Linux
PCI drivers

Michael Opdenacker
Free Electrons

L
i

%

http://en.wikipedia.org/wiki/Image:PCI_Slots_Digon3.JPG

Free Electrons

Embedded Linux
Developers

© Copyright 2004-2009, Free Electrons.

Creative Commons BY-SA 3.0 license

Latest update: Jul 13, 2010,

Document sources, updates and translations:
http://free-electrons.com/docs/pci-drivers

Corrections, suggestions, contributions and translations are welcome!

http://en.wikipedia.org/wiki/Image:PCI_Slots_Digon3.JPG
http://free-electrons.com/docs/pci-drivers

Understanding PCI

The following buses belong to the PCI family:

» PCI » PCIl Express (PCle or PCI-E)
32 bit bus, 33 or 66 MHz Current generation of PCI. Serial
> MiniPCl instead of parallel.
Smaller slot in laptops » PCI Express Mini Card
b CardBus IF%eplaces MiniPCI in recent
aptops

External card slot in laptops

P PIX Extended (PCI-X)
Wider slot than PCI, 64 bit, but
can accept a standard PCI card

» Express Card
Replaces CardBus in recent
laptops

These technologies are compatible and can be handled by the same kernel drivers.
The kernel doesn't need to know which exact slot and bus variant is used.

3

Main types of devices found on the PCI bus

» Network cards (wired or wireless)

» SCSI adapters

» Bus controllers: USB, PCMCIA, 12C, FireWire, IDE

» Graphics and video cards

» Sound cards

For device driver developers

» Device resources (I/O addresses, IRQ lines) automatically
assigned at boot time, either by the BIOS or by Linux itself (if
configured).

» The device driver just has to read the corresponding
configurations somewhere in the system address space.

» Endianism: PCI device configuration information is Little Endian.
Remember that in your drivers
(conversion taken care of by some kernel functions).

lscpi
00:00.0 Host bridge: Intel Corporation Mobile 945GM/PM/GMS, 943/940GML and 945GT Express Memory Controller Hub (rev 03)

00:02.0 VGA compatible controller: Intel Corporation Mobile 945GM/GMS, 943/940GML Express Integrated Graphics Controller (rev 03)
00:02.1 Display controller: Intel Corporation Mobile 945GM/GMS/GME, 943/940GML Express Integrated Graphics Controller (rev 03)

00:1b.0 Aud
00:1c.0 PCI
00:1c.1 PCI
00:1c.2 PCI
00:1d.0 USB
00:1e.0 PCI
00:1f.0 ISA
00:1f.1 IDE
00:1f.3 SMB

lspci -tv
-[0000:00]-

io device: Intel Corporation 82801G (ICH7 Family) High Definition Audio Controller (rev 01)

bridge: Intel Corporation
bridge: Intel Corporation
bridge: Intel Corporation

Controller [...]

bridge: Intel Corporation
bridge: Intel Corporation

82801G (ICH7 Family) PCI Express Port 1 (rev 01)
82801G (ICH7 Family) PCI Express Port 2 (rev 01)
82801G (ICH7 Family) PCI Express Port 3 (rev 01)

82801 Mobile PCI Bridge (rev el)
82801GBM (ICH7-M) LPC Interface Bridge (rev 01)

interface: Intel Corporation 82801G (ICH7 Family) IDE Controller (rev 01)
us: Intel Corporation 82801G (ICH7 Family) SMBus Controller (rev 01)
02:01.0 CardBus bridge: Ricoh Co Ltd RL5c476 II (rev b4)
02:01.1 FireWire (IEEE 1394): Ricoh Co Ltd R5C552 IEEE 1394 Controller (rev 09)
02:01.2 SD Host controller: Ricoh Co Ltd R5C822 SD/SDIO/MMC/MS/MSPro Host Adapter (rev 18)
09:00.0 Ethernet controller: Broadcom Corporation NetXtreme BCM5752 Gigabit Ethernet PCI Express (rev 02)
0c:00.0 Network controller: Intel Corporation PRO/Wireless 4965 AG or AGN Network Connection (rev 61)

+-00.0 Intel Corporation
+-02.0 Intel Corporation
+-02.1 Intel Corporation
+-1b.0 Intel Corporation
+-1c.0-[0000:0b]--
+-1c.1-[0000:0c]----00.0
+-1c.2-[0000:09]----00.0
+-1d.0 Intel Corporation

+-1e.0-[0000:02-06]--+-01.
| +-01.
| \-01.

+-1f.0 Intel Corporation
+-1f.1 1Intel Corporation
\-1f.3 1Intel Corporation

Mobile 945GM/PM/GMS, 943/940GML and 945GT Express Memory Controller Hub
Mobile 945GM/GMS, 943/940GML Express Integrated Graphics Controller
Mobile 945GM/GMS/GME, 943/940GML Express Integrated Graphics Controller
82801G (ICH7 Family) High Definition Audio Controller

Intel Corporation PRO/Wireless 4965 AG or AGN Network Connection
Broadcom Corporation NetXtreme BCM5752 Gigabit Ethernet PCI Express
82801G (ICH7 Family) USB UHCI Controller #1 [...]

0 Ricoh Co Ltd RL5c476 II

1 Ricoh Co Ltd R5C552 IEEE 1394 Controller

2 Ricoh Co Ltd R5C822 SD/SDIO/MMC/MS/MSPro Host Adapter

82801GBM (ICH7-M) LPC Interface Bridge

82801G (ICH7 Family) IDE Controller

82801G (ICH7 Family) SMBus Controller

O

» 1spci enumerates all PCl devices

02:01.0 CardBus bridge: Ricoh Co Ltd RL5c476 II (rev b4)
02:01.1 FireWire (IEEE 1394): Ricoh Co Ltd R5C552 IEEE 1394 Controller
02:01.2 SD Host controller: Ricoh Co Ltd R5C822 SD/SDIO/MMC/MS/MSPro

|—> Function number

PCI device number

p PCI bus number

» 1scpi -t shows the bus device tree

-[0000:00]-+-00.0 Intel Corporation
+-02.0 Intel Corporation
+-02.1 Intel Corporation
+-1b.0 Intel Corporation
+-1c.0-[0000:0b]--

1 +-1c.1-[0000:0c]----00.0
PCI domaln +-1c.2-[0000:09]1----00.0

+-1d.0 Intel Corporation
PCI bus 0 +-1e.0-[0000:02-06]--+-01.

| +-01.
| * * \-01.

PCI bridge PCI bus 2

Mobile 945GM/PM/GMS, 943/940GML and 945GT Express Memory Controller Hub
Mobile 945GM/GMS, 943/940GML Express Integrated Graphics Controller
Mobile 945GM/GMS/GME, 943/940GML Express Integrated Graphics Controller
82801G (ICH7 Family) High Definition Audio Controller

Intel Corporation PRO/Wireless 4965 AG or AGN Network Connection
Broadcom Corporation NetXtreme BCM5752 Gigabit Ethernet PCI Express
82801G (ICH7 Family) USB UHCI Controller #1 [...]

0 Ricoh Co Ltd RL5c476 II

1 Ricoh Co Ltd R5C552 IEEE 1394 Controller

2 Ricoh Co Ltd R5C822 SD/SDIO/MMC/MS/MSPro Host Adapter

» This tree structure reflects the structure in /sys:
/sys/devices/pci0000:00/0000:00:1e.0/0000:02:01.2

T o

Bus 0 PCI bridge @~ Bus 2

@

» Each PCI device has a 256 byte address space containing
configuration registers.

» Device configuration can be displayed with 1spci -x:
0c:00.0 Network controller: Intel
4965 AG or AGN Network Connection
00:
10:
20:
30:

86 80 29 42 06 04 10 00 61 00
04 e0 df ef 00 00 00 00 00 OO
00 00 00 00O OO OO 0O 00 00 0O
00 00 00 00 c8 00 00 00 00 0O

Corporation

(rev 61)
80 02 10
00 00 OO
00 00 86
00 00 05

00
00
80
01

PRO/Wireless

00 00
00 00
21 11
00 00

Standard information found in PCI configurations:

» Offset 0: Vendor Id

» Offset 2: Device Id

» Offset 10: Class Id (network, display, bridge...)

» Offsets 16 to 39: Base Address Registers (BAR) 0to 5
» Offset 44: Subvendor Id

» Offset 46: Subdevice Id

» Offsets 64 and up: up to the device manufacturer

Kernel sources: these offsets are defined in
include/linux/pci regs.h

10

Implementing Linux drivers

O

From drivers/net/ne2k-pci.c (Linux 2.6.27):

static struct pci device id ne2k pci tbl[] = {

{ 0xl0ec, 0x8029, PCI ANY ID, PCI ANY ID, 0, 0, CH RealTek RTL 8029 },
{ 0x1050, 0x0940, PCI_ANY ID, PCI_ANY ID, 0, 0, CH Winbond 89C940 },

{ 0x11f6, 0x1401, PCI ANY ID, PCI ANY ID, 0, 0, CH Compex RL2000 },

{ Ox8e2e, 0x3000, PCI_ANY ID, PCI _ANY ID, 0, 0, CH KTI ET32P2 },

{ Ox4ald, 0x5000, PCI ANY ID, PCI _ANY ID, 0, 0, CH NetVin NV5000SC },
{ 0x1106, 0x0926, PCI_ANY ID, PCI ANY ID, 0, 0, CH Via 86C926 },

{ 0x10bd, 0x0e34, PCI_ANY ID, PCI ANY ID, 0, 0, CH SureCom NE34 },

{ 0x1050, Ox5a5a, PCI ANY ID, PCI ANY ID, 0, 0, CH Winbond W89C940F },
{ 0x12c3, 0x0058, PCI ANY ID, PCI_ANY ID, 0, 0, CH Holtek HT80232 },

{ 0x12c3, 0x5598, PCI ANY ID, PCI_ANY ID, 0, 0, CH Holtek HT80229 },

{ 0x8cda, 0x1980, PCI ANY ID, PCI _ANY ID, 0, 0, CH Winbond 89C940 8cda },
{0, }

}i
MODULE DEVICE TABLE(pci, ne2k pci tbl);

@

Declaring driver hooks and supported devices table:

static struct pci driver ne2k driver = {
.nhame = DRV _NAME,
.probe = ne2k pci init one,
.remove = _ devexit p(ne2k pci remove one),
.1d table = ne2k pci tbl,
#ifdef CONFIG PM
. suspend = ne2k pci suspend,
.resume = ne2k pci resume,

#endif /* CONFIG PM */
}i

static int init ne2k pci init(void)

{
return pci register driver(&ne2k driver);
}
static void _ exit neZk pci cleanup(void)
{
pci unregister driver (&ne2k driver);
}
» The hooks and supported devices are loaded at module loading
time.

» The probe() hook gets called by the PCI generic code
when a matching device is found.

» Very similar to USB device drivers!

14

» init:module init function.
Code discarded after driver initialization.

» exit:module exit function.
lgnored for statically compiled drivers.

» devinit: probe function and all initialization functions
Normal function if CONFIG HOTPLUG is set. Identicalto init
otherwise.

» devinitconst: for the device id table

@

» devexit: functions called at remove time.
Same case asin ___devinit

» All references to devinit function addresses should be
declared with _ devexit p(fun). This replaces the
function address by NULL if this code is discarded.

» Example: same driver:

static struct pci driver ne2k driver = ({
.nhame = DRV _NAME,
. probe = ne2k pci init one,
. remove -
__devexit p(ne2k pci remove_one),
.1d table = ne2k pci tbl,

}i

16

» Enable the device
» Request I/O port and I1/O memory resources

» Set the DMA mask size
(for both coherent and streaming DMA)

» Allocate and initialize shared control data
(pci allocate coherent())

» Initialize device registers (if needed)
» Register IRQ handler (request irq())
» Register to other subsystems (network, video, disk, etc.)

» Enable DMA/processing engines.

17

Before touching any device registers, the driver should first
execute pci enable device(). This will:

» Wake up the device if it was in suspended state

» Allocate I/0O and memory regions of the device
(if not already done by the BIOS)

» Assign an IRQ to the device
(if not already done by the BIOS)

pci enable device() can fail. Check the return value!

From drivers/net/ne2k-pci.c (Linux 2.6.27):

static int devinit ne2k pci init one
(struct pci dev *pdev,
const struct pci device id *ent)

i = pci enable device (pdev);
if (1)

return 1i;

Enable DMA by calling pci set master (). This will:

» Enable DMA by setting the bus master bit in the
PCI_COMMAND register. The device will then be able to act
as a master on the address bus.

» Fix the latency timer value if it's set to something bogus by
the BIOS.

If the device can use the PCI Memory-Write-Invalidate
transaction (writing entire cache lines), you can also call
pci set mwi():

» This enables the PCI_COMMAND bit for Memory-Write-
Invalidate

» This also ensures that the cache line size register is set
correctly. 2

@

Needed to access I/O memory and port information

P #include <linux/pci.h>

» Reading:
int pci read config byte(struct pci dev *dev,
int where, u8 *val);
int pci read config word(struct pci dev *dev,
int where, ul6 *val);
int pci read config dword(struct pci dev *dev,
int where, u32 *val);

» Example: drivers/net/cassini.c
pci read config word(cp->pdev, PCI STATUS, &cfqg);

@

» Writing:
int pci write config byte(struct pci dev *dev,
int where, u8 val);
int pci write config word(struct pci dev *dev,
int where, ul6 val);
int pci write config dword(struct pci dev *dev,
int where, u32 val);

» Example: drivers/net/s2io.c
/* Clear "detected parity error" bit
pci write config word(sp->pdev, PCI_STATUS, 0x8000);

» Each PCI device can have up to 6 I/O or memory regions,
described in BARO 10 BARS.

> Access the base address of the 1/O region:
#include <linux/pci.h>
long iobase = pci resource start (pdev, bar);

> Access the I/O region size:
long iosize = pci resource len (pdev, bar);

» Reserve the I/O region:
request region(iobase, iosize, “my driver”);
or simpler:
pci request region(pdev, bar, “my driver”);
or even simpler (regions for all BARSs):
pci request regions(pdev, “my driver”);

23

@

From drivers/net/ne2k-pci.c (Linux 2.6.27):

ioaddr = pci resource start (pdev, 0);
irq = pdev->irq;

if (!ioaddr || ((pci resource flags (pdev, 0) & IORESOURCE IO) == 0))
{

dev_err(&pdev->dev, "no I/O resource at PCI BAR #0\n");
return -ENODEV;

}

if (request region (ioaddr, NE IO EXTENT, DRV _NAME) == NULL) {
dev_err(&pdev->dev, "I/O resource 0x%x @ 0x%1lx busy\n",
NE_IO EXTENT, ioaddr);
return -EBUSY;

» Use pci dma set mask() to declare any device with more (or
less) than 32-bit bus master capability

» In particular, must be done by drivers for PCI-X and PCle
compliant devices, which use 64 bit DMA.

» If the device can directly address "consistent memory" in System
RAM above 4G physical address, register this by calling
pci set consistent dma mask().

@

Example (drivers/net/wireless/ipw2200.c in Linux 2.6.27):

err = pci set dma mask(pdev, DMA 32BIT MASK);

if (l!err)
err = pci_set consistent dma mask(pdev, DMA 32BIT MASK);

if (err) {
printk(KERN_WARNING DRV _NAME ": No suitable DMA available.\n");
goto out pci disable device;

Now that the DMA mask size has been allocated...

» You can allocate your cache consistent buffers
If you plan to use such buffers.

» See our DMA presentation
and Documentation/DMA-API.txt for details.

http://free-electrons.com/kerneldoc/latest/DMA-API.txt

If needed by the device

» Set some “capability” fields

» Do some vendor specific initialization or reset
Example: clear pending interrupts.

» Need to call request irqg() with the IRQF SHARED flag,
because all PCI IRQ lines can be shared.

» Registration also enables interrupts, so at this point

» Make sure that the device is fully initialized and ready to
service interrupts.

» Make sure that the device doesn't have any pending
interrupt before calling request _irq().

» Where you actually call request irq() can actually
depend on the type of device and the subsystem it could be
part of (network, video, storage...).

» Your driver will then have to register to this subsystem.

29

In the remove () function, you typically have to undo
what you did at device initialization (probe () function):

» Disable the generation of new interrupts.
If you don't, the system will get spurious interrupts, and will
eventually disable the IRQ line. Bad for other devices on this
line!

» Release the IRQ

» Stop all DMA activity.
Needed to be done after IRQs are disabled
(could start new DMASs)

» Release DMA buffers: streaming first and then consistent
ones.

30

» Unregister from other subsystems
» Unmap I/O memory and ports with io_unmap ().

» Disable the device with pci disable device().

» Unregister I/O memory and ports.
If you don't, you won't be able to reload the driver.

» Documentation/PCI/pci.txt Inthe kernel sources
An excellent guide to writing PCI drivers, which helped
us to write these slides.

Essential Linux
Device Drivers

» Book: Essential Linux device drivers (Prentice Hall) .
A very good and recent book!

http://free-electrons.com/redirect/eldd-book.html ’

DEVICE DRIVERS

» Book: Linux Device Drivers (O'Reilly)
Available under a free documentation license.
http://free-electrons.com/community/kernel/ldd3/

» Wikipedia:
http://en.wikipedia.org/wiki/Peripheral _Component_Interconnect

32

http://free-electrons.com/kerneldoc/latest/PCI/pci.txt
http://free-electrons.com/redirect/eldd-book.html
http://free-electrons.com/community/kernel/ldd3/
http://en.wikipedia.org/wiki/Peripheral_Component_Interconnect

» PCI Utilities: http://mj.ucw.cz/pciutils.html
1spci: shows PCIl bus and device information
setpci: allows to manipulate PCI device configuration
registers

» PCIl vendor and device id repository:
http://pci-ids.ucw.cz/read/PC/

http://mj.ucw.cz/pciutils.html
http://pci-ids.ucw.cz/read/PC/

Free Electrons

Embedded Freedom

Recent blog posts

ELC Europe in Grenohle Maost of the below documents are presentations used in our t

conferences.

s, ar in technical

Free Electrons at ELC
License
Linux kernel 2.6.29 - New

features for embedded ShareAlike 3.0 license. This essentially means that you are free to download, distribute

@ All our documents are available under the terms of the Creative Commaons Attribution-

and even modify

them, provided you mention us as the original authors and that you

users -
share these documents under the same conditions.

The Buildroot project Linux kernel

begins a new life

Embedded Linux kernel and driver development
6 (since 2.6.10)

New features in Linux 2

FOSDEM 2009 videos

« Kernel initialization
USE-Ethernet device for . hardware
» Power management in Linux

Linusx

Frogram far Embedded Block device drivers

Linux Conference 2008

documents

announced

Public session changes

Real hardware in our
Embedded Linux system development
training sessions
« Embedded Linux system development
Call for presentations for = Real time in embedded Linux systems
Elack filesystems

the LSM embedded track

Free software development tools
r
+ The GRUE hootloader
+ The biok boatloader

Introduction to uClinux

Embedded Linux aptimizations
= Audio in embedded Linux systems

= Multimedia in embedded Linux systems
= Embedded Linux From Scratch... in 40 minutes!

. embedded Linux systams with Buildroot
Developing embedded distributions with OpenEmbedded
= The Scratchbox development environment

Miscellaneous

= Introduction to the Unix command line

wirtualization solutions (with an embedded perspectivel
= Advantages of Free Software and Open Source in embedded systems
= Introduction to GNU/Linux and Free Software

All our technical presentations
on http://free-electrons.com/docs

» Linux kernel

» Device drivers

» Architecture specifics

» Embedded Linux system development

http://free-electrons.com/docs

You can help us to improve and maintain this document...

» By sending corrections, suggestions, contributions and
translations

» By asking your organization to order development, consulting
and training services performed by the authors of these
documents (see http://free-electrons.com/).

» By sharing this document with your friends, colleagues
and with the local Free Software community.

» By adding links on your website to our on-line materials,
to increase their visibility in search engine results.

http://free-electrons.com/

Linux kernel

Linux device drivers

Board support code
Mainstreaming kernel code
Kernel debugging

Embedded Linux Training
All materials released with a free license!

Unix and GNU/Linux basics

Linux kernel and drivers development
Real-time Linux, uClinux

Development and profiling tools
Lightweight tools for embedded systems
Root filesystem creation

Audio and multimedia

System optimization

Free Electrons

Our services

Custom Development

System integration

Embedded Linux demos and prototypes
System optimization

Application and interface development

Consulting and technical support

Help in decision making

System architecture

System design and performance review
Development tool and application support
Investigating issues and fixing tool bugs

. .’ Free Electrons

Embedded Linux Experts

