
The Definitive Guide,.

to the X Window System

Volume Eight

X Window System

I Administrator's

Guide

for XII Release 4 and Release 5

by Linda Mui and Eric Pearce

O'Reilly & Associates, Inc.

X Window System

Administrator's Guide

Books That Help People Get More Out of Computers

X Protocol Reference Manual, 516 pages

Describes the X Network Protocol which underlies all software for Version 11 of the X Window System.

XIib Programming Manual, 824 pages

XIib Reference Manual, 1144 pages

Complete programming and reference guides to the X library (Xlib), the lowest level of programming

interface to X.

X Window System User's Guide

Orients the new user to window system concepts, provides detailed tutorials for many client programs, and

explains how to customize the X environment.

Standard Edition, 752 pages

Motif Edition, 734 pages

X Toolkit Intrinsics Programming Manual

Complete guide to programming with Xt Intrinsics, the library of C language routines that facilitate the design

of user interfaces, with reusable components called widgets.

Standard Edition, 624 pages

Motif Edition, 714 pages

X Toolkit Intrinsics Reference Manual, 91 s pages

Complete programmer's reference for the X Toolkit.

Motif Programming Manual, 1042 pages

Complete guide to programming for the Motif graphical user interface.

XView Programming Manual, 798 pages

XView Reference Manual, 292 pages

Complete information on programming with XView, an easy-to-use toolkit that is widely available.

The X Window System in a Nutshell, 330 pages

A single-volume quick reference that is an indispensable companion to the series.

Contact us for a catalog of our books, for orders, or for more information.

O'Reilly & Associates, Inc.

103 Morris Street, Suite A, Sebastopol CA 95472

(800) 998-9938 US/Canada 707-829-0515 overseas/local 707-829-0104 Fax

Volume Eight

X Window System

Administrator's Guide

forX Version 11

By Linda Mui and Eric Pearce

O'Reilly & Associates, Inc.

X Window System Administrator's Guide

Copyright © 1992 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Editor: Tim O'Reilly

Printing History:

October 1992: First Edition.

February 1993: Minor Corrections.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and O'Reilly and Associates, Inc. was aware of a

trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility

for errors or omissions, or for damages resulting from the use of the information contained herein.

This book is printed on acid-free paper with 50% recycled content, 10-15% post-consumer waste. O'Reilly &

Associates is committed to using paper with the highest recycled content available consistent with high quality.

Book Alone: ISBN 0-937175-83-8 With Compact Disk: ISBN 1-56592-052-X

Table of Contents

Page

Preface XIX

How to Use this Book xix

Assumptions xxi

Related Documents xxi

Font Conventions Used in This Book xxii

Request for Comments xxiii

Bulk Sales Information xxiii

Acknowledgments xxiii

Chapter 1 An Introduction to X Administration 3

1.1 The Design of XI1 3

1.1.1 Display Servers 4

1.1.2 Clients and Resources 6

1.1.3 Toolkits and GUIs 7

1.2 X Administration 8

1.2.1 Installing X 8

1.2.2 Supporting Users 9

1.2.3 Maintaining Software 9

1.2.4 Maintaining Multiple Machines 10

1.2.5 A "Philosophy" of X Administration 10

Chapter 2 The X User Environment 13

2.1 The Configured X Session 13

2.1.1 The Twilight Zone 16

2.2 Components of the X Environment 18

2.2.1 Window Managers 18

2.2.2 Customizing Clients 20

2.2.2.1 The -fn Command-line Option 20

2.2.2.2 The -geometry Command-line Option 20

2.2.2.3 Specifying Colors 23

2.2.2.4 Using Resources 24

2.2.3 The Startup Script 25

2.2.3.1 The Foreground Process 26

2.3 The Shell Environment... .. 27

2.3.1 Setting the DISPLAY Variable 27

2.3.1.1 Complications with Display Names 28

2.3.2 Redefining the Search Path 29

2.3.2.1 Setting the Search Path for OpenWindows Support 30

2.3.2.2 Setting the Search Path for Mixed Environments 30

2.3.3 xterm Issues 31

2.3.3.1 xterm and Terminal Emulation 31

2.3.3.2 The resize Client 31

2.3.3.3 xterm and the Login Shell (C Shell) 33

2.3.4 Starting Remote Clients 34

2.3.4.1 Starting a Remote Client with rsh 35

2.4 Startup Methods 37

2.4.1 xinit and startx 38

2.4.2 Differences Between .xinitrc and .xsession 39

2.5 Related Documentation .., .. 39

Chapter 3 The X Display Manager 43

3.1 xdm Concepts 44

3.2 xdm Configuration Files 46

3.3 xdm the Easy Way 48

3.4 Troubleshooting xdm 49

3.5 Customizing xdm 51

3.5.1 The Master Configuration File (xdm-config) 51

3.5.2 Listing X Servers (the Xservers File) 53

3.5.2.1 Xservers Syntax 53

3.5.3 xdm Host Access Control: the Xaccess File (R5 Only) 55

3.5.3.1 Direct and Broadcast Access 56

3.5.3.2 Indirect Access and the Chooser 57

3.5.3.3 Using Macros 59

3.5.3.4 Advantages and Disadvantages of the Chooser 59

3.5.4 The Xresources File 60

3.5.4.1 Configuring the Login Box 60

3.5.4.2 The xconsole Client 62

3.5.5 Starting Up Individual X Sessions (the Xsession File) 63

3.5.5.1 No Home Directory? (R5) 64

3.5.6 Display Classes 65

3.6 Testing Your xdm Setup 66

3.6.1 Resetting the Keyboard 67

3.6.2 Restarting xdm Using xdm-pid (R4 and Later) 68

3.6.3 Rereading xdm Configuration Files (R3) 68

3.7 Permanent Installation of xdm 69

3.8 Related Documentation 70

VI

Chapter 4 Security 73

4.1 Host-based Access Control 74

4.1.1 The /etc/Xn.hosts File 74

4.1.2 The xhost Client 75

4.1.3 Problems with Host-based Access Control 76

4.2 Access Control with MIT-MAGIC-COOKIE-1 77

4.2.1 Using MIT-MAGIC-COOKIE-1 with xdm 78

4.2.2 The xauth Program 79

4.2.3 Using MIT-MAGIC-COOKIE-1 with xinit 81

4.2.4 xauth vs. xhost 82

4.3 The XDM-AUTHORIZATION-1 Mechanism (R5) 83

4.4 TheSUN-DES-1 Mechanism (R5) 84

4.4.1 Public Key Encryption 85

4.4.2 Prerequisites for Using SUN-DES-1 86

4.4.3 Using SUN-DES-1 with xdm 88

4.4.4 Using SUN-DES-1 with xinit 89

4.4.5 Adding Another User with SUN-DES-1 91

4.4.6 xterm and SUN-DES-1 92

4.4.7 Troubleshooting SUN-DES-1 92

4.5 xterm and Secure Keyboard 93

4.6 Other Security Issues 94

4.6.1 The Console xterm (R4 and Earlier) 94

4.6.2 The Console and xdm (R5) 95

4.6.3 Hanging the Server Remotely (R3) 96

4.6.4 Reading the Framebuffer (Sun Workstations) 96

4.6.5 Removing Files in /tmp 97

4.6.6 The Network Design 97

4.7 Related Documentation 98

Chapter 5 Font Management 101

5.1 Fonts on the X Window System 101

5.1.1 xlsfonts 103

5.1.2 xfd 103

5.1.3 xfontsel 104

5.1.4 The Font Path 105

5.1.5 The Font Directory File 106

5.1.6 The fonts.scale File (R5 only) 107

5.1.7 Wildcards 108

5.1.8 Aliases 108

5.1.8.1 The FILE_NAMES_ALIAS Alias 109

5.2 All About Fonts 110

5.2.1 Bitmap Versus Outline Fonts 110

5.2.2 Font Formats 111

5.2.3 Format Conversion Tools 112

5.3 Adding New Fonts 114

vii

5.3.1 Adding a Single Font 114

5.3.2 Adding Multiple Fonts 115

5.3.2.1 Multiple Font Example 116

5.3.3 Problems with Running Vendor-specific Clients 117

5.3.4 DECWindows Examples 118

5.3.4.1 Aliasing 119

5.3.4.2 DECWindows Conversion 120

5.3.5 AlXWindows Example 121

5.3.6 OpenWindows Example 123

5.3.6.1 Aliasing 124

5.3.6.2 OpenWindows Conversion 125

5.3.6.3 Converting from XI 1/NeWS to PCF or SNF 125

5.3.6.4 More Conversions 126

5.4 Providing Fonts Over the Network , 127

5.5 The R5 Font Server 127

5.5.1 The Configuration File 128

5.5.2 Installing the Font Server 130

5.5.2.1 Testing By Hand 131

5.5.2.2 Changing BSD Boot Files 131

5.5.2.3 Changing System V Boot Files 132

5.5.2.4 Changing AIX Boot Files 133

5.5.3 Font Server Name Syntax 133

5.5.4 Debugging the Font Server 134

5.5.5 Font Server Clients 135

5.5.6 The Font Path and the Font Server 136

5.5.7 Hostname Aliases 138

5.5.8 A Font Server Example 138

5.6 Related Documentation .., .. 140

Chapter 6 Color 143

6.1 Color Specification in Release 4 and Earlier 144

6.1.1 RGB Color Names 144

6.1.2 Numeric Color Values 145

6.1.3 Adding Your Own Color Names (RGB) 146

6.1.4 Fixing a Corrupted Color Database 147

6.2 Color Specification in Release 5 (Xcms) 147

6.2.1 Xcms Color Names 148

6.2.2 Adding Your Own Color Names in Xcms 150

6.2.3 Xcms Database Example 151

6.2.4 Device Profiles 152

6.3 Related Documentation .., .. 153

VIII

Chapter 7 X Terminals 157

7.1 Buying an X Terminal: What's What 157

7.1.1 Monitors 157

7.1.1.1 Screen Size 158

7.1.1.2 Resolution 158

7.1.1.3 Depth 159

7.1.1.4 Refresh Rate 159

7.1.2 Keyboard and Mouse 159

7.1.3 X Server Software 160

7.1.4 Special Features 161

7.1.5 Memory Configuration 161

7.1.6 Network Interface 162

7.2 X Terminal Setup 163

7.3 Network Setup 164

7.3.1 Getting the IP Address Using RARP 165

7.3.2 Getting Information Using BOOTP 165

7.3.3 Trivial File Transfer Protocol (TFTP) 167

7.3.4 Setting Up the Network on the X Terminal 168

7.3.5 Debugging Hints 168

7.3.5.1 Error Messages 169

7.3.5.2 Updating the arp Table 169

7.3.5.3 Name Server Problems 169

7.4 Fonts on X Terminals 170

7.4.1 Font Formats 170

7.4.2 The Font Server (R5) 171

7.4.3 Choosing TFTP or NFS for Font Access 171

7.4.3.1 Reading Fonts Using TFTP 171

7.4.3.2 Reading Fonts Using NFS 172

7.5 Configuring for the X Display Manager 173

7.5.1 Configuring the X Terminal for xdm 173

7.5.2 Configuring an R5 Host 174

7.5.3 Configuring an R4 Host 174

7.5.4 Configuring xdm Without XDMCP 174

7.5.5 Setting Up Server Access Control 175

7.6 Remote Configuration of X Terminals 175

7.6.1 Remote Configuration on NCD Terminals 176

7.6.2 Remote Configuration on Visual Terminals 177

7.6.3 Remote Configuration on Tektronix Terminals 178

7.7 Reconfiguring the Host 178

7.7.1 Increasing the Number of Processes 178

7.7.2 Increasing the Number of Pseudo-ttys 179

7.7.3 Increasing the Amount of Swap Space 180

7.7.3.1 Swapping to a File 180

7.7.3.2 Swapping to a Disk 180

7.8 Related Documentation .., ..181

IX

Chapter 8 Building the X Window System 185

8.1 Installation Issues 185

8.1.1 Should You Use MIT Source? 185

8.1.2 Types of Vendor-supplied X Distributions 186

8.1.2.1 X from Your OS Vendor 187

8.1.2.2 X from a Third Party 187

8.1.3 X Source Code from MIT 188

8.1.4 Complete or Client-only Distribution? 189

8.1.5 Installing Multiple X Releases 189

8.2 Source Preparation 191

8.2.1 Do You Have Enough Disk Space? 191

8.2.2 Is Your Platform Supported? 192

8.2.3 Applying OS Patches 194

8.2.4 Applying X Patches 194

8.2.5 Creating a Link Tree (Optional) 196

8.3 Simplest Case Build 197

8.4 Host Problems 198

8.4.1 Disk Space 198

8.4.1.1 Changing the tmp Directory Using TMPDIR (Ultrix and HP-UX) 199

8.4.1.2 Changing the tmp Directory Using -temp (SunOS) 200

8.4.2 Shared Library Installation (SunOS) 200

8.4.3 NFS Installation 201

8.4.3.1 NFS Installation Without Root Access 201

8.4.3.2 Installation Over the Network (rdist) 203

8.4.4 Installing the termcap or terminfo Definition for xterm 203

8.5 Simple Configuration 204

8.5.1 Configuration Parameters 205

8.5.1.1 site.def 205

8.5.1.2 The ProjectRoot Flag 207

8.5.1.3 The Platform Configuration File (platform.cf) 208

8.5.2 Configuration Example 1 210

8.5.3 Configuration Example 2 211

8.5.4 Configuration Example 3 212

8.5.5 Configuration Example 4 212

8.5.6 Configuration Example 5 213

8.5.7 Other Build Flags 213

8.5.7.1 xterm Build Flags 214

8.6 Building Programs After X Is Installed 214

8.6.1 xmkmf 214

8.6.2 Include Files 215

8.6.3 Libraries 216

8.7 More About imake 216

8.7.1 The make Program 216

8.7.2 The C Preprocessor 217

8.7.3 Imake Syntax 219

8.7.3.1 Comments in imake 219

8.7.3.2 Multi-line Macros (@@) 220

8.7.3.3 Concatenating Macros 221

8.7.3.4 Dealing with Tabs 222

8.7.4 imake Configuration Files 222

8.7.4.1 A Quick Tour of Files Used by imake 223

8.7.5 Using imake to Build XI1 224

5.8 Porting Hints 226

8.8.1 Undefined Symbols or Functions 226

8.8.1.1 Missing Header Files 226

8.8.1.2 Missing Function Definitions 226

8.8.2 Searching for Preprocessor Symbols 228

5.9 Related Documentation 230

Appendix A Useful Things to Know 233

A.I The comp.windows.x Newsgroup 233

A.2 How to ftp a File 234

A.2.1 Getting Files Using ftpmail 235

A.2.2 BITFTP 237

A.3 The xstuff Mail Archive Server 237

A.4 Unpacking Files 238

A.5 Making a Filesystem Available via NFS 239

A.6 How to Add a Host 239

A.6.1 Adding a Host to /etc/hosts 239

A.6.2 Adding a Host Using MS 240

A.6.3 Adding a Host Using DNS 240

A.7 Adding an Ethernet Address 242

A.8 Printing Documentation in the MIT X Distribution 242

A.9 Converting a Number Into Hexadecimal and Back 243

A.10 Configuring a Sun as an X terminal 243

A. 11 Using More than One Frame Buffer Under SunOS 244

Appendix B Compiling Public Domain Software 247

B.I Finding the Sources 247

B.I.I Using an Archie Server 248

B.1.2 Get the FAQ 250

B.1.3 The Usual Suspects 250

B.2 An Example: xarchie 251

B.2.1 Getting the xarchie Sources 251

B.2.2 Untarring the Sources 252

B.2.3 Editing the Imakefile 254

B.2.4 Compiling the Source 255

B.3 Using Patches 259

B.4 Another Example: xkeycaps 264

B.5 Related Documentation 268

XI

Appendix C X on Non-UNIX Platforms 271

C.I X on DOS-based PCs 272

C.I.I Requirements for PC X Servers 272

C.I.2 Installing and Configuring PC X Servers 273

C.1.3 Problems Particular to PC X Servers 274

C.2 X on Macintosh Computers 275

C.2.1 Macintosh-based X Servers 275

C.2.2 MacTCP and the Communications Toolbox 276

C.3 X on NeXT Computers 277

Appendix D Resources and Keysym Mappings 281

D.I Using Resources 281

D.I.I Resource Definition Syntax 281

D.I.1.1 Loose and Tight Bindings 282

D.I.1.2 The-name Command-line Option 283

D.I.1.3 xterm Versus XTerm 283

D.I.2 Where Resources Are Defined 285

D.I.3 Advantages of xrdb 287

D.I.4 Translation Tables 288

D.2 Defining Keys and Button Presses With xmodmap 290

D.2.1 Using xev to Learn Keysym Mappings 292

D.3 Related Documentation ., .. 293

Appendix E The Components of X Products 297

E.I MITXI1 Release 5 298

E.2 OSF/Motif 299

E.3 Sun OpenWindows 300

E.4 DECWindows 301

E.5 AlXWindows 302

E.6 Silicon Graphics 302

E.7 A Guide to XI1 Libraries 303

Appendix F Getting Xll 307

F.I Where Can I Get XI1R5? 307

F.2 Where Can I Get Patches to XI1R5? 311

F.3 Where Can I Get XI1R4?311

XII

Appendix G Error Messages 315

G.I X Errors 315

G.2 UNIX Errors 318

G.3 Compilation Errors 320

XIII

Figures

Page

1-1 An X server with clients from multiple hosts 5

2-1 A configured X session 13

2-2 A root menu 14

2-3 An unconfigured X session 16

2-4 Starting a new client 17

2-5 xclock window over xterm window 17

2-6 Starting the window manager 19

2-7 xterm window with new font 21

2-8 A window with a specified geometry 22

2-9 An xterm window in reverse video, decorated by twm 23

2-10 vi using only part of a window 32

2-11 Logging in with xdm 37

2-12 Starting the X server with xinit 38

3-1 xdm flow chart 44

3-2 Default xdm configuration files 46

3-3 xdm login box 48

3-4 Default xdm environment 49

3-5 XDMCP Direct, Indirect, and Broadcast queries 56

3-6 The chooser 58

3-7 An example chooser box 58

3-8 Chooser box with an R4 host 60

3-9 Adapted xlogin greeting 62

4-1 Host-based access control 74

4-2 XDMCP and the access code 77

4-3 User-based access control 78

4-4 Propagating the magic cookie between two hosts 80

5-1 Components of a font name 102

5-2 xfd 104

5-3 xfontsel 105

5-4 Font conversion utilities 113

5-5 dxcalendar with the wrong fonts 119

5-6 dxcalendar with aliases 120

5-7 cm without aliases 123

5-8 cm with aliases 124

6-1 Red, green, and blue color guns 143

6-2 Xcms vs. RGB color specification 149

6-3 xtici Edit menu 150

8-1 oclock without the SHAPE extension 190

8-2 oclock with the SHAPE extension 190

8-3 Recursive make 218

8-4 Files processed by imake 223

B-l xarchie window 258

B-2 xkeycaps window 267

D-l xcalc window 289

xiv

Tables

Page

8-1 cpp Symbols 228

B-l Archie Servers as of January 3, 1992 248

E-l X Distribution Directories 297

E-2 MIT XI1R5 Files 298

E-3 Motif Files (Motif 1.1.x) 300

E-4 OpenWindows Files (Sun4, SunOS 4.1.1) 300

E-5 OPEN LOOK Files 301

E-6 DECWindows Files (DecStation, Ultrix 4.2) 301

E-l AlXWindows Files (RS/6000, AIX 3.2) 302

E-8 Graphics XI1 Files (Indigo, IRIX 4.0) 302

F-l North America Anonymous ftp 307

F-2 Europe/Middle East/Australia Anonymous ftp 308

F-3 Japan Anonymous ftp 308

F-4 UUCP 309

F-5 Other File Transfer Methods309

xv

Preface

This preface outlines who should be reading this book, and what readers

should expect from it.

In The Preface:

How to Use this Book xix

Assumptions xxi

Related Documents xxi

Font Conventions Used in This Book xxii

Request for Comments xxiii

Bulk Sales Information xxiii

Acknowledgments xxiii

Preface

UNIX machines can be difficult to maintain. Traditionally, UNIX administration has meant

juggling dozens of configuration files and supporting end users who may not understand how

the system actually works. Because it is infinitely flexible, UNIX can be a power-user's para-
dise and a beginner's nightmare, with the administrator sandwiched somewhere in between.

This book is designed to bridge that gap. It provides detailed information and procedures for

setting up a system that gives users access to the full power of X, without the headaches.

How to Use this Book

This book has been written to be useful to as many types of X Window System administrators

as possible. Some readers are full-time system administrators at large academic sites who are

well-versed in UNIX and X, but are always looking for new tips. Other readers are part-time

administrators at smaller sites who know a good amount about UNIX and X but are tired of

always having to reinvent the wheel. Still other readers are workstation owners who are

forced to do their own administration, interested only in getting their system running

smoothly.

Since this book is aimed at such a wide audience, not all readers will be interested in every

chapter. If we tell you about platforms you don't use, issues that aren't relevant to you, or

describe basic concepts with more detail than you need, we hope that you'll be patient and

just skim through to find what you need to know.

Chapter 1, An Introduction to X Administration, briefly introduces the design of X,

with emphasis on the administrative issues that arise out of that design.

Beginners to X and X administration should read this chapter.

Chapter 2, The X User Environment, describes issues for configuring the X user envi-
ronment. Readers who need to set up new users should read this chapter.

This chapter is also a good place for readers who are new to X and need to

learn more about how it works from the user's point of view.

Chapter 3, The X Display Manager, describes the X Display Manager (xdm) and how

to configure it. Readers who are interested in running xdm should read

this chapter.

Chapter 4, Security, describes security issues for X. We recommend that managers of

all networked X environments study this chapter.

Preface xix

Chapter 5, Font Management, describes issues with using and adding fonts, both

under the standard methods and through the XI1 Release 5 font server.

Readers who are interested in adding fonts to their system or using a

networked font server should read this chapter.

Chapter 6, Color, describes how color works in X, and how to add new colors in both

the RGB and Xcms color databases. Readers who have color displays may

want to read this chapter to learn more about how color works and how it

can be manipulated.

Chapter 7, X Terminals, describes the different types of X terminals, how to set up the

network for new X terminals, how to install fonts on the host, and how to

reconfigure the host machine to support more processes. If you use or

intend to use X terminals at your site, you should read this chapter.

Chapter 8, Building the X Window System, describes the issues involved with building

X from source. Readers who must build X from source, or who are inter-

ested in understanding more about the basic structure of the X software

should read this chapter.

Appendix A, Useful Things to Know, documents various "miscellaneous" procedures

and odds-and-ends that many users will already be familiar with, but

which we want to include for the benefit of those users who are not. This

appendix shows how to ftp files, how to export NFS directories, how to

add a hostname to your name server, etc. Browse through this chapter at

least once to see if there's anything new in there; throughout the book, we

refer to sections of this chapter when applicable.

Appendix B, Compiling Public Domain Software, a tutorial, describes how to find and

compile public domain software. Readers who aren't familiar with this

process should read this appendix.

Appendix C, X Servers on Non-UNIX Platforms, briefly describes issues with using XI1

servers on DOS-based PC and Apple Macintosh machines. Readers who

are interested in running X on these platforms should read this appendix.

Appendix D, Resources and Keysym Mappings, provides a more thorough description of

resources and keysym mappings. You can't work with X without needing

to understand these topics at least a little bit, so we include some back-
ground here. Some of this material duplicates what you'll find in Volume

Three, X Window System User's Guide, but we also give some useful tips

and advanced information for administrators. So even if you are familiar

with how to use resources, you may want to scan this appendix.

Appendix E, The Components of X Products, lists the directory structure of MIT XI1

and various vendors' implementations. Use this appendix as needed.

Appendix F, Getting XI1, lists sites that have made the XI1 source code available.

Reprinted from the comp.windows.x newsgroup Frequently Asked Ques-
tions list. Use this appendix if you need to obtain the X11 source code.

Appendix G, Error Messages, lists some of the error messages users may encounter.

Refer to this appendix when troubleshooting.

XX The X Window System Administrator's Guide

Assumptions

To get the most out of this book, you should be familiar with UNIX and with general princi-
ples of system and network administration. If you have never administered a UNIX system or

a TCP/IP network, see the Nutshell Handbooks Essential System Administration by yEleen

Frisch (O'Reilly & Associates, 1991) and TCP/IP Network Administration by Craig Hunt

(O'Reilly & Associates, 1992).

A firm understanding of X is helpful. If you have never used X, you should have a copy of

Volume Three, X Window System User's Guide, close at hand. However, we have included a

lot of background information on X for the benefit of readers who have not had a formal

introduction to X.

Readers are not expected to have any C programming experience, although UNIX shell pro-
gramming experience may come in handy for understanding some of the examples.

Readers are assumed to have the X manpages available, or to be able to obtain them easily.

(These pages are reprinted in the X Window System User's Guide and are also available

online with many X distributions.) This book does not attempt to replace the X manpages.

Related Documents

The following Nutshell Handbooks published by O'Reilly & Associates, Inc. may also be

helpful:

Managing Projects with make, by Andy Oram and Steve Talbott

Managing NFS and NIS, by Hal Stern

Practical UNIX Security, by Simson Garfinkel and Gene Spafford

System Performance Tuning, by Mike Loukides

DNS and BIND, by Cricket Liu and Paul Albitz

The Whole Internet User's Guide and Catalog, by Ed Krol

TCP/IP Network Administration, by Craig Hunt

Several other books and a journal on the X Window System are available from O'Reilly &

Associates, Inc.:

Volume Zero - X Protocol Reference Manual

Volume One - Xlib Programming Manual

Volume Two - Xlib Reference Manual

Volume Three -X Window System User's Guide, Motif and Standard editions

Volume Four - X Toolkit Intrinsics Programming Manual, Motif

and Standard editions

Volume Five - X Toolkit Intrinsics Reference Manual

Volume Six - Motif Programming Manual

Volume Seven - XView Programming Manual

Preface xxi

PHIGS Programming Manual

PHIGS Reference Manual

Quick Reference - The X Window System in a Nutshell

The X Resource

In addition, each chapter ends with its own topical list of related documentation.

Font Conventions Used in This Book

Italics are used for:

" UNIX pathnames, hostnames, domain names, client and UNIX command names,

and command-line options

" New terms where they are defined

" Emphasis

Typewriter Font is used for:

" Output in an example, i.e., prompts and messages from commands

" The contents of configuration files

" Flags used to build X

" Display names

" IP addresses

" Resource names

Bold Typewriter Font is used for:

" Input in an example, i.e., what the user types on a command line

" Highlighting lines of code

Helvetica Italics are used for:

" Titles of figures and tables

Helvetica Bold is used for:

" Chapter and section headings

xxii The X Window System Administrator's Guide

Request for Comments

To help us provide you with the best documentation possible, please write to tell us about any

flaws you find in this manual or how you think it could be improved.

Our U.S. mail address, e-mail address, and phone numbers are as follows:

O'Reilly & Associates, Inc.

103A Morris Street

Sebastopol, CA 95472

800-998-9938

international +1 707-829-0515

fax+1 707-829-0104

UUCP: uunetlora.comlnuts Internet: nuts@ora.com

Bulk Sales Information

For information on volume discounts for bulk purchase, call O'Reilly & Associates, Inc. at

800-998-9938, or send e-mail to linda@ora.com (uunetlora.comllinda).

For companies requiring extensive customization of the book, source licensing terms are also

available.

Acknowledgments

Though it might seem a logical addition to our X Window System series, we didn't think up

this book on our own. It was a customer call that set the project in motion. Scott Hunter of

Oracle called up to ask if we had anything on X administration in the works. We said we

didn't, but that we thought it was a great idea. Scott and his co-worker Mike Riggs outlined

for us the kinds of problems they were facing that made such a book a necessity. We would

like to thank Scott and Mike for their initial efforts in conceiving the book, as well as Mary

Beth Hagan and Marilyn Grady, who did some of the initial research and writing before it fell

into our laps.

We would also like to thank the technical reviewers for the first edition of this book. They

were David Lewis; Jeffrey Vogel; Mike Braca of Visual Technology; Stephen Gildea of the

X Consortium; Liam Quin and Ian Darwin of Softquad, Inc.; Doug Klein, Dave Lemke, and

the staff at Network Computing Devices; Dave Curry of Purdue University; Dinah McNutt of

Tivoli Systems; Miles O'Neal of Pencom; Jim Frost of CenterLine Software; Jon Werner of

International Business Machines; Spencer Murray of Silicon Graphics, Inc.; Joe Ilacqua;

Valerie Quercia, David Flanagan and Adrian Nye of O'Reilly & Associates; Al Tabayoyan of

North Valley Research; and Upesh Patel of The Santa Cruz Operation.

Our thanks to each of these reviewers for taking the time to make this book useful and com-
plete. Additional thanks to David Tolman of Human Designed Systems and R. Lee Rainey of

Tektronix for supplying information on their company's X terminals, and to Garry Paxinos of

MetroLink, Inc. and Greg Mudge of PhoeniX Software Solutions for helping to clear up some

Preface xxiii

details about running X on PC hardware. Also, thanks to Dave Curry, Chris Calabrese of

AT&T Bell Labs, Joe Ilacqua, and David Lewis for supplying random number generation

methods for use with the discussion of MIT-MAGIC-COOKIE-1 in Chapter 4. David Lewis

was also kind enough to allow us to reprint the material in Appendix F from the comp.win-

dows.x Frequently Asked Questions list that he maintains.

Several vendors were kind enough to lend us software or hardware for testing purposes.

These were Silicon Graphics, Visual Technology, Human Designed Systems, Unipress Soft-
ware, White Pine Software, Network Computing Devices, Locus Computing Corporation,

Unipress Software, Vision Ware Ltd., Quarterdeck Office Systems, FTP Software, Humming-
bird Communications Ltd., and Starnet Communications.

We would also like to thank those who worked on the production of the book. At O'Reilly &

Associates, we would like to thank Gigi Estabrook for her initial copy-edit, Chris Reilley for

the figures, Ellie Cutler for indexing, and Rosanne Wagger and Mike Sierra for production of

the final copy. We would also like to thank Lenny Muellner for tools support and for allow-
ing us to disrupt his life whenever we had the urge to make screendumps.

Finally, we would like to thank our editor, Tim O'Reilly, for his initial trust in us and for his

patience during the countless months it took us to put the book together.

Of course, we alone take responsibility for any errors or omissions that remain.

xxiv The X Window System Administrator's Guide

1

An Introduction to X Administration

This chapter provides an introduction to X and to X administration.

In This Chapter:

The Design of X11 3

Display Servers 4

Clients and Resources 6

Toolkits and GUIs 7

X Administration 8

Installing X 8

Supporting Users 9

Maintaining Software 9

Maintaining Multiple Machines 10

A "Philosophy" of X Administration 10

1

An Introduction to X Administration

Administrators make things work. On the surface, the X Window System is just one more

software package that the administrator needs to install, maintain and support for users. X

runs on any architecture, so there are fewer differences between systems than with most soft-
ware. What makes X different from other packages, however, is that it provides a great deal

of configurability. It's relatively easy to get X to run on your site with its default settings, but

it requires a bit more homework to take advantage of its flexibility and create a secure, cen-
trally-maintained environment for users. This book does the homework for you.

Administrators need to know how X works before they can figure out how to make it work

for them. This chapter provides an introduction both to X and to X administration.

1.1 The Design of X11

The X Window System, called X or XI1 for short, is a network-based graphics window sys-
tem that was developed at the Massachusetts Institute of Technology. X is based on the cli-
ent/server model, in which the application program (the client) does not directly access the

display, but communicates with an intermediary display program (the server).

One important feature of the client/server model is that the client and server programs can

communicate over a network. They do not need to run on the same machine, or even in the

same building. This means that an X display is an ideal front end for a distributed computing

environment. A system administrator might open windows on each of a dozen machines she

is maintaining; a financial analyst at a Wall Street firm might have a spreadsheet in one win-
dow, Quotron data "off the wire" in another, and a custom mainframe-based analysis program

in another.

The client and server communicate using the X Protocol, which can run on top of UNIX

domain sockets, TCP/IP, or DECnet. Technically, the X Protocol is the true definition of X.

However, when we refer to X, we often mean not only the protocol but also the widely avail-
able implementation of clients, servers and libraries that use that protocol.

Since the client and server can run on different machines, the local display machine can get

away with running a server program and nothing else. X servers can run on single-tasking

DOS-based PCs, which connect across the network to multi-user systems capable of running

multiple graphical applications. More importantly, this feature has led to the development of

low-cost X terminals, designed specifically for running X servers. Using X terminals, a

An Introduction to X Administration

company can give multiple users the ability to run graphics-intensive programs, without hav-
ing to buy each user a machine powerful enough to execute the graphics programs them-
selves.

X has great commercial potential because X can be ported to any architecture, operating sys-
tem, or display type. Servers have been written for all sorts of architectures, under all sorts of

operating systems, for all types of displays. The only requirement is that there be a keyboard,

a graphic display, and an input pointer (such as a mouse). And because the server handles the

hardware and operating-system dependencies, client programs can be almost completely por-
table.

Currently, most client programs run on some flavor of the UNIX operating system, but they

have also long been available under many other operating systems (such as VMS), and recent

products now run X clients (as well as servers) on DOS and Macintosh machines. Further-
more, clients have been written to be heavily dependent on programming libraries. This

means that once the libraries are ported to another operating system, clients using those

libraries should be easily ported as well.

X was developed at the Massachusetts Institute of Technology and is maintained by a non-
profit consortium of vendors and universities. The source code to XI1 is free. As a result, X

has led to an explosion of free software not seen since the heyday of Berkeley UNIX develop-
ment.

The fact that X was developed by a consortium and had to meet the sometimes conflicting

needs of many different vendors, does, however, lead to a few complications. At times, it

seems that the developers have gone overboard to make X flexible, configurable and extens-
ible, so that it could be adapted to the needs of whatever platform and environment it is

ported to. However, in the end, it is hard to fault the bias towards flexibility. The almost uni-
versal adoption of X is a tribute to just how insightful those design decisions were.

One very concrete expression of X's political heritage is that X itself is a no-frills window

system. Rather than choose between competing graphical user interfaces (GUIs), the X

designers chose to articulate "mechanism not policy." That is, they provided base technology

for manipulating windows, but didn't insist on a particular "look and feel." X keeps the GUI

distinctly separate from the window system itself. Several GUIs (notably those based on the

OSF/Motif and OPEN LOOK specifications) have already been built upon XI1. What's more,

because X doesn't have a GUI to get in the way, it has been integrated with other window

systems such as Microsoft Windows and the Macintosh Finder. In such implementations, X

windows exist side-by-side with the native windows of that GUI.

1.1.1 Display Servers

Client-server terminology often seems "backwards" to people who are new to X. Since the X

display runs on a local machine on the user's desk, you might think that the X display should

run the X client program. People are used to thinking of servers as something they access

across the network (such as file or print server).

X Window System Administrator's Guide

If you think about it more carefully, though, you realize that the terminology is exactly right.

The X server is a display server. It makes your display and keyboard available to applications

running on other machines across the network. The fact that you can and often do run clients

locally doesn't make the display server any less a server. Clients must still connect to it to

make use of the services (display and keyboard) it manages.

The X display server accepts connections from any number of X application clients. These

clients might run on any machine on the network, as shown in Figure 1-1.

Supercomputer

ersonal Computer

1
*" i

8 « " itJf / ,-- -"

-"
Local *" Large M nicomp

Client

Display Server

Figure 1-1. An X server with clients from multiple hosts

An X server can be written for any sort of graphic display. These displays, each consisting of

a pointing device, a keyboard and at least one monitor, can differ in several ways.

" Monitors have different screen sizes and different resolutions. Some monitors have color

support. A server might support anywhere from 1 to 24 bits of color per pixel.

" The pointing device might be a mouse, a touchscreen, or a pen. Most displays use a

mouse as a pointing device, but the mouse might have 1, 2, or 3 buttons.

" Different keyboards have different layouts, and each key generates different control

sequences. You can depend on alphanumeric keys on U.S. or European keyboards, but

you can't depend on there being function keys, an ALT key, or a numeric keypad.

An Introduction to X Administration

On other window systems, you might be able to configure this information directly into the

application at installation time, since there's only one display that the program can access. X

clients, however, need to be able to run with all possible servers. The X server therefore

needs to mediate between clients and the specifics of the display.

For the output device-i.e., the monitor-the server not only needs to know how to draw to

the display as specified by the client, it also needs to be able to tell the client the screen

dimensions or whether color is supported. If a user has more than one monitor, each monitor

can be used as a separate screen of the display.

Input devices (the mouse and keyboard) can also differ. In order to insulate clients from

these differences, the server maintains a mapping between physical buttons and keys and cor-
responding logical identifiers. For example, the code generated by each key is assigned a

symbol, called a keysym. Clients refer only to keysyms, and the server performs the actual

translation between keysyms and the actual keycodes generated by a particular keyboard.

(For more information on keysyms, see Section D.2.)

1.1.2 Clients and Resources

Because X applications, or clients, can display on any X server on the network that allows

the connection, X applications must be configurable. However portable the X client-server

model makes an application, there are going to be dependencies and preferences that the user

needs to be able to express. A font that looks good on one display might be too small on

another; a key that is easily reached on one keyboard might be a stretch on another.

On another window system, such as that on a Macintosh or on a PC running DOS, all applica-
tion preferences can be set at the application level. This makes sense, because the Macintosh

OS and DOS are single-user operating systems with only one display to connect to. All pref-
erences might as well be stored in the same place.

By necessity, X needs to deal with application resources more robustly. X generally runs on

multi-user systems, so clients need to be configurable by each individual user. (Character-

based UNIX programs already do that using "dot" files in the user's home directory, such as

.exrc, .newsrc and .mailrc.) X clients can display on any server on the network, and each

server may require its own preferences; so X clients also need to be configured for each indi-
vidual server. And because binaries are often shared among several different hosts, each X

client executable might be run on any number of systems, so system-specific defaults are

needed.

X applications need to be configurable at each of these levels. X applications are configured

primarily via resources. Resources are variables that are used by X clients and that can be set

at the user level, system level, server level, and client level.

It is essential that a system administrator thoroughly understand the resource mechanism.

Resources are discussed in detail in Volume Three, X Window System User's Guide. In addi-
tion, Appendix D provides a summary of the most important points of syntax and usage.

X Window System Administrator's Guide

1.1.3 Toolkits and GUIs

X clients are built using a number of programming libraries that progressively insulate the

programmer from the details of the X protocol. The lowest layer is Xlib, which maps fairly

directly to the protocol, and requires the programmer to do a great deal of "handwork." Each

event generated by mouse movement, key presses, or graphics exposure must be handled

explicitly. Writing a graphical user interface with Xlib would be a bit like starting out with

logs when you want to build a house. For this reason, in most X clients, Xlib is used chiefly

for drawing, or in cases where the programmer needs more direct control of the dialog with

the server.

The X Toolkit Intrinsics (Xt) are built on top of Xlib. They simplify the job of building a

graphical user interface by creating support for objects called widgets. Widgets are proto-
types for common user interface elements such as scrollbars, menus, and so forth, plus other

objects that can be used to glue these elements together into a complete application window.

But Xt itself does not provide a GUI. This is the job of additional libraries that are layered on

top of Xt in turn. The three most common GUIs are provided by the Athena widgets and the

OSF/Motif and OPEN LOOK specifications. What's more, even a widget set provides only

part of the GUI's look and feel. The basic framework for moving, resizing, and managing

windows is handed over to a separate program called a window manager.

Athena is a bare-bones widget set originally developed by MIT as a "proof of concept" for

Xt. Athena is not terribly pretty, but is widespread because most of the original MIT client

programs were written with the Athena widgets. The corresponding window manager is

usually twm.

OSF/Motif is a GUI that was developed by the Open Software Foundation and is sold by var-
ious licensed resellers. (Motif source can be purchased directly from OSF.) OSF/Motif con-

sists of a set of Motif libraries and widgets, a style guide, several demo clients, and the Motif

window manager (mwm).

OPEN LOOK is a GUI specification with multiple implementations. The OLIT toolkit is an

Xt-based toolkit developed by AT&T. The XView toolkit was developed by Sun directly on

top of Xlib, with an API similar to its native SunView user interface, which predated X.

XView is available in the contribl part of the MIT distribution. OpenWindows is a complete

windowing environment distributed by Sun Microsystems that is compatible with the OPEN

LOOK specification, and which includes a window manager client called olwm.

To further complicate the picture, clients can be written using one set of widgets, yet work

with the window manager of a competing GUI. This is most common with MIT clients writ-
ten with the Athena widgets, which are often used with mwm or olwm. Fortunately, there is a

set of conventions (called the Inter-Client Communication Conventions) that ensure inter-

operability of clients and window managers from different X-based GUIs.

An Introduction to X Administration

1.2 X Administration

One of the philosophies that X is built on is that it provides "mechanism, not policy." This is

good for developers, since it allows them to decide how X should be used. But until a single

standard emerges, it leaves users (and administrators) without much guidance. This book

hopes to come to the rescue.

One complication for users and administrators is that there are so many different flavors of X.

There's "standard" X-that is, the client, server and library distribution maintained by the X

Consortium at MIT. Then there are the various vendor-configured versions that are derived

from MIT XI1 but then configured for a vendor's operating system and proprietary "look and

feel." There's OpenWindows, which runs on Sun workstations. There's Open Desktop, which

runs on PCs running SCO UNIX. There's DECWindows, which runs on DEC workstations,

and AlXWindows, which runs on IBM workstations running AIX. And many more.

This means that X may not look the same on different platforms. A user who thinks he or she

has learned X may find that they're totally lost in a co-worker's environment across the hall-
way. Furthermore, an administrator might have several different platforms to maintain. This

book concentrates on "standard" XI1 as distributed by MIT, but also covers conflicts with

vendor distributions of X, as well as conflicts between different releases of XI1.

Another complication is that while the X Consortium provides only "mechanism" and relies

on vendors to decide how to use it, there are some gaps where no robust, universally-

accepted way of dealing with the mechanism has come to light. For example, resources have

the potential to be a very powerful tool, but are currently difficult to understand, manipulate,

and debug. You need to know what's "under the hood" before you can use resources prop-
erly.

This is one of the most difficult things about X administration: you may need to know an

awful lot about how things work before you can do what you really want. This book tries to

make it easier to configure X for your site by describing procedures step-by-step. At the

same time, we try to provide background information for readers who continue to have prob-
lems or are interested in knowing more.

The X sources provide ample documentation, but it's often difficult to weed through the doc-
umentation tree to find what you want to know. For example, to learn how to use security fea-
tures of XI1, you need to read the xauth, Xsecurity, xhost and xdm manpages before you can

begin to get an idea of how it works. This book attempts to group together everything you

need to know to get X working on your site.

1.2.1 Installing X

You can get X from your operating system vendor, or you can use the standard MIT XI1.

Which you choose to do depends on what you plan to do with it.

If you plan to run specific clients, you may have no choice: a client might run only with a

vendor's distribution of X (such as OpenWindows), or it might run only with XI1R5 (which

at this writing is unavailable from OS vendors).

X Window System Administrator's Guide

If technical support matters a lot to you, you might prefer to stick with your vendor's distri-
bution of XI1. If having the "latest and greatest" is more important to you, you probably

want to build MIT XI1 with all the latest patches.

If you plan to develop your own X applications, you may want several different X distribu-
tions installed, so you can test (or port) your applications on multiple platforms. In addition

to the X distribution itself, you will probably also need other toolkits installed, such as

OSF/Motif, OLIT or XView.

Chapter 8 describes how to build XI1 from source.

In addition to the X distribution of clients, libraries and a local server, administrators need to

provide X servers for users. X terminals are available from many different vendors. X servers

that run on top of PC and Macintosh environments are also available. Chapter 7 discusses

the issues of choosing and installing an X terminal, and Appendix C discusses X servers that

run on PCs, on Macintosh computers, and on NeXT computers.

1.2.2 Supporting Users

Your users might all be self-sufficient power users, or they might need their hands held with

every step. You probably have both types on your site, as well as every gradation in between.

You will need to set up default environments for the users on your site, and be prepared to

help them debug their environment when things go wrong. Remember that the more time you

spend on setting up templates for users, the faster users will be able to be productive, and the

less time you'll spend later on debugging their environments. Chapter 2 covers some of the

issues that you will need to address when setting up a user's environment.

If you have any X terminals at your site, you should run the X Display Manager (xdiri) to pro-
vide an easy way for those users to log on and start their X sessions. You might also want to

set up xdm to control X servers running on workstations as well, since among other things,

xdm provides a way to configure user environments in a central place. Chapter 3 describes

how to set up xdm for your site.

Unless everyone at your site trusts everyone else, you should probably look into using secu-
rity for X servers on your site. If you are on the Internet, you should definitely use security. If

someone's determined to snoop on you, they can probably get through, but there are a few

things you can do to trip up the more casual attacker. Chapter 4 describes security issues for

Xll.

1.2.3 Maintaining Software

After you have everything running smoothly on your site, you'll find that most of your time

as administrator will involve getting and installing new software, and upgrading existing

software. In addition to commercial software, sources to many X programs are available in

the public domain. Appendix B is a tutorial on how to find and build public domain software.

An Introduction to X Administration

New clients often call for new fonts. These fonts have to be made available to all servers that

might run the client. Chapter 5 describes how to install new fonts and how to convert fonts

from other formats.

1.2.4 Maintaining Multiple Machines

The whole idea of X is to have many machines networked together: PCs, workstations, X

terminals, minicomputers, supercomputers, you name it. This can become a lot of work for

administrators, since that means multiple machines to configure and maintain consistently.

One useful tool is to keep up-to-date documentation on how each machine is configured.

This is especially helpful on a large site, particularly on one with more than one administra-
tor.

But maintaining many different machines can be made much easier if you configure

machines centrally when you can. This book describes the various mechanisms X provides

for doing so. The X Display Manager can be used to maintain all X sessions centrally. Many

X terminals can be configured remotely from a host machine. The font server, new with

XI1R5, provides a way to supply fonts to multiple servers.

1.2.5 A "Philosophy" of X Administration

If we had to come up with a "philosophy" of X administration, it would be that X is made to

fit the needs of its users. As the administrator, you have the responsibility to determine your

users' needs and configure X accordingly.

X is installed in all sorts of environments, from universities with hundreds of student users, to

home offices with a single standalone machine. For that reason, almost everything in X is

configurable at multiple levels. Application resources can be set in several different places.

You can create new fonts and define new colors. The X Display Manager can be configured

to meet practically any need. Even the source code to X is available for programmers who

want to create their own workarounds if none already exist. The fundamental idea is that if

you don't like the way something works, change it.

From the onset, you'll see that this book is less about making X work than it is about getting

X to work for you.

10 X Window System Administrator's Guide

The X User Environment

Administrators need to configure X environments for their users. This chap-
ter describes the issues involved in making an X environment work properly.

In This Chapter:

The Configured X Session 13

The Twilight Zone 16

Components of the X Environment 18

Window Managers 18

Customizing Clients 20

The -fn Command-line Option 20

The -geometry Command-line Option 20

Specifying Colors 23

Using Resources 24

The Startup Script 25

The Foreground Process 26

The Shell Environment 27

Setting the DISPLAY Variable 27

Complications with Display Names 28

Redefining the Search Path 29

Setting the Search Path for OpenWindows Support 30

Setting the Search Path for Mixed Environments 30

xterm Issues 31

xterm and Terminal Emulation 31

The resize Client 31

xterm and the Login Shell (C Shell) 33

Starting Remote Clients 34

Starting a Remote Client with rsh 35

Startup Methods 37

xinit and startx 38

Differences Between .xinitrc and .xsession 39

Related Documentation . ..39

The X User Environment

2.1 The Configured X Session

We set up an X environment for a new employee, Joan, whose job involves internal project

management. Joan is new to both UNIX and X. We've set up her environment so that when

she logs in via the X Display Manager, xdm, she gets an environment resembling that in

Figure 2-1.*

Top

uby:joon 26%

uby:Joan 26X

Figure 2-1. A configured X session

*If you aren't already running xdm, see Section 3.3 for information on how to set it up the first time.

The X User Environment 13

" Joan gets two terminal emulator windows. The top one is labeled "Top" and the bottom

one is labeled "Bottom."

" Joan has a clock in the upper-right corner of the screen.

" Joan wants to have a calculator available all the time, since her job involves juggling

numbers.

" The rest of the windows are from a public domain application called xpostit, which Joan

can use to keep notes and reminders on her desktop.

The root window is the screen background behind the X client windows. If Joan presses her

first mouse button while the pointer is in the root window, she gets a root menu resembling

that in Figure 2-2. We've configured her root menu so she can start new clients easily:

Terminal

Clock

Calculator

Dictionary

Solitaire

Kill Window

Iculator

Restart twm

Log Out

Figure 2-2. A root menu

By pressing down her first mouse button and then selecting the "Dictionary" option, for

example, Joan can bring up a dictionary application.

To create this environment, we needed to set up three X configuration files in Joan's home

directory, in addition to the "standard" UNIX shell startup files. The X configuration files are:

.xsession

The .xsession file is the shell script that actually starts each of the applications in

Joan's startup environment. The .xsession script reads:

#!/bin/sh

Add /usr/local/bin to the path for this script:

PATH=$PATH:/usr/local/bin

export PATH

Set up a pattern for the root window:

14 The X Window System Administrator's Guide

xsetroot -bitmap /usr/include/Xll/bitmaps/dimplel

Merge in user resources:

xrdb -merge $HOME/.Xresources

Start some applications:

xterm -title Top -g 70x35+1+1 &

xterm -title Bottom -g +1-0 &

xclock -g -0+0 &

xcalc -g -0+298 &

xpostit -sv -g 110x50-0+200 &

Start a window manager in the foreground:

twm

.Xresources

The .Xresources file contains resource definitions. These resources define Joan's client

preferences. Currently, Joan's resources are used to set some preferences for her xterm

terminal emulator windows. We set her up to use a font that we think she would prefer

over the default, we turned on a scroll bar, and we set the number of lines to be saved

for scrolling to be 200. The .Xresources file reads:

! Resource definition file.

! XTerm definitions:

XTerm*font:-misc-fixed-bold-r-normal-15-140-75-75-c-90-iso8859-l

XTerm*scrollBar:true

XTerm* savedlines:2 0 0

.twmrc

The .twmrc file is a configuration file for Joan's window manager, twm. A window

manager is a special client that controls how windows are moved and resized. In addi-
tion, the window manager defines the root menu shown in Figure 2-2. The .twmrc file

is long, but we can show you the part that defines the root menu:

menu "rootmenu"

"twm Root Menu" f.title

'Terminal" f.exec "xterm &"

'Clock" f.exec "xclock &"

'Calculator" f.exec "xcalc &"

'Dictionary" f.exec "xwebster &

'Solitaire" f.exec "spider &"

i ii f .nop

'Kill Window" f .destroy

" n f .nop

'Restart twm" f . restart

'Log Out" f .quit

Together, these files define Joan's X user environment. They are defined in addition to the

shell startup files that she needs to define her UNIX shell environment.

Now, imagine that you're Joan, new to both UNIX and X, and you're faced with these startup

files. Each file has its own peculiar syntax that she might be able to follow, but will probably

have trouble duplicating. Where did we get that arcane font name? Why do some of the com-
mands in .xsession end in ampersands (&) while others don't?

The X User Environment 15

2.1.1 The Twilight Zone

One day Joan logs in at a workstation. The X server isn't running on the workstation console,

so Joan tries to start her X session by typing X. What she gets is a blank screen with an "x"

representing her pointer. She is unable to start applications and after several minutes decides

to start over.

After rebooting the machine, Joan learns that she should use the xinit command, not X. When

she does this, she gets a single xterm terminal emulation window with a very small font, and

no window manager, as shown in Figure 2-3.

Figure 2-3. An unconfigured X session

(Unknown to Joan, this has happened because the .xsession file is the one primarily responsi-
ble for configuring Joan's user environment under xdm. Under xinit, she needs an .xinitrc file.

See Section 2.4 for more information on starting the X session using xinit.)

Joan tries to start a clock using the xclock command, shown in Figure 2-4.

16 The X Window System Administrator's Guide

ruby:joan 262 xclock

Figure 2-4. Starting a new client

What happens is that the clock appears on top of the xterm window, obscuring her prompt, as

shown in Figure 2-5.

Figure 2-5. xclock window over xterm window

Since there is no window manager running, Joan can't move the new xclock window from on

top of the xterm window. She needs to place her pointer on the xterm window and type

RETURN a few times before her prompt peeks out from underneath the clock window.

What Joan has stumbled onto is X in its unconfigured state.

Joan types "XYZZY". Nothing happens.

The X User Environment 17

2.2 Components of the X Environment

Joan's adventures are meant to show the world of difference between X in its raw state, and

X when it has been configured. You might think of it as the difference between an unfur-
nished apartment and a home.

Like someone's home, the X user environment is made up of many components. You can't

just bring in furniture and expect the house to look lived-in; similarly, you can't just start a

window manager and expect the X environment to be complete.

Some users would prefer to configure their own environments. Other users won't have the

slightest idea of where to begin. As an administrator, you have to decide whether you want

to set up an environment with reasonable defaults for new users, or whether you'd rather just

give users a bare-bones environment and let them figure it out on their own.

Our opinion is that it's always better to take the time to set up a decent environment for your

users. "Power" users can always rip apart what you set up and start again from scratch; but

users who are just interested in getting their jobs done will appreciate having something

workable to begin with.

One approach to creating a useful default environment is to alter the system-wide files. For

example, if a user has no .twmrc file, they will use the file lusrlliblXllltwmlsystem.twmrc. If a

user has no .xsession file, they will use commands specified in the lusrlliblXll/xdmlXsession

file. As shipped in the MIT distribution, the defaults in these files are fairly basic. But you

can configure these defaults system-wide to better accommodate your users.

The preferable approach is the "template" approach, as we set up earlier for the user named

Joan. We gave Joan a set of configuration files that had been tried and tested and liked by

other users. The advantage to using templates is that when users are ready to edit their envi-
ronment, it's much easier if the configuration files are already set up locally.

Either way, the administrator needs to take a strong hand in setting up the user environment.

The administrator is all that stands between a user and the abyss of the default X environ-
ment.

There are an endless number of factors that can influence a user's X environment, but the

simplest user environment (like Joan's) consists of a window manager, a little client customi-
zation, and a startup script to bring it all together.

2.2.1 Window Managers

As we mentioned earlier, window managers are special clients that allow you to move, resize,

and iconify windows. The window manager provided in the X source distribution is twm, the

Tab Window Manager. Window managers are generally started in the user's startup script,

but like other clients, they can be started on the command line as well, as shown in the fol-
lowing figure.

18 The X Window System Administrator's Guide

ruby:joan 262 twm

F/gure 2-6. Starting the window manager

If a window manager were already running, the command would fail with a message resem-
bling:

twm: another window manager is already running on screen 0?

twm: unable to find any unmanaged screens

The window manager gives each window its own borders and titlebar. By pressing the

pointer on the titlebar (i.e., holding down the first mouse button while the pointer is on the

titlebar), you can move the window. By pressing the icon at the upper right corner of the

titlebar, you can resize the window. By pressing the icon at the upper left corner of the

titlebar, the window is iconified.

Once the window manager is started, you can use it to move windows on the screen. You can

also use it to start new applications on the root menu, as shown in Figure 2-2.

When a new window appears, twm allows you to place the window by displaying an outline

of the window with the upper left corner at your current pointer position. When you press the

first mouse button, the window will be placed at that position.

The behavior of twm can be configured by editing a file called .twmrc in your home directory.

Alternatively, the default behavior of twm on a system can be changed by editing the

system.twmrc file, usually in the lusrlliblXllltwm directory. For information on how to con-
figure twm, see either the twm manual page or The X Window System User's Guide, Standard

Edition (O'Reilly & Associates, 1990).

twm is the only window manager supplied with the MIT X distribution, but there are many

other window managers distributed by vendors. One of the most popular window managers

is mwm, the Motif Window Manager, mwm is a window manager which implements the

OSF/Motif "look and feel." Another popular window manager is olwm, a window manager

for OPEN LOOK. Other window managers are swm (the Solbourne window manager, which

can simulate both olwm and mwm in separate "modes"); gwm (a public domain window man-
ager that uses LISP-like syntax in its configuration, and can simulate mwm); and tvtwm and

olvwm, which are versions of twm and olwm (respectively) that support a "virtual" root win-
dow. A virtual root window is a root window that is larger than the portion visible on your

display. It can be scrolled around to move different sections into view. This simulates having

a much larger display and gives more room to display clients.

See The X Window System User's Guide, Motif Edition (O'Reilly & Associates, 1992) for

more information on mwm and Motif. For more information on olwm and OPEN LOOK, see

the upcoming X Window System User's Guide, OPEN LOOK Edition (O'Reilly & Associates,

1993).

The X User Environment 19

2.2.2 Customizing Clients

There are two ways to customize clients: with command-line options, and with resources.

The use of command-line options to modify the behavior of a program should be familiar to

any UNIX user, but even so, it's worth reviewing a few of the most commonly-used X

options-those for specifying fonts, window size and placement, and colors. This discussion

will also serve to introduce the treatment of resources, which provide a convenient way to set

"global" options.

2.2.2.1 The -fn Command-line Option

For specifying a font, the xterm client provides a -fn command line option. Font names in X

are a bit unwieldy, but you can use the xlsfonts command to get a list of fonts available for

your X server. For example:

% xlsfonts

-adobe-courier-bold-o-normal-10-100-75-75-m-60-iso8859-l

-adobe-courier-bold-o-normal-Il-80-100-100-m-60-iso8859-l

-adobe-courier-bold-o-normal-12-120-75-75-m-70-iso8859-l

-misc-fixed-bold-r-normal--15-140-75-75-c-90-iso8859-l

(You might also try the xfontsel client, which can be used to display fonts available to your

server.)

See Chapter 6 for a description of each of the fields in a font name. For now, let's use the

fixed font that we showed in the output of xlsfonts. Use the -fn option:

% xterm -fn -misc-fixed-bold-r-normal--15-140-75-75-c-90-iso8859-l &

This command line gives you a window resembling that in Figure 2-7.

2.2.2.2 The -geometry Command-line Option

The -geometry or -g command-line option can be used to specify two things: where the client

window initially appears and what size it should initially be. To have an xterm window that's

92 characters across and 40 lines long (instead of the default 80x24), enter:

ruby:joan % xterm -geometry 92x40 &

To have an xterm window appear at position (324,190) on the screen, enter:

ruby:joan % xterm -geometry +324 + 190 &

You can combine the two requests into one argument:

ruby:joan % xterm -geometry 92x40 + 324 + 190 &

You see a window resembling that in Figure 2-8.

20 The X Window System Administrator's Guide

xferm

rubyljoan 262 ty* t-

111 U139

ruba:joan 27Z xtern -fn -nisc-fixed-bold-r-i

[21 14167

rubaljoan 282 0

Figure 2-7. xterm window with new font

The position (0,0) is the upper left corner of the root window. The numbers following the

plus signs (+) signify the offset (in number of pixels) from (0,0). The top left corner of win-
dow is placed at these coordinates when the offset is positive. It is also possible to specify a

negative offset using minus signs (-):

rubyrjoan % xterm -geometry 85x40-50-150 &

The bottom right corner of the window is offset 50 pixels from the right border and 150 pix-
els up from the bottom of the screen. Since displays differ in the number of pixels, a window

may be placed differently depending on the size and resolution of your display. Using a nega-
tive offset will guarantee that the window is always a certain distance from the right side and

bottom, regardless of the size. This is handy if you often move from one type of display to

another, as your windows will always remain within the screen borders. In the .xsession file

we showed earlier, we had set up some windows to position themselves at particular posi-
tions, using the -g shorthand for -geometry:

xterm -title Top -g 70x35+1+1 &

xterm -title Bottom -g +1-0 &

xclock -g -0+0 &

xcalc -g -0+298 &

xpostit -sv -g 110x50-0+200 &

The X User Environment 21

ruby:joan 262 twn t,
11} 14316

rubaljoan 27Z xter«
(21 14339

rubyrjoan 28Z D

Figure 2-8. A window with a specified geometry

" The top xterm window appears at the upper left corner of the screen, and is resized to be

70x35.

" The bottom xterm appears flush to the bottom left corner of the screen.

" The xclock window appears flush to the upper right corner of the screen.

" The xcalc and xpostit windows appear flush to the right edge of the screen. The xpostit

control box is also resized a little to look nice.

Without a specified geometry, the placement of windows is controlled by the window man-
ager, appearing at (0,0) if no window manager is running.

The size of the xterm window is given in character widths and heights. For most other X cli-
ents, however, the unit of measurement used for window size is generally the number of pix-
els. See the client manpage for information on what units are used for size specification.

22 The X Window System Administrator's Guide

2.2.2.3 Specifying Colors

If you have a color monitor, you might want to use some colors in your display. You can

specify a new foreground and background color using the -fg and -bg command-line options.

For example, for a window with a powder blue background and hot pink foreground, enter:

ruby:joan % xterm -bg powderblue -fg hotpink &

Use the showrgb command for a list of colors available on your system for color displays.

On a monochrome display, you can get a black background and white foreground with:

rubyrjoan % xterm -bg black -fg white &

Or get the same results by calling xterm with the special -rv option, for reverse video:

rutyrjoan % xterm -rv &

Either command line will give you a window resembling that in Figure 2-9.

ruby:joan 262 more RELHOTES.TXT

Window System, Version 11, Release 5

Re1ease Notes

HIT X Consortium staff

"or Computer Science

.qht <C> 1991 bn the Me jsetts Institute of Technology.

Permission to use, copy, modify, and distribute this document for any purpose

and without fee is hereby granted, provided that the above copyright notice and

this per miss ion notice appear in all copies, and that the name of MIT not be

rtising or publicity pertaining to this document without specific.

Figure 2-9. An xterm window in reverse video, decorated by twm

See Chapter 6 for a complete discussion of color.

The X User Environment 23

2.2.2.4 Using Resources

Command-line options are the quick and dirty way of customizing a client. Before we go on,

however, we should tell you a little about the alternative, using resources.

There are a few disadvantages to using command-line options. One is that you can end up

with some awfully long command lines. For example, if you want to specify a different

geometry, new font, and different background and foreground colors, your command line

might look like this:

% xterm -fn -misc-fixed-bold-r-normal--15-140-75-75-c-90-iso8859-l \

-geometry 90x40 -bg yellow -fg navyblue &

If you don't want to type this out every time you start up a new xterm window, you could set

up your window manager to run the entire command from your root menu. But the better

solution is to use resources to set up your client preferences.

Resources are variables that are used by X clients. They have the advantage of being defin-
able at the system level, at the server level, and at the user level. By defining resources, you

can change the default behavior of clients for your account or for a particular X server. For

example, you can set the following resources in a file called .Xresources in your home direc-
tory:

XTerm*font: -misc-fixed-bold-r-normal--15-140-75-75-c-90-iso8859-l

XTerm*Background: yellow

XTerm*Foreground: navyblue

XTerm*VTl0 0.geometry: 9 0x4 0

(The string VT100 used in the geometry specification is the name of a widget used within

xterm.)

To load these resources into the server, where all clients can access them, type:

ruby:joan % xrdb -merge .Xresources

After these resources are loaded into the server, all subsequent xterm windows will appear

the way you want them. You can just type:

ruby:joan % xterm &

We have described only a small subset of the things that can be set using resources. A client

may provide resources to redefine almost any variable it uses. For example, in the

.Xresources file we showed earlier, we set the scrollBar resource, and specified the num-
ber of lines to be saved for scrolling:

XTerm*font: -misc-fixed-bold-r-normal--15-140-75-75-c-90-iso8859-l

XTerm*scrollBar: true

XTerm* savedlines: 200

Resources might be used for anything that the program wants to leave configurable by the

user or administrator. For example, sin ftp client may use resources to set the default ftp server

to connect to; the xcalc client uses resources to define all of its buttons and the functions they

call; and the xdm client uses resources to point to its configuration files. For a listing of the

resources used by a particular client, refer to the manpage provided with that client. For

more information on resources, see Appendix D.

24 The X Window System Administrator's Guide

2.2.3 The Startup Script

The startup script is what brings a user's entire X environment together. If you use xdm to

start your X sessions, this script is called $HOME/.xsession. If you use xinit, the script is

called $HOMEI.xinitrc * We'll show the simple startup script that we used earlier:

#!/bin/sh

Add /usr/local/bin to the path for this script:

PATH=$PATH:/usr/local/bin

export PATH

Set up a pattern for the root window:

xsetroot -bitmap /usr/include/Xll/bitmaps/dimplel

Merge in user resources:

xrdb -merge $HOME/.Xresources

Start some applications:

xterm -title Top -g 70x35+1+1 &

xterm -title Bottom -g +1-0 &

xclock -g -0+0 &

xcalc -g -0+298 &

xpostit -sv -g 110x50-0+200 &

Start a window manager in the foreground:

twm

The first thing that this startup script does is set the path to be used for commands for that

script. By default, :lbin:lusrlbin:lusrlbinlXll :lusrlucb is used as the search path for the

startup shell. Since the xpostit command resides in /usr/local/bin, it needs to be called with

its full pathname, or /usr/local/bin needs to be appended to the search path. This path is then

exported, so that it will also be used by other clients such as twm.

The startup script uses xsetroot to give the user a nicer background than the default root win-
dow background.

Next, the startup script calls the xrdb client. It is this command that reads the resources

defined in the .Xresources file. The xrdb client loads resources directly into the X server.

There are alternate ways of reading resources (as described in Section D. 1.2), but if you load

the resources directly into the server, you guarantee that all clients displaying to that server

will be able to access them, xrdb should be run before any applications are run, since you

want to make sure that the resources are loaded before you start any applications that use

them; and it should be called in the foreground, to guarantee that the resources are fully

loaded before the script continues.

The applications are then started. We described how the -g options are being used in Section

2.2.2.2. Note that each of these command lines are placed in the background.

Finally, the twm window manager is started. When twm starts up, it is configured by the

.twmrc file.

' See Section 2.4 for more information on using xinit. See Chapter 3 for more information on using xdm.

The X User Environment 25

2.2.3.1 The Foreground Process

As shown in the sample startup script, clients such as xrdb and xsetroot are not run in the

background, xrdb and xsetroot are non-interactive clients that exit as soon as they are com-
pleted.

On the other hand, clients like xterm and xcalc need to be put in the background, or the script

will hang until they are completed (or killed). What the user will see is that the top xterm

window appears, but nothing else; after the user exits xterm, the bottom xterm window

appears; the second xterm window has to be killed before the xclock window pops up; and so

on.

There is one exception: the last interactive client is always left in the foreground. Otherwise

(like any shell script), the startup script exits immediately, and the X server resets (killing all

clients). What the user will see is that all windows appear and then instantly disappear.

The last interactive client therefore keeps the X session alive. When it is exited (or killed),

the entire X session exits as well. For that reason, the last process is also frequently called

the controlling process.

The sample script makes the twm window manager the foreground process. The root menu

option to exit twm is labeled "Log Out" to make it clear that exiting twm will log you out of

your X session. In real life, you can make any interactive client your foreground process.

In general, users make their foreground process either an xterm client or their window man-

ager. If you use the window manager, exiting the window manager exits the entire X session,

which is an intuitive way to exit but means that you can't change window managers without

editing your startup file and restarting X. If you use an xterm window, you may want to run

the window with the -iconic option, in the hope that if the window is iconified, then the user

is less likely to exit accidentally. Users with console xterm -C or xconsole clients often use

the console window as the controlling process.

Another possibility is to use the built-in shell command wait at the end of the startup script,

in which case you will have to exit each X client individually before your X session exits.

If you use an xterm window for your controlling process, beware of the "autologout" feature

available for some shells. With the "autologout" feature, you can set it up so that your shell

is killed when it is idle for a certain amount of time, e.g., 60 minutes. You can be working

frantically in another X window, but if you have autologout set for your controlling

xterm shell, then your whole X session will be killed after 60 minutes of idle time in the con-

trolling shell.

26 The X Window System Administrator's Guide

2.3 The Shell Environment

Now we've talked a little about the X environment, we have to discuss how it relates to the

UNIX shell. Although the shell is external to the X environment, X clients running on UNIX

systems necessarily depend on the shell being set up properly. This means making sure that

environment variables are set up properly and that the search path is correct. For remote cli-
ents, you have to deal with the shell environment on the remote machine as well.

2.3.1 Setting the DISPLAY Variable

The most important shell environment variable for X clients is DISPLAY. When a user logs

in at an X terminal, the DISPLAY environment variable in each xterm window is set to her X

terminal's hostname followed by : 0 . 0.

ruby:joan % echo $DISPLAY

ncdl5.ora.con:0.0

When the same user logs in at the console of the workstation named sapphire, the DISPLAY

environment variable is defined as just : 0 . 0:

sapphire:joan % echo $DISPLAY

:0.0

(Before XI1 Release 5, the DISPLAY variable might appear as unix: 0 . 0.)

The DISPLAY environment variable is used by all X clients to determine what X server to

display on. Since any X client can connect to any X server that allows it, all X clients need

to know what display to connect to upon startup. If DISPLAY is not properly set, the client

cannot execute:

sapphire: joan % setenv DISPLAY foo:0

sapphire: joan % xterm

Error: Can't Open display

You can override the value of DISPLAY by using the -display command-line option. For

example:

sapphire:joan % xterm -display sapphire:0.0 &

The first part of the display name (up to and including the colon) identifies the type of con-
nection to use and the host that the server is running on. The second part (in most cases, the

string 0.0) identifies a server number and an optional screen number. In most cases, the

server and screen numbers will both be 0. You can actually omit the screen number name if

the default (screen 0) is correct.

Note that we used both ": 0 . 0" and "sapphire: 0 . 0" to access the local console display

of the workstation named sapphire. Although both these names will work, they imply differ-
ent ways of connecting to the X server.

The X User Environment 27

1. The ":" character without an initial hostname specifies that the client should connect

using UNIX domain sockets (IPC).

Instead of specifying : 0.0, you can also prepend the word "unix" for an IPC con-
nection:

sapphire:joan % setenv DISPLAY unix:0.0

(This is used in pre-R5 releases of XI1.)

Since processes can communicate via IPC only if they are running on the same host, you

can use a leading colon or the unix keyword in a display name only if both the client

and server are running on the same host-that is, for local clients displaying to the local

console display of a workstation.

2. Using the hostname followed by a colon (e.g., sapphire:) specifies that the client

should connect using Internet domain sockets (TCP/IP). You can use TCP/IP connections

for displaying clients on any X server on the TCP/IP network, as long as the client has per-
mission to access that server (see Section 2.3.4 for information on running remote cli-
ents). You can also use the hostname form for displaying clients on the local server,

although many people argue that it's preferable to use unix: 0.0 for any local clients.

(It's faster, and there's no danger of a misconfigured name server getting in the way).

3. There is one other way of connecting: on a DECnet network, the syntax is the same as for

TCP/IP except that two colons are used instead of one. To connect to an X server running

on a host named oravax on a DECnet network, you might use the string oravax: : 0 . 0.

2.3.1.1 Complications with Display Names

Occasionally, especially when testing a new server, you may find that you can't open a par-
ticular display. When confronted with such a situation, we recommend trying the following:

" Make sure that you are using the proper name of the display, especially if you are running

a client from a foreign host. A common mistake is to use : 0 or unix: 0, forgetting that

different hosts have different ideas of what these display names refer to.

" Make sure that TCP/IP is properly configured by confirming that other connections work,

using (for example) rlogin or telnet.

If you suspect the problem is with your name server, substitute the IP address of the dis-
play for the hostname:

ruby:joan % xterm -display 140.186.65.35:0

" Make sure that access control isn't the problem by temporarily allowing access to all

hosts on the server machine. (Remember to undo this after the experiment!)

sapphire: joan % xhost +

If this turns out to be the problem, see Chapter 4 for more information on how to config-
ure server access control more robustly.

28 The X Window System Administrator's Guide

" Some versions of TCP/IP, particularly on PCs, restrict the number of allowed connections.

Find out whether the machine running the server program is restricted to a certain number

of TCP/IP connections and increase it as needed. (How you actually do this is dependent

on the TCP/IP vendor.)

Note that like all other environment variables set in your shell environment, the DISPLAY

environment variable will propagate to all processes you start from that shell.

When you run clients from remote machines, some additional problems with the DISPLAY

environment variable need to be addressed. See Section 2.3.4 for more information on run-

ning remote clients.

2.3.2 Redefining the Search Path

The command search path needs to include the directories containing X executables. This

search path should live in the user's startup shell script (.cshrc or .profile). Assuming that the

X executables are in lusrlbinlXll and /usr/local/bin/Xll, here's a simple adapted entry for a

.profile file (Bourne shell):

PATH=/usr/ucb:/bin:/usr/bin:/usr/bin/Xll:/usr/local/bin/Xll:.

export PATH

And here's one for a .cshrc file (C shell):

set path = (/usr/ucb /bin /usr/bin /usr/bin/Xll /usr/local/bin/Xll .)

(For security reasons, you may want to omit the current directory (.) from your path.)

If the path is not set properly, you will get the notorious "Command not found." error

message for all X clients.

Unless specified otherwise, the .xsession startup script has the search path set to

:/bin:/usr/bin:/usr/bin/Xll:/usr/ucb. If you run clients in your startup script that reside in a

different directory, you may need to reset the search path within the startup script. You may

need to do this if you generally use the C shell, but your .xsession is a Bourne shell script.

For example:

#!/bin/sh

PATH=$PATH:/usr/local/bin/Xll:$HCME/bin

export PATH

Alternatively, you can write your .xsession as a C shell script, in which case it will automati-
cally run your .cshrc file and inherit the search path set in that file.

The X User Environment 29

2.3.2.1 Setting the Search Path for OpenWindows Support

If you are running OpenWindows, you need to add the following directories to your search

path along with your vanilla X11 binary directories:

set path = ($path /usr/openwin/{bin,demo})

(In OpenWindows 3.0, the Ibinlxview directory is now linked to bin.)

In addition, you need to set the shared library path to lusrlopenwinllib:

setenv LD_LIBRARY_PATH /usr/openwin/lib:/usr/lib

If the OpenWindows distribution is elsewhere on your system, you can set the

OPENWINHOME environment variable and use it in place of /usr/openwin. For example, if

the OpenWindows distribution is in lusrllocal/'openwin, C shell users can enter in their .cshrc

files:

setenv OPENWINHOME /usr/local/openwin

set path = ($path $OPENWINHOME/{bin,demo})

setenv LD_LIBRARY_PATH $OPENWINHOME/lib:/usr/lib

In Bourne shell syntax, this might read:

OPENWINHOME=/usr/local/openwin

PATH=$PATH: $OPENWINHOME/bin: $OPENWINHOME/demo

LD_LIBRARY_PATH=$OPENWINHOME/lib:/usr/lib

export OPENWINHOME PATH LD_LIBRARY_PATH

2.3.2.2 Setting the Search Path for Mixed Environments

If you are running multiple releases of XI1 on your system, you need to set your search path

appropriately according to which executables you want to run. One situation in which you

might want to run multiple releases is if you are testing a new release of XI1 before setting it

loose on your users. For example, suppose that you have X11R4 installed and running in

lusrlliblXll and lusrlbinlXll, and have just compiled and installed X11R5 into

I usr 1X1 lR5llib and I usr 1X1 lR5/bin. For testing your new environment, enter the

I usr 1X1 lR5lbin directory into your command search path before lusrlbinlXll:

set path = (/usr/XHR5/bin $path)

On SunOS, you also need to enter lusrlXllRSIlib into your LD_LIBRARY_PATH:

setenv LD_LIBRARY_PATH /usr/XHR5/lib

Another possibility is to set the LD_LIBRARY_PATH environment variable for each com-
mand:

% (setenv LD_LIBRARY_PATH /usr/XHR5/lib ; /usr/XllR5/bin/xterm)&

30 The X Window System Administrator's Guide

2.3.3 xterm Issues

The xterm client, which starts up a terminal shell, has its own particular issues, xterm has to

have its termcap or terminfo entries installed, and since xterm windows can be resized, it

needs to be able to adjust those entries dynamically for different dimensions.

2.3.3.1 xterm and Terminal Emulation

Among other common functions, shell startup scripts such as .login and .profile generally

deal with setting the terminal type for that shell. This might be as simple as setting the TERM

environment variable, or something more elaborate using tset.

Setting the terminal type, however, is not required for xterm terminal windows. The xterm

client has its own way of dealing with terminal types. Several terminal entries work with

standard-sized (80x24) xterm windows, including "xterm," "vt!02," "vtlOO," and "ansi."

The xterm client automatically searches the terminal database for these entries (in order) and

sets the TERM environment variable according to which entry it finds first.

Since xterm takes care of setting terminal emulations by itself, you may want to remove any

lines in startup files that set the terminal type, or have them default to "xterm."

There are two types of terminal databases available on UNIX systems: termcap. usually

associated with BSD-based systems, and terminfo, associated with System V-based systems.

The xterm source directory contains files called termcap and terminfo that contain the

termcap and terminfo definitions for xterm. The termcap file tor xterm should be entered as

one of the first entries in your letc/termcap file. The terminfo file is meant to be compiled

with tic, the Terminfo Compiler. For more information on termcap and terminfo, see the

Nutshell Handbook, termcap and terminfo (O'Reilly & Associates, 1991).

Your vendor may supply its own version of xterm with its own terminal emulation and other

enhancements (e.g., hpterm, aixterm, or scoterm). See your vendor's documentation for more

details.

2.3.3.2 The resize Client

When the xterm client is called, it not only sets the TERM environment variable, but it also

adjusts the terminal definition for the size of the window that is being created. The size of

xterm windows, however, can be changed later on by using the window manager. If the win-
dow is resized, then the user's shell may need to be passed the new size information as well,

or programs that use termcap and terminfo won't work correctly. The resize client is pro-
vided for redefining the number of lines and columns for the terminal database that is used in

an xterm window. Note that resize cannot be used for terminal emulators other than xterm,

since it depends on xterm's escape sequences.

Some systems can send a "window size changed" signal (SIGWINCH) to programs and do not

require resize to be run for a resized xterm window. We recommend using resize only if ter-
minal-based programs start to have problems with your window size. A typical terminal-

based program that is having problems with the window size is shown in Figure 2-10.

The X User Environment 31

xterm

OMM SXConsortium: I makefile,^ 1.105 91/07/27 14:13:23 ruis Exp $

#define IHaveSubdirs

^define PassCDebugFlags

WORLDOPTS = -k

CHECKFNSRC = $<UTILSRC)/checkfn

CHECKFN = $< CHECKFNSRC Vcheckfn

#if BuildServer

SERVERDIRSTOMflKE = server rgb

tendif

SUEDIRS = config include lib extensions fonts $<SERVERDIRSTOMAKE> \

clients demos util man

LNINSTfiLLDIRS = $<LIBSRC) $(EXTENSIONSRC)

MakeSubdirs($(SUBDIRS»

MakeLintSubdirs<$(LNINSTALLDIRS),instal1.In,instal1.In)

MakeLintSubdirs($(LNINSTfiLLDIRS)external.In,1intlib>

[makefile" [Read only] 107 lines, 2918 characters

Figure 2-10. vi using only part of a window

The resize client is typically used immediately after the dimensions of an xterm window are

changed. A peculiarity of the resize client is that it does not access the shell itself, but simply

returns the shell commands that would be needed; to have those commands read by the shell,

you have to either save its output in a file and source it in with the "." command (Bourne

shell) or source (C shell) commands, or call it using the shell command eval. For example,

after resizing a window you would type in that shell:

% eval * resize*

When you call the resize command under a termcap system, it produces the commands for

resetting the TERMCAP environment variable with the li# and con capabilities reflecting the

current dimensions. When you call the resize command under a terminfo system, it produces

the commands for resetting the LINES and COLUMNS environment variables.

32 The X Window System Administrator's Guide

The resize command consults the value of your SHELL environment variable and generates

the commands for setting variables within that shell. If you are using a non-standard shell,

resize may still recognize your shell; as of R5, resize recognizes tcshjcsh, ksh, bash, andjsh.

But if resize does not recognize your shell, try using the -c or -u options to force resize to

use C Shell or Bourne Shell syntax (respectively), depending on which syntax is appropriate

for your shell.

2.3.3.3 xterm and the Login Shell (C Shell)

Most people who use the C shell know that the .cshrc file is read for every csh command run,

and the .login file is read only once, at the beginning of each "login shell." One thing that X

does is to effectively redefine the meaning of the "login shell."

Before X, you could assume that a user had a single interactive shell per login. Since the

.login file would therefore be read only once, at the beginning of the login session, you could

use it as a "batch" file to run some daily commands. For example, you might have it show the

"message of the day" and start mail for you first thing in the morning:

cat /etc/motd

mail

Since X gives you the ability to run multiple xterm windows, however, the usage of the .login

file becomes more confused. You probably don't want to read your mail and see the "mes-
sage of the day" every time you call up a new xterm window. It makes more sense for these

functions to be taken up by your X startup script, and to run X clients rather than text-based

applications. For example, if you log in via xdm, your .xsession might contain the lines:

Shew the message of the day:

xmessage -file /etc/motd &

Start a mail application:

zmail -gui &

Here, we use the contrib client xmessage to show the message of the day, and we call up an

X-based commercial mail application, zmail.

What does that leave for terminal emulator windows like xterml Well, by default, xterm

shells are not login shells-that is, xterm shells don't run .login, but just the shell startup file

.cshrc. You can call up a login shell xterm by starting xterm clients with the -Is option.

(Alternatively, you can set up all xterm?, to run login shells by setting the XTerm*login-

Shell resource to true.)

Whether you want to set up xterm as login shells depends on what you use .login for. How-
ever, you might want to start thinking of the .login file as the startup file for ASCII-based user

sessions only. Some of the functions of the .login script don't make sense for xterm shells

(such as setting the terminal type, which xterm is smart enough to do on its own). But those

functions are still useful for when you log in at an ASCII terminal, which you undoubtedly

still do on occasion (for example, when dialing in on a modem line).

The .cshrc file therefore takes on a lot more responsibility for your shell environment, since it

needs to make the xterm shell environment complete on its own. Since it's also used for C

The X User Environment 33

shell scripts, you can write it so it tests for a prompt and provides interactive-shell startup

commands for interactive shells only:

Make default file mode -rw-rw-r-.

umask 002

set path=(/usr/local/bin /usr/ucb /usr/bin /usr/bin/Xll .)

Fix "dirs" and "$cwd" not to be fooled by symbolic links:

set hardpaths

ALIASES AND OTHER INTERACTIVE COMMANDS GO BETWEEN HERE AND endif:

if ($Pprompt) then

set history=50 savehist=25

set host=vhostname"

set mail=(300 /usr/spool/mail/$user)

set prompt="${host}:$user \!% "

alias h history

alias Is "Is -F"

alias rm "rm -i"

stty erase /Ah'

setenv PRINTER dodo_ps

endif

In this example, the part between "if ($?prompt) " and "endif" are only executed for

the primary interactive shell.

Note that if you use xinit to start your X session, then your .login file is executed when you

first log in prior to starting the X server. If you use xdm to start your X session, the .login file

is never executed at all unless you run xterm with the -Is option.

2.3.4 Starting Remote Clients

One of the advantages of a window system like X is that you can run applications remotely

and view them on the local display. You can try this easily enough by just doing a rlogin to

the remote host, setting the DISPLAY environment variable, and starting up a client. In the

following example, we start up a new xterm client running on the host ruby:

sapphire: j oan % rlogin ruby

Password:

Last login: Tue May 12 16:27:23 from sapphire.ora.com

SunOS Release 4.1.2 (RUBY+COALM+PPP) #1: Tue Mar 3 23:29:52 EST 1992

You have mail.

TERM = (vtlOO) xterm

ruby:joan % setenv DISPLAY sapphire:0

ruby:joan % xterm &

(You must, of course, have an account on the remote system.)

The first thing that might go wrong is that you may run into server access control. If you see

the following error:

Xlib: connection to "sapphire:0" refused by server

Xlib: Client is not authorized to connect to Server

Error: Can't open display: sapphire:0

34 The X Window System Administrator's Guide

you can probably fix it by typing "xhost +ruby" in a sapphire window, and running the

command again on ruby.* Or, if you use user-based access control on the local host, use the

xauth command to propagate the access code to the remote machine. See Chapter 4 for more

information on server access control.

(Other possible problems may be with your host database, with Yellow Pages (NIS), or with

the Domain Name Service. See Section 2.3.1.1 for more information on conflicts with dis-

play names.)

Once you have networking and access control issues solved, you should be able to display

clients from the remote machine. The next issue is how to run remote clients easily.

2.3.4.1 Starting a Remote Client with rsh

The preferable way to start a remote client is the same way you'd start any remote command:

using the rsh command:

sapphire: joan % rsh ruby -n xterm -display sapphire: 0

There are a few issues to be ironed out first, though.

In order to run rsh successfully, you need to make sure that you have permission to run

remote shells on the remote machine. This means that the local machine must be listed either

in the remote machine's tetdhosts.eqmv file, or in your personal $HOME/.rhosts file on the

remote machine. For example, an .rhosts file might read:

sapphire.ora.com

harry.ora.com

If the host is properly set up on the remote machine, then rsh will execute properly and rlogin

will no longer ask for a password when you try to connect to the remote machine. If it is not

set up properly, then rlogin will prompt for a password, and rsh will fail with the message

"Permission denied."

Using .rhosts or letclhosts.equiv for this purpose might be considered a breach of security,

since it means if someone breaks into your account on one machine, they can break into your

account on all other machines as well. Clearly, you want to be careful what hosts you list in

.rhosts. For that reason, it's better to use the fully qualified domain name (i.e., harry.ora.com

instead of just harry).

There are a few more rules:

" The .rhosts file will be ignored if it is publically writable, for security reasons. Make sure

that the .rhosts file is writable only by you.

" Make sure you are running the correct rsh command. Some systems have a "restricted"

shell, also named rsh. If you get the following error:

ruby: ruby: No such file or directory

*The security-conscious may prefer to use the fully qualified domain name on the xhost command line (such as

xhost +ruby .ora. com).

The X User Environment 35

or:

ruby: ruby: cannot open

where ruby is the name of the system that you wanted to run the remote shell on, the

problem is probably that are using the wrong rsh command. Use the which or whereis

command to track down which rsh you are using:

sapphire:joan % which rsh

/bin/rsh

sapphire:joan % echo $path

/bin /usr/bin /usr/bin/Xll /usr/bsd

On some System V-denved systems such as IRIX, the restricted shell rsh might live in

I bin, while the remote shell rsh (the one you want) resides in /usr/bsd. I bin often shows

up in search paths earlier than /usr/bsd, so on those systems you need to explicitly rede-
fine your path so that /usr/bsd is searched before /bin.

" You may need to use the -n option to rsh to avoid a "Stopped" error message on some

machines.

" You need to be sure that the directory containing X binaries is defined in your search path

in either .cshrc or .profile on the remote system.

" If you are using host-based access control, you need to execute the xhost client to extend

access to the remote host before the rsh command is run. Otherwise, clients from the

remote host will not have permission to access your display. If you are using user-based

access control, you may need to run the xauth command to copy your access code to the

remote machine. See Chapter 4 for more information on server access control.

" You have to use the -display option in calling a remote shell, or the "Can't Open

display" error will be returned. (Alternatively, you can have your DISPLAY environ-
ment variable hard-coded into your .cshrc or .profile on the remote machine, but this is a

Very Bad Idea.) See Section 2.3.1 for more information on setting your display.

" Be careful not to use unix: 0 . 0 or : 0 . 0 as the display name! Otherwise, the client

will display the window on the local display of the remote host. If this succeeds, the user

on that display could either become very annoyed, or could take advantage of the sudden

access to your account to read personal files and send nasty mail to your boss. You would

have no warning; all you would know is that your window didn't appear. (See Section

2.3.1 for more information on the DISPLAY environment variable.)

A common situation is to start rsh commands as follows:

sapphire: joan % rsh ruby -n xterm -display $DISPLAY

This works great if your DISPLAY variable is set to something like sapphire: 0 . 0, but

if it's set to unix: 0 . 0 or : 0 . 0 (as is the default for X sessions begun on the console

display), then the wrong display name will be sent to the remote machine.

The X11R5 distribution contains a shell script called xrsh in the contribi'clients area. This

script sets the DISPLAY variable for the remote client and handles authentication according

to the value of an XRSH_AUTH_TYPE environment variable. See the manpage on xrsh for

more information.

36 The X Window System Administrator's Guide

2.4 Startup Methods

The X Display Manager, xdm, is the method of choice for starting your X session. The main

reason for this is that xdm is the only elegant way of starting an X session on an X terminal or

other remote "passive" X server. However, for local X servers, you can use the xinit or startx

command to start both the X server and your X session in a single step. If you are running a

vendor-configured version of X, there might also be another command for starting the X

server, such as open-win for Sun OpenWindows; see your vendor's documentation for details.

On an X server controlled by xdm, the X server is always running, and users start their indi-
vidual X sessions by logging in via a login box window.

emerald

Login:

Password:

Figure 2-11. Logging in with xdm

When you log in, your window manager and other X clients are automatically started, as

specified in your .xsession startup script. Chapter 3 discusses xdm in detail.

On a local console display server that does not already have the X server running (i.e., is not

controlled by xdm), you log in as usual on the console (using getty) and type xinit to start

both the X server and the X clients specified in your .xinitrc script.

The X User Environment 37

login: Imui

Password:

Last login : Wed May 6 14:1:36 from ncd10.ora.com

SunOS Release 4.1.2 (RUBY+COALM+PPP) #1: TUE EST 1992

lmui@rubble% xinit

Figure 2-12. Starting the X server with xinit

2.4.1 xinit and startx

The xinit program first starts up the X server for the local display. By default, it starts the X

server by running the program called lusrlbinlXlllX. X is usually a link to another server

program, for example, Xsun on a Sun workstation.

You can override the server command by entering another command in a file called

$HOMEI.xserverrc. For example, it could contain:

/usr/bin/Xl1/XsunMono

You may want to set up a new command in $HOMEi.xserverrc if you are testing a new server

for your display, or if you prefer to start up your server with particular command-line options.

If you want to test an option to the X server, follow the xinit command with two dash charac-
ters (- -) and it will pass any following command-line options onto the server. For example:

% xinit -- -dev /dev/cgthreeO

After starting the server, xinit looks for a shell script called $HOMEI.xinitrc. As we saw in

Section 2.1.1, if $HOMEI.xinitrc does not exist, a single xterm window is sent to the local dis-
play to get you started.

The startx script is a front end to xinit provided in XI1R4 and XI1R5. Like xinit, it looks for

an .xinitrc file in your home directory; however, if you don't have an .xinitrc, it then uses a

system-wide default file in lusr/lib/Xll/xinit called xinitrc. This file can also be used as a

template for .xinitrc files, startx also uses a file called xserverrc in the same directory for

users who don't have an .xserverrc file in their home directory.

38 The X Window System Administrator's Guide

2.4.2 Differences Between .xinitrc and .xsession

All of the rules about configuring .xinitrc files also apply to .xsession files. For that reason,

many users simply link their .xinitrc files to their .xsession files. However, there are three

points to consider:

1. The .xsession file is generally a shell script, but it can actually be any executable file,

such as a session manager or desktop manager, .xinitrc must be a Bourne shell script.

2. The .xsession file must be an executable file. If you get bounced back to your xdm login

box, you might have to do the following:

% chmod +x .xsession

The .xinitrc file does not have to be executable.

3. The .xsession script does not inherit the user's login shell environment. The .xinitrc script

inherits the environment from the shell from which it was run.

2.5 Related Documentation

For more information, see the X Window System User's Guide, by Valerie Quercia and Tim

O'Reilly, published by O'Reilly & Associates, Inc.

The following X manual pages may be of interest: X, xrdb, xinit, xset, xterm, twm, mwm,

olwm, xlsfonts, showrgb, and resize.

The following UNIX manual pages may be of interest: rsh, csh, and sh.

The X User Environment 39

3

The X Display Manager

The X Display Manager provides a way for users to log on and start initial cli-
ents, regardless of which X server they use. This chapter shows how to get

xdm going and how to configure it to the needs of your site.

In This Chapter:

xdm Concepts 44

xdm Configuration Files 46

xdm the Easy Way 48

Troubleshooting xdm 49

Customizing xdm 51

The Master Configuration File (xdm-config) 51

Listing X Servers (the Xservers File) 53

Xservers Syntax 53

xdm Host Access Control: the Xaccess File (R5 Only) 55

Direct and Broadcast Access 56

Indirect Access and the Chooser 57

Using Macros 59

Advantages and Disadvantages of the Chooser 59

The Xresources File 60

Configuring the Login Box 60

The xconsole Client 62

Starting Up Individual X Sessions (the Xsession File) 63

No Home Directory? (R5) 64

Display Classes 65

Testing Your xdm Setup 66

Resetting the Keyboard 67

Restarting xdm Using xdm-pid (R4 and Later) 68

Rereading xdm Configuration Files (R3) 68

Permanent Installation of xdm 69

Related Documentation . ..70

3

The X Display Manager

The X Display Manager, xdm, runs as a daemon on a host machine. It provides a way for

users to log on and start initial clients, regardless of what X server they use.

Not all sites use xdm to control X sessions. Many workstation users still prefer to log on as

usual on the console and use the xinit program to start the X server and any preferred clients.

xinit, however, is considered obsolete by the X Consortium, with all new functionality being

built into xdm. And on a site that includes X terminals, xdm is an essential tool for providing

a standard way for users to log on across the network.

xdm also provides a way for administrators to configure environments system-wide. So if you

don't already use xdm to control X sessions for users on your site, we encourage you to give

it a try.

xdm and Vendor Environments

If you're running a vendor-distributed version of X that's greatly modified from the

MIT version, your mileage may vary with this chapter. For example, the OpenWindows

2.x server doesn't work very well with xdm at all. The OpenWindows 3..v distribution,

meanwhile, supplies its own version of xdm which is somewhat modified from the ver-
sion documented here.

SCO Open Desktop has its own version of xdm, called scologin, which must be used for

all logins, scologin is enhanced in that it has SCO's session manager scosession built-in

as the controlling process for the X session, and it checks for expired passwords, scolo-
gin also provides a front end (Ietclscologin) to facilitate some administrative responsi-
bilities.

In addition, many vendor-supplied X environments already have xdm pre-configured

when X is installed.

The X Display Manager 43

3.1 xdm Concepts

The xdm program is simply an X client that manages the first and last points of connection,

control, and coordination of the user session. If you need a conceptual feel for what the X

Display Manager is, think of xdm as working for network-connected X servers the way init,

getty, and login work for serial-connected ASCII terminals. This is only a loose comparison,

but it will serve our purposes in conveying the general function of xdm.

Like init, xdm keeps track of which X servers are available to be connected. When init has

determined that an ASCII terminal is available to be managed, it spawns the getty program,

which puts up a login prompt. Similarly, when xdm is given management of an X server, it

sends a login box to the server display.

When a user types a name and password on a serial ASCII terminal, that information is sent to

the login program, which authenticates the password and then starts up whatever program is

specified in the user's /etc/passwd, almost always an interactive shell. When the shell begins,

user-configurable batch files are executed, $HOMEi'.profile for the Bourne/Korn shell or

$HOMEI.cshrc and $HOMEI.login for the C shell. The user is then deposited in the selected

shell environment, ready to run UNIX commands.

For a user who logs in with an xdm login box, the name and password are also authenticated,

using the same mechanism as the login program. However, this is where the functions of

login and xdm diverge. As shown in Figure 3-1, instead of running an interactive shell, xdm

runs a series of shell scripts. These scripts normally start all your desired X clients, including

xlogin box

login authentic?

exec (Xreset script) exec (Xstartup script)

exec Xsession

#!/bin/sh

#Load resources

xrdb -merge $HOME/.Xresources

#start window manager

twm&

#lnitial xterm

xterm -name login

exec $HOME/.xsession

Figure 3-1. xdm flow chart

44 The X Window System Administrator's Guide

one or more terminal emulators, each of which will contain an interactive shell. In the

default xdm configuration, Xsession is one of the shell scripts that are executed. Xsession then

calls another script called $HOMEI.xsession (if it exists).

When a user logs out on a character-based terminal, control of the terminal returns to getty,

sending another login prompt to the terminal. Consistent with that model, when a user logs

out of an X session (i.e., when the "controlling" process of the X session has been ter-
minated), xdm closes all connections and resets the terminal to a "ready for log on" state, dis-
playing a new login box, ready for another user session.

As you can see, xdm is a very ambitious program. It can be configured to control logins on

multiple X servers connected to the same machine, creating customized sessions, and offer-
ing some basic network security features.

The conclusion is that xdm, when set up properly, enables users to walk up to a display and

log in by typing their usernames and passwords, the same as they would on an ASCII termi-
nal, xdm then runs their startup scripts automatically, setting up customized environments

and enabling users to begin productive work immediately. When users finish their X sessions,

xdm resets each display for the next user. With the X session startup process incorporated

into the login process, users need to know relatively little about XI1 to start work-
ing-given, of course, that xdm and users' individual environments are configured appropri-
ately.

History of xdm and XDMCP

xdm was introduced with XI1R3, to support the X terminals that were just coming to the

market. That first version of xdm had several problems, which were solved in XI1R4 by

the introduction of the XDM Control Protocol (XDMCP).

The most urgent problem that XDMCP addressed was the problem of X terminals that are

turned off and on again. Prior to XDMCP, the only way xdm knew to control an X termi-
nal was to look for its entry in the Xservers file (see Section 3.5.2 for more information).

Since Xservers is consulted only when xdm is first started, this caused problems when X

terminals were turned off temporarily, or when new X terminals were attached. It meant

that every time a user turned an X terminal off and on, the system administrator needed

to send a SIGHUP to xdm. XDMCP provides a solution to this problem.

XDMCP, introduced in X11R4, is a protocol shared by the xdm client and X servers

throughout the network. Using XDMCP, the X server has the responsibility of actively

requesting an xdm connection from the host. If an X server uses XDMCP, therefore, it no

longer requires an entry in Xservers since the host no longer has the burden of initiating

the connection.

Almost all X terminals sold today are XDMCP-compatible. R4 and R5 servers running

on local console displays are also XDMCP-compatible, but XDMCP queries are not

enabled by default.

The X Display Manager 45

3.2 xdm Configuration Files

xdm is configured through a set of editable ASCII files for some of the mechanisms you would

expect-a list of servers to be explicitly controlled by xdm, resources to be used by xdm,

error messages, whether to use security, etc.-but it also provides ASCII files for setting up

an initial default session and setting resources to be loaded by the server itself. The files used

for xdm configuration in lusrlliblXll/xdm are listed here (and shown in Figure 3-2), to be dis-
cussed in detail later in the chapter:

xdm-config Resources specified for xdm. Note that the location of all other files listed below

can be redefined with resources specified in xdm-config. (The location of the

xdm-config file itself can be reassigned using the -config option to xdm when it is

started.)

Xservers A list of servers to be explicitly managed by xdm. The local display server

usually needs to be listed here.

Xsession The initial startup script used by each individual X session.

Xresources Resources to be loaded via xrdb by servers managed by xdm.

xdm-pid A file containing the process ID of xdm. (This file is not designed to be edited by

administrators, but is for informational purposes only.) (XI1R4 and later only.)

xdm-errors The error log file for xdm. (This file is not designed to be edited by administra-
tors, but is for informational purposes only.)

Figure 3-2. Default xdm configuration files

46 The X Window System Administrator's Guide

Xaccess A file for configuring access control for XDMCP, specifying different behavior

according to the sort of query used. This configuration file is new to XI1R5.

GiveConsole

A shell script that changes the ownership of the console to the user. This file is

new to XI1R5. See Section 4.6.2 for information on how the GiveConsole script

is used.

TakeConsole

A shell script that changes the ownership of the console back to root. This file is

new to XI1R5. See Section 4.6.2 for information on how the TakeConsole script

is used.

XsetupJ) A shell script used for display setup specific to the local console server. This file

is new to XI1R5.

In users' home directories, the following files are used by xdm in its default configuration:

$HOMEI.xsession

User-specific startup script executed by the systemwide Xsession script.

$HOMEI.Xresources

User-specific resources read by the systemwide Xsession script if $HOMEI.xses-

sion does not exist. (If $HOMEI.xsession does exist, then the .xsession script is

responsible for loading user-specific resources from .Xresources or any other

resource file.) See Appendix D for information on setting resources.

$HOMEI.xsession-errors

Errors specific to a user's X session (R5 only). This file is not designed to be

edited.

$HOMEl'.Xauthority

Machine-readable authorization codes for the user's server. This file is not

designed to be edited by hand. See Chapter 4 for information on how the .Xau-
thority file is used.

Note that the user-configurable .xsession file is available only because it is exec'd by the

Xsession shell script. If you don't understand yet why this is important, consider that any

administrator can remove that functionality, or can add any other clients or resources to be

used by all X user sessions. So xdm configuration is unusual in that you can do just minimal

configuration (just set things up so it runs and then leave it alone) or you can go wild setting

up a global user environment.

We'll talk about all these files in detail later in the chapter. First, though, we'll give a quick

and dirty procedure to get a minimal setup running.

The X Display Manager 47

3.3 xdm the Easy Way

For those of you that are interested in just getting xdm working for the first time, you can fol-
low the steps below to set up xdm on a standalone workstation. These steps assume that you

are using the MIT-distributed version of xdm, and that the xdm configuration files have not

been changed from the defaults distributed by MIT.

1. Edit the Xservers file in lusrllib/Xlllxdm as needed. If you want xdm to control the local

display server, the Xservers file should contain the line:

:0 local /usr/bin/Xll/X

If you don't want xdm to control the local display server, this line should be omitted. In

all likelihood, the default Xservers file will work just fine.

2. If you're currently running the X server on the local console display, you should exit it.

It's also a good idea to have an alternate way to log in to the workstation (such as a

remote login across the network, or an ASCII terminal connected to a serial port), since if

something goes wrong, your console may become unusable.

3. Start xdm as root:

/usr/bin/Xll/xdm

The X server will take over your display and you should see a login box resembling that in

Figure 3-3.

harry

login:

Password:

Figure 3-3. xdm login box

48 The X Window System Administrator's Guide

Now log in. You should get an xterm window and a twm window manager, as shown in Fig-
ure 3-4.

Figure 3-4. Default xdm environment

You can configure this environment by creating a shell script in your home directory called

.xsession and making it executable. If written as a Bourne shell script, the rules for writing

the .xsession file are similar to those for the .xinitrc file used for xinit. Unlike .xinitrc, how-

ever, jcsession does not have to be a Bourne shell script, it can be any executable. For infor-
mation on configuring individual X sessions at the user level, see Chapter 2.

See Section 3.7 for information on how to install xdm to start at boot time.

3.4 Troubleshooting xdm

Problems with logging in via xdm might be traced using xdm error messages. Many errors are

placed in the file lusrlliblXlllxdmlxdm-errors, but if you are using R5 xdm, the first place to

look is in the file $HOME/.xsession-errors. $HOMEI.xsession-errors contains errors generated

only under your user account. In addition, some of the more common situations are listed

here:

" If the server doesn't start or if you don't get the login box, there is probably something

wrong with your xdm configuration files. Kill xdm from the alternate login we recom-
mended in Step 2, and look in the file lusrlliblXlllxdmlxdm-errors for hints. Good candi-
dates for mistakes of this magnitude are the Xservers, xdm-config, and Xaccess files. If

The X Display Manager 49

you'd rather not deal with it, try to restore the files to the MIT defaults (or to the versions

originally distributed by your vendor) and try again.

" If you get the "Login incorrect" error, guess what, you typed your login name or pass-
word wrong. Try again, xdm uses the same login authentication as the login program

does, so if you can log on at the console or at any other terminal window, then you can

log on using xdm.

" If you log on and the login box returns instantly, something's wrong with your environ-
ment. Either the lusr/lib/Xlllxdm/xdm-errors file or $HOMEI.xsession-errors (under R5)

will contain error messages that can help you track the problem.

One possibility is that your .xsession file isn't executable. Try pressing Fl (or in R5,

CTRL-RETURN) after your password instead of the RETURN key to access the "fail-
safe" session. This will bypass your .xsession and give you a single xterm window,

sufficient to edit your environment. If your problem is that your .xsession isn't execut-
able, the error message in .xsession-errors (or xdm-errors in R3 and R4) will read

something like:

/usr/lib/Xll/xdm/Xsession: /home/judy/.xsession: Permission denied

If this is your problem, simply do:

% chmod +x .xsession

This might need to be done if you've just created your .xsession file, or if you've just

copied it from another machine using ftp.

Under R5, another possibility is that there is a problem writing to your $HOMEI.xses-
sion-errors file. One reason this might happen is if your home directory isn't properly

NFS-mounted from another host. The "failsafe" session won't help in this case;

instead, if you're on the console display server, press CTRL-R at the login box to dis-
able both the xdm connection and the X server on that display. The error message in

xdm-errors will read:

/usr/lib/Xll/xdm/Xsession: /home/tim/.xsession-errors: Permission denied

Either your home directory doesn't exist, or your home directory isn't writable by

you, or your .xsession-errors file isn't writable by you ... track down the problem,

correct it, and try again.

" If you log on, windows flicker on your screen, and then the login box reappears, you

probably put all your clients in the background in your .xsession script. Press Fl after

your password to access the "failsafe" session and edit your .xsession. You need to put

the last interactive client in the foreground by omitting the trailing "&." See Section

2.2.3.1 for more information.

(Note that if this is your problem, xdm will not generate an error message since as far as

xdm is concerned, everything was executed successfully.)

Now that you have xdm working for your local display, it's trivial for it to control other X

servers at your site. If you have X terminals that are XDMCP-compatible, you should be able

to just set them up to query your host for an xdm connection. See Section 7.5.1 for more

information on setting up X terminals for use with xdm.

50 The X Window System Administrator's Guide

Some readers will want to stop reading this chapter right here. However, if you're interested

in refining your xdm configuration or you just want to know more about how xdm works,

please read on.

3.5 Customizing xdm

Now that we've told you the general idea of xdm and how to get it going, it's time to talk

about the gory details.

The following sections describe the xdm configuration files in detail.

3.5.1 The Master Configuration File (xdm-config)

All of the configuration files used by xdm are specified in the xdm-config file (with the nota-
ble exception of xdm-config itself), so it's worth your while to become very familiar with its

contents. You can consider it to be the starting point of your xdm configuration.

The xdm-config file is really just a resource file for the xdm client. For that reason, the syntax

for xdm-config follows standard resource specification syntax. See Appendix D for more

information on resource syntax (although you might be able to get through this chapter with-
out it).

The following is the sample xdm-config file as it comes from MIT in Release 5 of XI1:

DisplayManager.errorLogFile: /usr/lib/Xll/xdm/xdm-errors

DisplayManager.pidFile: /usr/lib/Xll/xdm/xdm-pid

DisplayManager.keyFile: /usr/lib/Xll/xdm/xdm-keys

DisplayManager.servers: /usr/1ib/Xl1/xdm/Xservers

DisplayManager.accessFile: /usr/lib/Xll/xdm/Xaccess

DisplayManager._0.authorize: true

DisplayManager._0.setup: /usr/1ib/Xl1/xdm/Xsetup_0

DisplayManager._0.startup: /usr/lib/Xll/xdm/GiveConsole

DisplayManager._0.reset: /usr/1ib/Xl1/xdm/TakeConsole

DisplayManager*resources: /usr/lib/Xll/xdm/Xresources

DisplayManager*session: /usr/lib/Xll/xdm/Xsession

DisplayManager*authComplain: false

The keyword DisplayManager starting each resource name is the internal "class name"

for xdm. xdm uses some resources for configuring xdm itself, and other resources for confi-
guring its behavior once individual X display servers have connected to it. In particular,

resource specification in xdm-config follows one of the following forms:

Di splayManager .variable: value

or

DisplayManager. DISPLAY. variable: value

Di splayManager* vari abl e: value

In the first form, the DisplayManager keyword is separated from the variable name

by a single period, meaning that this is a resource that makes sense only when applied to

The X Display Manager 51

xdm proper. An example of a resource like this is DisplayManager. servers, for

specifying which file should be used for listing the X servers to be managed by xdm. You

can think of this sort of resource name as applying to Jtdw's behavior independent of its

connection to any particular X server: which servers to connect to, where to copy its pro-
cess ID, where to put error messages, etc.

" The second form is used to specify a resource that should apply to a single display server

only. Here's where the tricky part to resource naming rules for xdm comes into play:

since the colon (:) has special meaning in resource specification syntax, the underscore

(_) is used where these would normally occur in a display name. For example, the display

name bigbird: 0 becomes bigbird_0 if it appears in a resource name. Without an

underscore to specify that a particular server is being referred to, the name is taken to rep-
resent a group of X servers, called a display class. See Section 3.5.6 for more information

on display classes.

The server for which you'd most want to define a specific resource is the local console

display (: 0, specified as _0 in resource specifications). An example of one of these is

the DisplayManager ._0 . authorize resource-you usually want to enable access

control on the local server, but you may not want it enabled on X terminals if they don't

support that functionality.

" The third form of an xdm resource specification is really just a generalization of the sec-
ond form. By putting an asterisk between the DisplayManager keyword and the vari-
able name, where a display name would normally be, you can define this value for all

servers not specifically defined otherwise. As a common example, you could use the fol-
lowing lines:

DisplayManager*authorize: false

Di splayManager._0.author!ze: true

and only the local display server will use access control.

In resource lingo, these are called "loose" and "tight" bindings. We discuss resource bindings

in detail in Appendix D.

See your xdm manpage for a description of other resources that can be specified in the xdm-

config file.

For testing purposes, you can use the -config option to xdm to test new configuration files. For

example, to start xdm with a customized configuration file, enter:

/usr/bin/Xll/xdm -config ./my.xdm-config

The DisplayManager .autoRescan resource controls whether xdm automatically

rereads the configuration files after they have been changed. If set to true (the default), xdm

will reread the xdm-config file the next time a server connects to xdm. If set to false, then if

you edit the xdm-config file while xdm is still running, you have to send xdm a SIGHUP sig-
nal before it will be reread. See Sections 3.6.2 and 3.6.3 for more information on sending a

SIGHUP to xdm.

52 The X Window System Administrator's Guide

3.5.2 Listing X Servers (the Xservers File)

The Xservers file was originally designed in X11R3 to list all X servers to be managed by

xdm. The XDM Control Protocol, introduced in R4, changes the function of the Xservers file

significantly.

Under XI1R3, all X servers managed by xdm required entries in Xservers. The only way xdm

would know to connect to a server is if it appeared in the Xservers file at startup. In that way,

Xservers acted somewhat like an inittab for xdm.

With X11R4 and XDMCP, the X terminal takes responsibility for querying the host for an

xdm connection. For that reason, any X terminal that supports XDMCP should have its entry

removed from Xservers on a host running XI1R4 or later.

The Xservers file is not yet obsolete, however. It is still used to start the X session on the

local console display, which does not normally use XDMCP queries. It is also used to tell xdm

how to start up the X server on the local machine.

3.5.2.1 Xservers Syntax

The syntax for each line in the Xservers file varies on whether it's for a server that runs on the

local machine, and whether a display class is specified in Xservers for that machine. The

only X servers that you need to enter into the Xsen'ers file are those that do not use XDMCP

to request a connection. For the most part, the only X server that needs to be specified in

Xservers is the console display server. If your console display server is R4- or R5-compat-

ible, it probably supports XDMCP queries but does not have them enabled by default. So you

need to enter the local server into the Xservers file if you want it to be managed by xdm:

:0 local /usr/bin/Xll/X

The console display name, : 0, is followed by the word local to tell xdm that it's an X

server running on the local machine, and then by the command used to start the X server.

This command, lusr/bin/XllIX, is executed when xdm is started up. lusrlbinlXHIX is usually

a symbolic link to another server program.*

Since X terminals run their server on another machine, they have a slightly different syntax

in Xservers. You only need to enter X terminals in Xservers if they don't support XDMCP or if

you're running R3 xdm on the host. The following are examples of Xsen'ers entries for X ter-
minals:

ncdl:0 foreign NCD xterminal

visualliO VISUAL-X19TURBO foreign Visual xterminal

bigbird:0 XNCD19r foreign Eileen's xterminal

* An example of when this would be useful is for a '386 workstation, on which any number of third-party monitors

might be installed, requiring multiple servers to support them all. Among the steps required to install a new monitor

may be to link X to a different server program.

The X Display Manager 53

Managing Another Workstation's Display

It's common to use xdm on a given host to manage X terminals, but what if you want it

to manage the display server on another workstation? This can be done, it just needs a

little coordination between the two hosts. For example, if you want to set up a host rock

to manage the display of the workstation scribe, you have to do the following:

1. First of all, make sure xdm isn't being run on the workstation scribe, since you prob-
ably don't want it running. If for some bizarre reason you do want it running, make

sure that the local server isn't listed in the Xservers file on scribe-that is, if xdm is

running, make sure the following is commented out in Xservers:

#:0 local /usr/bin/Xll/X

2. You have to decide which end you want to start the xdm connection on.

a. If you want to start the connection on the server side, have the X server started

with an active XDMCP query.

% /usr/bin/Xll/X -query rock.west.ora.com

If you want to set it up permanently, put this command in letclrc.local.

The -query option tells the X server to place a Direct XDMCP query to the speci-
fied host. Use the -indirect option in place of -query for an Indirect query to the

specified host-for example, to get a chooser box from R5 xdm (see Section

3.5.3.2 for more information on the chooser client). You can also use the

-broadcast option for a Broadcast query, in which case the first xdm host who

replies to the query gets control of the server. The -broadcast option is not fol-
lowed by a hostname.

b. If you want to start the connection on the host side, put in the Xservers file on the

host running xdm (rock in this example):

scribe:0 foreign X server on workstation "scribe"

And have the X server on scribe started "passively", such as:

% /usr/bin/Xll/X

(Again, to set it up permanently, put this command in I etc I re.local.)

As a policy, it's probably better to have the connection started via an XDMCP query

and avoid explicitly listing hosts in Xservers. A disadvantage to listing hosts in

Xservers is that you have to make sure that you don't end up having the same server

listed in two Xservers files on two different hosts. If you see the following error in

the lusrlliblXlllxdmlxdm-errors file:

error (pid n) : WARNING: keyboard on display ... could not be secured

what might have happened is that another host has the server listed in its Xservers

file and is currently running xdm on the same X server.

54 The X Window System Administrator's Guide

As with the entry for the local server, each of these entries starts with the display name. In

the first of these, the display name, ncdl: 0, is followed by the word foreign to signify

that it's an X server running on another machine.* The other entries are examples of entries

for X terminals with display classes specified. If the name of a display is followed by some-
thing other than local or foreign, it's taken as a display class. (See Section 3.5.6 for

more information on display classes.) In the example, the display classes used are

VISUAL-X19TURBO and XNCDl9r. The name of the display class is then followed by for-
eign.

The rest of the line is ignored, and can be used for a comment. In R3, beware that although

the rest of the line is ignored, it must consist of at least one word.

Note that like the xdm-config file, the Display-Manager .autoRescan resource controls

whether xdm automatically rereads the Xservers file if it has been changed, or requires a

SIGHUP signal before it rereads configuration files. By default, any configuration files that

have been changed are automatically reread when the next server connects to xdm. See Sec-
tions 3.6.2 and 3.6.3 for more information on sending a SIGHUP to xdm.

3.5.3 xdm Host Access Control: the Xaccess File (R5 Only)

In XI1R5, the Xaccess file is introduced to allow administrators to control how xdm responds

to different types of XDMCP queries. It's important to note that the Xaccess file is not related

to server access control, which is controlled by the DisplayManager*authorize

resource. See Chapter 4 for information on server access control. All the Xaccess file con-
trols is what servers can get a login window; users still need to supply their user name and

password when they actually log in.

As mentioned earlier, there are three types of queries defined for X terminals using XDMCP:

Direct, Indirect, and Broadcast. If an X terminal is set up to use "Direct," it means that it will

ask a particular host for a connection. If it is set up to use "Broadcast," it means that it will

send out a general query throughout the network, for any host running xdm to answer-for

most X servers, the first host that answers is the one that gets control of the terminal.

"Indirect" queries are for hosts that might forward the connection to another host, but hosts

that could actually do this were few and far between before R5 xdm. Ideally, you would want

a user to have a choice among multiple hosts to connect to. Some X servers have this func-
tionality built in, using either "Indirect" or "Broadcast" queries. But to control those X termi-
nals that did not have it built in, administrators had to resort to hacking xdm to support it.

This has changed with XI1R5.

With R5, the Xaccess file starts to put all this in place. Among other things, it provides a way

of using the chooser client, which allows the user to choose among multiple other hosts.

Indirect, Direct, and Broadcast queries are shown in Figure 3-5.

*In R3 xdm, the display type transient was used for some foreign displays. "Transient" is no longer a valid dis-
play type.

The X Display Manager 55

Network

Direct XDMCP Query

Direct XDMCP Query

xdm

X server

Indirect XDMCP Query

Indirect XDMCP Query Forward

Broadcast XDMCP Query

Figure 3-5. XDMCP Direct, Indirect, and Broadcast queries

3.5.3.1 Direct and Broadcast Access

In its simplest form, the Xaccess file can be used to restrict access to particular X servers who

request access via Direct and Broadcast queries. You can just list the addresses of X servers

that you want to allow connections from, using standard UNIX wildcards (? to match a single

character, * to match any number of characters). To omit a particular X server from the list

of those allowed, start the name with an exclamation point (!). For example, to restrict

access to servers in the ora.com domain, you might do:

*.ora.con

To allow connections from all X servers in the ora.com domain except for a workstation

named harry, do:

56 The X Window System Administrator's Guide

*.ora.com

!harry.ora.com

In its MIT-distributed form, the Xaccess file is configured to allow Direct and Broadcast con-
nections from all X servers:

* #any host can get a login window

3.5.3.2 Indirect Access and the Chooser

Until R5, the distinction between Direct and Indirect queries was poorly defined-there

didn't seem to be any difference between connecting via a Direct query or an Indirect query

to a particular host. The R5 Xaccess file changes that.

An Indirect query basically allows xdm on the host to determine what to do with the query. If

xdm encounters a Broadcast or Direct query, it either pops up a login box or it doesn't

(depending on whether the node is allowed access in the Xaccess file, as described above).

Responding to an Indirect query, however, the Xaccess file gives the administrator a chance

to configure whether to respond directly, whether to pass the query on to another host, or

whether to give the user a choice between multiple hosts.

For example, to configure xdm to transfer an Indirect query from any NCD X terminals

(named ncdl, ncd2, etc.) directly to the host ruby.ora.com, you might enter in Xaccess:

ncd*.ora.com ruby.ora.com

Alternatively, you can set up xdm to respond to Indirect queries with a chooser box. This

gives the user the opportunity to choose between several hosts, as shown in Figure 3-6. The

chooser client, implemented via the CHOOSER keyword in the Xaccess file, is a big plus in R5.

To allow the NCD X terminals to choose from harry.ora.com, ruby.ora.com, and

rock.west.ora.com, enter into Xaccess:

ncd*.ora.com CHOOSER harry.ora.com ruby.ora.com rock.west.ora.com

The chooser box would resemble the box in Figure 3-7.

The chooser client itself resides in lusrlliblXlllxdm, with everything else. Note that unlike

the other files in that directory, it is not a readable ASCII file, but a compiled executable.

Yet another possibility might be to set up the chooser client so it just does a broadcast among

all hosts on the network and allows the user to choose among them. To do this, just use the

keyword BROADCAST following the CHOOSER keyword.

ncd*.ora.com CHOOSER BROADCAST

To customize the appearance of the chooser client, use the Xresources file. The default

Xresources file defines the following resources used by the chooser client:

Chooser*geometry: 700x500+300+200

Chooser*allowShellResize: false

Chooser*viewport.forceBars: true

Chooser*label.font: *-new century schoolbook-bold-i-normal-*-240-*

Chooser*label.label: XDMCP Host Menu from CLIENTHOST

Chooser* list, font: -*-*-medium-r-nontial-*-*-230-*-*-c-*-iso8859-l

Chooser*Command.font: *-new century schoolbook-bold-r-normal-*-180-*

The X Display Manager 57

Network

Indirect XDMCP Query

Figure 3-6. The chooser

XDMCP Host Menu from rock

harry .ora.com Willing to manage

rock. west.ora.com Willing to manage

ruby. ora.com Willing to manage

(cancel/ (accept/ (ping)

Figure 3-7. An example chooser box

58 The X Window System Administrator's Guide

3.5.3.3 Using Macros

The Xaccess file allows you to define macros to group together a set of hosts. A macro defini-
tion starts with a percent character (%), followed by the macro name, followed by a list of

hostnames (with a backslash at the end of the line signifying that the definition continues

onto the next line). The macro is then called later on, preceded by the %. An alternative way

of allowing X terminals to choose among harry, ruby and rock might be:

%NCDHOSTS harry.ora.con ruby.ora.can rock.west.ora.cam

ncd*.ora.com CHOOSER %NCDHOSTS

3.5.3.4 Advantages and Disadvantages of the Chooser

The big advantage that the Xaccess file provides is that it can make it much easier to maintain

and control X terminals on a network. Without the chooser, the host to query is configured

directly on the setup menu of an X terminal using XDMCP. If you want to move the manage-
ment of some X terminals to another host, it may involve personally visiting each terminal

and editing their setup menus manually, step-by-step. However, using the Xaccess file, you

can simply set up a single host as the primary xdm server, designed to accept Indirect queries

and determine where they should be transferred. Using this scheme, switching xdm manage-
ment from one host to another is a matter of editing a single file.

In our bicoastal environment, we use the chooser to allow East Coast employees to access

their environments from the West Coast without having to do contortions: they simply choose

the East Coast xdm host and they are greeted by the same friendly login box they're used to

at home.

A problem with the chooser functionality is that due to a bug in R4 xdm, it can be used only

to transfer xdm control to another host running R5. For example, if you had in your Xaccess

file:

%R5HOSTS harry.ora.com ruby.ora.com rock.west.ora.com

%R4HOSTS opal.ora.com

* CHOOSER %R5HOSTS %R4HOSTS

with opal running R4 xdm, the chooser box would look like the one in Figure 3-8.

Note that only the R5 hosts (harry, ruby and rock) are reported as "Willing to manage." If

you select one of the R5 hosts you'll get the xlogin box as expected; but although the R4 host

is listed, if you select opal you'll be temporarily "hung" and then you will be returned to the

chooser box without a chance to log on.

Note that like the xdm-config file, the DisplayManager. autoRescan resource controls

whether xdm automatically rereads the Xaccess file if it has been changed, or requires a

SIGHUP signal before it rereads configuration files. By default, any configuration files that

have been changed are automatically reread when the next server connects to xdm. A mes-
sage appears in the xdm-errors file:

info (pid 1564): Rereading access file /usr/lib/Xll/xdm/Xaccess

See Sections 3.6.2 and 3.6.3 for more information on sending a SIGHUP to xdm.

The X Display Manager 59

XDMCP Host Menu from rock

host opal

harry.ora.com Willing to manage

rock.west.ora.com Willing to manage

ruby.ora.com Willing to manage

(cancel) (accept) (ping)

Figure 3-8. Chooser box with an R4 host

3.5.4 The Xresources File

The Xresources file is loaded into each individual X server as it is connected to xdm. The

most important function of the Xresources file is to set resources for clients or widgets that

are run before the user actually logs in. In particular, the xlogin widget's resources need to be

loaded into the server by xdm itself, since it is (by necessity) run before the user logs in. In

R5, the chooser and xconsole clients may also be run before the user logs in, so those clients

need their resources specified in Xresources as well.

As each X server connects to xdm, the resources in the Xresources file are loaded by the

server via the xrdb client. See Section D.I.3 for more information on xrdb.

3.5.4.1 Configuring the Login Box

The login box displayed on an X server controlled by xdm can be configured using the

Xresources file. In its default configuration, that file contains the following lines:

xlogin*login.translations: #override\

Ctrl<Key>R: abort-display()\n\

<Key>Fl: set-session-argument(failsafe) finish-fieldO\n\

Ctrl<Key>Return: set-session-argument(failsafe) finish-fieldO\n\

<Key>Return: set-session-argument() finish-field()

xlogin*borderWidth: 3

60 The X Window System Administrator's Guide

xlogin*greeting: CLIENTHOST

xlogin*namePrornpt: login: \

xlogin*fail: Login incorrect

#ifdef COLOR

xlogin*greetColor: CadetBlue

xlogin* faiiColor: red

*Foreground: black

*Background: #fffffO

#else

xlogin*Foreground: black

xlogin*Background: white

#endif

The resources starting with the string xlogin are used by the xlogin widget, xlogin sends

the box to the display, prompting the user for a name and password. The xlogin box typically

resembles Figure 3-3.

Note that the first resource for xlogin is a translation table, used for defining how special

keystrokes might be used within the client. (See Section D.I.4 for more information on

translation tables.) This translation table is particularly important. What it does is to allow

you to log in without running your .xsession file, by pressing Fl after your password instead

of RETURN.*

Instead of running your .xsession, pressing Fl tells xdm to run a "failsafe" X session, defined

as a single xterm window. (You can actually change this in the Xsession file. See Section

3.5.5 for more information on the Xsession file.) This is important, since otherwise you may

have no way of logging in if your .xsession is corrupted.

The other important translation listed here is that you can use CTRL-R to stop xdm from

managing your display entirely. This feature, new to R5, is useful for the local console dis-
play, where you might want to return to the console to start another windowing system or

load a different X server image. Note that this only works if the X server isn't initiating

XDMCP queries; otherwise, CTRL-R will abort the current xdm connection, but a new one

will instantly replace it.

The remainder of the resources set for xlogin are fairly straightforward, used largely to spec-
ify the messages used for prompts and error messages. Note that since this resource file is

loaded into the server via xrdb, cpp pre-processor commands (particularly #ifdef, #else,

and #endif) can be used. In the R5 default shown above, the pre-processor commands are

used to specify how the xlogin box should appear, depending on whether the display has

color support. COLOR is one of the variables that are pre-defined in R5 xrdb; see Section

D.I.3 for more information on xrdb pre-defined variables.

One resource you may want to change is the greeting in the xlogin box. In previous releases

of XI1, this box said "Welcome to the X Window System" by default; in R5, it simply gives

the hostname, as shown in Figure 3-3. If you want to change this greeting, edit the resource

definition:

xlogin*greeting: CLIENTHOST

* Alternatively, in R5 you could also enter CTRL-RETURN, for those users who don't have an Fl key.

The X Display Manager 61

to something like:

xlogin*greeting: CLIENTHOST's House Party

The resulting login box will look like the one in Figure 3-9.

harry 8 House Party

Figure 3-9. Adapted xlogin greeting

See the xdm manpage for more information on xlogin resources, including the default transla-
tion table.

3.5.4.2 The xconsole Client

As of R5, the Display-Manager ._0 . setup resource is used to point to a script to be run

when the xdm connection to the local display server is initialized. The script, XsetupJ), sim-
ply runs the xconsole client:

#!/bin/sh

xconsole -geometry 480x130-0-0 -daemon -notify -verbose -fn fixed -exitOnFail

This ensures that console messages are sent to a window in between console logins, rather

than spewing across the screen and disrupting the display. The resources for xconsole are set

in Xresources:

62 The X Window System Administrator's Guide

XConsole.text.geometry: 480x130

XConsole.verbose: true

XConsole*iconic: true

XConsole*font: fixed

See the manual page for xconsole for more information.

3.5.5 Starting Up Individual X Sessions (the Xsession File)

Now that you have a picture of how xdm starts up and finds out how to respond to individual

display servers on the network, it's time to discuss the part where the user actually logs in.

What happens now is completely up to the administrator. All xdm knows about is that it exe-
cutes the file pointed to by the session resource for that display. In the distribution of R5,

that file reads:

#!/bin/sh

exec > $HOME/.xsession-errors 2>&1

case $# in

1)

case $1 in

failsafe)

exec xterm -geometry 80x24-0-0

startup=$HOME/.xsession

resources=$HOME/.Xresources

if [-f $startup]; then

exec $startup

else

if [-f $resources]; then

xrdb -load $resources

fi

twm &

exec xterm -geometry 80x24+10+10 -Is

fi

See Section 2.2.3 for more information on configuring the .xsession file.

" The first thing that happens is that all subsequent error messages are sent to a file in the

user's home directory called .xsession-errors. In R4 and earlier, users' error messages

were mixed in with all other errors in the file pointed to by the Display-

Manager . errorFile resource, usually xdm-errors.

" Next, if the script has been called with the failsafe argument, a single xterm window

is sent to the display and the script exits. Where does this argument come from? Well,

remember in the Xresources file, under the xlogin translation table:

<Key>Fl: set-session-argument(failsafe) finish-field()\n\

Ctrl<Key>Return: set-session-argument(failsafe) finish-fieldO\n\

The X Display Manager 63

We told you that this key translation set things up so if you typed Fl or CTRL-RETURN

after your password instead of RETURN, you would avoid running your .xsession script

and would get a lone xterm instead. Now you know how that gets implemented. Admin-
istrators can use this as a model to write translations that pass other arguments for Xses-
sion to interpret.

" Next, the script looks for a script in the user's home directory called .xsession. If it exists,

it execs it.

" If the .xsession script doesn't exist, the Xsession script creates a workable X session by

first looking for a resource file called .Xresources, and if that file exists, loading it with

xrdb\ regardless, it then starts the twm window manager and a single xterm window.

This is actually a fairly simple script, when you consider that it controls every X server con-
necting to xdm. It also gives the administrator an unusual amount of power over each X ses-
sion. At the most innocuous, an administrator could use the Xsession file to add some func-

tionality that all users may need-for example, to add a local font directory into font paths

using the xset client. At a slightly more intrusive level, the administrator could use it to set up

a message-of-the-day client for users to see when they first log in. But there are really no lim-
its-an administrator could set up a network so that users have no control at all over their

own X sessions (by removing the line that executes .xsession), and in fact don't have xterm

windows to start new clients (presuming that all they'd want to do is run a mail client and a

word processor).

Note that the Xsession script is defined as a loose binding, DisplayManager*session.

You could therefore set up a separate X session file for particular X servers. For example, you

might want to set up an X session file called Xsession_0:

Display-Manager ._0 .session: Xsession_0

The only difference in Xsession_0 might be that the xterm called in the failsafe situation

would be called with -C, so that console messages will be diverted to this xterm window:

exec xterm -geometry 80x24+10+10 -Is -C

(See Sections 4.6.1 and 4.6.2 for more information on the xterm console window.)

You can also use display classes to group several X terminals together. See Section 3.5.6 for

more information on display classes.

3.5.5.1 No Home Directory? (R5)

The redirection of error messages to $HOME/.xsession-errors is a nice addition to R5-it

means that if users are having problems, they don't need to weed through the systemwide

xdm-errors file, but can start looking for problems locally. This makes life easier for users

and administrators alike. However, it does present a problem if for some reason you don't

have a home directory on the host.

Since Xsession is executed as a Bourne shell script, the line:

exec > $HOME/.xsession-errors 2>&1

64 The X Window System Administrator's Guide

produces a fatal error if it cannot be completed. One reason that may happen is if you don't

have a home directory, either because it's a new machine or because there is a problem with

your NFS link. The shell tries to create a file in a directory that does not exist and when it

can't, the script aborts. The effect is that the user logs in and is immediately bumped out,

with no sign of what happened except in xdm-errors:

error (pid 2547): can't lock authorization file /home/lmui/.Xauthority or

backup /usr/lib/Xll/xdm/.Xautha02547

error (pid 2547) : No home directory /home/lmui for user Imui, using /

/usr/lib/Xll/xdm/Xsession: /home/lmui/.xsession-errors: No such file or

directory

error (pid 2549) : fatal 10 error 32 (Broken pipe)

To remedy this situation, you might change the line in Xsession to read:

if [-d $HOME -a -w $HOME]

then

exec > $HOME/.xsession-errors 2>&1

fi

3.5.6 Display Classes

Display classes provide a way to group together several X servers connecting to the same

host. The display class is built into the X server, and is presented to xdm when the X server

connects via XDMCP. To find out the display class for a given X terminal, you can look it up

in the documentation or ask the manufacturer; or, if it won't disturb any users, kill xdm and

then restart it at a high "debug" level:

/usr/lib/Xll/xdm -debug 9

Running xdm at this level of debugging is likely to give you far more information than you

really want. Among this stream of messages, however, is information about any X server that

connects to xdm, including its display class:

Starting display visual5.ora.com:0,VISUAL-X!9TURBO

This tells us that the Visual X terminal we're experimenting with is in the display class

VISUAL-X19TURBO.*

Display classes come in useful in allowing you to fine-tune your xdm configuration differ-
ently according to the display type. Thus far, almost all our examples of display-specific

resources have been about the local display server, _0. However, because of hardware pecu-

larities, there are situations when you would want to set resources for individual X servers or

for a group of X servers.

For example, the Visual X19TURBO terminal has 2-bit gray scale support. This is nice,

except that it confuses FrameMaker into thinking it has color support. FrameMaker therefore

tries to show menus with its color defaults of black text on blue background; the X terminal

*In XI1R3, XDMCP was not available, so the Xservers file was used to explicitly list the display class used by an X

server; see Section 3.5.2.1 for more information.

The X Display Manager 65

"

-

-
. .

-
. .

-
. - - ' : - . . : -._-:-".- -;_-.- _ -

- _ .. . - - : - : .

. T ' . . -.-;.: .
-

_ - : - ;
-

. - " - _ .
-

. . v. -

play, the new user win need the same resource set for his account as well.

should be set at the server teveL

jp a separate Xsfssion file to re used only for die Visual

-. - .

_^r iir xii - iaessicc

sessi sr LIT "/_ -
-

. :

~-r

; . - - - : -
. . r r : : I-

':::"-_

Fhe X19TURI rce loaded imc ±eir

~.pte depends cr. nersu , ,v in their own jcsession scripts, or

±e v=>:-sr*E = :-:rr : _r. i -:

3.6 Testing Your xdm Setup

After you modify the z^in files to reflect your system, rake it out for a test drive. Beware that

testing xdm on a system others are using is likely to be extremely disruptive. For that reason.

.ic :o find out if anyixxr- else ii r_r_- t ilread> on your network. In case your

console gets bong in a weird state (not unu~ 11 -- good idea to have an alternate way to

log into the system, either over the network i e.g.. via :elne:>. or from a terminal attached to a

serial port on the system. On a PC UNIX machine, you can simply use one of the alternate

consoles available by holding down the CTRL and ALT keys while pressing one of the func-

:-. -f "" .. -;; 5.5'f- -:~ " 5"= :' ~

You can test xdm by starting it from the command line:

* /usr/bin/Xll/rd»

If you are doing mis on the console display and the console is set up to be managed b>

beware that your current login will become unusable once xdm is running. If you * -

makp small changes to the configuration files without restarting xdm. it might reread the con-
figuration files on its own (if the DisplayMar.arer .autoi ^s ran resource

true), or you can tell it to reread the files by sending it the SJGHLP signal. " See Sections

3.6.2 and 3.6.3 for more information.)

Remember that you can use the -config option to xdm to specify a configuration file other

man xdm-config. It's generally a good idea to use this feature while te .

leave the default configuration intact while you edit your own files. For txamf

create a new file called xdm-testconfig . containing:

rcrlocF: - e: _Er - : XL1 XZT. te5i:cT~- errors

_=r l_r XI 1 x±r. tesotor-rii

5r lit XU :--:±-. -.-=5---:±---c=r/s

_fr lij: Id x±r. tes^ls^- -^r =

. _ . . - - "i^icr" - ~ i.r*- ~

_^ r L^i: XI 1

_£r lir Xll

_5r 1^;: Xll

_^r l^r >Z1

1 1 rp Lr-^fcr^arer * sessi or. : _; r liJ: Xll x±- : T f : Isessicc

Disp] ag Mana rer*=.utJ^

And call z<im with the command line:

/usr/lib/Zll/zdB -config xar-resrcrz-f ig

3.6.1 Resetting the Keyboard

On Sun workstations, the abnormal termination of the X >: - a. ma

weird state. (If you don't know what we mean by mis. :

know it.) MIT provides the command usrbinXll ".-

Sun workstation. Since your keyboard is unusable, you'll hive to o

-z. ; - r-:r; 7_: --

/usr/bia/Xll/kbd_node -a > dev console

If you manage to render me system totally unusable and cannot recc

reboot Since you haven't yet added the xdm daemon to the system boot proce-

vour svstem back to a usable state after a reboot.

-f ' : s: =. '.' = -=;?" 67

3.6.2 Restarting xdm Using xdm-pid (R4 and Later)

In R4 and R5, the xdm process ID is stored in whatever file is pointed to by the Display-

Manager .pidFile resource, xdm-pid in the default configuration. If you are running R4

or R5, you can use the xdm-pid file to send a signal to xdm. This file contains the process ID

of xdm.

cat /usr/lib/Xll/xdm/xdm-pid

28683

You can send xdm the SIGHUP signal by using the cat output directly:

kill -HUP 'cat /usr/lib/Xll/xdm/xdm-pid"

The xdm process should now reflect the current configuration files for any new sessions.

If xdm becomes unusable and you are not able to fix it by editing the configuration files, you

can kill it for real. (You'll have to use a more severe signal (S1GTERM) to tell it you are seri-
ous.)

kill -TERM 'cat /usr/lib/Xll/xdm/xdm-pid'

Beware that all active sessions managed by xdm will be killed if you use SIGTERM.

3.6.3 Rereading xdm Configuration Files (R3)

To force xdm to reread its configuration files on an R3 system, you need to find the process ID

of xdm manually in order to kill it.

First find the process ID of the parent xdm process using the ps command. Then send the

SIGHUP signal to the process.

% ps agx|grep xdm

2547 IW 0:30 -xterml:0 (xdm)

13511 IW 0:56 -xterm2:0 (xdm)

13757 IW 0:58 -xterm4:0 (xdm)

15199 IW 1:08 -xterm5:0 (xdm)

19175 S 1:51 -xterm7:0 (xdm)

19466 IW 2:08 -xterm3:0 (xdm)

28683 IW 0:09 /usr/bin/Xll/xdm

28685 S 2:07 -xterm9:0 (xdm)

28743 IW 0:00 /bin/sh /usr/lib/Xll/xdm/Xsession

17796 pO S 0:00 grep xdm

The parent xdm stands out, since the xdm processes associated with a particular display

change their names to the name of the display. (The arguments to the ps command, as well as

its output, will vary according to the flavor of UNIX you are running.) If you send signals to

the wrong xdm process, only the display being controlled by that xdm process will be

affected.

68 The X Window System Administrator's Guide

Controlling scologin

scologin (the version of xdm on Open Desktop, which runs on SCO UNIX machines) has

its own ways of starting and restarting the display manager. The scologin daemon has a

front end, Ietclscologin, which takes the following options:

start Starts the scologin process; if scologin is already running, the start com-
mand will cause scologin to reread the configuration files Xconfig, Xservers

and Xresources.

reread If scologin is already running, the reread command will cause scologin to

reread the configuration files Xconfig, Xservers and Xresources.

stop Stops scologin. All X sessions currently managed by scologin will be

halted.

query Returns the current status of scologin.

disable Stops scologin and disables it from restarting when the system reboots.

enable Starts scologin if not already running, and ensures that it will start automati-
cally at the next reboot.

init If scologin is enabled, the getty processes on terminals configured for scolo-
gin are disabled. This option should be run only by init at boot time.

For example, to have your configuration files reread, enter:

/etc/scologin reread

3.7 Permanent Installation of xdm

When you are happy with your xdm setup, it is time to install it so it will start automatically

when the system boots. The way you do this is system dependent, but it is the same procedure

as adding any other kind of daemon. In a typical BSD system, you would modify the

/etc/re.local script. Under System V, edit letclinittab. (Remember to keep backup copies of

any system files you modify!)

Here are a few examples of installing xdm on various platforms:

Installing xdm on SunOS 4.1.1

Add xdm to I etcl re.local:

if [-f /usr/bin/Xll/xdm]; then

/usr/bin/Xll/xdm; echo -n "XEM"

fi

Then reboot the system.

The X Display Manager 69

Installing xdm on Ultrix 4.2

Add xdm to I etc I re.local:

[-f /usr/bin/Xll/xdm] && {

/usr/bin/Xll/xdm & echo -n "xdm " > /dev/console

}

Then reboot the system.

Installing xdm on a System V Machine (IRIX 4.0)

(Your system may already be set up for running xdm as shipped. Check before contin-
uing.)

Add xdm to letclinittab:

xw:23:respawn:/usr/bin/Xll/xdm -nodaemon

Then reboot the system.

Installing xdm on AIX 3.1

Add xdm to letc/rc.tcpip:

start /usr/bin/Xll/xdm "$src_running"

Then reboot the system.

3.8 Related Documentation

For more detailed information on xdm and its resources, see the xdm manual page.

For documentation on XDMCP, look in the X source distribution, in mit/hard-

copy/XDMCP/xdmcp.PS.Z.

"The X Administrator: Taming the X Display Manager," by Miles O'Neal, published in The

X Resource, Issue 4, O'Reilly & Associates, Inc., Fall 1992.

70 The X Window System Administrator's Guide

Security

Because X runs in a networked environment, it's particularly important that

administrators be aware of its security lapses and how to reduce the risks of

running X. This chapter discusses security issues as they relate to X.

In This Chapter:

Host-based Access Control 74

The/etc/Xn.hosts File 74

The xhost Client 75

Problems with Host-based Access Control 76

Access Control with MIT-MAGIC-COOKIE-1 77

Using MIT-MAGIC-COOKIE-1 with xdm 78

Thexauth Program 79

Using MIT-MAGIC-COOKIE-1 with xinit 81

xauth vs. xhost 82

The XDM-AUTHORIZATION-1 Mechanism (R5) 83

TheSUN-DES-1 Mechanism (R5) 84

Public Key Encryption 85

Prerequisites for Using SUN-DES-1 86

Using SUN-DES-1 with xdm 88

Using SUN-DES-1 with xinit 89

Adding Another User with SUN-DES-1 91

xterm and SUN-DES-1 92

Troubleshooting SUN-DES-1 92

xterm and Secure Keyboard 93

Other Security Issues 94

The Console xterm (R4 and Earlier) 94

The Console and xdm (R5) 95

Hanging the Server Remotely (R3) 96

Reading the Framebuffer (Sun Workstations) 96

Removing Files in /tmp 97

The Network Design 97

Related Documentation . ..98

4

Security

X runs in a networked environment. Because of X's design, your workstation is no longer

your private preserve but hypothetically can be accessed by any other host on the network. If

you are on the Internet, your display may be accessible world-wide. This is the true meaning

of the server concept: your display can serve clients on any system, and clients on your sys-
tem can display on any other screen.

The possibilities for abuse are considerable. When our office was introduced to XI1, one of

the first things we learned how to do was to play pranks on one another. Call it a "learning

experience"-we became familiar with X by sending prank clients to remote servers: xmelt

to make someone's screen melt away, xsetroot to put a giant bitmap picture of our boss on

someone else's root window, etc. When we got a hold of anything "neat" (e.g., kaleidoscope,

a GIF file of Bart Simpson, a bitmap of Bill the Cat), we fired it off to a friend's display to

amuse him, and then ran down to his office to see his reaction.

If this scares you, it should. Within our office, among our friends, we had no intention of

hurting anyone, and if anyone seemed busy or grouchy we left them alone. But if good inten-
tions were enough, none of us would have passwords for our accounts. Having unlimited

access to someone's display leaves a lot of potential for serious damage. Our pranks involved

clients that the user could see, be amused (or annoyed) by, and then promptly kill. However,

if you can run one client on a display then you can run any other client on that display.

The X Window System design allows any client that successfully connects to the X server to

exercise complete control over the display. This means that clients can take over the mouse

or the keyboard, send keystrokes to other applications, or even kill the windows associated

with other clients.

It is difficult to make X completely secure. However, there are four access control mecha-
nisms, one host-based and three user-based. The host-based scheme involve a system file

(letclXn.hosts) and can be controlled using the xhost client. The user-based schemes involve

authorization capabilities provided by the xauth program and by the X Display Manager

Control Protocol (XDMCP). There is also a "secure keyboard" feature in the xterm terminal

emulator that can provide protection against some problems.

Security 73

4.1 Host-based Access Control

One way of protecting against unauthorized clients is to use host-based access control, shown

in Figure 4-1. The way this works for workstations is that, by default, the server running on

the local workstation only accepts clients that are running on that workstation. For example,

the local display sapphire: 0, which runs on the console of the host sapphire, would only

accept clients started on sapphire.

For the local display server of a workstation, the list of hosts that can send clients to display

on sapphire:0 can be supplemented by adding a hostname to the letclXn.hosts file (where n is

the number of the display), or by using the xhost client. Many X terminals also support host-

based access control (sometimes called "TCP/IP access control"), with the list of hosts speci-
fied on the setup menu or uploaded via remote configuration from the host.

Hosts

opal.ora.com

sapphire.ora.com

ccavax.camb.com

Network

OK

Client Program

X server

sapphire:0 0 Client Program

Denied

Figure 4-1. Host-based access control

4.1.1 The /etc/Xn.hosts File

The /etc/Xn.hosts file contains a list of systems that are allowed to access local server n. On

most workstations, only one server runs at a time, so letclXO.hosts is the only file you need to

be concerned with. This list of hosts is read by the server at startup time. The letc/XO.hosts

file can be edited so that it contains the list of systems you want to allow access to your

server on a regular basis. For example, the file letclXO.hosts on the host sapphire might con-
tain the following:

opal.ora.con

sapphire.ora.com

ccavax.canto.com

74 X Window System Administrator's Guide

(The letclXO.hosts file is not included in any default configurations of XI1, but needs to be

created by the system administrator.)

In this example, the local server sapphire: 0 can be accessed by the hosts named opal and

sapphire in the ora.com domain, and ccavax in the camb.com domain. (Hosts in the current

domain do not require the domain name suffix, but it's a good practice to always use fully-

qualified domain names, to prevent a machine named opal in another domain from connect-
ing to the server.) If you try sending a client to the sapphire display from a host not on that

list, the client will be rejected:

lmui@ruby % hostname

ruby

linui@ruby % xterm -display sapphire: 0

Xlib: connection to "sapphire:0.0" refused by server

Xlib: Client is not authorized to connect to Server

Error: Can't Open display

Note that hardcoding hosts into letclXn.hosts makes sense only for workstations used by a

single user, since the list of hosts you want to enable access from is likely to be user-specific.

If a workstation is in a public area and is used by many different users, then the host access

list is likely to change, and only the administrator should be able to edit letclXn.hosts.

X terminals that support host-based access control have the hostnames manually added to an

access control list on the setup menu. See your X terminal's documentation for details.

4.1.2 The xhost Client

To supplement the letclXn.hosts file, the xhost client can be used to give (or deny) systems

access to the server interactively. To use the xhost client to add ruby.ora.com to the list of

hosts that can display to sapphire: 0, you have to run xhost in an xterm window running

on sapp hire:

lmui@sapphire 87% xhost +ruby.ora.com

ruby added to access control list

The sapphire :0 display will now be able to display clients from ruby in the domain

ora.com.

You can only run xhost from a window displaying on the server in question. If you try run-
ning xhost from a remote display, you get the error:

xhost: must be on local machine to add or remove hosts.

Specifying a hostname with an optional leading plus sign (+) allows the host to access the

server, and specifying a hostname with a leading minus sign (-) prevents a previously

allowed host from accessing the server. (Note that removing a host applies only to future

requests from clients to the display-it's too late to stop any clients that are already con-
nected.) Multiple hosts can be specified on the same line. Running xhost without any argu-
ments prints the current hosts that are allowed access to your display.

To allow access to the local display from all hosts, enter:

% xhost +

Security 75

Needless to say, we strongly discourage you from doing this.

You can use the xhost client to.enable access from a specific host only long enough to start up

clients from that host, and then disable access immediately. For example, a script might do

something like this:

xhost +sapphire

rsh sapphire xterm -display reno:0

sleep 15

xhost -sapphire

You can also use the remote host's IP address instead of the hostname.

% xhost +140.186.65.13

The IP address is useful when the remote hostname isn't known to the name server. (The

name server translates domain names into IP addresses.) Also, in the rare case when a host is

on two different networks and has two different IP addresses, xhost may get confused. You

might have to explicitly specify the IP address the host uses on the current network. (The

better solution is to fix the problem for good, by re-linking X with updated resolver libraries;

but in the interim, using the direct IP address may do the trick.)

If the above description left you in the dark-if you don't know name servers from X

servers, and IP addresses are greek to you-consult the Nutshell Handbook TCP/IP Network

Administration by Craig Hunt (O'Reilly & Associates, 1992).

4.1.3 Problems with Host-based Access Control

Host-based access control is better than nothing, but it has some basic conceptual problems

that make it insufficient for true security. One problem is that, while the primary reason for

denying a remote system access to your display is to prevent a person working on the remote

system from displaying on your server, this also prevents you from running clients from that

remote system on your display. So you have to deny yourself functionality in order to deny it

to others.

The main problem with host-based access control, however, is that it's easy to get around.

It's a great idea if workstations are really single-user machines, where only the person who

actually uses a given host has an account on it. But on today's UNIX networks, you are proba-
bly running yellow pages (NIS) to simplify account allocation and file permission issues. On

these networks, as long as a prankster has an account on one of the hosts you do allow access

from, xhost provides no protection. Any user with an account on your machine (or any other

host your server allows access to) can access your display.

On an X terminal, host-based access control makes even less sense. X terminals are depen-
dent on a host to run almost all of its clients. That host is often a compute server used to sup-
port several other X terminals as well. So X terminals that support host-based access control

generally need to list a host with many other users on it, meaning that all those users can

access each others' displays. This is still better than nothing, but definitely not secure.

If you're running Secure RPC, you can use the SUN-DES-1 method of security and use xhost

to give access to a particular user in a given domain, such as "xhost +dave@ora. com."

This is really the best way to control access to a server, since it is entirely user-based. Not all

76 X Window System Administrator's Guide

machines support Secure RFC, however. See Section 4.4 for more information on SUN-

DES-1.

4.2 Access Control with MIT-MAGIC-COOKIE-1

With Release 4 of XI1, a user-based access control mechanism can be used to supplement or

replace host-based access control. User-based access control is built into the XDM Control

Protocol (XDMCP), but it can be used independently of xdm. In Section 4.2.3, we show how

you can use it with xinit. In addition, it is automatically enabled when the openwin server is

started under OpenWindows.

The most common method of user-based access control (and the only one available under

R4) is a mechanism known as MIT-MAGIC-COOKIE-1. This scheme might be called permis-
sion-based rather than user-based, since it depends on UNIX file permission more than any-
thing.

If both the host and the X server are configured to use MIT-MAGIC-COOKIE-1, then when you

log in using xdm, a machine-readable code is put in a file called .Xauthority in your home

directory, belonging to you. This is shown in Figure 4-2. This code, called a magic cookie, is

also told to the server. The magic cookie code can be thought of as a password known only

to the server and to the user who logs in using xdm. Users don't have to actually type the

code at any point, they just need to be able to run the programs that manipulate it.

Network Host

WOMIT-MAGIC-COOKIE567.. #A#OMIT-MAGIC-COOKIE567..

/home/fred/.Xauthority

X server

Figure 4-2. XDMCP and the access code

Once the code is established for that X session, a client must present the code before it is

allowed to connect to the server. The client gets the code by reading the .Xauthority file in

the user's home directory. This file has the permissions "-rw ", meaning that it can

be read and written only by the owner. The MIT-MAGIC-COOKIE-1 mechanism therefore

takes advantage of the fact that all processes started by a user inherit that user's permissions.

Figure 4-3 shows a user who does not have access to the code being rejected.

Security 77

Access Code

#A#OMIT-MAGIC-COOKIE567.

Network Host

OK

/home/fred/.Xauthority

#A#OMIT-MAG IC-COOKIE567..

X server

Client 2 /home/bob/.Xauthority

Denied

Figure 4-3. User-based access control

Since this type of access control is based entirely on UNIX file permissions, it is only as

secure as the user's account-if you don't have a password, for example, it's totally useless

since anyone can log in as you and then do whatever they want to your server.

User-based access control is clearly more secure than host-based access control, but it

depends on the server being programmed to take advantage of it. Not all X terminals are cap-
able of using the magic cookie. Furthermore, magic cookie-type access control is tightly

bound to the operating system, which is not in the spirit of X.

4.2.1 Using MIT-MAGIC-COOKIE-1 with xdm

In Chapter 3, we discussed the resources for xdm specified in the xdm-config file. In addition

to pointers to several special files, the xdm-config file contains these resource specifications:

DisplayManager._0.authorize: true

DisplayManager*authorize: false

The first resource specification turns on authorization for the local display. The second one

turns the scheme off on all other displays. To turn authorization on for any other servers that

are connected to the host, change the second resource definition:

DisplayManager*authorize: true

xdm is probably configured to reread the configuration file on its own (by setting the

Display-Manager .autoRescan resource, which is on by default), but if not, you can

send xdm a SIGHUP so it will reread its configuration file:

root* kill -HUP Ncat /usr/lib/Xll/xdm/xdm-pi<r

78 X Window System Administrator's Guide

In addition to this, some X terminals need to be explicitly configured to use MIT-MAGIC-

COOKIE-1. See your X terminal's documentation for more information.

4.2.2 The xauth Program

A problem with user-based access control is that it relies on all your clients having access to

the magic cookie. This is reasonable to expect if you run all your clients on the same host or

if your home directory is shared (for example, using NFS or AFS) across all the hosts you run

clients on. Since all the necessary information is in your $HOMEl.Xauthority file, you can

access your server from all hosts with the same shared home directory. But what about the

situation when you want to run clients from a host that does not have a shared home

directory?

The solution is a program called xauth, used to propagate the magic cookie from one host to

another. The most common use for xauth is to extract a user's authorization information for

the current display, copy it to another machine, and merge it into the $HOMEi'.Xauthority file

on the remote machine, as shown in Figure 4-4. From a host where the user already has the

magic cookie listed, this can be accomplished with the following command line:

% xauth extract - $DISPLAY I rsh remotehost xauth merge -

For example, to share the authorization information for the reno: 0 display with your user

account on the host ruby, type:

% xauth extract - reno:0 I rsh ruby xauth merge -

The extract function takes the magic cookie from the .Xauthority file in your home directory

on reno. Since you may be logged on at several different displays at once, you need to spec-
ify which display you want to extract the magic cookie for. In the example above, we want to

extract the magic cookie for the local display server, reno:0. By using a dash (-), the

magic cookie is written to standard output.

The xrsh Command

If you run remote clients using the xrsh shell script provided in the R5 contriblcli-

entslxrsh directory, xauth is automatically run to propagate the magic cookie code to the

remote machine before the remote client is started. For example:

% xrsh -auth xauth ruby xterm

starts up xterm on the host ruby after first using xauth to transfer the cookie.

If you use host-based access control, xrsh can also give the remote host access to the

server. This is the default behavior:

% xrsh -auth xhost ruby xterm

You can also set the XRSH_AUTH_TYPE environment variable to specify which type of

authorization you need enabled for the remote host. The default behavior is for xhost

authorization.

Security 79

Access Code

#A#OMIT-MAGIC-COOKIE567.

Network Hosfl

xauth extract - reno:0 "j H /home/fred/.Xauthority |[

X server

"reno:0" Host 2

xauth merge - /usrl/fred/.Xauthority

F/gure 4-4. Propagating the magic cookie between two hosts

The xauth merge function accepts magic cookie codes from the specified file-in this case,

from standard input. It then merges that information into the $HOMEl'.Xauthority file on that

system.

Since only you have access to the magic cookie for your server, only you can successfully

run xauth to send that code to another host.

Particularly picky readers might point out that technically, xauth is not a client program since

it never contacts the X server itself, but is simply used to manipulate the .Xauthority file.

Our examples so far have only shown how to use xauth to extract the magic cookie code from

a local machine and merge it into a remote one. But it's just as easy to do it the other way

around. In the following example, we rlogin to a machine called rock, try to run an xterm

window, and when we are rejected we simply copy the magic cookie and try again. Note that

as far as the shell is concerned, reno is now the remote machine and rock is the local one, so

rsh needs to be called on the xauth extract command.

lmui@reno 79% rlogin rock

Last login: Fri Sep 18 07:27:17 from ruby.ora.con

SunOS Release 4.1.2 (ROCK) #1: Fri Sep 11 17:56:56 PDT 1992

lmui@rock % xterm -display reno:0

Xlib: connection to "reno:0.0" refused by server

Xlib: Client is not authorized to connect to Server

Error: Can't open display: reno:0

lmui@rock % rsh reno xauth extract - reno:0 I xauth merge -

lmui@rock % xterm -display reno:0 &

(client runs successfully)

It's also possible to copy a code from one host to another from an uninvolved third host, but

it's hard to come up with a circumstance in which you'd need to do that.

80 X Window System Administrator's Guide

Note that since xauth depends on using rsh, it requires that you have set up either

$HOMEI.rhosts or /etc/hosts.equiv on the remote machine to permit the remote shell com-
mand. If you get a "Permission denied." error, it's because your account on the

remote system isn't configured to allow remote commands from the local system, not because

of any problem with X. See Section 2.3.4.1 for more information.

4.2.3 Using MIT-MAGIC-COOKIE-1 with xinit

Although MIT-MAGIC-COOKIE-1 is designed to be used with XDMCP, you can use the xauth

program directly to use the magic cookie with an X session started with xinit.

You have to do some extra work in order to use user-based access control with xinit, how-

ever. When using security on the console display server, xdm is nice enough to generate a

unique magic cookie code for you, put it in $HOME/.Xauthority, and then start up the X

server with the -auth $HOMEi.Xauthority option. This tells a R4- or R5-compatible server to

look in $HOMEI.Xauthority for the magic cookie code that xdm just put there. If you're start-
ing X with xinit, you have to do this work yourself.

The first thing you need to do is to generate a magic cookie code and place it in .Xauthority.

To create the magic cookie code, you need to generate a "random" number (or at least one

that's hard to guess). If you have perl installed on your system, you can use perl's random

number generator, as in the following:

randomkey=xperl -e 'srand; printf int(rand(lOOOOOOOOOOOOOOOO))'"

or (for a more robust script):

randomkey="perl -e 'for (1..10) {

srand(time+$$+$seed);

printf(n%4.41xn/ ($seed = int(rand(65536))));

}

print n\nn;'"

The Korn shell (ksh) also has a built-in random number generator, so you can do something

like:

randomkey=vksh -c 'echo $(($RANDCM * $RANDOM * 2))'"

Using standard UNIX tools, you can start with some number that will be different every time

(such as the process ID of the .xserverrc shell, or the output of the date command), and then

convert it into something unrecognizable. Just using date (if your date command supports

this syntax), you might do something like:

randomkey=" date +" %y%m%d%H%M%S""

Using the process ID, you might disguise it by passing it through the be command:

randomkey=vecho "{obase=16;$$^3}" I be"

Whichever method you use, apply the key to xauth to add it to the .Xauthority file:

randomkey=x your favorite random number generation scheme here"

xauth add ${HOST}/unix:0 . $randomkey

xauth add ${HOST}:0 . $randomkey

Security 81

The add keyword to xauth tells it to add the given code for the given server into the

Xauthority file. Note that you need two entries: the first adds the key for the server under the

IPC name of unix: 0, and the second adds the key for the server under the TCP/IP name

hostname: 0. If you access your server as localhost: 0, you might want to add an entry

for that too. (See Section 2.3.1 for information on display names.) Note that the screen num-
ber that is often found in display names is omitted, since access control for a given server

covers all screens for that server.

The lone period (.) in the xauth command line signifies that the default protocol, MIT-

MAGIC-COOKIE-1, should be used.

Once you have added the new code to $HOME/.Xauthority, you need to start up the X server

using the code. For example:

% xinit -- /usr/bin/Xll/X -auth $HOME/.Xauthority

If you'd like xinit to do all of this automatically, you can combine the steps into your

.xserverrc file:

#!/bin/sh

Get hostname

HOST="hostname"

Create new magic cookie key

randomkey=" perl -e 'srand; printf int(rand(lOOOOOOOOOOOOOOOOO))'"

Add new magic cookie key into .Xauthority

xauth add ${HOST}/unix:0 . $randomkey

xauth add ${HOST}:0 . $randomkey

Start the X server with authorization turned on

exec /usr/bin/Xll/X -auth $HOME/.Xauthority

4.2.4 xauth vs. xhost

User-based access control is overridden by host-based access control. For example, if you

add the host ruby to the list of hosts that are allowed access to your server, every user on ruby

will be able to access your server regardless of whether you use user-based access control as

well. For that reason, you generally want to make sure that no hosts are listed on your access

control list. If you enable xauth-type user-based access control, you should confirm that host-

based access control is set up to restrict access from all hosts.

% xhost

access control enabled, only authorized clients can connect

harry.ora.com

ruby.ora.com

opal.ora.com

As shown above, three hosts are allowed access to your server. That means that any user-

based access control you have enabled is close to pointless. If you have hosts specified in the

/etc/XO.hosts file, you need to remove hosts from that file. You can also remove hosts you

have added to the access control list with xhost + by using xhost -:

82 X Window System Administrator's Guide

% xhost -

access control enabled, only authorized clients can connect

To verify that all access from all hosts has been disallowed, call xhost with no arguments:

% xhost

access control enabled, only authorized clients can connect

Now, only clients with access to the magic cookie in $HOMEI.Xauthority can connect to your

server.

Some X terminals that support the magic cookie scheme also support host-based access con-
trol, and allow you to enable or disable it via the setup menu. This can be confusing. You

might think that you want to disable host-based access control (since you'll be using user-

based access control). However, disabling host-based access control may effectively allow all

hosts access to your server, equivalent to doing an xhost +. For these X terminals, you want to

enable host-based access control, but make sure that the access control list is empty. To make

sure the access control list is empty, you may have to explicitly place an xhost - in your

.xsession script for X terminals supporting both host-based and user-based access control.

Access Control and Commercial X Servers

Most X terminals and PC X servers support XDMCP, but that doesn't necessarily mean

that they support MIT-MAGIC-COOKIE-1. You should contact the manufacturer or

consult the documentation to determine if the server uses the magic cookie. Many

servers running on X terminals and PCs also provide their own access control features,

mostly host-based access, although some (like MacX) can be configured so that any cli-
ent requesting access to the server needs to be approved on the display. How this fits

into user-based access control is dependent on the manufacturer.

4.3 The XDM-AUTHORIZATION-1 Mechanism (R5)

X11R5 provides two new schemes for display access control: XDM-AUTHORIZATION-1 and

SUN-DES-1. These are designed to be used in place of MIT-MAGIC-COOKIE-1, and are more

secure than MIT-MAGIC-COOKIE-l since they encrypt the authorization code as it is

transferred across the network.

The XDM-AUTHORIZATION-1 method of access control is similar to MIT-MAGIC-COOKIE-1.

The advantage it gives is that it uses DES (Data Encryption Standard) encryption, so it can-
not be "snooped" over the network.

Because of export restrictions, xdm is built without the DES encryption code enabled by

default, and hence without XDM-AUTHORIZATION-1 support. To be able to support XDM-

Security 83

AUTHORIZATION-1, you need to build xdm with the implementation of DES in

mitlliblXdmcplWraphelp.c* You should also make sure that the HasXdmAuth build flag is

set to YES. See Section A.2 for information on how to ftp a file.

Once you are sure that xdm supports XDM-AUTHORIZATION-1, you can enable it on the local

display server by simply redefining the Display-Manager ._0 . authName resource in the

xdm-config file. (By default, the MIT-MAGIC-COOKIE-1 mechanism is used.) The autho-
rize resource must also be turned on.

DisplayManager*authorize: true

DisplayManager ._0. authName: XEM-AUTHORIZATION-1

Note that we only redefined the authName resource for the local display, : 0. At this writ-
ing, no X terminals support this mechanism.! The authName resource actually accepts a

list of authorization schemes which xdm will use in order, so you could also just set the fol-
lowing global resource:

DisplayManager*authName: XEM-AUTHORIZATION-1 MIT-M&GIC-COOKIE-1

After the xdm-config file is reread by xdm, xdm will use XDM-AUTHORIZATION-1 for the

local display server. As with MIT-MAGIC-COOKIE-1, the server is started with the -auth

option and the code is placed in the .Xauthority file. In this case, however, the code consists

of two parts, a 56-bit encryption key and 64 bits of random data.

Once you log in using xdm and XDM-AUTHORIZATION-1, check that you're using access

control properly with xauth list:

eap % xauth list

nugget .west.ora.com:0 XEM-AUTHORIZATION-1 bd4dc546c869a81f00979e36956f6c95

nugget/unix:0 XEM-AUTHORIZATION-1 bd4dc546c869a81f00979e36956f6c95

Note that XDM-AUTHORIZATION-1 is only available for X sessions that are managed by xdm.

4.4 The SUN-DES-1 Mechanism (R5)

The SUN-DES-1 server access control scheme uses the Data Encryption Standard (DES) for

encryption of authorization data. This scheme uses Sun's Secure RFC to pass authorization

data across the network, and it uses NIS to maintain a database across the network. DES

code has export restrictions, so it may not appear on systems outside of the U.S.

Since SUN-DES-1 uses Secure RFC, you need to have Secure RFC installed before you can

use it. Secure RFC, in turn, requires NIS (Network Information System).

* If this file does not appear in your distribution but you can legally use it, you can get it via ftp from ex-
port.lcs.mit.edu. The procedure is a little convoluted; see the file publRS/xdm-auth/README for information on how

to obtain and incorporate the DES code.

t If the X terminals initiate the connection using XDMCP, they will ignore the authName resource anyway. This re-
source is only used for X servers that are listed in the Xservers file. When the XDMCP connection is initiated from

the server side, xdm uses whatever authorization mechanism the server specifies at initiation.

84 X Window System Administrator's Guide

SUN-DES-1 gives you true user-based access control. Unlike the magic cookie and XDM-

AUTHORIZATION schemes, the entire mechanism does not rely on the security of the

Xauthority file. You have to explicitly use the xhost command to add specific users to the list

of users who can access your display. This gives you a degree of specificity that is unavail-
able under the other schemes.

4.4.1 Public Key Encryption

Before you can set yourself up to use SUN-DES-1, you need to understand a little about how

Secure RFC works.

Secure RFC is a system that uses both a public key and a private key. It uses a principal to

identify an instance of a user. The principal is composed of the word unix combined with a

user ID and the name of the current NIS domain:

unix. <uid>@<NIS domain>

If the NIS domain is omitted, the current domain is assumed. If you do not know your user

ID, use the ypmatch command:

% ypmatch eap passwd

eap:zVxoeuDSWpyOG:243:100:Eric Pearce:/home/eap:/bin/tcsh

The user ID is the third field of the passwd entry. In this example, our user ID is 243. If you

need to learn the NIS domain name, use the domainname command. Note that although the

NIS domain may be the same as the Internet domain, they are not related and do not neces-
sarily correspond.

% domainname

west

So in this example, the principal for user eap in the current domain would be:

unix.243@west

Or, since the current domain is the default:

unix.243@

A special case is the principal for root. The principal for root uses the hostname in place of

the user ID. For example, on the machine nugget, the principal for root is:

unix.nugget @west

The principal is stored with a public key in the public key database. The public key is truly

"public"-take a look at the file letc/publickey, which is world-readable:

#

Sun Public Key Database

#

To add an entry to this file, an administrator should use the NIS command

"newkey" on the Network Information Services master machine.

#

Users can also insert their own entries into this file using the chkey

command. Commenting out the "nobody" entry below disallows this feature,

and chkey will only allow users to change their existing entry, not create

Security 85

a new one.

g

nobody C3d91f44568fbbefada50d336d9bd67bl6e7016f987bb607:7675cd9b8753b5db09da

bfl2da759c2bd!331c927bb322861fffb54bel3f55e9

unix.243@west 348088b7430e213d8a253d2959cecb927b9b26c829c30a43:c6eb324ed85de

e5f47d936f81d4e!98504482e9dc415389ebabl848555b38e76

unix.206@west 18ebefbOee5fdcfa6ea6deab6fef48b0495064ea39f4f86b:6471489f26949

4cabefcc8924f8d26343dd5a89a81bc3e9a6bcfa30cc85604e3

This file contains a list of principals and public keys. It is maintained in the NIS map pub-

lickey.byname. You can look at it on NIS clients using ypmatch:

% ypmatch unix.243@west publickey.byname

348088b7430e213d8a253d2959cecb927b9b26c829c30a43:c6eb324ed85dee5f47d936f81d4

el98504482e9dc415389ebabl848555b38e76

Each user of the public key system has an entry in this file.

The SUN-DES-1 scheme generates a private key using the public key and your login pass-
word. In order to use the Secure RFC system, you must create a public key at least once. The

public key can be created by an unprivileged user using the chkey command, or by root using

the newkey command. The private key is generated every time you log in and type your pass-
word. If you can log in without typing a password (via .rhosts or /etc/hosts.equiv), you

should generate a private key using the keylogin command.

4.4.2 Prerequisites for Using SUN-DES-1

Before you can use SUN-DES-1, you have to meet a series of requirements.

" In recent versions of SunOS, the DES code is not included in the base operating system

and must be added by the administrator. If you are not sure if you have the encryption

software, try looking for the crypt command. Systems with Secure RFC should have

crypt installed:

% which crypt

/bin/crypt

Systems without the DES software do not have crypt installed:

% which crypt

crypt: Command not found.

If you do not have DES installed, order the "Encryption Kit" from your OS vendor.

" You need to have built the X distribution with the HasSecureRPC flag set to YES. This

is the default for the mit/config/sun.cffile:

#define HasSecureRPC YES

" NIS must be installed and running. If you are not sure if NIS is running, try an NIS com-
mand. Systems running NIS should return a hostname from the ypwhich command:

% ypwhich

ruby

86 X Window System Administrator's Guide

Systems not running NIS will complain that ypbind isn't running:

% ypwhich

ypwhich: bigbird is not running ypbind

For information on NIS, see Managing NFS and NIS by Hal Stern (O'Reilly & Associ-
ates, 1991).

" The private key server, keyserv, must be running. This is usually started at system startup

in /etc/re or /etc/re.local. Use the ps command to confirm that it is running:

% ps agx I grep keyserv I grep -v grep

74 ? IW 0:01 keyserv

" Each user of the Secure RFC system should have a unique public key entry. You can

have each user to do this on their own using chkey:

% chkey

Generating new key for unix.243@west.

Password:

Sending key change request to nugget...

Done.

or the system administrator can create public keys for users with the newkey command:

newkey -u eap

Adding new key for unix.243@west.

New password:

Retype password:

Please wait for the database to get updated...

Your new key has been successfully stored away.

You can also create a new public key for root on a given host using newkey:

newkey -h nugget

Adding new key for unix.nugget.west.ora.comSwest.

New password:

Retype password:

Please wait for the database to get updated...

Your new key has been successfully stored away.

" You must propagate the public key information from NIS clients to the NIS master when

you add or change a public key on the client. If you are running the rpc.ypupdated dae-
mon, this will be done automatically. To see if the daemon is running:

% ps agx I grep rpc.ypupdated I grep -v grep

70 ? IW 0:00 /usr/etc/rpc.ypupdated

If you do not run rpc.ypupdated, chkey and newkey will not automatically update the pub-
lic key map on the NIS master. If you have root permission on the NIS master machine,

you can push the NIS map for publickey.byname on the NIS master manually:

cd /var/yp

make

Security 87

It might be easier, however, to just enable rpc.ypupdated. You can make sure it will be

enabled at the next reboot by adding it to letclrc.local:

if [-f /usr/etc/rpc.ypupdated -a -d /var/yp/$dname]; then

rpc.ypupdated; echo -n ' ypupdated'

fi

Or you can uncomment it from letclinetd.conf:

ypupdated/1 stream rpc/tcp wait root /usr/etc/rpc.ypupdated rpc.ypupdated

and kill -HUP inetd so it will be enabled right away:

ps agx I grep inetd I grep -v grep

197 ? IW 2:24 inetd

kill -HUP 197

You can use the SUN-DES-1 scheme only after you have an entry for your principal in the

NIS master's public key map. This is also true for anybody else that wants to connect to

your X server.

4.4.3 Using SUN-DES-1 with xdm

Once you have confirmed that SUN-DES-1 works on your machine, you can set up xdm to use

it on the local console display server the same way you set up xdm to use XDM-AUTHORIZA-
TION-1 as shown in Section 4.3.

Make sure that the authorize resource is turned on and then redefine the Display-

Manager ._0 . authName resource for the local display only:

Di splayManager*authori ze: true

DisplayManager._0.authName: SUN-DES-1

When you next connect, xdm will set up the server for SUN-DES-1. After logging in, check

using xhost:

eap % xhost

access control enabled, only authorized clients can connect

eap@ (unix.243@west)

unix.nugget@west

Note that not only are you listed under the xhost list, but so is the principal for root on nug-
get, unix. nugget ©west. The first line indicates the user with user ID 243 can connect to

the server from any host within the NIS domain west. The second line indicates that root on

nugget can connect. Don't remove the root principal from the xhost listing, since you'll need

it if you want to run any setuid clients, such as xterm. See Section 4.4.6 for more information.

If you do an xauth list, you'll see this special root principal listed again:

eap % xauth list

nugget.west.ora.com:0 SUN-DES-1 unix.nugget©west

nugget/unixrO SUN-DES-1 unix.nugget@west

xdm is run as root, and xdm is responsible for starting the server. Since the server is started as

root, root is considered the "owner" of the server.

88 X Window System Administrator's Guide

4.4.4 Using SUN-DES-1 with xinit

As with MIT-MAGIC-COOKIE-1, you need to do a little of the dirty work yourself if you want

to use SUN-DES-1 with xinit. First we'll show the procedure by hand, and then we'll show

how to automate it using .xinitrc. This example is on a machine with a local display named

nugget. User cap has a user ID of 243, and the NIS domain name is west.

1. Start with a clean .Xauthority file:

nugget% rm -f .Xauthority

2. Create an entry for each type of connection from your host to your server. Use xauth with

SUN-DES-1, with the syntax:

xauth add <display> SUN-DES-1 unix.<uid>@<domain>

Give yourself permission to the machine using both its TCP/IP address and its IPC

address:

nugget% xauth add nugget:0 SUN-DES-1 unix.243@west

xauth: creating new authority file /home/eap/.Xauthority

nugget% xauth add nugget/unix:0 SUN-DES-1 unix.243@west

nugget% xauth list

nugget.west.ora.com:0 SUN-DES-1 unix.243@west

nugget/unix:0 SUN-DES-1 unix.243@west

3. Start the server with the .Xauthority file just created:

nugget% xinit -- -auth ~/.Xauthority

When the server is up and running, check who has access by using the xhost command:

nugget% xhost

access control enabled, only authorized clients can connect

nugget.west.ora.com

localhost

The hosts list has the local machine listed by default, both by its hostname and by localhost.

Using the xhost command, you need to give yourself permission to your server. If you want to

be able to run xterm clients (or any other setuid clients) from the local host, you also have to

give permission to root (see Section 4.4.6 for an explanation of why root needs to be on your

access control list). You then need to remove the other entries. The syntax for giving a user

permission is:

xhost +username@domain

The domain field can be left empty if it is the current NIS domain. Give both yourself and

root permission to access the server. Note that when giving permission to root, you have to

use the root principal for that machine (unix. hostnameQdomain), not root@.

nugget% xhost +eap@ +unix.nugget@west

eap@ (unix.243@west) being added to access control list

unix.nugget©west being added to access control list

Security 89

Then remove permission from the entire host:

nugget% xhost -nugget.west.ora.com -localhost

nugget.west.ora.con being removed from access control list

localhost being removed from access control list

This ensures that only user cap in the current NIS domain and root on the host named nugget

can connect to your server.

Note that since the .Xauthority file only contains information about the principal that started

the server, the SUN-DES-1 security method does not depend on the security of the Xauthority

file. Unlike the MIT-MAGIC-COOKIE-1 and XDM-AUTHORIZATION-1 methods, if other users

gain read access to your .Xauthority file, they still can't access your server unless you expli-
citly grant them access with xhost.

To automate this process, you need to edit your .xinitrc script.

#!/bin/sh

Get user ID:

uid=xypmatch ${USER} passwd.byname I awk -F: '{print $3}'"

Get hostname:

host=% hostname"

domain=v domainname"

Get principal:

princ ipal=unix.${uid}@${domain}

Add entries to .Xauthority file:

xauth add ${host}:0 SUN-DES-1 ${principal}

xauth add ${host}/unix:0 SUN-DES-1 ${principal}

Add permission to self, remove permission from entire host:

xhost +${USER}@ +unix.${host}@${domain} -${host} -localhost

Start some clients:

twm &

xterm &

When you start the server with xinit, this will set up your workstation display and prepare it

for SUN-DES-1 use.

Note that a private key is automatically generated only when you log in with your password.

If you log in without typing your password, you need to run the keylogin command to gener-
ate a new private key:

% keylogin

Password:

You might need to do this if you can remotely log into a machine because of entries in

$HOMEI.rhosts or /etc/hosts.equiv.

90 X Window System Administrator's Guide

4.4.5 Adding Another User with SUN-DES-1

To allow another user to connect to your host using SUN-DES-1 security, you have to run

xhost to give the remote user access, and the remote user also has to run xauth to place an

entry for that server in their .Xauthority file.

For this example, user cathyr on the host rock in the NIS domain west wants to connect to

the host nugget in the same NIS domain, where user cap is currently running a server.

1. User eap has to give cathyr permission to access the server using xhost:

nugget% xhost +cathyr@

cathyr@ (unix.206@west) being added to access control list

nugget% xhost

cathyr© (unix.206@west)

eap@ (unix.243@west)

unix. nugget@west

2. User cathyr has to create an .Xauthority file entry with the server she wants to connect to

(nugget) and the principal of the user running the server:

rock% xauth add nugget:0 SUN-DES-1 unix.nugget@west

Note that this means that cathyr needs to know which user is running the server, and she

needs to know that user's principal. In this case, the server was started using xdm, so it

belongs to root, cathyr therefore needs to add root's principal, not cap's.

3. cathyr should now be able to connect to nuggefs X server:

ruby% xroach -display nugget.west.ora.com:0 &

Something went wrong if cathyr gets the following error:

Xlib: connection to "nugget:0.0" refused by server

Xlib: Client is not authorized to connect to Server

Error: Can't open display: nugget:0

You might want to run X clients from a host in another NIS domain. The first complication is

that if you're in another NIS domain, it's harder to find out what principal to use in the xauth

command line. If the server was started with xdm, then you can use root's principal; but if

the server was started with xinit then you have to do some research.

If cathyr is in the same NIS domain (as in the example above), she can figure out what prin-
cipal to use with only a little bit of detective work. She can just see who owns Idevlconsole,

and use ypmatch and domainname to figure out that user's principal. If cathyr were in a

remote domain, however, she would have to be able to run a remote shell to the local host to

get that information:

ruby% rsh nugget Is -1 /dev/console

crw-w-w- 1 eap 0, 0 Sep 3 15:56 /dev/console

ruby% rsh nugget ypmatch eap passwd

eap:XZ70EUd8wjYgo:243 :100:Eric Pearce:/home/eap:/bin/tcsh

ruby% rsh nugget domainname

west

or she would be dependent on eap to tell her that information.

Security 91

If you have accounts on machines in different NIS domains, you may want to display clients

running on the remote machine to your local server. You need to run xauth (using the local

principal) on the host you want to run client on, and you need to add yourself to the xhost list

again, using the remote domain name. On the remote machine:

ruby% xauth add nugget:0 SUN-DES-1 unix.nugget&west

And on the local machine running the server:

nugget% xhost +eap@east

eap@east being added to access control list

Note that when you add a user for a remote domain, xhost doesn't know that user's ID and

doesn't repeat it.

4.4.6 xterm and SUN-DES-1

A known problem with using the SUN-DES-1 mechanism and setuid clients (such as xterm) is

that setuid clients use the wrong principal. Clients like xterm that are setuid to root try to

connect with the root principal:

unix.nugget@west

instead of with the user's principal:

unix.243@

If you start your X session using xdm, the root principal is given access automatically, so an

xterm will be able connect to the server. If you start your X session using xinit, however, you

need to explicitly add root to your xhost list or you won't be able to run any xterm clients.

Note that this means that if you can run an xterm to your server, so can anyone else on the

same host as long as you have the root principal listed in the xhost access list. This also

means that if you want to run an xterm client from a remote host, you have to add the root

principal for that machine to your xhost list as well.

% xhost +unix.rock@ +unix.ruby^ora.com

4.4.7 Troubleshooting SUN-DES-1

The SUN-DES-1 scheme is pretty complicated compared to the other security schemes.

There's lots of potential for user errors, especially when creating entries with xauth. The dae-
mons used in the process will also cause problems if they are not set up correctly. Some

errors you may encounter are listed here with suggestions on what may have caused them:

" If you use an incorrect password for the user ID:

% keylogin

Generating new key for unix.243@west.

Password:

Invalid password.

92 X Window System Administrator's Guide

If NIS is not running on the host (in this case, the host is rock):

Sending key change request to rock...

chkey: unable to update NIS database (11): can't communicate with ypserv

rock is down or not running rpc.ypupdated

If Imrletclkeyserv is not running, you might get any of the following errors:

Sending key change request to rock...

chkey: unable to update NIS database(7): local resource allocation failure

I couldn't generate a secure RFC authenticator to rock

The keyserver /usr/etc/keyserv must be running.

You may have to keylogin before doing a before doing a chkey.

If you do not have a key, you may need to get a system

administrator to create an initial key for you with newkey.

The system could be loaded, so you might try this again.

auth_create: Bad file number

Error: Can't open display: nugget:0.0

or:

Could not set unix.243@west's secret key

Maybe the keyserver is down?

" If you are running a (pre-R5) version of xauth that does not know about SUN-DES-1:

xauth: (argv):1: key contains odd number of or non-hex characters

" If you are running a (pre-R5) version of xhost that does not know about SUN-DES-1:

access control enabled (only the following hosts are allowed)

<unknown address in family 254>

If you run a mixed environment with R4 programs as well as R5 programs, make sure you

have the R5 versions of xauth and xhost in your path before the R4 versions. This applies not

only to MIT XI1R4 but also any commercial X distributions that are not yet updated to R5.

4.5 xterm and Secure Keyboard

The xterm client has a Secure Keyboard option that you can enable on the xterm Main

Menu. (You can access the Main Menu by holding down the CTRL key while pressing the

second mouse button.) This feature can be used to prevent others from reading what you

type in that window.

By enabling Secure Keyboard, xterm performs a GrabKeyboard() protocol request. Only

one client can grab the keyboard at a time, so the Secure Keyboard feature can be enabled

only temporarily; however, if you are typing a sensitive document or entering a password in

that xterm window, enabling Secure Keyboard ensures that only xterm is receiving input

directly from the keyboard. By using Secure Keyboard, you can be sure that no other client

can be snooping on what you type.

Security 93

When you enable Secure Keyboard, the xterm window should reverse its colors. If the

colors do not reverse, then xterm was unable to grab the keyboard, and it is very possible

that your display is being snooped.

The Secure Keyboard feature provides some protection against a particular kind of snoop-
ing, but it has many drawbacks. One drawback, of course, is that it is available only using

xterm. Another is that it's a security feature that requires the user's intervention to be

enabled-like a seatbelt, it's only as effective as its users make it. Since it grabs the key-
board, it's annoying to use-you have to disable it every time you want to type in another

client window. And it doesn't protect against taking screendumps of a display, just against

people snooping on keyboard input itself. The big thing it buys you is protection on pass-
words, since passwords are not copied on the display. But the rest of your display is still up

for grabs.

4.6 Other Security Issues

Thus far we've only discussed security issues as far as server access control is concerned. X

has many more security issues, which we discuss briefly here.

4.6.1 The Console xterm (R4 and Earlier)

The -C option to xterm gives the user a console window for the host running the xterm client.

Prior to XI1R5, any user can run an xterm -C regardless of whether they are logged on to the

console.* Furthermore, multiple users can each run xterm -C, and the console messages will

simply display on whichever console window was opened last. This means that the person on

the console display won't receive console messages, and will have no indication that mes-
sages are not being shown.

On some systems, a console window which has been diverted to a foreign server may also

prevent new login sessions on the console display. When an X server started with xinit shuts

down on the console, the login prompt may be diverted to the console xterm window instead

of to the console itself.

There is also a possibility that if root is logged in on the console, users running xterm -C can

get root permission.

For all these reasons, many systems do not support the -C option to xterm. As an alternative,

some systems (such as SCO Open Desktop) have each error message appear in a separate

pop-up window on the console. For getting a diverted console window back, the following C

program may be of use:

/* This will redirect console input and

output back to /dev/console.

*/

#include <fcntl.h>

*For SunOS, you may wish to look at patch 100188-01 that addresses this issue.

94 X Window System Administrator's Guide

ttinclude <sys/termios.h>

main()

{

int fd;

if ((fd = open("/dev/console", 0_REWR, 0)) >= 0)

ioctl (fd, TIOCCONS, 0);

close(fd);

}

If you suspect that the console has been redirected, try compiling this program and running it

as root.

% cc -o console console.c

% su

./console

4.6.2 The Console and xdm (R5)

With Release 5 of XI1, many of the concerns about console ownership have been solved. In

R5, xterm has been adjusted to allow only the owner of Idevlconsole to start up a console

window. Other users are able to run the -C option without receiving an error message, but no

console messages will appear in their window. The R5 solution, however, requires a bit of

fiddling for workstations configured to use xdm on the console display.

When you start X using xinit, you have to first log into the console using getty and login, so

you necessarily own Idevlconsole. When you log in using xdm, however, you bypass the

getty /login mechanisms, so you have to be given ownership of Idevlconsole explicitly. For

that purpose, the default xdm configuration is altered in R5 to define scripts that are run when

a user logs in on the console and when the user logs out again. The xdm-config file specifies:

DisplayManager._0.startup: /usr/lib/Xll/xdm/GiveConsole

DisplayManager._0.reset: /usr/lib/Xll/xdm/TakeConsole

(The _0 means that this resource is used only for xdm sessions on the display named : 0, i.e.,

the console display. See Chapter 3 for more information on configuring xdm.}

Both the GiveConsole and TakeConsole scripts are specified as display-specific resources for

the local console display. The GiveConsole script is specified with the Display-

Manager ._0 .startup resource, which defines a program that is run when the user has

first logged in, but before any other clients are executed. The TakeConsole script is specified

with the DisplayManager ._0 .reset resource, defining a program run after the user

logs out but before a new connection is established. Both scripts are executed as root.

Although all three files are currently shell scripts, they can be any executable file. (Note that

since these scripts are run as root, you should be extremely careful should you choose to edit

them.)

The GiveConsole script in the R5 distribution does a simple chown to give the user owner-
ship of Idevlconsole so that the user might get console messages:

#!/bin/sh

Assign ownership of the console to the invoking user

#

By convention, both xconsole and xterm -C check that the

Security 95

console is owned by the invoking user and is readable before attaching

the console output. This way a random user can invoke xterm -C without

causing serious grief.

#

chown $USER /dev/console

Similarly, the TakeConsole script returns ownership of Idevlconsole to root:

#!/bin/sh

Reassign ownership of the console to root, this should disallow

assignment of console output to any random users's xterm

#

chmod 622 /dev/console

chown root /dev/console

Together, GiveConsole and TakeConsole ensure that the user running xdm on the local

display server can receive console messages.

4.6.3 Hanging the Server Remotely (R3)

In XI1 Release 3, there's a bug where the server looks for a small packet from the client

before it determines whether or not the client is in the xhost list. The server halts operation

until this packet is sent. You can find out if your X server has this problem by running:

% telnet localhost 6000

(6000 is the TCP/IP port used by server 0 on the local host.)

If your X server freezes, then your workstation has this problem. Some servers will time out

after 30 seconds, but others will remain blocked until the telnet connection is closed. Note

that since this freezes your server, it's better not to try this from a window on your local

display!

4.6.4 Reading the Framebuffer (Sun Workstations)

Sun workstations have a special device called a framebuffer, represented by the file Idevlfb.

The framebuffer contains the current image on the console. Sun workstations supply com-
mands, called screendump and screenload, for copying the framebuffer to a file and display-
ing that file, respectively. If someone can log onto your Sun workstation, they can usually

read your framebuffer regardless of any X security you have in place. To view the screen on

one Sun workstation from another, try:

% rsh host screendump | screenload

From any X server, you can use the public domain xloadimage client:

% rsh host screendump I xloadimage

To prevent this, you could try changing the permissions on the framebuffer (i.e., chmod

600 /dev/fb), but this might break other programs and interfere with the functionality of

your workstation. Another possibility might be to make the framebuffer readable by only a

special group and have all commands that access it setgid to that group, similar to how per-
mission to Idevlkmem is restricted to the kmem group.

96 X Window System Administrator's Guide

The best solution is to use the file letc/fbtab to control access to the frame buffer. Uncom-

ment the line that lists the frame buffer:

/dev/console 0600 /dev/fb:/dev/bwoneO:/dev/bwtwoO

and log out completely from the system and then log back in. The frame buffer device will

now be owned and only readable by you, preventing another user from reading it. As long

your account remains secure, your frame buffer should also. See the manual page forfbtab

for more information.

4.6.5 Removing Files in /tmp

Another trick for disrupting the server on a workstation is to remove the files in

ItmplXll-unix. This directory contains a UNIX socket file for each X server running on that

workstation.

% Is -I /tmp/.Xll-unix

srwxrwxrwx 1 littui 0 Apr 27 09:46 XO

This file is the socket descriptor used by X to connect to local server : 0 via IPC. And by

default, everyone has write permission (and thus delete permission) to ItmplXll-unix. So

another trick for perverse users is to delete the XO file on someone else's workstation.

% rsh harry rm /trap/.Xll-unix/XO

The workstation will subsequently be unable to use IPC to start local X clients anymore. That

is, clients will not be able to connect using the display name unix: 0 . 0 or : 0 . 0, but only

via TCP/IP or DECnet.

To protect against the XO file being deleted, turn on the sticky bit for the ItmplXll-unix

directory on systems that support that functionality:

root# chmod 1777 /tmp/.Xll-unix

This will prevent users from deleting files that belong to other users in that directory.

While you're there, you might want to make sure the sticky bit is set for /tmp itself. But note

that setting the sticky bit for I tmp does not set it recursively-you need to explicitly set it for

ItmplXll-unix as well.

On some versions of SunOS, cron automatically removes files in /tmp, including the

XI1-unix/ subdirectory. On those systems, change the cron job to exclude sockets by adding

"! -type s "to the find command line.

4.6.6 The Network Design

Despite all the work in keeping others from interfering with your server or snooping on your

work, the basic security problem is in the very design of XI1: if the client and server are run-
ning on different machines, then they necessarily communicate over the network. This

means that anyone who knows the X protocol and who knows how to snoop over TCP/IP can

follow everything you do over the network, and none of the security mechanisms described

Security 97

in this chapter can prevent them from doing that. The X protocol itself can be encrypted, but

not without a substantial loss in efficiency.

Since new clients are started all the time, the magic cookie code itself is being sent over the

network repeatedly-so even that can be captured, and the snoop will then have direct

access to your display. X11R5 makes DES (Data Encryption Standard) available with both

XDM-AUTHORITY-1 and SUN-DES-1, so that the magic cookie is encrypted across the net-
work; but commercial servers are slow to incorporate DES code, and there are export restric-
tions on DES that make it unavailable outside of the United States.

Several X vendors have implemented the U.S. Government specification on Compartmented

Mode Workstations (CMW), which allows the X workstation to run as a standalone trusted

system. On a CMW, for example, each window has its own security label. (See the Nutshell

Handbook Computer Security Basics by Deborah Russell (O'Reilly & Associates, 1991) for

more information on security labels and trusted systems.) As you would imagine, however,

all bets are off on a networked environment. There are trusted networking specifications

being worked on (such as MaxSix), but X still has a long way to go before it can be consid-
ered secure.

4.7 Related Documentation

"Issues in Building Trusted X Window Systems," by Jeremy Epstein and Jeffrey Picciotto,

published in The X Resource, Issue 0, O'Reilly & Associates, Inc., Fall 1991.

The Xsecurity, xauth, xhost, xterm,fbtab, and xdm manual pages.

"Framework Generic Requirements for X Window System Security, Issue 1," by Maria

Cangelosi and Charles Blauner, published by Bell Communications Research, Inc.

(Bellcore), document number FA-STS-001324, July 1992.

For more information on Secure RFC, see Managing NFS and NIS by Hal Stern (O'Reilly &

Associates, 1991).

98 X Window System Administrator's Guide

Font Management

The fonts used by an application need to be available to every server that

might display it. This chapter discusses the issues with using fonts, installing

new fonts, and converting fonts from other formats. It also discusses the

X11R5 font server.

In This Chapter:

Fonts on the X Window System 101

xlsfonts 103

xfd 103

xfontsel 104

The Font Path 105

The Font Directory File 106

The fonts.scale File (R5 only) 107

Wildcards 108

Aliases 108

The FILE_NAMES_ALIAS Alias 109

All About Fonts 110

Bitmap Versus Outline Fonts 110

Font Formats 111

Format Conversion Tools 112

Adding New Fonts 114

Adding a Single Font 114

Adding Multiple Fonts 115

Multiple Font Example 116

Problems with Running Vendor-specific Clients 117

DECWindows Examples 118

Aliasing 119

DECWindows Conversion 120

AlXWindows Example 121

OpenWindows Example 123

Aliasing 124

OpenWindows Conversion 125

Converting from X11/NeWS to PCF or SNF 125

More Conversions 126

Providing Fonts Over the Network 127

The R5 Font Server 127

The Configuration File 128

Installing the Font Server 130

Testing By Hand 131

Changing BSD Boot Files 131

Changing System V Boot Files 132

Changing AIX Boot Files 133

Font Server Name Syntax 133

Debugging the Font Server 134

Font Server Clients 135

The Font Path and the Font Server 136

Hostname Aliases 138

A Font Server Example 138

Related Documentation . ..140

5

Font Management

The number of fonts available under XI1 is enormous, and there's no limit to adding more.

Each size and orientation is treated as a different font. Furthermore, fonts are stored in sev-

eral different formats, so the same font might be stored five different ways.

The administrator's role is to ensure that each server can access the fonts it needs for a given

application. In Release 3 and Release 4, fonts for servers needed to be available

locally-usually stored on a local disk drive or made to appear local via a NFS or AFS

filesystem. In Release 5, fonts can be obtained either locally or through a font server, which

allows access to fonts on more than one host on the network.

5.1 Fonts on the X Window System

In general, a client has default fonts chosen by the programmer, but administrators or users

may want to change them to their own preference. The default fonts may be too small to read,

unavailable for a given server, or just plain ugly. For example, the default font for xterm is

usually the font fixed, a 13-pixel semi-condensed font that tends to be quite small on high-

resolution monitors.

Before we discuss the administrative issues of fonts, let's talk about how fonts are designated

on the X Window System. An example of a font name and its components is shown in Figure

5-1.

The field names have the following meanings:

Foundry This is a registered name for the font "foundry" (usually a company name)

that supplied the font to the X Consortium ("Adobe," "Bitstream," etc).

Family The "family" or typographic style of the font ("Courier," "Lucida," etc).

Weight The typographic weight or "blackness" of the font ("medium," "bold," etc).

Slant The "posture" of the typeface ("Roman" is upright, "Italic" is slanted, etc).

Font Management 101

horizontal

resolution

(dpi)

foundry weight set width pixt Is spacing character set

\ \ \

-b&h-lucida-medium-r-normal-sans- 1 £ ;- 1 80-75-75-p- 1 06-iso8859- 1

T

font family slant additional vertical

style resolution

(dpi)

points average width

(in tenths of a point) (in tenths of a pixel)

Figure 5-1. Components of a font name

Set Width The horizontal width of the font ("Normal," "Narrow," etc).

Additional Style An additional style that expresses information not present in the other fields

("sans," or not specified).

Pixel Size A height measurement in pixels at a certain point size and resolution.

Point Size The size of the font in typographic "points" (1/72 of an inch).

Horizontal and Vertical Resolution

The horizontal and vertical resolution in dots per inch (dpi) from when the

font was originally designed.

Spacing The description of how the width affects placement of adjacent characters.

A proportional ("p") font's characters vary in width, so some characters

may appear closer to each other. This is usually desirable for hardcopy,

such as book. A "CharCell" ("c") font treats each character as a little box

of the same dimensions as all the other characters. These are better suited

for "terminal" displays, such as in an xterm window, which would look ter-
rible if the characters were of varying size.

Average Width The average width of the font in tenths of a pixel.

Character Set and Encoding

The encoding standard to which the font conforms to (ISO is the Interna-

tional Standards Organization) and the particular character set.

The fields that are usually the most important to the X administrator are:

" The size and resolution (for controlling the size of the font on the screen).

" The spacing (for use with terminal emulators).

102 The X Window System Administrator's Guide

Fonts are specified to a client either as a resource or with the -fn option. For example, a user

can put the following line in a resource file:

xterm*font: -misc-fixed-bold-r-normal-15-140-75-75-c-90-iso8859-l

or invoke xterm with the following command line:

% xterm -fn -misc-fixed-bold-r-normal--15-140-75-75-c-90-iso8859-l

The default resources for most clients are specified in their application defaults file. See Sec-
tion D.I.2 for more information on where resources are defined.

There are several clients that deal directly with fonts. These can be used to find and list all

the fonts available from the X server.

5.1.1 xlsfonts

To see all the fonts a X server knows about, run the xlsfonts command, xlsfonts accepts wild-
cards within the font specification and will list all the matching names. For example:

% xlsfonts -fn '-dec-*-*-*-*--*-*-*-*-*-*-*-*'

-dec-terminal-bold-r-normal-14-140-75-75-c-80-dec-dectech

-dec-terminal-bold-r-normal-14-140-75-75-c-80-iso8859-l

-dec-terminal-medium-r-normal-14-140-75-75-c-80-dec-dectech

-dec-terminal-medium-r-normal-14-140-75-75-c-80-iso8859-l

Note that only a small subset of the available fonts is appropriate for the xterm client. Only

character cell fonts (with -c- in the llth field) are recommended for use in xterm windows.

Although mono-spaced -m- fonts like Courier and Lucida Typewriter can be used for xterm

most of the time, some "garbage" characters may occasionally appear if you use those fonts,

since mono-spaced fonts can extend outside of the character cell.

5.1.2 xfd

The xfd client will display all the characters of a particular font. It can be used as a quick test

to make sure a font exists and looks okay. For example, the command line:

% xfd -fn -adobe-courier-bold-r-normal--14-140-75-75-m-90-iso8859-l

would yield the window shown in Figure 5-2.

Font Management 103

-Pidobe-Courier-Bold-R-Normal- 14-140-75-75-M-90-IS08859-1

| Quit [l P:'^V P^^^]j!!^/t P ?:-£*; \

Select a character

range: 0x0020 (0,32) thru OxOOff (0,255)

upper left: 0x0000 (0,0)

j H f $ % & r () A + -
t " /

0 1 2 3 4 5 6 1 8 9 : < = >
r ?

s A B C D E F G H I J K L M N o

p Q R S T U V w X Y Z [\] A

% a b c d e f g h i j k 1 m n 0

p q r s t u V w X Y z { 1 } *v

"-

i C £ « ¥ ! § © A
 « - - © -

o -
+ 2 3 V H i o
 »
i H K % £

A A A A A A £ 9 E E E E i i I I

D N 6 6 6 6 6 X 0 U U U u Y P ft

A

a a a a a a ae 9 e e e e i i i l

b A
n 6 6 d 6 6 "*" 0 u u u u Y P Y

Figure 5-2. xfd

5.1.3 xfontsel

The xfontsel client (which was new in R4) allows browsing through all the available fonts

and seeing each one in turn. When you find a font that you are happy with, click on the

"select" button and the selection can be pasted into a file or command line without having to

type it by hand.

104 The X Window System Administrator's Guide

quit 1 1 select 1 name matches

-fndry-fmly-wght-slant-sU)dth-adstyl-pxlsz-ptSz-resx-resy-spc-avgUJdth-rgstry-encdng

-adobe-couriei - bold-i - normal-*-! 4-1 40-*-*-*-*-*-* _

AB CDEFGHI JKLMNOPQRSTUVWXYZ

abode fghij klmnopqrstuvwxyz

0123456789

a «9e i bn6uyA£<j:E I DHOUY

Figure 5-3. xfontsel

Consult the manual pages for xlsfonts, xfd, and xfontsel for more information.

5.1.4 The Font Path

The font path is a list of directories in which the server looks for fonts. On the X Window

System, fonts are usually stored in a subdirectory of lusrlliblXlIIfonts. The MIT Release 4

distribution of X contains three subdirectories in lusrlliblXlIIfonts: 75dpi, 100dpi and misc.

The dpi suffix refers to the dots-per-inch or screen resolution of the display that the server is

going to use; the misc directory contains random useful fonts for the display.

The default font path for a given server is usually set when the server is built from source

code. The typical MIT-derived local display server will come with the 75dpi, 100dpi, and

misc directories in its font path by default. You can check the current font path at any time

with the -q (query) option to the xset client. For a typical R4 server:

% xset -q

FontPath:

/usr/lib/Xll/fonts/misc/,/usr/lib/Xll/fonts/75<%)i/,/usr/lib/Xll/fonts/100c%)i/

Release 5 includes the Speedo font directory of scalable fonts as well. (See Section 5.2.1 for

more information on Speedo fonts.)

% xset -q

Font Path:

/usr/lib/Xll/fonts/misc/^usr/lib/Xll/fonts/Speedo/^usr/lib/Xll/fonts/VScapi/,

/usr/lib/Xll/fonts/100dpi/

Each of these directories is searched in order for a specified font. The server will use the first

match it finds when there is more than one font with the same name. Users can change the

default font path with \htfp option to the xset command. For example, to add a font directory

to the font path, you might type:

% xset +fp /usr/lib/Xll/fonts/local

This command adds the directory /usr/lib/Xll/fonts/local to the current font path. The "+fp"

option prepends a directory to the font path, while "fp+" appends it.

Font Management 105

% xset -q

Font Path:

/usr/lib/Xll/fonts/lcx:al,/usr/lib/Xll/fonts/misc/,/usr/lib/Xll/fonts/75(%)i/,

/usr/lib/Xll/fonts/1004?i/

The local directory is now searched before the regular directories. If you want to redefine one

of the default fonts, you can install a new one in the local directory and the server will access

the new one instead.

Rehashing the Font Path

Each time the font path is changed, the server reads the fonts.dir and fonts.alias files in

each directory listed in the new font path. The server then maintains a list of valid font

names in memory instead of searching for a font in the filesystem every time it is

requested. If a new font is added to one of the font directories and the fonts.dir or

fonts.alias files are changed, you need to update the list of fonts known to your server

with the command:

% xset fp rehash

The rehash command tells the server that something has changed and it should rebuild

this internal list.

The xset client controls many server features. See the manual page for xset for more infor-
mation.

The font path can also be specified when the server is first started. For example, on the com-
mand line:

% xinit - -fp /usr/lib/Xll/fonts/local,/usr/lib/Xll/fonts/misc/,\

/usr/lib/Xll/fonts/75dpi/,/usr/lib/Xll/fonts/100dpi/

or in the Xservers file:

:0 local /usr/bin/Xll/X -fp /usr/lib/Xll/fonts/local,/usr/lib/Xll/fonts/misc/,\

/usr/lib/Xll/fonts/75cpi/,/usr/lib/Xll/fonts/100dpi/

5.1.5 The Font Directory File

When a client requests a specified font, the server searches in each of the directories in its

font path for a file called fonts.dir, as in /usr/lib/X 11/fonts/75dpi/fonts.dir. The fonts.dir file

maps the name of the requested font to the filename of the font as it is stored in the filesys-
tem. If there is no match, the client reverts to its own defaults (e.g., xterm reverts to "fixed").

The fonts.dir file is needed because some operating systems have restrictions on filenames.

For example, MS-DOS, VMS, and UNIX all have restrictions on filename length or on the char-
acters used within filenames. When installing a new font, you should choose a filename for

the new font that conforms to the semantics of your operating system. The fonts.dir file con-
tains the mapping of the font filename to the name of the font itself.

106 The X Window System Administrator's Guide

The fonts.dir file's presence is required for the server to access any fonts within a directory.

It is created by the mkfontdir command. You have to run mkfontdir every time you add or

delete a font from a directory to keep the fonts.dir file in sync with the actual contents of the

font area. (See Section 5.3.1 for an example of how to use mkfontdir.) The fonts.dir file has a

simple format-the first several lines of a sample R4 file resemble the following:

200

courBOlO.snf -adobe-courier-bold-o-normal--10-100-75-75-m-60-iso8859-l

courBO12.snf -adobe-co\irier-bold-o-normal--12-120-75-75-m-70-iso8859-l

courB014.snf -adobe-courier-bold-o-normal-14-140-75-75-m-90-iso8859-l

courBOlS.snf -adobe-courier-bold-o-normal--18-180-75-75-m-110-iso8859-l

courBO24.snf -adobe-courier-bold-o-normal--24-240-75-75-m-150-iso8859-l

The number at the top is the number of fonts in the directory. The remaining lines are pairs

of filenames and font names. The .^/extension to filenames in this example indicates the for-
mat that the font is stored in-in this case, the Server Natural Format. (See Section 5.2.2 for

more information on font formats.) The files may also have a .Z extension, if the server sup-
ports compressed fonts.

OpenWindows-specific Features

Sun's OpenWindows has a different system for fonts (scalable F3 format), but most of

the font administration utilities parallel the MIT ones in function. The OpenWindows

file Families.list is similar in function to the fonts.dir file. It is created by the bldfamily

command, which should be run any time the contents of the font directory are changed,

in the same manner as mkfontdir.

5.1.6 The fonts.scale File (R5 only)

In R5, the outline or scalable fonts (as described in Section 5.2.1) introduce a problem with

creating the fonts.dir file. It is difficult for mkfontdir to determine the values in the font name

fields for a scalable font. If there are scalable fonts within a font directory, a fonts.scale file

should be created by hand. When mkfontdir is run, it will create entries in fonts.dir for each

bitmap font it finds and will then append the contents of the fonts.scale file.

The Speedo fonts distributed with R5 come with a fonts.scale file that is installed along with

the fonts in /usr/lib/XIl/fonts/Speedo. It contains an entry for each scalable font:

8

font0648.spd -bitstream-charter-medium-r-normal-0-0-0-0-p-0-iso8859-l

font0649.spd -bitstream-charter-medium-i-normal-0-0-0-0-p-0-iso8859-l

font0709.spd -bitstream-charter-bold-r-normal-0-0-0-0-p-0-iso8859-l

font0710.spd -bitstream-cnarter-bold-i-normal--0-0-0-0-p-0-iso8859-l

font0419.spd -bitstream-courier-medium-r-normal-0-0-0-0-m-0-iso8859-l

Font Management 107

font0582.spd -bitstream-courier-medium-i-normal-0-0-0-0-m-0-iso8859-l

font0583.spd -bitstream-courier-bold-r-normal--0-0-0-0-m-0-iso8859-l

font0611.spd -bitstream-courier-bold-i-normal-0-0-0-0-m-0-iso8859-l

As there are no other fonts in the Speedo directory, the contents of the fonts.scale file and the

resulting fonts.dir file are identical.

5.1.7 Wildcards

As shown in our xlsfonts example earlier, users don't have to use the full names of a font

when specifying them. Wildcards can be used to limit the amount of typing required and pro-
vide flexibility.

Users can use asterisks ("*") in the font specification, such as:

% xterm -fn '-fixed-*-*-*-*--15-140-*-*-*-*-*-*'

The asterisks will match any of the possible values for a given field in the font specification.

Notice that a font name using an asterisk as a wildcard needs to be single-quoted on the com-
mand line. This is to protect the asterisks from being interpreted by the shell.

The first font found in the font path that matches the pattern is the one that is used. If you

supply the pattern to xlsfonts, you can see which fonts in your font path match the pattern:

% xlsfonts -fn '-fixed-*-*-*-*--15-140-*-*-*-*-*-*'

-misc-fixed-bold-r-normal-15-140-75-75-c-90-iso8859-l

-misc-fixed-medium-r-normal-15-140-75-75-c-90-iso8859-l

Although xlsfonts may report more than one font name, only the first font listed will be used

by a client when supplied a font name using the same wildcards. If you run xfd with the same

font pattern, the name of the first matching font is displayed at the top of the window:

-misc-fixed-bold-r-normal-15-140-75-75-c-90-iso8859-l

Using wildcards could have a surprising effect, especially when a new font is installed: if an

administrator adds a new font that is similar in name to an already existing font, users may

end up matching the new one instead of the one they thought they were requesting. Other

surprises could occur when a new version of Xll is installed, as each release has had more

fonts than the previous release, leading to new matches to a wildcard.

Using wildcards can make an application more flexible, as it may still find a usable font if the

intended one is missing, whereas a complete font specification may cause a failure if not

matched exactly.

5.1.8 Aliases

A font subdirectory can contain a file called fonts.alias, which contains aliases for font

names. An example of an alias is the default fixed font, which is defined in fonts.alias in the

MIT distribution of X as:

fixed -misc-fixed-medium-r-semicondensed-13-120-75-75-c-60-iso8859-l

108 The X Window System Administrator's Guide

An administrator can make it easier for users to specify fonts by defining aliases for fre-
quently used fixed-width fonts. For example, if the administrator enters the following line

into the fonts.alias file:

fb!5 -misc-fixed-bold-r-normal--15-140-75-75-c-90-iso8859-l

Users can then call the 15-point fixed bold font with the command line:

% xterm -fn fb!5

Font aliases can be used in resource files as well, as follows:

xterm*font: fb!5

You could argue that this is a bad idea, as non-standard aliases would likely fail if you used

your resource files on another server.

Aliases also add flexibility to applications, as they can be assigned to more than one font. For

example, the name lucidasans-10 is aliased in lusrllib/Xll/fontsl75dpilfonts.alias as:

lucidasans-10 -b&h-lucida-medium-r-normal-sans-10-100-75-75-p-58-iso8859-l

and in lusrlliblXll/fonts/'100dpi!fonts.alias as:

lucidasans-10 -b&h-lucida-medium-r-normal-sans-14-100-100-100-p-80-iso8859-l

Which one is used depends on which directory occurs first in the font path. In this example,

the alias creates flexibility in the resolution of the display.

Another reason to alias a file is that the font name may be inconvenient to use on the com-
mand line. The "b&h" fonts shown above contain the "&" character in the font name, which

will confuse the shell.

Under OpenWindows, the files Compat.list and Synonyms.list provide the alias mechanism.

5.1.8.1 The FILE_NAMES_ALIAS Alias

The "magic" alias "FILE_NAMES_ALIASES" indicates that the actual filenames of the font

files, with the suffixes removed, can be used as aliases for the fonts. For example, the

DECWindows fonts all have filenames that are also valid aliases when you remove the exten-
sion. If thefonts.dir file has the following entry:

terminal_widel4.snf -dec-terminal-medium-r-wide--14-140-75-75-c-120-iso8859-l

The name terminal_wide14 would be a valid alias for this font if "FILE_NAMES_ALIASES" is

present in the fonts.alias file.

This method of aliasing is being downplayed by the X Consortium, as its use encourages non-

standard font names. You should not rely on this mechanism in the future.

Font Management 109

5.2 All About Fonts

There are many different font formats in use and each vendor has made changes on its own.

The first step in resolving the problems caused by this is to identify what type of font is being

used. The next step is to find the right tool to make the font available to your application.

5.2.1 Bitmap Versus Outline Fonts

For MIT servers prior to R5, a separate font was required for each size of the font. For

example, to display the font -b&h-lucida-bold-i-normal-sans at the point sizes of 11, 14, 17,

20, and 34, you needed a font for each:

-b&h-lucida-bold-i-normal-sans-ll-80-100-100-p-69-iso8859-l

-b&h-lucida-bold-i-normal-sans-14-100-100-100-p-90-iso8859-l

-b&h-lucida-bold-i-normal-sans-17-120-100-100-p-108-iso8859-l

-b&h-lucida-bold-i-normal-sans-20-140-100-100-p-127-iso8859-l

-b&h-lucida-bold-i-normal-sans-34-240-100-100-p-215-iso8859-l

This is simply because the fonts are bitmaps and are stored as such. In R5, outline or "scal-
able" fonts are also available. These are stored as a description of the outline of the font and

can be scaled by the server to any point size. Scalable fonts have been available in NeWS

servers (Sun OpenWindows and SGI X/NeWS/GL) only prior to R5. The Speedo fonts in R5

are of the outline type. Outline fonts can be recognized by 0 values for the size fields in the

font name:

-bitstream-charter-bold-r-normal-0-0-0-0-p-0-iso8859-l

-bitstream-charter-bold-i-normal-0-0-0-0-p-0-iso8859-l

-bitstream-courier-bold-r-normal-0-0-0-0-m-0-iso8859-l

-bitstream-courier-bold-i-normal-0-0-0-0-m-0-iso8859-l

When the font is requested, the size fields are filled in with the desired value:

% xlsfonts -fn '-bitstreeun-charter-bold-r-normal--12-*-*-*-*-*-*'

-bitstream-charter-bold-r-normal--12-120-75-75-p-75-iso8859-l

Some advantages to outline fonts are:

" They need only one font file per font, vastly simplifying administration and conserving

disk space.

" They are more flexible, as it may be impossible to predict all sizes that might be

requested by users or required by different displays.

Some advantages to bitmap fonts are:

" They usually look better than scaled fonts, as they are tuned for each size.

" They may be faster to request, as there is no scaling overhead before the font can be used.

You can convert specific sizes of an outline font into a bitmap font using the font conversion

tools described in Section 5.2.3. Some vendors provide bitmap versions of outline fonts at

several common sizes to boost performance.

110 The X Window System Administrator's Guide

5.2.2 Font Formats

If you are building an XI1 distribution from MIT source, the fonts arrive with a .bdf suffix,

indicating that they are in BDF format (Bitmap Distribution Format). BDF format has been

the default format since the early releases of X. When the standard XI1 distribution is built,

BDF font files are converted into a format suitable for your server.

If you are not building XI1 from source, the fonts are usually sent with the individual server

(for example, on a font tape sent with an X terminal). The fonts will have another suffix,

probably .snf, indicating that they are in SNF format (Server Natural Format). In R5, fonts

default to PCF format (Portable Compiled Font), with .pcf suffixes.

Following are some common extensions and what they indicate about the font:

. bdf Bitmap Distribution Format. This is the form most fonts will arrive in if the

final destination is unknown. BDF files can be converted to most of the

final formats that would be used by a server. If you want to supply someone

else with a font, use the BDF format for interchange. They are ASCII files

and can be edited with a normal text editor. The MIT server is able to read

BDF files directly, but it is not the optimal format for storage.

.snf Server Natural Format. This format is used by most MIT servers in

Releases 2 through 4. Fonts are stored in a binary file and are host byte

order dependent. This means you cannot share fonts between a big endian

and little endian machine in most cases. Some vendors have servers that are

smart enough to detect this and convert the font "on-the-fly." See 7.4.1 for

more information on SNF fonts and byte order dependencies.

.pcf Portable Compiled Font. The PCF format was designed by DEC for use

with DECWindows. It offers some advantages over SNF, in that it is host

byte order independent. This means hosts of different byte orders can share

the same font. DEC has made this format available to the X Consortium,

and it is now the default for MIT Release 5. It is also used by recent ver-
sions of IRIX on the Silicon Graphics platform.

. spd Speedo-Bitstream. These are commercial-quality outline fonts donated to

the X Consortium by Bitstream Inc. They are included in MIT Release 5.

They can be distinguished by the fact that they all have point sizes of 0, as

they are scaled to a particular point size when they are requested.

. f3b, .fb Xll/NeWS. These formats are used by Sun Microsystem's Xll/NeWS

Server and older versions of the Silicon Graphics Xll/NeWS/GL Server.

The .f3b files are scalable F3 (formerly named "Folio") format fonts. The

.fb files are F3 format fonts scaled to certain point sizes. Some of their

administration tools parallel the MIT ones and will be mentioned in con-
text.

.ps PostScript Type 3. Several of these fonts come with the Sun OpenWindows

distribution. They can be loaded into the Xll/NeWS server with the Idf

program.

Font Management 111

Compressed file. This extension indicates that the compress program has

been run on the font file. This should reduce the size of the file on disk.

Some servers (such as those from MIT) can read compressed fonts directly,

but this is not true for all implementations.

5.2.3 Format Conversion Tools

There are several commands for converting from one format to another, as illustrated in Fig-
ure 5-4. The following are some common examples. See the manual pages for these com-
mands for more information.

bdftosnf Converts BDF to SNF. This command should come with any server that

uses SNF, such as the stock MIT server Releases 2 through 4. Example

usage:

bdftosnf myfont.bdf > myfont.snf

bdftopcf Converts BDF to PCF. This command should come with any server that

uses PCF, such as DECWindows and MIT Release 5. Example usage:

bdftopcf -o myfont.pcf myfont.bdf

dxfc Converts BDF to PCF. This command is distributed with DECWindows.

Example usage:

dxfc myfont.bdf > myfont.pcf

snftobdf Converts SNF back to BDF. This program can be found on various anony-

mousftp sites and X source archives.* Example usage:

snftobdf myfont.snf > myfont.bdf

convertfont Converts BDF to several Xll/NeWS formats and back. This command

comes with Sun OpenWindows. Example usage:

convertfont -f 32 myfont.bdf

See Section 5.3.6.3 for an example using convertfont.

fstobdf Dumps the BDF version of any font available to the font server. See Sec-
tion 5.5 for more information on the font server.

fstobdf -a tcp/harry.ora.com:7000 -fn fixed > fixed.bdf

getbdf Dumps the BDF version of any font available to the X server. See Section

5.3.4.2 and 5.3.5 for examples of using getbdf.

getbdf -font 9x15 > 9x15.bdf

kOne/jp site is export.lcs.mit.edu in contriblsnftobdf.tar.Z.

112 The X Window System Administrator's Guide

makeafb Converts F3 fonts into Adobe Bitmap Format. This is an intermediate for-
mat used when converting XI 1/NeWS fonts.

makeafb -16 LucidaSans-Bold.f3b

Note that font files can be read by some servers in a compressed format, so administrators

may be able to save space by compressing font files on their systems. Compression may

cause some performance loss, as the fonts will have to be uncompressed by the server when

they are read. The space savings is desirable, as you are likely to accumulate hundreds of

fonts once you get the hang of it. The fonts may turn out to be the single largest consumer of

disk space of all the X components.

Be aware that converting a font from one vendor's machine for use on another may be illegal,

attractive as the idea might be. There may also be restrictions on how the fonts are to be

used-for example, they may be licensed for screen use, but not for hardcopy. Check the

copyright notices before proceeding.

Font Conversion

BDF Native

Format Format

bdftosnf

mam) > SNF

bdftopcf

*"""» N PCF

dxfc

iniBBBB) > PCF

convertfont

4- i- * > X11/NeWS

snftobdf

^""BBH SNF

getbdf

^""K- from X server

fstobdf

«_. from font server

Figure 5-4. Font conversion utilities

Font Management 113

5.3 Adding New Fonts

There are lots of reasons to expand the numbers of fonts available. Some applications, espe-
cially desktop publishing packages, provide new fonts as part of their installation. Clients

that support languages other than English are becoming commonplace and are widely avail-
able on the Internet-these clients require large numbers of new fonts to be added.

It is possible to access fonts in your home directory by adding paths to existing font paths

with the fp option to the xset command. This is useful for testing. It also means that you can

have users install the fonts they want in their own home directories if you don't think every-
one will want to use them.

5.3.1 Adding a Single Font

Let's step through the procedure for adding a new font in a stock MIT R3 or R4 environment.

(For an R5 environment running a font server, the font may already exist on another system

and you can just tell the font server where it is. See Section 5.5 for more information.)

You may come across an application that requires some non-standard fonts, say a Kanji font

for the OSF/Motif demo program hellomotif.* This font is distributed in BDF format.

1. Convert it to SNF (or whatever is appropriate for your server) with the bdftosnf com-
mand:

bdftosnf -t k!4-l.bdf > k!4-l.snf

bdftosnf -t rkana!4.bdf > rkana!4.snf

The -t flag indicates that these fonts are going to be displayed on a "terminal" (such as

xterm) and each character should be same size.

2. Copy the SNF files into one of the font directories. For this example, the misc directory is

a good candidate:

cp k!4-l.snf /usr/lib/Xll/fonts/misc

cp rkana!4.snf /usr/lib/Xll/fonts/misc

3. Rebuild Ihefonts.dir file with the mkfontdir command:

mkfontdir /usr/lib/Xll/fonts/misc

This command will increment by 2 the number of fonts listed on the first line of the

fonts.dir file, and add two pairs of entries: the filename and the font name.

k!4-l.snf -kl4-screen-medium-r-normal-14-140-75-75-m-140-jisx0208.1983-1

rkana!4.snf -romankanal4-screen-medium-r-nonnal-14-140-75-75-m-70-jisx0201.

1976-0

The next step would be to add aliases to fonts.alias for convenience. In the hellomotif

case, the application requests the font by its full name, not by an alias-so unless you

intend to access the font from other applications, it probably isn't worth aliasing.

* OSF/Motif source can be purchased from the Open Software Foundation.

114 The X Window System Administrator's Guide

4. Before the server can know about the new font, the font path needs to be rehashed. Other-
wise, an error will be returned. For example, if you try to display the new font immedi-
ately with the xfd client, using the font name in the second column of the fonts.dir file:

% xfd -fn -kl4-screen-medium-r-normal--14-140-75-75-m-140-jisx0208\

.1983-1

you will get an error such as:

Warning: Cannot convert string "-kl4-screen-medium-r-normal-14-140-75-75

-m-140-jisx0208.1983-1" to type FontStruct

For the modified fonts.dir file to be reread without restarting the server, you must run the

xset command:

% xset fp rehash

Try xfd again to verify that it worked. If xfd can display the font, it is likely to be avail-
able for any client that requests it from your server.

Your server may cache a font, so don't expect a font to disappear immediately even if you

delete the file that contains it on disk.

5.3.2 Adding Multiple Fonts

Some applications may require that a large number of fonts be added to your local font area.

One example of this is the public domain TeX dvi file previewer xtex.* TeX is a popular

typesetting program that runs on most systems that are around today. A dvi file is the device-

independent output of the TeX program. The term previewer refers to a program that dis-
plays something on your screen to preview what it would look like on the final output, which

is usually done on a laser printer or typesetter.

The xtex program expects a separate XI1 font to exist for each size (magsteps, for you TeX

font weenies) of each TeX font requested by a dvi file.t In a situation like this, it is probably

worth creating a new directory in your font area for easier administration.

There are a few advantages to breaking up the font area into subdirectories:

" By separating the ''stock',' or "vanilla" environment from the "local" areas, administration

is easier. You can save a lot of time when upgrading, as you don't have to worry about

trashing all your hard work if you have distinct areas that won't be overwritten by a soft-
ware upgrade. This concept can be applied to other areas of X, where it may be desirable

to keep files that you install in an area separate from the vendor-supplied files.

" Multiple subdirectories give you, the administrator, control over whether or not to export

the font areas in a networked filesystem. You may want to give the font areas different

permissions, or to give a group of users and programs permission to add new fonts

*xtex can beftp'd iiomfoobar.colorado.edu. It is part of a larger package called SeeTeX.

tThe xdvi program also previews TeX dvi files, but is able to read TeX fonts directly without converting them to an

XI1 format, xdvi is available \\aftp from export.lcs.mit.edu in Icontrib.

Font Management 115

without intervention of the system administrator. TeX programs are an example of this,

as some are able to create fonts "on-the-fly" and want to add the newly created font to a

font area so it will be there the next time it is requested.

" By breaking fonts up into multiple directories, you also make it easier to view the direc-
tory contents. The TeX example alone has several hundred entries.

The disadvantages to this approach include the fact that special knowledge is required by the

end users if they want to access a font in a nonstandard directory (you could alleviate this

problem by providing new users with start-up files that include these special paths).

5.3.2.1 Multiple Font Example

For the xtex example, let's create a subdirectory in the font area called tex. The xtex package

describes how to create the SNF files from the BDF files in the distribution.

1. Once the SNF files are created, copy the SNF files to the new directory and rebuild the

fonts.dir file:

cp *.snf /usr/lib/Xll/fonts/tex

cd /usr/lib/Xll/fonts/tex

mkfontdir

If you get an error such as:

Duplicate font names cmrlO

cmrlO.snf goof.snf

mkfontdir: failed to create directory in .

then there is more than one font with the same name. In this rigged example, two .snf

files for the same font exist in a common directory. The solution would be to delete the

one you do not want from this directory.*

2. Since you are adding a new area to the font search path, you will need to tell the server

where to look with the xset command.

% xset fp+ /usr/lib/Xll/fonts/tex

You probably made a typo or specified an invalid pathname if you get an error such as:

X Error of failed request: BadValue (integer parameter out of range

for operation)

Major opcode of failed request: 51 (X_SetFontPath)

Minor opcode of failed request: 0

Resource id in failed request: 0x4

Serial number of failed request: 5

Current serial number in output stream: 8

* You could also change the name of the font in the BDF file before converting it into SNF, but something is proba-
bly wrong if you are having a name conflict.

116 The X Window System Administrator's Guide

3. Verify your current font path using the xset command:

% xset -q

Font Path:

/usr/lib/Xll/fonts/irdsc/,/usr/lib/Xll/fonts/75dpi/,

/usr/lib/Xll/fonts/100dpi/,/usr/lib/Xll/fonts/tex

Note that, in order to access the new fonts, users have to run the xset fp+ command specified

above every time they start their server. Their .xsession or .xinitrc files would be an appropri-
ate place for the command. For sites that start their X sessions from xdm, you can add local

changes like this one to the xdm startup files. This will add the font path for all users who

start their X sessions using xdm.

Rather than creating multiple font directories to be added to the font path of each server, you

could just put all non-standard fonts into one directory, for example, IusrlliblXlI/fonts/local.

Some vendor implementations (such as DECWindows) provide a "local" directory structure

just for this purpose. The path is already known to the server, so you can add fonts and they

will be available without further changes.

You could also define this path within the default search path when you build the XI1 distri-
bution from source (using the DefaultFontPath build flag) or supply a font path when

starting the X server. See Section 8.5 for information on how to change your build flags when

building XI1 from source. To supply a new font path when starting the X server, most

servers accept a -fp option on the command line.

5.3.3 Problems with Running Vendor-specific Clients

The fonts available to a server vary from one vendor to another. If a client requests a font

from the server and it is not recognized, this may render an application unusable or just make

it look strange.

Let's say you are on a Sun running an MIT Release 4 server and wish to run the DECWin-
dows desk calendar dxcalendar off a remote Ultrix host, dxcalendar looks for specific fonts

that are not available on the Sun, and the program will complain about the missing fonts:

scud% dxcalendar

X Toolkit Warning: Cannot convert string "-*-MENU-MEDIUM-R-Normal

-*-120-*-*-P-*-ISO8859-l" to type FontList, using fixed font

X Toolkit Warning: Cannot convert string "-*-Menu-Medium-R-Normal

-*-100-*-*-P-*-IS08859-l" to type FontList, using fixed font

X Toolkit Warning: Cannot convert string "-*-Menu-Medium-R-Normal

-*-120-*-*-P-*-IS08859-l" to type FontList, using fixed font

The application in this example will still run, but it doesn't look as good as it should.

The InfoExplorer utility in AlXWindows also has its own set of fonts. While InfoExplorer

will run without its fonts, you can improve its appearance on a non-AIXWindows server by

making these fonts available to it.

Font Management 117

The OpenWindows cm (calendar manager) is a highly desirable program, but it, like most

Open Windows applications, will look terrible running under the MIT R4 server if you don't

make its special fonts available. It will also complain about missing fonts:

h-street% cm

XView warning: Cannot lead font '-b&h-lucida-medium-r-normal-sans-*

-90-*-*-*-*-*-*' (Font package)

XView warning: Cannot load font '-b&h-lucida-bold-r-normal-sans*-9

0-*-*-*-*-*-*' (Font package)

For all these examples, the solution is to make the font available to the local server. (This

may cause some confusion for people new to X, as the fonts might appear to be available

along with the clients on a remote host.)

Sometimes the solution to supplying a missing font may be as simple as creating an alias to it

from an existing font. It is also possible to convert fonts required by a special client into a

format that is recognized by your server, but this may involve some work. The getbdf pro-
gram is one such font converter that may work.* getbdf can query the server for a font and

dump it out in the W/form, which can then be converted into the local font format.

In most cases, you should do the conversion from bdf to your local format on the machine

where the fonts are going to reside. This should avoid any problems with byte order when the

conversion takes place.

The font server introduced in MIT R5 will probably eliminate these problems, but it will take

some time before the font server is available for all X servers. In the meantime, the tech-

niques introduced here should suffice.

These examples may not match the exact problem you are having. Think of them as "case

studies" that show problem solving techniques. The purpose of this section is to demonstrate

that it is possible for the administrator to compensate for differences between vendor imple-
mentations.

5.3.4 DECWindows Examples

The DECWindows software contains fonts in the directory /usr/lib/Xll/fonts/decwin that do

not exist in the MIT XI1R4 release. There are two ways to get around this problem: alias the

DECWindows fonts to existing MIT fonts, or you can convert the DECWindows PCF fonts

into SNF fonts that can be used by the MIT R4 server.

For an example problem, the dxcalendar program does not look quite right without the

DECWindows fonts.

* getbdf "is available via anonymous/}/? to larry.mcrcim.mcgill.edu as X/getbdf.c.

118 The X Window System Administrator's Guide

File Edit View Customize Help

July, 1992 ^

Wk Sun Mon Tue Wed Thu Fn Sat

27 1 2 3 4

28 5 6 7 8 9 10 11
 _

29 12 13 14 15 16 17 18 u

30 19 20 21 22 23 El 25

31 26 27 28 29 30 31

" 1
 o

F/gure 5-5. dxcalendar with the wrong fonts

5.3.4.1 Aliasing

In recent versions of DECWindows documentation (UWS Release Notes), DEC supplies a

fonts.alias file that maps the DEC font names to reasonable MIT equivalents. The top of the

file looks like this:

-Adobe-"ITC Avant Garde Gothic"-Book-R-Normal--10-100-75-75-P-59-IS08859-l

-Adobe-Helvetica-Medium-R-Normal-10-100-75-75-P-56-IS08859-1

-Adobe-"ITC Avant Garde Gothic"-Book-R-Normal--12-120-75-75-P-70-IS08859-l

-Adobe-Helvetica-Medium-R-Normal-12-120-75-75-P-67-IS08859-1

-Adobe-"ITC Avant Garde Gothic"-Book-R-Normal-14-140-75-75-P-80-IS08859-1

-Adobe-Helvetica-Medium-R-Normal-14-140-75-75-P-77-IS08859-1

The file is rather long. It also exists on various ftp sites, if you don't want to type it in.* You

can append it to an existing fonts.alias in the 75dpi or misc directory on the host where you

run the server from:

1. In this example, the aliases are added to the misc directory:

cd /usr/lib/Xll/fonts/misc

2. Make a backup copy of the original fonts.alias file:

cp fonts.alias fonts.alias.orig

3. Append the new aliases:

cat DECwindows_on_XllR4_font.aliases » fonts.alias

4. Tell the server about the new fonts and try it out:

% xset fp rehash

% dxcalendar &

*One such ftp site is export.lcs.mit.edu, in contriblDECwindows_on_XllR4jont.aliases.

Font Management 119

Rle Edit View Customize Help

July, 1992 0

Wk Sun Mon Tue Wed Thu Fn Sat

27 1 2 3 4

28 5 6 7 8 9 10 11

n

29 12 13 14 15 16 17 18

30 19 20 21 22 23 m&m 25

31 26 27 28 29 30 31

" 1

2

F/gure 5-6. dxcalendar with aliases

5.3.4.2 DECWindows Conversion

Another option is to use a program that extracts fonts from the server and outputs them in

BDF format. You can then convert them into SNF or whatever your local server requires.

Once they are in your local format, you can add them to your font directory.

1. Compile the getbdf program on the Ultrix host:

% cc -o getbdf getbdf.c -1X11

2. On the Ultrix host, run the getbdf program to dump out the fonts into BDF format. Since

fonts.alias contains the keyword FILE_NAME_ALIASES, you know that the filename of

the font is also a valid name for the font. You can use this fact to automate the conversion

process. If you are using csh, the following commands will convert each font in the direc-
tory:

cd /usr/lib/Xll/fonts/decwin/75dpi

foreach goo (*.pcf)

? set foo="basename $goo .pcfx

? getbdf $foo > $foo.bdf

? end

The sh equivalent would be:

cd /usr/lib/Xll/fonts/decwin/75dpi

for goo in *.pcf

> do

> f00="basename $goo .pcf^

> getbdf $foo > $foo.bdf

> done

120 The X Window System Administrator's Guide

3. Make a directory on the target machine for the new fonts:

mkdir /usr/lib/Xll/fonts/decwin

4. Copy all the BDF files to the new directory on the target machine or access them via

NFS. On the target machine, convert the BDF fonts to local format (SNF in this example)

for your server. This example also uses csh:

foreach goo (*.bdf)

? bdftosnf $goo > ^basename $goo .bdf^.snf

? end

The sh equivalent would be:

for goo in *.bdf

> do

> bdftosnf $goo > ^basename $goo .bdf^.snf

> done

5. Create the fonts.alias file:

echo FILE_NAMES_ALIASES > fonts.alias

6. Create the fonts.dir file:

mkfontdir

7. Add the new directory to your font path:

% xset fp+ /usr/lib/Xll/fonts/decwin

8. Try out a program that needs DECWindows fonts:

% dxcalendar &

5.3.5 AlXWindows Example

The InfoExplorer utility on the IBM RS/6000 running AIX also has its own set of fonts. The

InfoExplorer fonts are in the directory /usr/lpp/info/X 11 fonts. As in the Ultrix example, you

need to convert the fonts into BDF format and then into the native format of your server. You

can use the same font conversion trick here that we used in the DECWindows conversion. In

this example, the target server uses the SNF format.

1. Compile the getbdf program on the AIX host:

% cc -o getbdf getbdf.c -1X11

2. Use the getbdf program to dump the fonts into BDF format. Since the fonts.alias file con-
tains the keyword FILE_NAME_ALIASES, you know that the filename of the font is also a

valid name for the font. You can use this fact to automate the conversion process. This

example is using csh:

Font Management 121

cd /usr/lpp/info/Xllfonts

foreach goo (*.snf)

? set f00="basename $goo .snf'

? getbdf $foo > $foo.bdf

? end

The sh equivalent would be:

cd /usr/lpp/info/Xllfonts

for goo in *.snf

> do

> f00="basename $goo . snf^

> getbdf $foo > $foo.bdf

> done

3. Make a new directory on the target machine for the new fonts:

mkdir /usr/lib/Xll/fonts/aixwin

4. Copy all the BDF files to the new directory on the target machine or access them via

NFS. You will also need the fonts.alias file from the AIX machine:

% cp /usr/lpp/info/Xllfonts/fonts.alias aixwin.alias

5. On the target machine, convert the BDF fonts to SNF format for your server. If you are

using csh, the following commands will convert each font in the directory:

foreach goo (*.bdf)

? bdftosnf $goo > *basename $goo .bdf*.snf

? end

The sh equivalent would be:

for goo in *.bdf

> do

> bdftosnf $goo > "basename $goo .bdfx.snf

> done

6. Copy in the fonts.alias file:

cp aixwin.alias fonts.alias

7. Create the fonts.dir file:

mkfontdir

8. Add the new directory to your font path:

% xset fp+ /usr/lib/Xll/fonts/aixwin

122 The X Window System Administrator's Guide

5.3.6 OpenWindows Example

The cm desktop calendar program in the Sun OpenWindows 2.0 distribution does not work

properly under MIT R4 without the fonts it needs. To demonstrate the problem, try running

the cm program without the aliases.

May 1992

Sun

Figure 5-7. cm without aliases

The dates on the calendar are missing, because the necessary fonts are missing.

Font Management 123

5.3.6.1 Aliasing

Most of these types of font problems can be handled by a few aliases. Aliases can be added to

an existing fonts.alias file, such as the one in /usr/liblXll/fontsl75dpil. This example adds

the necessary fonts to the fonts .alias file so you can run cm under an MIT R4 server. Simply

append the following lines to the fonts.alias file:

-b&h-lucida-medium-r-normal-sans-9-90-75-75-p-58-iso8859-l -b&h-lucida-

medium-r-normal-sans-10-100-75-75-p-58-iso8859-l

-b&h-lucida-bold-r-normal-sans-9-90-75-75-p-58-iso8859-l -b&h-lucida-

bold-r-normal-sans-12-120-75-75-p-79-iso8859-l

Next, tell the server about them:

% xset fp rehash

Now, run cm again, this time with the aliases (see Figure 5-8.)

May 1992

Sun Won Tue Wed Thu Fri Sat

1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

31

Figure 5-8. cm with aliases

124 The X Window System Administrator's Guide

5.3.6.2 OpenWindows Conversion

An alternative to aliases would be to convert the OpenWindows XI 1/NeWS fonts into a form

usable by the MIT server.* Since this procedure is unique to OpenWindows, it deserves an

explanation.

The Xll/NeWS fonts are outline fonts that are scaled to a requested size before rendering.

These are stored with the .f3b extension. Some examples of the Lucida family of fonts are:t

LucidaBright-Demi.f 3b LucidaSans-Boldltalic.f3b

LucidaBright-Demiltalic.f3b LucidaSans-Italic.f3b

LucidaBright-Italic.f3b LucidaSans-Typewriter.f3b

LucidaBright.f3b LucidaSans-TypewriterBold.f3b

LucidaSans-Bold.f3b LucidaSans.f3b

There is some overhead involved in scaling a font. In order to reduce this, some commonly

used fonts can be pre-scaled. Pre-scaled fonts have the extension .fb. Some examples for the

LucidaSans-Bold font are:

LucidaSans-BoldlO.fb LucidaSans-Boldl4.fb LucidaSans-Bold6.fb

LucidaSans-Boldl2. fb LucidaSans-BoldlS. fb LucidaSans-BoldS.fb

These fonts are scaled at the point sizes of 6, 8, 10, 12, 14, and 18.

5.3.6.3 Converting from X11 /NeWS to PCF or SNF

It is possible to convert the Xll/NeWS format into BDF and then into the local format for

your server. As an example, if you need a "Lucida-Sans-Bold" font in 10 point:

1. Find the pre-scaled Xll/NeWS version. It will have a .fb extension and have the point

size as part of the name:

cd /usr/openwin/lib/fonts

Is LucidaSanslO.fb

LucidaSans-BoldlO. fb

2. Convert the font into BDF format. The convertfont program understands a variety of for-
mats: the -x flag tells it to output the font in BDF format. The -d flag specifies the direc-
tory where the BDF version of the font will be written and the -s flag specifies the point

size.

convertfont -x -d /tmp -B 10 LucidaSans-BoldlO.fb

LucidaSans-BoldlO.fb->/tnp/LucidaSans-BoldlO.bdf

3. Convert the font into the native format of your server (in this example, SNF).

bdftosnf LucidaSans-BoldlO.bdf > LucidaSans-BoldlO.snf

*If you have a full OpenWindows distribution, BDF versions of the Lucida fonts can be found in the directory

lusrlopenwinlsharelsrclfontsi'{100dpi,75dpi,misc). They can be convened directly to your local server format using

bdftosnf or bdftopcf.

tThe pathnames listed in this example are from OpenWindows version 3.0. In OpenWindows 2.0, the font names

are abbreviated. For example, LucidaSans-Bold in version 3.0 was LcdS-B in 2.0.

Font Management 125

5.3.6.4 More Conversions

You may want to generate pre-scaled Open Windows fonts at new point sizes. These can be

used under the OpenWindows server or converted for use by the MIT server.

For this example, let's assume you want to generate a 16-point version of LucidaSans-Bold.

There are several steps needed to do this:

1. Convert the F3 format font (fib) into an Adobe ASCE format bitmap font (.afb) at the

size you require (16). The -M flag suppresses generation of an Adobe ASCII format met-
ric file (.afrri)'.

makeafb -16 -M /usr/openwin/lib/fonts/LucidaSans-Bold.f3b

Creating LucidaSans-Boldl6.afb

2. Convert Adobe ASCII format bitmap font into XI 1/NeWS format:

convertfont -b LucidaSans-BoldlS.afb

LucidaSans-Boldl6.afb->./LucidaSans-Boldl6.fb

3. In order for the OpenWindows server to be able to use the font, you have to rebuild the

Families.list file with the bldfamily command.

cd /usr/openwin/lib/fonts

bldfamily

* Terminal-Bold /usr/openwin/lib/fonts/TerminlB.ff (Encoding: latin)

* Terminal /usr/openwin/lib/fonts/Terminal.ff (Encoding: latin)

* ni!2 /usr/openwin/lib/fonts/ni!2.ff (Encoding: unknown)

* k!4 /usr/openwin/lib/fonts/k!4.ff (Encoding: unknown)

Error messages such as:

cat: ./Compat.list: No such file or directory

or:

* ff (Encoding: unknown)

can be ignored. The Compat.list and Synonyms.list files are optional, much in same man-
ner as fonts.alias.

The font is now ready to be used by the OpenWindows server or converted to a MIT format

using the method described in Section 5.3.6.3.

126 The X Window System Administrator's Guide

5.4 Providing Fonts Over the Network

Diskless workstations and X terminals present a new set of problems for font administration.

For an X server to display text on a diskless workstation or X terminal, it has to have access

to fonts on a remote host, since X terminals don't have any local permanent storage. X termi-
nals will typically come with a small set of fonts (usually fixed, at the minimum) that are

stored in ROM, but need to read additional fonts over the network to be useful.

TFTP access is often needed for X terminals to boot off the remote host. When an X terminal

is initially powered up or rebooted, it broadcasts a request for boot services over the network

and a designated host downloads a kernel or server to the X terminal. See Section 7.4 for

more information on fonts and X terminals.

Fonts can also be downloaded using the same mechanism after the X terminal is up and run-

ning, but a more flexible approach is to NFS-mount the fonts from a remote host. The server

can then add fonts "on-the-fly" after booting. Unfortunately, this also implies all the normal

administration problems associated with NFS, such as access control, network loading, and

server failures. When using NFS, X terminals become closer to the diskless workstations that

they were designed to replace, as they are subject to the same problems. See Section 7.4.3 for

more information.

5.5 The R5 Font Server

Previous to Release 5, fonts on the X Window System needed to be available on local disk or

provided over the network via TFTP or NFS. Starting with R5, fonts can be requested from a

font server.

The font server is a program that runs on a host somewhere on the network and provides fonts

to your X server. This makes font administration easier, as you can have several sources for a

given font, which makes font access more reliable and less dependent on a single host. It

also separates font problems from TFTP and NFS problems.

The font server can understand several different font formats. This means that all you have

to do to make a font available is to run the font server on the host where the font resides. You

no longer have to copy over the font and convert it to a format recognized by your local

server. This is great for multi-vendor environments where you have many different font for-
mats, as clients can run under any server and are still able to access special fonts they may

require.

There is a host-based security mechanism to limit font access to a group of hosts. This can be

used when making licensed fonts available with the font server. The number of simultaneous

connections to the font server can be controlled, preventing the font server host from being

overloaded. Font requests can also be passed onto other font servers if the current one

becomes overloaded.

The font server program supplied in MIT R5 is called fs and is usually installed as

lusrlbinlXlllfs. The font server is described in the manual page for/5. If you have access to

the MIT source code, the file mitldoc/fontserverlFSlib.doc describes the font server library

Font Management 127

functions and mitldoclfontserverldesign.ms provides a detailed description of the font server

design.

5.5.1 The Configuration File

The font server's operation is controlled by a configuration file, usually named

lusrlliblxlllfslconfig. If you are building R5 from the MIT source code and want to use the

font server, you may want to enable the InstallFSConf ig flag in your configlsite.de/ file.

Setting the flag to YES will copy a sample font server configuration file into

lusrlliblxlllfslconfig when the make install is performed. See Section 8.5.1 for more infor-
mation on configuring XI1 at build time.

The syntax of the configuration file is pretty simple. The following is a sample file that con-
tains every option:

font server configuration file (kitchen sink version)

#

cache-size = 2000000

#

alternate-servers = pepper.ora.com:8000,bigbird.ora.com:8001

#

catalogue = /usr/lib/Xll/fonts/misc/,/usr/lib/Xll/fonts/Speedo/,

/usr/lib/Xll/fonts/75dpi/,/usr/lib/Xll/fonts/100dpi/

#

client-limit = 10

#

clone-self = on

#

default-point-size = 120

#

default-resolutions = 75,75,100,100

#

error-file = /var/log/fs

#

port = 7000

#

trusted-clients = pepper,bigbird

#

use-syslog = off

#

Any line starting with a "#" is treated as a comment and ignored.

The following keywords are defined in the configuration file:

cache-size

This is the number of bytes of memory that the font server will allocate in its

font cache. The cache speeds up font access, as any recently requested font

should still be in the cache and immediately available (otherwise, it would have

to be read from a file on disk or scaled from an outline font). If the font server is

running on a host that has lots of memory, make the cache size larger. The cache

size is approximately 2 megabytes in this example.

128 The X Window System Administrator's Guide

alternate-servers

This is a list of alternate font servers for this font server. If the current font

server is unable to service the request, it supplies a list of alternate-

servers to the X server, permitting the X server to try again at one of the alter-
nate font servers. The name of an alternate server is a hostname and port number

pair separated by a colon. The alternate servers are referred to as delegates in

the MIT documentation. The primary server will supply a client with a list of

alternate servers that it knows about. This example has two alternate servers,

one on the host pepper and the other on bigbird.

catalogue

A list of font directories available from this server.* This example lists all the

standard MIT R5 font directories. These can be stored in any format recognized

by the font server. The font server currently understands the PCF, Speedo, SNF,

and BDF formats, described in Section 5.2.2. This keyword should not be con-
fused with the catalogue-list component of the font server name (see Section

5.5.6 for an explanation).

client-limit

The number of clients that the font server will allow before cloning itself or

rejecting the connection. If the clone-self flag is set to off and a client attempts a

connection, the font server will send back a reply listing other font servers that it

knows about. These are specified in the alternate-servers list.

clone-self

Whether the font server should attempt to clone itself or use delegates when it

reaches the client-limit. In this example, it is set to on and the font server would

spawn another copy of itself if it received more than 10 (the client-limit} connec-
tions.

default-point-size

The default point size (in tenths of a point) for font requests that don't specify

this value. These are called decipoints in the MIT documentation. The example

value of 120 indicates a 12 point size.

default-resolutions

Default resolutions supported by the server. The numbers are pairs of horizontal

and vertical resolutions per inch. Resolutions of 75x75 and 100x100 are speci-
fied in the example.

error-file

The filename of the error log file. You can use this if your system does not sup-
port the syslogO facility. This file would normally be the first place you would

look when debugging the font server configuration file. Leave out this keyword

if you have use-syslog enabled.

*You may notice that the syntax described here differs from the paper "Font Server Implementation Overview,"

(mitldoclfontserverldesign.ms) where a prefix of the font format, such as pcfor Speedo, is used in front of the font di-
rectory list. This feature is not used in the MIT R5 font server.

Font Management 129

port The TCP port number on which the font server will listen for client connections.

Since the font server does not use a privileged port, a user can start up her own

font server at any time. As you can choose the port number yourself, you can test

the font server without disturbing other servers by selecting a unique port num-
ber. The MIT examples all use port 7000. This is a safe distance from port 6000,

which is what the X server uses.

use-syslog

Whether syslog() is to be used for error logging. If set to on, font server errors

will be sent to the LOGJLOCALO syslog facility. You will need to add a line to

your Ietclsyslog.conf file to capture the error messages in a file. If you log other

messages to the directory /var/log, the following entry will add logging for the

font server:

localO.debug /var/log/fs

This will log errors to the file Ivarlloglfs. See the manual page on syslog.conf(5)

for more information on setting up syslog. If you want to use the error-file key-
word, set use-syslog to off.

trusted-clients

The names of hosts the font server will supply fonts to. This can be used to

restrict fonts to a certain group of hosts for licensing reasons. An empty list indi-
cates that any host can make a connection to the font server.

You probably won't need to specify most of these options for your site. The MIT-supplied

configuration file lusrlliblXHIfslconfig should be good enough to start with:

font server configuration file

$XConsortium: config.cpp,v 1.7 91/08/22 11:39:59 rws Exp $

clone-self = on

use-syslog = off

catalogue =

/usr/lib/Xll/fonts/misc/,/usr/lib/Xll/fonts/Speedo/,/usr/lib/Xll/fonts/75

dpi/,/usr/lib/Xll/fonts/100dpi/

error-file = /usr/lib/Xll/fs/fs-errors

in decipoints

default-point-size = 120

default-resolutions = 75,75,100,100

5.5.2 Installing the Font Server

If you wish to have the font server running all the time (as you probably do), you can add it to

a system start-up file, such as I etc I re.local. However, you probably should not add it to any

system files until you are satisfied that it will work correctly. You can test it "by hand" by

starting it on the command line.

130 The X Window System Administrator's Guide

5.5.2.1 Testing By Hand

The -config flag can be used to test a configuration file that is not yet installed or when you

do not have write permission to fusr/lib/Xll/fs'.

fa -config ./test-config &

If the font server dies with the error:

Error: Binding TCP socket: Address already in use

Error: Fatal server error!

Error: Cannot establish any listening sockets

there is probably another font server (or some other program) running with the same port

number. You can specify a number other than 7000 (the default) with the port keyword in the

configuration file or on the command line with the -port flag:

fs -config ./test-config -port 7001 &

The SIGUSR1 signal will cause the server to reread the configuration file. Use this if you have

edited the file and wish your changes to take effect without having to kill and restart the font

server.

The SIGUSR2 signal will cause the server to flush the font cache. This may be desirable if you

want the server to get a fresh copy of a font instead of using a cached version that may be

out-of-date.

The SIGHUP signal is used to reset the server, closing all active client connections and

rereading the configuration file.

You can kill the font server at any time by sending it the SIGTERM signal.

For example, under BSD UNIX:

kill -TERM fs pid

Under System V:

killall -TERM fs

When you are satisfied with the font server's configuration, it can then be added to the system

boot files, which will automatically start it upon the next reboot.

5.5.2.2 Changing BSD Boot Files

In the BSD world, the /etc/re.local file is the usual place to add new daemons. You will want

to locate the entry for the font server before any other XI1-related daemons (such as xdm), if

they are going to need fonts from the font server.

For SunOS 4.x, an example letc/rc.local entry would look like this:

#

start up X font server

#

if [-f /usr/bin/Xll/fs]; then

/usr/bin/Xll/fs & echo -n ' fs'

fi

#

Font Management 131

Under Ultrix, it would look like:

[-f /usr/bin/Xll/fs] && {

/usr/bin/Xll/fs ; echo ' fs' >/dev/console

}

Examine your system's startup files and mimic the other daemon entries when adding the

font server. The // or / test syntax is designed to allow the system to continue the boot pro-
cess without errors if the fs executable is missing.

5.5.2.3 Changing System V Boot Files

System V systems usually have a separate file for each daemon that is started when the sys-
tem boots. Under IRIX (the Silicon Graphics System V derivative), adding the font server

would take several steps:

1. Create a shell script to control the font server in letclinit.d. Check the current contents of

this directory and pick a name for the script that describes it (fs is a good choice):

cd /etc/init.d

Is

MOUNTFSYS acct bsdlpr cron nek perf uucp

REAEME audio cdromd.2 Ip netls savecore winattr

RMTMPFILES autoconfig configmsg mail network sysetup xdm

The easy way to create a new script is to copy an existing one and modify it:

cp xdm fs

edit file...

This script is copied from xdm and modified for the font server:

#!/bin/sh

#

Start X Font Server

#

IS_ON=/etc/chkconfig

FS=/usr/Xl1R5/bin/f s

case "$1" in

'start')

if test -x $FS; then

if $IS_ON fs;

then

$FS &

fi

fi

/ i

'stop')

/etc/killall -TERM fs

echo "usage: /etc/init.d/fs {start I stop}"

esac

132 The X Window System Administrator's Guide

2. Create symbolic links to letc/init.dlfs from the letc/rcO.d and Ietclrc2.d directories. The

format of the symbolic link name is either a "S" (for start) or a "K" (for kill), followed by

a sequence number that determines the order of the file execution, followed by the name

of the file in letc/init.d. To determine the sequence number, you need to see what numbers

are already in use. Here is a listing from a sample IRIX 4.0 system:

% Is /etc/rc2.d

SOLMOUNTFSYS S30network S50mail SVOuucp S88configinsg

S20sysetup S40nck S58RMTMPFILES SVScron S95autoconfig

S21perf S45netls S601p SVSwinattr S97cdromd

S22acct S48savecore S61bsdlpr S83audio S98xdm

The S98xdm entry is for the xdm daemon. Since xdm may require the font server to be

running before it starts, you should move it to the next highest number:

rav S98xdm S99xdm

And then make a link to the file /etc/init.d/fs file:

In -s /etc/init.d/fs S98fs

Repeat the process for the letclrcO.d entry:

Is

KIBcron K20mail K251p K30netls K40network K90sysetup

KISuucp K22acct K26bsdlpr K35nck K78winattr

In this case, there isn't a sequence number conflict with an existing script:

In -B /etc/init.d/fs K98fs

3. The final step is to add an entry to the letclconfig directory to enable the script at boot

time:

/etc/chkconfig -f fs on

5.5.2.4 Changing AIX Boot Files

AIX is a combination of System V and BSD. Starting the font server consists of adding a line

to letc/rc.tcpip:

Start font server

start /usr/bin/Xll/fs ""

#

5.5.3 Font Server Name Syntax

Any client wishing to use the font server must be supplied with the name of the host where

the font server is running and the port number that the font server is listening on. These two

components uniquely identify a particular instance of the font server:

transport /hostname -.port

Font Management 133

The following are example font server names:

tcp/harry:7000

tcp/ruby.ora.com:7000

tcp/128.197.2.1:7001

tcp/fonts.ora.con:7002

The font server name can be specified on the command line with the -server option or set

with the FONTSERVER environment variable. For example:

% setenv FONTSERVER tcp/harry:7000

% fsinfo

is equivalent to:

% fsinfo -server tcp/harry:7000

5.5.4 Debugging the Font Server

The fsinfo client gives a quick way to check if the font server is running or not. In this

example, the font server is running on port 7000 on the host harry:

harry% fsinfo -server tcp/harry:7000

name of server: harry:7000

version number: 1

vendor string: MIT X Consortium

vendor release number: 5000

maximum request size: 16384 longwords (65536 bytes)

number of catalogues: 1

all

Number of alternate servers: 0

number of extensions: 0

The fsinfo client will also display any alternate servers known to the current server:

Number of alternate servers: 2

#0 bigbird:8001

#1 pepper:8000

If the font server is not running or if you have incorrectly specified the name of the font

server, fsinfo will fail:

harry% fsinfo -server tcp/foo:1234

fsinfo: unable to open server "tcp/f00:1234"

If you have specified the host and port number correctly, make sure the font server program is

still running. The ps command can be used to check for this.

Under BSD UNIX:

% ps agx I grep fs I grep -v grep

4237 ? IW 0:01 /usr/bin/Xll/fs

134 The X Window System Administrator's Guide

Under System V UNIX:

% pa -ef I grep fs I grep -v grep

root 169 1 0 Jan 2 ? 0:00 /usr/bin/Xll/fs

If the process doesn't show up, there probably is a serious error in the configuration file or

something else is wrong with your system.

If the font server has reached its client limit, a connection to it may fail with:

FSlib: connection to "rock:7000" refused by server

FSlib: name of server: rock:7000

fsinfo: unable to open server "rock:7000"

Turning on the clone-self keyword or raising the client-limit are possible solu-
tions.

If you have the error-file flag specified in the configuration file, all font server error

messages will appear in the lusrlliblXlllfslfs-errors file (or the file specified with the

error-file parameter). If the use-syslog flag is enabled, the errors will be logged in

the file specified in letc/syslog.conffor the LOG_LOCALO facility.

Any error message prefixed with CONFIG: has something to do with the configuration file. A

typical error might be:

Error: CONFIG: can't open configuration file "/usr/lib/Xll/fs/config"

lusrlliblXlllfslconfig is the default location of the configuration file. Make sure that the file

exists and is readable. You can specify another location for the config file with the -config

option to/5. (You might use this option if you are running your own private font server.)

If you get the following error:

Error: Can't open' error file B/usr/lib/Xll/fs/fs-errors"

the font server probably does not have write permission to the error file. Any errors will be

sent to the controlling terminal or the console. You can specify a different file with the

error-file keyword in the font server configuration file.

5.5.5 Font Server Clients

Once you have verified the existence of the font server, try requesting a font from it. There

are several clients that have names that start with fs, indicating that they are for use with the

font server.

The fslsfonts client is analogous to xlsfonts in that it lists the names of all available fonts or

just those specified on the command line. It understands the same wildcard syntax you use

when specifying fonts elsewhere.

Try a font that you know should be available from the server:

harry% fslsfonts -server tcp/harry:7000 -fn "fixed"

fixed

Font Management 135

If you get an error, such as:

fslsfonts: pattern "goof" unmatched

the font server configuration file probably has an error in one of the pathnames, or you have

specified a non-existent font name.

The fstobdf client is used to produce a BDF version of a font requested from a font server.

Using the fixed font as an example:

harry% fstobdf -server tcp/harry:7000 -fn fixed > fixed.bdf

This BDF file can then be converted to different formats for use by your server.

As the fstobdf client can be used to "steal" fonts from another host, you might want to use the

trusted-clients parameter to restrict fonts that are licensed to specific hosts.

5.5.6 The Font Path and the Font Server

One or more font servers can be added to your font path in the same manner as font direc-
tories. These font servers will then be searched in the order they appear in the font path

whenever a font is requested. This is the best way to add the font server functionality to cli-
ents, as it does not require any changes in the way clients are used.

To add a font server to your font path, just append or prepend it to the font path as you would

do for a font directory. The syntax for naming a font server within the font path is simple. For

example:

% xset fp+ tcp/harry:7000

The general syntax for TCP/IP networks is:

tcp/hostname:port-number[/catalogue-list [+catalogue-list]]

For DECnet it is:

decnet/nodename: :font$objname[/catalogue-list[+ catalogue-list]]

" The tcp or decnet string is the network transport or protocol used by the font server.

" The hostname (or DECnet nodename) is the name of machine where the font server is

running.

" The port number is the port that the font server is listening on.

" The optional catalogue-list can specify a subset of the available catalogues available

from that font server. Catalogue lists are separated by the "+" character. The term cata-
logue has two different meanings in the font server documentation, which may be confus-
ing. The catalogue keyword in the font server config file specifies a list of directories and

the catalogue-list in the font server is used to divide up all the available fonts into groups

(or catalogues). The only catalogue currently supported by the font server is all. To

enable a font server to access all the available catalogues (as you would normally want to

do), just omit the catalogue list.

136 The X Window System Administrator's Guide

The following example has a font server running on the host harry.

First, check the current font path with xset:

% xset -q

Font Path:

/usr/lib/Xll/fonts/misc/,/usr/lib/Xll/fonts/75c%)i/,/usr/lib/Xll/fonts/100(^i/

Add the font server entry:

% xset fp+ tcp/harry:7000

Check the new path:

% xset -q

Font Path:

/usr/lib/Xll/fonts/misc/,/usr/lib/Xll/fonts/75c%)i/,/usr/lib/Xll/fonts/1006ti/,

tcp/harry:7000

If you get the following error from xset:

X Error of failed request: BadValue (integer parameter out of range for

operation)

Major opcode of failed request: 51 (X_SetFontPath)

Value in failed request: 0x6

Serial number of failed request: 5

Current serial number in output stream: 8

either you made an error in the font server name, or the font server specified in the font path

is no longer running.

Here are some more examples of valid font path entries:

tcp/harry:7000

tcp/aixfonts:8000,tcp/decfonts:7000

DECnet/SRVNOD::FOttT$DEFAULT

decnet/44.70::font$special/symbols

Font path additions can specified anywhere you would normally put them, such as in a user's

.xsession or .xinitrc file:

xset m 2 2

xset b 10 100 10

xset fp+ tcp/decfonts.ora.com:7000

xrdb $HOME/.Xdefaults

xmodmap $HOME/.xmodmaprc

twm &

This example assumes the font server will be running before the user's X session is started. If

it is not running, the xset command will fail with the BadValue error shown previously.

Font Management 137

5.5.7 Hostname Aliases

Using a hostname alias such asfonts.ora.com is a clever way to simplify font administration

for a group of hosts. The name could be moved to another host without requiring configura-
tion changes to the hosts that are requesting the fonts.

/etc/hosts On a host using /etc/hosts just add the alias to /etc/hosts:

140.186.66.2 rock.ora.con rock decfonts decfonts.ora.com

NIS If you are using NIS, the entry will have to be added on the NIS master for the

NIS domain. Add an entry similar to the one described above and push the

NIS hosts map.

DNS On a host running DNS, add the following alias to the name server database:

decfonts IN CNAME rock.ora.com.

and tell the name server to reload the database.

You could use a separate font server to supply each group of fonts and have aliases for each

of them. For example, a decfonts alias could be for DECWindows applications, an aixfonts

alias could be for AlXWindows applications, and a texfonts alias could be used by TeX appli-
cations. Users can then select the font server according to the application and its font

requirements regardless of what X server they are using.

5.5.8 A Font Server Example

The xtrek game provides a good example for using the font server.* It requires a special font,

named xtrek, that normally has to be installed for every X server that the xtrek client is going

to be displayed on. For local display servers running on workstations, this means that you

have to copy the font into a local directory on each machine and run the mkfontdir command

on every one of these hosts. A far better solution is to install the font on one host and run a

font server that makes the xtrek font available to anyone wanting to play.

Let's assume you are on the host nugget and you want to start a game on the host rock.

You try to run xtrek, but it fails, as the font is not found by nugget's server:

nugget% xtrek rock

Display: nugget:0.0 Login: eap Name: Dead Meat

Adding player 0 on "nugget:0.0'.

Not all fonts available on nugget:0.0.

To fix this problem, let's turn the host rock into a server for the xtrek font:

1. The xtrek font supplied with source code is in the BDF format. Convert the font into a

format recognized by your X server. In this example, the MIT R5 server expects the PCF

format:

* xtrek is available via anonymous/?/? as export.lcs.mit.edu:lcontriblxtrek.tar.Z.

138 The X Window System Administrator's Guide

rock% bdftopcf xtrek.bdf > xtrek.pcf

2. Copy the font into the font area. In this example, the font will have its own directory,

Ihomeleaplxtreklfonts:

rock% mkdir /home/eap/xtrek/fonts

rock% cp xtrek.pcf /home/eap/xtrek/fonts

3. Create the fonts.dir file:

rock% mkfontdir /home/eap/xtrek/fonts

4. Create a font server configuration file. The easiest way to do this is to copy and then edit

the MIT example file lusrlliblXlllfslconfig:

rock% cp /usr/lib/Xll/fs/config /home/eap/xtrek/fs-config

rock% edit file...

The edited file now contains the following:

clone-self = on

use-syslog = off

error-file = /home/eap/xtrek/fs-errors

catalogue = /home/eap/xtrek/fonts

5. Start the font server:

rock% fs -config /home/eap/xtrek/fs-config &

6. Go back to the host nugget and add the font server to the font path:

nugget% xset +fp tcp/rock:7000

7. Now try running xtrek again:

nugget% xtrek rock

Display: nugget:0.0 Login: eap Name: Dead Meat

Adding player 0 on "nugget:0.0'.

game starts successfully ...

Note that this entire procedure can be performed by unprivileged users.

Font Management 139

5.6 Related Documentation

The font clients are described in the manpages for xfd, xlsfonts, and xfontsel.

The font server clients are described in the manpages forfsinfo,fslsfonts, andfstobdf.

The OpenWindows font programs are described in the manpages for convertfont, makeafb,

bldfamily, and the OpenWindows documentation set.

A technical description of X fonts is in the file mit/doc/XLFD/xlfd.tbl.ms (the PostScript ver-
sion is mitlhardcopylXLFD/xlfd.PSZ).

For more information on the font server, see the manpage forfs and the original design docu-
ment mitldoc/fontserver/design.ms. Beware of differences between this paper and the version

of the font server included in the R5 distribution.

The Font Server Protocol is described in the file mitldoclfontserverlFSlib.doc (PostScript ver-
sion is mitlhardcopylFSProtocollfsproto.PS.Z).

"The X Administrator: Font Formats and Utilities," by Dinah McNutt and Miles O'Neal,

published in The X Resource, Issue 2, O'Reilly and Associates, Inc., Spring 1992.

Section 5.5 of this chapter also appeared as an article entitled "The X Administrator: Manag-
ing Font Servers," by Eric Pearce, published in The X Resource, Issue 3, O'Reilly and Asso-
ciates, Inc., Summer 1992.

140 The X Window System Administrator's Guide

6

Color

This chapter describes the mechanisms used to make color available to X

servers that support color. It covers both the RGB and the Xcms methods of

color management.

In This Chapter:

Color Specification in Release 4 and Earlier 144

RGB Color Names 144

Numeric Color Values 145

Adding Your Own Color Names (RGB) 146

Fixing a Corrupted Color Database 147

Color Specification in Release 5 (Xcms) 147

Xcms Color Names 148

Adding Your Own Color Names in Xcms 150

Xcms Database Example 151

Device Profiles 152

Related Documentation . ..153

6

Color

Color can make a world of difference for a user. Not all X users have servers that support

color, but those that do need to be able to assign colors to their applications easily. The X

Window System provides a way for colors to be addressed using both familiar names (such as

red, blue, yellow) and obscure names (such as papayawhip, pale goldenrod, and dodgerblue).

These names are then converted to a numeric representation that the server understands.

Most color monitors are equipped with red, green, and blue electron guns, called "color

guns," as shown in Figure 6-1. These color guns can be run at different intensities, producing

different colors on the display screen. For example, the color "red" could be displayed by

turning the green and blue guns off entirely and turning the red gun on at full capacity. The

red, green, and blue gun intensity values are called an RGB triplet.

enlarged pixel

Figure 6-1. Red, green, and blue color guns

Prior to X11R5, there was no built-in mechanism to address the lack of color consistency

between displays. The mappings of RGB triplets to color names were hard-coded directly on

the host system, using the RGB System. This meant that when a user requested "turquoise"

on a particular system, he would get the same gun intensities regardless of which X server he

was actually using. Since not all monitors are created equal, "turquoise" might look slightly

different depending on which display it was being viewed on. R5 addresses this problem

Color 143

with a new device-independent system called the X Color Management System, or Xcms.

Xcms allows colors to be specified in internationally accepted standards that are in wide use

outside of the computer field.

This chapter discusses both the RGB and Xcms systems of color specification.

6.1 Color Specification in Release 4 and Earlier

In Release 4 and earlier, the X Window System uses the RGB system for defining and dis-
playing different colors. MIT X11R4 defines 738 color names by associating names with

RGB triplets.

The list of colors available on your system can be retrieved using the showrgb client, or by

examining the file rgb.txt, usually in the directory lusr/liblXll or lusrlliblXlllrgb. (The con-
tents of the rgb.txt file is identical to the output of the showrgb client.) If you run the

showrgb client, be sure to use a pager, as there are screenfuls of output:

% showrgb I more

255 239 213 papayawhip

240 255 255 azure

105 105 105 dimgray

176 196 222 lightsteelblue

127 255 212 aquamarine

0 250 154 mediumspringgreen

238 232 170 pale goldenrod

Each line contains 4 columns. The first column is the red value, the second column is the

green value, and the third column is the blue value. Each value is an integer from 0 and 255,

inclusive.

The fourth column is the name assigned on your host system to that particular combination of

RGB values.

The color "black" is defined with "0" values for each color gun, and "white" is defined with

maximum values for each gun.

255 255 255 white

000 black

For a visual list of colors, try the contrib client xcolors. It will read the RGB database and

display all the colors it finds.

6.1.1 RGB Color Names

You can specify colors for clients by using the -fg and -bg options on the command line, or

by setting the foreground and background resources for the client. For an xterm win-
dow with an aquamarine background and blue text, for example, you could use the following

command line:

% xterm -bg aquamarine -fg blue

144 X Window System Administrator's Guide

Alternatively, you could define the following resources:

xt erm* background: aquamarine

xterm*foreground: blue

To become familiar with specifying colors, try picking a few colors and pass them to a client

to see the effect. If you get an error such as:

Warning: Color name "barfgreen1' is not defined in server database

you probably chose a non-existent color or spelled a color name incorrectly.

There are several "aliases" provided for a single color-for example, the color "dark slate

grey" appears in rgb.txt with four different ways to name it:

47 79 79 dark slate gray

47 79 79 DarkSlateGray

47 79 79 dark slate grey

47 79 79 DarkSlateGrey

All of these names produce the same color.

6.1.2 Numeric Color Values

Clearly, every RGB value cannot have a name associated with it, but you can also specify

colors by using the RGB values directly. Any color resource starting with the "#" character

is expected to have a number following it. The numbers are expressed in hexadecimal, with

one, two, three, or four digits for each value:

#RGB

#KRGGBB

#KRRGGGBBB

#RRRRGGGGBBBB

where "R","G", and "B" represent red, green, and blue digits. For example, all of the follow-
ing color specifications represent the same value:

XTerm* foreground: # f 0 0

XTerm*foreground: #ffOOOO

XTerm*foreground: #fffOOOOOO

XTerm*foreground: #ffffOOOOOOOO

XTerm*foreground: red

You would usually produce colors with complex hex numbers only if you used a resource

editor such as OSF/Motif's mre,* props in Sun OpenWindows or the contrib client

xcoloredit,t as color names are much easier for humans to deal with.

*If you buy OSF/Motif 1.x source code from OSF, the mre program is included as "demo" program. There is a

README file, but no manpage.

txcoloredit is available via anonymous/rp from export.lcs.mit.edu as i'contrib/'xcoloredit.tar.Z.

Color 145

6.1.3 Adding Your Own Color Names (RGB)

If you come up with your own color, you can add a name for it in the RGB database. The pro-
cedure described here requires access to the source code for the X distribution, as the rgb

program is not normally installed along with the other X programs.

To get a hexadecimal value for the new color, you can use a color editor, such as mre, props,

or xcoloredit. When you have selected the color, the program will display the RGB values in

hexadecimal or write the value directly into your .Xdefaults file.

In the following example, the selected color is a shade of green that comes out as "b7bb6e."

The RGB database expects the values to be in a decimal format. An easy way to convert from

hex to decimal is to use the UNIX program be:

% be

First, set the base of input to 16 (the output defaults to base 10):

ibase=16

Then enter the numbers to be converted:

B7;BB;6E

(The be program requires the letters in the hexadecimal numbers to be in uppercase.)

be then prints out the decimal values for the three colors:

183

187

110

Type CTRL-D to exit the be program.

Once we know that our RGB triplet is (183,187,110), follow these steps:

1. Add the following line to the rgb.txt source file, which is located in the mit/rgb direc-
tory:*

183 187 110 UglyGreen

2. Run the rgb program using the makefile also located in the mit/rgb directory. This pro-
gram converts the text file (rgb.txt) into the UNIX dbm format (rgb.dir and rgb.pag),

which are the files actually used as the color database:

% make

rm -f rgb.pag rgb.dir

./rgb rgb < rgb.txt

3. Then install the new rgb files in lusrlliblXll:

% make install

install -c -m 0644 rgb.txt /usr/lib/Xll

install -c -m 0644 rgb.dir /usr/lib/Xll

*If you don't have the XI1 sources on-line, see Appendix F for information on how to get the MIT source. You only

have to build the programs that are necessary for color management, found in the directory mit/rgb.

146 X Window System Administrator's Guide

install -c -m 0644 rgb.pag /usr/lib/Xll

install -c -s showrgb /usr/bin/Xll

install in ./rgb done

There are a few alternate color databases that come with the source distribution in

mitlrgblothers. Examine the README file in that directory for details.

6.1.4 Fixing a Corrupted Color Database

If the color name database gets corrupted in some way (e.g., written to accidentally), the

server may not be able to find any colors with which to display. On a workstation with a

monochrome display, you may get error messages similar to the following:

X Toolkit Warning: Cannot allocate colormap entry for White

X Toolkit Warning: Cannot allocate colormap entry for Black

X Toolkit Warning: Cannot allocate colormap entry for white

X Toolkit Warning: Cannot allocate colormap entry for black

If you see errors of this sort, perform Steps 2 and 3 in the procedure described above. This

will overwrite the corrupted rgb database files.

6.2 Color Specification in Release 5 (Xcms)

Under the RGB triplet system, a color could look quite different due to the type of display, its

manufacturer, or the type of machine that is driving it. In Release 5, Device Independent

Color was introduced in an attempt to standardize the appearance of colors across different

platforms.

The X Color Management System (Xcms) was developed by Tektronix, and has been adopted

by the X Consortium for Release 5 of XI1. Since all RGB functionality is still supported,

you can treat the new color system as a superset of the previous RGB system. If you don't

want the added functionality, you can pretty much ignore it.

Under Xcms, colors are based upon internationally recognized standards (CIE)* and repre-
sent all visible colors. This differs from the RGB system, which is based upon display hard-
ware, not human vision. The Xcms system can take color values in several different formats,

called color spaces. These spaces describe color in a device-independent manner, using terms

such as Hue (color family), Value (darkness or lightness), and Chroma (saturation or vivid-
ness). Before the values are displayed, they are modified for the particular device they are

going to be viewed on. This modification should make the color appear the same regardless

of the manufacturer, type, or model of the display. The Xcms system should also make the

color appear the same on any other color device, such as a color printer equipped with Post-
Script Level 2.

*CIE stands for Commission Internationale de I'Eclairage or International Commission on Illumination.

Color 147

A complete description of the Xcms color model is beyond the scope of this book, which

covers only the aspects of Xcms that affect administrators.

6.2.1 Xcms Color Names

The Xcms color system uses a color database on the client side, whereas the RGB system

database is used by the server (see Figure 6-2). All color names are looked up in a Xcms cli-
ent database before being passed onto the server.

Xcms introduces several new ways to specify color and retains all of the old ones. Some

examples of colors used in resources are:

*Background: RGBi:1.0/1.0/0.0

*Foreground: NavyBlue

*Text*Background: CIElab:0.0/.54/.90

*Text*Foreground: White

*Text*border: ttffOOfc

Under the Xcms system, a color specification is checked as follows:

1. If it begins with the character "#", the rest of the color specification is interpreted as a

hexadecimal RGB value:

#<red valuexgreen valuexblue value>

This syntax is still supported, but for only backwards compatibility. You are encouraged

to use the newer uniform methods of numeric color specification.

2. If it contains the character ":", the prefix is checked to see if it is a recognized color

space and if it is, the rest of the color is taken as a value in that color space:

<color space>:<color space specific encoding>

The color spaces described here all use the "/" character to delimit the numeric values,

as in:

<color space>:<value>/<value>/<value>

but this method is specific to the particular encoding scheme used.

3. If it contains neither the ":" or "#" character, it is assumed to be a color name that would

appear either in the Xcms client database or the RGB server database.

The database is composed of pairs of color names and corresponding numeric color specifica-
tions. The prefix on the number indicates the type of color system that is represented by the

number. The following is a list of the current color spaces and their prefixes in the Xcms

database.

Name Prefixes

Various CIE formats CIEXYZ, CIEuvY, CIExyY, CIELab, CIELuv

Tektronix HVC TekHVC

RGB RGB

RGB intensity RGBi

148 X Window System Administrator's Guide

Color Specification

Client Side Server Side

RGB

o> .""-> Database -

R4
and
earl f

RRB

..-^XCMSDB -. ..-"">" Database -

f T

in

oc i A

''""-&" Device -;

Profile

Figure 6-2. Xcms vs. RGB color specification

Xcms stores its color database in a file called Xcms.txt, usually in lusrlliblXll. You can also

create your own Xcms database and set the environment variable XCMSDB to it:

% setenv XCMSDB /home/eap/mydatabase

This will be used instead of the system database.

The database is similar to the rgb.txt file in that it maps a color name to a numeric color spec-
ification, but differs in that it recognizes all the new color specification formats (color

spaces) in addition to RGB. It also supports color name aliases, as new names for an existing

color can be defined here. The order of the columns is also reversed compared to the RGB

database.

Here is a portion of a sample Xcms.txt file (anything outside of the lines

XCMS_COLORDB_START and XCMS_COLORDB_END is ignored.):

XCMS_O)LORDB_SrART 0.1

red CIEXYZ:0.371298/0.201443/0.059418

green CIEXYZ:0.321204/0.660070/0.159833

blue CIEXYZ:0.279962/0.160195/1.210705

aquamarine CIEXYZ:0.34672401/0.54832153/0

grayO TekHVC:0.0/0.0/0.0

graylO TekHVC:0.0/10.0/0.0

gray20 TekHVC:0.0/20.0/0.0

mygreen aquamarine

myblack black

XCMS_COLORDB_END

Color 149

In this example, "red" is described in CIE XYZ space and "grayO" in TekHVC. The name

"mygreen" is an alias for "aquamarine," which is described earlier in the same database.

"myblack" is an alias for "black," which is in the server's RGB database.

6.2.2 Adding Your Own Color Names in Xcms

Adding a color to the Xcms database is very similar to adding one to the RGB database, but

there are several possible ways to describe a color. Tektronix donated a color editor, called

xtici, that allows a color to be selected in several different color spaces.*

Use the following steps to add a new color to the color database:

1. Start the xtici program and select a color.

2. When you find one that you wish to use, click on the "Edit" button.

3. Then click on the "Copy Color ->" button. This will present a menu of three differ-
ent color spaces, as shown in Figure 6-3.

Export Edit | Help

1 Copy Color ->
| HUE; | [g | TekHVC |

Paste Color

RGB

|VflLUE: LV«-.U
CHROMR: IL45.6

CIE u' v'Y

T~[

, i

Figure 6-3. xtici Edit menu

4. Select a color space and paste the value into an editor or on the command line using the

middle mouse button (or whatever button you have selected for the paste function). The

"RGB" button produces the old-style RGB "#" format and you are better off using "Tek-
HVC" or "CIE u'v'Y."

For this example, enter these values into the Xcms.txt file in between the

XCMS_COLORDB_START and XCMS_COLORDB_END lines, along with a prefix of the

color space you choose (e.g., TekHVC) and a color name in the left column. Make sure

*The xtici program is not part of the normal MIT R5 distribution, but can be obtained via anonymous ftp from the

host export.lcs.mit.edu as Icontriblxtici.tar.Z. A user manual is included in the doc directory in the source code for

xtici.

150 X Window System Administrator's Guide

you use the TAB character between the color name and the beginning of the color specifi-
cation. For example, to define the same color we created earlier for the RGB database:

UglyGreen TekHVC:88.00004/72.66564/38.25869

5. Unlike the RGB system, you don't have to rebuild the Xcms database into a binary form

after you edit it.

6.2.3 Xcms Database Example

To illustrate the use of the client-side database, let's pretend you are a clothing designer for a

mail order catalog. The marketing people have suggested that you choose interesting names

for the colors of the garments. Let's also assume that you do not want to change any system

files, only ones in your home directory.

First, pick some nice colors using a color editor (such as xtici) and record the Xcms color

specification in a file (maybe called FallCatalog.txt). Pick catchy names for each color you

design and put them in the Xcms database format described earlier:

#

Ocean's Start Fall Catalog Colors, attenpt #1

#

XCMS_COLORDB_START 0.1

Berry CIEuvY:0.34568/0.45488/0.23013

Port CIEuvY:0.37875/0.45637/0.05117

Straw CIEuvY:0.19325/0.53761/0.85767

Paprika CIEuvY:0.39617/0.51446/0.20947

GrapeFruit CIEuvY:0.19261/0.52793/0.85069

Pool CIEuvY:0.15229/0.48240/0.60646

XCMS_COLORDB_END

To test out this particular database by yourself, you have to tell Xcms where to look for it:

% setenv XCMSDB "/FallCatalog.txt

Let's say your clothing design program is called autoclad. You can use the color names listed

in the Xcms database as resource specifications:

ftutoclad*outfit1.pants: Pool

Autoclad*outfitl.tie: GrapeFruit

Autoclad*outfitl.shirt: Berry

You can also specify them on the command line:

% autoclad -fg Port -bg Paprika

If you want to try another set of colors, you can easily create another database and redefine

the XCMSDB environment variable to tell Xcms where to look for the new database.

Color 151

6.2.4 Device Profiles

An integral part of Xcms is Device Color Characterization (DCC), or a Device Profile. This

is data that tells Xcms how to modify colors to fit your particular display device so they will

look as they should. The data may be specific to the size, brand, model, and the type of screen

on which you are displaying the color.

The DCC data is stored in properties on the screen's root window. Some servers are able to

automatically load the properties with data appropriate to the attached display(s). For servers

that are built from MIT source, you will probably have to load the DCC data by hand. The

xcmsdb client that comes with the MIT source distribution will load the DCC data from a text

file you supply.

There are some sample DCC files in the directory mitlclients!xcmsdbldatafiles. Examine the

top portion of the file for a description of the monitor. This is from the file Sparcl-19.dcc:

SCREENDATA_BEGIN 0.3

NAME Sun SPARCstation 1 19" color monitor

PART_NUMBER 3

MODEL Hitachi HM-4119-S-AA-0, July 1989

SCREEN_CLASS VIDEO_RGB

REVISION 2.0

COLORIMETRIC_BEGIN

XYZtoRGB_MATRIX_BEGIN

2.898873264142915 -1.405253453722755 -0.401375502033969

-1.137294035493891 2.090468612762945 0.027097795177010

0.052401943410025 -0.208571555336254 1.027214718138772

XYZtoRGB_MATRIX_END

RGBtoXYZ_MATRIX_BEGIN

0.473564943660944 0.335917466635681 0.176180053794631

0.257273262661955 0.659599528857479 0.083127208480565

0.028079972620921 0.116792496677968 0.981397341912346

RGBtoXYZ_MATRIX_END

COLORIMETRIC_END

INTENSITY_PROFILE_BEGIN 0 3

INTENSITY_TBL_BEGIN RED 256

0x0000 0.000000000000000000

0x0101 0.000000000000000000

Oxfdfd 0.975557917109458050

Oxfefe 0.980162947219270220

Oxffff 1.000000000000000000

INTENSITY_TBL_END

INTENSITY_PROFILE_END

SCREENDATA_END

The file contains values that are loaded into the root window properties and then plugged into

Xcms functions, converting each device-independent color value into a device-specific value

and vice-versa. You can load a DCC file in the same manner as you would load a .Xdefaults

152 X Window System Administrator's Guide

file with xrdb. For example, if you have a Hitachi 19" color monitor on your Sun Spare-

Station 1, use the command:

% xcmsdb Sparcl-19.dec

As you would typically want to load the file when your server starts, your .xinitrc would be a

good place for this command:

xset m 2 2

xset b 10 100 10

xcmsdb Sparcl-19.dec

xrdb $HOME/.Xdefaults

xmodmap $HOME/.xmodmaprc

twm &

If you have the MIT XI1R5 contrib source code available, there are additional DCC files in

contriblclients/xcrtcalmonitors :

% Is

Apollol9.calOO NWP-513.calOO Sparc2-19.calOO VR290.calOO VR299.calOO

Apollol9.dcc NWP-513.dcc Sparc2-19.dcc VR290.dcc VR299.doc

Applel3.calOO SGI-PI19.calOO Sun3-60.calOO VR297-0.calOO

Applel3.dcc SGI-PI19.dcc Sun3-60.dcc VR297-0.dcc

HP98782A.calOO Sparcl-19.calOO Trinil9.calOO VR297-l.calOO

HP98782A.dcc Sparcl-19.dec Trinil9.dcc VR297-1. dec

The contrib client crtca is used to drive a colorimeter. The Tektronix J17 and Minolta

CA-100 (with low-luminance option) are colorimeters supported by this program. These

devices are used to measure a color displayed on a monitor. The output of the crtca program

is the .calOO files listed above. These are fed into the xsccd client which, in turn, produces

the device color characterization (.dec) files to be read by the xcmsdb client.

There isn't a standard location or naming scheme enforced for DCC files. You may have to

investigate to find what you are looking for. Keep in mind that your X display is still usable

without loading a DCC file. All you are accomplishing is color correction for your particular

display. This is extremely important for some applications, but superfluous for others.

6.3 Related Documentation

See the manpages for showrgb, xcolors, props, xcoloredit, and xtici.

A detailed user manual comes with the xtici source code distribution (in doc/).

The file mitldocltutorials!color .tbl.ms contains a more detailed description of color and X.

Chapter 7 of the Xlib Programming Manual, by Adrian Nye (O'Reilly & Associates, 1992).

"A Technical Introduction to the X Color Management System," by Al Tabayoyan, published

in The X Resource, Issue 0, O'Reilly and Associates, Inc., Fall 1991.

Color 153

X Terminals

X terminals allow you to put X on everyone's desk at relatively little cost. This

chapter covers the issues with buying and configuring X terminals on your

site.

In This Chapter:

Buying an X Terminal: What's What 157

Monitors 157

Screen Size 158

Resolution 158

Depth 159

Refresh Rate 159

Keyboard and Mouse 159

X Server Software 160

Special Features 161

Memory Configuration 161

Network Interface 162

X Terminal Setup 163

Network Setup 164

Getting the IP Address Using RARP 165

Getting Information Using BOOTP 165

Trivial File Transfer Protocol (TFTP) 167

Setting Up the Network on the X Terminal 168

Debugging Hints 168

Error Messages 169

Updating the arp Table 169

Name Server Problems 169

Fonts on X Terminals 170

Font Formats 170

The Font Server (R5) 171

Choosing TFTP or NFS for Font Access 171

Reading Fonts Using TFTP 171

Reading Fonts Using NFS 172

Configuring for the X Display Manager 173

Configuring the X Terminal for xdm 173

Configuring an R5 Host 174

Configuring an R4 Host 174

Configuring xdm Without XDMCP 174

Setting Up Server Access Control 175

Remote Configuration of X Terminals 175

Remote Configuration on NCD Terminals 176

Remote Configuration on Visual Terminals 177

Remote Configuration on Tektronix Terminals 178

Reconfiguring the Host 178

Increasing the Number of Processes 178

Increasing the Number of Pseudo-ttys 179

Increasing the Amount of Swap Space 180

Swapping to a File 180

Swapping to a Disk 180

Related Documentation . ..181

7

X Terminals

Only a few years ago, the average UNIX site was equipped with a few expensive computers,

connected to ASCII terminals on every desk. The X terminal is a newcomer in the market of

UNIX hardware. Today, the rapidly-growing market of X terminals demonstrates how XI1

has changed the landscape of UNIX sites.

An X terminal is as "dumb" as an ASCII terminal, in that without a host computer to connect

to, it's nothing but a blank screen with a setup menu. But when properly configured, the X

terminal gives the user all the functionality of a workstation without all of its cost and admin-
istrative worries.

7.1 Buying an X Terminal: What's What

Today, there are more than two dozen vendors of X terminals. X terminals are sold with a

variety of screen sizes, screen depth and resolution, memory configurations, and software. If

you are buying an X terminal, you'll probably want to examine recent trade magazines for

evaluations of current products. (The market changes so quickly that X terminals tested for

this book will undoubtedly be outdated by the time you read this.) But for background of

what you're getting into, this section describes some of the areas where X terminals differ

and how they should factor in your decision.*

7.1.1 Monitors

The monitor is arguably the single most important part of the X terminal. The size, resolu-
tion, and depth of the monitor have a bigger impact on the perceived quality of the terminal

than anything else. Accordingly, the type of monitor also has the biggest impact on the price

of the X terminal as well.

The short story is that, when choosing the monitor for an X terminal, you will end up weigh-
ing the user's needs against how much money you have to burn. A user who spends the day

in data-entry applications might be satisfied with a monochrome 15-inch monitor, but users

*The comp.windows j newsgroup has a quarterly posting on X terminal manufacturers, including pricing informa-
tion.

X Terminals 157

who do desktop publishing will probably require a 19-inch grayscale or color monitor for

viewing a two-page spread.

7.1.1.1 Screen Size

Common screen sizes for X terminals range from 14 inches to 20 inches, measuring the diag-
onal. Some users may be made happy with a 14- or 16-inch screen, but real estate will be

cramped; if you can afford a 19-inch monitor, go for it. (Beware that the actual image area

will be smaller than the screen dimensions imply; that is, a 19-inch screen with approximate

dimensions of 15x 12 inches may have an image area closer to 13.25x 11 inches.)

Some X terminals support a "virtual screen," whereby the screen image is actually larger

than the screen itself. The portion of the screen that is obscured can be exposed by moving

the mouse onto that area. This may be a good compromise for some users, or it may drive

them crazy when the screen shifts every time they move the mouse a bit too far.

7.1.1.2 Resolution

The resolution of a screen is usually given with its dimensions in pixels. X terminal displays

range from 640x480 pixels to 1280x 1024 pixels. A pixel is the smallest element of the dis-
play that can be addressed. The number of pixels effectively determines how much informa-
tion can be shown on your screen.

So what does the number of pixels really tell you? If you're a purist, then you're primarily

interested in knowing how many dots per inch (dpi) there are. The best way of finding out the

dpi is to ask the X terminal manufacturer. You can try to get a reasonable approximation by

comparing the number of pixels to the dimensions of the screen image, but you'll have to

measure the actual dimensions of the image (since the actual image is smaller than the screen

size).

To get an idea of what sort of resolutions should be expected, our monochrome 19-inch NCD

terminals have 1280x1024 pixels for approximately 100x100 dots per inch. Our mono-
chrome 14-inch NCD terminals have 1024x1024 pixels for 106x106 dots per inch. The

xdpyinfo client can be used to learn the dimensions and dots per inch for any server you have

network access to. Since xdpyinfo requests this information from the server itself, the num-
bers it reports are only as accurate as the numbers advertised by the vendor.

Beware that for color terminals, you should concern yourself with the dot pitch of the moni-
tor as well as the resolution. The dot pitch is the distance between the dots projected by the

color guns. If the resolution of the monitor tries to display more pixels than you have dots on

the screen, the picture will be fuzzy and cause eye-strain.

Note that the higher the resolution, the more traffic over the network (since higher resolution

means more pixels being drawn over the network) and the more memory you'll need for rea-
sonable performance. Low-end color and grayscale displays tend to have lower resolution

than monochrome displays, to cut down on required memory (and thus cost).

158 X Window System Administrator's Guide

7.1.1.3 Depth

The depth of an X terminal is determined by the number of bits per pixel it supports for color

information. A monochrome (a.k.a. static gray) monitor has one bit per pixel: each pixel is

either black or white, with no shades of gray. Most grayscale and color monitors have 8 bits

per pixel, although some may have as few as 2 or 4, and others may have as many as 12 or 24.

A color monitor with 8 bits per pixel can support as many as 28 = 256 simultaneous colors;

likewise, a grayscale monitor with 8 bits per pixel can support 256 shades of gray.

If you choose to buy an X terminal with a depth of only 2 or 4 bits per pixel, beware that

some X clients are dumber than others. Some of the less robust applications assume that if

you have a depth greater than 1, then you must have 8 bits per pixel. (These clients can also

cause problems on displays with 12 or 24 bits per pixel.)

Another possible complication is that, if you buy a grayscale monitor, you may find that some

applications think you have color. For example, on a 2-bit grayscale display, FrameMaker

will try to display windows using its color default of a blue background. The best way to

deal with this complication is to set up your application resources to use only black and

white; see Section 3.5.6 for an example of using xdm and display classes to set up different

defaults according to the display type.

Although you might be concerned that an X terminal with 8 bits per pixel may produce 8

times as much traffic as one with a monochrome display, this is seldom an issue in practice.

Most clients address only 1 bit per pixel, regardless of the depth of the display.

7.1.1.4 Refresh Rate

The refresh rate of a monitor is the frequency that the screen is redrawn. If the screen is

refreshed too slowly, it may be noticeable to users and quickly cause eye-strain. In general, a

refresh rate of less than 70 Hz is considered to be too slow for daily use.

7.1.2 Keyboard and Mouse

There are several different types of keyboards available for X terminals. Since there are few

things more frustrating to users than having to use a keyboard they are unaccustomed to,

choose the keyboard carefully. DEC users are used to different key configurations than both

Sun users and PC users. Users have different ideas of what a "UNIX" keyboard is-some

users think it's a Sun3 keyboard, others think it's a Sun4 keyboard, and some think it's a

DEC keyboard. (What NCD calls a UNIX keyboard is actually a DEC keyboard.)

Keyboards differ in things like the position of the tilde and escape keys, the position of the

Alt key(s), and the positions of the CTRL and CAPS LOCK keys (which are sometimes

reversed, to the great frustration of the user). Most X terminal manufacturers also have inter-
national keyboards available.

Almost all X terminals come with a 3-button mouse. The only deviations between the mouse

distributed with X terminals is whether it's a mechanical mouse or an optical mouse. Optical

X Terminals 159

mice cost a bit more, but many people consider them to be more reliable. Trackballs are also

available from many manufacturers at an extra cost.

7.1.3 X Server Software

The X server is essentially the operating system for the X terminal. X terminals differ, how-
ever, in where the server program resides, and even where it is run.

" Many older X terminals have the X server built directly into ROM. However, these X

terminals tend to be much more expensive, and furthermore they require replacing the

ROM at every upgrade.

" Most X terminals are designed to read the X server program from a host on the network at

boot time. Upgrades involve replacing a single file on the host. The downside to having

the X server software loaded over the network, however, is if you intend to run X over a

serial connection-downloading a megabyte of software can take some time over a

modem line.

" Some X terminals give you the option of both-they have X server software built in, but

can then override it by downloading another server from the network. This method is cur-
rently being replaced by another method using FLASH ROM. FLASH ROM is a type of

ROM that is updated by being downloaded from a host only once. This means that you

don't have to download the entire server image every time you boot the X terminal, but

you also don't have to deal with the messiness of opening up each X terminal every time

an upgrade comes in. FLASH ROM is expensive, but it's clearly the most efficient way of

dealing with X terminal software.

" There are a few low-cost X terminals designed to run over serial lines exclusively.*

These X terminals do not actually run the X server, but rely on the host to run the X

server as well as the clients. The advantage is that all the traffic between client and

server can take place over TCP/IP or IPC, so that the communication over the serial con-

nection can be restricted to keystroke and mouse events and to screen updates. Another

great advantage is that, since they need very little memory to run, these serial X terminals

tend to be very inexpensive. The disadvantage is that they are still very slow (although

faster than many other methods of running X over serial connections).

We strongly recommend that you buy an X terminal with an XDMCP-compliant server (R4 or

higher). (Almost all X terminals sold today support XDMCP; see Section 3.1 for more infor-
mation on XDMCP.) If you run R5 on a host, we also recommend getting an X terminal that

supports the R5 font server and (if the X terminal supports color) one that supplies color

characterization data for Xcms. (At this printing, X terminals supporting the R5 font server

and Xcms are just coming to the market.)

For the purposes of this book, we emphasize setting up X terminals running over TCP/IP with

the X server software downloaded over TFTP.

* These X terminals are manufactured by Graph-On and Qume. Graph-On terminals are no longer on the market.

160 X Window System Administrator's Guide

7.1.4 Special Features

As the X terminal market has grown, X terminal capabilities have expanded as well.

Local Clients Some X terminals can run X clients locally. Window managers are the most

popular clients to run locally, and can make quite an impact on perfor-
mance. Note, however, that the more you want your X terminal to do, the

more memory you'll need. And remember that the whole idea of X and the

X terminal in particular is to have cheap desktop access to remote comput-
ing-so don't go wild on local clients unless you have real reasons for

keeping network traffic at a minimum. For example, if you're running the

X terminal over serial lines, you may want to have a local window manager.

In any event, the local window manager will be more responsive, but you

have to live with the X terminal vendor's choice of a window manager.

Backing Store Almost all X terminals are capable of backing store. Backing store allows

an X server to keep an image of obscured windows in memory so they can

be redrawn quickly and without network overhead when exposed. To use

this feature, however, terminals need to have some extra memory installed,

or they may produce an error message (or crash). Some terminals give the

option of using backing store only when there is enough memory available;

enable this option if it is provided with your terminal, since it might help

performance. Beware, however, that when the X terminal later needs more

memory, it may not consider the memory set aside for backing store to be

fair game.

Remote Configuration

All X terminals can be configured using a local setup menu. Some X termi-
nals, however, also provide the ability to read their configuration parame-
ters from a file on a remote host at boot time. This becomes a great advan-
tage when you have many X terminals to maintain-it's always easier to

edit files on-line than to visit every office on your site after hours. See Sec-
tion 7.6 for more information on remote configuration.

Peripheral Support

Many X terminals allow you to hang printers off their serial port. In addi-
tion, some X terminals made by IBM have a port for connecting a hard

drive directly to the X terminal. The hard drive is used for "swapping" large

images, reducing memory requirements.

7.1.5 Memory Configuration

X terminals range from 512K of memory to 72MB. As usual, what you should get depends on

what you plan to use it for. If you plan to run graphics-intensive applications, you'll want

more memory for a reasonable display. Remember that the more pixels on the screen and the

greater the depth of your terminal, the more memory you'll need.

X Terminals 161

In addition, many of the fancier features available for X terminals can be memory-intensive.

X terminals that can run clients locally will need more memory to support them. If you want

your X terminals to do backing store, that will also require more memory.

Although many X terminals are smart enough to cut down on backing store when memory

gets low, beware that some X terminals might crash if they run out of memory. If this hap-
pens, it's a good idea to disable backing store completely, if you can.

Some X terminal manufacturers use their own proprietary memory. If you think this may

turn into an issue when it becomes time to upgrade the memory, you might prefer to stick to a

manufacturer that uses industry-standard SIMMs.

7.1.6 Network Interface

Most X terminals come with built-in Ethernet and TCP/IP support, and most also provide a

serial interface. Some X terminals support the IBM Token Ring beneath TCP/IP. DECnet is

supported by some X terminals as well.

Most X terminals support SLIP for running X over a modem line. X terminals supporting PPP

for modem lines are just now coming to the market. In addition, some X terminal manufac-
turers have their own serial line protocols that are more efficient than SLIP, such as NCD's

Xremote and Serial Xpress by Tektronix.

X Terminal Alternatives

There are a few alternatives to buying X terminals. If you already have PCs available,

there are many X servers that run on PCs. Although PC X servers are slower than X ter-
minals and have inferior resolution, they are often sufficient for "occasional" X users,

and can be much cheaper (depending on how "souped-up" your PC is already). See

Appendix C for more information on PC X servers.

Another alternative is to use diskless workstations instead of X terminals. New diskless

workstations are significantly more expensive than X terminals, and create more admin-
istrative overhead. But if they have enough RAM, diskless workstations are generally

faster and reduce both network traffic and the load on the central host, since all (or

most) X clients can run locally.

You can also turn an older workstation into an X terminal by installing a stripped-down

kernel running only the X server. See Section A. 10 for more information on how this is

done.

162 X Window System Administrator's Guide

7.2 X Terminal Setup

Assuming you now have an X terminal, you probably want to make sure it works before you

do any serious configuration. For an X terminal running over TCP/IP, this means you have to

perform the following steps. These steps are described in more detail later in this chapter.

Please note that X terminals may have different procedures where noted.

1. Configure the local name server to include a new IP address for the new machine. If you

aren't already familiar with this procedure, see Section A.6 for more information.

2. Install the fonts on the host machine.

The X terminal should have arrived with a font tape. Unless both the X terminal and the

host support the R5 font server (and to this date, no X terminals do), you need to install

the fonts as documented by the X terminal vendor.

Where you install your fonts depends on how you intend for them to be read. Some X ter-
minals can read fonts via NFS; all X terminals can read fonts via TFTP. Although it may

be preferable to read fonts via NFS, it's a bit harder to set up. For easy setup, therefore,

install the fonts in /tftpboot/usr/lib/XlI/vendor/fonts. (You can move the fonts elsewhere

if and when you switch to NFS.) See Section 7.4 for more information on font manage-
ment for X terminals. See Section 7.3.3 for more information on TFTP.

If the X terminal has support for the R5 font server, and you have an R5 machine running

the font server, you don't need to install new fonts. You can just set up the X terminal to

use the font server, specifying the name of the font server (consisting of transport, host,

and port number). Note that some X terminals may use the term "font server" differ-
ently-i.e., as the host that the X terminal reads its fonts from, but without actually using

the R5 font service protocol.

3. Install the X server.

If the X server is built into ROM, you can skip this step. Otherwise, the X server software

was probably sent on a tape, to be copied onto the host and read by the X terminal at

startup via TFTP. Copy the X server program to the proper directory on the host machine

(probably /tftpboot) and make sure that the TFTP daemon is running on the host. (See

Section 7.3.3 for more information on TFTP.)

Next, tell the X terminal where to download the server from. At this point, you need to

consult your documentation; however, for an example, our NCD X terminals use a com-
mand line similar to the following on their boot monitors:

> bt Xncdl6 140.186.65.137 140.186.65.25

The X terminal will boot using the file ltftpbootlXncd!6 on the host with IP address

140 .186 .65.25. The X terminal will use IP address 140 .186.65.137.

After the X terminal is initially booted, you can configure its setup menu so that it can

automatically boot at power up. Alternatively, if the X terminal uses BOOTP, then you

can enter this information into /etc/bootptab; see Section 7.3.2 for more information.

X Terminals 163

4. Now it's time to connect to a host. If you don't have R4 or R5 xdm already running on a

host machine, see Section 3.3 for information on how to start it up.*

Once you have xdm running on a host machine, some X terminals arrive pre-configured to

do a Broadcast query. Those terminals should receive the login box immediately once the

X terminal has been supplied a broadcast address. If there's some complication, you can

configure the X terminal to query the host running xdm directly. See your vendor's docu-
mentation to learn how to configure the terminal to use XDMCP.

Connecting with Telnet

If you have trouble connecting using xdm, test the connection using telnet. Most X ter-
minals are supplied with a telnet window for starting an initial client. The telnet window

may be part of the setup menu, or it may be a local X client. See your vendor's docu-
mentation to learn how to access the telnet window.

Once you have a telnet window, try to connect to a host using its IP address. If you can't

connect, there's either a cabling problem or there's something wrong with the network

configuration of the X terminal. If you can connect, log in and type "who am i" to

confirm that you're resolving to the correct hostname. Then set the DISPLAY environ-
ment variable to the hostname, and start an initial xterm.

lmui@ruby 26% who am i

rubyllmui ttyp6Aug 20 18:18 (ncd9.ora.con)

lmii@ruby 27% setenv DISPLAY ncd9.ora.com:0

lmui@ruby 28% xterm &

If the telnet session ran as a local client, the new xterm should pop up immediately. If it

ran as a subsession of the setup menu, you have to suspend the setup menu to access the

xterm window.

If an X client can connect to your X terminal this way, then there must be something

wrong with your xdm configuration. See Chapter 3 for more information.

7.3 Network Setup

Now for the details. To configure the X terminal for the network, you first need to set up the

hosts database. If you aren't already familiar with how to do this on your site, see Section A.6

for more information.

The hosts database maps hostnames to IP addresses. The next issue is how the X terminal

knows its IP address. Some X terminals can save their IP address in NVRAM (Non-Volatile

RAM). Other X terminals, however, have no way of storing their IP addresses. Instead, they

have to depend on the host to tell them their IP address at boot time, using RARP (Reverse

Address Resolution Protocol) or BOOTP (Bootstrap Protocol).

*If you have configured the Xaccess file to restrict xdm access to specified hosts, you may have to add the X terminal

to the list; see Section 7.5.2 for more information.

164 X Window System Administrator's Guide

Another issue, for X terminals that boot over the network, is how the terminal accesses its

server binary. The server image for these X terminals resides on a host somewhere on the net-
work, and the X terminal needs to be able to read their boot image using some protocol, gen-
erally TFTP (Trivial File Transfer Protocol).

7.3.1 Getting the IP Address Using RARP

The way RARP works is that the host machine keeps a table of Ethernet addresses and the

corresponding IP addresses. This table is kept either in I etc/ethers or in the ethers database if

the host uses NIS. The rarpd daemon waits for broadcast requests from X terminals and other

diskless machines. In its broadcast, the X terminal supplies its Ethernet hardware address

(which is built into their Ethernet interface). The rarpd daemon on the host responds with its

IP address on that network.

If you don't run NIS, adding a new RARP entry is just a matter of editing /etc/ethers.

/etc/ethers has a simple syntax similar to /etc/hosts. You can get the Ethernet hardware

address of the new X terminal from the monitor at boot time. NCD X terminals, for example,

print a message similar to the following:

Boot Prom V2.1.0

Testing available memory 3 .0 Mbytes

Network controller passed 00:00:A7:10:11:BF

Keyboard controller V2.00

To add this terminal as ncd4, add the following line to /etc/ethers (convert the letters in the

hex number to lowercase):

00:00:a7:10:ll:bf ncd4

The RARP daemon uses the ethers database along with the hosts database to determine the X

terminal's IP address. Note that for RARP to work, you must have an entry for the new X ter-
minal in the hosts database.

If you run NIS, see Section A.7 for information on how to add an entry to the ethers database.

7.3.2 Getting Information Using BOOTP

BOOTP is similar to RARP, but it gives a bit more information. RARP will tell the X terminal

only its IP address. BOOTP can be set up to tell the X terminal its subnet mask, name server

host, and what machine and pathname to download the X server from.

The BOOTP daemon bootpd uses a file called /etc/bootptab. The BOOTP protocol has

changed over the years, as has the syntax for bootptab. Standard BOOTP (RFC951) uses a

single-line entry per hardware address, to supply the IP address and the name of the boot file.

The first two uncommented lines contain, respectively, the directory in which the boot files

reside, and the default boot file. For example:

#

default boot directory

#

X Terminals 165

/tftpboot:/

default bootfile

Xncdl9

bootp clients -

host htype haddr iaddr bootfile

ncd4 1 00:00:A7:10:11:BF 140.186.65.13 Xncdl6

The first field is the hostname of the BOOTP client (in this example, ncd4). The second field

is the hardware type, with l=Ethernet. The third and fourth fields represent the hardware and

Internet addresses. The fifth field is the name of the boot file to use in the specified directory.

(The ": /" following the default boot directory /tftpboot is needed for systems that run TFTP

in restricted mode.)

"Extended" BOOTP (RFC 1048 with CMU extensions) has syntax similar to that of

letcltermcap and letclprintcap. A single BOOTP definition is in two parts, a "global" part

used for all machines and a part that is particular to the new machine. The "global" part must

appear first, and might resemble the following:

global:\

:sm=255.255.255.0: \

:ht=ethernet:\

:ds=140.186.65.25:\

:ns=140.186.65.25:\

:to=18000:\

:hn:\

:vm=rfc!048:

The client-specific part might then resemble:

ncd4:\

:hd=/tftpboot:\

:bf=Xncd!6:\

:tc=global:\

:ha=OOOOA71011BF:\

:ip=140.186.65.13:

The two-character capabilities have the following meanings:

bf Boot file for client machine

ds IP address of Internet domain name server host

ha Hardware (Ethernet) address

hd Home directory for boot files

hn Host name

ht Hardware type

ip Internet address

ns IP address of UDP name server host

sm Subnet mask

tc Append specified entry

to Time out, in milliseconds

vm Version number of BOOTP protocol on the host

The hn entry should be set to the hostname of the terminal. For the global entry, hn

should be left blank (as shown above).

166 X Window System Administrator's Guide

7.3.3 Trivial File Transfer Protocol (TFTP)

An X terminal needs to use some simple transfer protocol to download its server software.

Most X terminals use TFTP as their transfer protocol of choice. Since TFTP does not require a

user name or password in order to allow a connection, we strongly recommend running tftpd

in "restricted" or "secure" mode. Using restricted TFTP, the server code must be copied to

the TFTP home directory-usually /tftpboot-and the X terminal needs to be told which host

to boot from. When the X terminal connects to the host via restricted TFTP, the host's TFTP

server does a chroot to /tftpboot and reads files relative to the new root.

The TFTP server is usually run from inetd, which is started at boot time from /etc/re or

rc.local. inetd manages several daemons listed in letclinetd.conf', requests for those services

are routed through inetd, which then starts up the appropriate daemon.

TFTP is often disabled from inetd.conf because it is considered a potential security hole. If

you're not sure if TFTP is active, first make sure that inetd is running, and if it is, then look in

the configuration file for inetd (either letclinetd.conf or Ietclservers} to make sure TFTP is

called. In letclinetd.conf, the line starting TFTP should look something like the following:

tftp digram udp wait root /usr/etc/in. tftpd in.tftpd -s /tftpboot

In /etc/servers, it should look like:

tftp udp /usr/etc/in.tftpd -s /tftpboot

(The -s option says to run TFTP in "secure" mode, so that machines connecting via TFTP can

read files only in /tftpboot. On some systems this option appears as -r, for "restricted" mode.

Since TFTP is such a security hazard, we do not recommend using it except in restricted

mode; otherwise, anyone on the network can get any file on your host!)

You can also test if TFTP is running by trying it manually:

lmui@reno % tftp ruby

tftp> status

Connected to ruby.ora.com.

Mode: netascii Verbose: off Tracing: off

Rexmt-interval: 5 seconds, Max-timeout: 25 seconds

tftp> get Xncdl6

Received 846244 bytes in 8.4 seconds

tftp>

(After quitting TFTP and confirming that the file was properly retrieved, you probably want to

remove it from the directory it was copied to.)

Test if TFTP is running in restricted mode by requesting a file that isn't in /tftpboot:

tftp> get /etc/motd

Error code 1: File not found

tftp>

Another possible error message on some systems is:

tftp> get /etc/motd

Transfer timed out.

tftp>

X Terminals 167

If you don't get an error message and TFTP lets you copy letc/motd to your current directory,

then it isn't running in restricted mode, and you should probably be worried about what other

files can be transferred (such as letclpasswdl).

If TFTP is not enabled, edit inetd.conf or /etc/servers as appropriate, and send a SIGHUP to

inetd. This will force inetd to reread I etc I inetd.conf.

vi /etc/inetd.conf

(restore the TFTP line)

ps agx I grep inetd

188 ? IW 5:06 inetd

5922 q6 S 0:00 grep inetd

kill -HUP 188

For more information on inetd, see the Nutshell Handbook, TCP/IP Network Administration,

by Craig Hunt (O'Reilly & Associates, 1992).

7.3.4 Setting Up the Network on the X Terminal

If you're using BOOTP, you don't need to do anything on the X terminal end to get the termi-
nal to connect properly to the host with the right IP address and download its boot file. Other-
wise, however, you need to do some fiddling on the setup menu.

As far as TCP/IP is concerned, the things you need to tell the X terminal are:

" The X terminal's IP address

" The subnet mask on the network

" The name server address

" The IP address of the host to boot from

" The broadcast address

Each X terminal vendor has its own way of specifying this information in a setup menu. See

your vendor's documentation for more information.

One bit of advice about configuring X terminals: remember that many X terminals need to be

explicitly told to save current settings in NVRAM, or changes will not take effect after the X

terminal is booted.

7.3.5 Debugging Hints

If you think you've done everything right, but the X terminal still can't seem to boot, here are

some hints.

168 X Window System Administrator's Guide

7.3.5.1 Error Messages

The X terminal itself may have a diagnostic window for reporting error messages. The diag-
nostic window is the first place to look for errors. If all the "interesting" information scrolls

off the screen too quickly, you may be able to limit the level of diagnostic information by set-
ting a lower error message level via the setup menu; see your vendor's documentation for

details.

If the X terminal appears to know its name but is not able to download the boot file, you may

also want to look for an error message on the boot host. Errors from tftpd, bootpd, or inetd

should be recorded by syslog on the host machine. Look in letclsyslog.conf. to determine

where daemon error messages are being copied to; for example, on our system, /etc/sys-

log.conf contains the line:

*. err; kern. debug; daemon, auth. notice ;mail. crit; user. none /var/adm/mes sages

All daemon error messages on our system are therefore being copied to Ivarladmlmessages.

7.3.5.2 Updating the arp Table

The arp table on the boot host has a listing of all hostnames, Ethernet addresses, and IP

addresses that the host knows about. You can access this table using the command arp -a:

% arp -a

ncd4.ora.com (140.186.65.14) at 0:0:a7:10:12:bf

rubble.ora.com (140.186.65.11) at 8:0:20:2:fc:90

rock.west.ora.com (140.186.66.10) at 0:0:c:0:63:4a

cca.camb.com (140.186.64.12) at aa:0:4:0:e2:4

harry.ora.com (140.186.65.17) at 8:0:20:7:c4:d4

Keep in mind that if you replace an X terminal with a new one, you may have to manually

delete the cached arp entry with the arp -d command before the new terminal can be recog-
nized:

arp -d ncd4

If you have an old arp entry or have made a mistake in the /etc/ethers file, you may get the

following error:

duplicate IP address!! sent from ethernet address: ...

7.3.5.3 Name Server Problems

If the X server is running properly but you can't seem to get any clients to open the new dis-
play, there may be a problem in the name server. The name server is primarily responsible for

looking up a hostname and returning the IP address for that host. You can therefore isolate

the problem to the name server by supplying the IP address directly to the client program. For

example:

lmui@reno % xterm -display 140.186.65.13:0

X Terminals 169

If this command is successful but "hostname: 0" was not, then the problem could be with the

name server configuration, with the NIS configuration, or with the resolver configuration file

(letc/resolv .conf).

7.4 Fonts on X Terminals

Many X terminals have some fonts built into the server, but you usually need to read fonts

from the host machine as well. Most X terminal manufacturers supply a "font tape" with

their product, with fonts that need to be read on your host system. At minimum, the font tape

that comes with the X terminal contains vendor-specific .snf or .pcf versions of the BDF fonts

supplied by the MIT source distribution of XI1. Many vendors also supply some additional

fonts.

We said earlier that for easy set up, just put the fonts in Itftpboot. But for real setup, you prob-
ably want to think a little harder about where to put the fonts and how they should be read.

7.4.1 Font Formats

Every X server vendor supplies its own font tree for that server. Each font tree takes approxi-
mately three to four megabytes of disk space. If you have X terminals manufactured by three

different vendors, therefore, you're using up 9 to 12 megabytes just to hold their fonts-not

to mention the fonts for running X on the local display of the host machine.

Luckily, you can often get away without keeping multiple fonts on line. For .snf fonts, there

are four ways that fonts for different servers might deviate: the byte order, the bit order, the

scanline unit padding, and the glyph padding. In most cases, the scanline and glyph padding

for a server is 1 (the default), so you seldom have to consider those variables for incompati-
bilities (although if you find that your characters are drawing over one another, you're proba-
bly using fonts compiled with a different padding). The byte order and bit order generally go

hand-in-hand. So for most cases, you really need to keep at most only two sets of .snf fonts

on line: one for X terminals that number bytes starting at the high end (big endian), and one

for X terminals that number bytes starting at the low end (little endian).

PCF fonts don't have byte-order incompatibilities, so if all your X terminals support PCF

fonts, you might be able to get away with a single set of fonts.

For example, NCD X terminals are big endian, so if they are reading fonts from a Sun works-
tation (a big endian machine), chances are that they can read and display the .snf fonts com-
piled for the local server without a hitch. The bdftosnffonl compiler defaults to the byte order

on the host machine, so there should be no problem in font compatibility between Sun and

NCD X servers. In this situation, you would not have to keep the NCD fonts on line, but

could have the X terminals read the Sun-compiled .snf fonts. The easiest way to do this is by

linking the standard XI1 font directory to the server-specific font directory. For example:

mkdir /usr/lib/Xll/ncd

In -B /usr/lib/Xll/fonts /usr/lib/Xll/ncd/fonts

170 X Window System Administrator's Guide

(You may still want to use the fonts supplied with the X terminal, since they may be more

sophisticated than those on the core MIT distribution, but that's up to you.)

HDS X terminals are little endian. This means that the fonts on a Sun are not compatible with

those supplied by HDS (although fonts on a VAX are).

There is another hitch. Although each of the factors for font compatibility can be overridden

on the bdftosnf command line, the options for a different bit or byte order will apply only to

the glyph section of the font-the header section will still be in the bit and byte order of the

host. So HDS supplies its own font compiler, bdftohds, since they cannot rely on the fonts

compiled by bdftosnf on a big endian machine. Many X terminal manufacturers supply their

own compiler to convert .bdf fonts to their own format.

Some X terminals (e.g., those made by Visual) can read fonts in either byte order. Further-
more, X terminals are beginning to support the .pcf font format, which does not have byte-

order incompatibilities. Tektronix is one vendor that currently sells X terminals supporting

both .pcf and .snf formats.

7.4.2 The Font Server (R5)

With Release 5 of XI1, a lot of the font confusion is cleared up with the font server. R5-com-

patible X terminals (of which there are currently none) supply a field in the setup menu for

the address of the font server. If your X terminal provides this functionality, and you have an

R5 host available to run a font server, run (do not walk) to Section 5.5 to learn how to enable

the font server on the host. You have been spared a giant headache.

Some X terminal vendors, such as Visual Technology, have their own proprietary font server

mechanism. Although they are unlikely to be compatible with the R5 font server, these pro-
prietary font servers are worth looking into if running the R5 font server is not an option.

7.4.3 Choosing TFTP or NFS for Font Access

Assuming that your X terminal does not support the font server introduced with XI1R5, you

are stuck with either TFTP or NFS. (Some X terminals also support using FTP, but you're

probably better off not opening that can of worms.)

7.4.3.1 Reading Fonts Using TFTP

It's easy to install fonts to be transferred with TFTP. But since TFTP doesn't provide any user

authentication, you need to decide whether you want to run it in restricted mode or not, and

either option has its downside.

If you run TFTP in restricted mode, you have to put the font files in the TFTP home directory

tree (usually Itftpboot}. When the X terminal connects to the host using TFTP, it will do a

chroot to Itftpboot and then look for the fonts relative to that directory-so, for example, an

NCD X terminal will effectively look for its fonts in ItftpbootlusrlliblXllined/fonts.

X Terminals 171

The problem with running TFTP in restricted mode is that it gives you no choice but to install

all your fonts in the TFTP home directory. This may mean some creative shuffling, just to put

Itftpboot on a disk large enough to hold all those fonts. Note that the solution that you would

like, which is keeping the fonts in lusrlliblX11 /fonts but creating symbolic links to Itftpboot,

isn't an option-restricted TFTP cannot follow links outside of Itftpboot.

If you run TFTP in unrestricted mode, you can put the NCD font files where you really want

them, in /usr/lib/Xllined/fonts. But you probably don't want to run TFTP in unrestricted

mode-after all, do you want anyone over the Internet to be able to read your /etc/passwd

file?

A possibility is to use NFS to mount the fonts from the same machine. That is, you might set

up the host ruby to export lusr read-only to itself. On newer NFS implementations, the

I etc I exports would look like:

/usr -ro,access=ruby-

Then have ruby mount /usr/lib/Xl I/vendor/fonts as Itftpboot I usr I lib 1X1II vendor/fonts. In

letclfstab on the same host:

ruby:/usr/lib/Xll/ncd/fonts /tftpboot/usr/lib/Xll/ncd/fonts nfs ro,bg 0 0

This provides you the convenience of TFTP without many of the hassles.

7.4.3.2 Reading Fonts Using NFS

If you are using NFS directly to download fonts, check the /etc/exports file on the host to

confirm that the X terminal has permission to read its font directory, and make sure that

directory is exported with the exportfs command. See Section A.5 for more information on

exporting directories under NFS.

Netgroups are particularly useful for grouping several X terminals together that need the

same fonts. See the Nutshell Handbook, Managing NFS and NIS, by Hal Stern (O'Reilly &

Associates, 1991), for more information.

Using NFS to mount the fonts locally on the X terminal can cause some confusion. The cryp-
tic error message "X Error of failed request: BadValue" means the font

can't be read because the specified path doesn't exist. This may happen because the path-
name was mistyped; however, it could also be the result of some NFS confusion-the font

directory may not be properly exported, or it may be mounted on the local machine under

another name. For example, you may mount lexportlusrlliblXlllncdlfonts on a fileserver as

/usr/lib/Xl lined/fonts on the local X terminal. The pathname you specify to xset must reflect

its pathname on the local machine, i.e., the one running the X server.

Another possible source of confusion is that NFS will not extend permission to any path that

is not explicitly exported. That is, if lusrlliblXlllncdlfonts is a symbolic link to

lexportlusrlliblXlllncdlfonts, exporting lusr will not grant access to the files that are linked

to /export.

172 X Window System Administrator's Guide

7.5 Configuring for the X Display Manager

If you're using X terminals, you probably want to control them using the X Display Manager

(xdrri). There are other ways of starting sessions, such as logging on via telnet and starting cli-
ents manually, or using the rexec (remote execution) capabilities supported by some X termi-

nals. But if both the host system and the X server support the XDM Control Protocol (R4 or

later), then you should definitely use xdm.

If you aren't running xdm at all, read Section 3.3 for more information to get it started. See

Section 3.1 for some background information on XDMCP.

7.5.1 Configuring the X Terminal for xdm

X terminals generally supply three different ways of running XDMCP:

Direct Calling XDMCP "directly" requires that the name or IP address of the host run-
ning xdm be supplied. The X terminal will request an xdm login box from that

host and from that host only.

Indirect Calling XDMCP "indirectly" requires that the name or IP address of the host be

supplied. The host is then expected to pass the XDMCP request to another host or

group of hosts. For a host running vanilla XI1R4, an "Indirect" query is treated

the same as a "Direct" one. For a host running XI1R5, it can be configured to

respond to an "Indirect" query by forwarding the request to another host or by

offering a list of hosts for the user to choose from. See Section 3.5.3 for infor-
mation on how to configure how "Indirect" queries are treated on an R5 host.

Broadcast Calling XDMCP in "broadcast" mode does not require a hostname or address, but

means that the X terminal sends out a general request for an xdm login box

across the subnet. For most X terminals, the first host that responds is the one

that is used. For some smarter X terminals, the X server gathers responses from

all hosts on the local network and allows the user to choose one to start up on.

If an X terminal doesn't connect to any host running xdm under a Broadcast

query, but can connect to hosts via a Direct or Indirect query, then there is proba-
bly something wrong with the Broadcast address that you have configured the X

terminal to use. See your vendor's documentation for information on how to set

the Broadcast address.

Note that Broadcast queries are restricted to the local network or subnet. Unlike

Direct and Indirect queries, you cannot use a Broadcast query to access a host

through a gateway.

X Terminals 173

7.5.2 Configuring an R5 Host

If the host is using XI1R5, then you need to make sure that the new X terminal is given per-
mission to connect to xdm on the host. The lusrlliblXlllxdmlXaccess file controls which X

servers can connect to the host. The Xaccess file also controls how Indirect queries are dealt

with on that host.

For example, to add ncd4 to the list of X servers that can connect to the host, you can simply

add the line:

ncd4.ora.com

Note that the Xaccess file accepts wildcards. So ncd4 would already have permission to con-
nect to the host if there were a line such as:

*.ora.com

See Section 3.5.3 for more information on how to configure the Xaccess file.

7.5.3 Configuring an R4 Host

If the host is using XI1R4, you don't need to make any changes on the host for a XDMCP-

compatible X server to use xdm-you just need to configure the X terminal to use XDMCP.

7.5.4 Configuring xdm Without XDMCP

If either the X server or the host is not XDMCP-compatible (R3 or earlier), then you need to

make an entry in the lusrlliblXlllxdmlXservers file in order to manage the X terminal using

xdm. For example, you can add the line:

ncd4.ora.com: 0 foreign xxx

(The "xxx" is required because although R3 xdm ignores the third field in a foreign entry, the

field cannot be left empty.)

See Section 3.5.2 for more information on how to configure the Xservers file.

The problem with using pre-XDMCP xdm is that, should the X terminal be turned off for any

reason, xdm needs to be restarted before it will know to reconnect to the terminal. If you have

no choice but to use an R3 host system, you might be interested in X terminals that offer their

own proprietary protocol for controlling xdm. X terminals made by Visual, for example, pro-
vide XDSXDM for controlling Release 3 xdm for their XDS terminals.

174 X Window System Administrator's Guide

7.5.5 Setting Up Server Access Control

As described in Chapter 4, there are two current mechanisms for restricting clients from

accessing a particular server: host-based access control and user-based access control.

Host-based access control is controlled entirely by the server. Some X terminals allow you to

keep a list of hosts that you want to allow access from, using the setup menu on the X termi-
nal. However, it's better to use user-based access control if you can.

User-based access control is controlled both by the server and by the X Display Manager.

Check your X terminal documentation to see if user-based access control is supported. If it is,

then check if xdm is set up to use user-based access control on X terminals. You can deter-

mine this by examining the configuration file for xdm, usually lusrlliblXlllxdmlxdm-config.

The following line:

DisplayManager*authorize: true

specifies that authorization is being used for all X servers managed by xdm on that host.

Host-based access control overrides user-based access control. This can cause complications

when your X terminal supports both types of server access control. Contrary to what your

instincts might be, to enable user-based access control you should make sure that host-based

access control is also enabled-disabling host-based access control may effectively result in

all hosts having access to the server, regardless of any user-based access control in effect. If

you want to use user-based access control exclusively, you should make sure host-based

access control is enabled but the list of hosts that are allowed access is empty. See Section

4.2.4 for more information.

See Chapter 4 for more information on security issues and XI1.

7.6 Remote Configuration of X Terminals

Many X terminals provide a facility called remote configuration. Our experience with

remote configuration has been very positive, so we recommend that if you have more than

one of a single type of terminal, you should consider using remote configuration.

With remote configuration, the parameters in the setup menu can be defined in a file to be

downloaded by the X terminal when it boots. What this does for the administrator is that it

makes it easy to change a given field-the administrator no longer needs to visit each X ter-
minal on the site after hours and change their setup menus manually, but can simply edit the

remote configuration files for each terminal. The next time the terminal is booted, the new

values will be read.

Another advantage of remote configuration is ease in troubleshooting. The danger of user-

accessible setup menus is that a user might unknowingly change something that disables their

terminal. Many terminal manufacturers provide a mechanism for "locking" the current setup

menu settings with a password-so that only administrators with the password will be able to

make further changes to the X terminal configuration. Using remote configuration, however,

X Terminals 175

the X terminal is configured at boot time from a file residing on a host. If a terminal's set up

is corrupted, therefore, the user can restore its settings just by rebooting the X terminal.

Another advantage of using remote configuration is that it can help you get out of a jam if for

some reason your current configuration is so corrupted that you cannot even access the setup

menu. If you are using remote configuration, you can just edit the file and then reboot the ter-
minal.

Each X terminal vendor has its own syntax for remote configuration. To give you an idea of

what they do, here's a description of how remote configuration is handled by various X ter-
minal vendors.

7.6.1 Remote Configuration on NCD Terminals

On NCD X terminals with remote configuration turned on, each X terminal at boot time looks

for a configuration file whose name is derived from its IP address, in hexadecimal. For

example, an NCD X terminal with IP address 140.186.65.13 would look for a configura-
tion file called 8CBA4JOD in the directory lusrlliblXlllncdlconfigs. (See Section A.9 for

information on how to get the hexadecimal equivalent of an IP address.)

If the configuration file for its specific IP address doesn't exist, the X terminal then looks for

a configuration file called ncd_std in the same directory.

If you are using NFS to read the remote configuration file, the X terminal needs to have read

access for the lusrlliblXlllncdlconfigs directory on the host. If you are using restricted TFTP

to read the remote configuration file, the configuration files need to be installed in the

Itftpbootlusr/liblXlllncdlconfigs directory.

The following is a portion of the remote configuration file used by our NCD X terminals:

background = white

backing-store = by-request

baud-1 = 9600

boot-at-reset = yes

boot-server = 140.186.65.25

broadcast-address = 140.186.0.0

data-bits-1 = 8

default-cterm-host =0.0

default-domain = ora.com

virtual-terminal-at-reset = xdm

xdm-access = direct

xdm-server = 140.186.65.25

Now for the good news: NCD doesn't require you to write it all in by hand. Instead, you can

set up a single terminal, make sure it works to your liking, and then download its parameters

to a file using the Utilities menu.

The next problem is how to tell the terminal to read the remote configuration file the first

time. There's a logistical problem involved: NCD X terminals support NFS only if they're

using remote configuration, so if you want to read the actual configuration file over NFS, you

176 X Window System Administrator's Guide

need to upload the configuration file initially using TFTP, and then save current values before

rebooting.

7.6.2 Remote Configuration on Visual Terminals

On Visual X terminals with remote configuration turned on, the X terminal uses a list of host-

names and optional pathnames to determine which configuration file to use. This list is sup-
plied in the Remote Configuration Menu. The X terminal will search for the configuration

files in the order that they are listed. When a specific pathname isn't listed for a given host,

the X terminal looks for a configuration file named for its IP address in the

lusrllib/X11/Visual directory on that host. For example, a Visual X terminal with IP address

140.186.65.13 looks for a configuration file called /usr/lib/Xll/Visual/140.186.65.13. If

that file doesn't exist, it then looks for a configuration file called xds-config in the same direc-
tory.

If you are using NFS to read the remote configuration file, the X terminal needs to have read

access for whatever directory the configuration files live in. If you are using restricted TFTP

to read the remote configuration file, the files need to be in a subdirectory of /tftpboot, and the

pathname needs to be relative to /tftpboot.

Visual X terminals use resource syntax for their configuration files. They follow the form:

Visual .model .parameter: value

where model is the particular model of Visual X terminal, such as X19, X19TURBO, X15, etc.

As with standard resource syntax, you can use an asterisk for the model field to have a

resource apply for all models. The following is a portion of a sample configuration file for

Visual X terminals:

! Ethernet Menu

i

Visual*IpNetworkMask: 255.255.255.0

Visual*IpBroadcastAddress: 140.186.0.0

! X Server Features Menu

Visual*DefaultTextFont: 9x15

Visual.XlS.DefaultTextFont: 12x20

Note that we've set things up so that the Visual X15 terminal uses the 12x20 font for text,

but all other Visual terminals will use the 9x 15 font.

X Terminals 177

7.6.3 Remote Configuration on Tektronix Terminals

For Tektronix X terminals, the syntax for remote configuration files consists of commands

followed directly by parameters. Lines starting with "#" are taken as comments. The remote

configuration file is read using the same file access method that is used for downloading the

server image (i.e., TFTP), so remote configuration is not available for terminals that boot from

ROM.

Tektronix remote configuration files need to be thought of somewhat differently, since the

terminal executes each line as a command and doesn't just store it as a variable definition.

This means that you have to be careful about the sequence of commands. For example, you

need to declare a host's address using the ip_host_table command before you can use its

hostname for the file Jiost_name_1 command.

The sample is a portion from a configuration file for Tektronix X terminals:

ip_host_table 140.186.65.25 ruby

ip_host_table 140.186.65.35 opal

file_host_name_l ruby

file_access_l TFTP

7.7 Reconfiguring the Host

When you replace an ASCII terminal with an X terminal, you're giving a user a whole new

world of functionality. You are also allowing that user to use five to ten times the resources

he or she used previously. Whereas a user on an ASCII terminal might run maybe one or two

processes in the background (which usually exit on their own), a user on an X terminal can

go hog wild, running an xclock, xbiff, multiple xterms, a mail reader, a news reader, etc.-all

this before starting actual "work." In addition, xdm forks a copy of itself for every display it

manages.

In this section, we include an example of how to configure a SunOS system to support more

users, processes, pseudo-ttys, and swap space. Refer to your vendor's manual for information

on how to reconfigure the kernel on your system.

7.7.1 Increasing the Number of Processes

When you set up a site for running multiple X terminals, you probably want to increase the

number of processes that the host can handle at once. If the system runs out of processes, it

may give an error:

% Is

No more processes

%

or commands may fail silently.

178 X Window System Administrator's Guide

To increase the number of processes on SunOS 4..v, edit the kernel configuration file. The

name of this file follows the form Isyslarchlconflkerneljiame. For our Sun4, this file is

lsys/sun4mlconflRUBY. Edit the maxusers line as appropriate. For example, change:

maxusers 8

to:

maxusers 48

Then rebuild the kernel and reboot:

/etc/config RUBY

cd ../RUBY

make

cp /vmunix /ovmunix

cp vmunix /

sync;reboot

Be careful to follow the guidelines in vendor OS manuals in increasing maxusers. If you

increase it beyond the specified upper limit, you run the risk of wasting resources.

7.7.2 Increasing the Number of Pseudo-ttys

Another consideration is the number of pseudo-ttys, or ptys, a host can handle. A typical

symptom of running out of ptys is an immediate logout when trying to open a new connec-
tion:

% rlogin rock

Password:

SunOS Release 4.1.2 (ORAWEST) #3: Wed Jul 29 12:50:14 PDT 1992

TERM=(xterm)

Connection closed.

On SunOS, edit the same kernel config file Isyslarchlconflkerneljname. Find the line for pry

devices.

pseudo-device pty # pseudo-tty's, also needed for SunView

The default entry is for 48 ptys,. Appending a number suffix changes it accordingly:

pseudo-device pty128 # pseudo-tty's, also needed for SunView

We have now set up the system to support 128 ptys. (See your documentation to learn what

the maximum number of ptys, on your system is. SunOS 4.1.2 can handle up to 256 ptys.)

Next, make more ptys in Idev for each bank of 16 ptys. Since we have expanded to 128 ptys,

this would be 128 H- 16 = 8 banks of ptys in total. The pty banks are numbered from 0, so

you'd remake banks 0 through 7:

cd /dev

MAKEDEV ptyO ptyl pty2 pty3 pty4 pty5 pty6 pty?

Is pty?? I we -1

128

Then rebuild the kernel and reboot as shown above.

/etc/config kernel name

X Terminals 179

cd ../kernel name

make

cp /vmunix /ovmunix

cp vmunix /

sync;reboot

There is often a script in Idev for creating new pseudo-ttys. See your vendor's documenta-
tion for details.

7.7.3 Increasing the Amount of Swap Space

You may need to increase the amount of swap space when you start to get the dreaded error

message:

Sorry, pid 3924 (eap) was killed due to lack of swap space

There are two ways to deal with swap space under SunOS: either swap to a file or swap to

disk partition.*

7.7.3.1 Swapping to a File

To swap to a file, fist create the swap file:

mkfile -v 64m /work/moreswap

/work/moreswap 67108864 bytes

Then add an entry in I etc If stab as follows:

/work/moreswap swap swap rw 0 0

Finally, enable swapping on the new area:

swapon -a

Adding /work/moreswap as swap device

7.7.3.2 Swapping to a Disk

To swap to a disk, add an entry in letclfstab to define the new swap partition (in this example,

Idevlsdlb):

/dev/sd2b swap swap rw 0 0

Then, before running swapon, check the current size of the swap space:

/etc/pstat -T

163/2758 files

829/1223 inodes

74/778 processes

14488/63972 swap

This shows approximately 64 MB of available swap space (with 14 MB already used).

*See Essential System Administration, by AEleen Frisch (O'Reilly & Associates, 1991), for more information.

180 X Window System Administrator's Guide

Finally, run swapon and then check the size of the swap space again:

swapon -a

Adding /dev/sd2b as swap device

/etc/pstat -T

163/2758 files

829/1223 inodes

74/778 processes

14488/127944 swap

The swap space has doubled to approximately 128 MB.

7.8 Related Documentation

Articles on X terminals appear frequently in periodicals serving the X and UNIX community.

Advertisements (in periodicals that accept them) are also very helpful for keeping track of

the latest and greatest X terminal technology.

In addition, a list of X terminal manufacturers is posted quarterly to the comp.windows.x

newsgroup.

The following Nutshell Handbooks might come in handy: Managing NFS and NIS by Hal

Stern; Essential System Administration by AEleen Frisch; TCP/IP Network Administration by

Craig Hunt; and DNS and BIND by Cricket Liu and Paul Albitz.

X Terminals 181

8

Building the X Window System

By necessity, you can't do anything with X until it is installed on your system.

This chapter tells you how to build and install X.

In This Chapter:

Installation Issues 185

Should You Use MIT Source? 185

Types of Vendor-supplied X Distributions 186

X from Your OS Vendor 187

X from aThird Party 187

X Source Code from MIT 188

Complete or Client-only Distribution? 189

Installing Multiple X Releases 189

Source Preparation 191

Do You Have Enough Disk Space? 191

Is Your Platform Supported? 192

Applying OS Patches 194

Applying X Patches 194

Creating a LinkTree (Optional) 196

Simplest Case Build 197

Host Problems 198

Disk Space 198

Changing the tmp Directory Using TMPDIR (Ultrix and HP-UX) 199

Changing the tmp Directory Using -temp (SunOS) 200

Shared Library Installation (SunOS) 200

NFS Installation 201

NFS Installation Without Root Access 201

Installation Over the Network (rdist) 203

Installing the termcap or terminfo Definition for xterm 203

Simple Configuration 204

Configuration Parameters 205

site.def 205

The ProjectRoot Flag 207

The Platform Configuration File (platform.cf) 208

Configuration Example 1 210

Configuration Example 2 211

Configuration Example 3 212

Configuration Example 4 212

Configuration Example 5 213

Other Build Flags 213

xterm Build Flags 214

Building Programs After X Is Installed 214

xmkmf 214

Include Files 215

Libraries 216

More About imake 216

The make Program 216

The C Preprocessor 217

Imake Syntax 219

Comments in imake 219

Multi-line Macros (@@) 220

Concatenating Macros 221

Dealing with Tabs 222

imake Configuration Files 222

A Quick Tour of Files Used by imake 223

Using imake to Build X11 224

Porting Hints 226

Undefined Symbols or Functions 226

Missing Header Files 226

Missing Function Definitions 226

Searching for Preprocessor Symbols 228

Related Documentation . .. 230

8

Building the X Window System

This chapter tells you how to build and install X. If X is already installed, you can skip this

chapter unless you want to learn more about what goes on "under the hood."

If X isn't installed on your system, you have two choices: you can build it yourself or you can

purchase pre-built binaries. This chapter begins by telling you what you need to know to

make that decision.

If you decide to build X yourself, this chapter tells you how. The amount of work involved in

building X depends on the type of installation, the platform you use, and the resources that

are available to you (such as disk space, time, tape drive or CD/ROM drive.) You should ex-
plore each of these factors before you attempt to build X.

8.1 Installation Issues

First you need to decide what you want to install. This section gives a short description of

what types of distributions are available. The easiest installations are described first and with-
out much detail. If your configuration falls under one of these categories, then you can bail

out of this chapter early.

If your installation requires more thought (or if you are curious), the remainder of the chapter

provides a guide to completing all but the most complicated installations.

8.1.1 Should You Use MIT Source?

The first thing you need to do is to determine whether you want to build X from the MIT

sources ("vanilla" or "stock" XI1), or whether you'd rather install binaries provided by a

vendor.

Using XI1 binaries supplied by a vendor has the following advantages:

" X supplied by an OS vendor may be easier to use and may be better integrated with appli-
cation software than the "stock" MIT XI1. Some examples of integrated X distributions

would be SGI's IRIX 4.0 environment, SCO Open Desktop and Sun Open Windows.

Building the X Window System 185

" Vendors usually provide a stable release of X. (MIT releases go through many "fixes" be-
fore they settle down, because they usually provide new functionality earlier than the

vendor-supplied releases.)

" The vendor may add new functionality to the XI1 distribution; for example, the vendor

may provide support for display PostScript, the Silicon Graphics Graphics Language

(GL), special hardware (such as graphics accelerator cards), and multi-processor operat-
ing systems.

" Some applications may require vendor-specific features that are unavailable in the stock

MIT release of XI1. An example of this would be Sun's AnswerBook documentation

viewer, which runs only under the Sun OpenWindows server.

" You can call technical support (or send e-mail) if you have a question or complaint.

(Whether this leads to a resolution of your problem is another topic altogether.)

" Installation of a vendor-supplied X package is usually a breeze, and often requires little

technical knowledge.

" MIT may not provide a server that supports all of the vendor's hardware.

Building and configuring the MIT sources has the following advantages:

" Support for the "stock" XI1 distribution is pretty good: patches to serious problems are

made publicly available quickly. Anyone with a network connection can pick up a patch

to the MIT source via ftp, or get it via e-mail.

" Vendors are sometimes very slow to update their X product. You are likely to tire of fight-
ing problems with your vendor release if you know the problem is fixed or never existed

in a newer MIT release. Other X products that you want to use may work only on

releases newer than your vendor's. It can be frustrating to be behind in X development

because the version of X that came with your system is holding you up.

" You can standardize the X distribution across several platforms by building the MIT ver-
sion for each platform. A common XI1 distribution would greatly simplify a heterogene-
ous network environment.

" The MIT source code is free.

8.1.2 Types of Vendor-supplied X Distributions

Vendor-supplied X can be further divided into two groups:

" X that comes from the vendor of your operating system

" X that comes from third-party suppliers

For both of these categories, the documentation that comes with the package is your best re-
source for information on installing their XI1 release. Software installation methods tend to

be very system-specific and may change significantly between OS releases.

186 X Window System Administrator's Guide

8.1.2.1 X from Your OS Vendor

Some examples of vendor-supplied XI1 are OpenWindows from Sun, DECWindows from

DEC, and AlXWindows from IBM. X from your OS vendor is probably the easiest to install.

In fact, you may not have to install it at all-more and more UNIX platforms are being

shipped with the OS and software packages (such as X) already installed, so you might luck

out and have everything in place when your system is delivered. You should be able to tell if

XI1 is pre-installed by looking in the directory lusr/binlXll or the directory that your vendor

uses (typically lusrlopenwin for OpenWindows, lusr/lpp/Xll for AlXWindows, etc). If the

directory is not empty, you probably have at least some portion of the software already in-
stalled. Some systems have tools to tell you what software is installed. For example, setld -i

on Ultrix and versions on IRIX. You could also try starting the window system with xinit (or

openwin) to see what happens.

If you need to install an X distribution provided by your OS vendor, the installation proce-
dure for the X package should be similar to that of any other package that is bundled with the

operating system. The X package installation should require whatever tool is normally used

for installing software on that platform, i.e., setld for Ultrix, inst for IRIX, cdm or extract^un-
bundled for SunOS, etc.

The vendor may break the XI1 package into separate components: an "execution-only"

package that allows you to run X servers and clients, and a "development" environment for

compiling new X applications. The development environment includes the X libraries,

header files and (make configuration files. (See Appendix E for more information on the com-
ponents of the standard X distribution.) If you intend to write your own X programs or com-
pile any of the public domain X applications available on the Internet, you should install a

full development environment. See Appendix B for information on installing public domain

software.

Be aware that some vendors charge extra for the XI1 distribution, and others include it in the

cost of the operating system. You should ask the salesperson about this before you order your

software configuration.

8.1.2.2 X from a Third Party

There are several third-party vendors who provide pre-compiled XI1 distributions for some

of the more popular platforms. Some vendors are listed in Appendix F and in the comp.win-

dows.x Frequently Asked Questions list.

Third-party X distributions are usually derived from recent MIT releases without adding

much functionality. If you are up to the task of building X from the MIT source, you can

probably duplicate a third-party distribution for your platform and save some money. How-
ever, it may be easier to purchase a third-party X installation than try to figure out what

patches, bug fixes, and work-arounds are necessary to build it on your platform. You might

also be able to get invaluable technical support from a third-party vendor.

Furthermore, building the MIT distribution is resource-intensive, consuming large amounts

of disk space and CPU time. If these resources are in short supply, this may be reason enough

to buy a pre-built X distribution.

Building the X Window System 187

8.1.3 X Source Code from MIT

A major part of deciding whether to use the MIT source or a pre-built X distribution is how

much work it will be to configure the sources and build X yourself. You might say that the

amount of work required to build X on your platform falls into one of three categories:

" Easy-MIT XI1 for your software and hardware platform is one that is well-tested and

commonplace. Relax and enjoy the experience: you may be able to build and install X by

typing only a few simple commands and get away with not having to understand the

building process at all. (This is pretty amazing considering the size and complexity of the

software.) You may need some minor adjustments on your system, but they should not be

more difficult than any other tasks you face as a system administrator. Platforms on which

your build is likely to be trouble-free are a Sun3 or Sun4 running SunOS 4.1.1, a DEC

3100 running Ultrix 4.2, and an RS/6000 running AIX 3.1. Section 8.3 shows an example

of a trouble-free build.

" Some thinking required-You need to find out what magic flags or little fixes are re-
quired to get the MIT source compiled and running on your system. This may require

some detective skills and an understanding of how the building process takes place. A

typical situation that would fall in this category would be building the MIT source on an

operating system that is slighter newer or older than the one described in the MIT docu-
mentation. Section 8.5 shows some examples of X builds that may require a little think-
ing.

" You are on your own-Your platform was bought at a garage sale ... the manufacturer

went out of business three years ago and you are the only person who bought one ... or

your platform is so new that you are the only one who has heard of it. Whichever it is,

this chapter addresses only the most minor of the problems you might encounter. This

chapter will help you compile the libraries and clients, but your big problem is getting an

X server written. Writing an X server on a new machine is quite an undertaking, and is

beyond the scope of this book.

Which category do you belong in? Well, the degree to which X from MIT source will work

on your system has a lot to do with how popular your platform is. The best way to find out

how much work is involved is to read the release notes, which can usually be found in a file

called RELNOTES.TXT in either the top-most directory of the MIT source or under the mitl

subdirectory.* In the R5 source tree, a postscript version is available in RELNOTES.PS, and

troff source (using ms macros) is in a file called RELNOTES.ms.

The release notes in the R5 source tree list the supported platforms under the section entitled

"Building the Release":

3. Building the Release

The core distribution (code under the mit directory) has been

built and tested at MIT on the following systems:

AIX 3.1.5, on IBM RS/6000

* Appendix F provides some information on where to find the MIT sources, and Section A.2 provides information on

how to use ftp to get a file.

188 X Window System Administrator's Guide

AT&T Unix System V Release 4 V2, on AT&T WGS6386

A/UX 2.0.1

HP-UX 7.0, on HP9000/S300

IRIX 4.0

Mach 2.5 Version 1.13, on OMRON Luna 88k

NEWS-OS 3.3, on Sony NWS-1850

NEWS-OS 5.0U, on Sony NWS-3710

SunOS 4.1.1, on Sun 3, Spare 1, and Spare 2

Ultrix-32 4.2, VAX and RISC

UNICOS 5.1

UTek 4.0

VAX 4.3bsd (with unknown local changes)

If your platform is listed in the release notes, then you're probably in good shape. If not, you

may still be in good shape: the X distribution is frequently ported to new platforms, with the

binary distribution made publicly available. The best way to track the progress of the X dis-
tribution on your platform is to watch the appropriate Usenet newsgroup, or post a query to

either that newsgroup or to comp.windows.x.*

Some examples of useful "ports" that appear outside of the official MIT distribution are the

XNeXT distribution for NeXT workstations, the X386 server binary for 386-based UNIX

machines, and patches for Sun Solaris 2.0.

8.1.4 Complete or Client-only Distribution?

Before buying an X distribution or investing any time in building one from source, you still

have a few more decisions to make.

First, you need to decide whether you want a complete distribution or a client-only distribu-
tion. A complete distribution includes a server, clients, libraries, header files, fonts and confi-

guration files. A client-only distribution could include only the clients and, if necessary,

shared libraries for dynamically linked executables. If you wanted to compile X programs,

you would also need libraries and header files.

Client-only installations make sense for hosts that don't have a bitmapped console display,

such as a fileserver, compute server, or NFS server. The X clients are expected to display on

remote X servers (for example, X terminals) across a network. Complete distributions make

sense for workstations and for development environments.

8.1.5 Installing Multiple X Releases

Next, you should consider whether you want more than one release of the MIT XI1 installed

at one time. This would come in useful if you intend to test an X application under more than

one X release.

* comp.windows jc also has an e-mail address for those who cannot get news, xpert@expo.lcs.mit.edu.

Building the X Window System 189

For example, you might want to have Sun OpenWindows, MIT R4, and MIT R5 distributions

residing on your platform at the same time: you could do this so you can test clients under

each environment. Each distribution can have its own directory hierarchy.

As a example of this, OpenWindows could be installed under /usr/openwin, MIT X11R4

under lusrlXUR4, and MIT XI1R5 under /mrlXHR5:

Contents OpenWindows X11R4 X11R5

Binaries /usr/openwin/ bin lmrlXllR4lbin lusrlXHR5lbin

Libraries /usr/openwin/ lib /usr/XHR4llib lusrIXllRSIlib

Headers /usr/openwin/ include lusr/XllR4lindudelXll lusrlXURSIincludelXll

Another possibility is that you can run a server from one MIT release with the client distribu-
tion from another. You might do this if you are installing a new version of X that doesn't sup-
ply a server for your workstation console: you can continue to use the vendor supplied server

with updated clients until an updated server is available for your display hardware.

Mixing clients with a server from a different release may have unexpected results. For ex-
ample, newer X servers have the SHAPE extension, which allows windows to be shapes other

than rectangular. If you run the oclock client under a server without this extension, it would

appear as a square instead of a circle, as shown in Figure 8-1.

r

Figure 8-1. oclock without the SHAPE extension

With the SHAPE extension, oclock appears as it should, as shown in Figure 8-2.

Figure 8-2. oclock with the SHAPE extension

190 X Window System Administrator's Guide

8.2 Source Preparation

You can obtain the source code to X from any of the sites listed in Appendix F. The directory

structure may vary slightly, but at the top of the source directory should be the mitl and con-

tribl directories. The contents of the mitl directory are usually referred to as the core distri-
bution. The core software is supported by MIT and is usually included in every X distribu-
tion. The contribl area is composed of "contributed" software that is not directly supported

by MIT. If you have a problem with contrib software, you would typically complain directly

to the author of the specific package, instead of to the X Consortium.

Over time, programs are promoted from contrib to core status if they gain MIT support, or

demoted from core to contrib if they become obsolete (as uwm was). It is unusual to compile

the entire contrib distribution; the typical practice is to compile and install the entire core

distribution and then selectively compile just the sections you want from contrib. If you are

using a common platform, you will likely be able to survive with only the core software.

When you have obtained the source, there are a few things to do before you can install X:

" Figure out if you have enough disk space.

" Figure out to what extent your platform is supported.

" Make sure your platform is up to date with OS patches.

" Apply all the patches to the X distribution.

" Create a link tree (optional).

8.2.1 Do You Have Enough Disk Space?

One of the first problems that many run into is the amount of disk space consumed by the

source code. On top of that, additional disk space is needed to compile and install the source

code.

Description Size (in Mbytes)

R5 core source 79

R5 contrib source 135

Building R5 core approx. 50-120

Building R5 contrib 300+

Installing R5 core 25-60

Installing R5 contrib 150+

The amount of space required for compiling the core distribution varies considerably from

operating system to operating system. The type of processor (e.g., CISC or RISC), debugging

options and shared libraries will all affect the size of the installation. Read Section 8.4.1 for

some ideas on how to reduce the amount of disk space required for compilation and installa-
tion.

Building the X Window System 191

8.2.2 Is Your Platform Supported?

Before you go anywhere, find out if your platform is one of those supported by the XI1 re-
lease that you want to build. As suggested in Section 8.1.3, look at the RELNOTES.TXT file in

the mill directory. If your operating system and platform are listed, you are very likely to be

able to produce a working version with very little work. The supported platforms are listed in

the section entitled "3. Building the Release":

The core distribution (code under the mit directory) has been built and

tested at MIT on the following systems:

AIX 3.1.5, on IBM RS/6000

AT&T Unix System V Release 4 V2, on AT&T W3S6386

A/UX 2.0.1

HP-UX 7.0, on HP9000/S300

IRIX 4.0

If you are unsure of what type of platform and operating system you are running, use one of

the following methods to figure it out:

" Check the packaging of the OS distribution software for release and version information.

" The uname command is available on most systems. For example:

% uname -a

SunOS ruby 4.1 2 sun4

This indicates that the host ruby is a Sun4 running SunOS 4.1.

% uname -a

A/UX quartz 2.0.1 SVR2 mc68030

The host quartz is a Macintosh running AUX 2.0.1.

% uname -a

IRIX pebble 4.0.1 11150233 IP6

The host pebble is a Silicon Graphics running IRIX 4.0.1.

" The letclmotd file is sometimes helpful:

% cat /etc/motd

SunOS Release 4.1.2 (RUBY) #1: Fri May 29 10:55:44 EOT 1992

You may also extract the OS name from the kernel using the strings command:

% strings /vmunix I grep SunOS

SunOS Release 4.1.2 (RUBY) #1: Fri May 29 10:55:44 EOT 1992

" The arch or mach commands are available on some systems to tell you the architecture of

the host:

% mach

spare

% arch

sun4

" Ask someone who knows.

192 X Window System Administrator's Guide

The next question is, does an X server exist for your display hardware? Check the release

notes for the supported displays on your platform. The section entitled "Structure of the MIT

sources" contains a list of supported servers:

DECstation 2100/3100 monochrcme and color displays DECstation 5000 CX

and MX displays IBM RS/6000 skyway adapter Macintosh monochrome and

color displays MIPS monochrome and color displays

You need to find out what sort of display hardware you have, and then find out whether it is

supported for your platform. If you don't know what type of display is installed on your sys-
tem, some operating systems provide a command that might help. For example, SunOS has

the dmesg command, which reports system diagnostics. Among these diagnostics is a line re-
porting what sort of display hardware was installed at boot time.

% /etc/dmesg

cgthreeO at SBus slot 2 0x0 pri 7

cgthreeO is a color frame buffer. As the boot messages may get lost with time, you could also

reboot the system and watch it during the auto-config phase where it looks for each attached

device.

The manual pages for the X server should contain descriptions of supported graphics hard-
ware.* They are located in subdirectories of the server source code. A quick way to find

them is:

% find mit/server -name '*.man' -print

mit/server/ddx/macII/XmacII.man

mit/server/ddx/sun/constype.man

mit/server/ddx/sun/Xsun.man

mit/server/ddx/sun/kbd_mode.man

mit/server/ddx/dec/qvss/Xqvss.man

mit/server/ddx/dec/qdss/Xqdss.man

mit/server/ddx/dec/ws/Xdec.man

mit/server/ddx/mips/Xmips.man

mit/server/ddx/x386/X386.man

The manual page iorXsun lists the cgthree as a supported display:

/dev/cgthreeO

This color display is available on both the Sun386i

and SPARCstation 1 platforms.

You may also find some information in README files in the server source directory:

% find mit/server -name README -print

mi t/server/ddx/itm/REAEME

mit/server/ddx/macII/REAEME

mi t/server/ddx/sun/REAEME

mit/server/ddx/omron/REAEME

* If you have the MIT documentation, hardcopy of the server manpages are included in it. They are also in present in

the document millhardcopy /man/'man. PS. Z.

Building the X Window System 193

ndt/server/ddx/cfb/REAEME

mit/server/ddx/x386/REAEME

mit/server/ddx/x386/cfb.banked/REAEME

The cgthree is mentioned in mitlserver/ddxlsunlREADME:

Sun/2 bw2 cg2/3/5

Sun/3 bw2 cg2/3/4/5

SPARCstation cg3/6

From this information, you can determine that the Sun server supports the cgthree frame buf-
fer that you have installed on your system.

If your platform is supported and a server exists for your display hardware, then you're home

free.

8.2.3 Applying OS Patches

You should make sure your OS has the latest patches, as the MIT X distribution may rely on a

patch being in place in order for it to work properly. This is especially true for security and

compiler patches, as X relies on setuid programs and also tends to expose weaknesses in

compilers during the build process.

The mechanism for obtaining OS patches varies depending on the vendor, but it usually in-
volves a support contract or calling for technical support. Some vendors make their OS

patches available on the Internet or from mail servers.

8.2.4 Applying X Patches

Before continuing with the build, you should verify that you're using the latest version of the

MIT source and have all official MIT "fixes," or patches, applied. Some patches may affect

installation or close security holes, so it's always a good idea to install the latest patch.

If you obtained the sources from a reputable location and they appear to be unmodified, try

looking at the file mitl bug-report. There should be a line resembling:

R5, patch-level-0

"patch-level-0" indicates that no official patches have yet been applied. The patch-level num-
ber is incremented as each patch (or "fix") is applied.

You should go back to wherever you obtained the MIT source for the available patches. If

you got the source from export.lcs.mit.edu, the patches are in the lpublR5lfix.es directory. The

contents of this directory are:

fix-01 fix-05 f.ix-09 fix-13 sunGX.uu

fix-02 fix-06 fix-10 fix-14

fix-03 fix-07 fix-11 fix-15

fix-04 fix-08 fix-12 fix-16

194 X Window System Administrator's Guide

There are 16 patches available for R5 at the time of this writing.*

The fixes are small enough to be sent through mail and are available through a mail archive

server. See Section A.3 for information on getting a patch through the mail.

Patches are applied using the patch program. If patch isn't already installed on your system,

the source for this program is available in the mitlutillpatch directory.

The top of each patch file describes how to use the patch program to install the patch, for ex-
ample:

Release 5 Public Patch #1

MIT X Consortium

This patch comes in two parts: this file, and the file "sunGX.uu".

(If you obtained this patch via the xstuff mail daemon, and you

do not have "sunGX.uu", get it with the request "send fixes

sunGX.uu".)

To apply this patch:

cd to the top of the source tree (to the directory containing the

"mit" and "contrib" subdirectories) and do:

patch -p -s < ThisFile

Patch will work silently unless an error occurs. You will likely

get two warning messages, which can be ignored:

mkdir: mit: File exists

mkdir: mit/hardcopy: File exists

If you want to watch patch do its thing, leave out the "-s"

argument to patch.

Next, from the same top-level directory do:

uudecode sunGX.uu

rm -f mit/server/ddx/sun/sunGX.o.dist

uncompress mit/server/ddx/sun/sunGX.o.dist

This example assumes you created a directory for patches called fixes in the mit/ directory.

Apply the first patch (fix-01) simply by following directions:

% Is mit/fixes

fix-01 fix-05 fix-09 fix-13 sunGX.uu

fix-02 fix-06 fix-10 fix-14

fix-03 fix-07 fix-11 fix-15

fix-04 fix-08 fix-12 fix-16

% patch -p -s < mit/fixes/fix-01

mkdir: mit: File exists

mkdir: mit/hardcopy: File exists

% uudecode mit/fixes/sunGX.uu

% rm -f mit/server/ddx/sun/sunGX.o.dist

% uncompress mit/server/ddx/sun/sunGX.o.dist

(As mentioned in the instructions, the mkdir errors can be ignored.)

*The sunGX.uu file is a replacement object file for the Sun GX graphics accelerator. The .uu extension indicates that

it is a binary file that has been converted to ASCII text by the uuencode program. This makes it possible to send a bi-
nary file through the mail. When the sunGX.uu file has been copied to your system, run the uudecode program on it

to recreate the binary file.

Building the X Window System 195

Make sure you follow the directions and pay careful attention to the ordering of the patches.

When you have exhausted all the available patches, the "patch-level" number will be incre-
mented to the number of the last patch.

If you get an error message such as:

reversed (or previously applied) patch detected! Assume -R? [y]

then abort the patch program, as it is likely that you are applying the patches in the wrong or-
der or are applying the same patch twice.

Patches to contrib software are applied in a fashion similar to the core patches, but they are

organized by specific packages. If you obtain them from the host export.lcs.mit.edu, they are

in the directory IpublRSIcontrib-fixes.

8.2.5 Creating a Link Tree (Optional)

One method of managing the X source distribution is to create a "link tree" of the MIT

source code. The directory structure is the same as the original MIT distribution, but the files

in the directories are symbolic links back to the original files. If the X distribution is built

within the link tree, the object files and libraries will reside in the copy, not in the original.

Using link trees makes it possible to build any number of different sets of binaries from one

set of source code files. This makes it very easy to maintain a group of binaries for different

platforms. It also conserves disk space, as the symbolic links will take up less space than a

copy of the source files. If you are going to build the distribution only once, however, you

may not want to use a link tree, since it complicates the directory structure and uses up disk

space when creating links.

Link trees may be the only way to effectively use read-only copies of the X source, such as

those mounted from a CD/ROM.

For example, the source area could look like:

% Is -F

mit/ rs_aix31/ sun3_411/

pmax_ul42/ sgi_40/ sun4_411/

The rs_aix31, sun3_411 ,pmax_ul42, sgi_40, and sun4_411 directories* are link trees that are

linked back to the mit directory. MIT supplies a shell script called Indir that creates the tree

for you. You can find Indir in the source distribution as mit/util/scripts/Indir.sh.

*The example directory names are borrowed from AFS. They are intended to describe a platform and the version of

the operating system. For example, sun4_411 indicates a Sun4 running SunOS 4.1.1.

196 X Window System Administrator's Guide

To build a link tree:

1. Install the Indir program:

cp mit/util/scripts/lndir.sh /usr/local/bin/lndir

rehash

2. Create a directory for the tree to reside in:

mkdir sun4_411

3. cd into the new directory:

cd sun4_411

4. Run the Indir program, supplying the relative path of the original source tree:

Indir ../mit

config:

extensions:

include:

PEX:

lib:

xinput:

When Indir finishes, you will be left with a usable copy of the X source tree.

8.3 Simplest Case Build

If you have confirmed that you have adequate disk space, have applied all the available

patches, and are working on a supported platform, then you may be able to install the X core

software quickly and painlessly.

This example uses the Sun4 running SunOS 4.1.1, as it is one of the most trouble-free builds.

If you want to build X using all default settings, change directories to the top of the distribu-
tion (usually mit/) and type:

% make World >& world.log

If you would like to monitor the progress of the build, use the tail program on the log file:

% tail -f world.log

The build will probably take several hours on even the fastest machines.

When the make is complete, check for errors; any build problems should be reported in the

file world.log.* Examine the file for the messages "not made because of or "Error." You can

the grep program to search for the ":", as it is commonly present in error messages:

% grep ":" world.log

Sun Jun 7 23:12:09 PDT 1992

*Be careful to search the entire file for errors, as it may still have the message "Full build of Release 5 of the X Win-
dow System complete." at the end even if there were problems with the build. This is because the make World target

invokes make with the -k option, telling it to ignore non-fatal errors.

Building the X Window System 197

make: Fatal error: Command failed for target "subdirMakeflies'

make: Fatal error: Command failed for target "Makefiles'

make: Fatal error: Command failed for target "World'

make: Fatal error: Command failed for target "World'

If there are no errors, the next step is to install the distribution. In this example, we use the

default installation pathnames-see Section 8.5.1.2 for information on how to change the de-
fault pathnames.

If you want to install X as an unprivileged user, you will need write permission to lusr/lib,

lusr/bin, I usrI include, /usr/man/man3, and lusr/manlmann. It is probably easier to install X

as root, instead of touching up permissions after the installation is completed. (The permis-
sions for the installed files are very important to the security of the X distribution.)

Become the superuser:

% su

Password:

Install the distribution:*

make install >& install.log

Install the manual pages (if desired):

make install.man >& man.log

If there are no errors at this point, X should be installed and usable. Any remaining adminis-

tration work would involve customizing the installed files for your site. For example, you

may want to configure the X Display Manager. If so, see Chapter 3 for more information.

8.4 Host Problems

There are some problems that can disturb even the default X build. These problems have

more to do with the host configuration than with the X installation itself; that is, problems

with disk space, shared libraries, or NFS.

8.4.1 Disk Space

There are several stages in the build process that can consume large amounts of disk space.

Optimization options

The -O flag to the C compiler turns on optimization and can generate very large

temporary files. These files are usually written to Itmp.

*Note that the install process will write to the source area in some cases. One example of this occurs when installing

the xterm binary for the Sun platform, as the binary is re-linked to overcome a security problem with Sun shared li-
braries.

198 X Window System Administrator's Guide

Debugging options

The -g flag to the compiler tells it to include information in the object files to be

used by a debugger. This can increase the size of the executable to five or more

times the size of an object compiled without the -g flag, depending on the com-
piler used.

Library creation

The ar command builds libraries and may generate large temporary files, usually

written to limp. The HasLargeTmp configuration flag controls the location of

the temporary file when the library for PEX (the PHIGS Extension to X) is creat-
ed. If HasLargeTmp is set to YES, the Itmp directory is used; if set to NO, ar

will use the current directory to store the temporary file. You can also choose

not to build the PEX library by setting the BuildPex flag to NO-see Section

8.5.1 on build flags).

Since most of the temporary files are stored in the Itmp directory, you need to have anywhere

from 10 to 20 megabytes free in Itmp. If this is not possible, most compilers and archivers al-
low alternate directories to be specified. To find out how to redefine which directory to use

for temporary files on your system, see the manual pages for the C preprocessor (usually

named cpp), the C compiler (usually cc), the ranlib command, and the ar command.*

8.4.1.1 Changing the tmp Directory Using TMPDIR (Ultrix and HP-UX)

On some systems, the ar command checks if the environment variable TMPDIR is set. If so, ar

uses the specified directory as an alternate location for temporary files. You might set

TMPDIR if you ran out of disk space. For example, if the make produces the following errors:

ar rul libphigs.a archive/ar*.o c_binding/cb*.o cp/cp*.o cp/psl.o

ess/

css*.o error/

er*.o input/sin*.o pex/pex*.o util/ut*.o ws/ws*.o ws_type/wstx*.o

ranlib libphigs.a

/usr/bin/ranlib: 13832 Memory fault - core dumped*** Error code 139

*** Error code 1

Stop.

*** Error code 1

Stop.

*** Error code 1

Stop.

The ranlib program has run out of disk space and has died. You can set TMPDIR and start the

build process again:

% setenv TMPDIR .

This tells ar to create temporary files in the directory from which the ar command is invoked,

instead of ml tmp.

*On some systems, the ranlib command will be just a shell script that calls ar or it will not be present at all. This

would be true for systems such as the SGI Iris, DecStation, and MIPS machines which use the MIPS compiler suite.

Building the X Window System 199

8.4.1.2 Changing the tmp Directory Using -temp (SunOS)

On some systems, the C compiler accepts the -temp= flag to specify an alternate directory for

temporary compiler files. The optimizing pass of the compiler will sometimes create large

files, causing an error such as:

compiler(iropt) error: write_irfile: No space left on device

*** Error code 1

Stop.

*** Error code 1

Stop.

*** Error code 1

Stop.

Call cc with the -temp= flag to redefine where temporary files are placed:

% cc -O -temp=/mondo -c foo.c

If you want this flag to be used when building the entire X distribution, it will have to be ad-
ded to the platform configuration file (e.g., sun.cf) for it to show up in every Makefile. See

Section 8.5.2 for an example of configuring your platform configuration file to use the

-temp- flag.

8.4.2 Shared Library Installation (SunOS)

Under SunOS, the location of shared libraries is stored in a cache file called I etc/Id. so.cache.

The cache file needs to be rebuilt whenever a shared library is added to the system. The X

distribution adds several shared libraries, and most clients cannot run until the cache is up-
dated. Clients will report an error message such as:

Id.so: lihXll.so.5: not found

Running the Idconfig command (as root) should fix this:

Idconfig

(Rebooting the system would also work, since Idconfig is run from letclrc.local at boot time.)

If the X binaries are intended to be NFS-mounted and executed on diskless workstations, you

need to repeat the process on each of the remote machines. Since each host has its own pri-
vate letclld.so.cache file, the Idconfig command has to be run on each of the diskless worksta-
tions. To simplify this process, you can use the rdist program, or even use a simple shell

script. The following is an example using the C shell:

foreach I (hostl host2 host3 host4)

? rsh $1 Idconfig

? end

(This example depends on each of the remote workstations having the fileserver listed in

l.rhosts)

200 X Window System Administrator's Guide

8.4.3 NFS Installation

You may choose to install X on a filesystem that is NFS-mounted from another host. You'll

have problems installing X if the NFS-mounted filesystem does not allow root access over

the NFS link. For security reasons, it's a bad idea to allow remote root users to write to your

filesystem, but you can add root access temporarily to allow you to build X.

For root to be able to write to an NFS-mounted partition, you need an entry for the local sys-
tem in the /etc/exports file on the remote system.* For example, to give temporary root per-
mission for the lusr directory to the host named rock, you could change the following line in

/etc/exports:

/usr -access=rock

to:

/usr -root=rock, access=rock

On systems with the newer version of NFS, run the exportfs command to make this take ef-
fect:

rubble# exportfs -v /usr

re-exported /usr

Back on the local host, the installation can proceed from this point as if it was taking place on

a local filesystem. Build X on rock:

% make world >& world.log

When the installation is complete, the entry in /etc/exports should be changed back to what it

was and then re-exported with the exportfs command:

rubble# exportfs -v /usr

re-exported /usr

8.4.3.1 NFS Installation Without Root Access

An alternative to giving temporary NFS root access to the remote directory is to install the

distribution as an unprivileged user and change the ownership of the files later. The problem

with this approach is that it opens the system to attack during the installation, so it should be

avoided if possible.

For this example, the ownership of the target directories is changed just long enough for the

installation to take place. The permissions are then touched up as root. As in the previous

example, the host that has the compiled X source on it is named rock and the host that NFS-

mounts the rock partition is named rubble.

*If you have an older version of NFS, the /etc/exports entries are simply the filesystem names followed by the hosts

which have access. Changes to the file will have an immediate effect. This is in contrast to the current system, which

uses the exportfs command to notify the system of changes in the /etc/exports file and supplies different levels of per-

Building the X Window System 201

1. Become the superuser on rubble:

rubble% su

Password:

2. Create any directories you need that do not exist:

rubble* mkdir /usr/bin/Xll /usr/lib/Xll /usr/include/Xll

3. Change ownership of the top level installation directories to your user ID (cap, in this ex-
ample). Note that someone breaking into your account would also be able modify the sys-
tem areas while they are writable by you.

rubble* chown eap /usr/bin/Xll /usr/lib/Xll /usr/include/Xll \

/usr/lib /usr/man/man3 /usr/man/mann

4. Now complete the installation under your own account on rock. Install the distribution

from the NFS-mounted partition:

rock% make install >& install.log

Install the manpages if you want them:

rock% make install.man >& man.log

5. Back on rubble, change the ownership back to root and group wheel:*

rubble* chown -R root.wheel /usr/bin/Xll /usr/lib/Xll \

/usr/include/Xll /usr/man/man3 /usr/man/mann

The -R flag recursively chowns all files in subdirectories. If the chown command on your

system does not support the -R option, you could use the find command instead:

rubble* find /usr/bin/Xll /usr/lib/Xll -exec chown root.wheel {} \;

rubble* find /usr/include/Xll -exec chown root.wheel {} \;

rubble* find /usr/man/man3 /usr/man/mann -exec chown root.wheel {} \,

6. Change ownership for only the top-level directory of /usr/lib, as this maintains ownership

information on the many non-Xl 1 files within this directory:

rubble* chown root /usr/lib

7. Now fix permissions for the xterm and xload clients.

rubble* chmod 4755 /usr/bin/Xll/xterm

rubble* chgrp kmem /usr/bin/Xll/xload

rubble* chmod 2755 /usr/bin/Xll/xload

(xterm needs to be installed setuid root, xload needs to be setgid group kmem, as

/dev/kmem is readable only by the kmem group.)

' If your version of chown does not support the user.group syntax, use chown for the user and chgrp for the group.

202 X Window System Administrator's Guide

Under SunOS, you will also need to rebuild the shared library cache, as described in Section

8.4.2:

rubble# Idconfig

8.4.3.2 Installation Over the Network (rdist)

A software distribution mechanism such as rdist may also be used to install X, but it will re-
quire at least one complete installation to be in place before it can be distributed to other

hosts. To use rdist, a "master" copy is created on one host, and then rdist is used to duplicate

it on other hosts.

rdist commands can be supplied on the command line or in a command file called a Distfile.

A sample Distfile might look like this:

HOSTS = (nobble)

FILES = (/usr/lib/lib*X* /usr/lib/libphigs.a /usr/bin/Xll

/usr/lib/Xll /usr/include/Xll /usr/man/mann /usr/man/man3)

${FILES} -> ${HOSTS}

install ;

notify root@rubble ;

This Distfile copies an X distribution over to a host named rubble. The notify keyword sends

mail describing what files have been installed. This is handy if you run the command regular-
ly to keep the X distribution updated.

The Distfile can executed with the following command line:

source! rdist -f Distfile

updating rubble

For a network of Sun workstations, you can also use the special command within the Distfile

to run the Idconfig command on the remote host whenever a new shared library is copied

over:

special /usr/lib/lib*X*.so.* /usr/etc/ldconfig ;

See the manual page for rdist for more information.

8.4.4 Installing the termcap or terminfo Definition for xterm

The xterm program works best with the xterm terminal definition supplied in the mit/cli-

ents/xterm directory. If xterm does not work properly, or is missing altogether, you may need

to install the terminal definition. For example, the following is an error caused by a missing

description for xterm when you log in and your .login script tries to set the terminal type us-
ing tset:

% telnet crufty

Trying 140.186.64.3 ...

Connected to crufty.ora.com.

Escape character is '"]'.

login: eap

Building the X Window System 203

Password:

TERM= (xterm)

Type xterm unknown

TERM= (unknown)

You might also get error messages when you try using your favorite editor:

% vi foo

xterm: Unknown terminal type

I don't know what kind of terminal you are on - all I have is 'xterm'.

[Using open mode]

"foo" [Read only] 3564 lines, 133099 characters

:q!

% emacs foo

emacs: Terminal type xterm is not defined.

You could use vtl02 as a temporary value until you are able to install the xterm entry.

% setenv TERM vt!02

The terminal definition for systems using termcap can be installed simply by inserting the

contents of the file called mitlclients!xterm/termcap into the letcltermcap file on your system.

It's a good idea to insert the termcap definition before any other definitions, since xterm is

likely to be used frequently.

The terminfo definition can be installed by using the terminfo compiler, tic. For example:

tic mit/clients/xterm/terminfo

(Note that you must be root for this to succeed.)

The terminfo definition is placed in lusrlliblterminfo/xlxterm.

See the Nutshell Handbook termcap and terminfo (O'Reilly & Associates, 1991) for more in-
formation on the termcap and terminfo terminal databases.

8.5 Simple Configuration

If you are not satisfied with the default configuration, you can change some simple configura-
tion parameters, as described in this section. These parameters need to be configured before

the build is begun.

The files used to configure the X compilation and installation reside in the directory mitl con-

fig. The syntax within these files should look familiar if you have used the C preprocessor

(cpp) before. If you are not familiar with C preprocessor syntax, you should still be able to do

the right thing by looking at other examples within the configuration files. Section 8.7 gives

some more background on intake syntax; for most configurations, you can probably figure it

out on your own.

You need to modify two files that will affect the build process: site.def, which defines param-
eters for your particular site, and a platform-specific file (e.g., sun.cf) which defines parame-
ters for your particular platform.

204 X Window System Administrator's Guide

A list of systems and their corresponding .cf files can be found in the mitlRELNOTES.TXT file,

under the section "3.2.1 The vendor.cf file." Find the appropriate platform.cf file from this

table:

AIX itm.cf

ADS itm.cf

AT&T Unix SVR4.2 att.cf

A/UX macll.cf

BSD bsd.cf

ConvexOS convex.cf

DG/UX DGUX.cf

Before you modify any of these files, make a backup copy. (You should probably choose

some extension other than .bak or .orig, as these extensions have special significance to other

programs.)

% cd mit/config

% cp sun.cf sun.cf.keep

% cp site.def site.def.keep

You could also use a revision control system, such as RCS or SCCS.

You may also have to give yourself write permission to the files:

% chmod u+w sun.cf site.def

8.5.1 Configuration Parameters

There are many configuration parameters that you can modify. Only a subset of those avail-
able are described here, as there are many special-purpose flags. The complete list is in

mit/config/README.

8.5.1.1 site.def

The site.def file defines configuration parameters to be used for your entire site. Your site

may include more than one type of platform or operating system; the site.def file is consulted

regardless of the platform type, whereas the platform.cf file is looked at only when building

on a particular platform.

An unmodified site.def looks like this:

#ifdef BeforeVendorCF

/* ttdefine HasGcc YES */

#endif /* BeforeVendorCF */

#ifdef AfterVendorCF

/*

#ifdef ProjectRoot

#undef ProjectRoot

#endif

Building the X Window System 205

#define ProjectRoot /usr/XllR5

*/

#en«±Lf /* AfterVendorCF */

There are two sections to the site.def file. The first is delimited by the BeforeVendorCF con-
ditional and the second by AfterVendorCF. As you might guess, the first section contains any

flags that should be set before the platform.cf file is read, and the second section has flags

that should be set afterwards.

(Note that the section containing the ProjectRoot flag is commented out with the /* and

*/ characters. The ProjectRoot flag is discussed in Section 8.5.1.2.)

A modified site.def might look something like this:

#ifdef BeforeVendorCF

/* #define HasGcc YES */

#endif /* BeforeVendorCF */

#ifdef AfterVendorCF

/*

ttifdef ProjectRoot

frundef ProjectRoot

#endif

#define ProjectRoot /usr/XHR5

*/

#define InstallXdmConfig YES

#define InstallXinitConfig YES

#define InstallFSConfig YES

ttdefine StripInstalledPrograms YES

#define HasXdmAuth YES

ttdefine ExpandManNames YES

ttendif /* AfterVendorCF */

(You should consult the version of configlREADME that comes with your release, as many of

the flags are release-specific.)

You might want to modify one or more of the following flags:

InstallXdmConfig

By default, the configuration files for the xdm program are not installed. By set-
ting InstallXdmConfig to YES, the xdm configuration files are installed in

lusrlliblXlllxdml.

Warning: If you have files in lusr/liblXlllxdml that you have already config-
ured, copy them to a safe place before starting the installation. Enabling this flag

will overwrite files that you may have customized.

InstallXinitConfig

By default, the configuration files for the xinit program are not installed. By set-
ting InstallXinitConfig to YES, they will be copied to lusrlliblXlllxinitl.

These files are used by the startx front end to xinit.

(The same warning for InstallXdmConfig applies here as well.)

206 X Window System Administrator's Guide

InstallFSConfig

The font server configuration files are not installed unless this flag is set to YES.

StripInstalledPrograms

Setting this flag to YES will strip binaries as they are installed. The usual reason

for doing this is to save disk space: removing the symbol table from the binary

will reduce its size. It will be difficult to debug any run-time problem if the pro-
grams are stripped, but this is not a concern to most X users.

HasXdmAuth

This flag indicates that the XDMCP library should include DES code. DES, or

Data Encryption Standard, is an encryption scheme used in the authorization

process. There are restrictions on exporting DES outside the United States. This

flag must be on if you want to use the XDM-AUTHORIZATION-1 method of

server access control. See Section 4.3 for more information.

ExpandManName s

Some operating systems have restrictions on filename length. To deal with this

problem, the manual pages for X library functions have their names shortened to

14 characters. If your operating system does not have this problem, the manual

page filename can be expanded to its full name (for example, XTranWCo.3 is ex-
panded to XTranslateCoordinates.3}.

HasLargeTmp

This flag indicates that you have enough disk space in Itmp for the ar command

to create its temporary file. Setting this parameter to NO instructs ar to use the

current directory.

InstallLibManPages"

There are two sections of manpages: client manpages and library function man-

pages. If this flag is set to NO, it prevents the library manual pages from being

installed with the make install.man command. This flag is set to YES by default.

You might set it to NO if no one at your site intends to program in X and if disk

space is low. (The library manpages consume approximately 2 megabytes of disk

space.)

8.5.1.2 The ProjectRoot Flag

The ProjectRoot flag defines the "root" directory for the build. It is not used in the ex-
ample site.def file, but can be easily enabled by removing the C comments surrounding this

section:

ttifdef ProjectRoot

#undef ProjectRoot

#endif

ttdefine ProjectRoot /usr/XHR5

If ProjectRoot is already defined, it is first undefined. (The reason for this test is that

some of the platform.cf files define ProjectRoot by default. The C preprocessor will

complain if a flag is defined twice.)

Building the X Window System 207

The typical use of this flag is to install X in a non-standard location. You might do this for

one of the following reasons:

" You may need to have more than one release installed at one time. You could have

XI1R3 under lusrlXHR3, XI1R4 under lusr/XHR4, and XI1R5 under lusrlXHR5. This

may be useful for migrating an application from one release to another. As it is much eas-
ier to install R5 in "non-standard" location than previous releases, you may wish keep a

pre-R5 release in the default location and move R5.

" The release of X that you are installing does not include a server and you wish to leave

the current X installation undisturbed. An example of this would be the SGI Indigo, as no

R5 server exists for this platform, but the R5 libraries and clients are useful.

The directory specified in ProjectRoot becomes the root of the new installation, with the

normal directories underneath it. If it is set to /usr/XURS, this would be:

New Name Default Name Contents

lusrlXllR5/bin lusrlbinlXll Binaries

lusrIXllRSIlib lusrllib Libraries

lusrlXURSIliblXll lusrllib/Xll Fonts and support files

lusrlXllRSIinclude/Xll lusr/includelXl 1 Header files

8.5.1.3 The Platform Configuration File (platform.cf)

The platform-specific configuration file contains information specific to a certain platform or

type of machine. It changes the default behavior of imake, as imake will make assumptions

unless told otherwise.* An example platform.cf file is sun.cffor Sun platforms, or sgi.cffor

Silicon Graphics platforms.

There may be other subtypes within the platform. For example, Sun3, Sun4, and Sun386i

machines are all described within the sun.cffile. A file of this type should be all you need to

add when porting the X distribution to a new platform (other than new server code!).

Even though the platform has been narrowed down to a specific machine, there are still vari-
ables that could affect the installation process. These are:

" Operating system version. There are flags to describe the release of the OS you are run-
ning. You must change these flags if you are trying to building a version other than the

one described in the MIT-supplied release notes.

#define OSName SunOS 4.1.2

#define OSMajorVersion 4

ttdefine OSMinorVersion 1

*The imake process would happily construct an Imakefile using a generic system. In fact, if you ever see that the ge-

neric.cfhas been used by imake, something has gone wrong.

208 X Window System Administrator's Guide

Any "features" specific to a release can be handled with conditional statements:

#if OSMajorVersion < 4 I I (OSMajorVersion == 4 && OSMinorVersion < 1)

#define BootstrapCFlags -DNOSTDHDRS

#define StandardDefines -ENOSTDHDRS

#endif

Operating system-specific features. There may be common software features missing

on your vendor's release. Flags are provided to indicate their presence or absence:

ttdefine HasVoidSignalReturn NO

#define SetTtyGroup YES

#define UnalignedReferencesAllowed NO

#define HasBsearch NO

" Build options. There are defaults for building the distribution on the optimal platform

(or the one they had handy at MIT).

#define XsunServer YES /* has color and mono support */

fdefine XsunMonoServer YES /* monochrome only */

" Hardware options. You may have different graphics hardware or a floating-point chip

that requires special treatment. In this example, the Sun3 (mc68000) processor has the

mc68881 floating-point chip, but the Sun compiler does not use it by default.

#ifdef mc68000

#define DefaultCCOptions -f68881 -pipe

#else

#define DefaultCCOptions -pipe

#endif

The -f68881 flag is meaningless on the sun4 platform, requiring the test for a sun3

(mc68000) platform.

You may wish to change the following flags in the platform.cf file:

OSName This is full name of the operating system release. For example:

SunOS 4.1.1

OSMajorVersion

The "major" version number for the OS release (the number in front of the deci-
mal). The version flags should reflect the current system, as they will be tested

for later on in the platform.cffile. For example:

#if OSMinorVersion >= 1

#define HasBsearch YES

#else

#define HasBsearch NO

#endif

OSMinorVersion

The "minor" version number.

Building the X Window System 209

OSTeenyVersion

A more precise version number for patch releases of the OS.

BuildServer

This flag controls whether the server should be built along with the rest of the X

distribution. It is set to YES if the server exists; if a server doesn't exist for your

platform, it is set to NO. You can also set it to NO if you don't want to build a

server for some reason-for example, for the IBM RS/6000, the MIT server runs

only on the Skyway display adaptor. If you do not have this particular board, you

should set the BuildServer flag to NO.

Server Options

Look for any server specific options. This could include monochrome and color

versions, as in:

#define XmfbpmaxServer NO

#define XcfbpmaxServer YES

8.5.2 Configuration Example 1

For this example, a Sun with limited available space in limp is being used. The -temp= flag is

needed to specify an alternate directory for the temporary files from the compiler. See Sec-
tion 8.4.1.2 for more information on the -temp= flag.

The -temp= flag needs to be supplied on every cc command line used in the X build. This

means that it needs to make it into every Makefile used in the X distribution. You can accom-

plish this by editing the DefaultCCOptions parameter in the sun.cf file. (Being a very

system-specific flag, this parameter is specified in the platform.cf file, not in the site.def file.)

The README file in the mitlconfigl directory describes all of the configuration parameters,

including DefaultCCOptions:

DefaultCCOptions default special C compiler options

In sun.cf, DefaultCCOptions is currently specified with the following lines:

#ifdef mc68000

ttdefine DefaultCCOptions -f68881 -pipe

ttelse

ttdefine DefaultCCOptions -pipe

#endif

(The test for mc68000 is to add the flag for the mc68881 floating-point chip, available only

on the sun3 platform.)

If you enough space in the area where you are building X, set the -temp- flag to the current

directory ("."). The C compiler will then use whatever directory it is invoked in for tempo-
rary files:

ttifdef mc68000

#define DefaultCCOptions -f68881 -pipe -temp=.

#else

#define DefaultCCOptions -pipe -temp=.

ttendif

210 X Window System Administrator's Guide

8.5.3 Configuration Example 2

In this example, the /6m.c/file is modified to overcome a permissions problem in AIX 3.1 on

the RS/6000 platform. The problem arises when the make install command is issued. The

chown program is executable only by root.* If you want to install X as an unprivileged user,

this will cause the iusrIucblinstall program to fail with the following error:

/usr/ucb/install: /bin/chown: cannot execute

The section of interest in the unmodified ibm.cfis the one specific to the RS/6000. (AIX runs

on several different platforms, including the PS/2, RT, and 370 systems.) The section we

want is surrounded by the test for RsArchitecture:

#ifdef RsArchitecture

#define OPERATING_SYSTEM AIX

ttdefine InstallCmd /usr/ucb/install

#include <ibmLib.rules>

#else

Redefine the InstallCmd parameter to the install.sh shell script that comes with the R5 re-
lease in the mitlutillscripts directory (the variable SCRIPTSRC is set to this).

#ifdef RsArchitecture

#define OPERATING_SYSTEM AIX

tfdefine InstallCmd sh $(SCRIPTSRC)/install.sh

#include <ibrnLib.rules>

#else

Since attempting to run the /bin/chown command will result in an error, the program run by

the install.sh script should be redefined to something harmless. All the program definitions

are at the top of the install.sh script:

put in absolute paths if you don't have them in your path; or

fuse env. vars.

mvprog="${MVPROG:-mv}"

cpprog="${CPPROG:-cp}"

chmodprog="${CHMODPROG:-chmod}"

chownprog="${CHCWNPROG:-chown}"

chgrpprog="${CHGRPPROG:-chgrp}"

stripprog=" $ {STRIPPROG: -strip}"

mprog=" $ {RMPROG: -rm}"

You can just reset the CHOWNPROG environment variable to the /bin/true script, since all it

does is return a good exit status.

% setenv CHOWNPROG /bin/true

* chown returns an error if run by an unprivileged user on other systems, but on AIX 3.1 the executable has permis-
sions -r-x-- --, so that it can't be executed by others even long enough to get an error message.

Building the X Window System 211

The install.sh program should then work when running make install as an unprivileged user:

% make install >& install.log

Since chown hasn't been run on any files, you will have to chown them later as root. See Sec-
tion 8.4.3.1 for more information on touching up permissions after X is installed.

8.5.4 Configuration Example 3

If you are planning to add new fonts after installation, you may want to create a "local" di-
rectory that is always looked for by the X server. If this local directory is built into the X

server, users will not have to manually modify the font path on the command line or in their

start-up files.

To find the correct flag, take a look at the config/README file:

DefaultFontPath default server font path

To find the current value, search the configlProject.tmpl file:

#define DefaultFontPath $(FONTDIR)/misc/,$(FONTDIR)/Speedo/,\

$(FONTDIR)/75dpi/,$(FONTDIR)/100dpi/

To override this definition, put your own version in configi'site.def:

#define DefaultFontPath $(FONTDIR)/local,$(FONTDIR) /misc/,\

$(FONTDIR)/Speedo/,$(FONTDIR)/75dpi/,$(FONTDIR)/100dpi/

The X server will not start if one of the directories in the default font path is missing a

fonts.dir file. The server will fail with the following error:

failed to set default font path '/usr/lib/Xll/fonts/local,/usr/lib/Xll/fo

nts/misc/,/usr/lib/Xll/fonts/Speedo/,/usr/lib/Xll/fonts/75dpi/,/usr/lib/X

ll/fonts/100dpi/'

Fatal server error:

could not open default font 'fixed'

To prevent this, copy in a least one font into the font directory and run mkfontdir.

mkdir /usr/lib/Xll/fonts/local

cd /usr/lib/Xll/fonts/local

cp ~eap/home/xtrek.pcf .

mkfontdir

8.5.5 Configuration Example 4

It's a good idea to keep vendor-supplied software separate from "local" software, such as the

MIT distribution. This will make software upgrades easier, as you are much less likely to

overwrite local changes if they are confined to a discrete area.

The X distribution is already installed in discrete areas, but the manpages are generally in-
stalled directly into /usr/man. You may want to install the manpages in lusrllocal!'man in-

212 X Window System Administrator's Guide

stead. Most man commands will permit an alternate directory to be specified for searching

by setting the MANPATH environment variable:

% setenv MANPATH /usr/man:/usr/local/man

The man command will then search each directory in the order they appear in the MANPATH.

By default, MIT XI1 will install program manpages in /usrlmanlmann and library manpages

in ImrlmanlmanS. These values are defined in configlProject.tmpl. In this example, the suffix

for client manpages is changed from "n" to "1", and the "root" of the man directory structure

is changed from /usr/man to /usr/local/man. These should be specified in the config/site.def

file:

ttdefine ManSuffix 1

#define ManDirectoryRoot /usr/local/man

Program manpages will now go in I usr I local! man/manl. Library manpages will go in lusrllo-

callmanlmanS, where they are installed by default.

8.5.6 Configuration Example 5

If you know you will not be needing certain features of the distribution, you can suppress

their compilation using Boolean flags. The names for most of these flags start with the string

"Build":

% grep Build config/README I grep boolean

BuiIdFontServer boolean for building font server

BuildFonts boolean for building pcf fonts

BuildPex boolean for building all PEX-related code

BuildPexClients boolean for buildiing PEX clients/demos

BuildPexExt boolean for building PEX extension

BuildServer boolean for building X server

BuildXInputExt boolean for building X Input extension

BuildXInputLib boolean for building X Input library

These can be turned on or off in the configl site.def file:

#define BuildPex NO

#define BuildXInputExt NO

#define BuildXInputLib NO

First check the configlplatform.cf file to see if their default value is changed for your specific

platform. Modifying these values can save a lot of compilation time and disk space if you

decide that you don't need to build a specific feature.

8.5.7 Other Build Flags

There are a number of compile-time flags that are not clearly documented in the release

notes. They may be in a [makefile or buried in the source code.

Building the X Window System 213

8.5.7.1 xterm Build Flags

mill clients!xtermllmakefile contains the following comment:

/*

* add -DWTMP and -DLASTLOG if you want them; make sure that bcopy can

* handle overlapping copies before using it.

*/

You may want to enable these flags if you want users who log into the system using xterm to

be recorded in the wtmp file. They will then appear when the last command is used. Change

the following line in mill clients!xtermllmakefile from:

MISCLDEFINES = /* -DALLOWLOGFILEEXEC */

to:

MISC_DEFINES = /* -DALLOWLOGFILEEXEC */ -DWTMP -DLASTLOG

8.6 Building Programs After X Is Installed

If you have people at your site who are going to be programming with X, you should supply

them with the proper tools to do this. This usually means installing the libraries, header files,

and configuration files in a public area in the same manner as other programming environ-
ments. Even if you choose non-standard locations for the X distribution, the intake program

provides tools programmers can use without worrying about the location of the installed soft-
ware.

Appendix B shows how to compile an X program after X is already installed.

8.6.1 xmkmf

The xmkmf program is a shell script front end to the imake program, supplied in XI1R4 and

XI1R5. (See Section 8.7 for more information on imake itself.) It can be run in any directory

than contains an Imakefile. This could be within a subdirectory of the X distribution source

code or a program outside of it:

% xmkmf

mv Makefile Makefile.bak

imake -DUselnstalled -I/usr/lib/Xll/config

It first makes a backup copy of any existing Makefile, as it will create a new one with the

same name. It then invokes imake with the Uselnstalled flag, which tells imake that the

X distribution is installed and that it should use the header files and libraries on the system

instead of expecting ones to be present in the X source tree. For example, in config/Proj-

ect.tmpl:

#ifdef Uselnstalled

#define Phigslnclude -I$(INCDIR)

#else

214 X Window System Administrator's Guide

#define Phigslnclude -1$(BUILDINCDIR)

#endif

This sequence means "use the system include file area if Uselnstalled is defined, other-
wise use the include files in the source code for PHIGS."

If you set ProjectRoot before the build, xmkmf will use the new root directory. For ex-
ample, if you set ProjectRoot in site.def before installation:

#ifdef ProjectRoot

#undef ProjectRoot

ttendif

#define ProjectRoot /usr/XHR5

Running xmkmf would produce:

% xmkmf

mv Makefile Makefile.bak

imake -DUselnstalled -I/usr/XllR5/lib/Xll/config

xmkmfuses the -/ flag to tell cpp where to look for include files. The include files in this case

are the imake configuration files. The default location for installing these files is

lusr/lib/Xlllconfig. If you have your own private set of configuration files, you can invoke

imake with a different include directory:

% imake -DUselnstalled -I/home/eap/myconfig

In R5, xmkmf also takes an -a flag, which executes the normal make targets automatically:

% xmkmf -a

mv Makefile Makefile.bak

imake -DUselnstalled -I/usr/lib/Xll/config

make Makefiles

make includes

make depend

The Makefiles target will recursively build any Makefiles that may be present in subdirec-
tories. The includes and depend targets are used to build a list of dependencies that are ap-
pended to the Makefile. These will force recompilation of the target if something related to

the program changes elsewhere.

8.6.2 Include Files

Include or "header" files should be found automatically by the preprocessor, as they are

stored in standard system directories, such as Iusrlinclude. Note that MIT supplied header

files will have the XI1 directory already prepended to the name of the include file:

Mnclude <Xll/Shell.h>

or even a subdirectory within XI1:

#include <Xll/Xaw/Box.h>

Building the X Window System 215

cpp will interpret the complete path, for example, as ImrlincludelXlllXawlBox.h. If you

wish to bury the include files in another subdirectory, you will still need to have the last di-
rectory named XI1, as in lusrlXllR5lincludelXll. cpp would then be invoked with

-IlusrlXllR5/include. You could also cheat and create a symbolic link from XI1 to the in-
clude file directory:

In -B Xll .

This would keep cpp happy when it looks for the files. It is often desirable to keep the MIT

headers separate from the system headers, as this will keep them from being damaged during

OS upgrades.

8.6.3 Libraries

The X libraries will usually be installed in lusrllib, but there are several reasons to install

them in an alternate location. In any case, the Makefiles generated by imake should do the

right thing if you configured the X distribution this way. Alternate library locations can be

specified with the -L option. If you have Project Root set to lusr/XllR5, the X libraries

wi\\bem/usr/XUR5/lib.

8.7 More About imake

This section describes the configuration process in more detail and may help if you encoun-
tered a problem with your X build.

imake is a project management tool that is used for building the X Window System from

source code. This section describes imake in the context of building Xll, but imake can be

used for any large project that is going to be compiled on more than one type of platform. In

particular, it is the tool of choice for public domain X programs that are distributed in source

form. See Appendix B for more information on compiling public domain software.

imake uses a combination of make and the C preprocessor (cpp). A basic understanding of

each is required to intelligently configure the X build process.

8.7.1 The make Program

The make program is the default UNIX tool for maintaining source code. It uses a configura-
tion file called Makefile to describe each component of the source distribution, how each

should be compiled, and how individual files relate to one another. It saves time and effort by

automating common programming tasks. For example, if a header file has been modified, any

program that uses it is recompiled, ensuring that everything is up to date.*

*See the Nutshell Handbook Managing Projects with make (O'Reilly & Associates, 1991) for more information on

the make program.

216 X Window System Administrator's Guide

The XI1 distribution has been ported to many different platforms, with each one requiring its

own particular flags and libraries to compile programs. For example, the Sun C compiler

may require one set of flags:

cc -c -0 -pic

While the MIPS C compiler needs a different set:

cc -O -prototypes -float -cckr -Wf,-XNh2000

The usual way to handle this is to put all known options in a Makefile, and rely on the person

compiling the program to figure out what options or flags should be enabled.

For example, a well-commented Makefile might read something like the following:

Define the other compilation flags.

Add -DBSD4_2 for 4.2bsd systems.

Add -DSYSV for System V.

Add -DSYSV -D_SVR3 for SCO ODT, ISC Unix 2.2 or before,

or any System III Unix, or System V release 3-or-older Unix.

Add -DSVR4 (not -DSYSV) for System V release 4.

XCFLAGS can be set from the command line.

CFLAGS=-0 $(XCFLAGS)

This approach works fine for simple programs, but make is insufficient for maintaining the

large number of libraries and clients that make up the X distribution. The XI1 core distribu-
tion alone has several hundred Makefiles, and editing each one of these Makefiles by hand

would be absurd.

Some large packages, such as TeX, use make's ability to recursively invoke itself in subdirec-
tories, make flags are passed down the directory structure by specifying the flag on the com-
mand line, with each Makefile inheriting the flag's value from the previous invocation of

make. This is shown in Figure 8-3.

This approach works for flags, but complicated make commands must still be edited by hand

in each Makefile.

Thus enters imake. The main function of imake is to "automatically" generate any number of

Makefiles from one set of configuration files. It may help to call the imake program a "text

filter," as all it really does is take a set of text files as input and create a text file as output. As

input, imake uses a set of files in a configuration directory (such as lusrlliblXlllconfig} and a

file in the current directory called Imakefile. As output, imake generates a Makefile.

8.7.2 The C Preprocessor

imake relies on the C preprocessor (usually named cpp}. cpp provides a macro facility and

conditional expressions. If you know how the C preprocessor works, then you have a good

chance of understanding of how imake uses cpp syntax.

Building the X Window System 217

UNIX filesystem /

" Makefile

CFLAGS= -0 -I/usr/include/Xll

" Makefile

CFLAGS= $(CFLAGS)

" Makefile

CFLAGSr $(CFLAGS)

Figure 8-3. Recursive make

For a simple example of cpp syntax, examine the following lines:

ttifdef BSD

#define CCOPTS -DBSD

#endif /* BSD */

The #ifdef line, coupled with the #endif line, is an example of a conditional. These lines

say that if the BSD variable is defined, then set the CCOPTS variable to "-DBSD." Similarly,

you can use #if ndef to set up a negative conditional. For example:

#ifndef CppSedMagic

#define CppSedMagic sed -e '/A# *[0-9][0-9]* *.*$$/d' \

-e VAXCOMM$$/s//#/' \

#endif /* CppSedMagic */

The lines between the #ifndef and #endif are executed only if the specified variable

(CppSedMagic) is not currently defined. These lines say that if the CppSedMagic vari-
able is not defined, then define CppSedMagic as instructed.

The second example also shows an example of a macro. Any subsequent occurrence of

CppSedMagic is replaced by the multi-line sed expression.

This construction of defining a macro only if it isn't already defined is quite common: cpp

will complain if you try to redefine something that is already defined.

218 X Window System Administrator's Guide

8.7.3 Imake Syntax

cpp does not do anything except process text files: it cannot invoke other programs, make

can actually do work, but it lacks the ability to test the value of a variable, making it inflex-
ible. What imake does is combine the best features of cpp and make. The real value of imake

is that it allows easy creation of Makefiles under changing conditions.

The syntax used by imake is based on syntax used by both cpp and make. When cpp and

make syntax are inconsistent with one another (or when different versions of cpp are incon-
sistent with each other), imake needs to become the arbiter. This is most apparent when it

comes to interpreting comments, defining multi-line macros, concatenating macros, and deal-
ing with tabs.

8.7.3.1 Comments in imake

The make program expects comments to be preceded by the "#" character. The problem is

that "#" indicates the start of a preprocessor directive (a cpp command) to cpp.

For example, if you had the following make-style comment in a file called testfile:

All rights reserved.

If you run this file through the cpp program, you'll get an error message:

% /lib/cpp < testfile

1 ""

1: undefined control

cpp complains that it does not recognize whatever followed "#" as a valid cpp command.*

You may see C-language style comments in imake configuration files. For example:

/*

* Concat - concatenates two strings.

*/

The "/**/" construction will work fine, but beware that the comment will be removed by

the cpp program and never seen again. The comment will not appear in any /mafce-generated

Makefiles. If you want your comments to appear in any Makefiles, you'll have to use an al-
ternate comment mechanism:

" One way to protect the make comment from cpp is to put a "null" C-style comment in

front of it:

/**/# All rights reserved.

cpp strips out the / * * / comments and passes the rest of the line to the Makefile un-
touched:

% /lib/cpp < testfile

1 -"

All rights reserved.

*Even worse, if the first string following the "#" is a valid cpp command (such as #if or #def ine), cpp will inter-
pret it and generate a useless Makefile.

Building the X Window System 219

The make comment now survives its pass through cpp.

Now that ANSI C preprocessors are now becoming common, this can no longer be relied

upon, as ANSI C will try to interpret even though it has a C comment in front of it.

In R5, a cpp-proof comment prefix XCOMM is provided as a convenience. If you put the

string XCOMM in front of comment text, imake will do the right thing with it. For example:

XCOMM All rights reserved.

Will generate into the resulting Makefile:

All rights reserved.

8.7.3.2 Multi-line Macros (@@)

Some of the cpp macros used in the imake configuration files are quite complex and may ex-
pand into multi-line make commands later on. The default behavior of cpp is to collapse ev-
erything within a macro definition (anything following a #def ine) into a single line. To

protect the macro's line breaks from cpp, the "@@" syntax is used. The imake program will

replace all of the "@@" sequences with the newline character, preserving the structure of the

make command.

For example, the following multi-line macro appears in an imake configuration file:

#ifndef InstallNonExec

ttdefine InstallNonExec(file,dest) @@\

install:: file @@\

$(INSTALL) -C $(INSTDATFLAGS) file $(DESTDIR)dest

#endif /* InstallNonExec */

If this is used in an Imakefile:

InstallNonExec (system. twmrc, $ (TWMDIR))

It would be expanded later on into:

install:: system.twmrc

$(INSTALL) -c $(INSTDATFLAGS) system.twmrc $(DESTDIR)$(TWMDIR)

This is a valid multi-line make command.

If the "@@" marker was not used, it would be squashed into a single line by cpp:

install:: system.twmrc $(INSTALL) -c $(INSTDATFLAGS) system.twmrc $(DESTD

IR)$(TWMDIR)

This will cause strange errors from make:

% make install

make: Warning: Infinite loop: Target vinstall' depends on itself

make: Fatal error: Don't know how to make target "-c1

220 X Window System Administrator's Guide

8.7.3.3 Concatenating Macros

A common trick is to use the null comments "/**/" to concatenate macros or strings within

cpp. For example, if you had a file called testfile containing the following:

#define MYTOPDIR /usr/

#define XLIBDIR lib/Xll/

#define FONTDIR fonts/

You may want to concatenate these strings into one. If you try concatenating them directly,

such as:

MYTOPDIRXLIBDIRFONTDIR

cpp will respond by trying to expand the entire string. Since the string is not defined, it will

return the string itself, which is hardly what you want.

% cpp testfile

1 "testfile"

MYTOPDIRXLIBDIRFONTDIR

You can get around this with some versions of cpp by separating each component with null

comments. The comments prevent the components from being interpreted as a single string.

For example:

MYTOPDIR/* */XLIBDIR/* */FONTDIR

With the comments inserted, passing testfile through some versions of cpp yields:

% cpp testfile

1 "testfile"

/usr/lib/Xll/fonts/

This works great. But the problem with this trick is that ANSI C preprocessors have a differ-
ent and incompatible syntax for concatenation. Under an ANSI C preprocessor, the preceding

example fails to concatenate. The null comments are expanded into white space, which is di-
sastrous in this example:

% acpp testfile

1 "testfile"

/usr/ lib/Xll/ fonts/

ANSI C uses the "##" sequence for concatenation. For example:

MYTOPDIR# #XLIBDIR# #FONTDIR

Running this through an ANSI C preprocessor yields the correct value:

% acpp testfile

1 "testfile"

/usr/lib/Xll/fonts/

Building the X Window System 221

To concatenate macros within imake, imake provides the Concat and ConcatS macros which

do the right thing depending on what type of preprocessor you use. In this case, since we

have 3 arguments, we use ConcatS:

Concat3 (MYTOPDIR,XLIBDIR,FONTDIR)

8.7.3.4 Dealing with Tabs

In some versions of cpp, tabs are converted to space characters. The make program, mean-
while, requires tab characters to precede the commands in a make rule. So if a version of cpp

that converts tabs to spaces is used on a Makefile, make will bomb out with an error such as:

% make

make: Fatal error in reader: Makefile, line nn: Unexpected end of line seen

The imake program therefore tries to intelligently place the tab characters back in the

Makefile after being processed by cpp. If the version of cpp that comes with your system is

unsuitable for building the X distribution, the contrib area provides a replacement in con-

triblutillcpp.

8.7.4 imake Configuration Files

imake uses a series of configuration files when creating Makefiles for a particular package.

First, it uses a series of system-wide imake configuration files, found in the directory

lusrlliblXlllconfig. In addition, imake looks for a file named Imakefile in the directory it is

being invoked in, which defines parameters specific to that particular package.

This discussion will be much easier to follow if you have these files online and available to

browse through while reading. If you have the X distribution source code available, look in

the directory mitlconfig. If the distribution is already installed, look in the directory

lusrlliblXlllconfig.

This looks very complex-it is. However, you should be relieved to know that any changes

you make are confined to one file (unless you need to do something more complex, such as

add support for a new platform).

The filenames indicate the function of the file in a general manner. Files ending in .tmpl are

template files. They are like templates in that they provide a structure that is "generic" and

later customized to a specific result. Files ending in .c/are configuration files, used to config-
ure imake for a specific platform. Files ending in .rules contain make rules that describe how

make should build programs and what files depend on the others.

One convention to keep in mind while browsing the files is that cpp macros are mixed-case

(for example, InstallAppDefaults), and make flags are uppercase (for example,

INSTKMEMFLAGS).

222 X Window System Administrator's Guide

8.7.4.1 A Quick Tour of Files Used by imake

1 I Imake. tmpl: imake

global constants

header blocks

#include <platform.tf>

#include <site.def>

system description and

build definitions P H ./Makefile J

#include <Project.tmpl>

#include <lmake.rules>

#include "./(makefile"

extra make rules

Figure 8-4. Files processed by imake

The following is a vastly simplified outline of the files used by imake, in the order in which

they are used. Figure 8-4 demonstrates the use of these files.

" Imake.tmpl is fed to cpp and it uses the ttinclude mechanism to incorporate the other files.

It provides default values and a template for the generated Makefile.

" platform.cf overrides the default values and configures imake for a specific platform. (An

example of a platform.cf file might be sun.cfor ibm.cf.)

" site.def provides another place to override default values, but on a site-wide basis, which

could include more than one platform.

" Project.tmpl is where imake is configured for building XI1, the "project" in this case.

Other imake files should be generic, isolating the XI1-specific information to this file.

" Imake.rules contains generic rules for generating components of any build, such as li-
braries and executables.

" /makefile is the per-directory file that controls the operation of imake in the current direc-
tory.

There are certain platforms that require lots of platform-specific rules (they are usually for

building shared libraries). To isolate these cases, there are separate .rules and .tmpl files that

are included when a build is performed for the platform. For example, the files ibmLib.rules

and ibmLib.tmpl are used by imake on the ibm platform.

Building the X Window System 223

8.7.5 Using imake to Build X11

You rarely ever need to run the imake program directly. It is usually run by the Makefile at

the top level of the XI1 source tree when the make command is used.

The usual thing to do when building X is to type:

% make World

If this fails with an error message such as:

*** Error code 1

make: Fatal error: Command failed for target "subdirMakeflies'

Current working directory /eap/XHR5/src/sun4_412

*** Error code 1

make: Fatal error: Command failed for target "Makefiles'

Current working directory /eap/XHR5/src/sun4_412

*** Error code 1

make: Fatal error: Command failed for target "World'

Current working directory /eap/XHR5/src/sun4_412

*** Error code 1

make: Fatal error: Command failed for target "World'

You will have to figure out what went wrong and correct it. After you have done this, you

may be able to save some time by using a target other than World. A target is a specific task

within a Makefile. The top-level Makefile has several targets:

Makefiles This target creates a Makefile in any subdirectory that contains an

Imakefile. You should run this anytime you change a configuration option.

clean This target "cleans" or removes all the object files and libraries from the

source tree. You should use this if you fail miserably and want to start over

again.

includes This target creates symbolic links from the current directory to where the

include files are stored in the source tree. It should be used before the

depend target.

depend This target generates dependency information for make. A program called

makedepend is invoked, which searches all the source files for ^include

statements and builds a list that is appended to the Makefile. For example:

Tekproc.o: /usr/include/fcntl.h /usr/include/sys/fcntlcom.h

Tekproc.o: /usr/include/sys/stat.h /usr/include/unistd.h

Tekproc.o: /usr/include/sys/time.h /usr/include/sys/time.h

Tekproc.o: ../.././Xll/Xatom.h ../.././Xll/cursorfont.h

Tekproc.o: ../.././Xll/StringDefs.h ../.././Xll/Shell.h

Tekproc.o: ../.././Xll/Xmu/CharSet.h /usr/include/stdio.h

This should be run every time a Makefile is rebuilt.

World This is the primary target for building the distribution. It runs make with

the following targets: Makefiles, clean, include, depend and then with just

with the -k option. (Keep in mind that -k tells make to keep running even

224 X Window System Administrator's Guide

if there are errors in the build process.) You probably only need to run this

the first time you try to build on a new platform, as it will delete any previ-
ous effort to build the distribution.

Everything This is similar to World, but it will only rebuild files that are out of date

according the to the make rules. You should use this if you change any of

the configuration files, as it will rebuild all the Makefiles. This is also

smart to run after applying a patch, as the patch may modify something in

the configuration area.

install This target installs binaries, libraries, include files, and support files. The

target will be affected by flags such as InstallAppDefFiles, In-

stallFSConf ig, and InstallXdmConf ig.

install .man This target installs the manual pages. Flags such as ExpandManNames

and InstallLibManPages will affect this target.

As you can see in the examples below, targets end in a double colon (::). By using the double

colon, make allows the target to appear more than once in the Makefile. For example, there

are two install targets in the following Makefile:

install:: $(PROGNAME).ad

@if [-d $(DESTDIR)$(XAPPLOADDIR)]; then set +x; \

else (set -x; $(MKDIRHIER) $(DESTDIR)$(XAPPLOADDIR)); fi

install::

@case '${MFLAGS}' in *[ik]*) set +e;; esac; \

for i in $(SUBDIRS) ;\

do \

Both will be executed when a make install is performed.

A handy option to make is the -n option. The -n option shows all of the expected make output

without actually executing the commands, so you can see where files are going to be installed

before you actually install them:

% make -n install

install -c xrn /usr/bin/Xll

install -c -m 0444 XRn.ad /usr/lib/Xll/app-defaults/XRn

echo "install in . done"

The -n option can avoid unpleasant surprises, such as accidentally overwriting something

previously installed.

If you manage to destroy the top level Makefile (mitI Make file), you can recover:

% cp Makefile.ini Makefile

This gives you a Makefile that can "bootstrap" the build from this point on.

Building the X Window System 225

8.8 Porting Hints

Here are some techniques that may be helpful when trying to build the distribution on plat-
forms that are slightly different from the ones described in the MIT release notes.

8.8.1 Undefined Symbols or Functions

You will occasionally get errors when compiling or linking X programs. This is more likely

to happen on platforms that are not listed in the release notes, but there will be times when

errors occur on the supported platforms. This is especially likely to happen if your platform is

slightly newer or older than the one described in the release notes; it is not unusual for ven-
dors to change the location of header files between operating system releases, or to delete

support for old devices in new releases. For example, the file pmioctl.h was in the directory

Iusrlincludelmachine! in Ultrix 3.1, but moved to Iusrlinclude!ioltcl in Ultrix 4.0. The fix is

often trivial, though, so don't give up in despair.

8.8.1.1 Missing Header Files

If the compiler dies with an "undefined symbol" or "no declaration" error when compiling C

source code, try searching the system header files for the missing symbol:

% find /usr/include -type -f -exec grep symbol /dev/null '{}' ';'

... any matches will appear here ...

(We grep through /dev/null to trick grep into reporting the name of the file that contained the

symbol.)

If you find the symbol in a new location, edit the #include line to reflect the new location.

8.8.1.2 Missing Function Definitions

If the loader dies with an "undefined symbol" error when linking a binary:

Id: Undefined symbol

_XtUnmanageChiId

_XtOpenDi splay

_XtCreateApplicationContext

_XtDispatchEvent

_XtParent

_XtToolkitInitialize

You can make an informed guess that the missing library is the X Toolkit (called with

'-iXt"), as the function names start with "Xt". If the corresponding library is not obvious,

try searching the system libraries for the symbol. The nm program can be used to list all the

symbols present in a library or object file. The output of nm is very system-specific, but under

SunOS it might produce something like the following:

226 X Window System Administrator's Guide

% nm /usr/lib/libc.a

ftime.o:

U .div

00000000 T _ftime

U _gettimeofday

nice.o:

U _errno

U _getpriority

00000000 T _nice

The output displays all symbols that are used in the library, with a "U" if the symbol is only

referenced, and a "T" if the symbol is defined.

To quickly find the library containing the symbol, automate the search process. For example,

if the loader complained that the symbol "dlopen" is undefined, you could search all li-
braries in iusrllib with the following csh script:

% foreach I (/usr/lib/lib*)

? echo $1

? nm $1 I grep dlopen

? end

As output, you'll get the names of the listed libraries with any matching lines in between:

/usr/lib/libcurses_p.a

/usr/lib/libdbm.a

/usr/lib/libdl.so.1.0

00000020 T _dlopen

/usr/lib/libfVVplot.a

/usr/lib/libg.a

/usr/lib/libkvm.a '

In some versions of nm, there may be options that simplify the search. The SunOS nm has the

-o option for printing the library name and the -g option for printing only "global" symbols:

% nm -og /usr/lib/lib* I grep dlopen

nm: /usr/lib/lib.b: bad format

/usr/lib/libdl.so.1.0:00000020 T _dlopen

nm: /usr/lib/libm.il: bad format

In this example the script has found the "dlopen" symbol defined in the library

lusrllibllibdl.so.1.0.

Once the new library is found, you can add it to the Imakefile for that directory, or you can

add it system-wide in the platform.cf file. If the function is needed for the entire build, it's

preferable to enter it into a system-wide file so that all future Makefiles generated by imake

or xmkmf will automatically have the library included.

Building the X Window System 227

8.8.2 Searching for Preprocessor Symbols

An important feature of cpp is that it can tell other programs what type of platform it is being

executed on. cpp provides pre-defined symbols indicating the platform, operating system,

byte order, processor type, and type of C compiler. Some of these symbols are shown in the

following table.

Table 8-1. cpp Symbols

Symbol Type Examples

Architecture mc68k, i386, i8086, iAPX286, spare

OS unix, DGUX, M_XENIX, UTS, ultrix, venix, xenix

Byte Order MIPSEB, MIPSEL

Type sun3, sun4, sun386, ns 16000, ns32000, mips

Compiler _POSIX_SOURCE, ANSI, __STDC__, _ANSI_C_SOURCE, _NO_PROTO

imake uses these symbols to automatically determine what type of platform it is being run

on.* So one of the first tasks of porting X to a new platform is to find a unique preprocessor

symbol so that imake can determine the type of platform. On some systems the

BOOTSTRAPCFLAGS flag will have to be used for this function, but it's worth checking first.

The following are hints about where to check:

1. The manual pages for the preprocessor and the compiler are the first places you should

check. Beware that the names of the compiler programs vary. For example, the C com-
piler on the IBM RS/6000 is called xlc. There may be several different versions of the

compiler available, each with its own behavior. It is not unusual to have an ANSI C and

"K&R" C compiler on the same system. There may be more than one version of cpp as

well-for example, IRIX has both cpp and acpp. Not surprisingly, some vendors do not

list all the predefined flags and you will have to hunt for them.

2. See if the compiler or preprocessor has a "verbose" flag, usually -v or -verbose. This flag

shows which flags are being passed to the preprocessor (where they are interpreted):

% cc -v -E foo.c > /dev/null

/lib/cpp -undef -Dunix -Dsun -Dsparc foo.c

From this, you can determine that the flags unix, sun, and spare are defined by the

preprocessor. The -E flag means "run the preprocessor only," and the output of the

preprocessor is discarded into /dev/null.

*Some systems have no unique preprocessor symbols, requiring you to tell imake the type of platform when it is first

invoked.

228 X Window System Administrator's Guide

3. If the previous methods fail, it may require a low-tech approach. In most cases, this

means the strings program. The strings program reports all printable strings in a binary

file:

% strings /lib/cpp

too many -I options, ignoring %s

cpp internal bug alert, readmit (argvO) , argvO=NULL

%s.init

unix

m68k

_SYSV_SOURCE

_BSD_SOURCE

_AUX_SOURCE

/usr/include

/usr/include

%s: %s

Experience would tell you that the strings clustered around unix are likely suspects for

preprocessor symbols. You can test them by running them through the preprocessor and

checking to see if they are defined. First, enter into a file the symbols you wish to test:

% cat > foo.c

unix

m68k

_SYSV_SOURCE

_BSD_SOURCE

_AUX_SOURCE

/usr/include

Then run the preprocessor on them:

% cc -E foo.c

1 "foo.c"

1

1

1

I

I

/usr/include

Any symbol that evaluated to "1" is being defined by the preprocessor. The "/usr/in-
clude" is unchanged, showing that it does not mean anything special to the compiler.

(The line starting with the "#" character is a line number inserted by the preprocessor

showing its position in the C source file.)

Beware that symbols may not be unique to a platform and BOOTSTRAPCFLAGS may have to

be specified after all. For example, both Sequent and Encore define ns32000 on their

machines. You would have to specify a unique symbol on the command line for the initial

make:

% make World BOOTSTRAPCFLAGS="-Dumax"

Building the X Window System 229

The symbols can be added to the file mitlconfiglimakemdep.h. Look at the top of the file for

directions on how to define new symbols:

Step 1: imake_ccflags

Define any special flags that will be needed to get imake.c to conpile.

These will be passed to the conpile along with the contents of the

make variable BOOTSTRAPCFLAGS.

i

Follow the steps described in the file to add information specific to the new platform.

8.9 Related Documentation

You should read the Release Notes before doing anything. The text version is mitlREL-

NOTES.TXT and the PostScript version is mitlRELNOTES.PS.

There are several documents that explain imake in more detail. They include:

" The imake manual page (millconfiglimake.man).

" "Configuration Management in the X Window System," by Jim Fulton. In the source dis-
tribution, you can find this in the file milldoclconfiglusenixwslpaper .ms.

" "The X User: Demystifying Imake," by Paul Davey, published in The X Resource, Issue

2, O'Reilly & Associates, Inc., Spring 1992.

" "Using Imake to Configure the X Window System," by Paul Dubois. Available via anon-
ymous/?;? fromftp.primate.wisc.edu in the directory pub/imake-stuff.

The flags used in the configuration process are listed in mitlconfigl'README.

Documentation for porting the X server is contained in the miti'doc/'Server and mit/hard-

copy/Server directories.

NFS administration is described in Managing NFS and NIS, by Hal Stern (O'Reilly & Asso-
ciates, 1991).

The make program is described in Managing Projects with make, by Andrew Oram and Steve

Talbott (O'Reilly & Associates, 1991).

"The X Administrator: Building XI Ir5 in Limited Disk Space," by Adrian Nye, published in

The X Resource, Issue 0, O'Reilly & Associates, Inc., Fall 1991.

230 X Window System Administrator's Guide

Useful Things to Know

This appendix covers "miscellaneous" topics that either didn't fit cleanly into

any other chapter, or fit into so many that we found ourselves repeating our-
selves all the time.

In This Appendix:

The comp.windows.x Newsgroup 233

How to ftp a File 234

Getting Files Using ftpmail 235

BITFTP 237

The xstuff Mail Archive Server 237

Unpacking Files 238

Making a Filesystem Available via NFS 239

How to Add a Host 239

Adding a Host to /etc/hosts 239

Adding a Host Using NIS 240

Adding a Host Using DNS 240

Adding an Ethernet Address 242

Printing Documentation in the MIT X Distribution 242

Converting a Number Into Hexadecimal and Back 243

Configuring a Sun as an X terminal 243

Using More than One Frame Buffer Under SunOS 244

A

Useful Things to Know

As we wrote this book, we found that there were a lot of odds-and-ends that didn't fit into

any chapters but were too important to leave out. This appendix was devised as a "catch-all"

for miscellaneous information.

A.1 The comp.windows.x Newsgroup

comp.windows.x is a Usenet newsgroup dedicated to the X Window System. You can use it

reach thousands of X programmers and users. You would normally use a newsreader such as

rn, v/7, AT/?, or readnews to read the group. If you do not have Usenet access at your site, you

can still reach the newsgroup through e-mail. To request that you be added to the list, send a

polite message to xpert-request@expo.lcs.mit.edu. To send mail to the entire list, use

xpert@expo.lcs.mit.edu.

In addition to comp.windows.x, there are also newsgroups for comp.windows.x.motif,

comp.windows.x.intrinsics, comp.windows.x.apps, and comp.windows.openlook. Each of

these newsgroups maintains a Frequently Asked Questions list, or FAQ, which contain a

wealth of information on X. comp.windows.x.announce is a newsgroup dedicated to

announcements about X, for example, announcements of new patches being released.

For more information on Usenet, see Managing UUCP and Usenet by Tim O'Reilly and

Grace Todino (O'Reilly & Associates, Inc., 1992). Using UUCP and Usenet by Grace Todino

and Dale Dougherty (O'Reilly & Associates, Inc., 1991), and The Whole Internet User's

Guide & Catalog by Ed Krol (O'Reilly & Associates, Inc.. 1992).

Useful Things to Know 233

A.2 How to ftp a File

If you've never anonymous ftp'd a file before, a good file to start with is the comp. windows.x

FAQ from export.lcs.mit.edu.

The first thing you do is connect to the site.

lmui@opal% ftp export.lcs.mit.edu

Connected to export.lcs.mit.edu

220 export.lcs.mit.edu FTP server (NEWS-OS Release 4.1C) ready.

Name (export.lcs.mit.edu:lmui):

By default, \hzftpd assumes that you have an account on the remote machine, so if you press

RETURN it will try to log you in under that name. Since you probably don't have an account

on this machine, you don't want to press RETURN, but instead type in the name anonymous.

Name (export.Ics.mit.edurlmui) : anonymous

331 Guest login ok, send ident as password.

Password:

For your password, type in your e-mail address. (If you don't enter your e-mail address it

may still let you in, but it's "good manners" to identify yourself properly when using some-
one else's machine.) Don't type your real password here!!!

Password: Imui&ora. com

230 Guest login ok, access restrictions apply.

ftp>

You are now logged in. (Note that although I typed my e-mail address at the Password

prompt, it wouldn't actually be shown).

From here, there is a small set of commands you can run. Do a help at the f tp> prompt to

see a list of commands. For browsing directories, use the commands cd and Is. The dir com-
mand is also commonly available for long listings.

In this example, we want the FAQ from the contrib directory. So first cd to that directory and

then do a dir to make sure that the file is there:

ftp> cd contrib

250 CWD command successful.

ftp> dir *FAQ*

200 PORT command successful.

150 Opening data connection for /bin/Is (ascii mode) (0 bytes).

-rw-r-r- 1 ftp ftp 213297 Aug 3 12:09 FAQ

-rw-r-r- 1 ftp ftp 35742 Aug 5 17:10 FAQ-Xt

-rw-r-r-- 1 ftp ftp 16985 Aug 5 17:10 FAQ-Xt.Z

-rw-r-r- 1 ftp ftp 97671 Aug 3 12:09 FAQ.Z

-rw-r-r- 1 ftp ftp 169388 Jul 20 05:46 Motif-FAQ

226 Transfer complete.

remote: *FAQ*

311 bytes received in 0.062 seconds (4.9 Kbytes/s)

ftp>

(This ftp server understood my asterisks as wildcards, but not all do.) You probably want to

get the compressed FAQ since it will transfer much faster. Turn on "binary" mode for binary

transfer and use the get command to get the file:

234 X Window System Administrator's Guide

ftp> binary

200 Type set to I.

ftp> get FAQ.Z

200 PORT conmand successful.

150 Opening BINARY mode data connection for FAQ.Z (84245 bytes).

226 Transfer complete.

local: FAQ.Z remote: FAQ.Z

84730 bytes received in 16.87 seconds (4.91 Kbytes/s)

ftp>

The file should now be in whatever directory you ran ftp from. Note that if you had another

file in this director}' called FAQ.Z, it would be overwritten even if you had the csh noclobber

variable set.

For getting multiple files, use the mget command. (Use the prompt command first to toggle

being asked to confirm each file transfer.)

If you are done with your ftp session, use the quit command to exit ftp.

ftp> quit

221 Goodbye.

lmui@opal%

A.2.1 Getting Files Using ftpmail

ftpmail is a mail server available to anyone who can send and receive electronic mail to and

from Internet sites. This includes most workstations that have an e-mail connection to the

outside world, and CompuServe users. You do not need to be directly on the Internet to use

ftpmail.

Send mail to the ftpmail server, ftpmail@decwrl.dec.com. There are a set of commands that

the server understands; to get a complete help file, send a message with no subject and the

single word "help" in the body.

The following is an example mail session that will get you the comp.windows.* FAQ.

lmui@ruby 145% mail ftpmail@decwrl.dec.com

Subj ect:

reply lmui@ora.com

connect export.lcs.mit.edu

chdir /contrib

binary

uuencode

get FAQ.Z

quit

lmui@ruby 146%

The reply line is specified to ensure that the correct return address is used. Without this line,

ftpmail will mail the file to whatever return address is in your mail header, which may be

wrong.

The connect line is required to tell ftpmail what host to connect to. In this case, we set it to

export.lcs.mit.edu. By default, ftpmail logs in as anonymous; you could actually supply a

user name and password here if you had an account on the machine in question.

Useful Things to Know 235

From here on, we ask to chdir to the Icontrib directory, set up binary transfer, uuencode file

transfers, get the FAQ.Z file, and quit. A signature at the end of the message is acceptable as

long as it appears after "quit." The ftpmail daemon quickly replies with a message confirm-
ing that your request is in the queue, and telling you how many requests are in front of yours

and how your message will be executed.

When the job finally goes through, all retrieved files will be split into 60KB chunks and

mailed to you. In addition, you'll receive a message transcribing the activity.

lmui@ruby 120% mail

Mail version SMI 4.0 Wed Oct 23 10:38:28 PDT 1991 Type ? for help.

"/usr/spool/mail/lmui" : 10 messages

6 nobody@Pa.dec.com Wed Aug 26 21:24 822/50654 part 001 of FAQ.Z (/contr

7 nobody@Pa.dec.com Wed Aug 26 21:24 821/50633 part 002 of FAQ.Z (/contr

8 nobody@Pa.dec.com Wed Aug 26 21:24 573/35113 part 003 of FAQ.Z (/contr

9 nobody@Pa.dec.com Wed Aug 26 21:25 43/1466 results of ftpmail reques

&

Save the files together and exit mail:

& save 678 FAQfile

"FAQfile" [New file] 2216/136400

& q

Held 7 messages in /usr/spool/mail/lmui

Now, remove the mail headers. The file should start with the word "begin," and end with

the word "end", with lines of gibberish in between:

begin 644 ftpmail. uu

M' YV03LK<F7-&SILZ< .;H^#' F3lLX+NZD<4/FS4 V7>%BX$3C ' 11@W<~Z4D3- '

MP90Z8M24&4-G8<. '$2=60(@'A! $Y9>+4*>.&#IL\ ((+, 65. &# (@H./V?02?,&

5^PT2=0$GV"-D!%VD&B">Q(1@)G@2

end

Next, uudecode the file as shown in Section A.4.

lmui@ruby 125% uudecode FAQfile

uudecode creates a file called ftpmail. uu with permissions 644:

litiui@ruby 126% Is -1 ftp*

-rw-r- r-- 1 Imui 97671 Aug 27 10:20 ftpmail. uu

Since we requested a compressed file, we need to uncompress it before we can continue.

Rename ftpmail. uu to FAQ.Z and uncompress it:

lmui@ruby 141% mv ftpmail.uu FAQ.Z

lmui@ruby 142% uncompress FAQ.Z

lmii@ruby 143% Is FAQ

FAQ

Now browse through the FAQ file at leisure.

236 X Window System Administrator's Guide

A.2.2 BITFTP

BITFTP is a mail server for BITNET users. Send it electronic mail messages requesting files,

and it sends you back the files by electronic mail. BITFTP currently serves only users who

send it mail from nodes that are directly on BITNET. BITFTP is a public service of Princeton

University.

To use BITFTP, send mail containing your ftp commands to BITFTP@PUCC. For a complete

help file, send HELP as the message body. The following is the message body you should

send to BITFTP:

FTP export.Ics.mit.edu NETDATA

USER anonymous

PASS include here your Internet email address, NOT your BITNET address

CD /contrib

BINARY

GET FAQ.Z

QUIT

Questions about BITFTP can be directed to MAINT@PUCC on BITNET.

A.3 The xstuff Mail Archive Server

If you cannot use ftp to get to a site, there may be a mail archive server that can help you. A

mail archive server is program that accepts commands via e-mail. It can be used to send you

files that it has stored in its archive, or just to tell you what it has available.

MIT runs a mail archive server called xstuff that contains all the patches for MIT R5 and var-
ious other files. The first thing you should do is send mail to xstujf@expo.lcs.mit.edu and type

"help" in the subject line. It will respond (after a while) with a full description of how to use

the program:

Subject: How to use the Xstuff server

From: Xstuff service <xstuff@expo.lcs.mit.edu>

In-Reply-To: message from eap@ora.com (eric pearce)

To: eap@ora.com (eric pearce)

Status: R

This message comes to you from the xstuff server, xstuff@expo.lcs.mit.edu.

It received a message from you asking for help.

The xstuff server is a mail-response program. That means that you mail

it a request, and it mails back the response.

The xstuff server is a very dumb program. It does not have much error

checking. If you don't send it the commands that it understands,

it will just answer "I don't understand you".

Useful Things to Know 237

As an example, if you sent mail with the subject line "send fixes 1", it will respond with

"fix-1":

From: Xstuff service <xstuff@expo.lcs.mit.edu>

Subject: fixes/1

In-Reply-To: Request from eap@ora.com (eric pearce) dated Tue Aug 25

13:00:01 EDT 1992

To: eap@ora.com (eric pearce)

Release 5 Public Patch #1

MIT X Consortium

This patch comes in two parts: this file, and the file "sunGX.uu".

The mail message can then be applied to the patch program to patch the X11 source distribu-
tion. See Section 8.2.4 for a description of applying XI1 patches.

Try using the subject "index" to get a listing of available files.

A.4 Unpacking Files

The extension on the end of the file usually indicates what programs should be used for

unpacking a file.

For .Z files:

% uncompress filename.Z

For .tar.Z files:

% zcat filename.tar.Z I tar xpvf -

For files that look like this (might have .uu extension):

begin 444 mit/server/ddx/sun/sunGX.o.dist.Z

M'YVO 08$. 0!5T!OF@*@@ OD$#8!@RI(H(85.XWX!PW<"%!5X!D! J, 0

Run uudecode:

% uudecode filename

This will create the file mill server I ddxIsunlsunGX.o.dist.Z.

238 X Window System Administrator's Guide

A.5 Making a Filesystem Available via NFS

For a host to be able to mount a remote filesystem, it will have to have an entry in the

/etc/exports file on the remote system. The format of this file has changed as NFS has gained

new functionality. The "old" style of entry in I etc/exports is simply the name of the filesys-
tem and list of hosts that can mount it:

/usr/lib/Xll/fonts ncdl ncd2 ncd3 ncd4

The file is consulted every time a request is made to mount a filesystem.

The "new" style of entry has a different syntax with many more options. For example, the

above example would be written as:

/usr/lib/Xll/fonts -access=ncdl:ncd2:ncd3:ncd4

Under "newer" NFS, you have to execute the exportfs command after the /etc/exports file is

edited in order for the changes to take effect:

% exportfs -v /usr/lib/Xll/fonts

exported /usr/lib/Xll/fonts

To remove access to a filesystem, edit the file and run the exportfs command with the -u

option:

% exportfs -v -u /usr/lib/Xll/fonts

unexported /usr/lib/Xll/fonts

For more information, see Managing NFS and NIS by Hal Stern (O'Reilly & Associates.

1991).

A.6 How to Add a Host

A common administration task is to add a new host name to the /etc/hosts file, the Network

Information Service (NIS), or the Domain Name Service (DNS). The procedure for each of

these is described here, but they will not be adequate for more complicated configurations.

NIS is described in detail in Managing NIS and NFS by Hal Stern (O'Reilly & Associates,

1991). DNS is described in DNS and BIND by Paul Albitz and Cricket Liu (O'Reilly &

Associates, 1992). All these examples assume a pre-existing, working configuration.

Adding a Host to /etc/hosts

If you are not using NIS or DNS, the new host can be added directly to the file /etc/hosts,

with the IP address followed by the hostname and any aliases that the host is going to be

known by:

140.186.65.13 ncd4.ora.com ncd4

Useful Things to Know 239

A.6.2 Adding a Host Using NIS

If you are using NIS (previously known as Yellow Pages), you first have to determine which

host is the NIS master. This is usually the hostname returned by the ypwhich command:

% ypwhich

ruby

(This not always the case, as NIS slave servers will also respond.)

Once you have located the master, add the new host entry to its /etc/hosts file as shown

above, and remake the NIS map:

vi /etc/hosts

add hostname

cd /var/yp

make

updated hosts

pushed hosts

You should test the map to make sure it has the new entry (in some cases, it may take a while

to propagate the new map to all hosts within an NIS domain):

% ypmatch ruby hosts

140.186.65.13 ncd4.ora.com ncd4

If there is a problem, you will get the error:

Can't match key ncd4 in map hosts.byname. Reason: no such key in map.

A.6.3 Adding a Host Using DNS

For networks using DNS, you need to edit the configuration files for the name daemon

named, named looks at a boot file at startup, usually /'etc*'named..boot. On our name server,

this file contains the lines:

directory /var/named

; type domain source host/file backup file

primary ora.com ora.zone

primary 65.186.140.in-addr.arpa ora.revzone

The /var/named directory is where the configuration files live. The file /var/named/ora.zone

is the primary configuration file for the ora.com domain-this is the file that tells named how

to convert hostnames to the proper IP address. The file Ivarlnamed/ora.revzone contains the

reverse entries-i.e., it tells named how to convert IP addresses to the proper hostnames

within ora.com. Note that your site will undoubtedly use different pathnames.

To add ncd4 as address 140.186.65.13, we enter into /var/named/ora.zone:

ncd4 IN A 140.186.65.13

IN HINFO NCD-16 2.2.0

(The HINFO line contains host information-in this case, the version of the X server.)

240 X Window System Administrator's Guide

Then enter into Ivarlnamedlora.revzone:

13 IN PTR ncd4.ora.com.

Using the PTR keyword, this means that host 13 in the ora.com domain (140.186.65)

resolves to hostname ncd4.ora.com.

Next, send a SIGHUP to the named daemon. This will force named to reread /etc/ named. boot

and reload the database. Most systems maintain a file in /etc called named.pid that contains

the process ID of named.

kill -HUP xcat /etc /named.

If your system doesn't maintain the process ID of named, it's easy enough to run ps and learn

it yourself.

ps agx I grep named

88 ? S 24:48 in. named

5239 q6 S 0:00 grep named

kill -HUP 88

Test the new entry with nslookup. To verify the hostname to IP address mapping:

% nslookup ncd4

Server : localhost

Address: 127.0.0.1

Name : ncd4 . ora . com

Address: 140.186.65.13

If there is a problem, it will fail with:

*** localhost can't find ncd4: Non-existent domain

To verify the IP address to hostname mapping, set the query type to "pointer", reverse the

address and append the in-addr.arpa domain:

% nslookup -q=ptr 13 .65 . 186. 140 .in-addr.arpa

Server : localhost

Address : 127 . 0 . 0 . 1

141. 65. 186. 140. in-addr.arpa name = ncd4.ora.com

If there is a problem, it will fail with:

*** localhost can't find 13 .65. 186. 140. in-addr.arpa: Non-existent domain

Useful Things to Know 241

A.7 Adding an Ethernet Address

When you want to boot an X terminal or diskless workstation off a server machine, you will

usually have to add its Ethernet address to the ethers database. Add the entry to the

/etc/ethers file:

00:00:a7:10:ll:bf ncd4

The letters within the hex number should be in lowercase.

If you run NIS, you will also have to remake the ethers map on the NIS master:

cd /var/yp

make

updated ethers

pushed hosts

A.8 Printing Documentation in the MIT X Distribution

If you have a PostScript printer, you can print out the MIT documentation in mitlhardcopyl.

Any file with the .PS extension should print on BSD-based UNIX machines with:

% Ipr filename.PS

or (on System-V based machines):

$ lp filename.PS

Any filename with a .Z extension is compressed. You should uncompress it before trying to

print it:

% uncompress filename.PS.Z

% Ipr filename.PS

or:

% zcat filename.PS.Z I Ipr

If you do not have PostScript or if you just want to look at the document on your screen, you

should use the files in the mitldocl directory.

If the file has .ms extension, this indicates that it uses the ms macro package for nroff and

troffi

% nroff -ms mit/doc/Xmu/Xmu.ms I more

If the file has a .man extension, it is meant to be installed so it can be used with the man com-

mand, but you can view it independently with:

% nroff -man mit/clients/xterm/xterm.man I more

If the file has a .tbl extension, run it through the tbl preprocessor and then through col after

passing it through nroff:

% tbl mit/doc/Server/gdz.tbl.ms I nroff -ms I col I more

242 X Window System Administrator's Guide

A.9 Converting a Number Into Hexadecimal and Back

Sometimes you will have to convert a number from decimal to hex. The be program is handy

for this. Make sure all letters in the hex numbers are in uppercase.

To convert the IP address 140.186.65.13 into hex, run be:

% be

Set the output base to 16 (hex):

obase=16

Type in the numbers to be converted, separated by a semi-colon (;):

140;186;65;13

8C

BA

41

D

Type ""D" to exit be.

To use the hexadecimal value as a filename (for example, for an X terminal's remote confi-
guration file), it would be:

8CBA410D

To convert from hex to decimal, use the same procedure, but set the input base to 16 (the out-
put will default to base 10):

% be

ibase=16

8C;BA;41;D

140

186

65

13

A.10 Configuring a Sun as an X terminal

One way to breath new life into your old Sun3 hardware is to reconfigure them as X termi-
nals. A used Sun 3/50 is cheaper than most X terminals, and you get a 19" display, a nice

keyboard, an optical mouse and the ability to run the latest R5 server.

The usual way to do this is to strip down the kernel and run just the X server. A more power-
ful host on the network can run xdm and manage the 3/50 as if it were an X terminal.

The procedure for the X terminal conversion has been packaged and is available via anony-
mous ftp from several sites, the main one being ftp.ctr.columbia.edu. Check the directory

IpubiXkernel for the latest version.

Useful Things to Know 243

There is no reason why you could not do this with other hardware. The 3/50 is singled out

only because it is considered to be underpowered by today's standards.

A.11 Using More than One Frame Buffer Under SunOS

The MIT X server for the Sun platform can support more than one frame buffer at a time. It is

possible to have two separate monitors on the same host or to use separate frame buffers

within the same monitor. The cgfour frame buffer has an 8 bit color device and 1 bit mono-
chrome device. The Xsun X server will not use both unless you modify the default worksta-
tion configuration.

1. Become root and change directories to Idev:

% su

cd /dev

2. Remove the default monochrome device:

rm /dev/bwtwoO

3. Create the new monochrome device:

MAKEDEV bwtwol

4. Make sure the kernel contains the bwtwol device and it is not commented-out. For

example, on a Sun 3/60 with a kernel named "HARRY":

grep bwtwol /usr/sys/sun3/conf/HARRY

device bwtwol at otmem 7 csr Oxff300000 priority 4# 3/60

device bwtwol at otmem 7 csr Oxff400000# 3/60

If the device is missing, add it to the kernel config file and build a new kernel.

If this procedure works, you should be able to toggle back and forth between the frame buf-
fers just by moving the mouse pointer to the edge of the display.

Some systems can support more than one physical monitor. The Sun color IPC comes with a

monochrome frame buffer built onto the CPU board and a cgthree card in one of the Sbus

slots. If you connect a monochrome monitor to a CPU and a color monitor to the cgthree

device, you can run the X server on both. Moving the mouse pointer to edge of the screen

will move it onto the adjacent monitor.

244 x Window System Administrator's Guide

B

Compiling Public Domain Software

Public domain software for X is available all over the Internet, but you may

not think you have the right programming skills, or no one ever explicitly told

you what to do. This appendix is a tutorial on how to find and compile public

domain software.

In This Appendix:

Finding the Sources 247

Using an Archie Server 248

Get the FAQ 250

The Usual Suspects 250

An Example: xarchie 251

Getting the xarchie Sources 251

Untarring the Sources 252

Editing the Imakefile 254

Compiling the Source 255

Using Patches 259

Another Example: xkeycaps 264

Related Documentation . .. 268

B

Compiling Public Domain Software

You've probably seen this sort of talk over the newsgroups: "Does anyone know where I can

get xtetris?" "Is there an ftp site for xpostit?" You know that one of the best things about X is

that there's all this great public domain software available, but you're not sure how to go

about getting it. Either you don't know how to ftp the sources, or you don't know how to use

imake or make, or you aren't much of a C programmer so the whole idea of dealing with the

source just scares you.

Well, the good news is that for most source distributions, you don't need to know very much

about make or imake, and you don't really need to know much about programming in

C-mostly all you need to know is how to follow directions. This appendix gives you some

idea of how to compile sources without knowing a lot about what you're doing. If you've

been installing X from source or if you're a competent (and confident) C programmer in your

own right, then you already know all the material in this appendix and it isn't for you. But if

you're one of these people who's Scared of the Source, then this appendix may help.

Don't expect to learn much about make or imake in this appendix, just enough to get through

some of the simpler builds. If you're interested only in how to compile the XI1 sources

themselves, see Chapter 8. But if you already have XI1 installed and you just want to install

new software, read on.

B.1 Finding the Sources

There are a lot of ways to find out about a program. You might see a reference to it on a

newsgroup, or you might see it running on someone else's machine, or you might have read

about it in this book. Let's suppose you saw a posting on the net about the xrolodex client:

From: hrp@world.std.com

Newsgroups: comp. windows. x. apps

Subj ect: xrolodex

Hey,

Has anyone seen the new xrolodex app? How is it related to

xrolo?

-Ross

Compiling Public Domain Software 247

When you read this message, you are intrigued by the possibilities of a rolodex program, and

you wonder whether it's available at no cost.

B.1.1 Using an Archie Server

The first thing to try is to use an Archie server. Archie is a robust database of anonymous ftp

sites and their contents. If you have Internet access, the most direct way to gain access to

archie is to telnet directly to one of the Archie servers. Current Archie servers are listed in

Table B-l.

Table 6-7. Archie Servers as of January 3, 1992

Site IP Address Location

archie. mcgill. ca 132.206.2.3 McGill University, Montreal, Canada

archie.sura.net 128.167.254.179 SURAnet, College Park, Maryland, USA

archie.ans.net 147.225.1.2 ANS, New York, USA

archie.unl.edu 129.93.1.14 Lincoln, Nebraska, USA

arch ie .rutgers. edu 128.6.18.15 Piscataway, New Jersey, USA

archie.funet.fi 128.214.6.100 FUnet, Helsinki, Finland

archie.au 139.130.4.6 Deakin University, Geelong, Australia

archie.doc.ic.ac.uk 146.169.11.3 Imperial College, London, UK

cs.huji.ac.il 132.65.6.5 Hebrew University, Jerusalem, Israel

In our case, since Archie was written by the Archive Group at McGill University, it seemed

fitting to use the one at McGill. In reality, you should use the server closest to you, since the

McGill machine is generally overloaded with requests.

You should generally use a front-end Archie client program to access an Archie server, such

as archie or xarchie (we show how to build xarchie later in this chapter, in Section B.2). But

you can also connect to Archie directly using telnet.

linui@opal% telnet archie.mcgill.ca

Trying 132.206.2.3 ...

Connected to quiche.cs.McGill.CA.

Escape character is 1A] '.

SunOS UNIX (quiche.CS.McGill.CA)

login:

Log on as archie. (There is no password.)

login: archie

ARCHIE: The McGill School of Conputer Science Archive Server [2 Apr 1992]

Use the 'servers' command to list all archie servers.

A limit of 10 concurrent telnet sessions has been put on archie.mcgill.ca.

248 The X Window System Administrator's Guide

Alternative access through the standalone clients available via

anonymous ftp to this machine. See README file in -archie/clients.

** 'help' for help

** corrections/additions to archie-adrrun@archie.mcgill.ca

** bug reports, comments etc. to eirchie-19archie.mcgill.ca

archie>

For a full listing of commands, type help.

As an example of how to use archie to find a program called xrolodex, type:

archie> prog xrolodex

The first thing Archie does is find how many matches to xrolodex there are in the database. It

keeps you updated on how many matches it's found so far, and how far it's gotten in its

search.

matches / % database searched: 1/78%

When it is 100% through the database, the list of sites that have xrolodex will stream to your

terminal. For the purposes of this example, we have deliberately chosen a recently-

announced program that has not made it to many sites yet (at least, not at the time of this

example). If we had searched for something like xpostit, many screenfuls of output would

have been reported.

archie> prog xrolodex

matches / % database searched: 4 / 100%

Host think.com (131.239.2.1)

Last updated 05:54 25 Feb 1992

Locat i on: /think

FILE rw-rw-r- 53208 Dec 4 1990 xrolodex.shar.Z

Host citi.umich.edu (141.211.128.16)

Last updated 16:05 9 Apr 1992

Location: /afs/alw.nih.gov/dcrt/brunetti/01dfiles

DIRECTORY rwxrwxrwx 2048 Apr 1 10:16 xrolodex

Location: /afs/alw.nih.gov/dcrt/brunetti

DIRECTORY rwxrwxrwx 2048 Apr 1 10:16 xrolodex

Host plaza.aarnet.edu.au (139.130.4.6)

Last updated 05:54 27 Apr 1992

Location: /Xll/contrib

FILE r-r~r- 103267 Apr 24 02:28 xrolodex.tar.Z

archie>

In this example, the pattern used for the prog command is assumed to be an exact match to

the name of the program we want. You can specify different ways of searching using the set

search command. For example:

archie> set search sub

archie> prog rolo

will force a search of all items in the database with "rolo" as a substring.

Compiling Public Domain Software 249

Rather than using telnet to directly contact an Archie server, there are programs available to

automate the search. See Section B.2 for information on obtaining and compiling xarchie,

which provides an XI1 interface to accessing an Archie server.

If you don't have Internet access at all, you can use the e-mail interface by sending mail to

archie@/zos/, where host is one of the machines listed in Table B-l. See The Whole Internet

User's Guide & Catalog by Ed Krol (O'Reilly & Associates, 1992) for more information.

B.1.2 Get the FAQ

Archie is a great way to find sources. However, if you have access to the comp.windows.x

FAQ (Frequently Asked Questions) list, looking through the FAQ might actually be easier.

The FAQ is a great wealth of information that is posted at the beginning of each month to the

newsgroup comp.windows.x. It is updated frequently, so if you have absolutely any question

about X, the first place you should look is in the FAQ.

As far as sources are concerned, some public domain sources are placed on several anony-
mous ftp sites, but not all are updated when new versions or bug fixes are announced. If the

comp.windows.x FAQ list tells you where to get sources, it's likely to tell you the most reli-
able site.

If you don't have a FAQ handy, either post to one of the comp.windows JC newsgroups for

someone to send it to you, or ftp it yourself as described in Section A.2. You can also get it

from mail-server@pit-manager.mit.edu. Or if you can wait a little, look for it on comp.win-

dows.x-the FAQ is promptly re-posted at the beginning of every month, as are the FAQs for

comp. windows.x.motif and comp. windows.openlook.

(If you don't have access to Usenet, you can get on a mailing list called xpert. To get on that

mailing list, send mail to xpert-request@expo.lcs.mit.edu.)

At this writing, there are 145 questions answered in the FAQ, definitely worth the bandwidth

to get it. If you find it useful, also look for the FAQs for OSF/Motif and for OPEN LOOK.

B.1.3 The Usual Suspects

You can find a description of other ways to find sources on the machine rtfm.mit.edu, in the

directory Ipublusenetl news.answers. A list of ftp sites can be found in the ftp-list directory,

and the Hie finding-sources gives some more information on how to find what you want.

If neither the FAQ nor Archie mentions what you want, and you have Internet access, try a

few of the usual suspects-such as export.lcs.mit.edu (where you'd also find the XI1 sources

themselves) in the Icontrib directory, orftp.uu.net in the I comp.window s.x directory.

(While you're at export or uunet, you might want to browse around a bit. There's a lot of

good stuff available, you just need to know about it.)

If all else fails, try sending a polite post to comp.windows.x asking if this program is public

domain and, if so, would anyone be kind enough to help you get it.

250 The X Window System Administrator's Guide

B.2 An Example: xarchie

If you're interested in trying out a lot of public domain software, it's a good idea to get xar-
chie to help you find things. For that reason, we use xarchie for our first example.

We are running SunOS 4. Lv under MIT XI1R5, and xarchie 1.3 builds cleanly for us. If you

have trouble building xarchie on your platform, look for xarchie 2.0, which should be avail-
able by the time this book goes to press. Among other things, the new version of xarchie has

a cleaner /makefile, solving some build issues on OpenWindows and on SGI machines.

B.2.1 Getting the xarchie Sources

xarchie isn't listed in the FAQ, but we know via an earlier Archie query (which we spared

you in this appendix) that it can be found on hundreds of archives. One of those archives is

export.lcs.mit.edu. We ftp to export, log in as anonymous, and go directly to the contribl

directory.

lmui@opal% ftp export.lcs.mit.edu

Connected to export.lcs.mit.edu.

220 export.lcs.mit.edu FTP server (NEWS-OS Release 4.1C) ready.

Name (export.lcs.mit.edu:lmui) : anonymous

331 Guest login ok, send ident as password.

Password:

230 Guest login ok, access restrictions apply.

ftp> cd contrib

250 CWD command successful.

ftp>

There, we look for anything resembling the name "archie." Not all ftp servers accept wild-
cards, but this one does.

ftp> Is *rchie*

200 PORT command successful.

150 Opening data connection for /bin/Is (ascii mode) (0 bytes).

xarchie-1.3.tar.Z

226 Transfer complete.

remote: *rchie*

19 bytes received in 0.015 seconds (1.2 Kbytes/s)

ftp>

The compressed tar file xarchie-1.3.tar.Z seems to be what we want. We set ourselves up for

binary transfer, get the file, and then quit out of ftp.

ftp> bin

200 Type set to I.

ftp> get xarchie-1.3.tar.Z

200 PORT command successful.

150 Opening data connection for xarchie-1.3.tar.Z (binary mode)

(179119 bytes).

226 Transfer complete.

local: xarchie-1.3.tar.Z remote: xarchie-1.3.tar.Z

179119 bytes received in 46 seconds (3.8 Kbytes/s)

Compiling Public Domain Software 251

ftp> quit

221 Goodbye.

lmui@opal%

B.2.2 Untarring the Sources

Once we have the file on our system, it's a good idea to see what it contains before we untar

it. Use the zcat command to uncompress the file to standard output and pipe that to tar tf-lo

see what files the tar archive contains.

lraui@opal% zcat x* I tar tf -

Ad2c/Imakefile

Ad2c/Makefile

Ad2c/README

Ad2c/ad2c.man

Ad2c/ad2c.script

EzMenu/EzME.C

EzMenu/EzME.h

EzMenu/EzMEP.h

EzMenu/EzMenu.c

EzMenu/EzMenu.h

EzMenu/EzMenuP.h

EzMenu/Imakefile

EzMenu/Makefile

EzMenu/README

EzMenu/ezMenu .man

Imakefile

MANIFEST

Since we don't want to clutter the current directory with all these files, create a new xarchie

subdirectory and move the compressed tar file into that directory.

lmui@opal% mkdir xarchie

lmui@opal% mv xarchie-1. 3 .tar. Z xarchie/

Change directory to the xarchie directory and then untar the file for real. Use the p option to

tar so you retain permissions. When it is done, list the contents of the directory.

lmui@opal% cd xarchie

lmui@opal% zcat *. Z I tar xfp -

lmii@opal% IB -aF

./ classnames.c pprot.h

../ classnames.h procquery.c

Ad2c/ confirm.c procquery.h

EzMenu/ confirm.h ptalloc.c

Imakefile copyright.h rdgram.h

MANIFEST db. c regex.c

Makefile db.h regex.h

README dialog.c settings.c

README.FILES dialog.h settings.h

README.PROSP dirsend.c stcopy.c

TODO ftp.c support.c

Xarchie.ad ftp.h types.c

Xarchie.ad. h get_pauth.c types.h

252 The X Window System Administrator's Guide

act ions.c get_vdir.c udp.c

actions.h patchlevel.h vl_comp.c

alert.c pauthent.h vlalloc.c

alert.h pconpat.h xarchie-1.3.tar.Z

appres.h perrmesg.c xarchie.c

aquery.c perrno.h xarchie.h

archie.h pfs.h xarchie.man

atalloc.c pmachine.h

lmui@opal%

Now we've come to the First Cardinal Rule of compiling sources: when there's a README,

read it.

lmui@opal% more README

README for Xarchie - XI1 browser interface to Archie

George Ferguson, ferguson@cs.rochester.edu

Last Change: 12 Nov 1991

DISCLAIMER:

This is release 1.3 of xarchie - an X browser interface to

the Archie Internet information system.

This software is provided as is with no warranty expressed or

implied. I hope you find it useful, but I won't be held responsible

for any damage that may occur from reading, compiling, installing,

using, or even thinking about it.

Further down in the README are the instructions on how to actually install the program.

INSTALLATION:

1. Edit the Imakefile to reflect any changes for your site. These

include setting BINDIR, LIBDIR, and MANDIR if needed, and

checking CDEBUGFLAGS if debugging or optimization is desired.

If your system doesn't have re_comp() and re_exec(), then you

need to uncomment the appropriate section in the Imakefile to

include those routines.

Compiling this program requires the "ad2cn program. You should

have received a copy of ad2c with this distribution, in the

subdirectory "Ad2c". You should set the AD2C variable as

required. Actually, ad2c is only required if you change Xarchie.ad

and want the new defaults compiled in as fallback resources. If

you don't have ad2c, you probably want to remove the line that

adds Xarchie.ad.h to the "clean" target.

You may want to change defaults in Xarchie.ad; consult the manpage

for details, and see above about ad2c.

This brings us to Cardinal Rule Number 2: follow directions.

Compiling Public Domain Software 253

B.2.3 Editing the (makefile

You may not feel up to editing an Imakefile, but we recommend that you give it a try regard-
less. The xarchie Imakefile is somewhat non-standard, but it is straightforward and well-doc-
umented, so it's a good place to start becoming familiar with imake. We'll build a more stan-
dard program, xkeycaps, later in this appendix.

If you don't know what imake is, it's basically a utility to create Makefiles based on system

dependencies. It actually makes a lot of sense-if you're building a lot of applications for a

lot of different machines, you end up editing your Makefile a lot according to each different

machine, and then you have to edit the Makefile of the next application according to the same

dependencies, and it seems as if you keep duplicating your edits, imake lets you set up sys-
tem dependencies in an independent place, in a file called Imake.tmpl, usually kept in

lusrlliblXlllconfig. For more information on imake syntax, see Section 8.7.

If you just read the Imakefile carefully, you'll get the idea of the sorts of things you might

change.

#

Imakefile for xarchie : Xll Browser interface to Archie

#

George Ferguson, ferguson@cs.rochester.edu, 12 Sep 1991.

#

Where do you want this stuff? Uhcomment and adjust these to change the

destinations of "make install" and "make install.man" if the defaults

are not satisfactory.

#BINDIR = bin

#LIBDIR = lib

#MANDIR = man/manl

##undef ManSuffix

##define ManSuffix 1

BINDIR is the target directory where the xarchie program will eventually be installed. If you

prefer that xarchie be installed in I usrI local/bin, this is where you'd specify it. Otherwise,

the program will be installed in whatever directory imake has been configured for on your

system. On our system, the default is lusr/bin/Xl 1.

LIBDIR is your X library directory. On our system, the default is lusrlliblXl 1. MANDIR is

where the manual pages go. On our system, the default is lusr/man.

In all three cases, we are satisfied with the default values and leave them unchanged. Con-
tinue with the Imakefile:

Where is the app-defaults to C converter?

Only needed if you change the app-defaults file Xarchie.ad and want the

changes compiled into the program. If you don't have ad2c you should

remove the extra clean target for Xarchie.ad.h below. If you lose

Xarchie.ad.h and can't remake it, create it to be an empty file. Of course

then you'll have to use the resource file at run time.

If your ad2c came from this xarchie distribution, then use the following

target, otherwise change it to reflect where you put ad2c.

AD2C = Ad2c/ad2c.script

Where is the EzMenu widget package?

You should have received a copy of the EzMenu package with this

254 The X Window System Administrator's Guide

xarchie distribution.

EZMENUDIR = EzMenu

EZMENULIB = ezMenu$(TARGETJ^ACH)

Since both the ad2c and EzMenu packages were included in the tar file, we don't have to do

anything here.

How excited are you about debugging? This can be -g, -O, or nothing.

CDEBUGFLAGS = -g

To enable Prospero tracing (controlled by the -debug option), uncomment

this

#PDEBUG = -DDEBUG

Does your system have re_comp() and re_exec(), or regcmp() and regex()

[in the case of A/UK]1 If not, uncomment the following definitions.

#REGEXC = regex.c

#REGEXO = regex.o

#ff##f#####f##t######t####ft##########f######f####f###f#f#t#########f##f#i#

Nothing to change below here...

We don't care about debugging, we don't know what Prospero tracing is, and we've deter-
mined that we have the re_comp() and re_exec() functions by using the man command on

them.

We thus declare ourselves to have finished editing the Imakefile.

As for editing the application defaults: the file Xarchie.ad is the systemwide resource file for

the xarchie application. It's worth it to take a minute to make sure it's set up the way you

want it.

Xarchie.ad : Application defaults for the Xll browser interface to Archie

George Ferguson, ferguson@cs.rochester.edu, 12 Nov 1991.

Non-widget resources

Xarchie.archieHost: archie.sura.net

! Possible values are: exact, substr, subcase, or regexp

Xarchie.searchType: exact

This is when you'd change the name of the archie host to the one closest to you. For example,

you might change it to the one at Rutgers:

Xarchie.archieHost: archie.rutgers.edu

B.2.4 Compiling the Source

Once the Imakefile is set up, compiling is usually a matter of just executing a few commands

and hoping it works. From the README:

2. Execute

% xmkmf

to create the Makefile.

Compiling Public Domain Software 255

If you're running X11R4 or later, your X distribution comes with a command called xmkmf,

which stands for "X Make Makefile." xmkmfis a shell script (usually kept in lusrIbinlXll)

that is designed to run imake to create Makefiles for third-party XI1 software distributions.

See Section 8.6.1 for more information on xmkmf.

If a software distribution comes with a proper Imakefile, if your X distribution is set up prop-
erly, and if you're generally a lucky person, you can simply run xmkmf and your Makefile(s)

are all set.

lmui@opal% xmkmf

mv Makefile Makefile.bak

imake -DUselnstalled -I/usr/lib/Xll/config

lniui@opal%

You now have a new Makefile. (Although a Makefile was supplied with the distribution for

sites that may not have imake, it's always better to use one generated by imake.)

3. Execute

% make Makefiles

to run xmkmf in the Ad2c and EzMenu subdirectories. Alternately,

run it (or imake) in each subdirectory by hand.

4. Execute

% make depend

to add the dependencies to the Makefile. This is necessary to

ensure that Xarchie.ad.h is created when needed.

IMPORTANT: Ignore the error message from makedepend if Xarchie.ad.h

is not found; it will be created automatically.

Once again, follow directions.

lmui@opal% make Makefiles

making Makefiles in ./Ad2c...

rm -f Ad2c/Makefile.bak

+ mv Ad2c/Makefile Ad2c/Makefile.bak

cd Ad2c; imake -DUselnstalled -I/usr/lib/Xll/config -DTOPDIR=../. -DCURD

IR=./Ad2c; \

make Makefiles

making Makefiles in ./EzMenu...

rm -f EzMenu/Makefile.bak

+ mv EzMenu/Makefile EzMenu/Makefile.bak

cd EzMenu; imake -DUselnstalled -I/usr/lib/Xll/config -DTOPDIR=../. -DCU

RDIR=./EzMenu; \

make Makefiles

lmui@opal% make depend

makedepend -s "# DO NOT DELETE" - -I. -lEzMenu -DARCHIE

-DXARCHIE - aquery.c atalloc.c dirsend.c get_pauth.c get_vdir.c

perrmesg.c ptalloc.c stcopy.c support.c vl_comp.c vlalloc.c xarchie.c

db.c actions.c types.c classnames.c procquery.c settings.c ftp.c

alert.c confirm.c dialog.c

(In R5, xmkmf-a will take combine steps 2-4 of this example.)

Now you're ready for the moment of truth:

5. Make the package using

% make

or install it directly with

% make install install.man

256 The X Window System Administrator's Guide

Note that this will also "make install" in Ad2c and EzMenu by

default. Since you may want to install xarchie without installing

these other things, you can instead do

% make install.xarchie

to install xarchie, its resource file, and its manpage only.

We don't recommend installing things until you know what you're installing and where it's

going to go. So make the program separately:

lmui@opal% make

making all in ./Ad2c...

ad2c is up to date

making all in ./EzMenu...

cc -g -I/usr/staff/include -target sun4 -c EzMenu.c

cc -g -I/usr/staff/include -target sun4 -c EzME.c

rm -f libezMenu-sparc.a

ar cq libezMenu-sparc.a EzMenu.o EzME.o

ranlib libezMenu-sparc.a

cc -g -pipe -I. -lEzMenu -DARCHIE -DXARCHIE -target sun4 -c aquery.c

cc -g -pipe -I. -lEzMenu -DARCHIE -DXARCHIE -target sun4 -c atalloc.c

cc -g -pipe -I. -lEzMenu -DARCHIE -DXARCHIE -target sun4 -c dirsend.c

cc -g -pipe -I. -lEzMenu -DARCHIE -DXARCHIE -target sun4 -c get_pauth.c

cc -g -pipe -I. -lEzMenu -DARCHIE -DXARCHIE -target sun4 -c get_vdir.c

cc -g -pipe -I -lEzMenu -DARCHIE -DXARCHIE -target sun4 -c perrmesg.c

cc -g -pipe -I --LtLzraenu -UAKunj-d -JJAAKUHJ.^ -target sunft -c ptai-LOC. TT-,-,, -DARCHIE -DXARCHIE -target sun4 -c ptalloc.

cc -g -pipe -I. -lEzMenu -DARCHIE -DXARCHIE -target sun4 -c stcopy.c -nARPHTTT -T"YyaT?n-n"R -1-arrrot- Gin-id -f ct-r-m-n/ r
uni\v_~ii-Liii i^^\rxr\.v_jrixj^ L.aa_ycL- DUII^I \- ou^w^/y .^

cc -g -pipe -I -lEzMenu -DARCHIE -DXARCHIE -taraet sun4 -c suDDort. -xi^'ieiiu -DARCHIE -DXARCHIE -target sun4 -c support.c

cc -g -pipe -I -lEzMenu -DARCHIE -DXARCHIE -target sun4 -c vl_comp.c

cc -g -pipe -I -lEzMenu -DARCHIE -DXARCHIE -target sun4 -c vlalloc.c

cc -g -pipe -I -lEzMenu -DARCHIE -DXARCHIE -target sun4 -c xarchie.c

cc -g -pipe -I -lEzMenu -DARCHIE -DXARCHIE -target sun4 -c db.c

cc -g -pipe -I -lEzMenu -DARCHIE -DXARCHIE -target sun4 -c actions.c

cc -g -pipe -I -lEzMenu -DARCHIE -DXARCHIE -target sun4 -c types.c

cc -g -pipe -I -lEzMenu -DARCHIE -DXARCHIE -target sun4 -c classnames.c

cc -g -pipe -I -lEzMenu -DARCHIE -DXARCHIE -target sun4 -c procquery.c

cc -g -pipe -I -lEzMenu -DARCHIE -DXARCHIE -target sun4 -c settings.c

cc -g -pipe -I -lEzMenu -DARCHIE -DXARCHIE -target sun4 -c ftp.c

cc -g -pipe -I -lEzMenu -DARCHIE -DXARCHIE -target sun4 -c alert.c

cc -g -pipe -I. -lEzMenu -DARCHIE -DXARCHIE -target sun4 -c confir -lEzMenu -DARCHIE -DXARCHIE -target sun4 -c confirm.c

cc -g -pipe -I. -lEzMenu -DARCHIE -DXARCHIE -target sun4 -c dialog.

(cd EzMenu; echo "making all in ./EzMenu..."; \

make 'CDEBUGFLAGS=-g' all);

making all in ./EzMenu...

rm -f xarchie

cc -o xarchie aquery.o atalloc.o dirsend.o get_pauth.o get_vdir.o

perrmesg.o ptalloc.o stcopy.o support.o vl_comp.o vlalloc.o xarchie

db.o actions.o types.o classnames.o procquery.o settings.o ftp.o

alert.o confirm.o dialog.o -g -pipe -LEzMenu -lezMenu-sparc -iXaw

-iXmu -iXt -iXext -1X11

lmui@opal%

And now, believe it or not, the xarchie program is done.*

lmui@opal% Is -F xarchie

xarchie*

*If you get a compilation error, it's probably because of missing header files or function definitions. See Section

8.8.1 for more information on what to do in this situation.

Compiling Public Domain Software 257

We like to try out a program before we install it and its application defaults. Copy the Xar-

chie.ad file to Xarchie, and set your XAPPLRESDIR environment variable to the current direc-
tory so that the application will find the resource file. Or just set your XENVIRONMENT envi-
ronment variable to Xarchie.ad. Then start up the application.

lmui@opal% setenv XENVIRONMENT Xarchie.ad

lmui@opal% . /xarchie &

You should see something like the window shown in Figure B-l.

| Quit 11 Querij | i >4;o:" i, j Save | |Ftp| | Search Type 11 Sort Type 11 Nice Level 11 Settings^

Status: Found 10 matches - Ready

citi.umich.edu

P1aza.aarnet.edu.au

scsluiide.sony.co.jp

src.doc.ic.ac.uk

.urz.uni-heidelberg

toklab.ics.osaka-u.ac.ji

uts.mcc.ac.uk

xll.informatik.uni-dort

Search Term; xrolodex

think .com

Location: n: /think

File: xrolodex.shar.Z

Size: 53208 Mode: |-rui-rurr - Date: Dec 4 1990

Figure B-1. xarchie window

In the example figure, you see that once xarchie has located the utility you want, you can

automatically ftp it by selecting a site and pressing the ftp button.

Play with xarchie a bit. When you're happy with it, install it. Before you do that, it's a good

idea to do make -n install first to see where make intends to install the xarchie program.

(The -n option to make says not to actually execute these commands but just tell you what it

would do. It's a good idea since you should never trust that you won't end up blowing away

some system files.)

We're choosing to install the xarchie program, manpage, and application defaults only-we

aren't installing the other packages that came with xarchie. (The xarchie build is unusual in

that it installs the manual page as it installs the application itself. Most builds usually require

you to run a separate make install.man to install the manual page for the application.)

lmii@opal% make -n install.xarchie

(cd EzMenu; echo "making all in ./EzMenu..."; \

make -n 'CDEBUGFLAGS=-g' all);

making all in ./EzMenu...

rm -f xarchie

258 The X Window System Administrator's Guide

cc -o xarchie aquery.o atalloc.o dirsend.o get_pauth.o get_vdir.o

perrmesg.o ptalloc.o stcopy.o support.© vl_comp.o vlalloc.o xarchie.o

db.o actions.o types.o classnames.o procquery.o settings.o ftp.o

alert.o confirm.o dialog.o -g -pipe -LEzMenu -lezMenu-sparc -iXaw

-iXmu -iXt -iXext -1X11

install -c -s xarchie /usr/bin/Xll

install -c -m 0444 Xarchie.ad /usr/lib/Xll/app-defaults/Xarchie

install -c -m 0444 xarchie.man /usr/man/mann/xarchie.1

If you're satisfied with these locations, run the installation for real. (You may have to become

root now.)

lmui@opal% su

Password:

cpal# make install

making all in ./EzMenu...

rm -f xarchie

cc -o xarchie aquery.o atalloc.o dirsend.o get_pauth.o get_vdir.o

perrmesg.o ptalloc.o stcopy.o support.o vl_comp.o vlalloc.o xarchie.o

db.o actions.o types.o classnames.o procquery.o settings.o ftp.o

alert.o confirm.o dialog.o -g -pipe -LEzMenu -lezMenu-spare -IXaw

-IXmu -IXt -IXext -1X11

install -c -s xarchie /usr/bin/Xll

install -c -m 0444 Xarchie.ad /usr/lib/Xll/app-defaults/Xarchie

install -c -m 0444 xarchie.man /usr/man/mann/xarchie.1

And now it's just a matter of running rehash and starting the xarchie application.

lmui@opal% rehash

lmui@opal% xarchie &

Note that, for this example, you didn't need to know any C programming, you just needed to

use some basic common sense. Not all compilations work this easily, but many do.

B.3 Using Patches

A patch to a program is exactly what it sounds like: a fix to build on the current sources. As

an example, in the following example we have the xwebster sources from export.lcs.mit.edu,

which we will unpack and untar.

lmui@opal% zcat xwebster.tar.Z I tar xfp -

lmui@opal% cd xwebster

lmui@opal% Is -F

Imakefile controlpanel.c user_prefs.h xwebster.c xwebster.xbm

Makefile display_def.c wordlist.c xwebster.h

Xwebster.ad patches/ xwebster.REAEME xwebster.man

(The xwebster program is a client program depending on access to a licensed Webster server.

Unless you have access to such a server, you will not be able to use this program. It also

requires a compiled Xw library, which many vendors don't include-you'll have to build it

yourself.)

Compiling Public Domain Software 259

Note the patches! subdirectory: within that directory you find three patch files:

lmui@opal% Is patches

patch-00 patch-01 patch-02

All patches should be applied in order.

The patch program is available in the mitlutillpatch directory in the XI1 source distribution.

The best way to recognize a patch file is by lines starting with asterisks (*), dashes (-), hash

signs (#), plus signs (+), and exclamation points (!). When you look at the file

patches!patch-00, you'll see that it reads:

Replied: Wed, 28 Feb 90 16:04:12 PST

Received: by church.csri.toronto.edu id 1012; Tue, 20 Feb 90 02:20:02

EST

From: Mark Moraes <moraes@csri.toronto.edu>

To: mayer@hplnpn.hpl.hp.com

Subject: R4 xwebster fix

Cc: moraes@csri.toronto.edu

Message-Id: <90Feb20.022002est.1012@church.csri.toronto.edu>

Date: Tue, 20 Feb 90 02:19:47 EST

xrdb doesn't seem to like comments in defaults files starting with #.

(Possibly a bug in Hence this fix. I also fixed the Xw widgets to

stop Xt whining every time xwebster tries to change the titlebar. (see

fixes on expo) (It doesn't matter when Xwebster.ad is installed in

LIBDIR/app-defaults, but since I test the program by xrdb'ing the

app-defaults file and then running the program, it didn't work then)

*** #Xwebster.ad~ Mon Feb 19 23:57:14 1990

- Xwebster.ad Mon Feb 19 23:57:14 1990

*** 1 3 ****

- 1,4

+ /*

##

##

#

File: Xwebster

*** 31,36 ****

- 32,38
##

this is the help display that comes up initially when you run Xwebster.

##

To apply the patch file, do:

lmii@opal% patch < patches/patch-00

Hmm... Looks like a new-style context diff to me...

The text leading up to this was:

*** #Xwebster.ad~ Mon Feb 19 23:57:14 1990

- Xwebster.ad Mon Feb 19 23:57:14 1990

Patching file Xwebster.ad using Plan A...

Hunk #1 succeeded at 1.

260 The X Window System Administrator's Guide

Hunk #2 succeeded at 32.

Hunk #3 succeeded at 57.

Hunk #4 succeeded at 71.

Hunk #5 succeeded at 105.

Hunk #6 succeeded at 116.

Hunk #7 succeeded at 131.

Hunk #8 succeeded at 166.

Hunk #9 succeeded at 173.

Hunk #10 succeeded at 199.

Hunk #11 succeeded at 259.

Hunk #12 succeeded at 271.

Hunk #13 succeeded at 287.

Hunk #14 succeeded at 319.

Hunk #15 succeeded at 332.

Hunk #16 succeeded at 342.

Hunk #17 succeeded at 372.

Hunk #18 succeeded at 386.

Hunk #19 succeeded at 411.

done

(The message starting with "Hmm ... "is the patch program's polite way of telling you

what it thinks it's doing.)

The second patch (patcheslpatch-01) resembles the first in form:

Return-Path: root@gauss.1Inl.gov

Received: from localhost.ARPA by gauss.llnl.gov (4.0/1.15)

id AA00823; Tue, 3 Apr 90 13:11:46 PDT

Message-Id: <9004032011.AA00823@gauss.llnl.gov>

From: casey@gauss.llnl.gov (Casey Leedom)

To: mayer@hplms2.hpl.hp.com (Niels P. Mayer)

Subject: Small fixes.to X.VllR4/contrib/clients/xwebster/Imakefile

Date: Tue, 03 Apr 90 13:11:45 -0700

Sender: root@gauss.1Inl.gov

*** Imakefile-dist Mon Mar 6 03:41:36 1989

- Imakefile Wed Mar 28 11:00:54 1990

*** 1 37 ****

#

This assumes that the HP Xwidget sources patched for r3 have been placed

! # in $(TOP)/lib/Xw.

#

! XWLIB = $(TOP)/lib/Xw/libXw.a

Apply this patch in a similar fashion:

lmui@opal% patch < patches/patch-01

Hmm... Looks like a new-style context diff to me...

The text leading up to this was:

*** Imakefile-dist Mon Mar 6 03:41:36 1989

-- Imakefile Wed Mar 28 11:00:54 1990

Patching file Imakefile using Plan A...

Hunk #1 succeeded at 1.

done

Compiling Public Domain Software 261

The third patch file looks different.

Fran sam@blanche.ICS.UCI.EDU Wed Jun 28 15:13:32 1989

To: mayer@hplabs.hp.CQM

Subject: New xwebster features

Reply-To: Sam Horrocks <sam@ics.UCI.EDU>

Date: Wed, 28 Jun 89 15:08:45 -0700

Message-Id: <12090.615074925@blanche.ics.uci.edu>

From: Sam Horrocks <sam@blanche.ICS.UCI.EDU>

I've added a couple of new features to xwebster and I'm sending you the

patches. I've added a button to do spelling of the word (alternate spellings

appear in the upper window) and I've added a toggle to put xwebster into

thesaurus mode. Here are the diffs:

: Remove anything above this line.

: This is a shar archieve. Extract with sh, not csh.

: The rest of this file will extract:

: xwebster.diffs

echo extracting - xwebster.diffs

sed 's/AX//' > xwebster.diffs « '/*EOF'

X*** /tmp/,RCStlall790 Wed Jun 28 14:27:31 1989

X xwebster.man Wed Jun 28 14:22:32 1989

This file is a shar file. Edit out the mail header and extract the patch file with sh or (prefer-
ably) use the unshar command. (If you use unshar, you don't have to edit out the mail

header.) Do not unpack the shar file as root.

lmui@opal% unshar patches/patch-02

unshar: Sending header to patch-02.hdr.

unshar: Doing patches/patch-02:

extracting - xwebster.diffs

The resulting xwebster.diffs file contains:

*** /tmp/,RCStla!1790 Wed Jun 28 14:27:31 1989

xwebster.man Wed Jun 28 14:22:32 1989

*** 50,55 ****

- 50,65

attempt to complete the word. If the word can be completed, the new word

is placed in the TextEdit widget; otherwise, the program beeps and

displays a message indicating that the word is ambiguous.

+ .PP

+ Typing \fB'.'\fP or mousing \fB[Spell]\fP causes the program to look up

+ alternate ways to spell what you just typed. The list of spellings will

+ be displayed in the browser panel.

Run the patch command to complete the patches:

lmui@opal% patch < xwebster.diffs

Hmm... Looks like a new-style context diff to me...

The text leading up to this was:

*** /tmp/,RCStla!1790 Wed Jun 28 14:27:31 1989

I xwebster.man Wed Jun 28 14:22:32 1989

Patching file xwebster.man using Plan A...

262 The X Window System Administrator's Guide

Hunk #1 succeeded at 50.

Hmm... The next patch looks like a new-style context diff to me.

The text leading up to this was:

*** /tmp/,RCStlall804 Wed Jun 28 14:29:00 1989

-- Xwebster.ad Wed Jun 28 14:22:26 1989

Patching file Xwebster.ad using Plan A...

Hunk #1 succeeded at 48 (offset 2 lines).

Hunk #2 succeeded at 307 with fuzz 1 (offset 28 lines).

Hunk #3 succeeded at 297 (offset 4 lines).

Hunk #4 failed at 368.

Hunk #5 succeeded at 454 (offset 49 lines).

1 out of 5 hunks failed-saving rejects to Xwebster.ad.rej

Hmm... The next patch looks like a new-style context diff to me.

The text leading up to this was:

*** /tmp/,RCStla!1812 Wed Jun 28 14:30:18 1989

controlpanel.c Wed Jun 28 14:22:27 1989

Patching file controlpanel.c using Plan A...

Hunk #1 succeeded at 40.

Hunk #2 succeeded at 47.

Hunk #3 succeeded at 209.

Hunk #4 succeeded at 270.

Hunk #5 succeeded at 330.

Hunk #6 succeeded at 374.

Hunk #7 succeeded at 402.

Hunk #8 succeeded at 426.

Hunk #9 succeeded at 483.

Hunk #10 succeeded at 502.

Hunk #11 succeeded at 520.

Hmm... The next patch looks like a new-style context diff to me.

The text leading up to this was:

*** /tmp/,RCStla!1826 Wed Jun 28 14:32:56 1989

xwebster.c Wed Jun 28 14:22:31 1989

Patching file xwebster.c using Plan A...

Hunk #1 succeeded at 266.

Hunk #2 succeeded at 275.

done

The error you may want to pay attention to is the one that failed, at line 368 in the Xweb-
ster.ad file. The patch program is nice enough to tell you what failed and to save the rejected

patch in a file called Xwebster.ad.re j. (You can use the -s option to patch to suppress com-
ments and report failures only.) You can examine that file and see if you can reconstruct

what it intends to do, but that's beyond the scope of this exercise.

When you are satisfied that all patches are applied, you can complete the build:

lmui@opal% xmkmf

mv Makefile Makefile.bak

imake -DUselnstalled -I/usr/lib/Xll/config

lmui@opal% make depend

makedepend -s "# DO NOT DELETE" - -I/work/lmui/src/Xw

-DAPPDEFAULTSDIR=

display_def.c wordlist.c xwebster.c

Compiling Public Domain Software 263

lmui@opal% make

cc -0 -pipe -I/work/lmui/src/Xw -DAPPDEFAULTSDIR=

-target sun4 -c controlpanel.c

cc -O -pipe -I/work/lraui/src/Xw -DAPPDEFAULTSDIR=

-target sun4 -c display_def.c

cc -0 -pipe -I/work/lmui/src/Xw -DAPPDEFAULTSDIR=

-target sun4 -c xwebster.c

rm -f xwebster

cc -o xwebster controlpanel.o display_def.o wordlist.o xwebster.o -0

-pipe /work/lmui/src/Xw/Xw/libXw.a -IXt -iXext -1X11

lmui@opal%

Once the you have edited the application defaults to reflect the location of the Webster

server, you can install the xwebster program system-wide by executing make install and

(optionally) make install.man as root. Then read the manual page to learn how to run the pro-
gram and enjoy.

B.4 Another Example: xkeycaps

Before we end this appendix, let's show a more "standard" compilation. For this we choose

xkeycaps, a public domain program that's useful as a front end for the xmodmap program.

xkeycaps can be taken from export.lcs.mit.edu:

linui@ruby 35% ftp export.lcs.mit.edu

Connected to export.lcs.mit.edu.

220 export.lcs.mit.edu FTP server (NEWS-OS Release 4.1C) ready.

Name (export.Ics.mit.edu:Imui): anonymous

331 Guest login ok, send ident as password.

Password:

230 Guest login ok, access restrictions apply.

ftp> cd contrib

250 CWD command successful.

ftp> Is *keycaps*

200 PORT command successful.

150 Opening data connection for /bin/Is (ascii mode) (0 bytes).

xkeycaps.tar.Z

226 Transfer complete.

remote: *keycaps*

16 bytes received in 0.014 seconds (1.2 Kbytes/s)

ftp> bin

200 Type set to I.

ftp> get xkeycaps.tar.Z

200 PORT command successful.

150 Opening data connection for xkeycaps.tar.Z (binary mode) (121687 bytes).

226 Transfer complete.

local: xkeycaps.tar.Z remote: xkeycaps.tar.Z

121687 bytes received in 31 seconds (3.9 Kbytes/s)

ftp> quit

221 Goodbye.

lmui@ruby 36%

Now that we have it, unpack the compressed tar file, take a look at the resulting directory

contents. Once again, since there's a README, read it.

264 The X Window System Administrator's Guide

lmui@ruby 36% zcat xkeycaps.tar.Z I tar xpf -

linui@ruby 37% Is -a

./ info.c kbd-ncd-vt220.h

../ ktd-atari-tt.h kbd-sco-HO.h

Imakefile kbd-dec-lk201.h kbd-sgi-iris.h

KbdWidget.c kbd-dec-lk401.h kbd-sony-nws.h

KbdWidget.h kbd-dell.h kbd-sun-type2.h

KbdWidgetP.h kbd-explorer.h kbd-sun-type3.h

KeyWidget.c kbd-hp-700x.h kbd-sun-type4.h

KeyWidget.h kbd-hp-720.h kbd-sun-type4ow.h

KeyWidgetP. h kbd-hp-pc. h SunOS. c

README kbd-ibm-rs6k.h version, h

actions.c kbd-ncd-nlOl.h vroot.h

all-kbds.h kbd-ncd-n!02.h xkeycaps.c

commands.c kbd-ncd-nl02fr.h xkeycaps.h

defaults.h kbd-ncd-n!02n.h xkeycaps.man

defining.txt kbd-ncd-n!02sf.h xkeycaps.tar.Z

guess.c kbd-ncd-nl0 8.h

hierarchy.txt kbd-ncd-n97.h

linui@ruby 38% more README

xkeycaps is a graphical front-end to xmodmap. It opens a window that looks

like a keyboard; moving the mouse over a key shows what KeySyms and Modifier

bits that key generates. Clicking on a key simulates KeyPress/KeyRelease

events on the window of your choice. It is possible to change the KeySyms

and Modifiers generated by a key through a mouse-based interface. This

program can also write an input file for xmodmap to recreate your changes

in future sessions. See the manpage for more details.

xkeycaps currently knows about the following types of keyboards:

Sun type2 (MIT layout) Silicon Graphics Iris/Indigo

Sun type3 (MIT layout) Sony NWS 1250

The README introduces the program, but doesn't include any build instructions. Look at the

Imakefile:

/**/# Imakefile file for xkeycaps, Copyright (c) 1991, 1992 Jamie Zawinski.

/

To specify a different default keyboard (for when the vendor display

string isn't recognized) do something like this:

KBELDEFINES = -DDEFAULT.J<BD_NAME=" \" Sun3 \""

to make there not be a default (meaning the keyboard must be specified

if the vendor display string isn't recognized) you can do

KBD_DEFINES = -DDEFAULT_J^BD_NAME=0

If you don't have the file Xll/DECkeysym.h (which comes with the MIT

distribution) then add ~DNO_DEC_KEYSYMS to DEFINES.

If you get a link error about _XInitKeysymDB being undefined, then add

-DNCLXInitKeysymDB to DEFINES. In this case, you might also want to

add -DKEYSYMDB=/some/file/XKeysymDB to DEFINES, to tell XKeyCaps where

the vendor-specific keysym database file resides. Otherwise, you will

have to set the $XKEYSYMDB environment variable before running this

program, or else it won't let you select from the set of vendor keysyms,

Compiling Public Domain Software 265

Folks running R4 or older don't get to select from the set of vendor

keysyms anyway. If anyone comes up with a workaround to this, please

let me know.

If you have XTrap, add the line

#define HAVE_XTRAP

The XTrap support isn't quite finished yet.

/* #define HAVELJCTRAP */

This /makefile is somewhat more "standard" than the xarchie /makefile, since it concentrates

on variables that affect the behavior of the application itself. We alter the /makefile to make

the default keyboard Ml 01, which is what most users at our site have. To do so, we add the

following line towards the top of the /makefile:

KBD_DEFINES = -DDEFAULT_J<BD_NAME="\"N101\""

We poke around in lusrlindudelXl 1 and determine that we have DECkeysym.h installed.

Since we've never heard of XTrap, we assume we don't have it. We now try to build the pro-
gram, heeding the /makefile warning that we might have a link error. In R5, xmkmf -a will

create the Makefile and also run make Makefiles, make includes and make depend.

lmui@ruby 46% xmkmf -a

mv Makefile Makefile.bak

imake -DUselnstalled -I/usr/lib/Xll/config

make Makefiles

make includes

make depend

makedepend -s "# DO NOT DELETE" - -DDEFAULT_JKBD_NAME="\"N101\"" - \

xkeycaps.c KbdWidget.c KeyWidget.c info.c actions.c commands.c guess.c

SunOS.c

lmui@ruby 48%make

cc -O -pipe -DDEFAULT_£BD_NAME="\"N101\"" -target sun4 -c xkeycaps.c

cc -O -pipe -DDEFAULTJ(BDJflAME="\"N101\"" -target sun4 -c KbdWidget.c

cc -0 -pipe -DDEFAULT_JCBDJIAME="\"N101\"" -target sun4 -c KeyWidget.c

cc -0 -pipe -DDEFAULT_JKBDJMAME="\"N101\"" -target sun4 -c info.c

cc -O -pipe -DDEFAULT_j(BD_JIAME="\"N101\"" -target sun4 -c actions.c

cc -0 -pipe -DDEFAULT_JKBD_NAME="\"N101\"" -target sun4 -c commands.c

cc -0 -pipe -DDEFAULT_J(BD_fIAME="\"N101\"" -target sun4 -c guess.c

cc -0 -pipe -DDEFAULT_JKBD_NAME="\"N101\"" -target sun4 -c SunOS.c

rm -f xkeycaps

cc -o xkeycaps xkeycaps.o KbdWidget.o KeyWidget.o info.o actions.o

commands.o guess.o sunOS.o -0 -pipe -iXaw -iXt -iXext -iXmu -iXext -1X11

xkeycaps built without a hitch. Since there's no app-defaults file, we can try it out without

having to concern ourselves with resource definitions:

lmui@ruby 51% xkeycaps

xkeycaps: a keyboard type was not specified, and the vendor ID string,

"Acme X Servers, Tucson, AZ"

is not recognized. We will guess that you are using a keyboard of

type "N101." If this is incorrect, please supply the -keyboard

option with one of the following names:

266 The X Window System Administrator's Guide

Sun2 - Sun type2 (MIT layout)

Sun3 - Sun type3 (MIT layout)

Sun4 - Sun type4 (MIT layout)

Sun4ow - Sun type4 (OpenWindows layout)

N97 - Network Computing Devices N97

N101 - Network Computing Devices N101

N102 - Network Computing Devices N102

N102SF - Network Computing Devices N102 (Swedish/Finnish layout)

N102N - Network Computing Devices N102 (Norwegian layout)

N102F - Network Computing Devices N102 (French layout)

N108 - Network Computing Devices N108

NCD220 - Network Computing Devices vt220

LK201 - Digital Equipment Corporation LK201

LK401 - Digital Equipment Corporation LK401

RS6k - Inferior But Marketable RS/6000

SC0110 - Santa Cruz Operation 110

HP700X - Hewlett Packard 700X

HP720 - Hewlett-Packard 720

HPPC - Hewlett-Packard PC

TT - Atari TT

NWS - Sony NWS 1250

DELL - DELL PC

SGI - Silicon Graphics

Explorer - Texas Instruments Explorer

As the default, we get the N101 keyboard:

gj XKeyCaps; Network Computing Devte«« N101 keyboard

(Quit) KeyCode:

(Select Keyfao'ard) KeySym:

(Type At Window)

(Restore Default Map) AutoRepeat:

CWrtte Output)

XKeyCaps 1.20; 6 1991, 1992 Jamie Zawinski <jwz@lucid.com>

F1 ||F2 IJF3 IJF4 I |F5 ||F6 ||F7 ||F8 I |F9 IIF10 IIF11 IIF12 I lUne IiBrtallSetuJ

lp|| OF|| n|| 1F| I 27|| 2F|| 37|| 3F\ \ 47|| 4F|| 56|| SE| |FeS^|| 5F|[62|

: ;
Num

^cxK 77 7E

~

64

7 i 9 "+

6C 75 7D

4

6B Q 6
74 7C

r-]%- 3 Entei

69]| 72 7A

0

70 71 79

Figure B-2. xkeycaps window

When you decide to install xkeycaps, run both make install and make install.man as root. As

before, it's a good idea to check what's going to be installed before you actually do it, using

the -n option to make:

lmui@ruby 82% make -n install install.man

if [-d /usr/bin/Xll]; then set +x; \

else (set -x; /bin/sh /usr/bin/Xll/mkdirhier /usr/bin/Xll); fi

Compiling Public Domain Software 267

install -c -s xkeycaps /usr/bin/Xll

echo "install in . done"

if [-d /usr/man/mann]; then set +x; \

else (set -x; /bin/sh /usr/bin/Xll/mkdirhier /usr/man/mann); fi

install -c -m 0444 xkeycaps.man /usr/man/mann/xkeycaps.n

echo "install.man in . done"

If this is fine with you, go ahead and install the program:

lmui@ruby 83% su

Password:

make install install.man

install -c -s xkeycaps /usr/bin/Xll

install in . done

install -c -m 0444 xkeycaps.man /usr/man/mann/xkeycaps.n

install.man in . done

#

B.5 Related Documentation

imake is discussed in more detail in Section 8.7.

For more information on xmkmf, see its manual page and Section 8.6.1 of this book.

The Whole Internet User's Guide & Catalog by Ed Krol (O'Reilly & Associates, 1992).

Managing Projects with make, by Andy Oram and Steve Talbott (O'Reilly and Associates,

1991).

268 The X Window System Administrator's Guide

c

X on Non-UNIX Platforms

X runs on all types of hardware, on all sorts of operating systems. Both cli-
ents and servers run on IBM-compatible PCs running DOS, as well as Macin-
tosh computers. Full X distributions are available for NeXT machines, but

the servers have to negotiate with the NeXTStep interface. This chapter

briefly describes the X products available on those platforms.

In This Appendix:

X on DOS-based PCs 272

Requirements for PC X Servers 272

Installing and Configuring PC X Servers 273

Problems Particular to PC X Servers 274

X on Macintosh Computers 275

Macintosh-based X Servers 275

MacTCP and the Communications Toolbox 276

X on NeXT Computers 277

c

X on Non-UNIX Platforms

This book concentrates on X as it runs on UNIX systems. But X is OS-independent. Our

office equipment consists mostly of UNIX systems and X terminals, but we also have Macin-
tosh computers, PCs, and NeXT machines. X runs on all of them.

" We have one PC user who runs an X server on top of his Microsoft Windows environ-
ment. He runs PC applications locally, but also displays X windows alongside his

MS-Windows windows. He runs project management software on the PC, while he writes

and debugs UNIX programs and reads his mail using X applications.

" We have a diehard Macintosh user who runs an X server on top of his Macintosh operat-
ing system. He works primarily with Macintosh programs but occasionally needs to edit

troff files on a UNIX system and preview them with an X-based previewer.

" We have a NeXT user who runs a full X distribution on top of the NeXTStep environ-
ment. She uses the NeXT environment for its newsreader, dictionary, and mailer, while

she uses the X environment for compiling and testing X programs.

Each of these users has the advantage of keeping his or her favorite user environment, while

also maintaining the same connectivity that co-workers have with workstations or X termi-
nals.

Convenience is not the only advantage to running X on other operating systems. Probably the

most significant advantage is price. Offices can upgrade to X without having to invest in

new hardware. X server software might cost anywhere from $200 to $500, as opposed to

$1000 for a low-end X terminal. As for disadvantages ... X servers running on PCs and

Macs are noticeably slow compared to X terminals, sometimes painfully slow. PC monitors

are generally smaller than X terminal monitors and the resolution is much worse. And the

low-cost advantage isn't always valid, since a PC has to meet many requirements before an X

server can run with reasonable performance.

Currently, the PC and Macintosh users at our office run only X servers, relying on a UNIX

host to run clients for them to display. However, X clients and libraries have recently been

ported to the PC platform (notably with Quarterdeck's Desqview/X product), and Macintosh

X clients are also available. This gives us the ability also do it the other way around-that is,

to display display both PC and Macintosh programs on X terminals. The potential is

immense. X allows the sort of interconnectivity between operating systems that was previ-
ously limited largely to file sharing and remote logins.

X on Non-UNIX Platforms 271

Since there are so many products out there, this appendix only covers generalities about X

running on other platforms. For more information, look for the monthly posting on comp.win-

dows.x on X servers for PCs, Macs and Amigas. This document is also kept on

export.lcs.mit.edu in the file IcontriblXServers-NonUNIX.txt.Z.

C.1 X on DOS-based PCs

Most X software available on PCs running DOS is server software. There are two types of

PC X servers on the market: those that run on top of DOS directly, and those that run on top

of Microsoft Windows.

The X servers that run on top of DOS replace the entire desktop, and returning to DOS

usually requires exiting (or suspending) X. The X servers that run on top of Windows, on the

other hand, provide an integrated environment with access to both X and Microsoft Windows

applications simultaneously. Some Windows-based X servers also let you cut-and-paste

between the X environment and the Windows environment.

If the PC will be used primarily for running X-that is, as an economical X terminal-then

the DOS-based X servers are probably sufficient for your needs. If the PC will frequently be

used to run Windows applications as well, however, Windows-based X servers give you the

best of both worlds.

Desqview/X by Quarterdeck Office Systems provides the first distribution of both X clients

and servers for PCs running MS/DOS. Desqview/X runs on top of Quarterdeck's Desqview

multi-tasking GUI, integrating DOS applications, MS-Windows applications, and X applica-
tions. You can use Desqview/X to remotely execute PC applications as X clients and display

them on any connected X server.

C.1.1 Requirements for PC X Servers

We mentioned that PCs have to meet serveral requirements before they can run X servers. In

general, before you can run a PC X server, you have to meet the following requirements:

Processor The PC should have a 80386 or '486 CPU processor. (Some vendors also support

'286 machines, but no one recommends it.)

Monitor The PC needs an enhanced video display. Most vendors require either a VGA or

Super VGA display. Some vendors also support EGA and 8514 graphics. Note

that what the PC world calls a "high resolution" monitor still has lower resolu-
tion than a low-resolution X terminal.

Mouse The PC must have a two-button or three-button mouse.

Memory The PC must have 640K bytes of base memory, plus either 1.4 megabytes of

usable extended memory for DOS-based X servers, or 2 megabytes of memory

for Windows-based X servers.

272 The X Window System Administrator's Guide

Disk Space The PC must have a hard disk with at least 3 megabytes of free disk space

(sometimes up to 5 if you want all the fonts installed).

Networking The PC needs to have TCP/IP installed. Some vendors supply TCP/IP packaged

with the X server, but most of those that do charge extra for it. Furthermore,

beware that not all implementations of TCP/IP are equal-if you have other

applications on your PC that require TCP/IP, you may find that a vendor's propri-
etary version does not work properly with them. Networking packages supported

by most vendors are FTP Software's PC/TCP, Excelan's LAN Workplace Net-
work Software for PC DOS TCP/IP Transport System, and Sun Microsystem's

PC-NFS. (Other frequently supported TCP/IP packages are Beame & Whiteside

and WIN/TCP.)

Ethernet Card

The PC requires an Ethernet card supported by the selected TCP/IP package. Not

all Ethernet cards are equal, but most TCP/IP vendors support 3COM, DEC

DEPCA, Intel PC586, Ungermann-Bass NIC, Western Digital, and the XIRCOM

Pocket Ethernet Adapter.

Be aware of these requirements before you invest in PC X servers for your site. It may turn

out that it's cheaper to buy an X terminal.

C.1.2 Installing and Configuring PC X Servers

Installing and configuring the actual PC X servers themselves is generally a breeze. Most

packages are designed to be installed with one command, prompting for information as you

go along. The procedure varies from manufacturer to manufacturer, but you usually need to

supply the following in order to complete installation:

" Type of VGA monitor

" Resolution of VGA monitor

" Type of TCP/IP package (Note that if the one you have isn't listed as an option, you're out

of luck.)

" Name and IP address of PC. (You may have to give it the pathname of your hosts file on

the PC.)

" Name and IP address of the name server

" An access control list (if applicable). (Some products provide their own host-based secu-
rity by allowing only the listed hosts to connect to the server.)

In addition, you can choose the following preferences:

" Virtual screen, for X servers that support it. This means that the X server will pretend that

your screen is larger than it is, with a portion of the "virtual" screen hidden but accessible

by moving the mouse to that area. This is useful if you are running any applications

requiring a full-page display on a standard sized monitor.

X on Non-UNIX Platforms 273

" Session startup with XDMCP (for those that support it) or with remote execution. We

strongly recommend using XDMCP. See Section 3.3 for information on setting up xdm.

Most manufacturers will happily provide technical support if you have problems. We

strongly advise calling the manufacturer if you have problems getting a PC X server to work.

Manufacturers are the ones who is most likely to be aware of incompatibilities between their

product and other software you have installed on your PC.

As far as the network is concerned, if you can ftp or telnet to the host machine from the PC

using the software that came with your TCP/IP package, you don't have to do any other confi-
guring from the PC end for the X connection to work. On the host end, you need to enter the

PC's IP address into the network configuration, as you would for an X terminal; see Section

A.6 for more information.

Windows-based X servers may require some special network configuration before they will

run properly. The way this is done is heavily dependent on your vendor's implementation,

but it may involve changes in both the Windows configuration file win.ini and in

autoexec.bat.

C.1.3 Problems Particular to PC X Servers

The following are problems that we've encountered with PC X servers:

" Most PC X servers give you 4 bits per pixel for color displays. This confuses many X

programs. See Section 7.1.1.3 for more information.

" If you use remote execution to start your X session instead of xdm, you might have a spe-
cial problem with xrdb. Most PC X servers reset the server when the last X client has ter-

minated. This is fine, except that it puts you in a Catch-22 situation with xrdb: you want

xrdb to run and complete executing before you run any other clients (since you need to

have those resources loaded), but then the server resets, losing all the resources you just

loaded!

There are many solutions to this problem if you don't want to just use xdm. Probably the

easiest solution is to use the -retain option to xrdb. Another is to use rexec to run a script

rather than individual X clients. A third option is to start up a "dummy" client to keep

running while xrdb does its stuff, preferably one whose defaults you don't mind.

" Some PC TCP/IP products limit the number of connections allowed. For example, FTP

Software's PC/TCP limits the PC to four TCP/IP connections, which isn't enough for any

decent X session. You have to see your TCP/IP vendor's documentation for information

on how to increase this default. For PC/TCP, the solution is to start up the kernel program

in autoexec.bat using the -t option to specify the number of connections to allow. For

example, for our 3COM 3c501 Ethernet card, the command was:

3c501 /t 8

This increased the number of TCP/IP connections to eight.

274 The X Window System Administrator's Guide

C.2 X on Macintosh Computers

Full X distributions are available on Macintosh computers that run UNIX as well as the Mac-
intosh OS. Two UNIX products for the Macintosh are System-V based A/UX by Apple Com-
puter, and BSD-based MachTen from Tenon Intersystems.

If you don't have a full UNIX distribution, you can still run an X server, or set up the Macin-
tosh to run an X client. There are currently two X server products for the Macintosh: MacX

and eXodus. MacX is a Macintosh X server that is available from Apple Computer (it is also

bundled with their System V-based UNIX operating system, A/UX, as of version 2.0.1). eXo-

dus is a Macintosh X server distributed by White Pine Software.

There are also currently two X client products for the Macintosh: Planet X and Xgator.

Planet X is distributed by InterCon Systems and Xgator is distributed by Cayman Systems.

The advantage of a Macintosh X client is that you can run Macintosh programs on your X

terminal. Unfortunately, only one user can access the same Macintosh at a time, so the Mac-
intosh becomes disabled while the X client is running, and no other X users can start up the

client software while someone else is using it.

Macintosh-based X servers and clients alike require either a direct Ethernet connection or a

LocalTalk connection to a LocalTalk/IP gateway such as Cayman's GatorBox. The Commu-
nications Toolbox must also be installed (standard with System 7), with the MacTCP tool

installed and configured properly.* (eXodus works with DECnet as well as TCP/IP.)

C.2.1 Macintosh-based X Servers

Both X servers for the Macintosh, MacX and eXodus, can run either "rootless" or "rooted."

By "rootless," we mean that X clients open directly on the Macintosh desktop, intermixed

with other Macintosh windows. The Macintosh OS acts as a window manager for both X and

Macintosh windows. By "rooted", we mean that a typical X root window is active, either

enclosed entirely within a Macintosh window, or available through a pull-down menu. An X

window manager can be used in a rooted window (such as twm, mwm or olwm).

Some X programs may have problems with a rootless environment; to run those programs,

use rooted screens only. MacX defines 4 screens: screen 0 is rootless monochrome, screen 1

is rooted monochrome, screen 2 is rootless color, and screen 3 is rooted color. eXodus allows

you to define up to 6 screens as either rooted or rootless.

One of the most obvious problems with using a Macintosh as an X server is that the Macin-
tosh mouse only has one button. MacX uses the left-arrow and right-arrow keys to act as the

second and third mouse button (respectively). eXodus provides a little more flexibility for

configuring mouse behavior. In addition, there are third-party mice for Macintosh computers

that have two or three buttons.

*SLIP has also recently become available for the Macintosh.

X on Non-UNIX Platforms 275

(Users of OPEN LOOK programs can use the props utility to change the behavior of the

SELECT mouse button so that it brings up menus instead of selecting the default item when

pressed on a menu button. This is a good tip for all 1- and 2- button mouse users. Mac users

who also run olwm might also want to use props to turn off "pointer jumping," by which

olwm and olvwm move the mouse pointer automatically to follow scrollbars and pop-up

notices.)

You can get upgrades to MacX from aux.support.apple.com, in the Iaux.patcheslsup-
ported! MacX directory. You are encouraged to retrieve the MacX upgrades only if you

already have a legal license for MacX. (Only the server is redistributed on the ftp site, which

is useless without the fonts or a font conversion utility anyway.)

If you use either MacroMaker or QuickKeys on your Mac, it is strongly recommended that

you disable it. MacroMaker and QuickKeys translate keystrokes, conflicting with the X

server.

C.2.2 MacTCP and the Communications Toolbox

To run Macintosh X products, you generally need to have MacTCP running. MacTCP was

developed by Apple, and is distributed by several third-party vendors. It is also bundled with

MacX.

MacTCP runs under the Communications Toolbox. The following tips are important to note

when installing MacTCP:

1. You must install the Communications Toolbox correctly. Under System 7, the Commu-
nications Toolbox is already installed as part of the base OS distribution. If you need to

install the Communications Toolbox for a Macintosh that is not running System 7, how-
ever, you can't simply create a Communications folder under your System folder and

copy the MacTCP tool in there. You must run the installation utility that is bundled with

the Communications Toolbox.

If you don't install the Communications Toolbox correctly, you'll never get a message

that tells you it's improperly installed. Instead, you'll get an error message such as "No

Communications Tools Installed," which misleadingly implies that the Toolbox is

installed correctly but MacTCP isn't.

2. You need to copy the MacTCP tool to the new Communications folder within the system

folder, and copy the MacTCP and AdminTCP files to the System folder (under System 7,

these files reside in the Control Panels folder). We strongly recommend that you do not

copy these files from another Macintosh, but take them directly from the distribution flop-
pies. If you do copy them from another Mac, make sure not to take the MacTCP Prefer-
ences file.

3. Configure MacTCP using the AdminTCP control panel document. (AdminTCP is identi-
cal to MacTCP, except that you can use AdminTCP to lock the configuration after it is

properly configured.) Here is where you specify things like your IP address, subnet mask,

name server, etc.

4. Reboot and try running a MacTCP program.

276 The X Window System Administrator's Guide

5. Once you have confirmed that MacTCP is properly configured, put a lock on it and throw

the AdminTCP file in the trash.

A possible conflict with MacTCP is that if you are also running NCSA Telnet, you need to be

sure that you are running the version that is MacTCP-compatible. That means that you need

to install the version of NCSA Telnet entitled something like Telnet 2.4 - MacTCP. If you

don't do this, then after running an application that uses MacTCP, you won't be able to run

NCSA Telnet again until you reboot.

Notes on configuring MacTCP are available on sumex-aim.stanford.edu in the file linfo-

maclreportlmac-tcp-info.txt.

C.3 X on NeXT Computers

The NeXT machine does not technically belong in a chapter about non-UNIX machines, since

it is based on UNIX. The NeXT machine also has built-in Ethernet and TCP/IP, so a lot of the

issues for running X on PCs and Macs don't apply to the NeXT. However, we discuss them

here because NeXT X distributions are a different breed from other UNIX distributions, since

they have to deal with the NeXTStep interface.

A public domain R4 X distribution for the NeXT called XNeXT is available through anony-
mous ftp from cunixf.cc.columbia.edu. (Although an R5 server is currently available for the

NeXTstation Turbo, it is not yet available for other NeXT machines.)

There are also three commercial products for the NeXT. These are co-Xist by Pencom Soft-
ware, Cub'X by Cub'X Systemes (distributed in the U.S. by Interactive Technology), and

eXodus from White Pine Software. Cub'X and co-Xist are full X distributions including

servers, clients, and libraries, with OSF/Motif clients and libraries also available. eXodus is

just a server with a select group of clients.

All three commercial implementations meld X with the NeXTStep interface much in the way

Macintosh and Windows-based X servers do, in a "rootless" mode. XNeXT, on the other

hand, supplants the NeXTStep interface and requires you to "hot-key" to switch between the

two modes.

Regardless of what X server you choose to run on the NeXT, you should make sure that the

second mouse button is enabled in NeXTStep (through the Preferences application), or it

won't be available to the X server.

X on Non-UNIX Platforms 277

D

Resources and Keysym Mappings

Resources and keysym mappings are topics that the administrator needs to

be familiar with in order to configure applications and set up user environ-
ments. This appendix gives some background material on both of those top-
ics.

In This Appendix:

Using Resources 281

Resource Definition Syntax 281

Loose and Tight Bindings 282

The -name Command-line Option 283

xterm Versus XTerm 283

Where Resources Are Defined 285

Advantages of xrdb 287

Translation Tables 288

Defining Keys and Button Presses With xmodmap 290

Using xev to Learn Keysym Mappings 292

Related Documentation . .. 293

D

Resources and Keysym Mappings

Two important pieces to the X puzzle are resources and keysym mappings. Although these

two issues are unrelated, they both come into play when administrators have to debug user

environments or configure applications system-wide. This appendix gives some background

material on both of those topics.

Resources are covered in detail in Volume Three, X Window System User's Guide, by Valerie

Quercia and Tim O'Reilly (O'Reilly & Associates, 1990). Some of the material in this chap-
ter repeats what you'll find there, but we also give some useful tips and advanced informa-
tion for administrators. Even if you are familiar with how to use resources, you may want to

scan this appendix.

D.1 Using Resources

Resources are tricky to deal with, but understanding how they work is extremely important

for X administration. They are used for configuring not only everyday clients like xterm and

xclock, but also special clients such as window managers and the X Display Manager (xdm).

Resource syntax is used even by some X terminal vendors for configuring the X server

remotely. For these reasons, we think it's worth it to cover resource definition in depth.

D.1.1 Resource Definition Syntax

The syntax for defining resources can be quite complex, requiring some familiarity with

widget hierarchies. For our purposes, however, it will suffice to know that the syntax for a

simple resource follows the form:

name*variable: value

For example:

xt erm*background: cadetblue

xterm* foreground:deeppink

specifies that the client named xterm should use a background color of cadet blue and a fore-
ground color of deep pink. Similarly, you can specify a specific font with:

xterm*font:-schumacher-clean-bold-r-normal-16-160-75-75-c-80-iso8859-l

Resources and Keysym Mappings 281

If you want the client named xbiff always to appear in a certain spot, you can have:

xbiff*geometry:+750+900

Resource definitions can be commented out by preceding them with exclamation points (!),

and definitions can span multiple lines by using a backslash (\) to suppress newlines. Note

that if a resource cannot be properly interpreted-for example, if you forget the colon

between the variable name and the value-no error message is generated, but the entry is

simply ignored.

There are additional syntax rules if you are loading your resources directly into the server

with xrdb, since xrdb runs the file through the C pre-processor (cpp) as well. See Section

D.I.3 for more information.

D.1.1.1 Loose and Tight Bindings

The asterisk (*) between the name of the client and the variable to be specified means that

these definitions are using loose bindings, which are recommended for general use. The true

name for a resource, using tight bindings, might be something much more complicated, del-
imited with periods between each field, such as:

Xwebster.panel.display_scroller. display.alignment: Left

but in most situations, you can shorten this to:

Xwebster*alignment: Left

(One notable exception we make to this rule is with the XTerm*VT100 .geometry

resource definition. This is because whereas the VT100 widget for xterm uses the size of a

character for the window geometry, other widgets within xterm use pixels. If you specified

90x40 as the window size for all xterm widgets, xterm menus would appear unusually

small.)

A full explanation of the syntax of resource variables and their precedence can be found in

The X Window System Users Guide. For now, just know that when you use the asterisk in a

resource name, you may be matching several fields at once.

As you would expect, if you omit the client name and simply start the resource definition

with an asterisk, then all clients inherit that resource definition. That is, should you define a

global resource as:

*geonetry:+0+0

then all clients would appear at coordinates (0,0) by default.

However, the asterisk does not work like the shell wildcard it resembles. You cannot use it as

a general-purpose wildcard in resource definitions. The asterisk can't be used to match par-
tial names of fields, but only as a replacement for complete fields in the resource name. That

is, if you want both xterm and xtetris to appear with yellow backgrounds, you cannot simply

write:

xt*background :yellow

This resource definition would not affect xterm or xtetris; it would affect only a client with

the name xt. The reason for this is simple: you wouldn't want loosely-bound resources set for

282 The X Window System Administrator's Guide

the xcal calendar program, for example, to affect the behavior of the xcalc calculator pro-
gram as well.

A resource can be overridden by a more specific resource-for example, if you set the fol-
lowing resources:

xterm*background: blue

xterm. VT10 0.background: red

and then open a standard xterm window with the VT100 widget, the second declaration is

more specific than the first and the window background will appear in red. However, note

that any other xterm widgets, such as mainMenu, will appear with a blue background.

In R5, the question mark (?) character is introduced in resource names. A question mark in a

resource name represents exactly one field in a loose binding. Loose bindings using question

marks are considered to be more specific than bindings using only asterisks. Bindings with

question marks will therefore take precedence over other loose bindings.

D.1.1.2 The -name Command-line Option

An X toolkit option that has an important effect on which resources a client uses is the -name

option, which effectively changes the name of the client. By changing the name of the client,

it changes the name of the resources it accepts as well.

The possibilities available with the -name option are best illustrated by example. A user

might want to have xterm windows from a host called sapphire with a blue border, but win-
dows from host ruby with a red border. There are multiple ways of doing this, but one way

might be to define the following resources to be accessed by all xterm clients:

xterm-sapphire*BorderColor: blue

xterm-ruby*BorderColor: red

and then start up the windows with -name options, to give the window from machine ruby

the name xterm-ruby and the window from the machine sapphire the name xterm-sapphire.

% xterm -name xterm-ruby &

% xterm -name xterm-sapphire &

Although the -name option for the xterm client changes the string in the titlebar as well, it

should not be confused with the -title option, which changes the string in the titlebar but does

not change the name of the client itself.

D.1.1.3 xterm Versus XTerm

Although we'd like to avoid all the complexities of how resources are named, there is one

detail that we can't escape. Sometimes the name xterm is used in resource names, and

sometimes XTerm is used. Although this usage seems arbitrary, it isn't at all, and the two

terms should not be confused.

The name of your window is usually the name of the client; that is, if you just run xterm, the

window that comes up will have the name xterm. As described above, however, you can use

the -name toolkit option to change the name of the window. For example, if you are running

a console window (started with the -C option to xterm), you might want to name that window

Resources and Keysym Mappings 283

"CONSOLE." Similarly, if you are running a window with a particularly large geometry, you

might want to name it "bigxterm." You can start the clients with the -name option shown

above:

% xterm -name CONSOLE

% xterm -name bigxterm

and then use these names in resource specifications, such as:

CONSOLE*font: fixed

bigxterm*geometry: 14 0x6 0

Resources written with the name CONSOLE will apply only to windows with the name CON-
SOLE, and resources with then name bigxterm will apply only to windows with the name

bigxterm. However, although the bigxterm and CONSOLE windows have different names,

they can both be considered instances of a larger class, called XTerm. All windows begun

with the xterm client belong to the class XTerm, and any resources written for the name

XTerm will apply to all xterm windows, whether their name is CONSOLE, bigxterm, goofy,

dumbo, or just plain xterm. Note also that they would apply to the xterm-ruby and xterm-sap-

phire windows shown in the previous example. The following resource definitions:

XTerm* scrollbar:true

XTerm*font:-schumacher-clean-bold-r-normal-16-160-75-75-c-80-iso8859-l

would apply to both the CONSOLE and bigxterm windows, with one caveat: since the font

for CONSOLE is explicitly redefined to "fixed" as shown earlier, it will ignore the

XTerm* font definition, because when all else is equal (i.e., the bindings are the same),

instance specifications override class specifications.

Learning the Class and Instance Names

Knowing the class name for a given client is important in order to set client-specific

resources. The manual page should also tell you the class name; but another way to

learn the class name for a given window that is currently displayed is to use the xprop

client, which among other things lists a WM_CLASS category. In that category, the first

name listed is the name of the particular window, and the second name is the name of

the class. For example:

% xprop -name bigxterm

wn_CLASS(STRING) = "bigxterm", "XTerm"

twm users can also use the f. identify function to learn the class name for a window.

See the twm manpage for more information.

This is only one example of instances and classes. Within the application itself, classes are

used to group together several properties. For example, the xterm client considers the color of

the text, the pointer color, and the text cursor color to all be instances of the same class,

called Foreground. The following resource:

xterm*foreground: red

284 The X Window System Administrator's Guide

only changes the color of the text. But the resource:

xterm*Foreground: red

changes the color of the text, the pointer, and the text cursor all to the same color. This is

equivalent to:

xterm*foreground: red

xterm*pointerColor: red

xterm* cursorColor: red

D.1.2 Where Resources Are Defined

For each client application, there are dozens of available resources, and any number of ways

to specify them. The behavior you want may depend on what host the client is running on or

what X server is used, or just on your personal preferences. For that reason, a client's

resources can be set at the system level, at the server level, and at the user level. Therein lies

the problem: since there are so many ways resources can be defined, tracing their definitions

can be a frustrating task.

Upon startup, clients build the resource database. The resource manager searches for resource

variable definitions in multiple places and then passes those variable definitions back to the

client program. The resource manager typically searches in the following places for

resources, with later definitions overriding earlier ones:

1. System-wide application defaults, in lusrllib/Xlllapp-defauhsl directory. The name of

the file used for application-specific defaults is the name of the client class, not the client

itself. For example, lusrlliblXll/app-defaults/XTerm contains application defaults for the

xterm client. Note that the app-defaults resources are read only by clients that run on that

particular host, regardless of where they display.

2. User-specific per-application defaults, usually in a user's home directory. For example,

$HOME/XTerm on a given host is read by all xterm clients started on that host by a partic-
ular user. If your home directory is shared among multiple hosts, therefore, that single

XTerm file can specify resources used by all xterm clients on each of those host machines.

3. Host-specific defaults (not specific to an application), usually in a user's home directory.

For example, $HOMEI.Xdefaults-sapphire is read by all clients running on the machine

sapphire. 'This means, for example, that even if your home directory is shared among

multiple hosts, you can have xterm windows appear in one font on one machine, in

another font on another machine, and in reverse video on a third machine-simply by

having multiple Xdefaults-hostname files in your home directory. The name of the file

used for system-specific defaults can be redefined with the XENVIRONMENT environ-
ment variable; for example, if you were to set XENVIRONMENT to My.resources, the

resource manager would look in that file instead.

4. Resources loaded directly into the server (into the resource database) with the xrdb cli-
ent. This means that you can have all xterm clients from any host use the same fore-
ground, background, fonts, etc., without having to maintain $HOMElXdefaults-hostname

files for each machine, or multiple $HOMEIXTerm files if your home directory is not

Resources and Keysym Mappings 285

shared among multiple hosts. In general, the preferred way of specifying a reasonable

number of resources for a user is to use xrdb.

The xrdb client is typically run in the user's startup script, e.g., .xsession or .xinitrc, to

load a resource file (any filename can be used, but common names are .Xresources and

Xdefaults}. An administrator can also set up a default resource file for all users, to be

read by xrdb in the systemwide startup script (for sessions started with xdm, this would be

lusrlliblXlllxdmlXsession}. Note that resources loaded into the resource database are

still read only at client startup: a change will affect only subsequent clients, not clients

already running.

5. If no resources are loaded directly into the server (i.e., if xrdb has not been run), defaults

are read from a file called .Xdefaults, usually in the user's home directory. Note that this

means that clients run from different hosts may use different resources if your home

directory is not shared among machines.

6. Resources loaded directly on the command line, using the -xrm option.

In the list above, we say that some default files are "usually" read from a user's home direc-
tory. The directory in which you keep your application defaults is assumed to be your home

directory. The XAPPLRESDIR environment variable comes into play here-if you set XAP-

PLRESDIR to $HOMEIXstuff, the resource manager will look under that directory for client-

specific resource files (such as XTerrri). Other environment variables that affect where

resources are read from are XFILESEARCHPATH and XUSERFILESEARCHPATH.

Seeing Where Resources are Read (SunOS, Solaris, SVR4)

To see what resource files are read on client startup, try using the trace command on a

SunOS machine, or the truss command on a Solaris 2.0 or SVR4 machine. For example:

lmui@ruby% trace xtenn >& /tmp/xterm.trace

Then examine the resulting file:

gethostname ("", 1002) = 0

open ("/home/limi/.Xdefaults-ruby", 0, 017777777) = -1 ENOENT (No such

file or directory)

access ("/home/lmui/XTerm", 04) = -1 ENOENT (No such file or directory)

access ("/usr/lib/Xll/app-defaults/XTerm11, 04) = 0

stat ("/usr/lib/Xll/app-defaults/XTerm", Oxf7ffed90) = 0

open ("/usr/lib/Xll/app-defaults/XTerm", 0, 036734323664) = 4

stat ("/usr/lib/Xll/app-defaults/XTerm", Oxf7fff200) = 0

read (4, "*SirtpleMenu*BackingStore: NotUse".., 2800) = 2800

close (4) = 0

In the example, note that the user had resources loaded into the server, so $HOMEIXde-
faults was not opened. The only resource file in its path that it found and opened was the

system-wide app-defaultslXTerm file.

286 The X Window System Administrator's Guide

D.1.3 Advantages of xrdb

Using xrdb to load your resources directly into the X server is the preferred way of allocating

resources. Using xrdb helps to make things more consistent-clients run from a host on

which you have a different home directory (thus different $HOMEi.Xdefaults files) are

guaranteed to use the same resources if all your resources are kept directly in the server.

One of the most powerful things about xrdb is that it gives you special flexibility since it runs

the resource file through a C pre-processor (cpp by default). Using cpp means that you can

have #if def and ̂ include commands in your resource files, and that you can use the -D

and -U options to define and undefine symbols.

For example, you can call xrdb with the -D option to set defaults according to the current

hostname:

xrdb -D"hostname" -merge $HOME/.Xdefaults

This allows us to set up our .Xdefaults file with different defaults for different hosts. (On a

system that doesn't have the hostname command, you might use uname -n.) For example,

your .Xdefaults file might contain:

! ruby windows with red borders

#ifdef ruby

XTerm*bordercolor:red

#endif /*ruby*/

! sapphire windows with blue borders

ttifdef sapphire

XTerm*bordercolor:blue

#endif /*sapphire*/

You can also do some fancy stuff with setting colors or fonts "consistently." For example, if

you like to use fonts in the same family, you might do:

#define SMALL -schumacher-clean-medium-r-normal--10-100-75-75-c-80-iso8859-l

tdefine BIG -schumacher-clean-medium-r-normal-16-160-75-75-c-80-iso8859-l

smallxterm*Font: SMALL

Xconsole*Font: SMALL

bigxterm*Font: BIG

Under R5, xrdb becomes much more powerful since it now pre-defines several useful sym-
bols, such as COLOR.

#ifdef COLOR

xterm*background: yellow

#else

xterm*background: white

#endif

Other useful symbols are PLANES, HEIGHT, WIDTH, SERVERHOST, and CLIENTHOST.

A common mistake in defining resources is to try to comment out lines using an initial hash

Resources and Keysym Mappings 287

sign (#) instead of an exclamation point (!). If you then run the resource file through xrdb,

you'll get the error message "Unknown preprocessor directive" or "undefined

control."*

There are two ways to load resources using xrdb:

xrdb -load filename

The resources listed in the specified file replace all resources already loaded into

the server. All previous resources are erased. This is the default behavior of

xrdb.

xrdb -merge filename

The resources listed in the specified file are merged into the list of resources

already loaded into the server. New resource definitions with names matching

previous definitions will take precedence, but any resources that are not rede-
fined are retained.

The -query option to xrdb shows you all resources currently set for your server.

D.1.4 Translation Tables

An important type of resource for many applications is a translation, with which keystokes

and mouse buttons can be defined within an application. (Note that this is distinct from rede-
fining keystrokes and button presses at the server level, which is controlled by the xmodmap

client, described in Section D.2.) You can also use a translation table to change the action a

client performs when a particular event is reported.

Translations are best described by demonstrating their use in a common application. A client

that defines a lot of translations is xcalc. The xcalc window generally resembles the window

shown in Figure D-1.

Each of the buttons shown in the xcalc window is defined using a translation table. The app-

defaults/XCalc file defines the fourth row of keys on the standard xcalc keypad with the lines:

XCalc.ti.button!6.Label:PI

XCalc.ti.buttonl6.Translations:#override<BtnlUp>:pi()unset()

XCalc.ti.buttonl?.Label:x!

XCalc.ti.buttonl7.Translations:#override<BtnlUp>:factorial()unset()

XCalc.ti.buttonlS.Label: (

XCalc.ti.buttonlS.Translations:#override<BtnlUp>:leftParen()unset()

XCalc.ti.button!9.Label:)

XCalc.ti.button!9.Translations:#override<BtnlUp>:rightParen()unset()

XCalc.ti.button20.Label: /

XCalc.ti.button2 0.Translations:#override<BtnlUp>:divide()unset()

* Some X applications edit resource files, often removing comment lines. If you use such an application, you might

want to fake a comment using resource syntax:

Comment.linel: This is a comment

This takes advantage of the fact that invalid resources are simply ignored by applications.

288 The X Window System Administrator's Guide

Calculator

I DEG

Figure D-1. xcalc window

Each button is given its label (e.g., PI for the first button), followed by the event translation

when it is pressed. In the case of the 16th button, the internal function pi() is called, presum-
ably returning the value of n. (Since the foreground and background colors are reversed on

the button when it is initially pressed, the Athena Command widget action unset() is then

called, returning the button colors to the default.) For the 20th button, "/" is the label, and

pressing it calls the divide() function. Clearly a user could easily redefine the behavior of

each button on the xcalc keypad by switching the translations in their own resource files. (Be

sure to switch the labels too, though!)

Also in the XCalc application defaults file is a full translation table for interpreting keys-
trokes within the xcalc window:

XCalc.ti.bevel.screen.LCD.Translations:#replace\n\

Ctrl<Key>c:quit()\n\

Ctrl<Key>h:clear()\n\

None<Key>0:digit(0)\n\

None<Key>l:digit(1)\n\

<Key>KP_0:digit(0) \n\

<Key>KP_l:digit(1) \n\

<Key>KP_9:digit(9)\n\

<Key>KP_pivide: divide () \n\

<Key>.:decimal()\n\

<Key>+:add()\n\

<Key>-:subtract()\n\

<Key>*:multiply()\n\

<Key>/:divide()\n\

<Key>(:leftParen()\n\

<Key>):rightParen()\n\

<Key>!:factorial()\n\

Resources and Keysym Mappings 289

<Key>p:pi()\n\

<BtnlDown>,<BtnlUp>:toggle()selection()\n

These definitions allow you to type a "1" on the keyboard (either on the keypad or on the

main part of the keyboard) rather than clicking the correct button in the xcalc window. They

also allow keyboard shortcuts to many of the functions. You can access the divide () func-
tion by pressing a slash on either keyboard or keypad. You can get the value of n by pressing

a "p," and get the factorial of a number by pressing an exclamation mark. As you could

expect, this translation table can also be redefined at the user level.

Beware that translations are very specific about their syntax. A single space after one of the

trailing backslashes will cause the resource manager to ignore all subsequent translations,

with no error message reported.

For full information on the syntax for event translation resources, see the X Window System

User's Guide. For now, administrators should just be aware that translation tables are poten-
tially another tool in customizing a client for a user.

D.2 Defining Keys and Button Presses With xmodmap

An important piece to the X puzzle is filled by the xmodmap client. When the user performs

any action-such as typing a key or moving the mouse-the server sends a packet of infor-
mation to the client called an event. These events are then translated into actions by the cli-
ent. You can use the xmodmap client to effectively change the event that is reported to the

client.

Keysym mappings are mappings of keyboard events at the server level, before the event is

sent to the client. Keysyms are the symbols used for each key on the keyboard.

The X server maintains a key map table which contains a listing of keys on the keyboard and

how they should be interpreted. A client gets the keymap table from the server upon client

startup. In most cases, the keymap table is used to interpret keys literally-when you press

the letter "a," a key code is sent to the client which corresponds to the letter "a" in the key-

map table.

You can use the xmodmap client to reassign key codes within the keymap table, xmodmap

can therefore be used to redefine how a key is interpreted by the client. You probably

wouldn't want to translate the alphanumeric keys on the keyboard, but you may want to

translate others. For example, you might want to change the Backspace key to a Delete:

% xmodmap -e "keysym Backspace = Delete"

Another example is if you mistakingly hit the CAPS LOCK key a bit too often, you can dis-
able it completely. Some people might disable CAPS LOCK the low-tech way (by just remov-
ing the key from the keyboard!), but you can also render it harmless with the command:

% xmodmap -e "keysym Caps_Lock = "

effectively disabling the CAPS LOCK key entirely. Note that the symbol is now gone and

can't be redefined without using the hardware key code.

290 The X Window System Administrator's Guide

If you are a DVORAK typist, you can use xmodmap to translate every key on the keyboard so

your QWERTY keyboard behaves like a DVORAK keyboard.

If it ever seems that keystrokes are not working correctly, you can check current keysym set-
tings by running xmodmap with the -pk argument. Use the xev client if you need to determine

exactly what keycode a key generates on your display. There is also a public domain client

called xkeycaps that can be used to display the keysyms for selected keyboards, as shown in

Section B.4.

You can use xmodmap to add or remove keysyms, or even to redefine the keycode associated

with that keysym. You can also use it to redefine the mouse buttons, using the pointer key-
word. For example, to have the second and third mouse buttons switch places, you can enter:

lmui@opal % xmodmap -e "pointer = 132"

If you have a large number of keys to remap, you can put the commands in a file that is read

when your X session starts. For example, you create a file called Xmodmap:

! my .Xmodmap file

remove Lock = Caps_Lock

remove Control = Control_L

keysym Control_L = Caps_Lock

keysym Caps_Lock = Control_L

add Lock = Caps_Lock

add Control = Control_L

These commands effective reverse your Control and CAPS LOCK keys. (Control and CAPS

LOCK are "switched" on PC and Macintosh keyboards, which can be exceedingly frustrat-

ing.) This file can then be read automatically in a X startup script:

xset b 10 100 10

xrdb $HOME/.Xdefaults

xmodmap $ HOME/.Xmodmap

twm &

One danger of using xmodmap is that anything set with xmodmap might remain in effect after

you have logged out. This isn't a problem if you use the same X server every day, but beware

that if you use a co-worker's X terminal in his absence, he may come back complaining that

you broke his CAPS LOCK key. This might happen if you use xdm, since the server is not res-
tarted after every X session. On some X terminals, you can fix this problem by toggling

"retain X settings" on the X terminal setup menu.

The xkeycaps client, available on export.lcs.mit.edu, is a front-end to xmodmap. xkeycaps

has the default keysym mappings for several different types of keyboards. If your keyboard

is supported by xkeycaps, you can use it to reset your keysym mappings to its defaults.

Beware that if your keyboard is not identical to the one xkeycaps thinks you have, you will

quickly regret having done this.

Resources and Keysym Mappings 291

D.2.1 Using xev to Learn Keysym Mappings

The xev client is essential for debugging keysym mappings. When you start up xev, a small

"event window" appears. All events that take place within that window are shown on stan-
dard output. This means screenfuls of output, but it also means that when you type a key, you

can immediately trace the resulting event. For example, if you need to know what keysym is

sent when you type the Delete key on the keyboard, just run xev and type the Delete key in

the event window. Typical output might be:

Keypress event, serial 13, synthetic NO, window 0x800001,

root Ox8006d, subw 0x800002, time 1762968270, (50,36),

root:(190,176), state 0x0, keycode 27 (keysym Oxffff, Delete),

same_screen YES,

XLookupString gives 1 characters: "A?"

KeyRelease event, serial 15, synthetic NO, window 0x800001,

root Ox8006d, subw 0x800002, time 1762968336, (50,36),

root:(190,176),

state 0x0, keycode 27 (keysym Oxffff, Delete), same_screen YES,

XLookupString gives 1 characters: "A?"

This tells you that the Delete key (keycode 27), interpreted as keysym Oxffff, which is

Delete and character A ?. If you do an xmodmap -pk, you should see a line resembling:

27 Oxffff (Delete)

If you redefine the Delete key as the Backspace key and do the same exercise (run xev and

press the Delete key), you should see something like:

% xmodmap -e "keysym Delete = Backspace"

% xev

KeyPress event, serial 13, synthetic NO, window 0x800001,

root Ox8006d, subw 0x800002, time 1763440073, (44,39),

root:(240,235),

state 0x0, keycode 27 (keysym Oxff08, Backspace), same_screen

YES,

XLookupString gives 1 characters: "AH"

KeyRelease event, serial 15, synthetic NO, window 0x800001,

root Ox8006d, subw 0x800002, time 1763440139, (44,39),

root:(240,235),

state 0x0, keycode 27 (keysym Oxff08, Backspace), same_screen

YES,

XLookupString gives 1 characters: "AH"

This tells you that now the Delete key (still keycode 27) is being interpreted as hexadecimal

Oxf f 08, keysym Backspace, and generates character "AH." xmodmap -pk should show

you:

27 OxffOS (Backspace)

292 The X Window System Administrator's Guide

D.3 Related Documentation

The following X manual pages may be of interest: xrdb, xmodmap, xcalc, xcalc, xprop, xev,

and twm.

For more information, see X Window System User's Guide, by Valerie Quercia and Tim

O'Reilly (O'Reilly & Associates, 1990).

"Making Better Use of Resources," by Paul Davey, published in The X Resource, Issue 3,

O'Reilly & Associates, Inc., Summer 1992.

Resources and Keysym Mappings

E

The Components of X Products

This appendix lists the contents of various X distributions.

In This Appendix:

MITX11 Releases 298

OSF/Motif 299

Sun OpenWindows 300

DECWindows 301

AlXWindows 302

Silicon Graphics 302

A Guide to X11 Libraries303

The Components of X Products

This appendix provides an overview of some of the X products that are currently available.

We summarize various vendors' implementations, and discuss features that may help you to

identify them. The following implementations are covered:

" MIT Release 5

" OSF/Motif GUI

" Sun OpenWindows

" DECWindows

" AlXWindows

" Silicon Graphics

We also include a listing of some of the libraries that you may need in compiling software.

Some of these implementations may overlap and may contain components of several other

systems. For example, the Motif Toolkit is included in most current vendor-supplied installa-
tions. Several vendors also offer applications that can switch back and forth between

OSF/Motif and OPEN LOOK "modes."

With a complete distribution, X software is installed in the following directories.

Table E-1. X Distribution Directories

File Description

lusrlbinlXHI X executables, including clients, demos, and the X server.

lusrlliblXllI Server-specific software, including fonts, color data-

bases, and configuration files.

lusr/libl X programming libraries.

lusrlindudelXllI X header files and bitmaps.

lusrlmanl X manpages.

$HOMEI User-specific startup and resource files.

The Components of X Products 297

Keep in mind that your pathnames may differ, but the directories bin, lib, and include should

exist in some form.

The names of libraries vary depending on the system-SunOS shared libraries have a

.so.version or .sa.version extension, while Silicon Graphics shared libraries have a _s exten-
sion. A _p extension usually means that the library has been "profiled" for performance anal-
ysis. An extension such as _GO indicates it was built with a specific compiler option.

The following information should help you determine what type of installation you currently

have and what you would like to install.

E.1 MITX11 Releases

To the user, Release 5 looks very similar to Release 4. Most of the new features (such as the

font server, PEX, and the Xcms color system) are more visible to the X programmer and to

the administrator than they are to the user. As in R4, the include files for toolkits and related

files are grouped into subdirectories. (In previous MIT releases and some vendor implemen-
tations, the include files were in one directory.)

Table E-2. MIT X11R5 Files

File Description

lusrlbinlXUIX A link to a server executable. The server name usually starts

with a capital X. For example, Xsun, Xcfbpmax, and Xsgi are

the names for X servers. The X server will be present in com-
plete installations.

/usr/bin/Xll/twm Tab window manager. This is the default window manager in

MIT R4 and R5.

lusrlbinlXlllfs The font server program.

lusrlliblXHIPEXI A directory of files used by PEX, the 3-D extension to XI1.

This directory is new to R5.

lusrlliblXlllXKeysymDB A list of keysyms. This should be installed on any system

using OSF/Motif clients and MIT R5 (A different version of

this will file comes with MIT R5). Most Motif clients will fail

to work properly without this file.

lusrlliblXHIXErrorDB A mapping of X error codes to error messages.

lusrlliblXlllapp-defaultsI A directory of system-wide default resources for clients.

lusrlliblXlllconfigl A directory of configuration files copied from the source build

area. These configuration files are used by imake when build-
ing X programs after the X distribution is installed.

lusr/liblX111 fonts! A directory of fonts for the X server. If a local X server is not

present (i.e., if it is a client-only installation), this directory

may be unnecessary. The font server could also read fonts

from this directory over the network for a remote server.

/usr/lib/Xll/fs/ A directory of font server configuration files.

298 X Window System Administrator's Guide

Table E-2. MIT X11R5 Files (continued)

File Description

lusrlliblXlllxdml A directory of files required by the xdm client.

lusrlliblXlllrgbl orrgb* Files that contain the RGB database for color names.

lusrllibllibXll.a The main library of X functions (Xlib).

/usr/lib/libXaw.a The Athena Widget library.

/usrllibllibXmu.a The miscellaneous functions library.

ImrllibllibXt.a The X Toolkit functions library.

lusrlliblliboldX.a The backward compatibility library.

lusrllibllibXdmcp.a The XDMCP library (R4 and R5).

/usr/lib/lib*X*.a Other X libraries (release-dependent).

lusrlincludelXHI A directory of include files for compiling X programs.

lusrlincludelXl II bitmaps! A directory of bitmaps for random X programs.

$HOMEI Xdefaults User-specific resources for X clients.

$HOMEI Xresources User-specific resources for X resources.

SHOME/.twmrc The user-specific startup file for the twm window manager.

$HOMEI .xinitrc The user-specific startup file for starting the X server using

xinit.

$HOMEI .xsession The user-specific startup file for starting the X server using

xdm.

E.2 OSF/Motif

If you administer any systems that run OSF/Motif with X, the files shown in Table E-3 should

be present. Of the files listed, XKeysymDB is an important one that is often forgotten with

some Motif installations. This file maps the official OSF names for keysyms-most Motif

programs will complain and generate numerous error messages if they cannot find this file

when they start up. XKeysymDB is included in the MIT R5 release.

The names of the OSF/Motif libraries may be slightly different on your system, depending on

the release of XI1. Early releases of Motif (1.0.A) came with their own version of the X

toolkit library. Most people named this libXtm.a, libMXt.a, or something similar to avoid con-
fusion with the standard MIT libXt.a. If you are compiling a Motif program on one of these

systems, the Motif specific X Toolkit library needs to be linked with:

% cc -o motifthing motifthing.c -iXm -IXtm -1X11

The location of the Motif include files may also vary depending on the implementation. The

default location provided by OSF places them in I usrI include, but they may be in

lusrlincludelXl 1 instead. You may want them under lusrlincludelXl 1 in order to keep all X11

files in one place. If so, the alternate location has to be specified with the -/ flag to cc:

% cc -c -I/usr/include/Xll motifthing.c

The Components of X Products 299

Motif programs include the header files with the Motif subdirectory prepended:

#include <Xm/Xm.h>

The complete pathname of this file becomes lusrlincludelXlllXmlXm.h.

Table E-3. Motif Files (Motif 1.1.x)

File Description

lusrlbinlXlllmwm The Motif Window Manager.

lusrlbinlXllluil The UIL (User Interface Language) compiler.

lusrlbinlXlllmre The Motif Resource Editor (this is officially a "demo,"

but it is potentially quite useful-only present in version

1.x).

lusrllibllibMrm.a The Motif resource manager library.

lusrllibllibXm.a The Motif toolkit library.

lusrllib/libUil.a The Motif UIL library.

lusrlliblXlllXKeysymDB A database of special OSF keysyms for Motif applica-
tions.

lusrlliblXl 1/app-defaults/Mwm System-wide default resources for mwm.

lusrlliblXl llsystem.mwmrc The default startup file for mwm.

lusrlliblXllluidl A directory of compiled UIL files for clients.

lusr/include/Xml A directory of Motif toolkit include files.

lusrlincludelMrml A directory of Motif resource manager include files.

lusrlincludeluill A directory of Motif UIL include files.

$HOME/.mwmrc The user-specific startup file for mwm.

E.3 Sun OpenWindows

The OPEN LOOK GUI is currently packaged as part of the OpenWindows environment on

Sun systems. OpenWindows is laid out differently from the MIT X installation: all software

is installed under /usr/openwin, as listed in Table E-4.

Table E-4. OpenWindows Files (Sun4, SunOS 4.1.1)

File Description

bin/openwin The server start-up script.

bin/ A combination of X, OpenWindows, and NeWS clients.

demo/ A combination of X, OpenWindows, and NeWS demo programs (including

a demo xterm).

etc/ Configuration information for NeWS.

include/ Header files for X and OpenWindows.

300 X Window System Administrator's Guide

Table E-4. OpenWindows Files (Sun4, SunOS 4.1.1) (continued)

File Description

lib/ Server-specific software for OpenWindows.

man/ Man pages for X and OpenWindows. (You may have to do "setenv MAN-

PATH lusrlman:lusrlopenwinlman" for the man command to find them.)

Table E-5 summarizes the more important OPEN LOOK files.

Table E-5. OPEN LOOK Files

File Description

lusrlopenwinlbinlxnews The OpenWindows server.

/usr/openwin/bin/olwm The OPEN LOOK Window Manager.

/usr/openwin/bin/props The resource editor (similar to Motif's mre).

/usr/openwin/lib/lib* Programming libraries for OPEN LOOK functions.

/ usr/openwin/lib/openwin-* System-wide default files.

$HOME/.openwin-* Per-user default files.

E.4 DECWindows

DECWindows is moving towards a Motif-like environment, but is still different in many

ways. Most of it should be quite familiar to someone used to a MIT distribution. The MIT-

derived Xll is available as an unsupported subset that can co-exist with the DECWindows

environment.

Table E-6. DECWindows Files (DecStation, Ultrix 4.2)

Files Description

/usr/bin/Xws The DECwindows server.

lusrlbinldxwm The DECwindows window manager.

lusrlbinldxsession The DECwindows session manager.

/usr/bin/Xprompter The login window tool (similar to xdm).

lusrlbinldxuil The DECwindows User Interface Language compiler.

lusrlliblXllluidl A directory of compiled UIL files.

lusrlincludelXllI A directory of both of DECwindows and MIT header files.

lusrlindudelmitlXllI A directory of vanilla MIT header files.

lusrllibllibXext.a The DECwindows version of libXext.

lusrllibllibXext-mit.a The vanilla MIT libXext.

The Components ofX Products 301

E.5 AlXWindows

AlXWindows is quite different than the MIT distribution and it may take some work to get it

to look like the MIT environment. The names and options of standard clients have been

changed from what you are used to, and the layout of the software is quite different than

other vendors' implementations. The current version of AIX, 3.2, is also missing some cli-
ents you would expect when using an MIT distribution. The layout of libraries and include

files is relatively standard.

Table E-7. AlXWindows Files (RS/6000, AIX 3.2)

Files Description

lusrlbinlXHIX The AlXWindows server.

lusr/binlXl 1 lm\vm The Motif window manager.

lusrlbinlXlllxdt The AlXWindows desktop.

lusrlbinlXlliaixterm The AlXWindows version ofxterm.

lusrlbiniinfo The InfoExplorer hypertext X documentation browser.

/usr/include/Xll/*.h AlXWindows header files.

lusr/includelXml*.h Motif 1.x header files.

/usrl include/Mrml*.h

/usrl include! uil/*.h

/usrllibllib*.a Standard XI1 R4 and Motif 1.x libraries.

lusrlliblXUI Standard XI \R4lib files.

lusr/lpplinfolXl 1 font si A directory of fonts for the InfoExplorer utility.

E.6 Silicon Graphics

SGI has had a decent NeWS implementation for several years, working together with the SGI

Graphics Library system (GL). X functionality was added over time in a piecemeal fashion.

With the release of IRIX 4.0, XI1 is an integral part of the server, and works well along with

GL and NeWS. The clients are based on OSF/Motif, which comes with the OS.

Table E-8. Graphics X11 Files (Indigo, IRIX 4.0)

Files Description

lusr/binlXll/Xsgi A combined Xll/GL/NeWS server.

/usr/bin/Xll/4Dwm A mwm-like window manager.

lusrlbinlXllltoolchest A "desktop" manager client.

/usrlliblXHI A directory of XI1 R4 "lib" files.

302 X Window System Administrator's Guide

Table E-8. Graphics X11 Files (Indigo, IRIX 4.0) (continued)

Files Description

/usr/include/Xll/ A directory of both XI1 R4 and Motif 1.1 header files.

lusrllibllib* XI1 R4 and Motif 1.1 libraries.

E.7 A Guide to X11 Libraries

When compiling software, you may suddenly discover that it requires a library you've never

heard of. In your XI1 adventures, you may see references to the following libraries.

Library Description

libXll.a Xlib

HbXaw.a Athena widget set

HbXext.a Extensions to Xlib

libXt.a Toolkit

libXau.a Authorization

libXdmcp.a XDMCP

libXinput.a Input methods

libXmu.a Misc Utilities

liboldX.a Backwards compatibility library for X10

libphigs.a R5 phigs

libXm.a Motif widgets

libUil.a Motif user interface language

libMrm.a Motif resource manager

HbXtm.a libMXt.a Names for libXt when Motif (1.0.A) required its own version

libMu.a MIT Motif utilities library (sometimes found in software from MIT

Athena project)

libXw.a HP Widgets in R3 and R4 contrib

The Components of X Products 303

Getting XI1

This appendix lists where you can get the sources and patches to both

Release 4 and Release 5 of X11.

In This Appendix:

Where Can I Get X11R5? 307

Where Can I Get Patches to X11R5? 311

Where Can IGetX11R4?311

Getting X11

The information in this chapter is taken from the comp.windows.x Frequently Asked Ques-
tions List. We provide it here for your convenience, but we encourage you to get the latest

version of the FAQ (as described in Section A.2) for more updated information.

WhereCanlGetX11R5?

Information about MIT's distribution of the sources on 6250bpi and QIC-24 tape and its dis-
tribution of hardcopy of the documents is available from Software Center, Technology

Licensing Office, Massachusetts Institute of Technology, 28 Carleton Street, Room E32-300,

Cambridge MA 02142-1324, phone: 617-258-8330.

You will need about 100Mb of disk space to hold all of Core and 140MB to hold the Contrib

software donated by individuals and companies.

PLEASE use a site that is close to you in the network.

Note that the RELEASE notes are generally available separately in the same directory; the

notes list changes from previous versions of X and offer a guide to the distribution.

Table F-1. North America Anonymous ftp

State Name Directory Address

California gatekeeper.dec.com publXUIRS 16.1.0.2

California soda.berkeley.edu publXHR5 128.32.131.179

Indiana mordred. cs .pur due . edu publXHIRS 128.10.2.2

Maryland ftp.brl.mil publXHR5 128.63.16.158

(good for MILNET sites)

Massachusetts crl.dec.com publXll/R5 192.58.206.2

Massachusetts export.lcs.mit.edu pubIRS 18.24.0.12

(crl.dec.com is better)

Michigan merit.edu publXllRS 35.1.1.42

Missouri wuarchive.wustl.edu packageslXURS 128.252.135.4

Montana ftp.cs.montana.edu pub/X.VURS 192.31.215.202

New Mexico pprg.eece.unm.edu publdistlXURS 129.24.24.10

New York azure.acsu.bujfalo.edu publXURS 128.205.7.6

Getting X11 307

Table F-1. North America Anonymous ftp (continued)

State Name Directory Address

North Carolina cs.duke.edu dist/sourceslXl 1R5 128.109.140.1

Ohio ftp.cis.ohio-state.edu publX.VURS 128.146.8.52

Ontario ftp.cs.utoronto.ca pub/XllRS 128.100.1.105

Washington DC xllr5-a.uu.net X/R5 192.48.96.12

Washington DC xllr5-b.uu.net X/R5 137.39.1.12

Table F-2. Europe/Middle East/Australia Anonymous ftp

Country Name Directory IP Address

Australia munnari.oz.au X.V11/R5 128.250.1.21

Denmark freja.diku.dk publXHR5 129.142.96.1

United Kingdom src.doc.ic.ac.uk graphicslX.VHR5 146.169.3.7

hpb.mcc.ac.uk publXllrS 130.88.200.7

Finland nic.funet.fi pub/Xll/R5 128.214.6.100

France nuri.inria.fr X/X11R5 128.93.1.26

Germany ftp.germany.eu.net publXlllXURS 192.76.144.129

Israel cs.huji.ac.il pub/XllR5 132.65.6.5

Italy ghost.sm.dsi.unimi.it publXURS 149.132.2.1

Netherlands archive.eu.net \vindowslXIR5 192.16.202.1

Norway ugle.unit.no publXHR5 129.241.1.97

Norway nac.no pub/XllR5 129.240.2.40

Switzerland nic.switch.ch softwarelXURS 130.59.1.40

Table F-3. Japan Anonymous ftp

Region Name Directory IP Address

Kanagawa sh.wide.ad.jp X11R5 133.4.11.11

Kwansai ftp.ics.osaka-u.ac.jp X11R5 133.1.12.30

Kyushu wnoc-fuk.wide.ad.jp X11R5 133.4.14.3

TISN utsun.s.u-tokyo.ac.jp X11R5 133.11.11.11

Tokyo kerr. iwanami.co.jp X11R5 133.235.128.1

Tokyo scslwide.sony . co .jp publXHR5 133.138.199.1

308 X Window System Administrator's Guide

Table F-4. UUCP

Name Comment Directory

uunet for UUNET customers 'IXIR5

decwrl existing neighbors only -IpublXllIRS

osu-cis (not online until early September) '/X.V11R5

WJanon (host: watjo.swp.wj.com) -IXIX11R5I

Modem: Telebit TB2500 (PEP, V.32, etc)

Systems or L.sys suggested/approximate

entry:

WJanon Any ACU 19200

1-408-435-0240 ""\login: WJanon

utai existing neighbors only -Iftplpub/XllRS

hp4nl Netherlands only ~uucp/pub/windows/X/R5

Table F-5. Other File Transfer Methods

Method Region Comments

NFS Missouri wuar chive .wustl.edu

I archive!packagesIX 11R5

128.252.135.4

mount point: I archive

AFS Pennsylvania lafs/grand.central.org/pub/Xl 1R5

NIFTP United Kingdom uk.ac.ic.doc.src

(hhcp, cpf, fcp, <X.V11R5>

00000510200001

user "guest"

anon FTAM United Kingdom 000005102000 (Janet)

X.V11R5

146.169.3.7 (Internet)

204334504108 (IXI)

ACSNet Australia munnari.oz (fetchfile)

X.V11/R5

Please fetch only one file at a time, after check-
ing that a copy is not available at a closer site.

[9/2/91; updated forcontrib 10/91]

Anyone in Europe can get a copy of the MIT X.V11R5 distribution, including the core and

contributed software and all official patches, free of charge. The only requirement is to agree

to return the tapes, or equivalent new tapes. Only QIC and TK format cartridges can be pro-
vided. Contact: Jamie Watson, Adasoft AG, Nesslerenweg 104, 3084 Wabern, Switzerland.

Tel: +41 31 961.35.70 or +41 62 61.41.21; Fax: +41 62 61.41.30; jw@adasoft.ch.

Getting X11 309

UK sites can obtain XI1 through the UKUUG Software Distribution Service, from the Depart-
ment of Computing, Imperial College, London, in several tape formats. You may also obtain

the source via Janet (and therefore PSS) using Niftp (Host: uk.ac.ic.doc.src Name: guest

Password: your_email_address). Queries should be directed to Lee McLoughlin,

071-589-5111#5037, or to info-server@doc.ic.ac.uk or ukuug-soft@uk.ac.ic.doc (send a Sub-
ject line of "wanted". Also offered are copies of comp.sources.x, the export.lcs.mit.edu con-

trib and doc areas and most other announced freely distributable packages.

XI1R5 and XI1R4 source along with XI1R5 contrib code, prebuilt X binaries for major plat-
forms, and source code examples from O'Reilly's books is available on an ISO-9660-format

CD-ROM from O'Reilly & Associates, [as of 3/92].

X11R5 source is available on ISO-9660-format CD-ROM for members of the Japan Unix

Society from Hiroaki Obata, obata@jrd.dec.com.

XI1R5 source along with GNU source, the comp.sources.x archives, and SPARC binaries is

available on an ISO-9660-format CD-ROM from PDQ Software, 510-947-5996 (or Robert A.

Bruce, rab@sprite.Berkeley.EDU).

XI1R5 source is available from Automata Design Associates, +1 215-646-4894.

Various users' groups (e.g., SUG) offer X sources cheaply, typically on CD-ROM.

Source for the Andrew User Interface System 5.1 and binaries for common systems are avail-
able on CD-ROM. Information: info-andrew-requests@andrew.cmu.edu, 412-268-6710, fax

412-621-8081.

Binaries for XI1R5, with shared libXl 1 and libXmu, for A/UX 2.0.1 are now available from

wuarchive.wustl.edu:/archive/systems/aux/XHR5. Patches for X11R5 compiled with gcc

(but not shared libraries) are also available. [John L. Coolidge (coolidge@cs.uiuc.edu,

10/91)]

Binaries by Rich Kaul (kaul@ee.eng.ohio-state.edu) for the Sun386i running SunOS 4.0.2

are available on dsinc.dsi.com (please only after-hours USA EST).

Binaries for the Sun386i are available from compaq.com (131.168.249.254) in

pub/sun-386i/sources and from vernam.cs.uwm.edu (129.89.9.117).

A binary tree for the Next by Douglas Scott (doug@foxtrot.ccmrc.ucsb.edu) is on fox-

trot.ccmrc.ucsb.edu; it is missing the server, though.

Binaries for the Sun386i are in vernam.cs.uwm.edu:/sun386i.

Binaries for the HP-PA are on hpcvaaz.cv.hp.com (15.255.72.15).

Also, Binaries are available from Unipalm (+44 954 211797, xtech@unipalm.co.uk), proba-
bly for the Sun platforms.

310 x Window System Administrator's Guide

F.2 Where Can I Get Patches to X11R5?

The release of new public patches by the MIT X Consortium is announced in the comp.win-
dows, x.announce newsgroup.

Patches themselves are available via ftp from export and from other sites from which XI1 is

available. They are now also distributed through the newsgroup comp.sources.x. Some source

re-sellers may be including patches in their source distributions of XI1.

People without ftp access can use the xstuff mail server. It now has 17 patches for X11R5

[8/92]. Send to xstuff@expo.lcs.mit.edu the Subject line:

send fixes #

where # is the name of the patch and is usually just the number of the patch.

Here are a few complications:

1. Fix 5 is in four parts; you need to request "5a", "5b", "5c" and "5d" separately

2. The file sunGX.uu, which was part of an earlier patch, was re-released with patch 7

3. Fix 8 is in two parts: "8a" and "8b"

4. Fix 13 is in three parts: "13a", "13b", and "13c"

5. Fix 16 is in two parts: "16a" and "16b"

F.3 WhereCanlGetX11R4?

Integrated Computer Solutions, Inc., ships X11R4 on half-inch, quarter-inch, and TK50 for-
mats. Call 617-621-0060 for ordering information.

The Free Software Foundation (617-876-3296) sells X11R4 on half-inch tapes and on

QIC-24 cartridges.

Yaser Doleh (doleh@math-cs.kent.EDU; P.O. Box 1301, Kent, OH 44240) is making XI1R4

available on HP format tapes, 16 track, and Sun cartridges. [2/90]

European sites can obtain a free XI1R4 distribution from Jamie Watson, who may be reached

at chx400!pan!jw or jw@pan.uu.ch. [10/90]

Non Standard Logics (+33 (1) 43 36 77 50; requests@nsl.fr) makes source available.

IXI Limited (+44 223 462 131) is selling XI1R4 source on quarter-inch cartridge formats and

on 5.25" and 3.5" floppy, with other formats available on request. [IXI, 2/90]

Virtual Technologies (703-430-9247) provides the entire X11R4 compressed source release

on a single QIC-24 quarter-inch cartridge and also on 1.2 meg or 1.44 meg floppies upon

request. [Conor Cahill (cpcahil@virtech.uu.net) 2/90]

Young Minds (714-335-1350) makes the R4 and GNU distributions available on a full-text-

indexed CD-ROM.

Getting X11 311

[Note that some distributions are media-only and do not include docs.]

XI1R4 is ftp-able from export.lcs.mit.edu; these sites are preferable, and are more direct:

Location Name Address Directory

(1) West USA gatekeeper.dec.com 16.1.0.2 publXHIR4

Central USA mordred.cs.purdue.edu 128.10.2.2 publXUIR4

(2) Central USA giza.cis.ohio-state.edu 128.146.8.61 pub/X.VHR4

Southeast USA uunet.uu.net 192.48.96.2 XIR4

(3) Northeast USA crl.dec.com 192.58.206.2 publXlllR4

(4) UK Janet src.doc.ic.ac.uk 129.31.81.36 X.V11R4

UK niftp uk.ac.ic.doc.src <XV11R4>

(5) Australia munnari.oz.au 128.250.1.21 X.V11IR4

The giza.cis.ohio-state.edu site, in particular, is known to have much of the contrib stuff that

can be found on export.

The release is available to DEC Easynet sites as CRL::"/pub/Xl 1/R4".

Sites in Australia may contact this address: ftp.Adelaide.EDU.AU [129.127.40.3] and check

the directory pub/X/R4. The machine shadows export and archives comp.sources.x. (Mark

Prior, mrp@ucs.adelaide.edu.au, 5/90)

Note: a much more complete list is distributed regularly by Dan Heller (argv@sun.com) as

part of the introductory postings to comp.sources.x.

A set of X11R4 binaries built by Tom Roell (roell@informatik.tu-muenchen.de) for the

386/ix will available from export.lcs.mit.edu in /contrib and in /pub/i386/XHR4 from

131.159.8.35 in Europe. Stephen Hite (shite@sinkhole.unf.edu) can also distribute to folks

without ftp facilities via disks sent SASE; contact him for USmail and shipping details.

[12/90] In addition, the binaries are available via uucp from szebra [1-408-739-1520, TB+

(PEP); ogin:nuucp sword:nuucp] in /usr2/xbbs/bbs/x. In addition, the source is on zok in /usr-

X/i386.R4server/. [2/91] In addition, if you are in the U.S., the latest SVR4 binary (April 15),

patches, and fonts are available on piggy.ucsb.edu (128.111.72.50) in the directory

/pub/X386, same filenames as above. (Please use after 6pm Pacific, as these are large files.)

[5/91]

A set of HP 9000/800 binaries is available on hpcvaaz.cv.hp.com (15.255.72.15) as

"ftp/pub/MitXl !R4/libs.x800.Z. [2/91]

A set of X11R4 binaries for the NeXT 2.x have been made available by Howie Kaye on

cunixf.cc.columbia.edu

A set of binaries by John Coolidge (coolidge@cs.uiuc.edu) for the Mac running A/UX 2.0 is

available from wuarchive.wustl.edu in the file (/archive/systems/aux/XHR4/Xupdate2.tar.Z).

Also in XI lR4/diffs is a set of patches for making XI1R4 with shared libraries with mkshlib.

A complete distribution of SCO X11R4 binaries by Baruch Cochavy (blue@techunix.techn-

ion.ac.il) can be found on uunet. The server is Roell's X386 Lib, compiled for ET4000 based

SVGA boards.

312 X Window System Administrator's Guide

G

Error Messages

This appendix lists error messages that you might get when running X cli-
ents. We not only list errors from X programs but also UNIX errors that you

often encounter when running or compiling X programs.

In This Appendix:

X Errors 315

UNIX Errors 318

Compilation Errors 320

G

Error Messages

This appendix lists error messages that you might get when running X clients. This appendix

is broken up into the following categories:

X Errors Errors that you may get from X clients.

UNIX Errors Errors that you may get when running X clients, but which reflect

problems more closely associated with UNIX.

Compilation Errors Errors that you may get when compiling programs under UNIX.

G.1 X Errors

Can't Open display

or

Unable to open display

There is a problem with the DISPLAY variable or with the display specified using the -dis-
play option. The DISPLAY variable may not be set properly, or the specified host may be

unknown. The host may also not have access to the specified display. Correct the setting of

the DISPLAY variable, or extend server access as appropriate using either xhost orxauth. See

Section 2.3.1 for more information on setting the DISPLAY variable, or Chapter 4 for infor-
mation on server access control.

(This particular error is actually generated by the application, so it may not be worded

exactly like this. "Can't open display" is the wording generated by Xt-based applications.)

Unknown preprocessor directive

or

n: undefined control

You might get this error from xrdb if you used the "#" character to comment out a line in a

resource file. For a resource file, replace the "#" with a "!", or use a dummy resource entry.

See Section D.I.3 for more information.

Error Messages 315

X Error of failed request: BadValue (integer parameter out of range for operation)

Major opcode of failed request: 51 (X SetFontPath)

Minor opcode of failed request: 0

Resource id in failed request: 0x4

Serial number of failed request: 4

Current serial number in output stream: 6

Error from the xset client when you try to add a new element to the font path. This could be

because of any of the following problems:

" The new font directory doesn't exist or it not readable by the server. This could be a

filesystem permissions problem or an NFS access problem.

" The fonts.dir file could be missing or damaged.

" If you try to add a font server to the font path, the font server could have died or may not

be running on the specified port number.

See Section 5.1.4 for more information.

failed to set default font path '/usr/lib X11/fonts misc/,/usr/lib/X11/fonts/Speedo/,

/usr/lib/X11/fonts/75dpi/,/usr/lib/X11/fonts/100dpi/'

Fatal server error:

could not open default font 'fixed'

You may get this error when starting the X server. One or more of the default font directories

is missing, unreadable or has something wrong with the fonts.dir file. Check that each of

those directories is readable. You might also get this error if a font server is part of the font

path and is not currently running. You can override the default font path using the -fp option

to the X server command; see Section 5.1.4 for more information.

Warning: Cannot convert string " ... "to type FontStruct

You cannot access the specified font, either because it doesn't exist or because the server

does not have read access to it. See Section 5.1.4 for more information.

Warning: Color name ... is not defined in server database

You have specified a color to an application that is not defined. Either the color name was

misspelt, or it was not properly installed for the server. See Chapter 6 for more information.

X Toolkit Warning: Cannot allocate colormap entry for White

X Toolkit Warning: Cannot allocate colormap entry for Black

X Toolkit Warning: Cannot allocate colormap entry for white

X Toolkit Warning: Cannot allocate colormap entry for black

Your color database is corrupted. You need to recreate the color database; see Section 6.1.3

for more information.

316 The X Window System Administrator's Guide

Xlib: connection to "hostname:Q.Q" refused by server

Xlib: Client is not authorized to connect to server

Error: Can't Open display

The client does not have permission to connect to the specified server. Either host-based or

user-based access control is in effect. You need to add the host to the xhost list for that

server, or you need to copy the code to your .Xauthority file on this host using xauth, or (if

you are using SUN-DES-1 security) you need to be added to the xhost list on the server. See

Chapter 4 for more information.

Warning: Widget class nnn version mismatch (recompilation needed):

widget 11004 vs. intrinsics 11003.

You are probably mixing MIT clients with Sun OpenWindows libraries or vice versa. You

should specify the right libraries for the client:

% (setenv LD_LIBRARY_PATH /usr/openwin/lib; OW-client)

% (setenv LD_LIBRARY_PATH /usr/lib; MIT-client)

Fatal server bug! no screens found.

You might get this error when starting a Sun X server, where you can use the -dev option to

specify a different device (such as -dev IdevlcgfourO -dev Idevlbwtwol). A device listed

with the -dev option is incorrect, or the device may be missing from /dev.

mwm: Invalid accelerator specification on line n of specification string

mwm: Invalid accelerator specification on line m of configuration file

The Motif Window Manager mwm uses function keys which your server does not have

defined. You should define the function key using xmodmap, or alter your .mwmrc to use a

different key.

unknown keysym osfDown ...

Motif-based applications (such as mwm) require the proper installation of the file

lusrlliblXlllXKeysymDB. This file comes with most Motif distributions and is also present in

X11R5.

Error Binding TCP socket

You may get this error when starting the X server on a workstation display. The server will

try to create the socket in ItmplXll-unixl'. If the limp directory is not writable, the X server

will fail.

Error Messages 317

XIO: fatal IO error 32 ...

The connection was probably broken by a ...

Older X Toolkit clients don't handle orderly shutdown well. Modem window managers use

the ICCCM to terminate a client; older versions of clients will complain when they are killed

by the window manager, instead of going away quietly like they are supposed to.

G.2 UNIX Errors

Permission denied.

You may get this error if you're running an X client from a remote host. This is a rsh error,

not an X error: the local host needs to be in the remote host's hosts.equiv, or in the user's

.rhosts file. See Section 2.3.4 for more information.

hostname: hostname: No such file or directory

or

hostname: hostname: cannot open

You may get this error if you're running an X client from a remote host. You are probably

trying to use rsh, but are running the restricted shell instead of the remote shell. You should

change your path to get the right one. See Section 2.3.4.1 for more information.

stty: Operation not supported on socket

You may get this error if you're running an X client from a remote host. If you are using rsh,

the .cshrc file on the remote host probably has an interactive command in it (such as stty).

Type xterm unknown

or

emacs: Terminal type xterm is not defined.

or

xterm: Unknown terminal type

I don't know what kind of terminal you are on - all I have is 'xterm'.

The xterm entry is missing from the termcap or terminfo database. You need to install the

entry; see Section 8.4.4 for more information.

Not login shell.

You might get this error in an xterm window when you try to run logout instead of exit to

close the window, xterm does not open login shells by default. To start xterm as a login shell,

use the -Is option to xterm, or set the xterm*loginShell resource to true. To exit a

shell that isn't a login shell, use exit instead of logout.

318 The X Window System Administrator's Guide

There are stopped jobs

You are trying to exit a shell without properly exiting or killing all jobs started in that shell.

You should properly quit the jobs before exiting the shell-use the jobs command for a list

of your stopped jobs.

command: Command not found.

You may get this error if the requested command isn't in your search path, or if it doesn't

exist. Make sure the command is installed and make sure its path is in your search path.

command-Permission denied.

You may get this error if the command is in your search path but you don't have execute per-
mission for it.

Host is unreachable

no network route is known to that host

You may get this error when there is a routing problem-the gateway is probably down or

misconfigured.

Connection timed out

You tried to connect to a host that is currently down or otherwise unreachable.

Id.so: libX11.S0.4: not found

You might get this message if you are running SunOS. Either the shared library cache is out

of date, the shared library is missing, or the shared library is not in your LD_LIBRARY_PATH.

You should either set the LD_LIBRARY_PATH environment variable to the appropriate value,

run Idconfig to update the library cache, or install the missing library. See Section 8.4.2 for

more information.

No more processes

Your host has reached its process limit. You should increase the number of processes that the

host can handle at once; see Section 7.7.1 for more information.

Sorry, pid ... was killed due to lack of swap space

Your host has run out of swap space. You should increase the amount swap space on your

host; see Section 7.7.3 for more information.

Error Messages 319

G.3 Compilation Errors

reversed (or previously applied) patch detected! Assume -R [y]

You might get this error when running the patch program. You should abort patch, since you

are probably applying the patches in the wrong order.

Id: /lib/libX11.a: warning: table of contents for archive is out of date; rerun ranlib(1)

You might ,get this error when compiling sources. The modification date on the library file is

different than the stored time stamp in the library-probably from copying the library from

another location. Run ranlib -t on the libraries.

make: Fatal error in reader: Makefile, line n: Unexpected end of line seen

Some cpp programs convert tabs to spaces. Tabs are required by make. If you get this error,

you might have to install another version of cpp; see Section 8.7.3.4 for more information.

Unknown preprocessor directive

or

n: undefined control

You might get this error from imake or xmkmf if a line is commented in your Imakefile using

a hash sign (#) instead of using the XCOMM command. See Section 8.7.3.1 for more infor-
mation.

Id: Undefined symbol

You are trying to compile a program which uses a library that is missing. See Section 8.8.1.2

for more information.

filename: n: Can't find include file ...

You are trying to compile a program which includes a header file that is missing. See Section

8.8.1.1 for more information.

320 The X Window System Administrator's Guide

Index

::(double colon), in Makefiles, Adobe fonts, 101

225 converting to F3, 113

: (colon), in resource definitions, converting to XI 1/NeWS for-

281 mat, 126

! (exclamation point), in resource AIX, 188

definitions, 282 chown command, 211

in resource files, 287 installing font server on, 133

in Xaccess file, 56 installing xdm on, 70

(hash sign), 219 AlXWindows, 8, 187

in resource definitions, 287 components of, 302

in RGB specification, 145 fonts; example, 121-122

used to comment out lines, 315 InfoExplorer client, 117

% (percent sign), in Xaccess file, aliases

59 for fonts, 108-109, 114;

* (asterisk), and specifying fonts, DECWindows, 119;

108 OpenWindows, 124

in resource definitions, 281-283 for hostnames, 138

in Xaccess file, 56-57 for RGB color, 145

/**/ (null comment), 219 for Xcms color, 149

? (question mark), in resource alternate-servers (font server),

definitions, 283 129,134

@@ (imake syntax), 220 anonymous ftp, (see ftp com-
\ (backslash), in resource defini- mand)

tions, 282 AnswerBook, 186

app-defaults directory, (see

application defaults)

Apple Macintosh computers,

Communications Toolbox,

access control 275-277

server, 73-93; MacTCP, 275-277

host-based (see host-based UNIX and, 275

access control),; X clients and, 271,275

reasons for, 73; X servers and, 271,275

user-based (see user-based application defaults, 258, 285

access control),; ar command, 199, 207

X terminals, 83, 175; arch command, 192

xauth vs. xhost, 82-83 Archie, 248-250

xdm, 47 help command, 249

.ad files, (see application defaults) mail server, 250

additional style, font name field, prog command, 249

102 servers, 248

Index 321

Archie (cont'd) SunOS, 69, 131

set search command, 249 SystemV, 132-133

xarchie client, 251-259 Ultrix, 70

archie command, 248 booting, X terminals, 167-168

arp command, 169 BOOTP, 163, 165-166

arp tables, 169 X terminals and, 164

Athena widgets, 7 bootpd daemon, 165

autologout feature, 26 errors, 169

average width, font name field, Bootstrap Protocol, (see BOOTP)

102 BOOTSTRAPCFLAGS, 228

broadcast address, 168,173

broadcast queries, 55-57

B and subnet, 173

X terminals and, 173

background color, 281 bug reports, 194

specifying, 23, 144 build errors, memory fault, 199

background processes, 26 build flags, 205-210

backing store, 161-162 BuildServer, 210

Backspace character, mapping to DefaultCCOptions, 210-211

Delete, 290 DefaultFontPath, 117,212

be command, 81, 146, 243 ExpandManNames, 207

BDF format, 111, 125, 129 HasLargeTmp, 199,207

converting DECWindows fonts HasSecureRPC, 86

to, 120 HasXdmAuth, 84, 207

converting SNF to, 112 InstallCmd, 211

converting to PCF, 112, 138 InstallFSConfig, 128,207

converting to SNF, 112, 114 InstallLibManPages, 207

converting to XI 1/NeWS for- InstallXdmConfig, 206

mats, 112 InstallXinitConfig, 206

getting from font server, 112, ProjectRoot, 207-208

136 StripInstalledPrograms, 207

getting from X server, 112 building X, 185-230

.bdffiles, 111 configuration flags, 205-210

bdftohds command, 171 disk space, 191, 198-200

bdftopcf command, 112 fixes, 186

bdftosnf command, 112, 125, 170 from MIT sources, 185-186

-t option, 114 from source code, 188-189

Berkeley Internet Name Domain, issues, 185-190

(see DNS) link trees, 196-197

-bg option, 144,23 NFS-mounted systems, 201-203

bigendian, 111, 170 patches, 194-196

binaries, stripping, 207 preparation, 191-197

BIND, (see DNS) trouble-free example, 197-198

BITFTP, 237 with imake, 216-225

bitmap, fonts, 110 (see also installing X.)

Bitmap Distribution Format, (see BuildServer build flag, 210

BDF format) byte order, 111, 170

BITNET, 237

bits per pixel, 159

Bitstream fonts, 101

bldfamily command, 107, 126

boot files, AIX, 70, 133

IRIX, 70, 132-133

322 X Window System Administrator's Guide

-name, 283-284;

-rv, 23;

C compiler, (see cc) -server (for font server cli-
C preprocessor, (see cpp) ents), 134;

.calOO files, 153 -xrm,286

cache-size (font server), 128 crtca, 153

CAPS LOCK key, 159 customizing, 20

disabling, 290 DOS-based, 272

switching with Control, 291 dxcalendar, 117

cat, Bill, 73 fsinfo, 134

catalogue (font server), 129, 136 fslsfonts, 135

catalogue-list (font server), 129, getbdf, 112

136 InfoExplorer, 117, 121

cc, debugging, 199 Macintosh computers and, 271,

-E flag, 228 275

-g flag, 199 mre, 145-146

-Oflag, 198 props, 145-146

optimization, 198 public domain, 247-268;

-temp= flag, 200 compiling, 255-268;

-v flag, 228 patching, 259-264

.cf files, 222 remote; setting DISPLAY for,

character cell fonts, 102-103 36;

character set, font name field, 102 starting, 34-36

chkconfig command, 133 resize, 31-33

chkey command. 86-87 resources, 6

error messages, 93 running locally on X terminals,

chmod command, 97 161

chooser client, 53, 55, 57-59 xarchie, 248,251-259

indirect queries and, 57 xcalc, 14

resources, 57, 60 xclock, 14, 16

uses for, 59 xcmsdb, 152-153

chown command, 96 xcoloredit, 145-146

AIX.211 xcolors, 144

-R flag, 202 xconsole, 26, 62

recursive, 202 xdpyinfo, 158

chroot command, 167, 171 xdvi, 115

CIE, 147 xev, 291-293

class names, 283-284 xfd, 103, 108, 115

clean, make target, 224 xfontsel, 20, 104

client-limit (font server), 129, 135 xhost, 28, 35-36, 74-77, 93;

client-only distribution, 189 SUN-DES-1 and, 85, 88-90

clients, 3, 13 xinit, 81-82

application defaults, 285 xkeycaps, 264-268, 291

chooser, 55, 57-59 xloadimage, 96

cm, 118; xlsfonts, 20, 103, 108

font problems, 123-125 xmessage, 33

command-line options, 20-23; xmodmap, 264, 290-293

-bg,23; xpostit, 14, 249

-display, 27-29, 36; xrdb, 24-25,60-61,64,285,

-fg, 23; 287-288

-fn,20, 103; xrolodex, 247

-geometry, 20-22; xrsh, 79

-iconic, 26; xsccd, 153

Index 323

clients (cont'd) xtici, 150

xset, 105-106, 114-116, 124, color database, alternates, 147

137 example, 151

xsetroot, 25 fixing, 147

xterm, 14, 16,93-94, 106,144 RGB, 146

xtex, 115-117 Xcms, 148-150

xtici, 150-151 XCMSDB, 149

xtrek, 138 color editors, 150-151

xwebster, 259-264 color guns, 143

(see also commercial clients.) color monitors, 143

clone-self (font server), 129, 135 color spaces, 147-148,150

cm client, 118 listing of, 148

font problems, 123-125 colorimeters, 153

CMW (Compartmented Mode commands, ar, 199

Workstations), 98 arch, 192

col command, 242 archie, 248

color, 143-153 arp, 169

aliases, 145 be, 81, 146,243

defining resources for, 145 bdftohds, 171

defining; RGB system, bdftopcf, 112

146-147; bdftosnf, 112, 114,125,170

Xcms, 150-151 bldfamily, 107, 126

device-independent; (see Xcms) chkconfig, 133

editors, 145-146 chkey, 86-87, 93

getting list of, 23 chmod, 97

hexadecimal color values, 145; chown, 96

converting to decimal, 146 chroot, 167, 171

listing, 144 col, 242

monitors, 158 compress, 112

RGB system, 143-147; convertfont, 112, 125-126

color names, 144-145; cpp,216-218

defining colors, 146-147; crypt, 86

fixing corrupted database, date, 81

147; dmesg, 193

hexadecimal color values, domainname, 85

148 dxfc, 112

specifying, 23 exportfs, 172,201,239

Xcms, 144, 147-153; fstobdf, 112, 136

client database, 148; ftp, 234-235, 251

color names, 148-151; imake, 214

color spaces, 147-148, 150; jobs, 319

database example, 151; keylogin, 90

DCC, 152-153; ksh, 81

defining colors, 150-151; last, 214

device profiles, 152-153; Idconfig, 200

measuring colors, 153; Idf, 111

specifying colors, 148; Indir, 197

XCMSDB, 149; Ipr, 242

Xcms.txt file, 148-150 mach, 192

color clients, mre, 145 make, 197

props, 145 makeafb, 113,126

xcoloredit, 145 man, 213,242

xcolors, 144 mkfile, 180

324 X Window System Administrator's Guide

commands (cont'd) /**/ (null comment), 219

mkfontdir, 107, 114, 116, 139; in font server configuration file,

fonts.scale, 107 128

newkey, 86-87 in imake files, 219

nm, 226 in resource definitions, 282, 287

nroff, 242 in Xservers file, 55

nslookup, 241 XCOMM, 220

openwin, 37 commercial clients, FrameMaker,

patch, 195, 238 65,159

perl, 81 zmail, 33

pstat, 180 Communications Toolbox (Mac-
ranlib, 199 intosh computers), 276-277

rexec, 173 Compatlist file, 109, 126

rgb, 146 compiling sources, 255-268

rlogin, 34 porting hints, 226-230

rsh, 35-36,79, 81 compress command, 112

screendump, 96 compressed files, 236, 238, 242

screenload, 96 fonts and, 107, 112-113

setenv, 27-28, 30, 134, 149, CompuServe, 235

151, 164, 199,204,211,213, comp.windows.x, 157, 187, 189,

317 233,250

showrgb, 23, 144 FAQ, 234-237, 250

snftobdf, 112 config file (font server), 128-130,

startx, 37-38 139

strings, 192, 229 configuration files, app-defaults

swapon, 180-181 files, 258

tail, 197 .cshrc, 29-30, 33-34, 36

tar, 238, 252 /etc/hosts.equiv, 81;

tbl, 242 Secure RFC and, 86, 90

telnet, 164,248 /etc/syslog.conf, 169

trace, 286 /etc/Xn.hosts, 74-75, 82

truss, 286 for font server, 128-131

tset, 31 imake, 222

uname, 192 .login, 33-34

uncompress, 238, 242 on remote system, 35-36

unshar, 262 .profile, 29-30, 36

uudecode, 195, 236,238 .rhosts, 35,81;

uuencode, 195, 238 Secure RFC and, 86, 90

wait, 26 shell environment, 27-36

X, 16,38,53 startup script, 25-26

xauth, 36, 79-83, 93; syslog, 169

SUN-DES-1 and, 89; system.twmrc, 18

using with xinit, 81-82 twm, 15, 18-19

xinit, 16,25,37-38 .twmrc, 15, 19

xmkmf, 214-215, 256, 266 user environment, 14

xrsh, 36, 79 X session, 14

ypbind, 87 X terminals, 161, 175-178

ypmatch, 85-86, 240 .Xdefaults, 286-287

ypwhich, 86, 240 .Xdefaults-hostname, 285

zcat, 238, 242, 252 xdm, 46-66;

comments,! (exclamation point), installing, 206;

282 rereading, 52, 55, 59, 67-68;

(hash sign), 128,219 Xaccess, 55-59, 164, 174;

Index 325

configuration files, xdm (cont'd) inetd, 88, 167-168;

xdm-config,51-52,78,84, errors, 169

95; keyserv, 93

Xresources, 60-62; named, 241

Xservers, 48, 53-55,65, 174; rarpd, 165

Xsession, 63-65 rpc.ypupdated, 87

xinit; installing, 206 syslog, 129-130, 169

.xinitrc, 25-26, 37-38, 90 tftpd, 167;

.xinitrc vs. .xsession, 39 errors, 169

.Xmodmap, 291 xdm; (see xdm)

.Xresources, 15,24-25,286 Data Encryption Standard, SUN-

.xserverrc, 38, 82 DES-1,84

.xsession, 14, 25-26, 37 XDM-AUTHORIZATION-1, 83

console, security, 94-96 support for, 86

console windows, 94-96 database, (see color database)

xdm and, 95-96 date command, 81

contrib/, 191 dbm format, 146

controlling process, 26 DCC, 152-153

conversion .dec files, 153

fonts, 112-113; Dead Meat, 138

Open Windows, 125-126 decipoints, 129

convertfont command, 112, 125 DECnet, 162

-b flag, 126 connecting via, 28

-d flag, 125 font server and, 136

-sflag, 125 DECWindows, 8, 187

-xflag, 125 components of, 301-302

core, 191 dxcalendar client, 117

Courier, 101 fonts, 111-112, 117-121

cpp, 216-218 DefaultCCOptions build flag,

comments in, 219, 315 210-211

#define command, 218 DefaultFontPath build flag, 117,

errors, 315 212

#ifdef command, 218 default-point-size (font server),

#ifhdef command, 218 129

macro concatenation and, 221 default-resolution (font server),

resource files and, 287 129

standalone execution, 228 #define command (cpp), 218

symbols; searching for, 228 delegates, 129

-v flag, 228 depend, make target, 215, 224

cron daemon, 97 depth, 159,161

crtca client, 153 DES, 98, 207

crypt command, 86 (see Data Encryption Standard)

.cshrc file, 29, 33-34, 36 Desqview/X, 271-272

CTRL key, 159 /dev/console, 95

/dev/fb, 96-97

Device Color Characterization,

D (see DCC)

device profiles, Xcms, 152-153

daemons, bootpd, 165 device-independent color, (see

bootp; errors, 169 Xcms)

cron, 97 direct queries, 55-57

fs; (see font server)

ftpd, 234

326 X Window System Administrator's Guide

X terminals and, 173 TERM, 31

direct queries (cont'd) TERMCAP, 32

disk space, X installation and, TMPDIR, 199

191, 198-200 XAPPLRESDIR, 258, 286

X terminals and, 170-171 XCMSDB, 149, 151

diskless workstations, 162 XENVIRONMENT, 258, 285

fonts for, 127 XFILESEARCHPATH, 286

display, problems with, 315, 317 XRSH_AUTH_TYPE, 79

display classes, 52, 55, 65-66 XUSERFILESEARCHPATH, 286

example, 65-66 error messages, 315-320

finding, 65 auth_create: Bad file number,

DISPLAY environment variable, 93

164 Binding TCP socket: Address

name server problems, 28 already in use, 131

problems with, 28-29, 315 Cannot establish any listening

setting, 27-29; sockets, 131

remote clients, 34, 36 cannot open, 35

using IP address, 28 can't communicate with ypserv,

-display option, 36 93

problems with, 315 Can't find include file, 320

distfile, (see rdist program) Can't lock authorization file, 64

dmesg command, 193 Can't Open display, 36, 315,

DNS, adding a hostname, 240-241 317

and nslookup, 241 Can't open error file

testing, 241 /usr/lib/Xll/fs/fs-errors, 135

documentation, printing, 242-243 cat: ./Compat.list: No such file

Domain Name Service, (see DNS) or directory, 126

domainname command, 85 Client is not authorized to con-
DOS, X clients and, 271 nect to Server, 34, 75

X servers and, 271-275; Color name ... is not defined

advantages and disadvan- in server database, 145

tages, 271; Command not found, 29, 319

requirements, 272 CONFIG: can't open configura-

dot pitch, 158 tion file ...,135

dxcalendar client, 117 connection refused by server,

dxfc command, 112 34

Connection timed out, 319

Could not set principal's secret

E key, 93

Current serial number in output

editing colors, 145-146 stream, 316

encoding, font name field, 102 Duplicate font names ..., 116

encryption codes, server access (Encoding: unknown), 126

control and, 83-84 Fatal server bug! no screens

environment variables, 29 found, 317

DISPLAY, 27-29, 164 Fatal server error!, 131

FONTS ERVER, 134 Host is unreachable, 319

LD_LIBRARY_PATH, 30 key contains odd number of or

MANPATH, 213 non-hex characters, 93

OPENWINHOME, 30 Id.so: libXl l.so.4: not found,

PATH, 25, 29 319

SHELL, 33

showing, 27

Index 327

error messages (cont'd) warning: table of contents for

local resource allocation failure, archive is out of date, rerun

93 ranlib(l), 320

machine is down or not running widget 11004 vs. intrinsics

rpc.ypupdated, 93 11003,317

Major opcode of failed request, X Error of failed request: Bad-

316 Value, 116, 137, 172,316

make: Fatal error in reader: ... X Toolkit Warning: Cannot

Unexpected end of line seen, allocate colormap entry, 147

320 X Toolkit Warning: Cannot con-

Maybe the keyserver is down?, vert string ... to type

93 FontList, using fixed font,

Minor opcode of failed request, 117

316 Xlib: Client is not authorized to

mkfontdir; failed to create connect to Server, 317

directory in, 116 Xlib: connection refused by

must be on local machine to add server, 317

or remove hosts, 75 XView warning: Cannot load

mwm; Invalid accelerator spec- font ...,118

ification on line n of specifi- error-file (font server), 129-130,

cation string, 317 135

No home directory, 64 errors, 169

No more processes, 319 compiling, 226

No such file or directory, 35 generated by font server,

Not login shell, 318 129-130, 135

pattern ... unmatched, 136 generated by xdm, 46-47,

Permission denied, 35, 318 49-51,53,63-64

Resource id in failed request, generated by .xsession files, 39,

316 47

reversed (or previously applied) linking, 226

patch detected!, 320 undefined functions, 226

Serial number of failed request, undefined symbols, 226

316 (see also error messages.)

Sorry, pid ... was killed due to /etc/bootptab, 163,165

lack of swap space, 319 /etc/ethers, 165, 169,242

Stopped, 36 /etc/exports, 172, 201, 239

Terminal type xterm unknown, /etc/fbtab, 97

318 /etc/fstab, 172,180

There are stopped jobs, 319 /etc/hosts, 239-240

unable to open server, 134-135 /etc/hosts.equiv, 35, 81

unable to update NIS database, Secure RFC and, 86,90

93 /etc/inetd.conf, 167,88

undefined control, 288, 320 rereading, 168

Undefined symbol, 320 /etc/inittab, 69-70

<unknown address in family /etc/motd, 33, 168, 192

254>,93 /etc/named.boot. 241

unknown keysym osfDown, /etc/named.pid, 241

317 /etc/passwd, 168

Unknown preprocessor direc- /etc/publickey, 85

tive, 288, 315, 320 /etc/rc.local, 69-70, 88,131

Warning: Cannot convert string /etc/rc.local file, 53

to type FontStruct, 115, 316 /etc/rc.tcpip, 70, 133

/etc/resolv.conf, 170

328 X Window System Administrator's Guide

/etc/servers, 167 font path, 105-106

/etc/syslog.conf, 130, 169 adding to, 105

/etc/Xn.hosts, 74, 74-75, 82 default, 212

Ethernet, 162 font server, 136-137

hardware addresses, 165, 169, listing, 105

242 rehashing, 106, 115, 124

ethers database, 165, 169, 242 font server, 127-139

events, 290 alternate-servers, 129, 134

Everything, make target, 225 cache size, 128

ExpandManNames build flag, caching, 128

207 catalogue, 129, 136

exportfs command, 172, 201, 239 catalogue-list, 129, 136

client-limit, 129, 135

clients, 135-136;

-server option, 134

clone-self, 129, 135

F3 fonts, 107,111,125 -configflag, 131, 135

converting to Adobe Bitmap, configuration file; rereading,

113,126 131

.f3b fonts, 111, 113, 125 configuration files, installing,

converting to .afb, 126 207

failsafe session, 50, 61, 63 configuring, 128-130

families, font name field, 101 converting to BDF, 112

Families.list file, 107 debugging, 134-135

rebuilding, 126 default-point-size, 129

FAQ, 233 default-resolution, 129

comp.windows.x, 234-237, 250 error log file, 129-130, 135

.fb fonts, 111, 125 error-file, 129-130, 135

-fg option, 144, 23 errors, 316

File Transfer Protocol, (see ftp example, 138-139

command) flushing font cache, 131

filename length, font files, 107 font formats and, 127

manpage files, 207 font path, 136-137

FILE_NAMES_ALIASES, 109 FONTSERVER, 134

files, 175 hostname aliases, 138

compressed, 112, 236 installing, 130-133

tar, 238 killing, 131

temporary, 199 name syntax, 133-134

uncompressing, 252 port, 130

untarring, 252 -port flag, 131

uuencoded, 236 resetting, 131

(see also configuration files.) SIGHUP signal, 131

fix level, 194 SIGTERM signal, 131

fixed font, 101, 106,108 SIGUSR1 signal, 131

fixes, 186 SIGUSR2 signal, 131

fromexport.lcs.mit.edu, 194 shutting down, 131

getting with xstuff, 237 starting, 131, 139

(see also patches.) testing, 131

-fn option, 103, 20 trusted-clients, 130, 136

folio fonts, (see F3 fonts) use-syslog, 129-130

font clients, xfd, 103 X terminals and, 160, 163, 171

xfontsel, 20, 104 xdmand, 131, 133

xlsfonts, 20, 103 font server clients, fsinfo, 134

Index 329

fslsfonts, 135 installing, 130-133;

fstobdf, 112, 136 name syntax, 133-134;

font tape, 170 port, 130;

fonts, 101-140 starting, 131,139;

adding, 114-126; testing, 131;

multiple directories, 115 trusted-clients, 130, 136;

AlXWindows, 121 use-syslog, 129-130

aliases, 108-109,114; fonts.dir file, 106-107,109,

DECWindows, 119; 116;

OpenWindows, 124 creating, 107,114,139

average width, 102 fonts.scale file, 107-108

BDF format, 111 formats, 111-112;

bitmap, 110 converting between,

breaking into subdirectories, 112-113;

115 font server and, 127

browsing through, 104 foundry, 101

byte order, 111, 170-171 horizontal resolution, 102;

caching, 115, 128 font server and, 129

character set, 102 inability to access, 316

CharCell, 102-103 legalities, 113, 136

components of font name, 102 linking, 170

converting between formats, listing, 20

112-113, 118 mono-spaced, 103

converting from DECWindows, obtaining list of, 103

118-121 OpenWindows, 107;

DECWindows, 111 Compat.list file, 126;

disk space, 113, 170-171 converting, 125-126;

diskless workstations, 127 example, 123;

displaying characteristics of, rebuilding Families.list file,

103 126;

downloading; using NFS, 172; Synonyms.list file, 126

using TFTP, 171-172 outline, 110

encoding, 102 over the network, 127

F3, 111,125 PCFformat, 111, 170

families, 101 pixel size, 102

filename length restrictions, 107 point size, 102, 129

font conventions, xx PostScript, 111

font path, 105-106; pre-scaled NeWS, 125

default, 212 proportional, 102

font server, 127-139; scalable, 110

alternate-servers, 129, 134; selecting with xfontsel, 104

cache size, 128; set width, 102

caching, 128; slant, 101

catalogue, 129, 136; SNFformat, 111, 170

catalogue-list, 129, 136; spacing, 102

client-limit, 129,135; specifying, 20, 103

clone-self, 129, 135; Speedo, 105, 110-111;

default-point-size, 129; fonts.scale and, 107

default-resolution, 129; style, 102

error-file, 129-130, 135; using in xterm windows, 103

example use, 138-139; vertical resolution, 102;

font path, 136-137; font server and, 129

hostname aliases, 138; weight, 101

330 X Window System Administrator's Guide

fonts (cont'd) H

wildcards, 103, 108

X terminals, 127, 170-172; hardware addresses, 165, 242

installing, 163 HasLargeTmp build flag, 199,

Xll/NeWS, 111, 125 207

fonts.alias Tile, 108-109, 114 HasSecureRPC build flag, 86

adding to, 124 HasXdmAuth build flag, 84, 207

fonts.dir file, 106-107, 109, 116 HDS X terminals, 171

creating, 114, 139 header files, 215

errors, 316 missing, 226

FONTSERVER environment vari- hexadecimal color values, 145

able, 134 converting to decimal, 146

fonts.scale file, 107-108 new format, 148

foreground color, 281 old format, 145

specifying, 23, 144 Xcms and, 148

foreground processes, 26 hexadecimal conversions, 243

foundry, font name field, 101 horizontal resolution, font name

framebuffers, 96-97 field, 102

FrameMaker, 65, 159 host-based access control, 74-77

Frequently Asked Questions /etc/Xn.hosts, 74-75

List, (see FAQ) overriding user-based access

fs daemon, (see font server) control, 82-83, 175

fsinfo client, 134 PC X servers and, 83

-server option, 134 problems with, 76-77

fslsfonts client, 135 X terminals and, 74-76, 79, 83,

fstobdf command, 112, 136 175

FTP, (see ftp command) xhost client, 75-77

ftp command, 234-235, 251 hostname, finding with nslookup,

ftpd daemon, 234 241

ftpmail, 235-236 hosts, access to font server, 130,

functions, undefined, 226 136

adding to hosts database,

239-241

aliasing, 138

alternate font servers, 129, 134

gateway, problems with, 319 denying access to; (see host-

generic.cf, 208 based access control)

-geometry option, 20-22 in arp table, 169

getbdf client, 112, 118 increasing number of ptys, 179

getty program, 37, 44 increasing number of users, 179

GiveConsole, 47, 95 increasing processes, 178

GrabKeyboard protocol request, increasing swap space, 180-181

93 rebuilding kernel, 179

graphics hardware, finding list of reconfiguring for X terminals,

supported, 193 178-181

grayscale, 65, 158 remote; accessing fonts on, 127

GUIs, 4 Human Designed Systems, (see

and X, 4 HDS X terminals)

Athena widgets, 7

OPEN LOOK, 7

OSF/Motif, 7

gwm window manager, 19

Index 331

install, make target, 198, 225

InstallCmd build flag, 211

IBM Token Ring, 162 InstallFSConfig build flag, 128,

ibm.cf,211 207

-iconic option, 26 installing X, 8, 185-230

iconifying windows, 19 DES code, 207

#ifdef command (cpp), 218 disk space, 191,198-200

#ifndef command (cpp), 218 from MIT sources, 185-186

imake, 216-225, 254, 256 in alternate location, 207

additional documentation for, link trees, 196-197

230 manpages, 207

.cf files, 222 NFS-mounted systems, 201-203

comments in, 219 preparation, 191-197

Concat macro, 222 unprivileged, 201-203

Concat3 macro, 222 using rdist, 203

concatenating macros, 221-222 vendor-supplied, 185-187

configuration files, 222-223 (see also building X.)

flags; BuildServer, 210, 212; InstallLibManPages build flag,

DefaultCCOptions, 210-211; 207

ExpandManNames, 207; install.man, make target, 198, 225

HasLargeTmp, 199, 207; in.stall.sh, 211

HasXdmAuth, 207; InstallXdmConfig build flag, 206

InstallCmd,211; InstallXinitConfig build flag, 206

InstallFSConfig, 207; instance names, 283-284

InstallLibManPages, 207; Inter-Client Communication

InstallXdmConfig, 206; Conventions, 7

InstallXinitConfig, 206; Interprocess Communication,

ProjectRoot, 198, 207-208; (see IPC)

StripInstalledPrograms, 207 IP addresses, 168-169, 242

function of, 217 adding to hosts database,

multi-line macros in, 220 239-240

.rules files, 222 converting hostnames to, 240

syntax, 219-222 finding with nslookup, 241

.tmpl files, 222 getting with BOOTP, 165-166

Uselnstalled flag, 215 getting with RARP, 165

XCOMM command, 220 in display name, 28

xmkmf, 214 name server and, 169

I makefile. 214 X terminals and, 164

editing, 254-255 xhost and, 76

Imake.rules, 223 IPC, 97

Imake.tmpl. 223, 254 connecting via, 28

include files, (see header files) IRIX, 185, 187

includes, make target, 215, 224 fonts, 111

indirect queries, 55, 57-59 installing font server on,

chooser client and, 57 132-133

X terminals and, 173 installing xdm on, 70

inetd daemon, 88,167 ISO (International Standards

errors, 169 Organization), 102

rereading inetd.conf, 88

SIGHUP and, 88, 168

InfoExplorer client, 117

fonts, 121

init program, 44

332 X Window System Administrator's Guide

Indir command, 196-197

local clients, X terminals and, 161

jobs command, 319 log files, font server errors,

129-130, 135

xdm errors, 49-51

K login, problems logging in with

xdm, 49-51

kbdjmode command, 67 remote, 34-36

key symbols, (see keysyms) login box, configuring, 60-62

keyboards, 159-160 login program, 44

CAPS LOCK key, 159 login shell, 33-34

CTRL key, 159 xterm and, 33

resetting, 67 .login file, 33-34

securing, 93 loose bindings, 52, 282

keylogin command, 90 Ipr command, 242

keymap tables, 290 Lucida, 101

keys, Backspace, 290

CAPS LOCK, 290-291

Control, 291 M

Delete, 290

mapping, 290-293 mach command, 192

translation tables and, 288-290 Macintosh computers, Commu-

keyserv daemon, 93 nications Toolbox, 275-277

keysyms, 6, 290-293 MacTCP, 275-277

adding/removing, 291 UNIX and, 275

checking with xev, 292 X clients and, 271,275

disabling CAPS LOCK, 290 X servers and, 271,275

mapping, 290 macros, Xaccess file and, 59

mapping Backspace to Delete, MacTCP, 276-277

290 magic cookie, 77-83, 98

switching Control and CAPS copying to a remote machine,

LOCK, 291 79

ksh command, 81 generating manually, 81-82

using with xdm, 78-79

using with xinit, 81-82

mail servers, archie, 250

bitftp, 237

last command, 214 ftpmail, 235-236

Idconfig command, 200 xstuff, 237-238

Idfcommand, 111 mailing lists, xpert, 233, 250

LD_LIBRARY_PATH environ- make program, 216-217, 256-258

ment variable, 30, 317 double colon syntax, 225

MIT X and, 317 -k flag, 225

Open Windows and, 317 -n flag, 225

libraries, 4, 200, 216 tabs and, 222

building with ar, 199 targets; clean, 224;

errors, 320 depend, 224;

for X, 303 Everything, 225;

(see also shared libraries.) includes, 224;

link trees, 196-197 install, 198,225;

little endian, 111, 170 install.man, 198,225;

Makefiles, 224;

World, 197, 224

Index 333

makeafb command, 113 mre resource editor, 145-146

-Mflag, 126 .ms files, 242

Makefiles, 214, 216-217, 222-223, mwm window manager, 7, 19

254

comments in, 219

creating, 256 N

make target, 215, 224

man command, 213,242 name server, 168-169

.man files, 242 -name option, 283-284

manpages, installing, 207, 213 named daemon, 241

MANPATH environment vari- SIGHUPand, 241

able, 213 NCD X terminals, 162-163,

McGill University, 248 170-171

Microsoft Windows, X servers remote configuration of,

and,271-275; 176-177

requirements, 272 netgroups, 172

MIT, 4, 8 Network Computing Devices,

mit/, 191 (see NCD X terminals)

MIT-MAGIC-COOKIE-1, 77-83, Network File System, (see NFS)

98 Network Information System,

copying to a remote machine, (see NIS)

79 networking, X terminals and, 162

using with xdm, 78-79 newkey command, 86-87

using with xinit, 81-82 newsgroups, 250

mkfile command, 180 comp.windows.x, 233, 250

mkfontdir command, 107, 114, NeXT computers, 189

116,139 X and, 271,277

fonts.scale, 107 NFS, exporting a filesystem, 239

monitors, 157-159 links and, 172

color support, 143, 158-159; netgroups, 172

measuring colors, 153 providing fonts with, 127, 163,

dot pitch, 158 172

grayscale support, 158-159 removing access, 239

monochrome, 159 used with TFTP, 172

PC X servers and, 272 NIS, 86, 93

refresh rate, 159 adding a hostname, 240

screen resolution, 158 ethers database, 165, 169, 242

screen size, 158 finding domain name, 85

static gray, 159 hosts database, 240

virtual screens, 158 SUN-DES-1 and, 84

monochrome, 159 Secure RFC and, 84

mono-spaced fonts, 103 updating master from clients, 87

Motif, 7 ypmatch command, 240

components of, 299-300 ypwhich command, 240

mre client, 145-146 nm command, 226

Motif Window Manager, (see nroff command, 242

mwm window manager) nslookup command, 241

mouse, 159-160 NVRAM, 164

optical, 159

trackball, 159

mouse buttons, redefining, 291

translation tables and, 288-290

moving windows, 19

334 X Window System Administrator's Guide

o advantages and disadvantages,

271

olvwm window manager, 19 requirements, 272

olwm window manager, 7, 19 restricted number of TCP/IP

Open Desktop, 8, 185 connections, 29

scologin, 68 server access control and, 83

xdm, 43 X terminals and, 162

OPEN LOOK GUI, 7 X386 (for UNIX derivatives),

OPEN LOOK window manager, 189

(see olwm window manager) PCF format, 111, 129, 170

openwin command, 37 converting BDF to, 112, 138

server access control and, 77 X terminals and, 171

OpenWindows, 8, 37, 185-187 .pcffiles, 111, 170

cm client, 118 X terminals and, 171

components of, 300-301 perl command, 81

fonts, 107; PEX, building, 199,213

aliases, 109; PHIGS, building, 199,213

Compat.list file, 126; pixel size, font name field, 102

converting, 125-126; pixels, 158, 161

example, 123-126; bits per, 159

Families.list file, 126; platform, determining type, 192

Synonyms.list file, 126 platform.cf, 204-206, 208-210,

installing, 190 210,223

props client, 145-146 point size, and font server, 129

setting search path for, 30 font name field, 102

xdm, 43 pointer keyword, 291

OPENWINHOME environment Point-to-Point Protocol, (see

variable, 30 PPP)

optimizing, 200 port (font server), 130

OSF/Motif, 7 Portable Compiled Font format,

components of, 299-300 (see PCF format)

(see also Motif.) porting programs, 226-230

OSMajorVersion build flag, 209 ports, used by font server,

OSMinorVersion build flag, 209 130-131, 133,136

OSName build flag, 209 used by X server, 96, 130

OSTeeny Version build flag, 210 PostScript, color, 147

outline fonts, 110 Display, 186

documentation, 242

fonts, 111

printing, 242

release notes, 188

patch command, 195, 238, Type 3,111

260-263 PPP, 162

errors, 196 preprocessor symbols, searching

source code for, 195 for, 228

patch level, 194, 196 previewer, 115

patches, 186,259-264 principals, 85

applying, 194-196 for root, 85, 88-89;

getting with xstuff, 237 xterm client and, 92

PATH environment variable, 25, printing documentation, 242-243

29 private keys, 86

PC X servers, 162, 271-275 generating, 90

Index 335

process ID, of xdm, 46 for NCD X terminals, 176-177

processes, increasing number of, for Tektronix X terminals, 178

178-179 for Visual X terminals, 177

.profile file, 29, 36 of X terminals, 161

ProjectRoot build flag, 207-208 remote execution, 173

Projecttrnpl, 223 remote hosts, accessing fonts on,

proportional fonts, 102 127

props resource editor, 145-146 remote logins, 34-36

.ps files, 242 resize client, 31-33

.ps fonts, 111 -c flag, 33

pseudo-ttys, increasing number of, SHELL environment variable, 33

179 -u flag, 33

pstat command. 180 resizing windows, 19, 31-33

ptys, increasing number of, 179 resolution, 158

public domain software, 247-268 resolver, 170

compiling, 255-268 resource editors, 145

finding sources, 247-250 resources, 6, 8, 24, 281-290

patching, 259-264 and client -name option,

untarring, 252 283-284

public keys, 85-86 and client -xrm option, 286

generating, 87; app-defaults files, 258

for root, 87 application defaults, 103, 285

propagating to NIS master, 87 background, 144

chooser, 57, 60

class names, 283-285;

learning, 284

color and, 145

Quarterdeck Office Systems, configuration files; .Xdefaults,

271-272 286-287;

queries, XDMCP, 55-59, 164, 173 .Xdefaults-hostname, 285;

.Xresources, 15,24-25,286

defining, 281-286

R font specification, 103

foreground, 144-145

random numbers, 81 instance names, 283-284;

ranlib command, 199 learning, 284

RARP, 165 loading into servers, 24-25,

X terminals and, 164 287-288

rarpd daemon, 165 loose bindings, 52, 282

rdist program, 200, 203 overriding, 283

example distfile, 203 read globally with xdm, 286

example usage, 203 sample, 15

shared libraries, 203 server-specific, 66

special command, 203 syntax, 281-284

release notes, 188-189,192-193, tight bindings, 52, 282

205 tracing, 286

RELNOTES.TXT, 188-189, translation tables, 288-290

192-193,205 using font aliases in, 109

remote clients, setting DISPLAY XAPPLRESDIR environment

for, 36 variable, 258

starting, 34-36 xconsole, 60, 62

remote configuration, 175-178 xdm, 46, 51,51-60;

advantages of, 175

336 X Window System Administrator's Guide

resources, xdm (cont'd) screen size, 158

DisplayManager*authName, screendump command, 96

84,88; screenload command, 96

Display Manager* authorize, screens, 6, 27

78, 84, 88; search path, setting, 29-30;

DisplayManager*reset, 95; in startup script, 25;

Display Manager* startup, 95 mixed environments, 30;

XENVIRONMENT environment Open Windows, 30

variable, 258 secure keyboard option, xterm,

xlogin, 60-62 93

xrdb, 24 Secure RFC, 76, 85-86

Reverse Address Resolution Pro- chkey command, 86

tocol, (see RARP) generating public key, 87;

reverse video, 23 for root, 87

rexec command, 173 newkey command, 86

rgb command, 146 obtaining, 86

RGB system, 143 overview, 85-86

aliases, 145 principals, 85;

alternate databases, 147 for root, 85

color names, 144-145 propagating public key, 87

defining colors, 146-147 SUN-DES-1 and, 84-93

fixing corrupted database, 147 security, 73-98

hexadecimal color values, 145; console windows, 94-96

converting to decimal, 146; /dev/kmem, 202

Xcms and, 148 /etc/fbtab, 97

triplets, 143 framebuffer, 97

Xcms and, 147 host-based access control,

rgb.dir file, 146 74-77;

rgb.pag file, 146 /etc/Xn.hosts, 74-75;

rgb.txtfile, 144-146 PC X servers and, 83;

.rhosts file, 35, 81 problems with, 76-77;

Secure RFC and, 86, 90 X terminals and, 75-76, 79,

rlogin command. 34 83;

root menu, 14-15, 19,26 xhost client, 75-77

root window, 14 kmem group, 202

rooted and rootless X servers, server access control, 73-93;

275 X terminals, 175

rpc.ypupdated daemon, 87 TFTP, 167-168

rsh command, 35-36, 79, 81 user-based access control,

xrsh command and, 79 77-93;

.rules files, 222 MIT-MAGIC-COOKIE-1,

-rv option, 23 77-83;

SUN-DES-1, 84-93;

XDM-AUTHORIZATION-1,

83-84, 207

xload permissions, 202

scalable fonts, 105,110-111 xterm permissions, 202

SCO UNIX, increasing number of (see also access control.)

processes, 179 Serial Line Internet Protocol,

increasing number of ptys, 180 (see SLIP)

scologin, 43, 68 serial X sessions, 160, 162

screen dumps, 96

screen resolution, 158

Index 337

Serial Xpress, 162 servers, 131

Server Natural Format, (see SNF SIGUSR1 signal, rereading confi-

format) guration file ,131

servers, 157 SIGUSR2 signal, flushing font

for Archie, 248 cache, 131

(see also font server; mail Silicon Graphics, (see SGI)

servers; X servers.) Silicon Graphics components,

setenv command, CHOWNPROG 302-303

and,211 site.def, 204-205, 223

DISPLAY and, 27-28, 164 slant, font name field, 101

FONTSERVER and, 134 SLIP, 162

LD_LIBRARY_PATH and, 30, SNF format, 107, 111,125, 129

317 converting BDF to, 112, 114

MANPATHand, 213 converting to BDF, 112

TERM and, 204 differences, 170

TMPDIRand, 199 .snffiles, 107, 111, 170

XCMSDBand, 149, 151 differences, 170

XENVIRONMENT and, 258 snftobdf command, 112

setup menu, X terminals, 164 software, public domain, 247-268;

SGI, 132-133, 185 compiling, 255-268;

sgi.cf, 208 finding sources, 247-250;

SHAPE extension, 190 patching, 259-264;

shar files, 262 untarring, 252

shared libraries, 319 Solaris, 189

building, 223 Solbourne window manager, (see

installing, 200, 203; swm window manager)

with rdist, 203 source code, patch command, 195

Idconfig command, 200 servers, 193

LD_LIBRARY_PATH and, 30 Xll, 185-186, 188-189;

shell environment, 27-36 disk space for, 191;

defining search path, 29-30 link trees, 196

SHELL environment variable, 33 sources, 247-268

showrgb command, 23, 144 compiling, 255-268

SIGHUP signal, inetd, 88, 168 finding, 247-250

named, 241 patching, 259-264

resetting font servers, 131 spacing, font name field, 102

Xaccess file, 59 .spd files, 111

xdm, 45, 52, 55, 59, 67-68, 78 Speedo fonts, 105, 110-111, 129

Xservers file, 55 fonts.scale and, 107

SIGTERM signal, xdm, 68 startup script, 25-26

signals controlling process, 26

SIGHUP; foreground process, 26

font server, 131; setting search path, 25

inetd, 168; .xinitrc, 25-26, 38-39

named, 241; .xinitrc vs. .xsession, 39

xdm, 45, 52, 78 .xsession, 14, 18, 25-26, 29, 33,

SIGTERM; font server, 131; 37,39

xdm, 68 startx command, 37-38

SIGUSR1; font server, 131 static gray, 159

SIGUSR2; font server, 131 sticky bit, 97

SIGTERM signal, killing font strings command, 192, 229

StripInstalledPrograms build

flag,207

338 X Window System Administrator's Guide

style, font name field, 102

subnet mask, 168

Sun OpenWindows, components tabs, and make, 222

of, 300-301 tail command, 197

Sun workstations, as X terminals, -fflag,197

243 TakeConsole, 47, 95

fonts and, 170 tar command, 238, 252

framebuffers, 96-97; .tar files, 238

dual screens, 244 targets, (see make program, tar-
multiple screens, 244 gets)

sun.cf, 208, 210 tbl command, 242

SUN-DES-1, 76, 83-93 .tbl files, 242

adding another user, 91-92 TCP/IP, 162

error messages, 92-93 connecting via, 28

prerequisites, 86-88 font server and, 136

running clients from a remote port used by font server, 130

domain, 91-92 port used by X server, 96

using with xdm, 88 restricted number of connec-
using with xinit, 89-90 tions, 29

xterm client and, 92 Tektronix, 147

SunOS, 187-188, 196 X terminals, 162, 171;

dual framebuffers, 244 remote configuration of, 178

increasing number of ptys, 179 telnet command, 164, 248

increasing number of users, 179 X server, 96

increasing processes, 178 temporary files, redefining direc-
increasing swap space, 180-181 tories for, 199

installing font server on, 131 TERM environment variable, 31

installing xdm on, 69 termcap, 31-32, 204

rebuilding kernel, 179 entries missing from, 318

reconfiguring for X terminals, terminal databases, 31

178-181 terminal emulation, xterm, 31

trace command, 286 terminal type, setting, 31

swap files, 180 terminals, (see X terminals)

swap space, increasing, 180-181 terminfo, 31-32, 204

swapping to disks, 180 entries missing from, 318

swapping to files, 180 TeX, 115

swapon command, 180-181 TFTP, booting with, 127, 163, 165,

swm window manager, 19 167-168

symbols, preprocessor, searching links and, 172

for, 228 providing fonts with, 127, 163,

undefined, 226 171-172

Synonyms.list file, 109, 126 restricted mode, 167, 171

syslog daemon, 129-130, 169 secure mode, 167, 171

syslog.conf file, 169 testing, 167

System V, boot files, 132-133 used with NFS, 172

installing font server on, /tftpboot, 163, 167, 170-171

132-133 tftpd daemon, 167

system.twmrc file, 18-19 errors, 169

tic command, 204

tight bindings, 52, 282

titlebar, 19

tmp directory, changing, 199

.tmpl files, 222

Index 339

/tmp/.Xll-unix/XO file, 97 user ID, finding, 85

toolkits, 7 user-based access control, 77-93

trace command, 286 overridden by host-based

trackballs, 159 access control, 82-83, 175

translation tables, 288-290 MIT-MAGIC-COOKIE-l, 77-83,

triplet, RGB, 143 98;

Trivial File Transfer Protocol, using with xdm, 78-79;

(see TFTP) using with xinit, 81-82

troff, (see nroff command) SUN-DES-1, 84-93;

truss command, 286 adding another user, 91-92;

trusted-clients (font server), 130, error messages, 92-93;

136 running clients from another

tset command, 31 domain, 91-92;

tvtwm window manager, 19 using with xdm, 88;

twm window manager, 18-19 using with xinit, 89-90;

configuring, 19 xterm client and, 92

iconifying windows, 19 XDM-AUTHORIZATION-1,

moving windows, 19 83-84;

resizing windows, 19 using with xdm, 84

root menu, 14-15, 19,26 X terminals and, 175

sample configuration, 15 use-syslog (font server), 129-130

titlebar, 19 uudecode command, 195,236,

.twmrc file, 19 238

sample, 15 uuencode command, 195,238

uwm window manager, 191

L

Ultrix, 187-188,226

installing xdm on, 70 vendor-distributed X, and xdm,

uname command, 192 43

uncompress command, 238, 242 vendor-specific fonts, 117-126

uncompressing files, 252 vertical resolution, font name

undefined symbol errors, 226 field, 102

unshar command, 262 virtual root window, 19

untarring files, 252 virtual screens, 158

Usenet, 233 Visual X terminals, 171, 174

user environment, 9 font server and, 171

configuration files, 14 remote configuration of, 177

configuring, 13-39

defining search path, 29-30

environment variables, 29 VV

login shell and, 33-34

resources, 24 wait command, 26

sample X session, 13-15 weenies, TeX font, 115

shell environment, 27-36 weight, font name field, 101

startup methods, 37-39 widgets, 7, 283

startup script, 25-26; resources and, 281

controlling process, 26; wildcards, * (asterisk), 56-57

foreground process, 26; and specifying fonts, 108

setting search path, 25 window managers, 7,15, 17-19

templates, 18

unconfigured, 16-17

340 X Window System Administrator's Guide

window managers (cont'd) XI1R5 components, 298-299

as local clients on X terminals, X administration, color, 143-153

161 font administration, 101-140

gwm, 19 introduction to, 8-10

mwm, 19 multiple machines, 10

olvwm, 19 philosophy of, 10

olwm, 19 security, 73-98

swm, 19 user environment, 18

tvtwm, 19 X terminals, 157-181

twm, 18-19 X clients, (see clients)

uwm, 191 X Color Management System,

windows, iconifying, 19 (see Xcms)

moving, 19 X command, 16, 38,53

resizing, 19, 31-33 -auth option, 81-82

specifying location of, 20-22 -fp option, 117

specifying size of, 20-22 setting default font path, 106

titlebar, 19 X Consortium, 4, 8

workstations X Display Manager, (see xdm)

diskless, 162; X Protocol, 3, 98

fonts for, 127 X resources, (see resources)

World, make target, 197, 224 X servers, 3-6, 167

wtmp file, 214 access control, 73-93;

host-based (see host-based

access control);

reasons for, 73;

user-based (see user-based

X, AlXWindows components, 302 access control);

building; (see building X) X terminals, 175

client-only distribution, 189 adding fonts, 114-126

configuring, 204-214 backing store, 161

DECWindows components, color support, 143-153,

301-302 158-159

design, 3-7 controlled by xdm, 53-55

development distribution, 187 depth, 159

distribution directories, 297 dimensions, 158

execution-only distribution, 187 display classes, 65-66

graphics files, 302-303 DOS-based, 272-275;

installing; (see installing X) requirements, 272

libraries, 303 dot pitch, 158

multiple distributions, 189 font path, 105-106;

on multiple machines, 10 default, 106,212

OSF/Motif components, fonts, 101-140;

299-300 byte order, 170-171;

portability of, 4 caching, 115;

running multiple releases of, 30 linking, 170

source code, 185-186, 188-189 grayscale support, 158-159

Sun Open Windows compo- hanging remotely, 96

nents, 300-301 in xdm resource names, 52

user environment, 9, 13-39 installing for X terminals, 163

vendor-supplied distributions, keyboards, 159-160

186-187 Macintosh computers and, 271,

275

Microsoft Windows and, 271

Index 341

X servers (cont'd) font server support, 160, 163,

monitors, 157-159 171

mouse, 159-160 fonts, 127, 170-172;

MS-Windows-based, 272-275; byte order, 170-171;

requirements, 272 disk space and, 170-171;

NeXT computers and, 271, 277 downloading, 163, 171-172;

refresh rate, 159 font tape, 170;

rooted and rootless, 275 installing, 163;

screen resolution, 158 linking, 170

screen size, 158 grayscale support, 158-159

screens, 6, 27 hardware addresses, 165, 169

server-specific resources, 66 in Xservers file, 53

SHAPE extension, 190 installing the server, 163

starting, 38 IP addresses, 164;

starting with user-based access getting with BOOTP,

control, 81-82 165-166;

supported by MIT, 193 getting with RARP, 165;

using from different releases, name server and, 169

190 keyboards, 159-160

virtual screens, 158 local clients, 161

X command, 53 memory, 158, 161

X terminals, 157-181 monitors, 157-159

X386, 189 mouse, 159-160

XDMCP queries, 45, 53, 55-59 network interface, 162

XNeXT, 189 network setup, 164-170

.xserverrc and, 38 network traffic, 158

Xsun,244 NVRAM, 164, 168

(see also X terminals.) peripheral support, 161

X session, configuration files, 14 refresh rate, 159

configuring, 13-39 remote configuration, 161,

defining search path, 29-30 175-178;

login shell and, 33-34 advantages of, 175;

sample, 13-15 for NCD X terminals,

shell environment, 27-36 176-177;

starting with xdm, 63-65 for Tektronix X terminals,

startup methods, 37-39 178;

startup script, 25-26; for Visual X terminals, 177

controlling process, 26; screen resolution, 158

foreground process, 26; screen size, 158

setting search path, 25 serial connections, 160-162

unconfigured, 16-17 server access control, 74-76, 79,

xinit vs. xdm, 37-38 83,175;

X terminals, 3, 9, 157-181 host-based, 175;

backing store, 161-162 user-based, 175

booting, 167-168 server software, 160;

color support, 158-159 FLASH ROM, 160;

configuring for xdm, 173-175 ROM, 160;

configuring for XDMCP, running on host, 160

173-175 setting up, 163-164;

depth, 159, 161 steps for, 163

display classes and, 55 setup menu, 164

dot pitch, 158 telnet window, 164

virtual screens, 158

342 X Window System Administrator's Guide

X terminals (cont'd) xclock client, 14, 16

xdm and, 53 Xcms, 144, 147-153

XDMCP support, 53, 160 aliases, 149

xmodmap and, 291 CIE, 147

X Toolkit Intrinsics (Xt), 7 client database, 148

X Window System, (see X) color database; example, 151

Xll, (see X) color names, 148-151

Xll/NeWS, 110 color spaces, 147-148, 150;

fonts, 111, 125; listing of, 148

converting to BDF, 125; defining colors, 150-151

converting to SNF, 125 device profiles, 152-153

X11R3, xdm, 45, 65 RGB system and, 147

Xservers file, 53, 55 specifying colors, 148

X11R5, components of, 298-299 XCMSDB environment variable,

X386, 189 149

Xaccess file, 47, 55-59, 164, 174 Xcms.txt file, 148-150;

* (asterisk), 56-57 example, 149

! (exclamation point), 56 xcmsdb client, 152-153

% (percent sign), 59 .xinitrc example, 153

BROADCAST keyword, 57 XCMSDB environment variable,

chooser client and, 57-59 149, 151

CHOOSER keyword, 57 Xcms.txt file, 148-150

defining macros, 59 example, 149

excluding, 56 xcoloredit client, 145-146

including, 56 xcolors client, 144

rereading, 59 XCOMM (imake comment), 220

SIGHUP signal, 59 xconsole client, 26

syntax, 56-59 resources, 60, 62

XAPPLRESDIR environment xdm and, 62

variable, 258, 286 .Xdefaults file, 286-287

xarchie client, 248, 251-259 .Xdefaults-hostname file, 285

xauth command, 36,79-83,93 xdm, 9, 25, 37, 43-70

adding a code. 81 aborting, 61

commands; add, 81; changing greeting, 61

extract, 79; chooser and, 53,57-59

list, 84, 88; command-line options;

merge, 79 -config, 46, 52, 67;

copying magic cookie to remote -debug, 65

machine, 79 concepts, 44-45

overridden by xhost client, configuration files, 46-66;

82-83 installing, 206;

SUN-DES-1 and, 89 overriding, 67;

using with xinit, 81-82 rereading, 52, 55, 59, 67-68;

xrsh command and, 79 Xaccess, 55-59, 164, 174;

.Xauthority file, 77-83 xdm-config, 51-52, 78, 84,

adding a code, 81 95;

extracting code from, 79 Xresources, 60-62;

merging new entry, 79 Xservers, 53-55, 65, 174;

SUN-DES-1 and, 85, 89-90 Xsession, 63-65, 286

using with xinit, 81-82 configuring, 51-66

47 configuring login box, 60-62

xcalc client, 14

translation tables and, 288-290

Index 343

xdm (cont'd) MIT-MAGIC-COOKIE-1,

configuring X terminals for, 78-79;

173-175 SUN-DES-1,88;

customizing, 51-66 XDM-AUTHORIZATION-1,

default environment, 49 83-84

display classes, 52, 55, 65-66 server-specific scripts, 64

easy setup, 48-49 starting, 48, 67

error messages, 46, 63 starting automatically, 69-70

Fl and, 61,63 starting X session, 63-65

failsafe session, 50, 61, 63 testing, 66-68

font server and, 131, 133 troubleshooting, 49-51

history, 45 vendor environments and, 43

host access control, 47, 55-59 vs. xinit, 37-38

installing, 69-70 X terminals and, 53, 160,

installing DBS code, 207 173-175

installing; on AIX, 70; X11R3,45,53,65, 174

on IRIX, 70; xconsole client and, 62

on SunOS, 69; xmodmap and, 291

on Ultrix, 70 XDM Control Protocol, (see

managing another workstation, XDMCP)

53 XDM-AUTHORIZATION-1, 83,

Open Desktop, 43 83-84, 207

OpenWindows, 43 using with xdm, 84

problems logging in, 49-51 xdm-config file, 46, 51-60, 78, 84,

process ID, 46 95

rereading configuration files, overriding, 67

52,55,59,67-68 syntax, 51-52

resources, 51-60; XDMCP, 45, 174

display classes, 52; broadcast queries, 55-57, 173;

Display Manager. J3. setup, and subnet, 173

62; configuring X terminals for,

Display Manager*authName, 173-175

84, 88; direct queries, 55-57, 173

Display Manager* authorize, display classes, 65

52,78,84,88; host access control, 47

Display Manager.autoRescan, indirect queries, 55, 57-59, 173

52,55,59,67; queries, 55-59, 164, 173;

Display Manager.errorFile, workstations and, 53

63; server access control and, 77;

DisplayManager.pidFile, 68; MIT-MAGIC-COOKIE-1,

Display Manager*reset, 95; 78-79;

DisplayManager* session, SUN-DES-1,88;

63-64; XDM-AUTHORIZATION-1,

DisplayManager*startup, 95; 83-84

server-specific, 52 X terminals and, 160, 173-175

restarting with xdm-pid, 68 Xservers file and, 53

CTRL-Rand, 61 xdm-errors file, 46,49-50, 63

CTRL-RETURN and, 61, 63 xdm-pid file, 46, 68

SIGHUP and, 45, 52, 78 xdpyinfo client, 158

SIGTERM and, 68 xdvi client, 115

SCO version; (see scologin) XENVIRONMENT environment

server access control and, 81; variable, 258, 285

xev client, 291-293

344 X Window System Administrator's Guide

xfd client, 103, 108, 115 #ifdef commands, 287

XFILESEARCHPATH environ- #include commands, 287

ment variable, 286 -load option, 288

xfontsel client, 20, 104 -merge option, 288

xhost client, 28, 35-36, 74-77, 93 pre-defined symbols, 287

overriding xauth command, -query option, 288

82-83 Xremote, 162

SUN-DES-1 and, 85, 88-90 Xresources file, 62-65

xrsh command and, 79 .Xresources file, 24-25, 47, 64,

xinit command, 16, 25, 37-38 286

- flag, 38, 82, 89 sample, 15

configuration files; installing, -xrm option, 286

206; xrolodex client, 247

.xinitrc, 37-38, 90; xrsh command, 36, 79

.xserverrc, 38; XRSH_AUTH_TYPE and, 79

.xserverrc, 82 XRSH_AUTH_TYPE environment

-dev flag, 38 variable, 79

server access control and, xsccd client, 153

81-82,89-90 .xserverrc file, 38

setting default font path, 106 server access control and, 82

using xauth with, 81-82 Xservers file, 46, 48, 53-55, 65,

vs. xdm, 37-38, 43 174

.xinitrc file, 16, 25-26, 37-39 default font path, 106

SUN-DES-1 and, 90 display classes, 55

xcmsdb and, 153 rereading, 55

xkeycaps client, 264-268, 291 SIGHUP signal, 55

Xlib, 7 syntax, 53

xloadimage client, 96 XI1R3, 53,55

xlogin widget, resources, 60-63 XDMCP and, 45, 53

xlsfonts client, 20, 103, 108 Xsession file, 18, 45-46, 63-65

xmessage client, 33 .xsession and, 64

xmkmf command, 214-215, 256 .xsession file, 25-26, 39, 45, 47,

-a flag, 215, 266 49,63

xmodmap client, 264, 290-293 bypassing, 50, 64

checking keysyms with xev, C shell, 29

292 controlling process, 50

disabling CAPS LOCK, 290 default search path, 29

mapping Backspace to Delete, error messages, 39

290 failsafe session, 50

-pk option, 291 foreground process, 50

redefining pointer, 291 problems with, 49-51

switching Control and CAPS sample, 14

LOCK, 291 Xsession and, 64

X terminals and, 291 .xsession-errors file, 47, 49-50,

.Xmodmap file, 291 63-64

XNeXT, 189,277 problems with, 50

xpert mailing list, 233, 250 xset client, 105, 116, 124

xpostit client, 14, 249 font server and, 136-137

xrdb client, 24-25, 60-61, 64, 285, fp option, 105, 114, 136

287-288 fp rehash option, 106, 115, 124

cpp and, 287 -q option, 105, 137

-D option, 287 xset command, fp option, 172

#define commands, 287 xsetroot client, 25

Index 345

Xsetup_0 file, 47

Xstartup file, 47

xstuff, 237-238

Xsun, 38, 244

xterm client, 14,16

-bg option, 144

build flags, 214

-C option, 94

console windows, 94

-fg option, 144

-fn option, 20, 103

fonts, 101, 106

-geometry option, 20

installing terminal definition for,

203-204

login shell, 33-34

-Is option, 33-34

resized windows, 31-33

resources; font, 15;

loginShell, 33;

savedlines, 15;

scrollBar, 15

SUN-DES-1 security and, 92

scroll bar, 15

secure keyboard feature, 93-94

shell issues, 31-34

terminal emulation, 31

VT100 widget, 24

xtex client, 115-117

xtici color editor, 150-151

xtrek client, 138

XUSERFILESEARCHPATH envi-

ronment variable, 286

XView toolkit, 7

xwebster client, 259-264

Yellow Pages, (see NIS)

ypbind command, 87

ypmatch command, 85-86, 240

ypwhich command, 86, 240

.Z files, 107, 112, 236, 238, 242

zcat command, 238, 242, 252

zmail client, 33

346 X Window System Administrator's Guide

About the Authors

Linda Mui started working for O'Reilly & Associates in 1986. She was first hired as a production

assistant, later became an apprentice system administrator, and is now a writer. Her first writing job

was for termcap and terminfo, which she co-authored with John Strang and Tim O'Reilly. She also

wrote Pick BASIC, on programming applications for Pick systems. In between writing jobs, Linda

works on troff macros and tools for the O'Reilly & Associates production staff.

Linda was raised in the Bronx, New York and now lives in Cambridge, Massachusetts. Lately she

has been trying to improve herself by learning how to swim, play billiards, and accessorize.

Eric Pearce is an author and technical resource for O'Reilly & Associates. In addition to co-

authoring this book, he is also responsible for developing CD-ROM companion disks for books

produced by O'Reilly & Associates. Eric's interests include promoting public domain software,

Internet connectivity and network services.

Before coming to work for O'Reilly & Associates, Eric worked as a systems programmer for Boston

University, which he also attended as a student. His favorite activities include bicycling, snow-

boarding, rock climbing, and dangerous sports.

Volume 0: X Protocol Reference Manual Volume 2: Xlib Reference Manual

for X11 Release 4 and Release 5 for X11 Release 4 and Release 5

Edited by Adrian Nye By Adrian Nye

3rd Edition, February 1992 3rd Edition, June 1992

Volume 0, X Protocol Reference Manual, describes the Volume 2, Xlib Reference Manual, is a complete pro-
X Network Protocol which underlies all software for grammer's reference for Xlib, updated for XI1 Release

Version 11 of the X Window System. The manual is 4 and Release 5.

updated for R5. Contents are divided into three parts: Includes:

Part One provides a conceptual introduction to the X " Reference pages for Xlib functions

Protocol. It describes the role of the server and client " Reference pages for event types

and demonstrates the network transactions that take " Permuted links to Xlib functions

place during a minimal client session. " Description of macros and reference pages for their

Part Two contains an extensive set of reference pages function versions

for each protocol request and event. It is a reformatted " Listing of the server-side color database

and reorganized version of the Consortium's Protocol " Alphabetical index and description of structures

specification. All material from the original document " Alphabetical index and description of defined symbols

is present in this manual, and the material in the refer- " KeySyms and their meaning

ence pages is reorganized to provide easier access. " Illustration of the standard cursor font

Each protocol request or event is treated as a separate, " Function group index to the right routine for a partic-
alphabetized reference page. Reference pages include ular task

the encoding requests and replies. " Reference pages for Xlib-related Xmu functions (mis-
Part Three consists of several appendixes describing cellaneous utilities)

particular parts of the X Protocol, along with several " 4 single-page reference aids for the GC and window

attributes
reference aids. It includes the most recent version of

the ICCCM and the Logical Font Conventions Manual. New features in the 3rd Edition include:

" Over 100 new manpages covering Xcms, internation-The Third Edition of Volume 0 can be used with any
 alization, and the function versions of macros

release of X.

" Updating to the R5 spec

516pages, ISBN: 1-56592-008-2 " New "Returns" sections on all the functions which

return values, making this information easier to find

Volume 1: Xlib Programming Manual
 1138 pages, ISBN: 1-56592-006-6

for X11 Release 4 and Release 5

By Adrian Nye

3rd Edition July 1992

Newly updated to cover XI1 Release 5, Volume 1, Xlib

Programming Manual is a complete guide to program-
ming to the X library (Xlib), the lowest level of pro-
gramming interface to X. New features include intro-
ductions to internationalization, device-independent

color, font service, and scalable fonts.

Includes chapters on:

" X Window System concepts

" Simple client application

" Window attributes

" The graphics context
 Xlib

" Graphics in practice Programming

" Color and Events

Manual

" Interclient communication

" The Resource Manager

" A complete client application

" Window management

824pages, ISBN: 1-56592-002-3

ORDER TOLL-FREE IN US/CANADA, YAM - SPM PST, 1-800-998-9938

Volume 3: X Window System User's Guide Volume 3M: X Window System User's

for X11 Release 4

By Valerie Quercia and Tim 0 'Reilly

Guide OSF/Motif Edition

By Valerie Quercia and Tim O'Reilly

3rd Edition, May 1990 2nd Edition, January 1993

Volume 3, X Window System User's Guide, orients the Newly revised for Motif 1.2 and XI1 Release 5, this

new user to window system concepts and provides alternative edition of the User's Guide highlights the

detailed tutorials for many client programs, including Motif window manager and graphical interface. It will

the xterm terminal emulator and window managers. be the first choice for the many users with the Motif

Building on this basic knowledge, later chapters explain graphical user interface.

how to customize the X environment and provide sam- Topics include:

ple configurations. " Overview of the X Color Management System (Xcms)

This popular manual is available in two editions, one " Using the X font server

for users of the MIT software, one for users of Motif. " Bitmap and xmag

The Standard Edition uses the twm manager in most " Tear-off menus and drag-and-drop

examples and illustrations, and has been updated for " Starting the system and opening client windows

XI1 Release 4. " Using the xterm terminal emulator

Topics include: " Using standard release clients

" Starting the system and opening windows " Using Motifs mwm window manager

" Using the xterm terminal emulator and window " Customizing the keyboard, display and basic features

managers of any client program

" Most standard release clients, including programs for " Performing system administration tasks, such as man-
graphics, printing, font manipulation, window/display aging fonts, starting X automatically, and using the dis-
information, removing windows, as well as several play manager to run X on single or multiple displays

desktop utilities Motif Edition: 956 pages, ISBN: 1-56592-015-5

" Customizing the window manager, keyboard, display,

and certain basicfeatures of any client program

" Using and customizing the mwm window manager,

for those using the OSF/Motif graphical user interface

" System administration tasks, including managing

fonts, starting X automatically, and using the display

manager, xdm, to run X on a single or multiple display

Standard Edition: 752pages, ISBN: 0-937175-14-5

Volume Three Volume Three

X Window System X Window System

User's Guide User's Guide

SEND E-MAIL QUESTIONS TO HUTS@OM.COM OR UUNET!ORA!HUTS

Volume* X ToolkitIntrinsics Volume 5: X Toolkit Intrinsics Reference

Programming Manual for X11 Release 4 Manual for X11 Release 4 and Release 5

By Adrian Nye and Tim 0 'Reilly Edited by David Flanagan

Standard: 2nd Edition, September 1990 3rd Edition, April 1992

Motif: 2nd Edition, August 1992 Volume 5, X Toolkit Intrinsics Reference Manual, is a

Volume 4 is a complete guide to programming with the complete programmer's reference for the X Toolkit. It

X Toolkit Intrinsics, the library of C language routines provides reference pages for each of the Xt functions as

that facilitate the design of user interfaces, with reusable well as the widget classes defined by Xt and the Athena

components called widgets. It provides concepts and widgets.

examples that show how to use the various X Toolkit This volume is based on Xt documentation from MIT

routines. The first few chapters are devoted to using and has been re-edited, reorganized, and expanded.

widgets; the remainder of the book covers the more Contents include:

complex task of writing new widgets. " Reference pages for each of the Xt Intrinsics and

Volume 4 is available in two editions. The Standard macros, organized alphabetically for ease of use

Edition uses Athena widgets in examples for XI1 " Reference pages for the interface definitions of func-
Release 4 to demonstrate how to use existing widgets tions registered with other Xt functions

but provides a good introduction to programming with " Reference pages for the Core, Composite, and

any widget set based on Xt. The Motif Edition uses the Constraint widget methods

Motif 1.2 widget set in examples, and has been updated " Reference pages for the Object, RectObj, Core,

for XI1 Release 5. Both books include: Composite, Constraint, and Shell widget classes

" Introduction to the X Window System defined by Xt

" Building applications with widgets " Reference pages for Athena widget classes

" Constructing a bitmap editor with widgets " Reference pages for Xt-related Xmu functions

" Basic widget methods " Permuted index

" Events, translations, and accelerators " Many appendixes and quick reference aids

" Event handlers, timeouts, and work procedures " Index

" Resource management and type conversion The 3rd Edition of Volume 5 has been completely

" Selections and window manager interaction revised. In addition to covering Release 4 and Release

" Geometry management 5 of X, all the man pages have been completely rewrit-
" Menus, gadgets, and cascaded pop-ups ten for clarity and ease of use, and new examples and

" Miscellaneous techniques descriptions have been added throughout the book.

" Comparison of Athena, OSF/Motif, and AT&T OPEN 916pages, ISBN: 1-56592-007-4

LOOK widgets

" Master index to volumes 4 and 5

This book is designed to be used with Volume 5, X

Toolkit Intrinsics Reference Manual, which provides

reference pages for each of the Xt functions and the

widget classes defined by Xt.Volume 5.

Standard Edition: 624pages, ISBN: 0-937175-56-0

Motif Edition: 714 pages, ISBN 1-56592-013-9 The Definitive Guides
lo the X Window Systen

X Toolkit Intrinsics X Toolkit Intrinsics

Programming Manual Reference Manual

ORDER TOLL-FREE IN US/CANADA, /AM - SPM PST, 1-800-998-9938

Volume 6: Motif Programming Manual for X as a whole. It complements and builds upon the ear-
OSF/Motif Version 1.1

By Dan Heller

lier books in the X Window System Series from O'Reilly

& Associates, as well as on OSF's own Motif Style Guide.

1st Edition, September 1991 Does not cover UIL.

The Motif Programming Manual'^ a source for com- 1032 pages, ISBN: 0-937175-70-6

plete, accurate, and insightful guidance on Motif appli-
cation programming. There is no other book that cov- Volume 7: XView Programming Manual

ers the ground as thoroughly or as well as this one. anil XView Reference Manual

The Motif 'Programming Manual describes how to Edited by Dan Heller

write applications using the Motif toolkit from the Open Programming Manual: 3rd Edition, September 1991

Software Foundation (OSF). The book goes into detail Reference Manual: 1st Edition, September 1991

on every Motif widget class, with useful examples that Volume 7, XView Programming Manual, has been

will help programmers to develop their own code. revised and expanded for XView Version 3. XView was

Anyone doing Motif programming who doesn't want to developed by Sun Microsystems and is derived from

have to figure it out on their own needs this book. Sun's proprietary programming toolkit, SunView. It is

In addition to information on Motif, the book is full of an easy-to-use object-oriented toolkit that provides an

tips about programming in general, and about user OPEN LOOK user interface for X applications.

interface design. For XView Version 3, the major additions are:

Contents include: " Internationalization support for XView programs

" An introduction to the Motif programming model, " A new Drag and Drop package that lets the user trans-
how it is based on the X Toolkit Intrinsics, and how it fer data between applications by dragging an interface

differs from them object to a region

" Chapters on each of the Motif widget classes, explain- " A mouseless input model that means XView applica-
ing them in depth, with useful examples that will help tions can be controlled from the keyboard without a

you to improve your own code. For example, the mouse. Soft function keys are also supported

chapter on menus shows how to develop utility func- " The Notices package has been completely rewritten to

tions that generalize and simplify menu creation. All incorporate Notice objects

of the code shown in the book is available free of " The Selection package has been rewritten, replacing

charge over the Internet or via UUCP the SunView-style selection service

" Complete quick reference appendices on Motif func- " New panel items such as multiline text items and drop

tions, widgets, and gadgets target items have been included. The Panels chapter

This one book can serve both your tutorial and refer- has been reworked to clarify and simplify panel usage

ence needs. The book assumes competence with the C " Panel item extensions are now covered in XView

programming language, as well as familiarity with fun- Internals to allow programmers to build custom panel

damental X Window System concepts. The Motif

items

Programming Manual^ not only the most comprehen- The Attribute Summary from the previous edition of the

sive guide to writing applications with Motif, it is an XView Programming Manual'has been expanded and

integral part of the most widely used series of books on is now published as a companion volume, the XView

Reference Manual. It contains complete alphabetical

listings of all XView attributes, functions, and macros, as

well as other reference information essential for XView

Volume Six Volume Seven programmers.

XView Programming Manual:

798pages, ISBN: 0-937175-87-0

-1^

Motif Programming

-"" "

XView Programming XView Reference Manual:

Manual Manual 266pages, ISBN: 0-937175-88-9

XView Programming and Reference Manual Set:

1064pages, ISBN: 0-937175-89-7

SEND E-MAIL QUESTIONS TO HUTS@ORA.COM OR UUHET'.OKA'.NUTS

Volume 8: X Window System " How to use PC and Mac X servers to maximize reuse

Administrator's Guide for X11 of existing hardware and convert outdated hardware

Release 4 and Release 5 into X terminals

" How to obtain and install additional public domain

By Linda Mui and Eric Pearce

software and patches for X
1st Edition, October 1992

" Covers features new in R5, including the font server

As X moves out of the hacker's domain and into the
 and Xcms

"real world," users can't be expected to master all the

The X Window System Administrator's Guide is avail-

ins and outs of setting up and administering their own X

able either alone or packaged with the X CD. The CD

software. That will increasingly become the domain of

will provide X source code to complement the instruc-

system administrators. Even for experienced system

tions for installing the software.

administrators X raises many issues, both because of

subtle changes in the standard UNIX way of doing things Without CD-ROM, 372pages, ISBN: 0-937175-83-8

and because X blurs the boundaries between different With CD-ROM, ISBN: 1-56592-052-X

platforms. Under X, users can run applications across X Window System

the network, on systems with different resources Administrator's Guide CD-ROM

(including fonts, colors, and screen size) than the The CD-ROM contains the source code for MIT's

applications were designed for originally. Many of public domain X Window System, and will be offered

these issues are poorly understood, and the technology with the X Window System's Administrator's Guide. It

for dealing with them is in rapid flux. This book is the contains pre-compiled binaries for popular platforms,

first and only book devoted to the issues of system and comes complete with an installation system that

administration for X and X-based networks, written not allows custom installation of the CD-ROM.

just for UNIX system administrators but for anyone The CD includes:

faced with the job of administering X (including those " Rock Ridge CD-ROM drivers from Young Minds, so

running X on stand-alone workstations). you can install the CD as a UNIX filesystem on several

The book includes: popular UNIX platforms.

" An overview of X that focuses on issues that affect the " Complete "core" source for MIT XI1 Release 4 and 5.

system administrator's job This includes the new R5 features, such as the

" Information on obtaining, compiling, and installing fontserver and XCMS.

the X software, including a discussion of the trade-offs " Complete "contrib" source for MIT XI1 Release 5.

between vendor-supplied and the free MIT versions of X This includes some programs not available in the MIT

" How to set up xdm, the X display manager, which distribution, such as 'xtici', the Tektronics Color

takes the place of the login program under X and can Editor.

be used to create a customized turnkey X session for " Complete examples and source code for all the books

each user in the X Window System Series.

" How to set up user accounts under X (includes a " Programs and files that are discussed in Volume 8.

comparison of the familiar shell setup files and pro- These were previously available only to administrators

grams to the new mechanisms provided by X) with Internet access.

" Issues involved in making X more secure. X's security " Pre-compiled XI1 Release 5 binaries for Sun3, Sun4,

features are not strong, but an understanding of what and IBM RS6000 platforms. (The RS6000 server sup-
features are available can be very important, since X ports the Skyway adaptor, not

makes it possible for users to intrude on each other the new GT3 adaptor.)

in new and sometimes unexpected ways.

" How fonts are used by X, including a description of Volume Eight

the font server

" A discussion of the issues raised by running X on het-

erogenous networks
 X Window System

" How colors are managed under X and how to get the Administrator's Guide

same colors across multiple devices with different

hardware characteristics

" The administration issues involved in setting up and

managing X terminal

O'Reilly & Associates, liv

ORDER TOLL-FREE IN US/CANADA, YAM - SPM PST, 1-800-998-9938

Programmer's Supplement for R5 of the The X Window System in a Nutshell

X Window System, Version 11
By David Flanagan

Edited by Elite Cutler, Daniel Gilly, and Tim 0[Reilly

2nd Edition, April 1992

1st Edition, November 1991 Once programmers have mastered the concepts behind

This book is for programmers who are familiar with X and learned how to program in Xlib and Xt there is

Release 4 of the X Window System and want to know still a mass of details to remember. The X Window

how to use the new features of Release 5. It is intended System in a Nutshell fills this gap. Experienced X pro-
as an update for owners of Volumes 1,2,4, and 5 of the grammers can use this single-volume desktop compan-
O'Reilly and Associates' X Window System series, and ion for most common questions, keeping the full X

provides complete tutorial and reference information to Window System series of manuals for detailed refer-
all new Xlib and Xt toolkit functions. ence. X in a Nutshell contains essential information in a

It includes: boiled-down quick-reference format that makes it easy

" Overview of the R5 changes as they affect application to find the answers needed most often:

programming " Command line options and resources for the standard

" How to write an internationalized application-one MIT X clients

that anticipates the needs of a language and culture " Calling sequence for all Xlib and Xt functions and macros

other than English " Detailed description of structures, enums, and other X

" How to use scalable fonts and the fonts provided by data types used as arguments or return values in Xlib

the new font server or Xt functions

" How to get consistent color on any display by using " Description of the code inside a basic widget quick

the X Color Management System reference to the event structures

" Overview of PEX, the new three-dimensional graphics " Font name syntax, color names, resource file and

extension for X translations table syntax, and cursors

" Reference pages for all new and modified Xlib and Xt " Xlib and Xt error messages

functions and Athena widgets This book has been newly updated to cover R5 but is

Together with Volume 2 and Volume 5, owners of the still useful for R4. The descriptions of the functions

Programmer's Supplement for Release 5 have a com- have been expanded and clarified, with improved cross-

plete set of reference pages for the current MIT X referencing to important related functions. Includes

Consortium standards for Xlib and Xt. material on Xcms and the internationalization features

390pages, ISBN: 0-937175-86-2 ofR5.

424pages, ISBN: 1-56592-017-1

R5 Update

Programmer's Supplement

for Release 5

SEND E-MAIL QUESTIONS TO HUTS@OOA.COM OR UUHEJ'.OM'.HUTS

PHIGS Programming Manual: 3D Whether you are starting out in 3D graphics program-
Programming in X ming or are a seasoned veteran looking for an authori-
By Tom Goskins tative work on a fast-rising 3D graphics standard, this

1st Edition, February 1992 book will serve your purposes well.

A complete and authoritative guide to PHIGS and PHIGS Softcover: 968pages, ISBN: 0-937175-85-4

PLUS programming, this book documents the PHIGS Hardcover: 968pages, ISBN: 0-937175-92-7

and PHIGS PLUS graphics standards and provides full

guidance regarding the use of PHIGS within the X envi- PHIGS Reference Manual: 3D

ronment. The discussions of PHIGS and PHIGS PLUS Programming in X

are fully integrated in this text, which takes as its start- Edited by Linda Kosko

ing point the PEX Sample Implementation (or PEX- 1st Edition, October 1992

SI)-the publicly available and most widely established The definitive and exhaustive reference documentation

base for commercial PHIGS products. In addition, the for the PHIGS/PEX Sample Implementation ("PEX-SI").

PHIGS Programming Manual explains, at both elemen- Contains all the reference pages from the MIT X

tary and advanced levels, how to integrate your PHIGS Consortium release, but in upgraded form, with addi-
applications with standard X (Xh'b) functions. Window tional reference materials. Together with the PHIGS

management, event handling, input-output, even lower- Programming Manual, this book is the most complete

level drawing functions-all of these can be made part and accessible documentation currently available for

of your PHIGS programs. Besides Xlib itself, there are both the PEX-SI and the PHIGS and PHIGS PLUS standards.

detailed examples and explanations based on the Motif, The PHIGS Reference Manual is the definitive and

OLIT, and XView toolkits. exhaustive reference documentation for the PHIGS/PEX

The PHIGS Programming Manual: Sample Implementation ("PEX-SI"). It contains all the

" Offers a clear and comprehensive introduction to reference pages from the MIT X Consortium release, but

PHIGS: output primitives, attributes, color, structure, in upgraded form. It also contains additional reference

and all you need to know to begin writing PHIGS pro- materials.

grams

1116 pages, ISBN: 0-937175-91-9
" Offers technical know-how. Author Tom Gaskins has

for many years been an implementor of PHIGS and is

also a key contributor to the international PHIGS stan-
dardization efforts.

" Shows how to use PHIGS in your X Window System

applications

" Illustrates the concepts of PHIGS and PHIGS PLUS

with over 200 figures

" Clearly explains the subtleties of viewing, lighting, and

shading, complete with practical code examples, each

of them modular and simple to understand, but virtu-
ally none of them merely a "toy" program

" Includes the DIS ISO C binding, the closest in exis-
tence to the coming ISO standard

" Demonstrates the use of PHIGS and PHIGS PLUS in

interactive programs, so that you can do more than

merely display pictures

" Fully describes all the PHIGS and PHIGS PLUS

functions

" Has a companion reference manual. Taken together,

these books are the only documentation you'll need

for a product that is changing the way the X world

thinks about graphics.

ORDER TOLL-FREE IN US/CANADA, YAM - SPM PST, 1-800-998-9938

PEXlib Programming Manual PEXlib Reference Manual

By Tom Goskins By 0 'Reilly & Associates

1st Edition, December 1992 1st Edition, December 1992

The world of workstations changed dramatically with The PEXlib Reference Manual is the definitive pro-
the release of the X Window System. Users can finally grammer's reference resource for PEXlib, and contains

count on a consistent interface across almost all makes complete and succinct reference pages for ah1 the

and models of computers. At the same time, graphics callable routines in PEXlib version 5.1. The content of

applications become easily portable. the PEXlib Reference Manual stands, with relatively few

Until recently, X supported only 2D graphics. Now, changes, as it was created by the MIT X Consortium.

however, by means of the PEX extensions to X together The PEXlib Reference Manual is a companion volume

with the PEXlib applications programming interface, to the O'Reilly and Associates' PEXlib Programming

native, 3D graphics have come to the X Window System. Manual, written by Tom Gaskins. The Programming

PEXlib allows the programmer to create graphics pro- Manual is a thorough tutorial guide to PEXlib, and

grams of any complexity, and also provides the basis for includes valuable reference features. Together, these

higher-level graphics systems and toolkits. books offer the most complete and accessible docu-
The PEXlib Programming Manual is the definitive pro- mentation available for PEXlib version 5.1.

grammer's guide to PEXlib, covering both PEX versions 577pages, ISBN: 1-56592-029-5

5.0 and 5-1. Containing over 200 illustrations and 19

color plates, it combines a thorough and gentle tutorial

approach with valuable reference features. Along the

way, it presents the reader with numerous program-
ming examples, as well as a library of helpful utility rou-
tines-all of which are available online. You do not

need to have prior graphics programming experience in

order to read this manual.

Written by Tom Gaskins-the widely recognized

authority who also authored the O'Reilly and Associates'

PHIGS Programming Manual-this book is the only

programming guide to PEXlib you will ever need.

1154'pages, ISBN: 1-56592-028-7

SEND E-MAIL QUESTIONS TO HUTS@OM.COM OR UUHET!ORA!HUTS

About The X Resource The*Resource: lssue*> Ju'y1992

Edited by Adrian Nye

The X Resource is a quarterly working journal for X

programmers that provides practical, timely informa- Table of Contents, Issue 3 (Juty 1992):

tion about the programming, administration, and use DEPARTMENTS

of the X Window System. The XResource is the Official " Xt Performance Improvements in Release 5,

Publisher of the MIT X Consortium Technical Conference by Gabe Beged-Dov

Proceedings, which form the January issue. Issues can " The X User: Making Better Use of Resources,

be purchased separately or by subscription. by Paul Davey

" The X Administrator: Managing Font Servers,

The X Resource: Issue 2, April 1992 by Eric Pearce

" Best of Network News, edited by Marc Albert

Edited by Adrian Nye

PAPERS

Table of Contents, Issue 2 (April 1992):

" Multi-user Application Software Using Xt,

DEPARTMENTS:

by Oliver Jones

" From the X Consortium: Current Projects, by Bob " An Extension for Server Instrumentation and Tracing,

Scheifler

by Mark J. Kilgard

" Best of Netnews, edited by Marc Albert " Using the New Font Capabilities of HP-donated Font

" The X User: Designing for Usability, by Scott Server Enhancements, by Axel Deininger and

McGregor Nathan Meyers

" The X Administrator: Font Formats and Utilities, by " Improving X Application Performance, by Chris D.

Dinah McNutt and Miles O'Neal Peterson and Sharon E. Chang

PAPERS: " A Ruler Model for the Motif Form Widget, by Thomas

" NASA's TAB PLUS: a GUI Development Tool and Berlage

Application Environment, by Marti Szczur " A New Paradigm for Cross-platform Automated GUI

" Understanding Grabs and Keyboard Focus, by Wayne Testing, by Lawrence R. Kepple

Dyksen DOCUMENTATION

" Designing Reusable Widget Classes with C++ and " The Nonrectangular Window Shape Extension, by

OSF/Motif, by Andreas Baecker Paula M. Ferguson

" Visualizing X, by David Lemke and David Rosenthal " Public-domain XcRichText Widget, by Dan Connolly

" imake Demystified, by Paul Davey 220pages, ISBN: 0-937175-98-6

DOCUMENTATION:

" Wcl 2.0: The Widget Creation Library

190pages, ISBN: 0-937175-97-8

ORDER TOLL-FREE IN US/CANADA, 7AM - 5PM PST, 1-800-998-9938

The X Resource: Issue 4, October 1992 The X Resource: Issue 5, January 1993

Edited by Adrian Nye Edited by Adrian Nye

Table of Contents, Issue 4 (October 1992): Table of Contents, Issue 5 (January 1993):

FROM THE EDITOR FROM THE EDITOR

" 7th Annual X Technical Conference " Proposal for an X-based Online Help Protocol,

" Xhibition 93 Conference: Call for Participation by Kent J. Summers and Jeffrey L. Vogel

" The X Resource Code Archive " Describing Formats for X-based Data Interchange,

by Ellis S. Cohen

DEPARTMENTS

" A Widget Class Extension for Improved Geometry
" From The X Consortium: The MIT X Software

Management, by Steve Humphrey

Distribution After Release 5, by Stephen Gildea, MIT X

Consortium " The Layout Widget: A TeX-Style Constraint Widget

Class, by Keith Packard

" The X Administrator: Taming the X Display Manager,

by Miles O'Neal " Building Distributed User Interfaces with Fresco,

by Mark Linton and Chuck Price

" X User Groups

" Melding OSF/Motif, C++ and the Intrinsics,
" The PEX Interoperability Center, by Kathy Harris
 by Douglas S. Rand and Gilles Benati

PAPERS " The Trestle Toolkit, by Mark S. Manasse

" Finding Auxiliary Files for an X Toolkit Application, by " Hypergraphics and Hypertext in Tk, by John K.

David Flanagan Ousterhout

" RPC Programming in X Applications, by John Bloomer " The X Engine Library: A C++ Library for Constructing

" A Bibliography of Windowing Systems and Security, by X Pseudo-servers, by John Menges

Jeremy Epstein " The X File System, by Jeff Nisewanger

" The XGEN Application Generator: Constructing Motif " Trace Analysis of the X Window System Protocol,

GUIs For TTY Programs, by Kurt Buehler by Laurence P. G. Cable and Stuart W. Marks

" Workstation Audio in the X Environment, by Richard " Multi-threaded Xlib, by Stephen Gildea

Billman, Robert Hammond, Pat McElhatton, Ellen

" Distributed Memory Multi-computers as X Clients,
Nordahl Brandt, Francis Sung, and Nancy Yost

by Steve R. Ball and Chris W. Johnson

DOCUMENTATION

" GUI for Near-Real-Time Applications in X -

" A Directory of Freely and Commercially Available Programming Tips, by Ilan Aisic

Widgets
 " TaX: A Tool for Building Time Dependent

" The Cmap Widget Applications, by Nuno M. Correia and Nuno M.

" The Hdial Widget Guimaraes

" The XI1 Input Extension: A Tutorial, by Paula " Supporting Mobile, Pen-based Computing with X,

Ferguson by James Kempf and Alan Wilson

" The XI1 Input Extension: Reference Pages " Making the X Window System Accessible to People

276pages, ISBN: 0-937175-99-4 with Disabilities, by Will D. Walker and Mark E. Novak

" Runtime Translation of X Interfaces to Support

Visually-Impaired Users, by Keith Edwards and

Thomas Rodriguez

" A Fully Functional Implementation of Layered

Windows, by Peter Daifuku
THE X RESOURCE

" An Update on Low-Bandwidth X (LBX), by Jim Fulton

272pages, ISBN: 1-56592-020-1

SEND E-MAIL QUESTIONS TO HUTS@OM.COM OR UUNET!ORA!NUTS

- - '
E

^j "- " .- xi ^ _ v-' 1 "i 0

= 2 i i - c ;= | ^ y: cl CM

^ f.1 I,,- f ' 1 ̂ 1 f g" 1 1 = s

s £

^ -S c ^ '<-. i t: 5 * ^ "<. > .5; -s ̂ "^ |

>, 5 "§ .=""£"$ £ c_ pr ̂ -cL "§"§"« '

~
5 S c' .§ ̂ ' .§: "a c. >. ̂ . *_ %
^ 7" 'S~.

.2 <u c w s S '<. ^ - 6 ^ S 'S, ^ 2 -\

H. ~ - £ $ ^ 5

'

-"/- ̂ _5 $ "^ 55 1 i^

u ° S '^ i: ^ -< -^ 2 c '-^ $ S * \C

'f< "dL "- .9" " ^ -?" ^ tr! *"* *^ 5 i x J

'" ̂ | | = i | | S ̂ "I § a 1

~~ - v. "" ^j "^; * "" p\ ""* -^ ̂ "5 i X ^ z

z 2 c z.' ̂ ^ ^ ~Z ̂ ~^ "- - i ^ ^ £ i 5
""
- ' t" "^* ^" ^o~^'~S -T -i ~1 - r- ."v -

"^ C "^2 CJ - ~" "^ - '> - 13 ^! ~. ? ^ N 5 "g E!
'r~ ^- ~^~ -^ ^-

-V t7? ,^ ^3 ^-/ o "*r ^/ - 7 "- ^ >- ^ i-
" f- f- '^1 C y. , ^ 7 2

" "^ -~ r~ '>- X^ :? "= - s. i- .- ''-

<

x "i p 3 ^ ^ i ~ ^ g £ _ _ ~) Ej 7 /

>" = n _ 3 O -5 :- /" ^ [j c ± ^ / 7.

\ Books That Help People Get More Out of Computers I

If you want more information about our

Name.

books, or want to know where to buy them,

we're happy to send it.

Address.

a Send me a free catalog of titles.

3 What bookstores in my area carry your

books (U.S. and Canada only)?

City_

a Where can I buy your books outside the

U.S.and Canada?

3 Send me information about consulting

State, ZIP

Country-

services for documentation or program-

ming. Phone

a Send me information about bundling

books with my product. Email Address.

NAME

COMPANY_

NO POSTAGE

NECESSARY IF

MAILED IN THE

ADDRESS_

UNITED STATES

CITY STATE ZIP

BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 80 SEBASTOPOL, CA

POSTAGE WILL BE PAID BY ADDRESSEE

O'Reilly & Associates, Inc.

103 Morris Street Suite A

Sebastopol CA 95472-9902

NAME

COMPANY

ADDRESS

CITY STATE ZIP

BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 80 SEBASTOPOL, CA

POSTAGE WILL BE PAID BY ADDRESSEE

O'Reilly & Associates, Inc.

103 Morris Street Suite A

Sebastopol CA 95472-9902

Overseas Distributors

Effective January 1, 1990, customers outside the U.S. and Canada will be able to

order O'Reilly & Associates books through distributors near them. These overseas

locations offer international customers faster order processing, more local

bookstores and local distributors, and increased representation at trade shows

worldwide, as well as the high level, quality service our customers have always

received.

AUSTRALIA & NEW ZEALAND LATIN AMERICA (inquiries)

(orders and inquiries) Addison-Wesley Iberoamericana S.A.

Addison-Wesley Publishers, Pty. Ltd. Blvd. de las Cataratas No. 3

6 Byfield Street Colonia Jardines del Pedregal

North Ryde, N.S.W. 2113 Delegacion Alvaro Obregon

AUSTRALIA Mexico 01900, D. F.

Telephone: 61-2-888-2733 MEXICO

FAX: 61-2-888-9404 Telephone: 525-660-2497

FAX: 525-660-4930

GREAT BRITAIN & AFRICA

(orders and inquiries) LATIN AMERICA (orders)

Addison-Wesley Publishers Ltd. Addison-Wesley Publishing Company

Finchampstead Road International Order Department

Wokingham, Berkshire RG11 2NZ Jacob Way

ENGLAND Reading, MA 01867 U.S.A.

Telephone: 44-734-794-000 Telephone: 1-617-944-3700

FAX: 44-734-794-035 FAX: 1-617-942-2829

EUROPE & MIDDLE EAST ASIA except JAPAN (inquiries)

(orders and inquiries) Addison-Wesley (Singapore) Pte. Ltd.

Addison-Wesley Publishing Group 15 Beach Road

Concertgebouwplein 25 05-09/10 Beach Centre

1071 LM Amsterdam SINGAPORE 0718

THE NETHERLANDS Telephone: 65-339-7503

Telephone: 31-20-671-72-96 FAX: 65-339-9709

FAX: 31-20-664-53-34

ASIA except JAPAN (orders)

U.S. & CANADA Addison-Wesley Publishing Company

(orders and inquiries) International Order Department

O'Reilly & Associates, Inc. Jacob Way

103 Morris Street, Suite A Reading, MA 01867 U.S.A.

Sebastopol, CA 95472 U.S.A. Telephone: 1-617-944-3700

Telephone: 1-800-338-6887 FAX: 1-617-942-2829

Fax: 1-707-829-0104

JAPAN (orders and inquiries)

Toppan Company, Ltd.

Ochanomizu Square B, 1-6

Kanda Surugadai

Chiyoda-ku, Tokyo 101

JAPAN

Telephone: 81-3-3295-3461

FAX: 81-3-3293-5963

mdow System Administrator's Guidi

As X moves out of the hacker's domain and into the "real world," users can't be expected to

master all the ins and outs of setting up and administering their own X software. That will

increasingly become the domain of system administrators. Even for experienced system

administrators X raises many issues, both because of subtle changes in the standard UNIX way

of doing things and because X blurs the boundaries between different platforms. Many of these

issues are poorly understood, and the technology for dealing with them is in rapid flux.

X Window System Administrator's Guide is the first and only book devoted to the issues of

system administration for X and X-based networks, written not just for UNIX system

administrators but for anyone faced with the job of administering X (including those running X

on stand-alone workstations). The book includes:

An overview of X that focuses on issues that affect the system administrator's job

Information on obtaining, compiling, and installing the X software, including a discussion

of the trade-offs between vendor-supplied and the free MIT versions of X

How to set up xdm, the X display manager, which takes the place of the login program

under X and can be used to create a customized turnkey X session for each user

How to set up user accounts under X

The issues involved in making X more secure

How fonts are used by X, including a description of the R5 font server

A discussion of the issues raised by running X on heterogenous networks

How colors are managed under X and how to get the same colors across multiple devices

with different hardware characteristics.

The administration issues involved in setting up and managing X terminals.

How to use PC and Mac X servers to maximize reuse of existing hardware and convert

outdated hardware into X terminals

How to obtain and install additional public domain software and patches for X.

Covers features new in R5, including the font server and Xcms.

ISBN 0-937175-83-f

90000>

Printed on Recycled Pa,

9 II780937II1 75835 Book alone: ISBN 0-937175-83-8

Book with CD: ISBN 1-56592-052-X

O'Reilly & Associates, Inc.

V?

>&~: 'W

i^f" '" <v.
/?*»''"*,;. y**#

::&* /^^V/^'

-. * '/.4i-^tf;7Ai^

J^Wffc ?^V)

£*<$£ &£>< >&"
"fttyte «**«** v ;

<%m- \^/^ m "",, /**^J^ . ii PP^/^wr, "

£SK t&* *&"<_ :^-f%^M^
^?*<v " t'** "$"'*" :^:fS4^;s^;

«*.v-t ?*Vi -/;i*»*- ^,«.-. i-f^-: " ,--**'" ^:^ ^ij^i

X**V7" **!' .^ "-"*^;.*y;
'.^.T^'^fet-^.'i

fc: ^ :is

""M-' ' -**7*: '4*'
:"**' :s*r- 'V' "jS^^
'
H.' * #'' " " " >T' :fMv:»^'

"".-"?:"., """.;^V^'^.':^ "Jtt#*tf$

J«gte^;%

i.**.*.,, /***-17 . *,J^.T7^ .V ̂
' : -^*" *'47/(^f*>i

r»M'l-» - i1. :*^i ^
/>?;< . *V*-

IJU ;,^,

ft;V/-^

r*>:»**$?¥

X^/^?>'i*

V^-'V*f^

" ̂ sjr1 /, »*> v% //^rr«i v^ w^*

;f>*iNfi^*^»^*»*^^*^^
.*"/-;.*""' /",«*^**.^«*««*S'f«

'$ '"% '%$*$£*%**$$* .», M ,jt*rM <&&<'**/&£&,*,

: ̂ wjwft-ii* '/to4?^ *'*

»*fS4»**o5li;

.

-

£&

-

> »~v » -ip. T*^ is

.

:

"
 " -
'

.

t'~ ''I-'-' - *. *. >

I

OP*/ "
" -

.

" "

	Contents Page 1
	Contents Page 2
	Contents Page 3
	Contents Page 4
	Contents Page 5
	Contents Page 6
	Contents Page 7
	Contents Page 8
	Contents Page 9
	Contents Page 10
	First Page:
	Chapter 1: preface xix how to use this book xix assumptions xxi related documents xxi font conventions used in this book xxii request for comments xxiii bulk sales information xxiii acknowledgments xxiii
	Chapter 2: chapter 2 the x user environment 13
	Chapter ?: a
	Chapter ?: chapter 1 an introduction to x administration 1.1 the design of xi1
	Chapter 1:
	Chapter ?: 1.1.1 display servers 4
	Chapter ?: 1.1.2 clients and resources 6
	Chapter ?: 1.1.3 toolkits and guis 7
	Chapter ?: 1.2.1 installing x 8 1.2 x administration 8
	Chapter ?: 1.2.2 supporting users 9 1.2.3 maintaining software 9 xll
	Chapter ?: 1.2.4 maintaining multiple machines 10 1.2.5 a philosophy of x administration 10
	Chapter ?: 2.1 the configured x session 13 2-1 a configured x session 13
	Chapter ?:
	Chapter ?: 2.1.1 the twilight zone 16 16 2-3 an unconfigured x session
	Chapter ?: 2.2 components of the x environment 18 2.2.1 window managers 18
	Chapter ?: 2.2.2.2 the geometry command-line option 20 2.2.2 customizing clients 20 2.2.2.1 the fn command-line option 20 command-line option 283
	Chapter ?: 2.2.2.3 specifying colors 23 11 release 5 2-9 an xterm window in reverse video decorated by twm 23
	Chapter ?: 2.2.2.4 using resources 24 using resources 281
	Chapter ?: 2.2.3 the startup script 25
	Chapter ?: 2.2.3.1 the foreground process 26
	Chapter ?: 2.3 the shell environment 27 2.3.1 setting the display variable 27
	Chapter ?: 2.3.1.1 complications with display names 28
	Chapter ?: 2.3.2 redefining the search path 29
	Chapter ?: 2.3.2.2 setting the search path for mixed environments 30 2.3.2.1 setting the search path for openwindows support 30
	Chapter ?: 2.3.3 xterm issues 31 2.3.3.1 xterm and terminal emulation 31 2.3.3.2 the resize client 31
	Chapter ?: 2.3.3.3 xterm and the login shell c shell 33
	Chapter ?: 2.3.4 starting remote clients 34
	Chapter ?: 2.3.4.1 starting a remote client with rsh 35
	Chapter ?: 2.4 startup methods 37 2-11 logging in with xdm 37
	Chapter ?: 2.4.1 xinit and startx 38 xi1r4 2-12 starting the x server with xinit 38
	Chapter ?: 2.4.2 differences between xinitrc and xsession 39 39 2.5 related documentation
	Chapter 3: 3 chapter 3 the x display manager 43 3.1 xdm concepts 44 7.5 configuring for the x display manager 173 3-2 default xdm configuration files 46
	Chapter 3:
	Chapter ?: 3-1 xdm flow chart 44
	Chapter ?: 3.2 xdm configuration files 46
	Chapter ?: 3.3 xdm the easy way 48 3-3 xdm login box 48
	Chapter ?: 3.4 troubleshooting xdm 49 3-4 default xdm environment 49
	Chapter ?: 3.5 customizing xdm 51 3.5.1 the master configuration file xdm-config 51
	Chapter ?: 3.5.2 listing x servers the xservers file 53 3.5.2.1 xservers syntax 53
	Chapter ?: 3.5.3 xdm host access control the xaccess file r5 only 55 3-5 xdmcp direct indirect and broadcast queries
	Chapter ?: 3.5.3.1 direct and broadcast access 56 56
	Chapter ?: 3.5.3.2 indirect access and the chooser 57 3-6 the chooser
	Chapter ?: 3.5.3.4 advantages and disadvantages of the chooser 59 3.5.3.3 using macros 59
	Chapter ?: 3.5.4.1 configuring the login box 60 3.5.4 the xresources file 60 d.i.3 3-8 chooser box with an r4 host 60
	Chapter ?: 3.5.4.2 the xconsole client 62 3-9 adapted xlogin greeting 62
	Chapter ?: page 3.5.5 starting up individual x sessions the xsession file 63 page
	Chapter ?: 3.5.5.1 no home directory r5 64
	Chapter ?: 3.5.6 display classes 65
	Chapter ?: 3.6 testing your xdm setup 66 xii
	Chapter ?: 3.6.1 resetting the keyboard 67
	Chapter ?: 3.6.2 restarting xdm using xdm-pid r4 and later 68 3.6.3 rereading xdm configuration files r3 68
	Chapter ?: 3.7 permanent installation of xdm 69
	Chapter ?: 3.8 related documentation 70
	Chapter ?: thesun-des-1 mechanism r5 84 4.1 host-based access control 74 4-1 host-based access control 74
	Chapter 4: chapter 4 security 73
	Chapter ?: 4.1.1 the etc/xn.hosts file 74
	Chapter ?: 4.1.2 the xhost client 75
	Chapter ?: 4.1.3 problems with host-based access control 76
	Chapter ?: 4.2 access control with mit-magic-cookie-1 77 4.4 4-3 user-based access control 4-2 xdmcp and the access code 77
	Chapter ?: 4.2.1 using mit-magic-cookie-1 with xdm 78 78
	Chapter ?: 4.2.2 the xauth program 79
	Chapter ?: 4.2.3 using mit-magic-cookie-1 with xinit 81
	Chapter ?: 4.2.4 xauth vs xhost 82
	Chapter ?: 4.3 the xdm-authorization-1 mechanism r5 83
	Chapter ?:
	Chapter ?: 4.4.1 public key encryption 85
	Chapter ?: 4.4.2 prerequisites for using sun-des-1 86
	Chapter ?: 4.4.3 using sun-des-1 with xdm 88
	Chapter ?: 4.4.4 using sun-des-1 with xinit 89
	Chapter ?: 4.4.5 adding another user with sun-des-1 91
	Chapter ?: 4.4.7 troubleshooting sun-des-1 92 4.4.6 xterm and sun-des-1 92
	Chapter ?: 4.5 xterm and secure keyboard 93
	Chapter ?: 4.6 other security issues 94 4.6.1 the console xterm r4 and earlier 94
	Chapter ?: 4.6.2 the console and xdm r5 95
	Chapter ?: 4.6.4 reading the framebuffer sun workstations 96 4.6.3 hanging the server remotely r3 96
	Chapter ?: 4.6.5 removing files in tmp 97 4.6.6 the network design 97
	Chapter ?: 4.7 related documentation 98
	Chapter 5: 5.1 fonts on the x window system 101 chapter 5 font management 101 105
	Chapter ?: to pcf or snf 125 5.5.2.4 changing aix boot files 133 5.5.2.1 testing by hand 131 5.3.6.2 openwindows conversion 125 5.3.6.1 aliasing 124 140
	Chapter 5: 5
	Chapter ?: 5.1.1 xlsfonts 103 5.1.2 xfd 103 d.i.2 5-2 xfd
	Chapter ?: 5.1.3 xfontsel 104 5-3 xfontsel 104
	Chapter ?: 5.1.4 the font path 105
	Chapter ?: 5.1.5 the font directory file 106
	Chapter ?: 5.1.6 the fonts.scale file r5 only 107
	Chapter ?: 5.1.8 aliases 108 5.1.7 wildcards 108
	Chapter ?: 5.1.8.1 the file_names_alias alias 109
	Chapter ?: 5.2 all about fonts 110 5.2.1 bitmap versus outline fonts 110
	Chapter ?: 5.2.2 font formats 111
	Chapter ?: 5.2.3 format conversion tools 112
	Chapter ?: 5.3 adding new fonts 114 5.3.1 adding a single font 114
	Chapter ?: 5.3.2 adding multiple fonts 115
	Chapter ?: 5.3.2.1 multiple font example 116
	Chapter ?: 5.3.3 problems with running vendor-specific clients 117
	Chapter ?: 5.3.4 decwindows examples 118
	Chapter ?: 5.3.4.1 aliasing 119 5-5 dxcalendar with the wrong fonts 119
	Chapter ?: 5.3.4.2 decwindows conversion 120 120 5-6 dxcalendar with aliases
	Chapter ?: 5.3.5 alxwindows example 121
	Chapter ?: 5.3.6 openwindows example 123 123 5-7 cm without aliases
	Chapter ?: 5-8 cm with aliases 124
	Chapter ?: 5.3.6.3 converting from xi 1/news xi
	Chapter ?: 5.3.6.4 more conversions 126
	Chapter ?: 5.4 providing fonts over the network 127 5.5 the r5 font server 127
	Chapter ?: 5.5.1 the configuration file 128
	Chapter ?: 5.5.2 installing the font server 130
	Chapter ?: 5.5.2.2 changing bsd boot files 131
	Chapter ?: 5.5.2.3 changing system v boot files 132
	Chapter ?: 5.5.3 font server name syntax 133
	Chapter ?: 5.5.4 debugging the font server 134
	Chapter ?: 5.5.5 font server clients 135
	Chapter ?: 5.5.6 the font path and the font server 136
	Chapter ?: 5.5.8 a font server example 138 5.5.7 hostname aliases 138
	Chapter ?: 5.6 related documentation
	Chapter 6: 6.1 color specification in release 4 and earlier 144 chapter 6 color 143
	Chapter 6: 6-1 red green and blue color guns 143
	Chapter ?: 6.1.1 rgb color names 144
	Chapter ?: 6.1.2 numeric color values 145
	Chapter ?: 6.1.3 adding your own color names rgb 146
	Chapter ?: 6.1.4 fixing a corrupted color database 147 6.2 color specification in release 5 xcms 147 6-2 xcms vs rgb color specification
	Chapter ?: 6.2.1 xcms color names 148
	Chapter ?: 6.2.2 adding your own color names in xcms 150 6-3 xtici edit menu 150
	Chapter ?: 6.2.3 xcms database example 151
	Chapter ?: 6.2.4 device profiles 152
	Chapter ?: 6.3 related documentation 153
	Chapter ?: 7.1 buying an x terminal what's what 157 7.1.1 monitors 157 7.1.1.1 screen size 158 7.1.1.2 resolution 158 7.1.1.3 depth 159 7.1.1.4 refresh rate 159
	Chapter ?: 7.7.3.2 swapping to a disk 180 7.7.3.1 swapping to a file 180 181
	Chapter 7: chapter 7 x terminals 157
	Chapter ?:
	Chapter ?: 7.1.2 keyboard and mouse 159
	Chapter ?: 7.1.3 x server software 160
	Chapter ?: 7.1.4 special features 161 7.1.5 memory configuration 161
	Chapter ?: 7.1.6 network interface 162
	Chapter ?: 7.2 x terminal setup 163
	Chapter ?: 7.3 network setup 164
	Chapter ?: table of contents 7.3.2 getting information using bootp 165 7.3.1 getting the ip address using rarp 165
	Chapter ?: 7.3.3 trivial file transfer protocol tftp 167
	Chapter ?: 7.3.4 setting up the network on the x terminal 168 7.3.5 debugging hints 168
	Chapter ?: 7.3.5.3 name server problems 169 7.3.5.1 error messages 169 7.3.5.2 updating the arp table 169
	Chapter ?: 7.4 fonts on x terminals 170 7.4.1 font formats 170
	Chapter ?: 7.4.3 choosing tftp or nfs for font access 171 7.4.2 the font server r5 171 7.4.3.1 reading fonts using tftp 171
	Chapter ?: 7.4.3.2 reading fonts using nfs 172
	Chapter ?: 7.5.1 configuring the x terminal for xdm 173
	Chapter ?: 7.5.4 configuring xdm without xdmcp 174 7.5.3 configuring an r4 host 174 7.5.2 configuring an r5 host 174
	Chapter ?: 7.5.5 setting up server access control 175 7.6 remote configuration of x terminals 175
	Chapter ?: 7.6.1 remote configuration on ncd terminals 176
	Chapter ?: 7.6.2 remote configuration on visual terminals 177
	Chapter ?: 7.6.3 remote configuration on tektronix terminals 178 7.7 reconfiguring the host 178 7.7.1 increasing the number of processes 178
	Chapter ?: 7.7.2 increasing the number of pseudo-ttys 179
	Chapter ?: 7.7.3 increasing the amount of swap space 180
	Chapter ?: 7.8 related documentation
	Chapter 8: 8.1.1 should you use mit source 185 chapter 8 building the x window system 185 8.1 installation issues 185 8.1.2.1 x from your os vendor 187
	Chapter 8:
	Chapter ?: 8.1.2 types of vendor-supplied x distributions 186
	Chapter ?: 8.1.2.2 x from a third party 187
	Chapter ?: 8.1.3 x source code from mit 188
	Chapter ?: 8.1.5 installing multiple x releases 189 8.1.4 complete or client-only distribution 189
	Chapter ?: 8.2.1 do you have enough disk space 191 8.2 source preparation 191
	Chapter ?: 8.2.2 is your platform supported 192
	Chapter ?: 8.2.3 applying os patches 194 8.2.4 applying x patches 194
	Chapter ?: 8.2.5 creating a link tree optional 196
	Chapter ?: 8.3 simplest case build 197
	Chapter ?: 8.4 host problems 198 8.4.1 disk space 198
	Chapter ?: 8.4.1.1 changing the tmp directory using tmpdir ultrix and hp-ux 199
	Chapter ?: 8.4.1.2 changing the tmp directory using temp sunos 200 8.4.2 shared library installation sunos 200
	Chapter ?: 8.4.3.1 nfs installation without root access 201 8.4.3 nfs installation 201
	Chapter ?: 8.4.4 installing the termcap or terminfo definition for xterm 203 8.4.3.2 installation over the network rdist 203
	Chapter ?: 8.5 simple configuration 204
	Chapter ?: 8.5.1 configuration parameters 205
	Chapter ?: 8.5.1.2 the projectroot flag 207
	Chapter ?: 8.5.1.3 the platform configuration file platform.cf 208
	Chapter ?: 8.5.2 configuration example 1 210
	Chapter ?: 8.5.3 configuration example 2 211
	Chapter ?: 8.5.4 configuration example 3 212 8.5.5 configuration example 4 212
	Chapter ?: 8.5.6 configuration example 5 213 8.5.7 other build flags 213
	Chapter ?: 8.6 building programs after x is installed 214 8.5.7.1 xterm build flags 214 8.6.1 xmkmf 214
	Chapter ?: 8.6.2 include files 215
	Chapter ?: 8.7 more about imake 216 8.7.1 the make program 216 8.6.3 libraries 216
	Chapter ?: 8.7.2 the c preprocessor 217
	Chapter ?: 8.7.3.1 comments in imake 219 8.7.3 imake syntax 219
	Chapter ?: 8.7.3.2 multi-line macros 220
	Chapter ?: 8.7.3.3 concatenating macros 221
	Chapter ?: 8.7.4 imake configuration files 222 8.7.3.4 dealing with tabs 222
	Chapter ?: 8.7.4.1 a quick tour of files used by imake 223 8-4 files processed by imake 223
	Chapter ?: 8.7.5 using imake to build xi1 224
	Chapter ?: 8.8.1 undefined symbols or functions 226 8.8.1.2 missing function definitions 226 8.8.1.1 missing header files 226
	Chapter ?: 8.8.2 searching for preprocessor symbols 228
	Chapter ?: 230
	Chapter ?: adding a host to etc/hosts 239 appendix a useful things to know 233 the comp.windows.x newsgroup 233 a.2.2 bitftp 237
	Chapter ?:
	Chapter ?: a.2 how to ftp a file 234
	Chapter ?: a.2.1 getting files using ftpmail 235
	Chapter ?: a.3 the xstuff mail archive server 237
	Chapter ?: a.4 unpacking files 238
	Chapter ?: a.6 how to add a host 239 a.5 making a filesystem available via nfs 239
	Chapter ?: a.6.3 adding a host using dns 240 a.6.2 adding a host using ms
	Chapter ?: a.8 printing documentation in the mit x distribution 242 a.7 adding an ethernet address 242
	Chapter ?: a.9 converting a number into hexadecimal and back 243 a.10 configuring a sun as an x terminal 243
	Chapter ?: using more than one frame buffer under sunos 244
	Chapter ?: using an archie server 248 appendix b compiling public domain software 247 b.2.3 editing the imakefile 254 finding the sources 247
	Chapter ?: where can i get
	Chapter ?: b-l
	Chapter ?: b.1.2 get the faq 250 b.1.3 the usual suspects 250
	Chapter ?: b.2.1 getting the xarchie sources 251 b.2 an example xarchie 251 xarchie window
	Chapter ?: b.2.2 untarring the sources 252
	Chapter ?:
	Chapter ?: b.2.4 compiling the source 255
	Chapter ?: b.3 using patches 259
	Chapter ?: b.4 another example xkeycaps 264
	Chapter ?: b.5 related documentation 268 d.3 related documentation
	Chapter ?: requirements for pc x servers 272 appendix c x on non-unix platforms 271 installing and configuring pc x servers 273 x on dos-based pcs 272
	Chapter ?:
	Chapter ?: c.1.3 problems particular to pc x servers 274
	Chapter ?: c.2.1 macintosh-based x servers 275 c.2 x on macintosh computers 275
	Chapter ?: c.2.2 mactcp and the communications toolbox 276
	Chapter ?: c.3 x on next computers 277
	Chapter ?: where resources are defined 285 appendix d resources and keysym mappings 281 resource definition syntax 281 translation tables 288 xterm versus xterm 283 advantages of xrdb 287 loose and tight bindings 282 293
	Chapter ?:
	Chapter ?:
	Chapter ?: d.2 defining keys and button presses with xmodmap 290
	Chapter ?: d.2.1 using xev to learn keysym mappings 292
	Chapter ?:
	Chapter ?: appendix e the components of x products 297 298
	Chapter ?:
	Chapter ?:
	Chapter ?: e.2 osf/motif 299
	Chapter ?: e.3 sun openwindows 300
	Chapter ?: e.4 decwindows 301
	Chapter ?: e.6 silicon graphics 302 e.5 alxwindows 302
	Chapter ?: e.7 a guide to xi1 libraries 303
	Chapter ?: 307
	Chapter ?: f.2 where can i get patches to xi1r5 311 f.3
	Chapter ?: x errors 315 appendix g error messages 315
	Chapter ?:
	Chapter ?: g.2 unix errors 318
	Chapter ?: g.3 compilation errors 320
	Chapter ?:

