
scientists are starting to build their applications as extensions
to scripting language interpreters or component frameworks.
This often involves shared libraries and dynamically load-
able modules. However, the inner workings of shared li-
braries and dynamic loading are some of the least understood
and most mysterious areas of software development.

In this installment of Scientific Programming, we tour the
inner workings of linkers, shared libraries, and dynamically
loadable extension modules. Rather than simply providing a
tutorial on creating shared libraries on different platforms, we
want to provide an overview of how shared libraries work and
how to use them to build extensible systems. For illustration,
we use a few examples in C/C++ using the gcc compiler on
GNU-Linux-i386. However, the concepts generally apply to
other programming languages and operating systems.

Compilers and object files
When you build a program, the compiler converts source

files to object files. Each object file contains the machine
code instructions corresponding to the statements and de-
clarations in the source program. However, closer exami-
nation reveals that object files are broken into a collection
of sections corresponding to different parts of the source
program. For example, the C program

#include <stdio.h>
int x = 42;

int main() {
printf(“Hello World, x = %d\n”, x);
}

produces an object file that contains a text section with the

machine code instructions of the program, a data section with
the global variable x, and a “read-only” section with the
string literal Hello World, x = %d\n. Additionally, the
object file contains a symbol table for all the identifiers that
appear in the source code. An easy way to view the symbol
table is with the Unix command nm—for example,

$ nm hello.o
00000000 T main

U printf
00000000 D x

For symbols such as x and main, the symbol table simply
contains an offset indicating the symbol’s position relative
to the beginning of its corresponding section (in this case,
main is the first function in the text section, and x is the first
variable in the data section). For other symbols such as
printf, the symbol is marked as undefined, meaning that
it was used but not defined in the source program.

Linkers and linking
To build an executable file, the linker (for example, ld)

collects object files and libraries. The linker’s primary func-
tion is to bind symbolic names to memory addresses. To do
this, it first scans the object files and concatenates the object
file sections to form one large file (the text sections of all ob-
ject files are concatenated, the data sections are concatenated,
and so on). Then, it makes a second pass on the resulting file
to bind symbol names to real memory addresses. To com-
plete the second pass, each object file contains a relocation
list, which contains symbol names and offsets within the ob-
ject file that must be patched. For example, the relocation list
for the earlier example looks something like this:

$ objdump -r hello.o

hello.o: file format elf32-i386

RELOCATION RECORDS FOR [.text]:

OFFSET TYPE VALUE
0000000a R_386_32 x

90 COMPUTING IN SCIENCE & ENGINEERING

S C I E N T I F I C P R O G R A M M I N G

TRADITIONALLY, DEVELOPERS HAVE BUILT

SCIENTIFIC SOFTWARE AS STAND-ALONE

APPLICATIONS WRITTEN IN A SINGLE LANGUAGE

SUCH AS FORTRAN, C, OR C++. HOWEVER, MANY

90 COMPUTING IN SCIENCE & ENGINEERING

Editor: Paul F. Dubois, paul@pfdubois.com

THE INSIDE STORY ON
SHARED LIBRARIES AND DYNAMIC LOADING
By David M. Beazley, Brian D. Ward, and Ian R. Cooke

SEPTEMBER/OCTOBER 2001 91

00000010 R_386_32 .rodata
00000015 R_386_PC32 printf

Static libraries
To improve modularity and reusability, programming li-

braries usually include commonly used functions. The tra-
ditional library is an archive (.a file), created like this:

$ ar cr libfoo.a foo.o bar.o spam.o...

The resulting libfoo.a file is known as
a static library. An archive’s structure is
nothing more than a collection of raw ob-
ject files strung together along with a table
of contents for fast symbol access. (On
older systems, it is sometimes necessary to
manually construct the table of contents
using a utility such as the Unix ranlib
command.)

When a static library is included during
program linking, the linker makes a pass
through the library and adds all the code
and data corresponding to symbols used in the source pro-
gram. The linker ignores unreferenced library symbols and
aborts with an error when it encounters a redefined symbol.

An often-overlooked aspect of linking is that many compil-
ers provide a pragma for declaring certain symbols as weak.
For example, the following code declares a function that the
linker will include only if it’s not already defined elsewhere.

#pragma weak foo
/* Only included by linker if not already defined */
void foo() {

...
}

Alternatively, you can use the weak pragma to force the
linker to ignore unresolved symbols. For example, if you
write the program

#pragma weak debug
extern void debug(void);
void (*debugfunc)(void) = debug;
int main() {

printf(“Hello World\n”);
if (debugfunc) (*debugfunc)();

}

the program compiles and links whether or not debug() is
actually defined in any object file. When the symbol remains

undefined, the linker usually replaces its value with 0. So,
this technique can be a useful way for a program to invoke
optional code that does not require recompiling the entire
application (contrast this to enabling optional features with
a preprocessor macro).

Although static libraries are easy to create and use, they
present a number of software maintenance and resource uti-
lization problems. For example, when the linker includes a
static library in a program, it copies data from the library to
the target program. If patching the library is ever necessary,

everything linked against that library must
be rebuilt for the changes to take effect.
Also, copying library contents into the tar-
get program wastes disk space and mem-
ory—especially for commonly used li-
braries such as the C library. For example,
if every program on a Unix machine in-
cluded its own copy of the C library, the
size of these programs would increase dra-
matically. Moreover, with a large number
of active programs, a considerable amount
of system memory goes to storing these

copies of library functions.

Shared libraries
To address the maintenance and resource problems with sta-

tic libraries, most modern systems now use shared libraries or
dynamic link libraries (DLLs). The primary difference between
static and shared libraries is that using shared libraries delays
the actual task of linking to runtime, where it is performed by
a special dynamic linker–loader. So, a program and its libraries
remain decoupled until the program actually runs.

Runtime linking allows easier library maintenance. For
instance, if a bug appears in a common library, such as the C
library, you can patch and update the library without re-
compiling or relinking any applications—they simply use
the new library the next time they execute. A more subtle as-
pect of shared libraries is that they let the operating system
make a number of significant memory optimizations. Specif-
ically, because libraries mostly consist of executable instruc-
tions and this code is normally not self-modifying, the op-
erating system can arrange to place library code in read-only
memory regions shared among processes (using page-shar-
ing and other virtual memory techniques). So, if hundreds
of programs are running and each program includes the
same library, the operating system can load a single shared
copy of the library’s instructions into physical memory. This
reduces memory use and improves system performance.

Many compilers

provide a pragma for

declaring certain

symbols as weak.

92 COMPUTING IN SCIENCE & ENGINEERING

On most systems, the static linker handles both static and
shared libraries. For example, consider a simple program
linked against a few different libraries:

$ gcc hello.c -lpthread -lm

If the libraries -lpthread and -lm have been compiled as
shared libraries (usually indicated by a .so suffix on the ac-

tual library file), the static linker checks for unresolved sym-
bols and reports errors as usual. However, rather than copy-
ing the contents of the libraries into the target executable,
the linker simply records the names of the libraries in a list
in the executable. You can view the contents of the library
dependency list with a command such as ldd:

ldd a.out

S C I E N T I F I C P R O G R A M M I N G

Cafe Dubois

The Times, They Are a Changin’
Twenty years of schoolin’ and they put you on the day shift.

—Bob Dylan

This summer marks my 25th year at Lawrence Livermore
National Laboratory, all of it on the day shift. LLNL is a
good place to work if you are someone like me who likes to
try new areas, because you can do it without moving to a
new company.

When my daughter was in the fifth grade, she came to
Take Your Daughter to Work Day, and afterwards told me,
referring to the system of community bicycles that you can
ride around on, “The Lab is the greatest place in the world
to work. They have free bikes and the food at the cafeteria
is yummy!” After that day she paid a lot of attention to her
math and science. Free bikes and yummy food is a lot of
motivation. She’s off to college this year, and I will miss her.

We technical types live in such a constant state of
change, and it is so hard to take the time to keep up. For
each of us, the time will come when we have learned our
last new thing, when we tell ourselves something is not
worth learning when the truth is we just can’t take the pain
anymore. So, when I decide not to learn something these
days, I worry about my decision. Was that the one? Is it al-
ready too late?

Was it Java Beans? I sure hope it wasn’t Java Beans. What
an ignominious end that would be.

F90 pointers
In my article on Fortran 90’s space provisions, I didn’t

have space to discuss pointers. One reader wrote me about
having performance problems allocating and deallocating
a lot of small objects. So, here is a simple “small object
cache” module that will give you the idea of how to use
pointers. In this module, one-dimensional objects of size N
or smaller can be allocated by handing out columns of a
fixed cache. The free slots are kept track of through a sim-
ple linked list. If the cache fills up, we go to the heap:

module soc
! Allocate memory of size <= N from a fixed block.
private
public get, release, init_soc

integer, parameter:: N=16, M=100
real, target:: cache(N, M)
integer::links(M), first

contains

subroutine init_soc ()
integer i
do i = 1, M-1

links(i) = i + 1
enddo
links(M) = -1
first = 1

end subroutine init_soc

function get(s)
integer, intent(in):: s
real, pointer:: get(:)
integer k
if (s > N) then

allocate(get(s))
return

endif
if (first == -1) then

allocate(get(s))

Paul in Paris, considering how life imitates art.

SEPTEMBER/OCTOBER 2001 93

libpthread.so.0 => /lib/libpthread.so.0 (0x40017000)
libm.so.6 => /lib/libm.so.6 (0x40028000)
libc.so.6 => /lib/libc.so.6 (0x40044000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

When binding symbols at runtime, the dynamic linker
searches libraries in the same order as they were specified on
the link line and uses the first definition of the symbol en-

countered. If more than one library happens to define the
same symbol, only the first definition applies. Duplicate
symbols normally don’t occur, because the static linker scans
all the libraries and reports an error if duplicate symbols are
defined. However, duplicate symbol names might exist if
they are weakly defined, if an update to an existing shared
library introduces new names that conflict with other li-
braries, or if a setting of the LD_LIBRARY_PATH variable
subverts the load path (described later).

By default, many systems export all the globally defined
symbols in a library (anything accessible by using an ex-
tern specifier in C/C++). However, on certain platforms,
the list of exported symbols is more tightly controlled with
export lists, special linker options, or compiler extensions.
When these extensions are required, the dynamic linker will
bind only to symbols that are explicitly exported. For ex-
ample, on Windows, exported library symbols must be de-
clared using compiler-specific code such as this:

__ declspec(dllexport) extern void foo(void);

An interesting aspect of shared libraries is that the link-
ing process happens at each program invocation. To mini-
mize this performance overhead, shared libraries use both
indirection tables and lazy symbol binding. That is, the location
of external symbols actually refers to table entries, which re-
main unbound until the application actually needs them.
This reduces startup time because most applications use
only a small subset of library functions.

To implement lazy symbol binding, the static linker creates
a jump table known as a procedure-linking table and includes it
as part of the final executable. Next, the linker resolves all un-
resolved function references by making them point directly
to a specific PLT entry. So, executable programs created by
the static linker have an internal structure similar to that in
Figure 1. To make lazy symbol binding work at runtime, the
dynamic linker simply clears all the PLT entries and sets them
to point to a special symbol-binding function inside the dy-
namic library loader. The neat part about this trick is that as
each library function is used for the first time, the dynamic
linker regains control of the process and performs all the nec-
essary symbol bindings. After it locates a symbol, the linker
simply overwrites the corresponding PLT entry so that sub-
sequent calls to the same function transfer control directly to
the function instead of calling the dynamic linker again. Fig-
ure 2 illustrates an overview of this process.

Although symbol binding is normally transparent to users,
you can watch it by setting the LD_DEBUG environment
variable to the value bindings before starting your program.

return
endif
k = first
first = links(k)
get => cache(1:s, k)
return

end function get

subroutine release(x)
real, pointer:: x(:)
integer i
if (size(x) > N) then

deallocate(x)
return

endif
do i = 1, M

if (associated(x, cache(1:size(x), i))) then
links(i) = first
first = i
return

endif
enddo
deallocate(x)

end subroutine release

end module soc

program socexample
use soc
real, pointer:: x1(:), x2(:), x3(:)
integer i

call init_soc ()
x1 => get(3)
x2 => get(3)
x3 => get(20)

x3 = (/ (i/2., i=1, 20) /)
do i = 1, 3

x1(i) = i
x2(i) = -i

enddo
print *, x1+x2
print *, x3
call release(x2)
call release(x1)
call release(x3)

end program socexample

The input queue is low just now and I’d love to hear from
authors about proposed articles. Just email me at paul@
pfdubois.com. And remember, if it’s Java Beans you want, it
ain’t me you’re lookin’ for, babe.

94 COMPUTING IN SCIENCE & ENGINEERING

An interesting experiment is to watch the dynamic symbol
binding for interactive applications such as an interpreter or
a browser—for example,

$ LD_DEBUG=bindings python

If you really enjoy copious debugging information, you can
set LD_DEBUG=bindings in the shell and start running a
few programs.

Library loading
When a program linked with shared libraries runs, program

execution does not immediately start with that program’s first
statement. Instead, the operating system loads and executes the
dynamic linker (usually called ld.so), which then scans the
list of library names embedded in the executable. These library
names are never encoded with absolute pathnames. Instead, the
list has only simple names such as libpthread.so.0,
libm.so.6, and libc.so.6, where the last digit is a library
version number. To locate the libraries, the dynamic linker uses
a configurable library search path. This path’s default value is
normally stored in a system configuration file such as
/etc/ld.so.conf. Additionally, other library search direc-
tories might be embedded in the executable or specified by the
user in the LD_LIBRARY_PATH environment variable.

Libraries always load in the order in which they were
linked. Therefore, if you linked your program like this,

$ cc $SRCS -lfoo -lbar -lsocket -lm -lc

the dynamic linker loads the libraries in the order lib-
foo.so, libbar.so, libsocket.so, libm.so, and so
forth. If a shared library includes additional library depen-
dencies, those libraries are appended to the end of the library
list during loading. For example, if the library libbar.so
depends on an additional library libspam.so, that library
loads after all the other libraries on the link line (such as
those after libc.so). To be more precise, the library load-
ing order is determined by a breadth-first traversal of library
dependencies starting with the libraries directly linked to the
executable. Internally, the loader keeps track of the libraries
by placing them on a linked list known as a linkchain. More-
over, the loader guarantees that no library is ever loaded
more than once (previously loaded copies are used when a
library is repeated).

Because directory traversal is relatively slow, the loader does
not look at the directories in /etc/ld.so.conf every time
it runs to find library files, but consults a cache file instead. Nor-
mally named /etc/ld.so.cache, this cache file is a table
that matches library names to full pathnames. If you add a new
shared library to a library directory listed in /etc/ld.
so.conf, you must rebuild the cache file with the ldconfig
command, or the loader won’t find it. The -v option produces
verbose detail, including any new or altered libraries.

If the dynamic loader can’t find a library in the cache, it
often makes a last-ditch effort with a manual search of sys-
tem library directories such as /lib and /usr/lib before
it gives up and returns an error. This behavior depends on
the operating system.

You can obtain detailed information about how the dy-
namic linker loads libraries by setting the LD_DEBUG envi-
ronment variable to libs—for example,

$ LD_DEBUG=libs a.out

When users first work with shared libraries, they commonly
experience error messages related to missing libraries. For ex-
ample, if you create your own shared library such as this,

$ cc -shared $OBJS -o libfoo.so

S C I E N T I F I C P R O G R A M M I N G

Executable

foo()
 ...
 call malloc
 ...
 call printf
 ...

Dynamic linker

ld.so.1

bindsymbol:

Shared library

libc.so

malloc:malloc: jmp x
printf: jmp ???

PLT

Figure 2. The dynamic binding of library symbols in shared
libraries: malloc is bound to the C library, and printf has
not yet been used and is bound to the dynamic linker.

Source
Compile/link

Unresolved
Unresolved

foo() {
 ...
 malloc();
 ...
 print();
 ...
}

Executable

foo() {
 ...
 call malloc()
 ...
 call printf
 ...
}

malloc: jmp ???
printf: jmp ???

PLT

Figure 1. The internal structure of
an executable linked with shared
libraries. External library calls
point to procedure-linking table
entries, which remain unresolved
until the dynamic linker fills them
in at runtime.

SEPTEMBER/OCTOBER 2001 95

and link an executable with the library, you might get the
following error when you try to run your program:

./a.out: error in loading shared libraries: libfoo.so:
cannot open shared object file: No such file or directory

This error usually occurs when the shared library is placed in
a nonstandard location (not defined in ld.so.conf). A com-
mon hack to fix this problem is to set the LD_LIBRARY_PATH
environment variable. However, setting LD_LIBRARY_PATH
is nearly always a bad idea. One common mistake is to set it in
your default user environment. Because there is no cache for
this user-defined variable, ld.so must search through each
entry of every directory in this path for a library before it looks
anywhere else. So, virtually every command you run makes
ld.so do more work than it really should whenever it needs
to access a shared library.

A more serious problem is that this approach invites li-
brary clashes. A classic example of this was in SunOS 4,
which shipped with the default user environment’s LD_
LIBRARY_PATH set to /usr/openwin/lib. Because
SunOS 4 had many incompatibilities with several packages,
systems administrators often had to compile the MIT X dis-
tribution. However, users ended up with the libraries spec-
ified by the environment variables and more warnings about
older versions of libraries than expected (and if they were
lucky, had their programs crash).

A better solution to the library path problem is to embed
customized search paths in the executable itself using special
linker options such as -R or -Wl, -rpath—for example,

$ cc $SRCS –Wl,-rpath=/home/beazley/libs \
-L/home/beazleys/libs -lfoo

In this case, the program will find libfoo.so in the
proper directory without having to set any special environ-
ment variables. Even with this approach, managing shared li-
braries is tricky. If you simply put your custom shared libraries
in a place such as /usr/local/lib, you might have prob-
lems if the API changes when you upgrade the library. On the
other hand, if you put them somewhere else, a user might not
be able to find them. Some library packages such as gtk+ come
with a command that, with certain flags, spits back the linker
options you need for shared libraries (you embed the com-
mand in your configure script or Makefile).

Library initialization and finalization
As libraries are loaded, the system must occasionally per-

form certain preliminary steps. For example, if a C++ pro-
gram has any statically constructed objects, they must be ini-
tialized before program startup. For example,

class Foo {
public:

Foo();
~Foo();

...
}

/* Statically initialized object */
Foo f;

To handle this situation, the dynamic linker looks for a
special _init() function or “init” section in each loaded
library. The compiler creates the contents of _init()and
contains the startup code needed to initialize objects and
other parts of the runtime environment. The invocation of
_init() functions follows in the reverse order of library
loading (for example, the first library loaded is the last to call
_init()). This reversed ordering is necessary because li-
braries appearing earlier on the link line might depend on
functions used in libraries appearing later.

When libraries unload at program termination, the dy-
namic linker looks for special _fini() functions and invokes
them in the opposite order as the _init() functions. The
role of _fini() is to destroy objects and perform other
kinds of cleanup.

If you’re curious, you can also trace debugging information
about the invocation of _init() and _fini() functions by
setting the environment variable LD_DEBUG to libs.

Dynamic loading
So far, our discussion has focused primarily on the under-

lying implementation of shared libraries and how they are
organized to support runtime linking of programs. An added
feature of the dynamic linker is an API for accessing symbols
and loading new libraries at runtime (dynamic loading). The
dynamic loading mechanism is a critical part of many exten-
sible systems, including scripting language interpreters.

Dynamic loading is usually managed by three functions
exposed by the dynamic linker: dlopen() (which loads a
new shared library), dlsym() (which looks up a specific
symbol in the library), and dlclose() (which unloads the
library and removes it from memory)—for example,

void *handle;
void (*foo)(void);

96 COMPUTING IN SCIENCE & ENGINEERING

handle = dlopen(“foo.so”, RTLD_NOW | RTLD_LOCAL);
foo = (void (*)(void)) dlsym(handle,”foo”);
if (foo) foo();
...
dlclose(handle);

Unlike standard linking, dynamically loaded modules are
completely decoupled from the underlying application. The dy-
namic loader does not use them to resolve any unbound symbols
or any other part of the normal application-linking process.

The dynamic linker loads a module and all of its required li-
braries using the exact same procedure as before (that is, it loads
libraries in the order specified on the link line, _init() func-
tions are invoked, and so forth). Again, the linker keeps track
of previously loaded libraries and will not reload shared libraries
that are already present. The main difference is that when mod-
ules are loaded, they normally go on private linkchains. This re-
sults in a tree of library dependencies (see Figure 3).

As symbols are bound in each dynamically loaded mod-
ule, the linker searches libraries starting with the module it-
self and the list of libraries in its corresponding linkchain.
Additionally, the linker searches for symbols in the main ex-
ecutable and all its libraries.

One consequence of the tree structure is that each dy-
namically loaded module gets its own private symbol name-
space. So, if a symbol name is defined in more than one load-
able module, those symbols remain distinct and do not clash
with each other during execution. Similarly, unless the pro-
gram gives special options to the dynamic loader, it doesn’t
use symbols defined in previously loaded modules to resolve
symbols in newly loaded modules. For users of scripting lan-
guages, this explains why everything still works even when
two extension modules appear to have a namespace clash. It
also explains why extension modules can’t dynamically bind
to symbols defined in other dynamically loaded modules.

Filters
Dynamic linking enables modes of linking that are not eas-

ily achieved with static libraries. One such example is the im-
plementation of filters that let you alter the behavior of com-
mon library functions. For example, suppose you want to
track calls to dynamic memory-allocation functions mal-
loc() and free(). One way to do this with dynamic link-
ing is to write a simple library as in Figure 4. In the figure, we
implemented replacements for the standard memory man-

agement functions. However, these replacements use dl-
sym() to search for the real implementation of malloc()
and free() farther down the linkchain.

To use this filter, the library can be included on the linkline
like a normal library. Alternatively, the library can be preloaded
by supplying a special environment variable to the dynamic
linker. The following command illustrates library preloading by
running Python with our memory-allocation filter enabled:

$ LD_PRELOAD=./libmfilter.so python

Depending on how you tweak the linker, the user can place
filters almost anywhere on the linkchain. For instance, if the
filter functions were linked to a dynamically loadable module,
only the memory allocations performed by the module pass
through the filters; all other allocations remain unaffected.

Constructing shared libraries
Let’s examine a few problematic aspects of shared library

construction. First, when shared libraries and dynamically
loadable modules are compiled, it is fairly common to see spe-
cial compiler options for creating position-independent code (-
fpic, -FPIC, -KPIC, and so on). When these options are
present during compilation, the compiler generates code that
accesses symbols through a collection of indirection registers
and global offset tables. The primary benefit of PIC code is
that the text segment of the resulting library (containing ma-
chine instructions) can quickly relocate to any memory address
without code patches. This improves program startup time
and is important for libraries that large numbers of running
processes must share. (PIC lets the operating system relocate
libraries to different virtual memory regions without modify-
ing the library instructions.) The downside to PIC is a mod-
est degradation in application performance (often 5 to 15 per-
cent). A somewhat overlooked point in many shared library
examples is that shared libraries and dynamically loadable
modules generally do not require PIC code. So, if performance
is important for a library or dynamically loadable module, you
can compile it as non-PIC code. The primary downside to
compiling the module as non-PIC is that loading time in-
creases because the dynamic linker must make a large number
of code patches when binding symbols.

A second problem with shared library construction concerns
the inclusion of static libraries when building dynamically
loadable modules. When the user or programmer works with

S C I E N T I F I C P R O G R A M M I N G

Dynamic module 1

mod1.so libd.so

Dynamic module 2

mod2.so

Executable

a.out libb.so libc.so

Dynamic module 3

mod3.so libf.solibe.so

liba.so

Figure 3. Linkchains created by
dynamic loading. Each dynamically
loadable module goes on a new
linkchain but can still bind to symbols
defined in the primary executable.

scripting language interpreters and other ex-
tensible systems, it is common to create various
types of modules for different parts of an appli-
cation. However, if parts of the application are
built as static libraries (.a files), the linking
process does not do what you might expect.
Specifically, when a static library is linked into
a shared module, the relevant parts of the static
library are simply copied into the resulting
shared library object. For multiple modules
linked in this manner, each module ends up
with its own private copy of the static library.
When these modules load, all private library
copies remain isolated from each other, owing
to the way in which symbols are bound in dy-
namic modules (as described earlier). The end
result is grossly erratic program behavior. For
instance, changes to global variables don’t seem
to affect other modules, functions seem to op-
erate on different sets of data, and so on. To fix
this problem, convert static libraries to shared
libraries. Then, when multiple dynamic mod-
ules link again to the library, the dynamic linker
will guarantee that only one copy of the library loads into
memory.

A few final words and further reading
As extensible systems become more popular in scientific

software, scientists must have a firm understanding of how
shared libraries and dynamically loadable modules interact
with each other and fit into the overall picture of large ap-
plications. We have described many of the general concepts
and techniques used behind the scenes on these systems. Al-
though our discussion focused primarily on Unix, high-level
concepts apply to all systems that use shared libraries and
dynamic linking.

You can find further information about linkers, loaders, and
dynamic loading elsewhere.1 Advanced texts on programming
languages and compilers often contain general information
about PLTs, lazy binding, and shared library implementation.2

Several research papers on operating systems contain the spe-
cific implementation details of dynamic linking.3,4

References
1. J.R. Levine, Linkers & Loaders, Morgan Kaufmann, San Francisco, 2000.

2. M.L. Scott, Programming Language Pragmatics, Morgan Kaufmann, San
Francisco, 2000.

3. R.A. Gingell et al., Shared Libraries in SunOS, Usenix, San Diego, Calif.,
1987.

4. J.Q. Arnold, Shared Libraries on UNIX System V, Usenix, San Diego, Calif.,
1986.

David Beazley is an assistant professor in the Department of Computer

Science at the University of Chicago. He created the Simplified Wrapper

and Interface Generator, a popular tool for creating scripting language

extension modules, and wrote the Python Essential Reference (New Rid-

ers Publishing, 1999). Contact him at the Dept. of Computer Science,

Univ. of Chicago, Chicago, IL 60637; beazley@cs.uchicago.edu.

Brian Ward is a PhD candidate in the Department of Computer Science

at the University of Chicago. He wrote the Linux Kernel HOWTO, The Linux

Problem Solver (No Starch Press, 2000), and The Book of VMware (No Starch

Press, forthcoming). Contact him at the Dept. of Computer Science, Univ.

of Chicago, Chicago, IL 60637; bri@cs.uchicago.edu.

Ian Cooke is a PhD student in the Department of Computer Science at

the University of Chicago. Contact him at the Dept. of Computer Sci-

ence, Univ. of Chicago, Chicago, IL 60637; iancooke@cs.uchicago.edu.

SEPTEMBER/OCTOBER 2001 97

/* libmfilter.c */
#include <dlfcn.h>
#include <stdio.h>
#include <assert.h>

typedef void *(*malloc_t)(size_t nbytes);

void *malloc(size_t nbytes) {
void *r;
static malloc_t real_malloc = 0;
if (!real_malloc) {

real_malloc = (malloc_t) dlsym(RTLD_NEXT, “malloc”);
assert(real_malloc);

}
r = (*real_malloc)(nbytes);
printf(“malloc %d bytes at %x\n”, nbytes, r);
return r;

}

typedef void (*free_t)(void *ptr);
void free(void *ptr) {

static free_t real_free = 0;
if (!real_free) {

real_free = (free_t) dlsym(RTLD_NEXT, “free”);
assert(real_free);

}
printf(“free %x\n”, ptr);
(*real_free)(ptr);

}

Figure 4. Filters for malloc and free. The filters look up the real
implementation using dlsym() and print debugging information.

