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H.264 Transform and Quantization 
 

1 Overview 
 
In an H.264/AVC codec, macroblock data are transformed and quantized prior to 
coding and rescaled and inverse transformed prior to reconstruction and display 
(Figure 1). Several transforms are specified in the H.264 standard: a 4x4 “core” 
transform, 4x4 and 2x2 Hadamard transforms and an 8x8 transform (High profiles 
only). 
 
 

 
 

 
Figure 1 Transform and quantization in an H.264 codec 
 
 
 
This paper describes a derivation of the forward and inverse transform and 
quantization processes applied to 4x4 blocks of luma and chroma samples in an H.264 
codec. The transform is a scaled approximation to a 4x4 Discrete Cosine Transform 
that can be computed using simple integer arithmetic. A normalisation step is 
incorporated into forward and inverse quantization operations. 

2 The H.264 transform and quantization process 
 
The inverse transform and re-scaling processes, shown in Figure 2, are defined in the 
H.264/AVC standard. Input data (quantized transform coefficients) are re-scaled (a 
combination of inverse quantization and normalisation, see later). The re-scaled values 
are transformed using a “core” inverse transform. In certain cases, an inverse 
transform is applied to the DC coefficients prior to re-scaling. These processes (or their 
equivalents) must be implemented in every H.264-compliant decoder. The 
corresponding forward transform and quantization processes are not standardized but 
suitable processes can be derived from the inverse transform / rescaling processes 
(Figure 3). 
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Figure 2 Re-scaling and inverse transform 
 

 
 
Figure 3 Forward transform and quantization 
 
 

3 Developing the forward transform and quantization process 
 
The basic 4x4 transform used in H.264 is a scaled approximate Discrete Cosine 
Transform (DCT). The transform and quantization processes are structured such that 
computational complexity is minimized. This is achieved by reorganising the processes 
into a core part and a scaling part. 
 
Consider a block of pixel data that is processed by a two-dimensional Discrete Cosine 
Transform (DCT) followed by quantization (dividing by a quantization step size, Qstep , 
then rounding the result) (Figure 4a). 
 
Rearrange the DCT process into a core transform (Cf) and a scaling matrix (Sf) (Figure 
4b). 
 
Scale the quantization process by a constant (215) and compensate by dividing and 
rounding the final result (Figure 4c). 
 
Combine Sf and the quantization process into Mf (Figure 4d), where: 
 

      

€ 

Mf ≈
Sf ⋅ 2

15

Qstep

 

         Equation 1 
 
 
(The reason for the use of ≈ will be explained later). 
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Figure 4 Development of the forward transform and quantization process 
 
 
 

4 Developing the rescaling and inverse transform process 
 
Consider a re-scaling (or “inverse quantization”) operation followed by a two-
dimensional inverse DCT (IDCT) (Figure 5a). 
 
Rearrange the IDCT process into a core transform (Ci) and a scaling matrix (Si) (Figure 
5b). 
 
Scale the re-scaling process by a constant (26) and compensate by dividing and 
rounding the final result (Figure 5c)1. 
 
Combine the re-scaling process and S into Vi (Figure 5d), where: 
 

      

€ 

Vi = Si ⋅ 2
6 ⋅Qstep   

         Equation 2 
 

                                            
1 This rounding operation need not be to the nearest integer. 
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Figure 5 Development of the rescaling and inverse transform process 
 
 

5 Developing Cf and Sf (4x4 blocks) 
 
Consider a 4x4 two-dimensional DCT of a block X: 
 
Y = A⋅X⋅AT       
         Equation 3 
 
Where ⋅ indicates matrix multiplication and: 
 

      

€ 

A =

a a a a
b c −c −b
a −a −a a
c −b b −c

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

,

a = 1
2

b = 1
2 cos π 8 = 0.6532....

c = 1
2 cos 3π

8 = 0.2706....

 

 
The rows of A are orthogonal and have unit norms (i.e. the rows are orthonormal). 
Calculation of Equation 3 on a practical processor requires approximation of the 
irrational numbers b and c. A fixed-point approximation is equivalent to scaling each 
row of  A and rounding to the nearest integer. Choosing a particular approximation 
(multiply by 2.5 and round) gives Cf : 
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€ 

Cf =

1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 

 
This approximation is chosen to minimise the complexity of implementing the 
transform (multiplication by Cf requires only additions and binary shifts) whilst 
maintaining good compression performance.  
 
The rows of Cf have different norms. To restore the orthonormal property of the 

original matrix A, multiply all the values cij in row r by 

    

€ 

1

crj
2

j

∑
 : 

 

A1 = Cf • Rf  where 

      

€ 

R f =

1 2 1 2 1 2 1 2

1 10 1 10 1 10 1 10

1 2 1 2 1 2 1 2

1 10 1 10 1 10 1 10

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
 
•  denotes element-by-element multiplication (Hadamard-Schur product2). Note that 
the new matrix A1 is orthonormal. 
 
The two-dimensional transform (Equation 3) becomes: 
 
Y  =   A1⋅X⋅A1

T =  [Cf • Rf]⋅X⋅[Cf
T • Rf

T ] 
 
Rearranging: 
 
Y  =  [Cf⋅X⋅Cf

T] • [Rf • Rf
T]  

=  [Cf⋅X⋅Cf
T] • Sf 

 
Where 
 

      

€ 

Sf = R f •R f

T
=

1 4 1 2 10 1 4 1 2 10

1 2 10 1 10 1 2 10 1 10

1 4 1 2 10 1 4 1 2 10

1 2 10 1 10 1 2 10 1 10

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
                                            
2 P = Q•R  means that each element pij = qij⋅rij 
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6 Developing Ci and Si (4x4 blocks) 
 
Consider a 4x4 two-dimensional IDCT of a block Y: 
 
Z = AT⋅Y⋅A       
         Equation 4 
 
Where  
 

      

€ 

A =

a a a a
b c −c −b
a −a −a a
c −b b −c

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

,

a = 1
2

b = 1
2 cos π 8 = 0.6532....

c = 1
2 cos 3π

8 = 0.2706....

        as before. 

 
Choose a particular approximation by scaling each row of A and rounding to the 
nearest 0.5, giving Ci : 
 

      

€ 

C i =

1 1 1 1

1 1 2 −1 2 −1

1 −1 −1 1

1 2 −1 1 −1 2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
The rows of Ci are orthogonal but have non-unit norms. To restore orthonormality, 

multiply all the values cij in row r by 

    

€ 

1

crj
2

j

∑
 : 

 

A2 = Ci • Ri  where 

      

€ 

R i =

1 2 1 2 1 2 1 2

2 5 2 5 2 5 2 5

1 2 1 2 1 2 1 2

2 5 2 5 2 5 2 5

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
 
The two-dimensional inverse transform (Equation 4) becomes: 
 
Z  =   A2

T⋅Y⋅A2 =  [Ci
T

 • Ri
T]⋅Y⋅[Ci

 • Ri
 ] 

 
Rearranging: 
 
Z  =  [Ci

T]⋅[Y • Ri
T

 • Ri ]⋅[ Ci]  
=  [Ci

T]⋅[Y • Si ]⋅[ Ci] 
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Where 
 

      

€ 

Si = R i

T
•R i =

1 4 1 10 1 4 1 10

1 10 2 5 1 10 2 5

1 4 1 10 1 4 1 10

1 10 2 5 1 10 2 5

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
The core inverse transform Ci  and the rescaling matrix Vi  are defined in the H.264 
standard. Hence we now develop Vi and will then derive Mf . 
 

7 Developing Vi  
 
From Equation 2, Vi = Si ⋅ Qstep ⋅ 26 

 
H.264 supports a range of quantization step sizes Qstep . The precise step sizes are not 
defined in the standard, rather the scaling matrix Vi  is specified. Qstep values 
corresponding to the entries in Vi are shown in the following Table. 
 
QP Qstep 
0 0.625 
1 0.702.. 
2 0.787.. 
3 0.884.. 
4 0.992.. 
5 1.114.. 
6 1.250 
… … 
12 2.5 
… … 
18 5.0 
… … 
48 160 
… … 
51 224 
 

The ratio between successive Qstep values is chosen to be   

€ 

26 = 1.2246...  so that Qstep 
doubles in size when QP increases by 6. Any value of Qstep can be derived from the first 
6 values in the table (QP0 – QP5) as follows: 
 
Qstep(QP) = Qstep(QP%6) ⋅ 2floor(QP/6) 

 
 
The values in the matrix Vi depend on Qstep (hence QP) and on the scaling factor 
matrix Si  . These are shown for QP 0 to 5 in the following Table. 
 



Vcodex White Paper: 4x4 Transform and Quantization in H.264/AVC 
www.vcodex.com 
 
 

 
© Iain Richardson/Vcodex Ltd 2009-2010  Page 9 of 13 

QP Qstep ⋅ 26 Vi = round ( Si ⋅ Qstep ⋅ 26 ) 
0 40 

  

€ 

10 13 10 13

13 16 13 16

10 13 10 13

13 16 13 16

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
1 44.898 

  

€ 

11 14

14 18

11 14

14 18
11 14

14 18

11 14

14 18

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
2 50.397 

  

€ 

13 16

16 20

13 16

16 20
13 16

16 20

13 16

16 20

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
3 56.569 

  

€ 

14 18

18 23

14 18

18 23
14 18

18 23

14 18

18 23

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
4 63.496 

  

€ 

16 20

20 25

16 20

20 25
16 20

20 25

16 20

20 25

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
5 71.272 

  

€ 

18 23

23 29

18 23

23 29
18 23

23 29

18 23

23 29

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
 
For higher values of QP, the corresponding values in Vi are doubled (i.e. Vi (QP=6) = 
2Vi(QP=0) , etc). 
 
 
 
 
 
 
Note that there are only three unique values in each matrix Vi . These three values are 
defined as a table of values v  in the H.264 standard, for QP=0 to QP=5 : 
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Table 1 Matrix v defined in H.264 standard 
QP v (r, 0): 

Vi positions (0,0), 
(0,2), (2,0), (2,2) 

v (r, 1): 
Vi positions (1,1), 
(1,3), (3,1), (3,3) 

v (r, 2): 
Remaining  
Vi positions 

0 10 16 13 
1 11 18 14 
2 13 20  16 
3 14 23  18 
4 16 25  20 
5 18 29 23 
 
 
Hence for QP values from 0 to 5,  Vi is obtained as: 
 

    

€ 

Vi =

v(QP ,0) v(QP ,2) v(QP ,0) v(QP ,2)

v(QP ,2) v(QP ,1) v(QP ,2) v(QP ,1)

v(QP ,0) v(QP ,2) v(QP ,0) v(QP ,2)

v(QP ,2) v(QP ,1) v(QP ,2) v(QP ,1)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
 
Denote this as: 
 
Vi = v(QP, n) 
Where v (r,n) is row r, column n of v. 
 
For larger values of QP (QP>5), index the row of array v by QP%6 and then multiply 
by 2floor(QP/6) . In general: 
 
Vi = v (QP%6,n)⋅ 2floor(QP/6) 
 
 
The complete inverse transform and scaling process (for 4x4 blocks in macroblocks 
excluding 16x16-Intra mode) becomes: 
 

Z = round ( [Ci
T]⋅[Y • v (QP%6,n)⋅ 2floor(QP/6)]⋅[ Ci] ⋅ 

  

€ 

1
26

 ) 

 
(Note: rounded division by 26 can be carried out by adding an offset and right-shifting 
by 6 bit positions). 
 

8 Deriving Mf 
 
Combining Equation 1 and Equation 2: 
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€ 

Mf ≈
Si ⋅ Sf ⋅ 2

21

Vi

 

 
Si  , Sf  are known and Vi is defined as described in the previous section. Define Mf as: 
 
 

      

€ 

Mf = round Si ⋅ Sf ⋅ 2
21

Vi

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 
 

      

€ 

Si ⋅ Sf ⋅ 2
21 =

131072 104857.6

104857.6 83886.1

131072 104857.6

104857.6 83886.1
131072 104857.6

104857.6 83886.1

131072 104857.6

104857.6 83886.1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
The entries in matrix Mf may be calculated as follows (Table 2): 
 
Table 2 Tables v and m 
QP v (r, 0): 

Vi positions 
(0,0), (0,2), 
(2,0), (2,2) 

v (r, 1): 
Vi positions 
(1,1), (1,3), 
(3,1), (3,3) 

v (r, 2): 
Remaining  
Vi positions 

m (r, 0): 
Mf positions 
(0,0), (0,2), 
(2,0), (2,2) 

m (r, 1): 
Mf positions 
(1,1), (1,3), 
(3,1), (3,3) 

m (r,2): 
Remaining  
Mf positions 

0 10 16 13 13107 5243 8066 
1 11 18 14 11916 4660 7490 
2 13 20  16 10082 4194 6554 
3 14 23  18 9362 3647 5825 
4 16 25 20 8192 3355 5243 
5 18 29 23 7282 2893 4559 
 
Hence for QP values from 0 to 5, Mf can be obtained from m , the last three columns 
of Table 2: 
 

    

€ 

Mf =

m(QP ,0) m(QP ,2) m(QP ,0) m(QP ,2)

m(QP ,2) m(QP ,1) m(QP ,2) m(QP ,1)

m(QP ,0) m(QP ,2) m(QP ,0) m(QP ,2)

m(QP ,2) m(QP ,1) m(QP ,2) m(QP ,1)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
Denote this as: 
 
Mf = m(QP, n) 
Where m (r,n) is row r, column n of m. 
 
For larger values of QP (QP>5), index the row of array m by QP%6 and then divide by 
2floor(QP/6) . In general: 
 
Mf = m (QP%6,n)/ 2floor(QP/6) 
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Where m (r,n) is row r, column n of m. 
 
The complete forward transform, scaling and quantization process (for 4x4 blocks and 
for modes excluding 16x16-Intra) becomes: 
 

Y = round ( [Cf]⋅[X]⋅[ Cf
T]   • m (QP%6,n)/ 2floor(QP/6) ] ⋅ 

  

€ 

1
215

 ) 

 
(Note: rounded division by 215 may be carried out by adding an offset and right-
shifting by 15 bit positions). 
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