
Kernel command using Linux system calls
Explore the SCI and add your own calls

Skill Level: Intermediate

M. Tim Jones (mtj@mtjones.com)
Consultant Engineer
Emulex

21 Mar 2007

Updated 10 Feb 2010

Linux® system calls—we use them every day. But do you know how a system call is
performed from user-space to the kernel? Explore the Linux system call interface
(SCI), learn how to add new system calls (and alternatives for doing so), and
discover utilities related to the SCI. [This article has been updated to reflect coding
changes for kernels 2.6.18 and later. -Ed.]

Connect with Tim
Tim is one of our most popular and prolific authors. Browse all of
Tim's articles on developerWorks. Check out Tim's profile and
connect with him, other authors, and fellow readers in My
developerWorks.

A system call is an interface between a user-space application and a service that
the kernel provides. Because the service is provided in the kernel, a direct call
cannot be performed; instead, you must use a process of crossing the
user-space/kernel boundary. The way you do this differs based on the particular
architecture. For this reason, I'll stick to the most common architecture, i386.

In this article, I explore the Linux SCI, demonstrate adding a system call to the
2.6.17 and prior 2.6 kernels, and then use this function from user-space. I also
investigate some of the functions that you'll find useful for system call development
and alternatives to system calls. Finally, I look at some of the ancillary mechanisms

Kernel command using Linux system calls
© Copyright IBM Corporation 2007, 2010. All rights reserved. Page 1 of 12

mailto:mtj@mtjones.com
http://www.ibm.com/developerworks/views/global/libraryview.jsp?site_id=1&contentarea_by=global&sort_by=Date&sort_order=2&start=1&end=48&topic_by=-1&product_by=-1&type_by=All%20Types&show_abstract=true&search_by=tim%20jones
http://www.ibm.com/developerworks/views/global/libraryview.jsp?site_id=1&contentarea_by=global&sort_by=Date&sort_order=2&start=1&end=48&topic_by=-1&product_by=-1&type_by=All%20Types&show_abstract=true&search_by=tim%20jones
https://www.ibm.com/developerworks/mydeveloperworks/profiles/user/MTimJones
http://www.ibm.com/legal/copytrade.shtml

related to system calls, such as tracing their usage from a given process. (The
system call interface changed in kernels 2.6.18 and later to simplify coding. (If you're
using a 2.6.18 kernel or later, see the sidebar "Using Linux kernels 2.6.18 and
later.")

The SCI

The implementation of system calls in Linux is varied based on the architecture, but
it can also differ within a given architecture. For example, older x86 processors used
an interrupt mechanism to migrate from user-space to kernel-space, but new IA-32
processors provide instructions that optimize this transition (using sysenter and
sysexit instructions). Because so many options exist and the end-result is so
complicated, I'll stick to a surface-level discussion of the interface details. See the
Resources at the end of this article for the gory details.

You needn't fully understand the internals of the SCI to amend it, so I explore a
simple version of the system call process (see Figure 1). Each system call is
multiplexed into the kernel through a single entry point. The eax register is used to
identify the particular system call that should be invoked, which is specified in the C
library (per the call from the user-space application). When the C library has loaded
the system call index and any arguments, a software interrupt is invoked (interrupt
0x80), which results in execution (through the interrupt handler) of the
system_call function. This function handles all system calls, as identified by the
contents of eax. After a few simple tests, the actual system call is invoked using the
system_call_table and index contained in eax. Upon return from the system
call, syscall_exit is eventually reached, and a call to resume_userspace
transitions back to user-space. Execution resumes in the C library, which then
returns to the user application.

Figure 1. The simplified flow of a system call using the interrupt method

developerWorks® ibm.com/developerWorks

Kernel command using Linux system calls
Page 2 of 12 © Copyright IBM Corporation 2007, 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

At the core of the SCI is the system call demultiplexing table. This table, shown in
Figure 2, uses the index provided in eax to identify which system call to invoke from
the table (sys_call_table). A sample of the contents of this table and the
locations of these entities is also shown. (For more about demultiplexing, see the
sidebar, "System call demultiplexing.")

Figure 2. The system call table and various linkages

ibm.com/developerWorks developerWorks®

Kernel command using Linux system calls
© Copyright IBM Corporation 2007, 2010. All rights reserved. Page 3 of 12

http://www.ibm.com/legal/copytrade.shtml

Adding a Linux system call

System call demultiplexing
Some system calls are further demultiplexed by the kernel. For
example, the Berkeley Software Distribution (BSD) socket calls
(socket, bind, connect, and so on) are associated with a single
system call index (__NR_socketcall) but are demultiplexed in the
kernel to the appropriate call through another argument. See
./linux/net/socket.c function sys_socketcall.

Adding a new system call is mostly procedural, although you should look out for a
few things. This section walks through the construction of a few system calls to
demonstrate their implementation and use by a user-space application.

You perform three basic steps to add a new system call to the kernel:

1. Add the new function.

2. Update the header files.

3. Update the system call table for the new function.

Note: This process ignores user-space needs, which I address later.

Most often, you create a new file for your functions. However, for the sake of
simplicity, I add my new functions to an existing source file. The first two functions,
shown in Listing 1, are simple examples of a system call. Listing 2 provides a slightly
more complicated function that uses pointer arguments.

Listing 1. Simple kernel functions for the system call example

asmlinkage long sys_getjiffies(void)
{
return (long)get_jiffies_64();

}

asmlinkage long sys_diffjiffies(long ujiffies)
{
return (long)get_jiffies_64() - ujiffies;

}

In Listing 1, two functions are provided for jiffies monitoring. (For more information
about jiffies, see the sidebar, "Kernel jiffies.") The first function returns the current
jiffies, while the second returns the difference of the current and the value that the
caller passes in. Note the use of the asmlinkage modifier. This macro (defined in
linux/include/asm-i386/linkage.h) tells the compiler to pass all function arguments on

developerWorks® ibm.com/developerWorks

Kernel command using Linux system calls
Page 4 of 12 © Copyright IBM Corporation 2007, 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

the stack.

Listing 2. Final kernel function for the system call example

asmlinkage long sys_pdiffjiffies(long ujiffies,
long __user *presult

)
{
long cur_jiffies = (long)get_jiffies_64();
long result;
int err = 0;

if (presult) {

result = cur_jiffies - ujiffies;
err = put_user(result, presult);

}

return err ? -EFAULT : 0;
}

Kernel jiffies
The Linux kernel maintains a global variable called jiffies, which
represents the number of timer ticks since the machine started. This
variable is initialized to zero and increments each timer interrupt.
You can read jiffies with the get_jiffies_64 function, and then
convert this value to milliseconds (msec) with jiffies_to_msecs
or to microseconds (usec) with jiffies_to_usecs. The jiffies'
global and associated functions are provided in
./linux/include/linux/jiffies.h.

Listing 2 provides the third function. This function takes two arguments: a long and
a pointer to a long that's defined as __user. The __user macro simply tells the
compiler (through noderef) that the pointer should not be dereferenced (as it's not
meaningful in the current address space). This function calculates the difference
between two jiffies values, and then provides the result to the user through a
user-space pointer. The put_user function places the result value into user-space
at the location that presult specifies. If an error occurs during this operation, it will
be returned, and you'll likewise notify the user-space caller.

For step 2, I update the header files to make room for the new functions in the
system call table. For this, I update the header file linux/include/asm/unistd.h with
the new system call numbers. The updates are shown in bold in Listing 3.

Listing 3. Updates to unistd.h to make room for the new system calls

#define __NR_getcpu 318
#define __NR_epoll_pwait 319
#define __NR_getjiffies 320

#define __NR_diffjiffies 321
#define __NR_pdiffjiffies 322

ibm.com/developerWorks developerWorks®

Kernel command using Linux system calls
© Copyright IBM Corporation 2007, 2010. All rights reserved. Page 5 of 12

http://www.ibm.com/legal/copytrade.shtml

#define NR_syscalls 323

Now I have my kernel system calls and numbers to represent them. All I need to do
now is draw an equivalence among these numbers (table indexes) and the functions
themselves. This is step 3, updating the system call table. As shown in Listing 4, I
update the file linux/arch/i386/kernel/syscall_table.S for the new functions that will
populate the particular indexes shown in Listing 3.

Listing 4. Update the system call table with the new Functions

.long sys_getcpu

.long sys_epoll_pwait

.long sys_getjiffies /* 320 */

.long sys_diffjiffies
.long sys_pdiffjiffies

Note: The size of this table is defined by the symbolic constant NR_syscalls.

At this point, the kernel is updated. I must recompile the kernel and make the new
image available for booting before testing the user-space application.

Reading and writing user memory

The Linux kernel provides several functions that you can use to move system call
arguments to and from user-space. Options include simple functions for basic types
(such as get_user or put_user). For moving blocks of data such as structures or
arrays, you can use another set of functions: copy_from_user and
copy_to_user. Moving null-terminated strings have their own calls:
strncpy_from_user and strlen_from_user. You can also test whether a
user-space pointer is valid through a call to access_ok. These functions are
defined in linux/include/asm/uaccess.h.

You use the access_ok macro to validate a user-space pointer for a given
operation. This function takes the type of access (VERIFY_READ or
VERIFY_WRITE), the pointer to the user-space memory block, and the size of the
block (in bytes). The function returns zero on success:

int access_ok(type, address, size);

Moving simple types between the kernel and user-space (such as ints or longs) is
accomplished easily with get_user and put_user. These macros each take a
value and a pointer to a variable. The get_user function moves the value that the
user-space address specifies (ptr) into the kernel variable specified (var). The
put_user function moves the value that the kernel variable (var) specifies into the
user-space address (ptr). The functions return zero on success:

developerWorks® ibm.com/developerWorks

Kernel command using Linux system calls
Page 6 of 12 © Copyright IBM Corporation 2007, 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

int get_user(var, ptr);
int put_user(var, ptr);

To move larger objects, such as structures or arrays, you can use the
copy_from_user and copy_to_user functions. These functions move an entire
block of data between user-space and the kernel. The copy_from_user function
moves a block of data from user-space into kernel-space, and copy_to_user
moves a block of data from the kernel into user-space:

unsigned long copy_from_user(void *to, const void
__user *from, unsigned long n);
unsigned long copy_to_user(void *to, const void
__user *from, unsigned long n);

Finally, you can copy a NULL-terminated string from user-space to the kernel by
using the strncpy_from_user function. Before calling this function, you can get
the size of the user-space string with a call to the strlen_user macro:

long strncpy_from_user(char *dst, const char __user
*src, long count);
strlen_user(str);

These functions provide the basics for memory movement between the kernel and
user-space. Some additional functions exist (such as those that reduce the amount
of checking performed). You can find these functions in uaccess.h.

Using the system call

Using Linux kernels 2.6.18 and later
The _syscallN macros were removed in the 2.6.18 kernel, so
instead of using the macros, the syscall function itself should be
used. This function supports an arbitrary number of arguments (int
syscall(int number, ...)). See the Resources section for
the manpage for this function call.

Now that kernel is updated with a few new system calls, let's look at what's
necessary to use them from a user-space application. There are two ways that you
can use new kernel system calls. The first is a convenience method (not something
that you'd probably want to do in production code), and the second is the traditional
method that requires a bit more work.

With the first method, you call your new functions as identified by their index through
the syscall function. With the syscall function, you can call a system call by
specifying its call index and a set of arguments. For example, the short application

ibm.com/developerWorks developerWorks®

Kernel command using Linux system calls
© Copyright IBM Corporation 2007, 2010. All rights reserved. Page 7 of 12

http://www.ibm.com/legal/copytrade.shtml

shown in Listing 5 calls your sys_getjiffies using its index.

Listing 5. Using syscall to invoke a system call

#include <linux/unistd.h>
#include <sys/syscall.h>

#define __NR_getjiffies 320

int main()
{
long jiffies;

jiffies = syscall(__NR_getjiffies);

printf("Current jiffies is %lx\n", jiffies);

return 0;
}

As you can see, the syscall function includes as its first argument the index of the
system call table to use. Had there been any arguments to pass, these would be
provided after the call index. Most system calls include a SYS_ symbolic constant to
specify their mapping to the __NR_ indexes. For example, you invoke the index
__NR_getpid with syscall as:

syscall(SYS_getpid)

The syscall function is architecture specific but uses a mechanism to transfer
control to the kernel. The argument is based on a mapping of __NR indexes to SYS_
symbols provided by /usr/include/bits/syscall.h (defined when the libc is built). Never
reference this file directly; instead use /usr/include/sys/syscall.h.

The traditional method requires that you create function calls that match those in the
kernel in terms of system call index (so that you're calling the right kernel service)
and that the arguments match. Linux provides a set of macros to provide this
capability. The _syscallN macros are defined in /usr/include/linux/unistd.h and
have the following format:

_syscall0(ret-type, func-name)
_syscall1(ret-type, func-name, arg1-type, arg1-name)
_syscall2(ret-type, func-name, arg1-type, arg1-name,
arg2-type, arg2-name)

User-space and __NR constants
Note that in Listing 6 I've provided the __NR symbolic constants.
You can find these in /usr/include/asm/unistd.h (for standard system
calls).

developerWorks® ibm.com/developerWorks

Kernel command using Linux system calls
Page 8 of 12 © Copyright IBM Corporation 2007, 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The _syscall macros are defined up to six arguments deep (although only three
are shown here).

Now, here's how you use the _syscall macros to make your new system calls
visible to the user-space. Listing 6 shows an application that uses each of your
system calls as defined by the _syscall macros.

Listing 6. Using the _syscall macro for user-space application development

#include <stdio.h>
#include <linux/unistd.h>
#include <sys/syscall.h>

#define __NR_getjiffies 320
#define __NR_diffjiffies 321
#define __NR_pdiffjiffies 322

_syscall0(long, getjiffies);
_syscall1(long, diffjiffies, long, ujiffies);
_syscall2(long, pdiffjiffies, long, ujiffies, long*,
presult);

int main()
{
long jifs, result;
int err;

jifs = getjiffies();

printf("difference is %lx\n", diffjiffies(jifs));

err = pdiffjiffies(jifs, &result);

if (!err) {
printf("difference is %lx\n", result);

} else {
printf("error\n");

}

return 0;
}

Note that the __NR indexes are necessary in this application because the _syscall
macro uses the func-name to construct the __NR index (getjiffies ->
__NR_getjiffies). But the result is that you can call your kernel functions using
their names, just like any other system call.

Alternatives for user/kernel interactions

System calls are an efficient way of requesting services in the kernel. The biggest
problem with them is that it's a standardized interface. It would be difficult to have
your new system call added to the kernel, so any additions are likely served through
other means. If you have no intent of mainlining your system calls into the public
Linux kernel, then system calls are a convenient and efficient way to make kernel
services available to user-space.

ibm.com/developerWorks developerWorks®

Kernel command using Linux system calls
© Copyright IBM Corporation 2007, 2010. All rights reserved. Page 9 of 12

http://www.ibm.com/legal/copytrade.shtml

Another way to make your services visible to user-space is through the /proc file
system. The /proc file system is a virtual file system for which you can surface a
directory and files to the user, and then provide an interface in the kernel to your
new services through a file system interface (read, write, and so on).

Tracing system calls with strace

The Linux kernel provides a useful way to trace the system calls that a process
invokes (as well as those signals that the process receives). The utility is called
strace and is executed from the command line, using the application you want to
trace as its argument. For example, if you wanted to know which system calls were
invoked during the context of the date command, type the following command:

strace date

The result is a rather large dump showing the various system calls that are
performed in the context of a date command call. You'll see the loading of shared
libraries, mapping of memory, and -- at the end of the trace -- the emitting of the date
information to standard-out:

...
write(1, "Fri Feb 9 23:06:41 MST 2007\n", 29Fri Feb
9 23:06:41 MST 2007) = 29
munmap(0xb747a000, 4096) = 0
exit_group(0) = ?
$

This tracing is accomplished in the kernel when the current system call request has
a special field set called syscall_trace, which causes the function
do_syscall_trace to be invoked. You can also find the tracing calls as part of the
system call request in ./linux/arch/i386/kernel/entry.S (see
syscall_trace_entry).

Going further

System calls are an efficient way of traversing between user-space and the kernel to
request services in the kernel-space. But they are also tightly controlled, and it's
much easier simply to add a new /proc file system entry to provide the user/kernel
interactions. When speed is important, however, system calls are an ideal way to
squeeze the greatest performance out of your application. See Resources to dig
even further into the SCI.

developerWorks® ibm.com/developerWorks

Kernel command using Linux system calls
Page 10 of 12 © Copyright IBM Corporation 2007, 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• In "Access the Linux kernel using the /proc filesystem" (developerWorks, March
2006), learn how to develop kernel code that uses the /proc file system for
user-space/kernel communication.

• Read "Sysenter Based System Call Mechanism in Linux 2.6" from Manugarg to
get a detailed look at the system call gate between the user-space application
and the kernel. This paper focuses on the transition mechanisms provided in
the 2.6 kernel.

• This paper details the assembly language linkages between the user-space and
the kernel.

• The GNU C Library (glibc) is the standard library for GNU C. You'll find the glibc
for Linux and also for numerous other operating systems. The GNU C Library
follows numerous standards, including the ISO C 99, POSIX, and UNIX98. You
can find more information about it at the GNU Project.

• The syscall function allows a user-space program to make a system call. This
function takes a system-call number and a set of arguments which are passed
to the kernel-based system call. You can read more about syscall and get a
complete list of available system calls in the Linux syscalls man page.

• Wikipedia provides an interesting perspective on system calls, including history
and typical implementations.

• In the developerWorks Linux zone, find more resources for Linux developers,
and scan our most popular articles and tutorials.

• See all Linux tutorials and Linux tips on developerWorks.

• Stay current with developerWorks technical events and Webcasts.

• Follow developerWorks on Twitter.

Get products and technologies

• With IBM trial software, available for download directly from developerWorks,
build your next development project on Linux.

Discuss

• Get involved in the My developerWorks community. Connect with other
developerWorks users while exploring the developer-driven blogs, forums,
groups, and wikis.

ibm.com/developerWorks developerWorks®

Kernel command using Linux system calls
© Copyright IBM Corporation 2007, 2010. All rights reserved. Page 11 of 12

http://www.ibm.com/developerworks/linux/library/l-proc.html
http://manugarg.googlepages.com/systemcallinlinux2_6.html
http://www.win.tue.nl/~aeb/linux/lk/lk-4.html
http://en.wikipedia.org/wiki/GNU_C_Library
http://www.gnu.org/software/libc/
http://www.kernel.org/doc/man-pages/online/pages/man2/syscalls.2.html
http://en.wikipedia.org/wiki/System_calls
http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/linux/library/l-top-10.html
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=&search_flag=&type_by=Tutorials&show_abstract=true&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=linux+tip%3A&search_flag=true&type_by=All+Types&show_abstract=true&start_no=1&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/offers/techbriefings/
http://www.twitter.com/developerworks/
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/community
http://www.ibm.com/legal/copytrade.shtml

About the author

M. Tim Jones
M. Tim Jones is an embedded software architect and the author of
GNU/Linux Application Programming, AI Application Programming, and
BSD Sockets Programming from a Multilanguage Perspective. His
engineering background ranges from the development of kernels for
geosynchronous spacecraft to embedded systems architecture and
networking protocols development. Tim is a Consultant Engineer for
Emulex Corp. in Longmont, Colorado.

Trademarks

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

developerWorks® ibm.com/developerWorks

Kernel command using Linux system calls
Page 12 of 12 © Copyright IBM Corporation 2007, 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	The SCI
	Adding a Linux system call
	Using the system call
	Alternatives for user/kernel interactions
	Tracing system calls with strace
	Going further
	Resources
	About the author
	Trademarks

