 processors. This option tells the kernel not
to use the instruction.

mce Enable the machine check exception feature.

Some processors can check for machine errors (usually errors in the
hardware). This option turns this subsystem on, if it has been built
into the kernel configuration.

nomce Disable the machine check exception feature.

This option turns the subsystem off.

nosep Disable x86 SYSENTER/SYSEXIT support.

Disable x86 SYSENTER/SYSEXIT support in the kernel. This can
cause some system calls to take longer.

nosmp Run as a single-processor machine.

Tell an SMP kernel to act as a uniprocessor kernel, even on a multi-
processor machine.

migration_cost | 97

Boot
Reference

notsc Disable the time stamp counter.

Disable the timestamp counter hardware in the system, if present.

max_cpus Maximum number of CPUs to use.

maxcpus=n

Specify the maximum number of processors that a SMP kernel
should use, even if there are more processors present in the system.

Scheduler Options
These options tweak the parameters used to make scheduling decisions. Most
depend on an intimate understanding of how scheduling works in Linux.

isolcpus Isolate CPUs from the kernel scheduler.

isolcpus=cpu_number[,cpu_number,...]

Remove the specified CPUs, as defined by the cpu_number values,
from the general kernel SMP balancing and scheduler algroithms.
The only way to move a process onto or off an “isolated” CPU is
via the CPU affinity syscalls. cpu_number begins at 0, so the
maximum value is one less than the number of CPUs on the
system.

This option is the preferred way to isolate CPUs. The alternative,
manually setting the CPU mask of all tasks in the system, can cause
problems and suboptimal load-balancer performance.

migration_cost Override the default scheduler migrations costs.

migration_cost=level-1-useconds[level-2-useconds...]

This is a debugging option that overrides the default scheduler
migration cost matrix. The numbers specified by level-N-useconds
are indexed by the “CPU domain distance” and are measured in
microseconds.

An example of this option is migration_cost=1000,2000,3000 for a
SMT NUMA machine. It sets up an intra-core migration cost of 1
ms, another inter-core migration cost of 2 ms, and another inter-
node migration cost of 3 ms.

Incorrect values can severely degrade scheduler perfor-
mance, so this option should be used only for scheduler
development, never for production environments.

98 | Chapter 9: Kernel Boot Command-Line Parameter Reference

migration_
debug

Verbosity of migration cost autodetection.

migration_debug=[0|1|2]

Set the migration cost debug level. If 0 is specified, no extra
messages will be printed to the kernel log. This is the default value.
1 prints some information on how the matrix is determined. 2 is
very verbose and is useful only if you use a serial console, as the
amount of information will overflow the kernel log buffer.

migration_
factor

Multiply or divide the migration costs.

migration_factor=percent

Modify the default migration costs by the specified percent. This is
a debugging option that can be used to proportionally increase or
decrease the autodetected migration costs for all entries of the
migration matrix. For example, migration_factor=150 increases
migration costs by 50 percent, so the scheduler will be less eager to
migrate cache-hot tasks. migration_factor=80 decreases migration
costs by 20 percent, thus making the scheduler more eager to
migrate tasks.

Incorrect values can severely degrade scheduler perfor-
mance, so this option should be used only for scheduler
development, never for production environments.

Ramdisk Options
These options control how the storage of information in memory used to imitate
disks (ramdisks) is done, including init ramdisks that hold information necessary
at some stages of booting.

initrd Location of initial ramdisk.

initrd=filename

Specify where the initial ramdisk for the kernel boot is located.

load_ramdisk Load a kernel ramdisk from a floppy.

load_ramdisk=n

If n is set to 1, a ramdisk is loaded by the kernel at boot time from
the floppy drive.

root | 99

Boot
Reference

noinitrd Do not use any initrd.

Do not load any initial ramdisk, even if it is configured in other
options passed to the kernel.

prompt_
ramdisk

Prompt for the list of ramdisks.

prompt_ramdisk=1

Prompt the user for the initial ramdisk before attempting to read it
from the floppy drive.

ramdisk_
blocksize

Blocksize of the ramdisk.

ramdisk_blocksize=n

Tell the ramdisk driver how many bytes to use per block. The
default size is 1,024.

ramdisk_size Size of the ramdisk.

ramdisk_size=n

Specify the size of the initial ramdisk in kilobytes. The default size
is 4,096 (4 MB). This option should be used instead of the older
ramdisk command-line option.

Root Disk Options
These options control how the kernel finds and handles the filesystem that
contains the root filesystem.

ro Mount the root device read-only on boot.

The default for the kernel is to mount the root device as read-only
at boot time. This option ensures that this is the mode the kernel
uses. It overrides the rw command-line option, if it had been speci-
fied earlier on the boot command line.

root Specify the root filesystem to boot from.

root=device

Tell the kernel which disk device the root filesystem image is on.
device can be specified in one of the following ways:

100 | Chapter 9: Kernel Boot Command-Line Parameter Reference

nnnn
A device number in hexadecimal represents the major and
minor number of the device in the internal format that the
kernel expects. This method is not recommended unless you
have access to kernel internals.

/dev/nfs
Use the NFS disk specified by the nfsroot boot option as the
root disk.

/dev/<diskname>
Use the kernel disk name specified by <diskname> as the root
disk.

/dev/<diskname><decimal>
Use the kernel disk name specified by <diskname> and the
partition specified by <decimal> as the root disk.

/dev/<diskname>p<decimal>
Use the kernel disk name specified by <diskname> and the
partition specified by <decimal> as the root disk. This is the
same as above, but is needed when <diskname> ends with a
digit.

rootdelay Time to delay before attempting to mount the root filesystem.

rootdelay=n

Wait n seconds before trying to mount the root filesystem. This can
be useful if the root filesystem is on a USB or FireWire device, as
those disk devices take a bit longer to be discovered by the kernel.

rootflags The root filesystem mount options.

rootflags=options

Mount options that the kernel should use in mounting the root file-
system. The options value depend on the filesystem type; see the
documentation for the individual types for details on what is valid.

rootfstype The root filesystem type.

rootfstype=type

Try to mount the root filesystem as this type of filesystem. For
instance, rootfstype=ext3.

rw Mount the root device read-write on boot.

The default for the kernel is to mount the root device as read-only
at boot time. This option mounts the root device as read-write
instead.

crashkernel | 101

Boot
Reference

Init Options
The init process is the first to be started by the kernel and is the ancestor of all
other processes. These options control which program is run and how it is run.

init Program to run at init time.

init=filename

Run the specified binary as the init process instead of the default
/sbin/init program.

rdinit Run the init process from the ramdisk.

rdinit=full_path_name

Run the program specified by full_path_name as the init process.
This file must be on the kernel ramdisk instead of on the root
filesystem.

S Run init in single-user mode.

The default for the kernel is to run init in multi-user mode. This
option runs init in single-user mode instead.

kexec Options
The kexec subsystem is a specialized rebooting feature that allows a fast reboot
and is usually combined with the kdump facility that enables the previous kernel’s
memory to be dumped to a safe place for analysis at a later time. These options
modify the kexec subsystem’s parameters.

crashkernel Reserve a portion of physical memory for kexec to use.

crashkernel=n[KMG]@start[KMG]

The kexec subsystem likes to have a portion of physical memory
reserved for it. This option reserves that memory from the rest of
the kernel and will switch to use it if the kernel panics. n specifies
the amount of memory to reserve, and start specifies the location
for this memory chunk. Both are measured in units of kilobytes (K),
megabytes (M), or gigabytes (G).

102 | Chapter 9: Kernel Boot Command-Line Parameter Reference

elfcorehdr Start of the kernel core image ELF header.

elfcorhdr=n

The kernel, like every Linux executable, is stored in ELF format.
This option specifies the physical address where the kernel core
image’s ELF header starts. This is used by kexec to find the kernel
when booting the secondary kernel image.

RCU Options
Read Copy Update (RCU) is a portion of the kernel that handles mutual exclu-
sion for a variety of subsystems in a lockless manner. There are a number of
options that can be used to tune RCU in different ways:

rcu.blimit RCU batch limit.

rcu.blimit=n

Set the maximum number of finished RCU callbacks to process in
one batch.

rcu.qhimark RCU queue high level.

rcu.qhimark=n

Batch limiting is disabled when the number of queued RCU call-
backs rises above n.

rcu.qlowmark RCU queue low level.

rcu.qlowmark=n

Batch limiting is re-enabled when the number of queued RCU call-
backs falls below n.

rcu.rsinterval RCU callback queue length.

rcu.rsinterval=n

Set the number of additional RCU callbacks that should be queued
before forcing a reschedule on all CPUs.

acpi_sci | 103

Boot
Reference

ACPI Options
These options control parameters that the Advanced Configuration and Power
Interface (ACPI) subsystem can use.

acpi ACPI subsystem options.

acpi=[force|off|noirq|ht|strict]

This is the main option for the Advanced Configuration and Power
Interface (ACPI). Values are:

force
Force ACPI to be enabled. Can be used to override the kernel
configuration option that disabled it.

off
Disable ACPI. Can be used to override the kernel configura-
tion option that enabled it.

noirq
Prevent ACPI from being used for IRQ routing.

ht
Run only enough of the ACPI layer to enable HyperThreading
on processors that are capable of it.

strict
Make the ACPI layer be less tolerant of platforms that are not
fully compliant with the ACPI specification.

acpi_sleep ACPI sleep options.

acpi_sleep=[s3_bios],[s3_mode]

During S3 resume (which happens after the machine has been
suspended to RAM), hardware needs to be reinitialized properly.
For most devices this is simple, except for video cards, which are
normally initialized by the BIOS. The kernel does not have enough
information to restore the video device, because that information is
in the BIOS and not accessable at all. This option lets the kernel try
to use the ACPI subsystem to restore the video card in two different
ways.

See the file Documentation/power/video.txt for more information on
this option and how to find the proper value for your type of
hardware.

acpi_sci ACPI System Control Interrupt trigger mode.

acpi_sci=[level|edge|high|low]

Set the ACPI System Control Interrupt trigger mode.

104 | Chapter 9: Kernel Boot Command-Line Parameter Reference

acpi_irq_
balance

Enable ACPI IRQ balance.

Cause ACPI to balance the active IRQs. This is the default option
when operating in APIC mode.

acpi_irq_
nobalance

Disable ACPI IRQ balance.

Cause ACPI not to move the active IRQs. This is the default option
when operating in PIC mode.

acpi_irq_isa Mark the listed IRQs as used by ISA.

acpi_irq_isa=irq[,irq...]

If the IRQ balance option is enabled, mark the listed IRQs as used
by the ISA subsystem.

acpi_irq_pci Mark the listed IRQs as used by PCI.

acpi_irq_pci=irq[,[irq...]

If the IRQ balance option is enabled, mark the listed IRQs as used
by the PCI subsystem.

acpi_os_name Fake the operating system name to ACPI.

acpi_os_name=name

Tell the ACPI BIOS that the name of the running operating system
is name. This can be useful to spoof the BIOS into thinking that
Windows is running instead of Linux, which can help solve some
ACPI issues for older BIOSes. As an example, use the string
Microsoft 2001 to spoof the BIOS into thinking that Windows 2001
is running on the machine.

acpi_osi Disable the _OSI ACPI method.

acpi_osi=[n]

This is actually a binary option despite the integer value. If n is
absent, ACPI will disable the _OSI method. If n is present, _OSI
will not be disabled.

acpi_serialize Force serialization of AML methods.

Force the serialization of ACPI Machine Language methods.

memmap | 105

Boot
Reference

acpi_skip_
timer_override

Skip interrupt override issues.

Allow the ACPI layer to recognize and ignore IRQ0/pin2 interrupt
override issues for broken nForce2 BIOSes that result in the XT-
PIC timer acting up.

acpi_dbg_layer ACPI debug layer.

acpi_dbg_layer=n

Set the ACPI debug layers. n is an integer in which each bit indi-
cates a different ACPI debug layer. After the system has booted, the
debug layers can be set via the /proc/acpi/debug_layer file.

acpi_fake_ecdt ECDT workaround.

If present, this allows ACPI to workaround BIOS failures when it
lacks an Embedded Controller Description Table.

acpi_generic_
hotkey

Use generic ACPI hotkey driver.

This allows the ACPI consolidated generic hotkey driver to over-
ride the platform-specific driver if one is present.

acpi_pm_good Override pmtimer bug detection.

Force the kernel to assume that the machine’s pmtimer latches its
value and always returns good values.

ec_intr ACPI Embedded Controller interrupt mode.

ec_intr=n

Specify the ACPI embedded controller interrupt mode. If n is 0,
polling mode will be used, otherwise interrupt mode will be used.
Interrupt mode is the default.

memmap Mark specific memory as ACPI data.

memmap=n[KMG]#start[KMG]

Marks a specific location and range of memory as ACPI data. n is
the size of the memory location and start is the start location in
memory of the range. Both are measured in units of kilobytes (K),
megabytes (M), or gigabytes (G).

106 | Chapter 9: Kernel Boot Command-Line Parameter Reference

memmap Mark specific memory as reserved.

memmap=n[KMG]$start[KMG]

This marks a specific location and range of memory as reserved. n
is the size of the memory location and start is the start location in
memory of the range.

pnpacpi Turn Plug and Play ACPI off.

pnpacpi=off

Disable the Plug and Play ACPI functionality.

processor.max_
cstate

Limit the processor to a maximum C-state.

processor.max_cstate=n

Limit the processor to a maximum C-state, no matter what the
ACPI tables say it can support. n is a valid C-state value. A value of
9 overrides any DMI blacklist limit that might be present for this
processor.

processor.nocst Ignore the _CST method for C-states.

Causes the ACPI core to ignore the _CST method of determining
the processor C-states and use the legacy FADT method instead.

SCSI Options
These options specify different parameters the SCSI subsystem can use. A number
of SCSI driver-specific options are also available; please see the different driver
documentation files in the kernel directory Documentation/scsi/ for details.

max_luns Maximum number of SCSI LUNS to probe.

max_luns=n

Specify the maximum number of SCSI LUNS that the system
should probe. n is an integer from 1 to 4,294,967,295.

max_report_
luns

Maximum number of SCSI LUNS received.

max_report_luns=n

Specify the maximum number of SCSI LUNs that the system can
receive. n is an integer from 1 to 16,384.

PCI | 107

Boot
Reference

scsi_dev_flags SCSI black/white list.

scsi_dev_flags=vendor:model:flags

This option lets the user add entries to the SCSI black/white list for
a specific vendor and model of device.

PCI Options
These options specify different parameters the PCI subsystem can use:

PCI pci=option[,option...]

Each option can be one of the following:

off
Do not probe for the PCI bus.

bios
Force the use of the PCI BIOS by not accessing the hardware
directly. This means that the kernel should trust the BIOS,
which is not the standard thing to do (as BIOSes are known to
lie more often than they are known to be valid). Use this only
if your machine has a nonstandard PCI host bridge and the
normal boot method is not working properly.

nobios
Do not use the PCI BIOS, but access the hardware directly
instead. This is the default method of probing for PCI devices
in all kernels after 2.6.13.

conf1
Force use of PCI Configuration Mechanism 1 (a way to access
PCI memory on i386 machines).

conf2
Force use of PCI Configuration Mechanism 2 (a way to access
PCI memory on i386 machines).

nommconf
Disable use of the ACPI MMCONFIG table for PCI
configuration.

nomsi
If the PCI_MSI kernel config parameter is enabled, this kernel
boot option can be used to disable the use of MSI interrupts
system-wide.

nosort
Do not sort PCI devices according to order given by the PCI
BIOS. This sorting is done to get a device order compatible
with much older kernel versions.

108 | Chapter 9: Kernel Boot Command-Line Parameter Reference

biosirq
Use PCI BIOS calls to get the interrupt routing table. These
calls are known to be buggy on several machines and hang
these machine when used, but on other machines they are the
only way to get the interrupt routing table. Try this option if
the kernel is unable to allocate IRQs or discover secondary
PCI buses on your motherboard.

rom
Assign address space to expansion ROMs. Use this with
caution as certain devices share address decoders between
ROMs and other resources.

irqmask=0xnnnn
Set a bit mask of IRQs allowed to be assigned automatically to
PCI devices. You can make the kernel exclude IRQs of your
ISA cards this way.

pirqaddr=0xn
Specify the physical address of the PIRQ table (normally
generated by the BIOS) if it is outside the F0000–100000
(hexadecimal) range.

lastbus=n
Scan all buses through bus n. Can be useful if the kernel is
unable to find your secondary buses and you want to tell it
explicitly which ones they are.

assign-busses
Always use your own PCI bus numbers, overriding whatever
the firmware may have done.

usepirqmask
Honor the possible IRQ mask stored in the BIOS $PIR table.
This is needed on some systems with broken BIOSes, notably
some HP Pavilion N5400 and Omnibook XE3 notebooks.
This will have no effect if ACPI IRQ routing is enabled.

noacpi
Do not use ACPI for IRQ routing or for PCI scanning.

routeirq
Do IRQ routing for all PCI devices. This is normally done in
pci_enable_device(), so this option is a temporary
workaround for broken drivers that don’t call it.

firmware
Do not re-enumerate the bus, but instead just use the configu-
ration from the bootloader. This is currently used on IXP2000
systems where the bus has to be configured a certain way for
adjunct CPUs.

pnp_reserve_mem | 109

Boot
Reference

Plug and Play BIOS Options

noisapnp Disable the ISA Plug and Play (PnP) subsystem.

Disable the ISA PnP subsystem, if it has been enabled in the kernel
configuration.

pnpbios PnP BIOS settings.

pnpbios=[on|off|curr|no-curr]

Set the main PnP BIOS settings. on enables the PnP BIOS
subsystem. off disables the PnP BIOS subsystem. curr tells the PnP
BIOS subsystem to use the current static settings and no-curr tells
the subsystem to probe for dynamic settings if possible.

pnp_reserve_
irq

PnP BIOS reserved IRQs.

pnp_reserve_irq=irq1[,irq2...]

List of the IRQs that the PnP BIOS subsystem should not use for
autoconfiguration.

pnp_reserve_
dma

PnP BIOS reserved DMAs.

pnp_reserve_dma=dma1[,dma2...]

List of the DMAs that the PnP BIOS subsystem should not use for
autoconfiguration.

pnp_reserve_io PnP BIOS reserved I/O ports.

pnp_reserve_io=io1,size1[,io2,size2...]

I/O ports that the PnP BIOS subsystem should not use for autocon-
figuration. Each port is listed by its starting location and size.

pnp_reserve_
mem

PnP BIOS reserved memory regions.

pnp_reserve_mem=mem1,size1[,mem2,size2...]

Memory regions that the PnP BIOS subsystem should not use for
autoconfiguration. Each region is listed by its starting location and
size.

110 | Chapter 9: Kernel Boot Command-Line Parameter Reference

SELinux Options
These options change some fundamental aspects of SELinux startup.

checkreqprot Set the initial checkreqprot flag value.

checkreqprot=[0|1]

Set the initial checkreqprot flag value. 0 means that the check
protection will be applied by the kernel and will include any
implied execute protection. 1 means that the check protection is
requested by the application. The default value is set by a kernel
configuration option.

The value can be changed at runtime via the /selinux/checkreqprot
file.

enforcing Set the initial enforcing status.

enforcing=[0|1]

Specify whether SELinux enforces its rules upon boot. 0 means that
SELinux will just log policy violations but will not deny access to
anything. 1 means that the enforcement will be fully enabled with
denials as well as logging. The default value is 0.

The value can be changed at runtime via the /selinux/enforce file.

selinux Enable or disable SELinux at boot time.

selinux=[0|1]

This option allows SELinux to be enabled (1) or disabled (0) to
boot time. The default value is set by a kernel configuration option.

If SELinux is enabled at boot time, the /selinux/disable file can be
used later to disable it prior to the initial policy load.

selinux_
compat_net

Set the network control model.

selinux_compat_net=[0|1]

Set the initial value for the SELinux network control model. 0 uses
the new secmark-based packet controls, and 1 uses the legacy
packet controls. 0 is the default and preferred value.

This value can be changed at runtime via the /selinux/compat_net
file.

lockd.nlm_grace_period | 111

Boot
Reference

Network Options
These options control low-level aspects of the networking subsystem.

netdev Set various network device parameters.

netdev=[irq],[io],[mem_start],[mem_end],[name]

Specify network device parameters, which are specific to the driver
used by the network device. Some drivers’ source files document
the applicable options. This option does not usually apply to PCI,
USB, or other plug-and-play network devices. It is intended for use
only on devices that can not discover their own resource
assignments.

rhash_entries Set the number of route cache hash buckets.

dhash_entries=n

This option lets you override the default number of hash buckets
for the kernel’s route cache. Recommended only for kernel
network experts.

shapers Set the maximum number of network shapers.

shapers=n

This option lets you set the maximum number of network shapers
that the kernel can use.

thash_entries Set the number of TCP connection hash buckets.

thash_entries=n

This option lets you override the default number of hash buckets
for the kernel’s TCP connection cache.

Network File System Options
These options control NFS startup.

lockd.nlm_
grace_period

Assign a grace period to the lock manager.

lockd.nlm_grace_period=n

Set the NFS lock manager grace period. n is measured in seconds.

112 | Chapter 9: Kernel Boot Command-Line Parameter Reference

lockd.nlm_
tcpport

Assign a TCP port to the lock manager.

lockd.nlm_tcpport=port

Set the TCP port that the NFS lock manager should use. port must
be a valid TCP port value.

lockd.nlm_
timeout

Assign a new timeout value to the lock manager.

lockd.nlm_timeout=n

Override the default time value for the NFS lock manager. n is
measured in seconds. If this option is not specified, the default of
10 seconds will be used.

lockd.nlm_
udpport

Assign a UDP port to the lock manager.

lockd.nlm_udpport=port

Set the UDP port that the NFS lock manager should use. port must
be a valid UDP port value.

nfsroot Specifies the NFS root filesystem.

nfsroot=[server-ip:]root-dir[,nfs-options]

Set the NFS root filesystem for diskless boxes, to enable them to
boot properly over NFS. If this parameter is not set, the value /tftp-
boot/client_ip_address will be used as the root filesystem with the
default NFS options.

server-ip
IP address of the NFS server to connect to.

root-dir
Directory on the NFS server to mount as root. If there is a %s
token in this string, it will be replaced with the ASCII repre-
sentation of the client’s IP address.

nfs-options
The standard NFS options, such as ro, separated by commas.

nfs.callback_
tcpport

Set the NFSv4 TCP port for the callback channel.

nfs.callback_tcpport=port

Specify the TCP port that the NFSv4 callback channel should listen
on. port must be a valid TCP port value.

parport | 113

Boot
Reference

nfs.idmap_
cache_timeout

Set the maximum lifetime for idmapper cache entries.

nfs.idmap_cache_timeout=n

Specify the maximum lifetime for idmapper cache entries. n is
measured in seconds.

Hardware-Specific Options
These options specify different parameters, depending on the hardware present in
the system.

nousb Disable the USB subsystem.

If this option is present, the USB subsystem will not be initialized.

lp Parallel port and its mode.

lp=[0|port[,port...]|reset|auto]

Specify the parallel port to use. The lp=port1,port2... format asso-
ciates a sequence of parallel ports to devices, starting with lp0. An
example is lp=none,parport0, which would suppress configuration
of the lp0 device and cause the lp1 device to use the first parallel
port.

lp=0
Disables the printer driver.

lp=reset
Causes the attached printers to be reset. This option can be
combined with the port specifications.

lp=auto
Causes the kernel to examine the device ID from each port to
determine whether a IEEE 1284-compatible printer is
attached. If so, the kernel will manage that printer.

parport Specify the parallel port parameters.

parport=[setting[,setting...]

Specify settings for parallel port drivers. Parallel ports are assigned
in the order they are specified on the command line, starting with
parport0.

auto forces the driver to use any IRQ/DMA settings detected (the
default is to ignore detected IRQ/DMA settings because of possible

114 | Chapter 9: Kernel Boot Command-Line Parameter Reference

conflicts). You can also specify the base address, IRQ, and DMA
settings in the format 0xnnnn[,irq[,dma]]. irq and dma can be
numbers, auto to use detected settings on that particular port, or
nofifo to avoid using a FIFO even if it is detected.

parport_init_
mode

Parallel port initialization mode.

parport_init_mode=[spp|ps2|epp|ecp|ecpepp]

Specifies the mode for operating the parallel port. This is necessary
on the Pegasos computer where the firmware has no options for
setting up the parallel port mode. This option works for parallel
port chips of type 686a and 8231.

nr_uarts Maximum number of UARTs to be registered.

nr_uarts=n

Specifies the maximum number of different UARTs that can be
registered in the kernel.

Timer-Specific Options
These options override default kernel behavior to fix problems with certain chips.

enable_timer_
pin_1

Enable pin 1 of the APIC timer.

Enable pin 1 of the APIC timer. This option can be useful to work
around chipset bugs (on some ATI chipsets in particular). The
kernel tries to set a reasonable default, but sometimes this option is
necessary to override it.

disable_timer_
pin_1

Disable pin 1 of the APIC timer.

Disable pin 1 of the APIC timer. Useful for the same reasons as
enable_timer_pin_1.

enable_8254_
timer

Enable interrupt 0 timer routing over the 8254 chip.

Enable interrupt 0 timer routing over the 8254 chip in addition to
routing over the IO-APIC. The kernel tries to set a reasonable
default, but sometimes this option is necessary to override it.

hashdist | 115

Boot
Reference

disable_8254_
timer

Disable interrupt 0 timer routing over the 8254 chip.

Disable interrupt 0 timer routing over the 8254 chip in addition to
routing over the IO-APIC. The kernel tries to set a reasonable
default, but sometimes this option is necessary to override it.

hpet Disable HPET and use PIT instead.

hpet=disable

Disable the HPET timer source and tell the kernel to use the PIT
timer source instead.

clocksource Set the specific clocksource.

clocksource=[hpet|pit|tsc|acpi_pm|cyclone|scx200_hrt]

Override the default kernel clocksource and use the clocksource
with the specified name instead.

Miscellaneous Options
These options should always be available and don’t depend on any specific
subsystem or hardware being present in the system in order to work properly.

dhash_entries Set the number of dentry hash buckets.

dhash_entries=n

This option lets you override the default number of hash buckets
for the kernel’s dentry cache. Recommended only for kernel
experts.

elevator Set the default I/O scheduler elevator.

elevator=[anticipatory|cfq|deadline|noop]

Specify the I/O scheduler. See Chapter 11 for a list of the different
I/O schedulers available, and what they do.

hashdist Distribute large hashes across NUMA nodes.

hashdist=[0|1]

Large hashes that are allocated during the boot process on the IA-
64 platform are, by default, distributed across the different NUMA
nodes. This option lets the user turn this option on or off.

116 | Chapter 9: Kernel Boot Command-Line Parameter Reference

combined_
mode

Specify IDE driver usage.

combined_mode=[combined|ide|libata]

Control which driver uses the IDE ports in combined mode: the
legacy IDE driver, libata, or both. Note that using the ide or libata
options may affect your device naming (e.g., by changing hdc to
sdb).

max_loop Maximum number of loopback devices.

max_loop=n

Specify the maximum number of loopback filesystem devices that
can be mounted at the same time. n is an integer from 1 to 256.

panic Time to wait after panic before rebooting.

panic=n

Specify the amount of time in seconds that the kernel should wait
after a panic happens before it reboots. If this is set to 0 (the default
value), the kernel will not reboot after panicking; it will simply
halt.

pause_on_oops Delay between kernel oopses.

pause_on_oops=n

Tell the kernel to halt all CPUs after the first oops for n seconds
before continuing. This is useful if oopses keep scrolling off of the
screen before you can write them down or take a picture of them.

profile Control the kernel profiling.

profile=[schedule,][number]

This option affects how the kernel profiler is calculated. If schedule
is specified, the schedule points are affected by the value set in
number. If schedule is not specified, number is the step size as a
power of two for statistical time-based profiling in the kernel.

The most common use of this option is profile=2.

117

Chapter 10Build Reference

10
Kernel Build Command-Line

Reference

As discussed in Chapter 4, the tool that ties together kernel builds is the make
program, to which you pass a target that specifies what you want to build.
Chapter 4 went over the basic targets needed to build the kernel properly, but the
kernel build system also has a wide range of other targets. This chapter details
these targets, and what they can be used for.

All of these targets are passed to the make program on the command line, and a
number of them can be grouped together if desired. For example:

$ make mrproper xconfig

The targets are broken down into different types in the following sections.

You can get a summary of most of these targets by running, within the build
directory:

$ make help

This target prints out a lot of the common make targets that are described in the
rest of this chapter.

Informational Targets
Table 10-1 shows targets that print the kernel version, based on a number of
different options. They are commonly used by scripts to determine the version of
the kernel being built.

Table 10-1. Informational targets

Target Description

kernelrelease Displays the current kernel version, as determined by the build system.

kernelversion Displays the current kernel version, as told by the main Makefile. This differs from the
kernelrelease target in that it doesn’t use any additional version information based on
configuration options or localversion files.

118 | Chapter 10: Kernel Build Command-Line Reference

Cleaning Targets
Table 10-2 shows targets that simply remove files from previous builds. Their use
is highly recommended to make sure you don’t contaminate new builds with files
leftover that may have been built with different options. They differ in how much
they remove; sometimes you want to keep around files you’ve changed.

Configuration Targets
Table 10-3 shows targets that allow the kernel to be configured in a wide range of
different ways.

Note that the allyesconfig, allmodconfig, allnoconfig, and randconfig targets
also take advantage of the environment variable KCONFIG_ALLCONFIG. If that vari-
able points to a file, that file will be used as a list of configuration values that you
require to be set to a specific value. In other words, the file overrides the normal
behavior of the make targets.

For example, if the file ~/linux/must_be_set contains the following variables:

Table 10-2. Cleaning targets

Target Description

clean Removes most of the files generated by the kernel build system, but keeps the kernel configura-
tion.

mrproper Removes all of the generated files by the kernel build system, including the configuration and
some various backup files.

distclean Does everything mrproper does and removes some editor backup and patch leftover files.

Table 10-3. Configuration targets

Target Description

config Updates the current kernel configuration by using a line-oriented program.

menuconfig Updates the current kernel configuration by using a text-based menu program.

xconfig Updates the current kernel configuration by using a QT-based graphical program.

gconfig Updates the current kernel configuration by using a GTK+-based graphical program.

oldconfig Updates the current kernel configuration by using the current .config file and prompting for
any new options that have been added to the kernel.

silentoldconfig Just like oldconfig, but prints nothing to the screen except when a question needs to be
answered.

randconfig Generates a new kernel configuration with random answers to all of the different options.

defconfig Generates a new kernel configuration with the default answer being used for all options. The
default values are taken from a file located in the arch/$ARCH/defconfig file, where $ARCH
refers to the specific architecture for which the kernel is being built.

allmodconfig Generates a new kernel configuration in which modules are enabled whenever possible.

allyesconfig Generates a new kernel configuration with all options set to yes.

allnoconfig Generates a new kernel configuration with all options set to no.

Build Targets | 119

Build
Reference

$ cat ~/linux/must_be_set
CONFIG_SWAP=y
CONFIG_DEBUG_FS=y

and you enter make allnoconfig with the proper KCONFIG_ALLCONFIG environment
variable in effect:

$ KCONFIG_ALLCONFIG=../must_be_set make allnoconfig
$ grep CONFIG_SWAP .config
CONFIG_SWAP=y

then the results include:

$ grep CONFIG_DEBUG_FS .config
CONFIG_DEBUG_FS=y

This variable would not have normally been set to y otherwise.

If the KCONFIG_ALLCONFIG variable is not set, the build system checks for files in the
top-level build directory named:

• allmod.config

• allno.config

• allrandom.config

• allyes.config

If any of those files are present, the build uses them as lists of configuration values
that must be forced to the specified values. If none of those files are found, the
build system finally looks for a file called all.config for a list of forced configura-
tion values.

You can use these different files to set up a known good base configuration that
will always work. Then the other configuration options can be used to generate
different testing configurations for the needed situation.

Build Targets
Table 10-4 shows targets that build the kernel itself in a variety of ways.

Table 10-4. Build targets

Target Description

all Builds all of the different targets needed for this kernel to be able to be used. This
includes both the modules and the static portion of the kernel.

vmlinux Builds just the static portion of the kernel, not any loadable modules.

modules Builds all of the loadable kernel modules for this configuration.

modules_install Installs all of the modules into the specified location. If no location is specified with the
INSTALL_MODULE_PATH environment variable, they are installed in the default root
directory of the machine.

dir/ Builds all of the files in the specified directory and in all subdirectories below it.

dir/file.[o|i|s] Builds only the specified file.

dir/file.ko Builds all of the needed files and links them together to form the specified module.

tags Builds all of the needed tags that most common text editors can use while editing the
source code.

120 | Chapter 10: Kernel Build Command-Line Reference

You can also pass a number of environment variables to make that will change the
build. These can be specified for almost any target, as shown in Table 10-5.

Packaging Targets
These targets package up a built kernel into a standalone package that can be
installed on a wide range of different machines, as shown in Table 10-6.

TAGS Builds all of the needed tags that most common text editors can use while editing the
source code.

cscope Builds a cscope image, useful in source tree searches, of the source tree for the architec-
ture specified by the configuration file (not all of the kernel source files).

Table 10-5. Environment variables

Variable Value Description

V 0 This tells the build system to run in a quiet manner, showing only the file that is currently
being built, and not the entire command that is running in order to build that file. This is
the default option for the build system.

V 1 This tells the build system to operate in a verbose way, showing the full command that is
being used to generate each of the specific files.

O dir This tells the build system to locate all output files in the dir directory, including the kernel
configuration files. This allows the kernel to be built from a read-only filesystem and have
the output placed in another location.

C 1 This checks all C files that are about to be built with the sparse tool, which detects common
programming errors in the kernel source files. sparse can be downloaded using git from
git://git.kernel.org/pub/scm/devel/sparse/sparse.git. Nightly snapshots can be found at
http://www.codemonkey.org.uk/projects/git-snapshots/sparse/. More information on how
to use sparse can be found in the Documentation/sparse.txt file in the kernel source tree.

C 2 This forces all C files to be checked with the sparse tool, even if they did not need to be
built.

Table 10-6. Packaging targets

Target Description

rpm Builds the kernel first and then packages it up as a RPM package that can be installed.

rpm-pkg Builds a source RPM package containing the base kernel.

binrpm-pkg Builds a RPM package that contains a compiled kernel and modules.

deb-pkg Builds a Debian package that contains the compiled kernel and modules.

tar-pkg Builds a tarball that contains the compiled kernel and modules.

targz-pkg Builds a gzip-compressed tarball that contains the compiled kernel and modules.

tarbz2-pkg Builds a bzip2-compressed tarball that contains the compiled kernel and modules.

Table 10-4. Build targets (continued)

Target Description

Analysis Targets | 121

Build
Reference

Documentation Targets
Table 10-7 shows targets that build the internal kernel documentation in a variety
of different formats.

Architecture-Specific Targets
Each kernel architecture has a set of specific targets unique to it. Table 10-8 shows
the targets available for the 32-bit Intel architecture.

Analysis Targets
Table 10-9 shows targets that are good for trying to find problem code in the
kernel. It’s a good idea to create a stack space list when creating new code to
determine that your changes are not taking up too much kernel stack space. The
namespacecheck target is useful for determining whether your changes can safely
add its symbols to the kernel’s global namespace.

Table 10-7. Documentation targets

Target Description

xmldocs Builds the kernel documentation as XML DocBook files.

psdocs Builds the kernel documentation as PostScript files.

pdfdocs Builds the kernel documentation as PDF files.

htmldocs Builds the kernel documentation as HTML files.

mandocs Builds the kernel documentation as a set of manpages, which can then be installed with the install-
mandocs target.

Table 10-8. 32-bit Intel architecture-specific targets

Target Description

bzImage Creates a compressed kernel image and places it in the arch/i386/boot/bzImage file. This is the
default target for the i386 kernel build.

install Installs the kernel image using the distribution-specific /sbin/installkernel program. Note that this
does not install the kernel modules; that must be done with the modules_install target.

bzdisk Creates a boot floppy image and writes it to the /dev/fd0 device.

fdimage Creates a boot floppy image and places it in the file arch/i386/boot/fdimage. The mtools package
must be present on your system in order for this to work properly.

isoimage Creates a CD-ROM boot image and places it in the file arch/i396/boot/image.iso. The syslinux
package must be present on your system in order for this to work properly.

Table 10-9. Analysis targets

Target Description

checkstack Generate a list of the functions that use the most of the kernel stack space.

namespacecheck Generate a list of all of the kernel symbols and their namespaces. This will be a large list.

122

Chapter 11Configuration Reference

11
Kernel Configuration Option
Reference

This chapter lists the most important configuration options offered when you run
make config or one of its graphical interfaces. The majority of the chapter is based on
the in-kernel documentation for the different kernel configuration options, which were
written by the kernel developers and released under the GPL.

EXPERIMENTAL Prompt for development and/or incomplete code/drivers

Some of the many things that Linux supports (such as network
drivers, filesystems, network protocols, etc.) can be in a state of
development where the functionality, stability, or the level of
testing is not yet high enough for general use. This is usually
known as the “alpha-test” phase among developers. If a feature is
currently in alpha-test, the developers usually discourage unin-
formed widespread use of this feature by the general public to
avoid “Why doesn’t this work?” mail messages. However, active
testing and use of these systems is welcomed. Just be aware that it
may not meet the normal level of reliability or may fail to work in
some special cases. Detailed bug reports from people familiar with
the kernel internals are usually welcomed by the developers. (But
before submitting bug reports, please read the documents
README, MAINTAINERS, REPORTING-BUGS, Documentation/
BUG-HUNTING, and Documentation/oops-tracing.txt in the kernel
source.)

This option also makes obsolete drivers available. These are drivers
that have been replaced by something else and/or are scheduled to
be removed in a future kernel release.

Unless you intend to help test and develop a feature or driver that
falls into this category, or you have a situation that requires using
these features, you should probably say no here, which will cause
the configurator to present you with fewer choices. If you say yes

MODULES | 123

Configuration
Reference

here, you will be offered the choice of using features or drivers that
are currently considered to be in the alpha-test phase.

On its own, this option does not do anything except allow you to
select other options.

LOCALVERSION Local version—append to kernel release

This allows you to append an extra string to the end of your kernel
version. This will show up when you enter a uname command, for
example. The string you set here will be appended after the
contents of any files with a filename beginning with localversion in
your object and source tree, in that order. The string can be a
maximum of 64 characters.

AUDIT Auditing support

Enable an auditing infrastructure that can be used with another
kernel subsystem, such as SELinux (which requires this for logging
of avc messages output).

IKCONFIG Kernel .config support

This option enables the complete Linux kernel .config file contents
to be saved in the kernel. It documents which kernel options are
used in a running kernel or an on-disk kernel. This information can
be extracted from the kernel image file with the script scripts/
extract-ikconfig and used as input to rebuild the current kernel or
to build another kernel. It can also be extracted from a running
kernel by reading the file /proc/config.gz.

EMBEDDED Configure standard kernel features (for small systems)

This option allows certain base kernel options and settings to be
disabled or tweaked. This is for specialized environments that can
tolerate a “nonstandard” kernel. This is recommend only for
experts, as it is very easy to change the options to create a kernel
that will not even boot properly.

On its own, this option does not do anything except allow you to
select other options.

MODULES Enable loadable module support

Kernel modules are small pieces of compiled code that can be
inserted in the running kernel, rather than being permanently built
into the kernel. If you select this option, many parts of the kernel
can be built as modules (by answering M instead of yes where indi-
cated): this is most useful for infrequently used options that are not
required for booting. For more information, see Chapter 4 and the
manpages for modprobe, lsmod, modinfo, insmod, and rmmod.

124 | Chapter 11: Kernel Configuration Option Reference

If you say yes here, you will need to run make modules_install to
put the modules under /lib/modules where the module tools can
find them.

IOSCHED_NOOP No-op I/O scheduler

The no-op I/O scheduler is a minimal scheduler that does basic
merging and sorting. Its main uses include nondisk-based block
devices such as memory devices and specialized software or hard-
ware environments that do their own scheduling and require only
minimal assistance from the kernel.

IOSCHED_AS Anticipatory I/O scheduler

The anticipatory I/O scheduler is the default disk scheduler. It is
generally a good choice for most environments, but is quite large
and complex compared to the deadline I/O scheduler. It can also
be slower in some cases, especially under some database loads.

IOSCHED_
DEADLINE

Deadline I/O scheduler

The deadline I/O scheduler is simple and compact. It is often as good
as the anticipatory I/O scheduler, and under some database work-
loads, even better. In the case of a single process performing I/O to a
disk at any one time, its behavior is almost identical to the anticipa-
tory I/O scheduler and so is a good choice.

IOSCHED_CFQ CFQ I/O scheduler

The CFQ I/O scheduler tries to distribute bandwidth equally
among all processes in the system. It should provide a fair working
environment, suitable for desktop systems.

SMP Symmetric multiprocessing support

This enables support for systems with more than one CPU. If you
have a system with only one CPU, like most personal computers,
say no. If you have a system with more than one CPU, say yes.

If you say no here, the kernel will run on single and multiprocessor
machines, but will use only one CPU of a multiprocessor machine.
If you say yes here, the kernel will run on many, but not all, single-
processor machines. On a single-processor machine, the kernel will
run faster if you say no here.

Note that if you say yes here and choose architecture 586 or
Pentium under Processor family, the kernel will not work on 486
architectures. Similarly, multiprocessor kernels for the PPro archi-
tecture may not work on all Pentium-based boards.

M386 | 125

Configuration
Reference

See also Documentation/smp.txt, Documentation/i386/IO-APIC.txt,
Documentation/nmi_watchdog.txt, and the SMP-HOWTO avail-
able at http://www.tldp.org/docs.html#howto.

M386 386

This is the processor type of your CPU. This information is used
for optimization. In order to compile a kernel that can run on all
x86 CPU types (albeit not optimally fast), you can specify 386 here.

The kernel will not necessarily run on earlier architectures than the
one you have chosen; e.g., a Pentium-optimized kernel will run on
a PPro, but not necessarily on a i486.

Here are the settings recommended for greatest speed:

386
Choose this if you have an AMD/Cyrix/Intel 386DX/DXL/SL/
SLC/SX, Cyrix/TI 486DLC/DLC2, UMC 486SX-S, or NexGen
Nx586 processor. Only 386 kernels will run on a 386 class
machine.

486
Choose this if you have an AMD/Cyrix/IBM/Intel 486DX/
DX2/DX4, SL/SLC/SLC2/SLC3/SX/SX2 and UMC U5D, or
U5S processor.

586
Choose this if you have a generic Pentium processor lacking
the TSC (timestamp counter) register.

Pentium-Classic
Choose this if you have an Intel Pentium processor.

Pentium-MMX
Choose this if you have an Intel Pentium MMX processor.

Pentium-Pro
Choose this if you have an Intel Pentium Pro processor.

Pentium-II
Choose this if you have an Intel Pentium II or pre-Copper-
mine Celeron processor.

Pentium-III
Choose this if you have an Intel Pentium III or Coppermine
Celeron processor.

Pentium-4
Choose this if you have an Intel Pentium 4 or P4-based
Celeron processor.

K6
Choose this if you have an AMD K6, K6-II or K6-III (aka K6-
3D) processor.

Athlon
Choose this if you have an AMD K7 family (Athlon/Duron/
Thunderbird) processor.

126 | Chapter 11: Kernel Configuration Option Reference

Crusoe
Choose this if you have a Transmeta Crusoe series processor.

Efficeon
Choose this if you have a Transmeta Efficeon series processor.

Winchip-C6
Choose this if you have an original IDT Winchip processor.

Winchip-2
Choose this if you have an IDT Winchip 2 processor.

Winchip-2
Choose this if you have an IDT Winchip processor with
3DNow! capabilities.

GeodeGX1
Choose this if you have a Geode GX1 (Cyrix MediaGX)
processor.

Geode GX/LX
Choose this if you have an AMD Geode GX or LX processor.

CyrixIII/VIA C3
Choose this if you have a VIA Cyrix III or VIA C3 processor.

VIA C3-2
Choose this if you have a VIA C3-2 “Nehemiah” (model 9 and
above) processor.

If you don’t know what to do, choose 386.

X86_GENERIC Generic x86 support

Instead of just including optimizations for the selected x86 variant
(e.g., PII, Crusoe, or Athlon), include some more generic optimiza-
tions as well. This will make the kernel perform better on x86
CPUs other than the one selected.

This is really intended for distributors who need more generic
optimizations.

NR_CPUS Maximum number of CPUs (2-255)

This allows you to specify the maximum number of CPUs that this
kernel will support. The maximum supported value is 255 and the
minimum value that makes sense is 2.

This option is purely to save memory; each supported CPU adds
approximately 8 KB to the kernel image.

SCHED_SMT SMT (HyperThreading) scheduler support

SMT scheduler support improves the CPU scheduler’s decision-
making on Intel Pentium 4 chips with HyperThreading, at a cost of
slightly increased overhead in some places.

NOHIGHMEM | 127

Configuration
Reference

PREEMPT_NONE No forced preemption (server)

This is the traditional Linux preemption model, geared toward
maximizing throughput. It still provides good latency most of the
time, occasional longer delays are possible.

Select this option if you are building a kernel for a server or scien-
tific/computation system, or if you want to maximize the raw
processing power of the kernel, irrespective of scheduling latencies.

PREEMPT_
VOLUNTARY

Voluntary kernel preemption (desktop)

This option reduces the latency of the kernel by adding more
“explicit preemption points” to the kernel code. These new
preemption points have been selected to reduce the maximum
latency of rescheduling, which provides faster response to applica-
tions at the cost of slighly lower throughput.

This option speeds up reaction to interactive events by allowing a
low-priority process to voluntarily preempt itself even if it is in
kernel mode executing a system call. This allows applications to
appear to run more smoothly even when the system is under load.

Select this if you are building a kernel for a desktop system.

PREEMPT Preemptible kernel (low-latency desktop)

This option reduces the latency of the kernel by making all kernel
code (except code executing in a critical section) preemptible. This
allows reaction to interactive events by permitting a low priority
process to be preempted involuntarily even if the processor is in
kernel mode executing a system call and would otherwise not be
about to reach a natural preemption point. This allows applica-
tions to appear to run more smoothly even when the system is
under load, at the cost of slighly lower throughput and a slight
runtime overhead to kernel code.

Select this if you are building a kernel for a desktop or an
embedded system with latency requirements in the milliseconds
range.

PREEMPT_BKL Preempt the Big Kernel Lock

This option reduces the latency of the kernel by making the Big
Kernel Lock preemptible.

Say yes here if you are building a kernel for a desktop system.

NOHIGHMEM High memory configuration

Linux can use up to 64 GB of physical memory on x86 systems.
However, the address space of 32-bit x86 processors is only 4 GB
in size. That means that, if you have a large amount of physical

128 | Chapter 11: Kernel Configuration Option Reference

memory, not all of it can be permanently mapped by the kernel.
The physical memory that’s not permanently mapped is called high
memory.

If you are compiling a kernel that will never run on a machine with
more than 1 GB total physical RAM, answer off here (the default
choice, and suitable for most users). This will result in a 3 GB/1 GB
split: 3 GB are mapped so that each process sees a 3 GB virtual
memory space and the remaining part of the 4 GB virtual memory
space is used by the kernel to permanently map as much physical
memory as possible.

If the machine has between 1 and 4 GB physical RAM, answer 4GB
here.

If more than 4 GB is used, answer 64GB here. This selection turns
Intel PAE (Physical Address Extension) mode on. PAE implements
three-level paging on IA32 processors. PAE is fully supported by
Linux, and PAE mode is implemented on all recent Intel proces-
sors (Pentium Pro and better).

If you say 64GB here, the kernel will not boot on CPUs
that don’t support PAE!

The actual amount of total physical memory will either be autode-
tected or can be forced by using a kernel command line option
such as mem=256M. (See Chapter 9 for details about how to pass
options to the kernel at boot time, and what options are available.)

If unsure, say off.

HIGHMEM4G 4GB

Select this if you have a 32-bit processor and between 1 and 4 GB
of physical RAM.

HIGHMEM64G 64GB

Select this if you have a 32-bit processor and more than 4 GB of
physical RAM.

FLATMEM_
MANUAL

Flat memory

This option allows you to change some of the ways that Linux
manages its memory internally. Most users will see only have one
option here: FLATMEM. This is normal and a correct option.

Some users of more advanced features, such as NUMA and memory
hotplug, may have different options here. DISCONTIGMEM is a more
mature, better tested system, but is incompatible with memory
hotplug and may suffer decreased performance over SPARSEMEM. If

KEXEC | 129

Configuration
Reference

you are unsure between sparse memory and discontiguous
memory, choose discontiguous memory.

If unsure, choose this option, flat memory.

DISCONTIGMEM
_MANUAL

Discontiguous memory

This option provides better support than flat memory for discontig-
uous memory systems. These systems have holes in their physical
address spaces, and this option handles the holes more efficiently.
However, the vast majority of hardware has quite flat address
spaces and can experience degraded performance from the extra
overhead this option imposes.

Many NUMA configurations will have this as the only option.

If unsure, choose flat memory over this option.

SPARSEMEM_
MANUAL

Sparse memory

This will be the only option for some systems, including memory
hotplug systems.

For many other systems, this will be an alternative to discontig-
uous memory. This option provides some potential performance
benefits, along with decreased code complexity, but it is newer and
more experimental.

If you are unsure, choose discontiguous memory or flat memory.

SECCOMP Enable seccomp to safely compute untrusted bytecode

This kernel feature is useful for number-crunching applications
that may need to compute untrusted bytecode during their execu-
tion. By using pipes or other transports made available to the
process as file descriptors supporting the read/write syscalls, it’s
possible to isolate those applications in their own address space
using seccomp. Once seccomp is enabled via /proc/pid/seccomp, it
cannot be disabled and the task is allowed to execute only a few
safe syscalls defined by each seccomp mode.

If you are unsure, say yes. Only embedded systems should be built
by answering no.

KEXEC kexec system call (experimental)

kexec is a system call that implements the ability to shut down
your current kernel and start up another. It is like a reboot, but is
independent of the system firmware. And like a reboot, you can
start any kernel with it, not just Linux.

The name comes from the similarity to the exec system call.

Do not be surprised if this code does not initially work for you. It
may help to enable device hotplugging support. As of this writing,

130 | Chapter 11: Kernel Configuration Option Reference

the exact hardware interface is strongly in flux, so no good recom-
mendation can be made.

HOTPLUG_CPU Support for hot-pluggable CPUs (experimental)

Say yes here to experiment with turning CPUs off and on, and to
enable suspend on SMP systems. CPUs can be controlled through
the /sys/devices/system/cpu interface.

PM Power management support

Power management allows parts of your computer to shut off or be
put into a power-conserving sleep mode if they are not being used.
There are two competing standards for doing this: APM and ACPI.
If you want to use either one, say yes here and then also enable one
of those two standards.

Power management is most important for battery-powered laptop
computers; if you have a laptop, check out the Linux Laptop home
page at http://www.linux-on-laptops.com, Tuxmobil-Linux on Mobile
Computers at http://www.tuxmobil.org, and the “Battery Powered
Linux” mini-HOWTO at http://www.tldp.org/docs.html#howto.

Note that, even if you say no here, Linux on the x86 architecture
will issue the HLT instruction if nothing is being done, thereby
sending the processor to sleep and saving power.

SOFTWARE_
SUSPEND

Software suspend

Enable machine suspension.

When the machine is suspended, an image is saved in your active
swap. Upon next boot, pass the resume=/dev/swappartition argu-
ment to the kernel to have it detect the saved image, restore
memory state from it, and continue to run as before. If you do not
want the previous state to be reloaded, use the noresume kernel
argument. However, note that your partitions will be fsck’d and
you must issue mkswap on your swap partitions again. The proce-
dure does not work with swap files.

Right now you may boot without resuming and then resume later,
but in the meantime you cannot use those swap partitions/files that
were involved in suspending. In this case, also, there is a risk that
buffers on disk won’t match with saved ones.

For more information, see Documentation/power/swsusp.txt.

ACPI ACPI Support

Advanced Configuration and Power Interface (ACPI) support for
Linux requires ACPI-compliant hardware and firmware, and
assumes the presence of OS-directed configuration and power

CPU_FREQ_GOV_PERFORMANCE | 131

Configuration
Reference

management (OSPM) software. This option will enlarge your
kernel by about 70 KB.

Linux ACPI provides a robust functional replacement for several
legacy configuration and power management interfaces, including
the Plug and Play BIOS specification (PnP BIOS), the MultiPro-
cessor specification (MPS), and the Advanced Power Management
(APM) specification. If both ACPI and APM support are config-
ured, whichever is loaded first will be used.

The ACPI SourceForge project at http://sourceforge.net/projects/acpi
contains the latest source code, documentation, tools, mailing list
subscription, and other information.

Linux support for ACPI is based on Intel Corporation’s ACPI
Component Architecture (ACPI CA). For more information, see
http://developer.intel.com/technology/iapc/acpi.

ACPI is an open industry specification codeveloped by Compaq,
Intel, Microsoft, Phoenix, and Toshiba. The specification is avail-
able at http://www.acpi.info.

CPU_FREQ CPU frequency scaling

CPU frequency scaling allows you to change the clock speed of
CPUs on the fly. This can save power, because the lower the CPU
clock speed, the less power the CPU consumes.

Note that this driver doesn’t automatically change the CPU clock
speed; you need to either enable a dynamic CPUFreq policy
governor (described later) after booting or use a userspace tool.

For details, take a look at Documentation/cpu-freq.

CPU_FREQ_
DEFAULT_GOV_
PERFORMANCE

Performance

Use the CPUFreq performance governor. This sets the frequency
statically to the highest frequency supported by the CPU.

CPU_FREQ_
DEFAULT_GOV_
USERSPACE

Userspace

Use the CPUFreq userspace governor. This allows you to set the
CPU frequency manually and allows a userspace program to set the
CPU dynamically without requiring you to first enable the user-
space governor manually.

CPU_FREQ_
GOV_
PERFORMANCE

“Performance” CPUFreq policy governor

This CPUFreq policy governor sets the frequency statically to the
highest available CPU frequency.

132 | Chapter 11: Kernel Configuration Option Reference

CPU_FREQ_
GOV_
POWERSAVE

“Powersave” CPUFreq policy governor

This sets the frequency statically to the lowest available CPU
frequency.

CPU_FREQ_
GOV_
USERSPACE

“Userspace” CPUFreq policy governor

Enable this CPUFreq policy governor either when you want to set
the CPU frequency manually or when a userspace program should
be able to set the CPU dynamically, as on LART (http://www.lart-
maker.nl).

For details, take a look at Documentation/cpu-freq.

CPU_FREQ_
GOV_
ONDEMAND

“Ondemand” CPUFreq policy governor

This driver adds a dynamic CPUFreq policy governor. The
governor polls the CPU and changes its frequency based on CPU
utilization. Support for this governor depends on the CPU’s ability
to do fast frequency switching (i.e., very low latency frequency
transitions).

For details, take a look at Documentation/cpu-freq.

CPU_FREQ_
GOV_
CONSERVATIVE

“Conservative” CPUFreq policy governor

This driver is similar to the Ondemand governor both in its source
code and its purpose. The difference is that the Conservative
governor is optimized for a battery-powered system. The frequency
is gracefully increased and decreased rather than jumping to 100
percent when speed is required.

If you are using a laptop, a PDA, or an AMD64-based computer
(due to the unacceptable step-by-step latency issues between the
minimum and maximum frequency transitions in the CPU), you
will probably want to use this governor. If you have a desktop
machine, consider the Ondemand governor instead.

For details, take a look at Documentation/cpu-freq.

PCI PCI support

PCI is a bus system used by the processor to talk to internal devices
and add-on cards. It is extremely common and found in almost all
modern computers.

Say yes to this option unless you have a special reason not to.

PCCARD PCCard (PCMCIA/CardBus) support

Say yes here if you want to attach PCMCIA or PC cards to your
Linux computer. These are credit-card size devices such as network
cards, modems, or hard drives often used with laptop computers.

UNIX | 133

Configuration
Reference

There are actually two varieties of these cards: 16-bit PCMCIA and
32-bit CardBus cards.

PCMCIA 16-bit PCMCIA support

This option enables support for 16-bit PCMCIA cards. Most older
PC cards are 16-bit PCMCIA cards, so unless you know you’re only
using 32-bit CardBus cards, say yes here.

To use 16-bit PCMCIA cards, you will need supporting software in
most cases. See the file Documentation/Changes for location and
details.

CARDBUS 32-bit CardBus support

CardBus is a bus mastering architecture for PC cards, which allows
for 32-bit PC cards (the original PCMCIA standard specifies only a
16-bit wide bus). Many newer PC cards are actually CardBus cards.

To use 32-bit PC cards, you also need a CardBus-compatible host
bridge. Virtually all modern PCMCIA bridges do this, and most of
them are “yenta-compatible,” so enable that option too.

HOTPLUG_PCI Support for PCI hotplug (experimental)

Say yes here if you have a motherboard with a PCI hotplug
controller. This allows you to add and remove PCI cards while the
machine is powered up and running.

NET Networking support

Say yes here unless you are an expert with a really good reason not
to. The reason is that some programs need kernel networking
support even when running on a standalone machine that isn’t
connected to any other computer.

If you are upgrading from an older kernel, you should consider
updating your networking tools too, because changes in the kernel
and the tools often go hand in hand. The tools are contained in the
net-tools package, the location and version number of which are
given in Documentation/Changes.

For a general introduction to Linux networking, it is highly recom-
mended that you read the NET-HOWTO, available from http://
www.tldp.org/docs.html#howto.

UNIX Unix domain sockets

If you say yes here, you will include support for Unix domain
sockets; sockets are the standard Unix mechanism for establishing
and accessing network connections. Many commonly used
programs such as the X Window System, syslog, and udev use these

134 | Chapter 11: Kernel Configuration Option Reference

sockets even if your machine is not connected to any network.
Unless you are working on an embedded system or something
similar, you definitely want to say yes here.

INET TCP/IP networking

These are the protocols used on the Internet and on most local
Ethernets. It is highly recommended that you say yes here, since
some programs (e.g., the X Window System) use TCP/IP even if
your machine is not connected to any other computer. They use
the so-called loopback device, which this option sets up. It will
enlarge your kernel by about 144 KB.

For an excellent introduction to Linux networking, please read the
“Linux Networking” HOWTO, available from http://www.tldp.org/
docs.html#howto.

IP_ADVANCED_
ROUTER

IP: advanced router

If you intend to run your Linux box mostly as a router, i.e., as a
computer that forwards and redistributes network packets, say yes
here. You will then be presented with several options that allow
more precise control about the routing process.

The answer to this question won’t directly affect the kernel:
answering no will just cause the configurator to skip all the ques-
tions about advanced routing.

Note that your box can act as a router only if you enable IP
forwarding in your kernel; you can do that by saying yes to the /proc
filesystem support and Sysctl support options and executing the line:

echo "1" > /proc/sys/net/ipv4/ip_forward

at boot time after the /proc filesystem has been mounted.

If you turn on IP forwarding, you will also get rp_filter, which auto-
matically rejects incoming packets if the routing table entry for
their source address doesn’t match the network interface they’re
arriving on. This has security advantages because it prevents IP
spoofing; however, it can pose problems if you use asymmetric
routing (packets from you to a host take a different path from
packets that go from that host to you) or if you operate a
nonrouting host that has several IP addresses on different inter-
faces. To turn rp_filter off, enter:

echo 0 > /proc/sys/net/ipv4/conf/device/rp_filter

 or:

echo 0 > /proc/sys/net/ipv4/conf/all/rp_filter

NETFILTER Network packet filtering

Netfilter is a framework for filtering and mangling network packets
that pass through your Linux box.

NETFILTER | 135

Configuration
Reference

The most common use of packet filtering is to run your Linux box
as a firewall protecting a local network from the Internet. The type
of firewall provided by this kernel support is called a packet filter,
which means that it can reject individual network packets based on
type, source, destination, etc. The other kind of firewall, a proxy-
based one, is more secure but more intrusive and more bothersome
to set up; it inspects the network traffic much more closely, modi-
fies it, and has knowledge about the higher-level protocols, which a
packet filter lacks. Moreover, proxy-based firewalls often require
changes to the programs running on the local clients. Proxy-based
firewalls don’t need support by the kernel, but they are often
combined with a packet filter, which works only if you say yes
here.

You should also say yes here if you intend to use your Linux box as
the gateway to the Internet for a local network of machines without
globally valid IP addresses. This is called masquerading. If one of
the computers on your local network wants to send something to
the outside, your box can “masquerade” as that computer, i.e., it
forwards the traffic to the intended outside destination, but modi-
fies the packets to make it look like they came from the firewall box
itself. Masquerading works both ways: if the outside host replies,
the Linux box will silently forward the traffic to the correct local
computer. This way, the computers on your local net are
completely invisible to the outside world, even though they can
reach the outside and can receive replies. It is even possible to run
globally visible servers from within a masqueraded local network
using a mechanism called port forwarding. Masquerading is also
often called NAT (Network Address Translation). Other operating
systems often call this term PAT (Port Address Translation).

Another use of Netfilter is in transparent proxying: if a machine on
the local network tries to connect to an outside host, your Linux
box can transparently forward the traffic to a local server, typically
a caching proxy server.

Yet another use of Netfilter is building a bridging firewall. Using a
bridge with Network packet filtering enabled makes iptables “see”
the bridged traffic. For filtering on the lower network and Ethernet
protocols over the bridge, use ebtables (located under bridge
Netfilter configuration).

Various modules exist for Netfilter that replace the previous
masquerading (ipmasqadm), packet-filtering (ipchains), trans-
parent proxying, and port-forwarding mechanisms. Please see
Documentation/Changes under iptables for the location of these
packages.

Chances are that you should say yes here if you compile a kernel
which will run as a router and no for regular hosts.

136 | Chapter 11: Kernel Configuration Option Reference

NET_SCHED QoS and/or fair queueing

When the kernel has several packets to send out over a network
device, it has to decide which ones to send first, which ones to
delay, and which ones to drop. This is the job of queueing disci-
plines. Several different algorithms for how to do this “fairly” have
been proposed.

If you say no here, you will get the standard packet scheduler,
which is a FIFO (first come, first served) scheduler. If you say yes
here, you will be able to choose from among several alternative
algorithms that can then be attached to different network devices.
This is useful, for example, if some of your network devices are
real-time devices that need a certain minimum data flow rate, or if
you need to limit the maximum data flow rate for traffic that
matches specified criteria.

To administer these schedulers, you’ll need the user-level utilities
from the package iproute2+tc at http://linux-net.osdl.org/index.php/
Iproute2.

This Quality of Service (QoS) support will enable you to use Differ-
entiated Services (diffserv) and Resource Reservation Protocol
(RSVP) on your Linux router if you also say yes to the corre-
sponding options. Documentation and software is at http://diffserv.
sourceforge.net.

IRDA IrDA (infrared) subsystem support

Say yes here if you want to build support for the IrDA protocols.
The Infrared Data Association specifies standards for wireless
infrared communication and is supported by most laptops and
PDAs.

To use Linux support for the IrDA protocols, you will also need
some userspace utilities such as irattach. For more information, see
the file Documentation/networking/irda.txt. You also want to read
the IR-HOWTO, available at http://www.tldp.org/docs.html#howto.

If you want to exchange bits of data (e.g., vCal, vCard) with a PDA,
you will need to install an OBEX application, such as OpenObex
from http://sourceforge.net/projects/openobex.

IRLAN IrLAN protocol

Say yes here if you want to build support for the IrLAN protocol.
IrLAN emulates an Ethernet and makes it possible to put up a wire-
less LAN using infrared beams.

The IrLAN protocol can be used to talk with infrared access points
such as the HP NetbeamIR or the ESI JetEye NET. You can also
connect to another Linux machine running the IrLAN protocol for
ad hoc networking.

BT | 137

Configuration
Reference

IRNET IrNET protocol

Say yes here if you want to build support for the IrNET protocol.
IrNET is a PPP driver, so you will also need a working PPP
subsystem (driver, daemon, and configuration).

IrNET is an alternate way to transfer TCP/IP traffic over IrDA. It
uses synchronous PPP over a set of point to point IrDA sockets.
You can use it between Linux machines or with Windows.

IRCOMM IrCOMM protocol

Say yes here if you want to build support for the IrCOMM
protocol. IrCOMM implements serial port emulation, and makes it
possible to use all existing applications that understand ttys with
infrared links. Thus, you should be able to use applications such as
PPP and minicom.

IRDA_ULTRA Ultra (connectionless) protocol

Say yes here to support the connectionless Ultra IRDA protocol.
Ultra allows you to exchange data over IrDA with really simple
devices (watch, beacon) without the overhead of the IrDA protocol
(no handshaking, no management frames, simple fixed header). Ultra
is available as a special socket: socket(AF_IRDA, SOCK_DGRAM, 1).

BT Bluetooth subsystem support

Bluetooth is a low-cost, low-power, and short-range wireless tech-
nology. It was designed as a replacement for cables and other short-
range technologies such as IrDA. Bluetooth operates in a personal
area range that typically extends up to 10 meters. More information
about Bluetooth can be found at http://www.bluetooth.com.

The Linux Bluetooth subsystem consist of several layers:

Bluetooth core
HCI device and connection manager, scheduler

HCI device drivers
Interface to the hardware

SCO module
SCO audio links

L2CAP module
Logical Link Control and Adaptation Protocol

RFCOMM module
RFCOMM Protocol

BNEP
Module Bluetooth Network Encapsulation Protocol

CMTP
Module CAPI Message Transport Protocol

138 | Chapter 11: Kernel Configuration Option Reference

HIDP
Module Human Interface Device Protocol

To use the Linux Bluetooth subsystem, you will need several user-
space utilities, such as hciconfig and hcid. These utilities and
updates to Bluetooth kernel modules are provided in the BlueZ
packages at http://www.bluez.org.

IEEE80211 Generic IEEE 802.11 networking stack

This option enables the hardware-independent IEEE 802.11
networking stack.

MTD Memory Technology Device (MTD) support

Memory Technology Devices are flash, RAM, and similar chips,
often used for solid-state filesystems on embedded devices. This
option provides the generic support for MTD drivers to register
themselves with the kernel and for potential users of MTD devices
to enumerate the devices present and obtain a handle on them. It
also allows you to select individual drivers for particular hardware
and users of MTD devices.

PARPORT Parallel port support

If you want to use devices connected to your machine’s parallel
port (the connector at the computer with 25 holes), e.g., a printer,
ZIP drive, or Parallel Line Internet Protocol (PLIP) link, you need to
say yes here.

Please read Documentation/parport.txt and drivers/parport/BUGS-
parport for more information. For extensive information about
drivers for many devices attaching to the parallel port, see http://
www.torque.net/linux-pp.html.

It is possible to share a single parallel port among several devices,
and it is safe to compile all the corresponding drivers into the
kernel. If you have more than one parallel port and want to specify
which port and IRQ will be used by this driver at module load
time, take a look at Documentation/parport.txt.

PNP Plug and Play support

Plug and Play (PnP) is a standard for peripherals that allows them
to be configured by software—for example, to assign IRQs or other
parameters. No jumpers on the cards are needed; instead, the
values are provided to the cards from the BIOS, from the operating
system, or using a userspace utility.

Say yes here if you would like Linux to configure your PnP devices.
You should then also say yes to all of the protocols needed. Alter-
natively, you can say no here and configure your PnP devices using
userspace utilities such as the isapnptools package.

IDE | 139

Configuration
Reference

ISAPNP ISA Plug and Play support

Say yes here if you would like support for ISA PnP devices. Some
information is available in Documentation/isapnp.txt.

If you use have ISA Plug and Play devices, please use the ISA PnP
tools found at http://www.roestock.demon.co.uk/isapnptools to
configure them properly.

PNPBIOS Plug and Play BIOS support (experimental)

Linux uses the PNPBIOS defined in “Plug and Play BIOS Specifica-
tion Version 1.0A May 5, 1994” to autodetect built-in mainboard
resources (e.g., parallel port resources).

If you would like the kernel to detect and allocate resources to your
mainboard devices (on some systems they are disabled by the
BIOS) say yes here. The PNPBIOS can also help prevent resource
conflicts between mainboard devices and other bus devices.

ACPI is expected to supersede PNPBIOS some day. Currently, they
coexist nicely. If you have a non-ISA system that supports ACPI,
you probably don’t need PNPBIOS support.

IDE ATA/ATAPI/MFM/RLL support

If you say yes here, your kernel will be able to manage low-cost
mass storage units such as ATA/(E)IDE and ATAPI. The most
common examples of such devices are IDE hard drives and ATAPI
CD-ROM drives.

If your system is pure SCSI and doesn’t use these interfaces, you
can say no here.

• Integrated Disk Electronics (IDE, also known as ATA-1) is a
connecting standard for mass storage units such as hard disks.
It was designed by Western Digital and Compaq Computer in
1984. It was then named ST506. Several disks use the IDE
interface.

• AT Attachment (ATA) is the superset of the IDE specifica-
tions. ST506 is also called ATA-1.

• Fast-IDE is ATA-2 (also named Fast ATA).

• Enhanced IDE (EIDE) is ATA-3. It provides support for larger
disks (up to 8.4 GB by means of the LBA standard), more
disks (four instead of two), and for other mass storage units,
such as tapes and CD-ROMs.

• UDMA/33 (also known as UltraDMA/33) is ATA-4. By using
fast DMA controllers, it provides faster transfer modes (with
less load on the CPU) than previous PIO (Programmed
processor Input/Output) from previous ATA/IDE standards.

• ATA Packet Interface (ATAPI) is a protocol used by EIDE tape
and CD-ROM drives, similar in many respects to the SCSI
protocol.

140 | Chapter 11: Kernel Configuration Option Reference

SMART IDE (self-monitoring, -analysis, and -reporting tech-
nology) was designed in order to prevent data corruption and disk
crashes by detecting pre-hardware failure conditions (heat, access
time, and the like). Disks built after June 1995 may follow this
standard. The kernel itself doesn’t manage this; however, there are
quite a number of user programs, such as smart, that can query the
status of SMART parameters from disk drives.

For further information, please read Documentation/ide.txt.

BLK_DEV_IDE Enhanced IDE/MFM/RLL disk/CD-ROM/tape/floppy support

If you say yes here, you will use the full-featured IDE driver to
control up to 10 ATA/IDE interfaces, each one able to serve a
“master” and a “slave” device, for a total of up to 20 ATA/IDE
disk/CD-ROM/tape/floppy drives.

Useful information about large (540 MB) IDE disks, multiple inter-
faces, what to do if ATA/IDE devices are not automatically
detected, sound card ATA/IDE ports, module support, and other
topics is contained in Documentation/ide.txt. For detailed informa-
tion about hard drives, consult the Disk-HOWTO and the Multi-
Disk-HOWTO, available at http://www.tldp.org/docs.html#howto.

To fine-tune ATA/IDE drive/interface parameters for improved
performance, look for the hdparm package at ftp://ibiblio.org/pub/
Linux/system/hardware.

Do not compile this driver as a module if your root filesystem (the
one containing the directory /) is located on an IDE device.

If you have one or more IDE drives, enable this option. If your
system has no IDE drives or if memory requirements are really
tight, you could say no here, and select the old hard disk driver
option instead to save about 13 KB of memory in the kernel.

BLK_DEV_
IDEDISK

Include IDE/ATA-2 disk support

This includes enhanced support for MFM/RLL/IDE hard disks. If
you have a MFM/RLL/IDE disk and there is no special reason to
use the old hard disk driver instead, say yes. If you have an SCSI-
only system, you can say no here.

Do not compile this driver as a module if your root filesystem (the
one containing the directory /) is located on the IDE disk.

BLK_DEV_
IDECD

Include IDE/ATAPI CD-ROM support

If you have a CD-ROM drive using the ATAPI protocol, say yes
here. ATAPI is a newer protocol used by IDE CD-ROM and tape
drives, similar to the SCSI protocol. Most new CD-ROM drives use
ATAPI, including the NEC-260, Mitsumi FX400, Sony 55E, and
just about all non-SCSI double (2 ×) or better speed drives.

BLK_DEV_SD | 141

Configuration
Reference

If you say yes here, the CD-ROM drive will be identified at boot
time along with other IDE devices, as something such as hdb or hdc
(check the boot messages using the dmesg command). If this is your
only CD-ROM drive, you can say no to all other CD-ROM options,
but be sure to also enable the ISO 9660 CD-ROM filesystem
support option.

Note that older versions of LILO (LInux LOader) cannot properly
deal with IDE/ATAPI CD-ROMs, so install LILO 16 or higher,
available from http://lilo.go.dyndns.org.

BLK_DEV_
IDEFLOPPY

Include IDE/ATAPI floppy support

If you have an IDE floppy drive that uses the ATAPI protocol,
answer yes. ATAPI is a newer protocol used by IDE CD-ROM/
tape/floppy drives, similar to the SCSI protocol.

The LS-120 and the IDE/ATAPI Iomega ZIP drive are also
supported by this driver. For information about jumper settings
and the question of when a ZIP drive uses a partition table, see
http://www.win.tue.nl/~aeb/linux/zip/zip-1.html. (ATAPI PD-CD/
CDR drives are not supported by this driver; support for PD-CD/
CDR drives is available if you answer yes to SCSI emulation
support).

If you say yes here, the floppy drive will be identified along with
other IDE devices, with a name such as hdb or hdc (check the boot
messages using the dmesg command).

SCSI SCSI device support

If you want to use a SCSI hard disk, SCSI tape drive, SCSI CD-
ROM, or any other SCSI device under Linux, say yes and make
sure that you know the name of your SCSI host adapter (the card
inside your computer that “speaks” the SCSI protocol, also called
SCSI controller), because you will be asked for it.

You also need to say yes here if you have a device that speaks the
SCSI protocol. Examples of these include the parallel port version
of the IOMEGA ZIP drive, USB storage devices, Fibre Channel,
FireWire storage, and the IDE-SCSI emulation driver.

Do not compile this as a module if your root filesystem (the one
containing the directory /) is located on a SCSI device.

BLK_DEV_SD SCSI disk support

If you want to use SCSI hard disks, Fibre Channel disks, USB
storage, or the SCSI or parallel port version of the IOMEGA ZIP
drive, say yes and read the SCSI-HOWTO, the Disk-HOWTO, and
the Multi-Disk-HOWTO, available from http://www.tldp.org/docs.
html#howto. This is not for SCSI CD-ROMs.

142 | Chapter 11: Kernel Configuration Option Reference

Do not compile this driver as a module if your root filesystem (the
one containing the directory /) is located on a SCSI disk. In this
case, do not compile the driver for your SCSI host adapter as a
module either.

CHR_DEV_ST SCSI tape support

If you want to use a SCSI tape drive under Linux, say yes and read
the SCSI-HOWTO, available from http://www.tldp.org/docs.
html#howto, and Documentation/scsi/st.txt in the kernel source.
This is not for SCSI CD-ROMs.

BLK_DEV_SR SCSI CD-ROM support

If you want to use a SCSI or FireWire CD-ROM under Linux, say
yes and read the SCSI-HOWTO and the CDROM-HOWTO at
http://www.tldp.org/docs.html#howto for more directions. Also
make sure to enable the ISO 9660 CD-ROM filesystem support
option.

CHR_DEV_SG SCSI generic support

If you want to use SCSI scanners, synthesizers, or CD writers, or
just about anything having “SCSI” in its name other than hard
disks, CD-ROMs, or tapes, say yes here. These won’t be supported
by the kernel directly, so you need some additional software that
knows how to talk to these devices using the SCSI protocol.

For scanners, look at SANE http://www.sane-project.org. For CD
writer software look at Cdrtools, http://cdrecord.berlios.de/old/
private/cdrecord.html, and for burning a “disk at once,” check out
CDRDAO, http://cdrdao.sourceforge.net. Cdparanoia is a high-
quality digital reader of audio CDs (http://www.xiph.org/paranoia).
For other devices, it’s possible that you’ll have to write the driver
software yourself. Please read the file Documentation/scsi/scsi-
generic.txt for more information.

CHR_DEV_SCH SCSI media changer support

This is a driver for SCSI media changers. The most common such
devices are tape libraries and MOD/CD-ROM jukeboxes. This
option is for real jukeboxes; you don’t need it for tiny six-slot CD-
ROM changers. Media changers are listed as “Type: Medium
Changer” in /proc/scsi/scsi. Check Documentation/scsi/scsi-changer.
txt for details.

SCSI_MULTI_
LUN

Probe all LUNs on each SCSI device

If you have a SCSI device, such as a CD jukebox, that supports
more than one LUN (Logical Unit Number), and only one LUN is

IEEE1394 | 143

Configuration
Reference

detected, you can say yes here to force the SCSI driver to probe for
multiple LUNs. A SCSI device with multiple LUNs acts logically
like multiple SCSI devices. The vast majority of SCSI devices have
only one LUN, and so most people can say no here. The max_luns
boot/module parameter allows you to override this setting.

SCSI_SATA Serial ATA (SATA) support

This driver family supports serial ATA host controllers and devices.

MD Multiple devices driver support (RAID and LVM)

This option supports multiple physical spindles through a single
logical device and is required for RAID and logical volume
management.

BLK_DEV_MD RAID support

This driver lets you combine several hard disk partitions into one
logical block device. This can be used to simply append one parti-
tion to another one or to combine several redundant hard disks
into a RAID 1, RAID 4, or RAID 5 device to provide protection
against hard disk failures. This is called software RAID because the
combining of the partitions is done by the kernel. Hardware RAID
means that the combining is done by a dedicated controller. If you
have such a controller, you do not need to say yes here.

More information about software RAID on Linux is in the “Soft-
ware RAID” mini-HOWTO, available from http://www.tldp.org/
docs.html#howto. There you will also learn where to get the
supporting userspace raidtools utilities.

BLK_DEV_DM Device mapper support

Device mapper is a low-level volume manager. It works by allowing
people to specify mappings for ranges of logical sectors. Various
mapping types are available, in addition to which people may write
their own modules containing custom mappings.

Higher-level volume managers such as LVM2 use this driver.

IEEE1394 IEEE 1394 (FireWire) support

IEEE 1394 describes a high-performance serial bus, which is also
known as FireWire or i.Link and is used for connecting all sorts of
devices (most notably, digital video cameras) to your computer.

If you have FireWire hardware and want to use it, say yes here.
This is the core support only. You will also need to select a driver
for your IEEE 1394 adapter.

144 | Chapter 11: Kernel Configuration Option Reference

I2O I2O support

The Intelligent Input/Output (I2O) architecture allows hardware
drivers to be split into two parts: an operating-system-specific
module called the OSM and a hardware-specific module called the
HDM. The OSM can talk to a whole range of HDMs, and ideally
the HDMs are not OS-dependent. This allows for the same HDM
driver to be used under different operating systems if the relevant
OSM is in place. In order for this to work, you need to have an I2O
interface adapter card in your computer. This card contains a
special I/O processor (IOP), allowing high speeds because the CPU
does not have to deal with I/O.

If you say yes here, you will get a choice of interface adapter drivers
and OSMs and will have to enable the correct ones.

NETDEVICES Network device support

You can say no here if you do not intend to connect your Linux box
to any other computer.

You’ll have to say yes if your computer contains a network card
that you want to use under Linux. If you are going to run SLIP or
PPP over a telephone line or null modem cable you also need to say
yes here. Connecting two machines with parallel ports using PLIP
needs this, as well as AX.25/KISS, for sending Internet traffic over
amateur radio links.

See also the Linux Network Administrator’s Guide by Tony Bautts
et al. (O’Reilly), available at http://www.tldp.org/guides.html.

NET_ETHERNET Ethernet (10 or 100 Mbit)

Ethernet (also called IEEE 802.3 or ISO 8802-2) is the most
common type of Local Area Network (LAN) in universities and
companies.

Common varieties of Ethernet are 10-base2 or Thinnet (10 Mbps
over coaxial cable, linking computers in a chain), 10-baseT or
twisted pair (10 Mbps over twisted pair cable, linking computers to
central hubs), 10-baseF (10 Mbps over optical fiber links, using
hubs), 100-baseTX (100 Mbps over two twisted pair cables, using
hubs), 100-baseT4 (100 Mbps over four standard voice-grade
twisted pair cables, using hubs), 100-baseFX (100 Mbps over
optical fiber links), and gigabit Ethernet (1 Gbps over optical fiber
or short copper links). The 100-base varieties are also known as
Fast Ethernet.

If your Linux machine will be connected to an Ethernet and you
have an Ethernet network interface card (NIC) installed in your
computer, say yes here and read the Ethernet-HOWTO, available
from http://www.tldp.org/docs.html#howto. You will then also have
to say yes to the driver for your particular NIC.

PPPOE | 145

Configuration
Reference

Note that the answer to this question won’t directly affect the
kernel: saying no will just cause the configurator to skip all the
questions about Ethernet network cards.

NET_RADIO Wireless LAN drivers (non-hamradio) and Wireless Extensions

Support for wireless LANs and everything having to do with packet
radio, but not with amateur radio or FM broadcasting.

Saying yes here also enables the Wireless Extensions, creating /proc/
net/wireless and enabling iwconfig access. The Wireless Extensions
are a generic API that allows a driver to expose configuration and
statistics for common wireless LANs to userspace. Wireless Exten-
sions provide a single set of tools that can support all the variations
of wireless LANs, regardless of their type (as long as the driver
supports Wireless Extensions). Another advantage is that these
parameters may be changed on the fly without restarting the driver
or operating system. If you wish to use Wireless Extensions with
wireless PCMCIA cards (PC cards), you need to say yes here. You
can fetch the tools from http://www.hpl.hp.com/personal/Jean_Tour-
rilhes/Linux/Tools.html.

PPP PPP (Point-to-Point Protocol) support

PPP sends Internet traffic over telephone (and other serial) lines.
Ask your access provider if they support it, because otherwise you
can’t use it. An older protocol with the same purpose is called
SLIP. Most Internet access providers these days support PPP rather
than SLIP.

To use PPP, you need an additional program called pppd as
described in the PPP-HOWTO, available at http://www.tldp.org/
docs.html#howto. Make sure that you have the version of pppd
recommended in Documentation/Changes. The PPP option enlarges
your kernel by about 16 KB.

There are actually two versions of PPP: the traditional PPP for asyn-
chronous lines, such as regular analog phone lines, and
synchronous PPP, which can be used over digital ISDN lines, for
example. If you want to use PPP over phone lines or other asyn-
chronous serial lines, you need to enable the PPP support for async
serial ports option.

PPPOE PPP over Ethernet (experimental)

Support for PPP over Ethernet.

This driver requires the latest version of pppd from the CVS reposi-
tory at cvs.samba.org. Alternatively, see the RoaringPenguin
package http://www.roaringpenguin.com/pppoe, which contains
instruction on how to use this driver under the heading “Kernel
mode PPPoE.”

146 | Chapter 11: Kernel Configuration Option Reference

ISDN ISDN support

ISDN (Integrated Services Digital Networks, called RNIS in France)
is a special type of fully digital telephone service; it’s mostly used to
connect to your Internet service provider (with SLIP or PPP). The
main advantage of ISDN is that the speed is higher than ordinary
modem/telephone connections and that you can have voice conver-
sations while downloading stuff. It works only if your computer is
equipped with an ISDN card and both you and your service
provider purchased an ISDN line from the phone company. For
details, read http://www.alumni.caltech.edu/~dank/isdn.

Select this option if you want your kernel to support ISDN.

PHONE Linux telephony support

Say yes here if you have a telephony card, which, for example,
allows you to use a regular phone for voice over IP applications.

This option has nothing to do with modems. You do not
need to say yes here in order to be able to use a modem
under Linux.

INPUT Generic input layer (needed for keyboard, mouse, ...)

Say yes here if you have any input device (mouse, keyboard, tablet,
joystick, steering wheel, etc.) connected to your system and want it
to be available to applications. This includes a standard PS/2
keyboard and mouse.

Say no here if you have a headless system (no monitor or keyboard).

More information is available in Documentation/input/input.txt.

VT Virtual terminal

Say yes here to get support for terminal devices with display and
keyboard devices. These are called “virtual” because you can run
several virtual terminals (also called virtual consoles) on one phys-
ical terminal.

You need at least one virtual terminal device in order to make use
of your keyboard and monitor. Therefore, only people configuring
an embedded system would want to say no here in order to save
some memory. The only way to log into such a system is then via a
serial or network connection.

Virtual terminals are useful because, for example, one virtual
terminal can display system messages and warnings, another one
can be used for a text-mode user session, and a third could run an

AGP | 147

Configuration
Reference

X session, all in parallel. Switching between virtual terminals is
done with certain key combinations, usually Alt-function key.

If you are unsure, say yes, or else you won’t be able to do much
with your Linux system.

VT_CONSOLE Support for console on virtual terminal

The system console is the device that receives all kernel messages
and warnings and allows logins in single user mode. If you answer
yes here, a virtual terminal (the device used to interact with a phys-
ical terminal) can be used as system console. This is the most
common mode of operations, so you should say yes unless you
want the kernel messages be output only to a serial port (in which
case you should also enable the console on 8250/16550 and
compatible serial port option).

If you say yes here, the currently visible virtual terminal (/dev/tty0)
will be used as system console by default. You can change that with
a kernel command-line option such as console=tty3, which speci-
fied the third virtual terminal as the system console. (See Chapter 9
for details about how to pass options to the kernel at boot time,
and what options are available.)

SERIAL_8250 8250/16550 and compatible serial support

This selects whether you want to include the driver for the stan-
dard serial ports. The standard answer is yes. People who might
say no here are those setting up dedicated Ethernet WWW/FTP
servers, or a user that has one of the various bus mice instead of a
serial mouse and doesn’t intend to use his machine’s standard
serial port for anything. In addition, the Cyclades and Stallion
multiserial port drivers do not need this driver.

Do not compile this driver as a module if you are using
nonstandard serial ports, because the configuration infor-
mation will be lost when the driver is unloaded. This lim-
itation may be lifted in the future.

Most people will say yes here, so that they can use serial mice,
modems, and similar devices connected to the standard serial
ports.

AGP /dev/agpgart (AGP Support)

AGP (Accelerated Graphics Port) is a bus system used mainly to
connect graphics cards to the rest of the system.

If you have an AGP system and you say yes here, it will be possible
to use the AGP features of your 3D rendering video card. This code
acts as a sort of “AGP driver” for the motherboard’s chipset.

148 | Chapter 11: Kernel Configuration Option Reference

If you need more texture memory than you can get with the AGP
GART (theoretically up to 256 MB, but in practice usually 64 or
128 MB due to kernel allocation issues), you could use PCI
accesses and have up to a couple of gigabytes of texture space.

Note that this is the only way to have X and GLX use write-
combining with MTRR support on the AGP bus. Without this
option, OpenGL direct rendering will be a lot slower, but still faster
than PIO.

You should say yes here if you want to use GLX or DRI.

DRM Direct Rendering Manager (XFree86 4.1.0 and higher DRI support)

Kernel-level support for the Direct Rendering Infrastructure (DRI)
was introduced in XFree86 4.0. If you say yes here, you need to
select the module that’s right for your graphics card from the list.
These modules provide support for synchronization, security, and
DMA transfers. Please see http://dri.sourceforge.net for details. You
should also select and configure AGP (/dev/agpgart) support.

I2C I2C support

I2C (pronounced “I-square-C”) is a slow serial bus protocol devel-
oped by Philips and used in many micro controller applications.
SMBus, or System Management Bus, is a subset of the I2C
protocol. More information is contained in the directory Documen-
tation/i2c, especially in the file there called summary.

Both I2C and SMBus are supported by this option. You will need it
for hardware sensors support and Video For Linux support.

If you want I2C support, in addition to saying yes here, you must
also select the specific drivers for your bus adapters.

SPI SPI support

The Serial Peripheral Interface (SPI) is a low-level synchronous
protocol. Chips that support SPI can have data transfer rates up to
several tens of Mbps. Chips are addressed with a controller and a
chipselect. Most SPI slaves don’t support dynamic device
discovery; some are even write-only or read-only.

SPI is widely used by microcontrollers to talk with sensors,
EEPROM and flash memory, codecs and various other controller
chips, analog-to-digital and digital-to-analog converters, and more.
MMC and SD cards can be accessed using SPI protocol, and for
DataFlash cards used in MMC sockets, SPI must always be used.

SPI is one of a family of similar protocols using a four-wire inter-
face (select, clock, data in, and data out), including Microwire (half
duplex), SSP, SSI, and PSP. This driver framework should work
with most such devices and controllers.

FB | 149

Configuration
Reference

HWMON Hardware-monitoring support

Hardware-monitoring devices let you monitor the hardware health
of a system. Most modern motherboards include such a device. It
may include temperature sensors, voltage sensors, fan speed
sensors, and various additional features such as the ability to
control the speed of the fans. If you want this support you should
say yes here and also to the specific driver for your sensor chip.

VIDEO_DEV Video for Linux

This option enables support for audio/video capture and overlay
devices and FM radio cards. The exact capabilities of each device
vary.

The kernel includes support for the new Video for Linux Two API,
(V4L2) as well as the original system. Drivers and applications need
to be rewritten to use V4L2, but drivers for popular cards and
applications for most video capture functions already exist.

Additional info and docs are available at http://linuxtv.org. Docu-
mentation for V4L2 is also available at http://bytesex.org/v4l.

DVB DVB for Linux

This option enables support for Digital Video Broadcasting hard-
ware. Enable this if you own a DVB adapter and want to use it or if
you are compiling Linux for a digital set-top box.

API specs and user tools are available from http://www.linuxtv.org.

FB Support for frame buffer devices

The frame buffer device provides an abstraction for the graphics
hardware. It represents the frame buffer of some video hardware
and allows application software to access the graphics hardware
through a well-defined interface, so the software doesn’t need to
know anything about the low-level (hardware register) stuff.

Frame buffer devices work identically across the different architec-
tures supported by Linux and make the implementation of
application programs easier and more portable. At this point, an X
server exists that uses the frame buffer device exclusively. On
several non-X86 architectures, the frame buffer device is the only
way to use the graphics hardware.

You need a program called fbset to make full use of frame buffer
devices. Please read Documentation/fb/framebuffer.txt and the
Framebuffer-HOWTO, available at http://www.tldp.org/HOWTO/
Framebuffer-HOWTO.html for more information.

Say yes here and to the driver for your graphics board if you are
compiling a kernel for a non-x86 architecture. If you are compiling

150 | Chapter 11: Kernel Configuration Option Reference

for the x86 architecture, you can say yes if you want to use the
frame buffer, but it is not essential.

Please note that running graphical applications that directly touch
the hardware (e.g., an accelerated X server) and that are not
attuned to the frame buffer device may cause unexpected results.

VGA_CONSOLE VGA text console

Saying yes here will allow you to use Linux in text mode through a
display that complies with the generic VGA standard. Virtually
everyone wants that.

The program SVGATextMode can be used to utilize SVGA video
cards to their full potential in text mode. Download it from ftp://
ibiblio.org/pub/Linux/utils/console.

LOGO Bootup logo

This option enables the pretty penguin logo at boot time. It will
show up on the frame buffer while the kernel is booting. The
number of penguins shows the number of processors that the
kernel has found.

SOUND Sound card support

If you have a sound card in your computer—i.e., if it can create
more than an isolated beep—say yes. Be sure to have all the infor-
mation about your sound card and its configuration (I/O port,
interrupt and DMA channel), because you will be asked for it.

Read the Sound-HOWTO, available from http://www.tldp.org/docs.
html#howto. General information about the modular sound system
is contained in the file Documentation/sound/oss/Introduction. The
file Documentation/sound/oss/README.OSS contains some slightly
outdated but still useful information as well. Newer sound driver
documentation can be found in files in the Documentation/sound/
alsa directory.

If you have a PnP sound card and you want to configure it at boot
time using the ISA PnP tools (read http://www.roestock.demon.co.
uk/isapnptools), you need to compile sound card support as a
module and load that module after the PnP configuration is
finished. To do this properly, read Documentation/sound/oss/
README.modules.

I’m told that even without a sound card, you can make your
computer create more than an occasional beep by programming
the PC speaker. Kernel patches and supporting utilities to do that
are in the pcsp package, available at ftp://ftp.infradead.org/pub/pcsp.

USB_EHCI_HCD | 151

Configuration
Reference

SND Advanced Linux Sound Architecture

Say yes to enable ALSA (Advanced Linux Sound Architecture), the
standard Linux sound system.

For more information, see http://www.alsa-project.org.

SND_USB_
AUDIO

USB Audio/MIDI driver

Say yes here to include support for USB audio and USB MIDI
devices.

USB Support for host-side USB

Universal Serial Bus (USB) is a specification for a serial bus
subsystem that offers higher speeds and more features than the
traditional PC serial port. The bus supplies power to peripherals
and allows for hot swapping. Up to 127 USB peripherals can be
connected to a single USB host in a tree structure.

The USB host is the root of the tree, the peripherals are the leaves,
and the inner nodes are special USB devices called hubs. Most PCs
now have USB host ports, used to connect peripherals such as
scanners, keyboards, mice, modems, cameras, disks, flash memory,
network links, and printers to the PC.

Say yes here if your computer has a host-side USB port and you
want to use USB devices. You then need to say yes to at least one of
the Host Controller Driver (HCD) options that follow. Choose a
USB 1.1 controller, such as UHCI HCD support or OHCI HCD
support, and EHCI HCD (USB 2.0) support except for older
systems that do not have USB 2.0 support. It does not hurt to select
them all if you are not certain.

If your system has a device-side USB port, used in the peripheral
side of the USB protocol, see the USB Gadget option instead.

After choosing your HCD, select drivers for the USB peripherals
you’ll be using. You may want to check out the information
provided in Documentation/usb and especially the links given in
Documentation/usb/usb-help.txt.

USB_EHCI_HCD EHCI HCD (USB 2.0) support

The Enhanced Host Controller Interface (EHCI) is standard for
USB 2.0 “high-speed” (480 Mbit/sec, 60 Mbyte/sec) host controller
hardware. If your USB host controller supports USB 2.0, you will
likely want to configure this HCD. At the time of this writing, the
primary implementation of EHCI is a chip from NEC, widely avail-
able in add-on PCI cards, but implementations are in the works
from other vendors, including Intel and Philips. Motherboard
support is emerging.

152 | Chapter 11: Kernel Configuration Option Reference

EHCI controllers are packaged with “companion” host controllers
(OHCI or UHCI) to handle USB 1.1 devices connected to root hub
ports. Ports will connect to EHCI if the device is high-speed; other-
wise, they connect to a companion controller. If you configure
EHCI, you should probably configure the OHCI (for NEC and
some other vendors) USB HCD or UHCI (for VIA motherboards)
HCD, too.

You may want to read Documentation/usb/ehci.txt for more infor-
mation on this driver.

USB_OHCI_HCD OHCI HCD support

The Open Host Controller Interface (OHCI) is a standard for
accessing USB 1.1 host controller hardware. It does more in hard-
ware than Intel’s UHCI specification. If your USB host controller
follows the OHCI spec, say yes. On most non-x86 systems, and on
x86 hardware that’s not using a USB controller from Intel or VIA,
this is appropriate. If your host controller doesn’t use PCI, this is
probably appropriate. For a PCI-based system where you’re not
sure, the lspci -v command will list the right prog-if for your USB
controller(s): EHCI, OHCI, or UHCI.

USB_UHCI_HCD UHCI HCD (most Intel and VIA) support

The Universal Host Controller Interface is a standard created by
Intel for accessing the USB hardware in the PC (which is also called
the USB host controller). If your USB host controller conforms to
this standard, you may want to say yes. All recent boards with Intel
PCI chipsets (such as Intel 430TX, 440FX, 440LX, 440BX, i810,
i820) conform to this standard. All VIA PCI chipsets (like VIA VP2,
VP3, MVP3, Apollo Pro, Apollo Pro II, or Apollo Pro 133) also use
the standard.

USB_STORAGE USB mass storage support

Say yes here if you want to connect USB mass storage devices to
your computer’s USB port. This is the driver you need for USB
floppy drives, USB hard disks, USB tape drives, USB CD-ROMs,
USB flash devices, and memory sticks, along with similar devices.
This driver may also be used for some cameras and card readers.

This option enables the SCSI option, but you probably also need
SCSI device support: SCSI disk support for most USB storage
devices to work properly.

USB_SERIAL USB serial converter support

Say yes here if you have a USB device that provides normal serial
ports, or acts like a serial device, and you want to connect it to your
USB bus.

EDAC | 153

Configuration
Reference

Please read Documentation/usb/usb-serial.txt for more information
on the specifics of the different devices that are supported and on
how to use them.

USB_GADGET Support for USB gadgets

USB is a master/slave protocol, organized with one master host
(such as a PC) controlling up to 127 peripheral devices. The USB
hardware is asymmetric, which makes it easier to set up: you can’t
connect a “to-the-host” connector to a peripheral.

Linux can run in the host or in the peripheral. In both cases you
need a low-level bus controller driver and some software that talks
to it. Peripheral controllers can be either discrete silicon or inte-
grated with the CPU in a microcontroller. The more familiar host-
side controllers have names like such as EHCI, OHCI, or UHCI,
and are usually integrated into southbridges on PC motherboards.

Enable this configuration option if you want to run Linux inside a
USB peripheral device. Configure one hardware driver for your
peripheral/device side bus controller, and a “gadget driver” for
your peripheral protocol. (If you use modular gadget drivers, you
may configure more than one.)

If in doubt, say no and don’t enable these drivers; most people
don’t have this kind of hardware (except maybe inside Linux
PDAs).

For more information, see http://www.linux-usb.org/gadget and the
kernel DocBook documentation for this API.

MMC MMC support

MMC is the MultiMediaCard bus protocol.

If you want MMC support, you should say yes here and also to the
specific driver for your MMC interface.

INFINIBAND InfiniBand support

Core support for InfiniBand. Make sure to also select any proto-
cols you wish to use as well as drivers for your InfiniBand
hardware.

EDAC EDAC core system error reporting (experimental)

EDAC is designed to report errors in the core system. These are
low-level errors that are reported by the CPU or supporting chipset:
memory errors, cache errors, PCI errors, thermal throttling, etc.

If this code is reporting problems on your system, please see the
EDAC project web pages for more information: http://bluesmoke.
sourceforge.net and http://buttersideup.com/edacwiki.

154 | Chapter 11: Kernel Configuration Option Reference

EXT2_FS Second extended filesystem support

ext2 is a standard Linux filesystem for hard disks. Most systems use
the upgrade, ext3, instead.

Note that the filesystem of your root partition (the one
containing the directory /) cannot be compiled as a mod-
ule without using a special boot process, so building it as
a module could be dangerous.

EXT3_FS Third extended filesystem support

This is the journaling version (called ext3) of the second extended
filesystem, the de facto standard Linux filesystem for hard disks.

The journaling code included in this driver means you do not have
to run fsck (filesystem checker) on your filesystems after a crash.
The journal keeps track of any changes that were being made at the
time the system crashed, and can ensure that your filesystem is
consistent without the need for a lengthy check.

Other than adding the journal to the filesystem, the on-disk format
of ext3 is identical to ext2. It is possible to freely switch between
using the ext3 driver and the ext2 driver, as long as the filesystem
has been cleanly unmounted, or fsck is run on the filesystem before
the switch.

To add a journal on an existing ext2 filesystem or change the
behavior of ext3 filesystems, you can use the tune2fs utility. To
modify attributes of files and directories on ext3 filesystems, use
chattr. You need e2fsprogs version 1.20 or later in order to create
ext3 journals (available at http://sourceforge.net/projects/e2fsprogs).

REISERFS_FS ReiserFS support

This is a journaled filesystem that stores not just filenames but the
files themselves in a balanced tree. Balanced trees can be more effi-
cient than traditional filesystem architectural foundations.

In general, ReiserFS is as fast as ext2, but is more efficient with
large directories and small files.

JFS_FS JFS filesystem support

This is a port of IBM’s Journaled Filesystem (JFS). More informa-
tion is available in the file Documentation/filesystems/jfs.txt.

XFS_FS XFS filesystem support

XFS is a high-performance journaling filesystem that originated on
the SGI IRIX platform. It is completely multithreaded; supports
large files and large filesystems, extended attributes, and variable

AUTOFS_FS | 155

Configuration
Reference

block sizes; is extent-based; makes extensive use of B-trees; and
uses directories, extents, and free space to aid both performance
and scalability.

Refer to the documentation at http://oss.sgi.com/projects/xfs for
complete details. This implementation is on-disk compatible with
the IRIX version of XFS.

OCFS2_FS OCFS2 filesystem support (experimental)

OCFS2 is a general-purpose, extent-based, shared-disk cluster file-
system with many similarities to ext3. It supports 64-bit inode
numbers and has automatically extending metadata groups, which
may also make it attractive for nonclustered use.

You’ll want to install the ocfs2-tools package in order to at least get
the mount.ocfs2 program.

The project web page is http://oss.oracle.com/projects/ocfs2 and the
tools web page is http://oss.oracle.com/projects/ocfs2-tools. OCFS2
mailing lists can be found at http://oss.oracle.com/projects/ocfs2/
mailman.

INOTIFY inotify file change notification support

Say yes here to enable inotify support and the associated system
calls. inotify is a file change notification system and a replacement
for dnotify. inotify fixes numerous shortcomings in dnotify and
introduces several new features. It allows monitoring of both files
and directories via a single open fd object. Other features include
multiple file events, one-shot support, and unmount notification.

For more information, see Documentation/filesystems/inotify.txt.

QUOTA Quota support

If you say yes here, you will be able to set per-user limits for disk
usage (also called disk quotas). Currently, it works for the ext2,
ext3, and ReiserFS filesystem. ext3 also supports journaled quotas,
for which you don’t need to run quotacheck after an unclean shut-
down. For further details, read the “Quota” mini-HOWTO,
available from http://www.tldp.org/docs.html#howto or the docu-
mentation provided with the quota tools. Quota support is
probably useful only for multiuser systems.

AUTOFS_FS Kernel automounter support

The automounter is a tool that automatically mounts remote file-
systems on demand. This implementation is partially kernel-based
to reduce overhead when a system is already mounted. This is
unlike the BSD automounter (amd), which is a pure userspace
daemon.

156 | Chapter 11: Kernel Configuration Option Reference

To use the automounter, you need the userspace tools from the
autofs package; you can find the location in Documentation/
Changes. You also want to answer yes to the NFS filesystem
support option.

If you want to use the newer version of the automounter with more
features, say no here and say yes to the Kernel automounter v4
support option.

If you are not a part of a fairly large, distributed network, you prob-
ably do not need an automounter, and can say no here.

FUSE_FS Filesystem in userspace support

With FUSE it is possible to implement a fully functional filesystem
in a userspace program.

There’s also companion library named libfuse. This library, along
with utilities, is available from the FUSE homepage: http://fuse.
sourceforge.net.

See Documentation/filesystems/fuse.txt for more information. See
Documentation/Changes for library/utility version you need.

If you want to develop a userspace filesystem, or if you want to use
a filesystem based on FUSE, answer yes here.

SMB_FS SMB filesystem support (to mount Windows shares etc.)

SMB (Server Message Block) is the protocol Windows for Work-
groups (WfW), Windows 95/98, Windows NT and later variants,
and OS/2 LAN Manager use to share files and printers over local
networks. Saying yes here allows you to mount their filesystems
(often called “shares” in this context) and access them just like any
other Unix directory. Currently, this works only if the Windows
machines use TCP/IP as the underlying transport protocol, not
NetBEUI. For details, read Documentation/filesystems/smbfs.txt and
the SMB-HOWTO, available from http://www.tldp.org/docs.
html#howto.

If you just want your box to act as an SMB server and make files
and printing services available to Windows clients (which need to
have a TCP/IP stack), you don’t need to say yes here; you can use
the Samba set of daemons and programs (available from ftp://ftp.
samba.org/pub/samba).

CIFS CIFS support (advanced network filesystem for Samba, Window, and other CIFS compliant
servers)

This is the client VFS module for the Common Internet File System
(CIFS) protocol, which is the successor to the Server Message Block
(SMB) protocol, the native file-sharing mechanism for most early
PC operating systems. The CIFS protocol is fully supported by file
servers such as Windows 2000 (including Windows 2003, NT 4,

MAGIC_SYSRQ | 157

Configuration
Reference

and Windows XP) as well by Samba (which provides excellent
CIFS server support for Linux and many other operating systems).
Limited support for Windows ME and similar servers is provided
as well. You must use the smbfs client filesystem to access older
SMB servers such as OS/2 and DOS.

The intent of the cifs module is to provide an advanced network
filesystem client for mounting local filesystems to CIFS-compliant
servers, including support for DFS (hierarchical namespace), secure
per-user session establishment, safe distributed caching (oplock),
optional packet signing, Unicode and other internationalization
improvements, and optional Winbind (nsswitch) integration. You
do not need to enable cifs if you are running only a server (Samba).
It is possible to enable both smbfs and cifs (e.g., if you are using
CIFS for accessing Windows 2003 and Samba 3 servers, and smbfs
for accessing old servers). If you need to mount to Samba or
Windows from this machine, say yes to this option.

PROFILING Profiling support (experimental)

Say yes here to enable the extended profiling support mechanisms
used by profilers such as OProfile.

OPROFILE OProfilesystem profiling (experimental)

OProfile is a profiling system capable of profiling the whole system,
including the kernel, kernel modules, libraries, and applications.

For more information and links to the userspace tools needed to
use OProfile properly, see the main project page at http://oprofile.
sourceforge.net/news.

KPROBES Kprobes (experimental)

Kprobes allows you to trap the CPU at almost any kernel address
and execute a callback function. register_kprobe() establishes a
probepoint and specifies the callback. Kprobes is useful for kernel
debugging, nonintrusive instrumentation, and testing.

PRINTK_TIME Show timing information on printks

Selecting this option causes timing information to be included in
printk (kernel message) output. This allows you to measure the
interval between kernel operations, including bootup operations.
This is useful for identifying long delays in kernel startup.

MAGIC_SYSRQ Magic SysRq key

If you say yes here, you will have some control over the system even
if the system crashes for example during kernel debugging (i.e., you
will be able to flush the buffer cache to disk, reboot the system

158 | Chapter 11: Kernel Configuration Option Reference

immediately, or dump some status information). This is accom-
plished by pressing various keys while holding down the SysRq
(Alt+PrintScreen) key. It also works on a serial console (on PC hard-
ware at least), if you send a BREAK and then within 5 seconds a
command keypress. The keys are documented in Documentation/
sysrq.txt. Don’t say yes unless you really know what this hack does.

DEBUG_KERNEL Kernel debugging

Say yes here if you are developing drivers or trying to debug and
identify kernel problems.

On its own, this option does not do anything except allow you to
chance to select other options.

DEBUG_FS Debug filesystem

debugfs is a virtual filesystem where kernel developers put debug-
ging files. Enable this option to be able to read and write to these
files.

SECURITY Enable different security models

This allows you to configure different security modules into your
kernel.

If this option is not selected, the default Linux security model will
be used.

SECURITY_
SELINUX

NSA SELinux support

This selects NSA Security-Enhanced Linux (SELinux). You will also
need a policy configuration and a labeled filesystem. You can
obtain the policy compiler (checkpolicy), the utility for labeling file-
systems (setfiles), and an example policy configuration from http://
www.nsa.gov/selinux.

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

IV
Additional Information

This section includes an Appendix about useful utilities, and pointers to further
information.

Appendix A, Helpful Utilities

Appendix B, Bibliography

161

Appendix AHelpful Utilities

A
Helpful Utilities

Retrieving, building, updating, and maintaining a Linux kernel source tree
involves a lot of different steps, as this book shows. Being naturally lazy crea-
tures, developers have created some programs to help with the various routine
tasks. Here we describe a few of these useful tools and the basics on how to use
them.

Linux kernel development differs in many ways from traditional software develop-
ment. Some of the special demands on kernel programmers include:

• Constantly applying your changes to the moving target of a fast-based kernel
development release schedule

• Resolving any merge conflicts between changes you have made and changes
made by other people

• Exporting your changes in a format that lets others incorporate and work
with it easily

patch and diff
This section is based on an article originally published in Linux Journal.

One of the most common methods of doing kernel work is to use the patch and
diff programs. To use these tools, two different directory trees: a “clean” one and
a “working” one must be used. The clean tree is a released kernel version, while
the working one is based on the same version but contains your modifications.
Then you can use patch and diff to extract your changes and port them forward to
a new kernel release.

For an example, create two directories containing the latest kernel version as
described in Chapter 3:

$ tar -zxf linux-2.6.19.tar.gz
$ mv linux-2.6.19 linux-2.6.19-dirty

162 | Appendix A: Helpful Utilities

$ tar -zxf linux-2.6.19.tar.gz
$ ls
linux-2.6.19/
linux-2.6.19-dirty/

Now make all of the different changes you wish to do in the -dirty directory and
leave the clean, original kernel directory alone. After finishing making changes,
you should create a patch to send it to other people:

$ diff -Naur -X linux-2.6.19/Documentation/dontdiff linux-2.6.19/ \
linux-2.6.19-dirty/ > my_patch

This will create a file called my_patch that contains the difference between your
work and a clean 2.6.19 kernel tree. This patch then can be sent to other people
via email.

New Kernel Versions

If a new kernel version is released, and you wish to port your changes to the new
version, you need to try to apply your generated patch onto a clean kernel version.
This can be done in the following steps:

1. Generate your original patch, as in the previous example.

2. Using the official patch from kernel.org, move the old kernel version forward
one release:

$ cd linux-2.6.19
$ patch -p1 < ../patch-2.6.20
$ cd ..
$ mv linux-2.6.19 linux-2.6.20

3. Move your working directory forward one release by removing your patch,
then apply the new update:

$ cd linux-2.6.19-dirty
$ patch -p1 -R < ../my_patch
$ patch -p1 < ../patch-2.6.20
$ cd ..
$ mv linux-2.4.19-dirty linux-2.6.20-dirty

4. Try to apply your patch on top of the new update:
$ cd linux-2.6.20-dirty
$ patch -p1 < ../my_patch

If your patch does not apply cleanly, resolve all of the conflicts that are
created (the patch command will tell you about these conflicts, leaving
behind .rej and .orig files for you to compare and fix up manually using your
favorite editor). This merge process can be the most difficult part if you have
made changes to portions of the source tree that have been changed by other
people.

If you use this development process, I highly recommend getting the excellent
patchutils set of programs (found at http://cyberelk.net/tim/patchutils). These
programs enable you to manipulate text patches easily in all sorts of useful ways,
and have saved kernel developers many hours of tedious work.

Managing Your Patches with quilt | 163

H
elpful

U
tilities

Managing Your Patches with quilt
Kernel development using patch and diff generally works quite well. But after a
while, most people grow tired of it and look for a different way to work that does
not involve so much tedious patching and merging. Luckily, a few kernel devel-
opers came up with a program called quilt that handles the process of
manipulating a number of patches made against an external source tree much
easier.

The idea for quilt came from a set of scripts written by Andrew Morton that he
used to first maintain the memory management subsystem and then later the
entire development kernel tree. His scripts were tied very tightly to his workflow,
but the ideas behind them were very powerful. Andreas Gruenbacher took those
ideas and created the quilt tool.

The basic idea behind quilt is that you work with a pristine source tree and add a
bunch of patches on top of it. You can push and pop different patches off of the
source tree, and maintain this list of patches in a simple manner.

1. To get started, create a kernel source tree like always:
$ tar -zxf linux-2.6.19.tar.gz
$ ls
linux-2.6.19/

2. And go into that directory:
$ cd linux-2.6.19

3. To get started, create a directory called patches that will hold all of our kernel
patches:

$ mkdir patches

4. Then tell quilt to create a new patch called patch1:
$ quilt new patch1
Patch patches/patch1 is now on top

5. quilt needs to be told about all of the different files that will be modifed by
this new patch. To do this, use the add command:

$ quilt add Makefile
File Makefile added to patch patches/patch1

6. Edit the file Makefile, modify the EXTRAVERSION line, and save the change.
After you finish, tell quilt to refresh the patch:

$ quilt refresh
Refreshed patch patches/patch1

The file patches/patch1 will contain a patch with the changes that you have just
made:

$ cat patches/patch1
Index: linux-2.6.19/Makefile
===
--- linux-2.6.19.orig/Makefile
+++ linux-2.6.19/Makefile
@@ -1,7 +1,7 @@
 VERSION = 2

164 | Appendix A: Helpful Utilities

 PATCHLEVEL = 6
 SUBLEVEL = 19
-EXTRAVERSION =
+EXTRAVERSION = -dirty
 NAME=Crazed Snow-Weasel

 # *DOCUMENTATION*

You can continue on, working with this single patch, or create a new one to go on
top of this patch. As an example, if three different patches had been created,
patch1, patch2, and patch3, they will be applied one on top of one another.

To see the list of patches that are currently applied:

$ quilt series -v
+ patches/patch1
+ patches/patch2
= patches/patch3

This output shows that all three patches are applied, and that the current one is
patch3.

If a new kernel version is released, and you wish to port your changes to the new
version, quilt can handle this easily with the following steps:

1. Pop off all of the patches that are currently on the tree:
$ quilt pop -a
Removing patch patches/patch3
Restoring drivers/usb/Makefile
Removing patch patches/patch2
Restoring drivers/Makefile
Removing patch patches/patch1
Restoring Makefile
No patches applied

2. Using the official patch from kernel.org, move the old kernel version forward
one release:

$ patch -p1 < ../patch-2.6.20
$ cd ..
$ mv linux-2.6.19 linux-2.6.20

3. Now have quilt push all of the patches back on top of the new tree:
$ quilt push
Applying patch patches/patch1
patching file Makefile
Hunk #1 FAILED at 1.
1 out of 1 hunk FAILED -- rejects in file Makefile
Patch patches/patch1 does not apply (enforce with -f)

4. As the first patch doesn’t apply cleanly, force the patch to be applied and
then fix it up:

$ quilt push -f
Applying patch patches/patch1
patching file Makefile
Hunk #1 FAILED at 1.
1 out of 1 hunk FAILED -- saving rejects to file Makefile.rej

git | 165

H
elpful

U
tilities

Applied patch patches/patch1 (forced; needs refresh)
$ vim Makefile.rej Makefile

5. After the patch is applied by hand, refresh the patch:
$ quilt refresh
Refreshed patch patches/patch1

6. And continue pushing the other patches:
$ quilt push
Applying patch patches/patch2
patching file drivers/Makefile
Now at patch patches/patch2
$ quilt push
Applying patch patches/patch3
patching file drivers/usb/Makefile
Now at patch patches/patch3

quilt also has options that will automatically email out all of the patches in the
series to a group of people or a mailing list, delete specific patches in the middle of
the series, go up or down the series of patches until a specific patch is found, and
many more powerful options.

If you want to do any kind of kernel development, quilt is strongly recommended,
even for tracking a few patches, instead of using the more difficult diff and patch
method. It is much simpler and will save you much time and effort.

On a personal note, I cannot recommend this tool enough, as I use it everyday to
manage hundreds of patches in different development trees. It is also used by
numerous Linux distributions to maintain their kernel packages and has an
involved and responsive development community.

git
git is a source code control tool that was originally written by Linus Torvalds
when the Linux kernel was looking for a new source code control system. It is a
distributed system, which differs from traditional source code control systems
such as CVS in that it is not required to be connected to a server in order to make
a commit to the repository.

git is one of the most powerful, flexible, and fast source code control systems
currently available, and has an active development team working behind it. The
main web page for git can be found at http://git.or.cz/. It is recommended that any
new user of git go through the published tutorials in order to become familiar
with how git works, and how to use it properly.

The Linux kernel is developed using git, and the latest git kernel tree can be found
at http://www.kernel.org/git/, along with a large list of other kernel developer’s git
repositories.

It is not necessary to use git in order to do Linux kernel development, but it is very
handy in helping to track down kernel bugs. If you report a bug to the Linux
kernel developers, they might ask you to use git bisect in order to find the exact
change that caused the bug to happen. If so, follow the directions in the git docu-
mentation for how to use this.

166 | Appendix A: Helpful Utilities

ketchup
ketchup is a very handy tool used to update or switch between different versions of
the Linux kernel source tree. It has the ability to:

• Find the latest version of the kernel, download it, and uncompress it.

• Update a currently installed version of the kernel source tree to any other ver-
sion, by patching the tree to the proper version.

• Handle the different development and stable branches of the kernel tree,
including the -mm and -stable trees.

• Download any patches or tarballs needed to do the update, if they are not
present on the machine already.

• Check the GPG signatures of the tarball and patches to verify that it has
downloaded a correct file.

ketchup can be found at http://www.selenic.com/ketchup/ and has lots of addi-
tional documentation in the wiki at http://www.selenic.com/ketchup/wiki/.

Here is a set of steps that show how simple it is to use ketchup to download a
specific kernel version, and then have it switch the directory to another kernel
version with only a minimal number of commands.

To have ketchup download the 2.6.16.24 version of the kernel source tree into a
directory, and rename the directory to be the same as the kernel version, enter:

$ mkdir foo
$ cd foo
$ ketchup -r 2.6.16.24
None -> 2.6.16.24
Unpacking linux-2.6.17.tar.bz2
Applying patch-2.6.17.bz2 -R
Applying patch-2.6.16.24.bz2
Current directory renamed to /home/gregkh/linux/linux-2.6.16.24

Now, to upgrade this kernel to contain the latest stable kernel version, just enter:

$ ketchup -r 2.6
2.6.16.24 -> 2.6.17.11
Applying patch-2.6.16.24.bz2 -R
Applying patch-2.6.17.bz2
Downloading patch-2.6.17.11.bz2
--22:21:14-- http://www.kernel.org/pub/linux/kernel/v2.6/patch-2.6.17.11.
bz2
 => `/home/greg/.ketchup/patch-2.6.17.11.bz2.partial'
Resolving www.kernel.org... 204.152.191.37, 204.152.191.5
Connecting to www.kernel.org|204.152.191.37|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 36,809 (36K) [application/x-bzip2]
100%[====================================>] 36,809 93.32K/s
22:21:14 (92.87 KB/s) - `/home/greg/.ketchup/patch-2.6.17.11.bz2.partial'
saved [36809/36809]
Downloading patch-2.6.17.11.bz2.sign

ketchup | 167

H
elpful

U
tilities

--22:21:14-- http://www.kernel.org/pub/linux/kernel/v2.6/patch-2.6.17.11.
bz2.sign
 => `/home/greg/.ketchup/patch-2.6.17.11.bz2.sign.partial'
Resolving www.kernel.org... 204.152.191.37, 204.152.191.5
Connecting to www.kernel.org|204.152.191.37|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 248 [application/pgp-signature]
100%[====================================>] 248 --.--K/s
22:21:14 (21.50 MB/s) - `/home/greg/.ketchup/patch-2.6.17.11.bz2.sign.
partial' saved [248/248]
Verifying signature...
gpg: Signature made Wed Aug 23 15:01:04 2006 PDT using DSA key ID 517D0F0E
gpg: Good signature from "Linux Kernel Archives Verification Key >
ftpadmin@kernel.org<"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the
owner.
Primary key fingerprint: C75D C40A 11D7 AF88 9981 ED5B C86B A06A 517D 0F0E
Applying patch-2.6.17.11.bz2
Current directory renamed to /home/greg/linux/tmp/x/linux-2.6.17.11

This shows that ketchup automatically determined that the newest stable version
was 2.6.17.11 and downloaded the needed patch files in order to get to that
version.

It is highly recommended that you use ketchup if you want to download any
Linux kernel source trees. It takes all of the work in finding where on the server
the correct patch file is, and automatically applies the patch in the proper format,
after checking that the downloaded file is properly signed. Combine ketchup with
quilt and you have a very powerful setup that contains everything that you need in
order to deal effectively with kernel sources as a Linux kernel developer.

168

Appendix BBibliography

B
Bibliography

Most of the information in this book has been extracted from the kernel docu-
mentation and source code. This is the best place for information on how to build
and install the kernel and is usually kept up to date when things in the build
procedure change.

Books
There are a number of very good Linux kernel programming books available, but
only a few that deal with building and installing the kernel. Here is a list of books
that I have found useful when dealing with the Linux kernel.

General Linux Books

Ellen Siever, Aaron Weber, Stephen Figgins, Robert Love, and Arnold Robbins.
Linux in a Nutshell (O’Reilly), 2005.

This book has the most complete and authoritative command reference for
Linux. It covers almost every single command that you will ever need to use.

Yaghmour, Karim. Building Embedded Linux Systems (O’Reilly), 2003.

This book, although mainly oriented toward the embedded Linux developer,
has a great section on how to build up a cross-compiler toolchain and kernel.
It is highly recommended for that section, as well as for other portions of the
book that are valuable to people wishing to learn more about how to
customize a Linux kernel and the rest of the system.

Tool Locations | 169

Bibliography

Linux Kernel Books

Most of these books are oriented toward the programmer who is interested in
learning how to program within the kernel. They are much more technically
oriented than this book, but are a great place to start if you wish to learn more
about the code that controls the kernel.

Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux Device
Drivers (O’Reilly), 2005.

This book covers how the different kernel device driver subsystems work,
and provides lots of examples of working drivers. It is recommended for
anyone wanting to work with Linux kernel drivers. It is also available online
for free at http://lwn.net/Kernel/LDD3/.

Love, Robert. Linux Kernel Development (Novell Press Publishing), 2005.

Robert Love’s book covers almost all areas of the Linux kernel, showing how
everything works together. It is a great place to start learning about the
different portions of the kernel internals.

Bovet, Daniel P. and Cesate, Marco. Understanding the Linux Kernel (O’Reilly),
2005.

This book goes into the design and implementation of the core Linux kernel.
It is a great reference for understanding the algorithms used within the
different portions of the kernel. It is highly recommended for anyone wanting
to understand the details of how the kernel works.

Tool Locations
A lot of different tools were mentioned in this book. Here are links to where the
source code for these tools can be found on the Internet.

Linux kernel
http://www.kernel.org and ftp://ftp.kernel.org contain all of the different
versions of the Linux kernel source code. http://www.kernel.org/git/ contains a
listing of all git trees in use by the different kernel developers.

gcc
http://gcc.gnu.org/ is the main site for everything related to the GNU C
Compiler.

binutils
http://www.gnu.org/software/binutils/ is the main site for all information about
binutils.

make
http://www.gnu.org/software/make/ is the main site for all information about
make.

util-linux
http://www.kernel.org/pub/linux/utils/util-linux/ is the directory where all
versions of util-linux can be downloaded.

170 | Appendix B: Bibliography

module-init-tools
http://www.kernel.org/pub/linux/utils/kernel/module-init-tools/ is the directory
where all versions of module-init-tools can be downloaded.

e2fsprogs
http://e2fsprogs.sourceforge.net/ is the main project page for the e2fsprogs
package.

jfsutils
http://jfs.sourceforge.net/ is the main project page for the jfsutils package.

reiserfsprogs
http://www.namesys.com/download.html is the main project page for the reis-
erfsprogs package.

xfsprogs
http://oss.sgi.com/projects/xfs/ is the main project page for the xfsprogs
package.

quota-tools
http://sourceforge.net/projects/linuxquota/ is the main project page for the
quota-tools package.

nfs-utils
http://nfs.sf.net/ is the main project page for the nfs-utils package.

udev
http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html is the directory
where all versions of udev can be downloaded.

procfs
http://procps.sourceforge.net/ is the main project page for the procfs package.

patchutils
http://cyberelk.net/tim/patchutils is the location for all of the patchutils
releases.

git
http://git.or.cz/ is the main site for the git project.

ketchup
http://www.selenic.com/ketchup/ is the main project page for the ketchup
program.

quilt
http://savannah.nongnu.org/projects/quilt is the main project page for the quilt
program.

distcc
http://distcc.samba.org/ is the main project page for the distcc program.

ccache
http://ccache.samba.org/ is the main project page for the ccache program.

171

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Chapter 3

3
Index

Symbols
$ (dollar sign), Bourne or bash shell user

prompt, xii
(pound sign), root shell prompt, xii

Numbers
32-bit Intel processors, memory

models, 74
387 math emulation library, 96
802.11

kernel configuration option, 138
network configuration option, 79

A
Accelerated Graphics Port (AGP), 147
ACPI (Advanced Configuration and

Power Interface), 75
options, 103

accept_irq_balance, 104
acip_os_name, 104
acpi, 103
acpi_dbg_layer, 105
acpi_fake_ecdt, 105
acpi_generic_hotkey, 105
acpi_irq_isa, 104
acpi_irq_nobalance, 104
acpi_irq_pci, 104
acpi_osi, 104

acpi_pm_good, 105
acpi_sci, 103
acpi_serialize, 104
acpi_skip_timer_override, 105
acpi_sleep, 103
ec_intr, 105
memmap, 105
pnpacpi, 106
processor.max_cstate, 106
processor.nocst, 106

address space of 32-bit processor, 74
Advanced Linux Sound Architecture

(ALSA), 70
Advanced Programmable Interrupt

Controller (APIC), 91
AGP (Accelerated Graphics Port), 147
ALSA (Advanced Linux Sound

Architecture), 70
analysis targets, make utility, 121
apic option, 91
architectures

different, building kernel for, 28
make utility targets, 121

ATA (AT Attachment), 139
ATA-1 (see IDE)
ATAPI (ATA Packet Interface), 139
audio/video capture and overlay

devices, 149
AUTOFS_FS option, 155
automounter tools, 155

172 | Index

B
base kernel patches, 37
basename program, 48, 50
battery life, conserving, 73
binutils, 6
blinkenlights parameter, 88
BLK_DEV_DM option, 143
BLK_DEV_IDE option, 140
BLK_DEV_IDECD option, 140
BLK_DEV_IDEDISK option, 140
BLK_DEV_IDEFLOPPY option, 141
BLK_DEV_MD option, 143
BLK_DEV_SD option, 141
BLK_DEV_SR option, 142
block devices, 60

combined to resemble one logical
device, 81

finding all drivers for sda block
device, helper script, 61

Bluetooth, 78, 137
books about Linux and the kernel, 168
boot command-line parameters, 87–116

console options, 88–91
CPU options, 95–97
hardware-specific options, 113
init options, 101
interrupt options, 91
kexec options, 101
memory options, 92–94
miscellaneous options, 115
module-specific, 87
network options, 111
NFS options, 111
PCI options, 107
PnP BIOS options, 109
Ramdisk options, 98
RCU (Read Copy Update)

options, 102
root disk options, 99
scheduler options, 97
SCSI options, 106
SELinux, 110
suspend options, 94
timer options, 114

/boot directory
/grub subdirectory, 32
installation of static kernel

portion, 30
boot process

LOGO option, 150
root filesystem, 59–61

bootloader program
modifying for new kernel, 32–34

GRUB, 32
LILO, 33

notification of new kernel
installation, 30

build targets, make utility, 119
building the kernel, 23–28

advanced options, 26–28
building faster on multiprocessor

machines, 26
building only a portion of

kernel, 27
different architectures, 28
kernel build source in one place,

output in another, 27
command-line reference, 117–121
make command, 23–26
tools, 5

compiler, 5
linker, 6
make, 6

built as a module kernel configuration
options

gconfig and xconfig methods, 22
menuconfig method, 19

built into the kernel configuration
options

gconfig method, 22
menuconfig mehod, 19

burning a CD-ROM, 66
bzip2 command, 38

C
C compiler, gcc, 5
cachesize option, 95
capability model (security), 82
CardBus device support, 69
CD-ROMs

burning, 66
CD writers, SCSI, 142
IDE, 140
SCSI or FireWire, 142

checkreqprot option, 110
CHR_DEV_SCH option, 142
CHR_DEV_SG option, 142
CHR_DEV_ST option, 142
CIFS (Common Internet File

System), 81, 156

Index | 173

class device
script to find all modules and drivers

for, 61
sysfs filesystem, 50

cleaning targets, make utility, 118
clocksource option, 115
cluster filesystem (OCFS2), 82, 155
combined_mode, 116
command line

downloading kernel source, 14
command-line reference, kernel

build, 117–121
Common Internet File System

(CIFS), 81, 156
compiler (gcc), 5
.config file

backing up before upgrading
kernel, 35

updating for new kernel release, 40
CONFIG_ rule that builds a module,

finding, 48, 51
config.gz file, 46
configuration, kernel, 17–23, 63–84

configuring from scratch, 17
CPU, 71–75, 124
debugging, 83
default options, 18
devices, 66–70
disk controller support, 63–66

CD-ROM drives, 66
IDE disks, 64
SATA (Serial ATA), 65
USB storage, 63

filesystems, 80–82
modifying, 18–23

console-based menuconfig
tool, 19–21

graphical methods, 22
option reference, 122
security, 82

configuration options, make utility, 118
configuration, kernel

networking, 75–80
conserving power and battery life, 73
console option, 88
console-based kernel configuration

(menuconfig), 19–21
consoles

kernel boot command-line
parameters, 88–91

support on virtual terminal, 147
VGA_CONSOLE kernel option, 150

CPU, 71–75
ACPI (Advanced Configuration and

Power Interface), 75
choosing, 125
frequency scaling, 73, 131
isolating from kernel scheduler, 97
memory models, 74
options, 95–97

cachesize, 95
lpj (loops per jiffy), 95
max_cpus, 97
mce (machine check

exception), 96
nmi_watchdog, 96
no387, 96
nofxsr, 96
no-hlt, 96
nomce, 96
nosep, 96
nosmp, 96
notsc, 97

preemption, 72
processor types, 71
SMP, 72
suspending, 73

crashkernel option, 101
cross-compiled manner, building kernel

in, 28
C-state, processor, 106
curl utility, downloading kernel

source, 15
customizing a kernel, 45–62

determining correct module from
scratch, 52–62

helper script, 61
root filesystem, 59–61

using distribution kenel, 45–52
finding kernel configuration, 45
finding modules needed to drive

hardware, 46–52

D
databases, filesystem for, 82
debug option, 89
DEBUG_FS option, 158
debugging, kernel, 83

console options, 88–91
debug filesystem, 84
DEBUG_KERNEL option, 158
finding problem code, 121
general configuration options, 84

174 | Index

debugging, kernel (continued)
IRQ debugging, 92
kernel log timestamps, 83
Mutex debugging, 41
SysRq keys, 83

default kernel configuration, 18
/dev directory, device naming system

(udev), 10
development branch (Linux kernel), 12
device drivers

determining correct kernel module
from scratch, 52–62

helper script, 61
PCI devices, 53–56
root filesystem, 59–61
USB devices, 56–59

enabling for individual USB
devices, 67

enabling for specific FireWire
devices, 68

finding modules needed for your
hardware, 46

determining network driver
(example), 47–50

determining USB device driver
(example), 50

script to find all modules, 51
summary of device discovery, 50

network, 76
wireless, 79

Device Drivers menu, 19
device IDs

PCI devices, 54
USB devices, 58

Device Mapper (DM), 81, 143
device naming system in the /dev

directory, 10
devices, 66–70

ALSA (Advanced Linux Sound
Architecture), 70

IEEE 1394 (FireWire), 68
PCI hotplug, 68

dhash_entries option, 111, 115
diff program, 161
Digital Video Broadcasting (DVB), 149
Direct Rendering Infrastructure

(DRI), 148
Direct Rendering Manager (DRM), 148
disable_8254_timer option, 115
disable_timer_pin_1 option, 114

discovery of devices, summary of
process, 50

disks
combining multiple to resemble a

logical disk with RAID, 80
combining portions of, using LVM

and DM, 81
configuring support by Linux

kernel, 63–66
CD-ROM, 66
IDE disks, 64
SATA (Serial ATA), 65
USB storage device, 63

distributions
using distribution kernel

finding kernel configuration, 45
finding modules needed to drive

hardware, 46–52
using distribution kernel to

determine necessary
modules, 45–52

DM (Device Mapper), 81, 143
DMAs not used by PnP BIOS, 109
dmesg command, 83
documentation targets, make

utility, 121
downloading kernel, 12–16
DRI (Direct Rendering

Infrastructure), 148
drivers (see device drivers)
drivers/usb/serial directory, building

files in, 27
DRM (Direct Rendering Manager), 148
Dual Core CPU, 72
DVB (Digital Video Broadcasting), 149

E
e2fsprogs package, 8
earlyprintk option, 89
ECDT (Embedded Controller

Description Table), 105
EDAC option, 153
EHCI (Enhanced Host Controller

Interface), 151
EIDE (Enhanced IDE), 139
elevator option, 115
elfcorehdr option, 102
Embedded Controller Description Table

(ECDT), 105
embedded controller interrupt

mode, 105

Index | 175

enable_8254_timer option, 114
enable_timer_pin_1 option, 114
enforcing option, 110
Enhanced Host Controller Interface

(EHCI), 151
Enhanced IDE (EIDE), 139
environment variables passed to

make, 120
error information, console

options, 88–91
errors

building the kernel, 26
core system, reporting, 153

/etc directory, /lilo.conf file, 32
eth0, eth1, and eth2 directories, 47
Ethernet devices

NET_ETHERNET kernel
option, 144

PCI, 53, 77
PPPOE kernel option, 145

ExpressCard, 68
ext2/ext3/ext4 filesystems, 8
EXT2_FS option, 154
EXT3_FS option, 154

F
FB (frame buffer) option, 149
file compression

uncompressing kernel patches, 38
filesystems, 80–82

debugfs, 84, 158
kernel configuration options, 154
Linux, sharing files with

Windows, 81
NFS options, 111
OCFS2 (cluster filesystem from

Oracle), 82
RAID, 80
root, 59–61
rootfstype, 100
specific tools for using the kernel, 8
sysfs (virtual filesystem), 46

filtering and manipulating network
packets, 76

find command, 48, 51
firewalling, 76, 134
FireWire, 68

IEEE 1394 option, 143
“flash” device (USB), 63
floating-point registers, 96

FM radio cards, 149
frame buffer (FB) option, 149
frequency scaling, CPU, 73
FUSE_FS option, 156

G
gcc compiler, 5
gconfig method, 22
Generic Driver Options menu, 19
Gentoo Linux, LILO configuration

file, 33
getting kernel, 12–16
git tool, 165
graphical methods, kernel

configuration, 22
graphics, AGP support, 147
grep command, 51
GRUB

checking for presence of, 32
modifying for new kernel, 32

GTK+-based graphical configuration
method (gconfig), 22

H
hardware monitoring (HWMON

option), 149
hardware options, 113

lp, 113
nousb, 113
nr_uarts, 114
parport, 113
parport_init_mode, 114

hardware RAID, 80, 143
hash buckets for kernel inode cache, 93
hashdist option, 115
HCD (Host Controller Driver), 151
highmem option, 92
Host Controller Driver (HCD), 151
hotkey driver, 105
hpet option, 115
hugepages option, 92
HWMON option, 149
HyperThreaded or Dual Core CPU, 72

I
I2C option, 148
I2O (Intelligent Input/Output), 144
IB (InfiniBand) support, 153
IBM JFS filesystem, 8, 154

176 | Index

IDE (Integrated Disk Electronics)
CD-ROM drives, 66, 140
configuring disk support by

kernel, 64
kernel configuration

options, 139–141
IDs

PCI devices, vendor and product, 54
USB devices, vendor and product, 58

IEEE 1394 (FireWire), 68, 143
IEEE 802.11

kernel configuration option, 138
network configuration option, 79

IEEE 802.3 (Ethernet), 144
ifconfig utility, 47
ihash_entries option, 93
images, kernel

automatic creation of initial ramdisk
image, 30

generating using config.gz file, 46
incremental kernel patches, 37
INFINIBAND option, 153
informational targets, make utility, 117
infrared protocol (IrDA), 77
init options, 101

init, 101
rdinit, 101
S (single-user), 101

initcall_debugg option, 90
initrd option, 98
INPUT option, 146
installing the kernel

by hand, 31
modifying bootloader for new

kernel, 32–34
using distribution’s installation

scripts, 30
Integrated Disk Electronics (see IDE)
Integrated Services Digital Networks

(ISDN), 146
interactive kernel configuration

tools, 18
interrupt options, 91
interruptions, kernel, 72
I/O

INPUT kernel option, 146
Intelligent Input/Output (I2O)

architecture, 144
ports not used by PnP BIOS, 109

IrDA (infrared protocol), 77
IRQ balancing, 91

ACPI options, 104

irqfixup option, 92
irqpoll option, 92
ISAPNP option, 139
ISDN (Integrated Services Digital

Networks), 146
ISO 8802-2 (Ethernet), 144
isolcpus option, 97

J
JFS filesystem (IBM), 8
JFS_FS option, 154
jfsutils pacakge, 8
journaled filesystems, 154

K
kernel message (printk) output, 157
kernel.org web sites, 13

main site, 14
list of current kernel versions for

donwload, 36
ketchup program, 42, 166
kexec options, 101

crashkernel, 101
elfcorehdr, 102

klogd program, 90
KPROBES option, 157
kstack option, 91

L
lapic option, 91
laptop docking stations, 68
laptops, suspending kernel, 73
latest kernel versions, determining, 15
left out altogether (N), menuconfig

options, 19
libata kernel library, SATA disks, 65
LILO

checking for presence of, 32
modifying configuration for new

kernel, 33
linking source files (binutils), 6
linux/ directory for kernel source

files, 15
Linux kernel, overview, 3
lo directory, 47
load_ramdisk option, 98
lockd.nlm_grace_period option, 111
lockd.nlm_tcpport option, 112
lockd.nlm_timeout option, 112
lockd.nlm_udpport option, 112

Index | 177

locks, interruptions to a main kernel
lock, 72

logging
kernel log timestamps, 83
log_buf_len option, 90
loglevel option, 90

logical device controlling a block
device, 60

Logical Unit Numbers (LUNs), 106,
142

Logical Volume Manager (LVM), 81
LOGO option, 150
lp option, 113
lpj (loops per jiffy) option, 95
lspci program, 53

determining if you have an IDE disk
controller, 64

leading 0000 in PCI device bus
ID, 54

lsusb program, 57
identifying USB storage device, 63

LUNs (Logical Unit Numbers), 106,
142

LVM (Logical Volume Manager), 81

M
machine check exception (mce)

option, 96
MAGIC_SYSRQ option, 157
make utility, 6, 17, 117–121

analysis targets, 121
architecture-specific targets, 121
build targets, 119
building the kernel, 23–26

building faster on multiprocessor
machines, 26

building only a portion, 27
different architectures, 28
source in one place, output in

another, 27
cleaning targets, 118
configuration options, 118
documentation targets, 121
informational targets, 117
installing the kernel, 30
make config method, 17
oldconfig option, 40
packaging targets, 120
silentoldconfig option, 40

Makefiles
kernel, searching for CONFIG_ rule

that builds a module, 48, 51
verifying output of kernel patch, 39

math emulation library (387), 96
max_addr option, 93
max_cpus option, 97
max_loop option, 116
max_luns option, 106
max_report_luns option, 106
mce (machine check exception)

option, 96
media changers, SCSI, 142
mem option, 93
memmap option, 93, 105
memory

Memory Technology Device (MTD)
support, 138

pnp_reserve_mem option, 109
Ramdisk options, 98

memory models, 74
memory options, 92–94

highmem, 92
hugepages, 92
ihash_entries, 93
max_addr, 93
mem, 93
memmap, 93
noexec, 94
norandmaps, 94
reserve, 94
vdso, 94
vmalloc, 94

menuconfig tool, 19–21
searching for option to enable

module, 49
MFM/RLL/IDE hard disks, 140
micro controller applications, 148
migration_cost option, 97
migration_debug option, 98
migration_factor option, 98
MMC (MultiMedia Card) option, 153
mobile phones, Bluetooth wireless

technology, 78
modalias files, finding, 51
modprobe program, 51
module-init-tools package, 7
modules, kernel

boot command-line parameters, 87
gconfig and xconfig methods, 22

178 | Index

modules, kernel (continued)
installing, 30
menuconfig method, 19

mount command, 59
MTD (Memory Technology Device)

option, 138
MultiMedia Card (MMC) option, 153
multiprocessing, enabling, 72
multiprocessors

building kernel faster, 26
nosmp option, 96

Mutex debugging, 41

N
N (left out menuconfig kernel

options), 19
NETDEVICES option, 144
NET_ETHERNET option, 144
Netfilter, 76, 134
netlink interface and Xtables support

(Netfilter), 76
NET_RADIO option, 145
network configuration option

(main), 75
network driver, determining

(example), 47–50
network loopback device, 47
networking, 75–80

IrDA (infrared protocol), 77
kernel configuration options, 144
Netfilter, 76
network drivers, 76
options, 111

dhash_entries, 111
netdev, 111
shapers, 111
thash_entries, 111

wireless, 79
NFS filesystem, 9
NFS options

lockd.nlm_grace_period, 111
lockd.nlm_tcpport, 112
lockd.nlm_timeout, 112
lockd.nlm_udpport, 112
nfs.callback_tcpport, 112
nfs.idmap_cache_timeout, 113

nfs-utils package, 9
nmi_watchdog option, 96
no387 option, 96
noapic option, 91
noexec option, 94

nofxsr option, 96
no-hlt option, 96
noinitrd option, 99
noirqbalance option, 91
noirqdebug option, 92
noisapnp option, 109
nolapic option, 91
nomce option, 96
nonexecutable, mapping memory

sections as, 94
non-maskable interrupt (NMI)

watchdog, 96
norandmaps option, 94
noresume option, 95
nosep option, 96
nosmp option, 96
NOTIFY option, 155
notsc option, 97
nousb option, 113
nr_uarts option, 114
NSA Security-Enhanced Linux

(SELinux), 158
NUMA nodes, distributing large hashes

across, 115

O
OCFS2 (cluster filesystem from

Oracle), 82
OCFS2_FS option, 155
OHCI (Open Host Controller

Interface), 152
oops dumps, printing words from kernel

stack, 91
Open Host Controller Interface

(OHCI), 152
operating system name, faking to

ACPI, 104
OPROFILE option, 157
Oracle cluster filesystem (OCFS2), 82,

155
_OSI method, disabling, 104
OSS sound protocol, 70

P
packaging targets, make utility, 120
paging, hugepages option, 92
panic option, 116
parallel port options, 113, 138
parport option, 113
parport_init_mode option, 114

Index | 179

patch program, 161
using with quilt, 164

patches
applying, 38–40
determining correct patch for specific

release, 37
finding for a kernel release, 38
kernel upgrades, 36
managing with quilt

program, 163–165
pause_on_oops option, 116
PC-compatible option, 71
PCI devices

boot command-line options, 107
IDE disk controllers, 64
matching to driver, 53–56

steps in process, 56
network device, 76
network interface card,

determining, 47
SATA disk controller, 65

PCI hotplug, 68
PCMCIA devices

configuring kernel support, 69
tools for using with Linux, 10

pcmciautils, 10
PHONE option, 146
Plug and Play (see PnP)
pmtimer, 105
PnP (Plug and Play)

BIOS options, 109
noisapnp, 109
pnpbios, 109
pnp_reserve_dma, 109
pnp_reserve_io, 109
pnp_reserve_irq, 109
pnp_reserve_mem, 109

kernel configuration options, 138
pnpacpi option, 106
PNPBIOS option, 139
power management, 73, 130

suspend options, 94
PPP (Point-to-Point Protocol), 145
PPPOE (PPP over Ethernet) option, 145
preemption, 72, 127
PRINTK_TIME option, 157
/proc filesystem, 45

/config.gz filename, 46
processes running on the system, tools

for, 10
processor types, 71, 74

processor.max_cstate option, 106
procfs, 84
procps package, 10
product IDs

PCI devices, 54
USB devices, 58

profile option, 116
PROFILING option, 157
prompt_ramdisk option, 99
prompts, xii
protocols, selecting for filtering, 76
ps tool, 10

Q
QT-based graphical configuration

method (xconfig), 22
quiet option, 89
quilt program, 163–165
QUOTA option, 155
quota-tools package, 9

R
radio cards (FM), 149
RAID, 80

BLK_DEV_MD kernel option, 143
RAM-based filesystems, 84
Ramdisk options, 98

initrd, 98
load_ramdisk, 98
noinitrd, 99
prompt_ramdisk, 99
ramdisk_blocksize, 99
ramdisk_size, 99
rdinit, 101

randomization, address space of
programs, 94

-rc versions, kernel, 12
RCU (Read Copy Update) options, 102

rcu.blimit, 102
rcu.qhimark, 102
rcu.qlowmark, 102
rcu.rsinterval, 102

readlink command, 48, 50
read-only root device, 99
read-write root device, 100
ReiserFS filesystem, 8
REISERFS_FS option, 154
reiserfsprogs package, 8
removing files from previous builds, 118
reserve option, 94

180 | Index

resume option, 94
root disk options, 99

ro, 99
rootfstype, 100
root, 99
rootdelay, 100
rootflags, 100
rw, 100

root filesystem, 59–61
root partition, filesystem type, 59
root shell prompt (#), xii
root user, prefixing commands with

sudo, 29

S
S (single-user) mode, 101
Samba, 81
SATA (Serial ATA), 65

CD-ROM drives, 66
SCSI_SATA kernel option, 143

scanners, SCSI, 142
scheduler options, 97

isolcpus, 97
migration_cost, 97
migration_debug, 98
migration_factor, 98

SCSI CD-ROM drive, 66
SCSI disk controller driver, 60
SCSI options

kernel boot, 106
max_luns, 106

kernel configuration, 141–143
max_report_luns, 106
scsi_dev_flags, 107

SCSI_MULTI_LUN option, 142
SCSI_SATA option, 143
sda block device

finding all drivers for, helper
script, 61

symlink in device directory pointing
to controlling logical
device, 60

security, 82
standard security model, 82
(see also SELinux)

SECURITY option, 158
SECURITY_SELINUX option, 158
self-monitoring, analysis, and reporting

technology (SMART
IDE), 140

SELinux (Security-Enhanced Linux), 82,
158

boot command-line options, 110
checkreqprot, 110
enforcing, 110
selinux, 110
selinux_compat_net, 110

Serial ATA (see SATA)
Serial Peripheral Interface (SPI), 148
serial ports, 147

USB_SERIAL kernel option, 152
SERIAL_8250 option, 147
Server Message Block (see SMB)
servers, preemption modes to handle

workloads, 72
SGI, XFS filesystem, 9
shapers option, 111
shell prompts, xii
single-user mode (S), 101
SMART IDE (self-monitoring, analysis,

and reporting
technology), 140

SMB (Server Message Block)
SMB filesystem, 81
SMB_FS option, 156

SMBus (System Management Bus), 148
SND option, 151
SND_USB_AUDIO option, 151
software RAID, 80, 143
SOUND option, 150
sound system for Linux kernel

(ALSA), 70
source code, kernel

downloading patch for kernel
upgrade, 36–38

determining correct patch, 37
finding the patch, 38

git (control tool), 165
location of, 4
managing patches with

quilt, 163–165
patching, then porting changes to

new kernel version, 161
retrieving, 12–16

what to do with the source, 15
where to find kernel source, 13
which tree to use, 12

storing separately from output of
kernel build, 27

tool web sites, 169
updating or switching betwen

versions with ketchup, 166

Index | 181

SPI (Serial Peripheral Interface), 148
stable branch (Linux kernel), 12
stable kernel patches, 37
stable kernel version, downloading

latest, 14
storage devices, USB, 152
struct pci_device_id values, 55
struct usb_device_id, 58
su command, 29
sudo command, 29
superuser permissions, 4
suspend options, 94

noresume, 95
resume, 94

suspending kernel to disk, 73
swap partitions, kernel, 73
symlinks

for eth0 device, 48
following to module names, script

for, 51
to logical device controlling block

device, 60
output to readlink command, putting

into basename, 48
sysfs filesystem, to different portions

of kernel, 46
synthesizers, SCSI, 142
SYSENTER/SYSEXIT support, 96
sysfs (virtual filesystem), 46, 84

block devices, 60
device discovery, use in, 50
listing PCI device names, 54
tty section, 50

SysRq key, 83, 157
system logfile, 83
System Management Bus (SMBus), 148

T
tape drive, SCSI, 142
TCP/IP option, 75
telephony support, 146
terminal devices, 146
terminal-based kernel configuration

tool, 18
thash_entries option, 111
time option, 91
time stamp counter, 97
timer options, 114

clocksource, 115
disable_8254_timer, 115
disable_timer_pin_1, 114

enable_8254_timer, 114
enable_timer_pin_1, 114
hpet, 115

timing information in printk
output, 157

tools
building the kernel, 5
interactive kernel configuration, 18
to use the kernel, 6–11

closely tied to kernel version, 9
filesystem-specific, 8
module-init-tools, 7
util-linux, 7

web sites for source code, 169
(see also utilities)

top tool, 10
tty files, searching for device, 50

U
udev program, 10
udev startup process, 53
UHCI (Universal Host Controller

Interface), 152
uncompressing files, 16, 38
Universal Host Controller Interface

(UHCI), 152
Universal Serial Bus (see USB)
updating a kernel, 162
upgrading a kernel, 35–42

applying the patch, 38–40
automating the process, 42
downloading new source

code, 36–38
determining correct patch for a

release, 37
finding the patch, 38

reconfiguring kernel after
upgrade, 40

USB devices
enabling, 66
storage, 63

USB (Universal Serial Bus)
determining driver for USB-to-serial

converter, 50
determining if machine has USB

controller, 66
finding driver for USB wireless

device, 56–59
finding drivers for USB-to-serial

device (helper script), 61
kernel configuration options, 151

182 | Index

USB (Universal Serial Bus) (continued)
nousb option, 113
wireless networking device

drivers, 80
USB_EHCI_HCD option, 151
USB_GADGET option, 153
USB_OHCI_HCD option, 152
USB_SERIAL option, 152
USB_STORAGE option, 152
USB_UHCI_HCD option, 152
user prompt ($), xii
using the kernel, tools for, 6–11

closely tied to kernel version, 9
filesystem-specific, 8

utilities, 161–167
git, 165
ketchup, 166
patch and diff, 161
quilt, 163–165
web sites for source code, 169
(see also tools)

util-linux package, 7

V
vdso option, 94
vendor IDs

PCI devices, 54
USB devices, 58

versions, kernel, 31, 117
current, for different kernel trees, 14
determining latest, 15
updating, 162

VGA_CONSOLE option, 150
VIDEO_DEV option, 149
Virtual Dynamic Shared Object

(VDSO), 94

virtual filesystem (see sysfs)
virtual terminal (VT) option, 146
vmalloc option, 94
volume managers, 81, 143
VT (virtual terminal) option, 146
VT_CONSOLE option, 147

W
web site for this book, xiii
web sites

main kernel.org site, 14
tools, source code for, 169

wget utility, 14
Windows systems, filesharing with

Linux, 81, 156
wireless

Bluetooth technology, 78
IEEE 802.11 option, 138
NET_RADIO kernel option, 145
networking, 79
USB device, finding driver, 57–59

X
x86 floating-point save and restore, 96
xconfig method, 22
XFS filesystem, 9
XFS_FS option, 154
xfsprogs package, 9

Y
Y (menuconfig options built into the

kernel), 19

About the Author

Greg Kroah-Hartman has been building the Linux kernel since 1996 and started
writing Linux kernel drivers in 1999. He is currently the maintainer of the USB,
PCI, driver core, and sysfs subsystems in the kernel source tree and is also one half
of the -stable kernel release team. He created the udev program and maintains the
Linux hotplug userspace project. He is a Gentoo Linux developer as well as the
coauthor of the third edition of Linux Device Drivers (O’Reilly) and a contrib-
uting editor to Linux Journal. He also created and maintains the Linux Device
Driver Kit. He currently works for SUSE Labs/Novell, doing various Linux kernel-
related tasks.

Colophon

The animal on the cover of Linux Kernel in a Nutshell is a cup coral (Balano-
phyllia elegans). Most commonly found on or under shaded rocks, cup corals
range from British Columbia to Baja, California. Cup corals are generally orange
in color, with lighter orange tentacles extending out from the stony skeleton base.

Cup corals are armed with tentacles that have clusters of poisoning stingers called
spirocysts, which they use to prey on passing plankton. Once plankton is
captured, the coral will use its tentacles to draw the food into its stomach. Cup
corals also use their tentacles to attach themselves to rocks.

The cover image is from Riverside Natural History. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

	Table of Contents
	Preface
	Who This Book Is For
	How the Book Is Organized
	Online Version and License
	Conventions Used in This Book
	Using Shell Scripts
	Safari® Enabled
	How to Contact Us
	Acknowledgments

	I
	Introduction
	Using This Book

	Requirements for Building and Using the Kernel
	Tools to Build the Kernel
	Compiler
	Linker
	make

	Tools to Use the Kernel
	util-linux
	module-init-tools
	Filesystem-Specific Tools
	ext2/ext3/ext4
	JFS
	ReiserFS
	XFS
	Quotas
	NFS

	Other Tools
	udev
	Process tools
	PCMCIA tools

	Retrieving the Kernel Source
	What Tree to Use
	Where to Find the Kernel Source
	What to Do with the Source

	Configuring and Building
	Creating a Configuration
	Configuring from Scratch
	Default Configuration Options

	Modifying the Configuration
	Console Configuration Method
	Graphical Configuration Methods

	Building the Kernel
	Advanced Building Options
	Building Faster on Multiprocessor Machines
	Building Only a Portion of the Kernel
	Source in One Place, Output in Another
	Different Architectures

	Installing and Booting from a Kernel
	Using a Distribution’s Installation Scripts
	Installing by Hand
	Modifying the Bootloader for the New Kernel
	GRUB
	LILO

	Upgrading a Kernel
	Download the New Source
	Which Patch Applies to Which Release?
	Finding the Patch

	Applying the Patch
	Reconfigure the Kernel
	Can’t This Be Automated?

	II
	Customizing a Kernel
	Using a Distribution Kernel
	Where Is the Kernel Configuration?
	Finding Which Module Is Needed
	Example: Determining the network driver
	Example: A USB device
	Summary of device discovery
	Let the kernel tell us what we need

	Determining the Correct Module from Scratch
	PCI Devices
	USB Devices
	Root Filesystem
	Filesystem type
	Disk controller

	Helper Script

	Kernel Configuration Recipes
	Disks
	USB Storage
	IDE Disks
	Serial ATA (SATA)
	Burning a CD-ROM
	IDE CD-ROM drives
	SCSI and SATA CD-ROM drives

	Devices
	USB
	IEEE 1394 (FireWire)
	PCI Hotplug
	PCMCIA/CardBus

	Sound (ALSA)

	CPU
	Processor Types
	SMP
	Preemption
	Suspend
	CPU Frequency Scaling
	Different Memory Models
	ACPI

	Networking
	Netfilter
	Network Drivers
	IrDA
	Bluetooth
	Wireless

	Filesystems
	RAID
	Logical Volume Manager and Device Mapper
	File Sharing with Windows
	OCFS2

	Security
	Default Linux Capabilities
	SELinux

	Kernel Debugging
	Kernel Log Timestamps
	Magic SysRq Keys
	Debug Filesystem
	General Kernel Debugging

	III
	Kernel Boot Command-Line Parameter Reference
	Module-Specific Options
	Console Options
	console
	netconsole
	debug
	quiet
	earlyprintk
	loglevel
	log_buf_len
	initcall_debug
	kstack
	time

	Interrupt Options
	apic
	noapic
	lapic
	nolapic
	noirqbalance
	irqfixup
	irqpoll
	noirqdebug

	Memory Options
	highmem
	hugepages
	ihash_entries
	max_addr
	mem
	mem
	memmap
	memmap
	noexec
	reserve
	vmalloc
	norandmaps
	vdso

	Suspend Options
	resume
	noresume

	CPU Options
	cachesize
	lpj
	nmi_watchdog
	no387
	nofxsr
	no-hlt
	mce
	nomce
	nosep
	nosmp
	notsc
	max_cpus

	Scheduler Options
	isolcpus
	migration_cost
	migration_ debug
	migration_ factor

	Ramdisk Options
	initrd
	load_ramdisk
	noinitrd
	prompt_ ramdisk
	ramdisk_ blocksize
	ramdisk_size

	Root Disk Options
	ro
	root
	rootdelay
	rootflags
	rootfstype
	rw

	Init Options
	init
	rdinit
	S

	kexec Options
	crashkernel
	elfcorehdr

	RCU Options
	rcu.blimit
	rcu.qhimark
	rcu.qlowmark
	rcu.rsinterval

	ACPI Options
	acpi
	acpi_sleep
	acpi_sci
	acpi_irq_ balance
	acpi_irq_ nobalance
	acpi_irq_isa
	acpi_irq_pci
	acpi_os_name
	acpi_osi
	acpi_serialize
	acpi_skip_ timer_override
	acpi_dbg_layer
	acpi_fake_ecdt
	acpi_generic_ hotkey
	acpi_pm_good
	ec_intr
	memmap
	memmap
	pnpacpi
	processor.max_ cstate
	processor.nocst

	SCSI Options
	max_luns
	max_report_ luns
	scsi_dev_flags

	PCI Options
	PCI

	Plug and Play BIOS Options
	noisapnp
	pnpbios
	pnp_reserve_ irq
	pnp_reserve_ dma
	pnp_reserve_io
	pnp_reserve_ mem

	SELinux Options
	checkreqprot
	enforcing
	selinux
	selinux_ compat_net

	Network Options
	netdev
	rhash_entries
	shapers
	thash_entries

	Network File System Options
	lockd.nlm_ grace_period
	lockd.nlm_ tcpport
	lockd.nlm_ timeout
	lockd.nlm_ udpport
	nfsroot
	nfs.callback_ tcpport
	nfs.idmap_ cache_timeout

	Hardware-Specific Options
	nousb
	lp
	parport
	parport_init_ mode
	nr_uarts

	Timer-Specific Options
	enable_timer_ pin_1
	disable_timer_ pin_1
	enable_8254_ timer
	disable_8254_ timer
	hpet
	clocksource

	Miscellaneous Options
	dhash_entries
	elevator
	hashdist
	combined_ mode
	max_loop
	panic
	pause_on_oops
	profile

	Kernel Build Command-Line Reference
	Informational Targets
	Cleaning Targets
	Configuration Targets
	Build Targets
	Packaging Targets
	Documentation Targets
	Architecture-Specific Targets
	Analysis Targets

	Kernel Configuration Option Reference
	EXPERIMENTAL
	LOCALVERSION
	AUDIT
	IKCONFIG
	EMBEDDED
	MODULES
	IOSCHED_NOOP
	IOSCHED_AS
	IOSCHED_ DEADLINE
	IOSCHED_CFQ
	SMP
	M386
	X86_GENERIC
	NR_CPUS
	SCHED_SMT
	PREEMPT_NONE
	PREEMPT_ VOLUNTARY
	PREEMPT
	PREEMPT_BKL
	NOHIGHMEM
	HIGHMEM4G
	HIGHMEM64G
	FLATMEM_ MANUAL
	DISCONTIGMEM _MANUAL
	SPARSEMEM_ MANUAL
	SECCOMP
	KEXEC
	HOTPLUG_CPU
	PM
	SOFTWARE_ SUSPEND
	ACPI
	CPU_FREQ
	CPU_FREQ_ DEFAULT_GOV_ PERFORMANCE
	CPU_FREQ_ DEFAULT_GOV_ USERSPACE
	CPU_FREQ_ GOV_ PERFORMANCE
	CPU_FREQ_ GOV_ POWERSAVE
	CPU_FREQ_ GOV_ USERSPACE
	CPU_FREQ_ GOV_ ONDEMAND
	CPU_FREQ_ GOV_ CONSERVATIVE
	PCI
	PCCARD
	PCMCIA
	CARDBUS
	HOTPLUG_PCI
	NET
	UNIX
	INET
	IP_ADVANCED_ ROUTER
	NETFILTER
	NET_SCHED
	IRDA
	IRLAN
	IRNET
	IRCOMM
	IRDA_ULTRA
	BT
	IEEE80211
	MTD
	PARPORT
	PNP
	ISAPNP
	PNPBIOS
	IDE
	BLK_DEV_IDE
	BLK_DEV_ IDEDISK
	BLK_DEV_ IDECD
	BLK_DEV_ IDEFLOPPY
	SCSI
	BLK_DEV_SD
	CHR_DEV_ST
	BLK_DEV_SR
	CHR_DEV_SG
	CHR_DEV_SCH
	SCSI_MULTI_ LUN
	SCSI_SATA
	MD
	BLK_DEV_MD
	BLK_DEV_DM
	IEEE1394
	I2O
	NETDEVICES
	NET_ETHERNET
	NET_RADIO
	PPP
	PPPOE
	ISDN
	PHONE
	INPUT
	VT
	VT_CONSOLE
	SERIAL_8250
	AGP
	DRM
	I2C
	SPI
	HWMON
	VIDEO_DEV
	DVB
	FB
	VGA_CONSOLE
	LOGO
	SOUND
	SND
	SND_USB_ AUDIO
	USB
	USB_EHCI_HCD
	USB_OHCI_HCD
	USB_UHCI_HCD
	USB_STORAGE
	USB_SERIAL
	USB_GADGET
	MMC
	INFINIBAND
	EDAC
	EXT2_FS
	EXT3_FS
	REISERFS_FS
	JFS_FS
	XFS_FS
	OCFS2_FS
	INOTIFY
	QUOTA
	AUTOFS_FS
	FUSE_FS
	SMB_FS
	CIFS
	PROFILING
	OPROFILE
	KPROBES
	PRINTK_TIME
	MAGIC_SYSRQ
	DEBUG_KERNEL
	DEBUG_FS
	SECURITY
	SECURITY_ SELINUX

	IV
	Helpful Utilities
	patch and diff
	New Kernel Versions

	Managing Your Patches with quilt
	git
	ketchup

	Bibliography
	Books
	General Linux Books
	Linux Kernel Books

	Tool Locations

	Index

