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Abstrat

Booting an operating system means to mediate be-

tween a usually very basi, and frequently unreli-

able system environment (e.g. the PC BIOS), the

funtionality required by the operating system it-

self, and the sometimes rather sophistiated setups

users wish to reate.

From the humble beginnings of the oppy boot se-

tor, the Linux boot proess has grown rih funtion-

ality, with versatile boot loaders (LILO, LOADLIN,

GRUB, et.), several boot image formats, and an

inreasing variety of operations that an be done

even before the system is fully booted, e.g. load-

ing of driver modules before mounting the root �le

system.

The boot proess is also beoming more diÆult

with time: new peripherals with interesting fun-

tionality and sometimes even more interesting prob-

lems get widely deployed and need to be supported,

users reate new and ompliated system on�gura-

tions and still need to be able to boot, and last but

not least, new funtionality is onstantly added to

the kernel, and some of it, e.g. new �le systems, an

also a�et the boot proess.

All the ompliations the boot proess has to handle

are even worse during system installation, beause

a large number of possible on�gurations must be

onsidered, but storage spae is limited. Frequently

a single oppy disk has to suÆe for the �rst steps.

This paper desribes the boot proess under Linux,

the hallenges it has to fae, and how it evolved to

meet them. Besides this historial overview, whih

also illustrates general design onepts, some more

reent additions are disussed in detail.

1 Introdution

The boot proess onsists of two major phases: (1)

loading the Linux kernel into memory and passing

ontrol to it, and (2) initializing the normal oper-

ation environment. Some of the possible ways to

performs these steps are depited in �gure 1.
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Figure 1: Boot proess overview.

While this paper fouses mainly on the i386 arhi-

teture, many onepts also apply to other arhite-

tures supported by Linux.



1.1 Loading the kernel

The �rst phase is the domain of boot loaders. They

have to retrieve the kernel exeutable and possibly

additional data from some storage media, e.g. a

disk, or from an external soure, e.g. from a boot

server on the network, load them at the right mem-

ory loation, maybe hange the exeution mode of

the proessor, and start the kernel.

Boot loaders typially perform some additional

tasks, like providing the kernel with parameters suh

as information retrieved from the �rmware or the

boot ommand line. Some boot loaders an also at

as a boot seletor and load other operating systems.

The duties of boot loaders and some ommon de-

signs are disussed in more detail in setion 2. An

introdution to boot onepts on i386 in general an

be found in [1℄.

1.2 Up and running

One the kernel is running, it initializes its inter-

nal data strutures, detets hardware omponents

and ativates the orresponding drivers, et., until

it eventually beomes ready to run user-spae pro-

grams. Before it an start the user-spae environ-

ment, it needs to provide it with a �le system, so it

has to mount the root �le system �rst.

In order to mount the root �le system, the kernel

needs two things: it needs to know the media on

whih the root �le system is loated, and it needs

drivers to aess that media. In the most ommon

on�guration, when the root �le system is simply

an ext2 partition on an IDE disk, this is simple: the

number of the root devie is passed to the kernel as a

parameter, and the IDE driver is typially ompiled

into the kernel.

1.3 Compliations

Things get more ompliated if the kernel has no

driver for the devie. This is quite ommon for the

\generi" kernels that are used when installing a

new Linux system, beause a kernel with all avail-

able drivers would simply be far too big, and some

drivers may also upset other hardware when probing

for their devies.

This problem is solved by the initrd mehanism,

whih allows the use of a RAM disk before mount-

ing the atual root �le system. This RAM disk is

loaded by the boot loader. initrd is desribed in

setion 3.

While initrd has proven to be very useful, the design

of the mehanism used to mount the root �le system

after initrd has ompleted its work was never quite

satisfatory. Also, other hanges in the kernel made

it inreasingly diÆult to use that mehanism in a

\lean" way. Setion 4 disusses those issues in more

detail.

1.4 The future

Three new hallenges await the boot proess in the

future: (1) the �rmware and any hardware the boot

loaders have to interfae with will grow more fun-

tionality | and, if the past is any indiation of the

future, a riher set of bugs too. (2) �le systems on-

taining kernel images will beome more omplex,

e.g. journaling �le systems or RAID, and orretly

interpreting their ontent will be very diÆult for

boot loaders. (3) people will want to load kernels

from other exoti soures, e.g. from the network,

using a seure onnetion.
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Figure 2: The boot proess is faing new hallenges

from three diretions.

While there is little hoie but to teah the boot

loaders to deal with their immediate �rmware and

hardware environment, loading the kernel from dif-

�ult to aess media an be greatly simpli�ed by

leaving most of the work to a Linux kernel. Setion

5 elaborates further on this topi.



2 Boot loaders

A boot loader performs the following tasks:

� deide what to load, e.g. by prompting the user

� load the kernel and possibly additional data,

suh as an initrd or parameters for the kernel

� set up an exeution environment suitable for

the kernel, e.g. put the CPU in privileged mode

� run the kernel

2.1 Taxonomy

Boot loaders ome in many sizes and shapes. As

shown in �gure 3, we will distinguish the following

four types of them:

� speialized loaders, e.g. the oppy boot setor

LinuxBIOS [2℄, SYSLINUX [3℄, Netboot [4℄

� general loaders running under another operat-

ing system, e.g. LOADLIN [5℄, ArLo [6℄

� �le system aware general loaders running on the

�rmware, e.g. Shoelae, GRUB [7℄, SILO

� �le system unaware general loaders running on

the �rmware, e.g. LILO [8℄
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Figure 3: Layers at whih boot loaders interat with

the underlying servies.

Speialized loaders typially know only one storage

devie, e.g. ash memory or the oppy disk, on

whih a small number of kernels is stored in some

format spei� to the boot loader.

Boot loaders that run under another operating sys-

tem normally use the servies provided by the host

operating system for reading the kernel image and

additional data. This frees them from having to

know the struture of the underlying �le system or

any properties of the atual store devies. One of

their disadvantages is that they have to take spe-

ial preautions when loading the kernel, in order

to keep the host operating system operational until

they are ready to run the Linux kernel, e.g. they

must not overwrite memory loations oupied by

the host operating system. Another disadvantage is

that the entire boot proess takes longer than with

other boot loaders, beause the host operating sys-

tem needs some time to boot too.

File system aware boot loaders are almost little op-

erating systems by themselves: they know the stru-

ture of one or more �le systems, they aess devies

via the servies provided by the �rmware, and some-

times, they may even have their own drivers to a-

ess hardware diretly.

File system unaware boot loaders rely on a third

party to map the on-disk data strutures to a more

general and more onvenient representation. E.g.

in the ase of LILO, the so-alled map installer

(/sbin/lilo) uses the �le system drivers already

ontained in the Linux kernel to perform this map-

ping, and simply writes the list of data setor loa-

tions in its map �le. A desription of LILO internals

an be found in [9℄.

2.2 File system awareness

The lak of �le system awareness is a ommon om-

plaint about LILO, and ompeting boot loaders ad-

vertize their ability to read �le systems without

prior mapping as one of their main features. It is

therefore interesting to ompare the two approahes.

Figure 4 shows what a �le system aware boot loader

does when using the Seond Extended �le system:

�rst, the �le is written to disk, via the ext2 �le sys-

tem driver. The �le system driver adds a bit of

meta information. At boot time, the boot loader

interprets the ext2 meta information and loads the

orresponding data setors into memory. In order

to do so,it has to ontain a simpli�ed version of the

�le system driver.

A �le system unaware boot loader (�gure 5) requires

an additional step after writing the �le: the map-

ping, during whih the generalized meta information

is written. The boot loader uses this meta informa-
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tion to retrieve the atual data. The meta data

generated by the �le system driver is not needed.
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Figure 5: Data ow with �le system unaware boot

loader.

File system unaware boot loaders have the main dis-

advantage that the map installer has to be run af-

ter adding new kernel images and after an already

mapped kernel image hanges its on-disk loation

for some reason.

However, they have one big advantage: if a �le sys-

tem is supported by the Linux kernel and if it ful�lls

some fairly basi properties, they an load a kernel

from it without requiring any hange to the boot

loader or the map installer. And this is the main

reason why LILO was designed to be �le system un-

aware.

2.3 File system history and LILO

In the early days of Linux, the only boot loaders

available were the oppy boot setor and Shoelae,

a �le system aware boot loader inherited from

Minix. Shoelae only supported the Minix �le sys-

tem. Sine also Linux supported only the Minix

�le system bak then, this was no limitation. How-

ever, it beame soon lear that the Minix �le sys-

tem, laking some funtionality traditionally found

in Unix �le systems, e.g. distint reation, modi�-

ation, and aess time for �les, and also restriting

�le names to 14 haraters, was not good enough as

the primary �le system for Linux.

In order to allow for the implementation of other

�le systems, the VFS (Virtual File System) inter-

fae was added, whih quikly led to the reation

of a wide variety of new �le systems, among them

the Extended �le system, Xiafs (named after its au-

thor), and also a \big" variant of the Minix �le

system that raised the �le name length limit to a

whole thirty haraters. There was �ere ompeti-

tion among the �le systems, and it was quite un-

ertain whih design would eventually prevail, or if

there would atually be a single \winner".

In all this onfusion, one thing was lear: no mat-

ter what �le system one favoured, in order to boot

from the hard disk, the root �le system had to be

Minix, beause Shoelae did not support anything

else. LILO was written to �ll this gap. Sine imple-

menting and maintaining support for a large number

of di�erent �le systems (at that time there were al-

ready Minix, Extended (ext), and Xiafs in the main-

stream kernel, some people had ported BSD FFS,

and there was no end in sight) appeared hardly de-

sirable, and the boot loader should not prevent peo-

ple from experimenting with new �le system propos-

als, a �le system unaware design was hosen.

This approah turned out to be very suessful.

Even today, LILO an boot from most disk �le sys-

tems supported by the Linux kernel. However, sine

ext2 has beome the de fato standard, and has been

so for many years, �le system aware boot loader de-

signs have been suessfully tried again, and some

of them have already gained a ertain popularity.

While ext2 was handling everybody's daily work,

�le system designers have been busy with the next

generation of �le systems, whose key feature is sup-

port for journaling. Considering that there are now
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(again) several ompeting proposals (�gure 6), it

seems likely that the need for the exibility o�ered

by a �le system unaware boot loader will again be-

ome strong.

2.4 Other things to load

A Linux boot loader does not only load the kernel

image, but it has to give further data to the kernel,

e.g. the initial RAM disk, whih allows the kernel to

set up a fully funtional user spae without aessing

any peripherals. This is disussed in setion 3.

Other additional data is a parameter blok used dur-

ing kernel initialization. It typially ontains things

like the number of the devie with the root parti-

tion, the desired video mode for the system onsole,

the boot ommand line, et. The type of infor-

mation and its layout are arhiteture-spei�. It

is also quite ommon that the parameter blok is

merged from multiple soures, e.g. LILO an sele-

tively overwrite the default VGA mode.

2.5 i386 details

One problem that is onstantly plaguing the authors

of boot loaders, partiularly on the i386 platform,

are the various disk size limits imposed by hardware

or, more frequently, �rmware. A good disussion of

most known limits an be found in [10℄. The usual

e�et of using a hard disk that exeeds suh a limit

is that the part of the disk beyond the limit is only

aessible under some irumstanes.

One suh limit that has earned partiular fame in

the Linux world is the 1024 ylinder limit ommonly

enountered when using LILO. It originates from

the BIOS, whih only supports a maximum of 1024

ylinders in the traditional funtions for aessing

hard disks. This limit is exeeded on all hard disks

larger than 8 GB, and sometimes even with smaller

ones. Sine LILO uses the BIOS for all disk opera-

tions, all �les aessed by it had to be within the �rst

1024 ylinders of the hard disk. In 1995, an exten-

sion alled \Enhaned Disk Drive Spei�ation" [11℄

raised the limits of the BIOS interfae by a fator

of roughly 2

40

to a more reasonable 2

73

bytes. Un-

fortunately, it took some more years until one ould

be reasonably sure that orret implementations of

EDD were widely deployed. Support for EDD has

been added to a development version of LILO in

1999, and later versions released for general use and

maintained by John Co�man also support EDD.
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Figure 7: Simpli�ed memory layout at boot time on

i386.

Another interesting problem on i386 are the various

memory size limits (�gure 7). First of all, in the so-

alled real mode, the CPU has a 4+16 bit address

spae giving it aess to only 1 MB. Sine the CPU is

in real mode when the boot setor is started, early

boot loaders were not able to load kernels (alled

\Image") larger than several hundred kilobytes.

1

This was soon found to be too on�ning, and om-

pressed kernel images were introdued. Compressed

kernels (alled \zImage") were still limited to 512

kB, but one started, they unompressed themselves

1

Some of the lower address spae is reserved for the BIOS

and video memory, and some spae is also laimed by the

boot loader. This leaves 512 kB for loading the kernel.



to higher memory loations. This inreased the

maximum kernel size to approximately 1 MB.

After a few years, also this beame a problem, and a

mehanism was added to load bigger kernels, alled

\bzImage". A bzImage is loaded above the 1 MB

barrier, then unompresses itself, and moves the re-

sulting unompressed kernel down to 1 MB. The

parameter blok ontained in the oppy boot setor

and the real mode setup ode are still loaded at their

original addresses below 1 MB. This is desribed in

more detail at the end of this setion.

Beause zImage is inferior to bzImage in almost all

respets, support for it is likely to be phased out in

the near future.

In order to load the bzImage above 1 MB, the boot

loader either swithes to a CPU mode giving a-

ess to the full address spae, or it runs still in real

mode but uses speial BIOS funtions for the opy.

Unfortunately, those BIOS funtions originate from

the i286 era and may still use the so-alled proteted

mode of the i286 with a 8+16 bit address spae, giv-

ing aess only to 16 MB. While 15 MB

2

should be

more than suÆient for ompressed kernels alone, it

also limits the maximum size of initrds, whih use

the spae not oupied by the kernel. Sine the 16

MB limit omes from the boot loader but does not

exist in the kernel, it is likely to disappear in the

future. Some boot loaders are already using opy

mehanisms that do not have this restrition.

The next barrier is 64 MB, whih is the amount of

memory that an be traditionally reported by the

BIOS. All newer BIOSes support mehanisms that

an report larger memory sizes, and kernels have

reently started using them. It is not lear if the 64

MB limit is likely to ever beome a serious problem

for boot loaders.

The maximum kernel size is also limited by the page

tables the kernel sets up prior to its own initializa-

tion. For a long time, only 4 MB were mapped.

Sine kernels started to exeed this limit, it was re-

ently raised to 8 MB.

It should be noted that all these restritions only

apply to the kernel image loaded at boot time. Any

additional ode loaded by modules an use all of the

memory the kernel is willing to provide.

2

The lower megabyte is reserved for BIOS, boot loader,

video memory, et.

The loading of a bzImage is a fairly intriate proe-

dure, as shown in �gure 8. First, the boot loader

loads the kernel setup setors (1) and the om-

pressed kernel (2), and jumps to the setup ode

(3). The bzImage onsists of the ompressed ker-

nel ode (\text") and data, and a small piee of

unompressed ode for extrating the kernel. One

�nished, the setup ode jumps to the extrator (4).

Then, the kernel is unompressed into a low memory

region below 1 MB (5), and a high memory region

after the end of the loaded bzImage (6). By us-

ing the low memory region, the extration proess

redues its peak memory usage by 568 kB.
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Figure 8: Loading a bzImage.

When the kernel is extrated, it needs to be moved

to 1 MB. This is done by a mover funtion whih is

opied to a low address (7 and 8). After moving the

unompressed kernel to its destination (9 and 10),

the mover jumps to the kernel entry point (11).

2.6 Adding new features

When adding new funtionality to the boot proess,

frequently the question arises where it should be

implemented { in the boot loader or in the kernel ?

Figure 9 illustrates this hoie.

With a large number of di�erent arhitetures and

possibly a large number of boot loaders per arhi-
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teture, it is lear that additions requiring major

hanges in boot loaders are not likely to be met

with muh enthusiasm. With the number of sup-

ported arhitetures inreasing, even arhiteture-

dependent hanges should not be onsidered lightly.

The introdution of the initial RAM disk was the

last time a hange a�eting all arhitetures and

most boot loaders was made. Fortunately, most au-

thors agreed on the usefulness of initrd, and it is

well supported today.

More reent extensions of the boot proess try to

stay within the kernel, e.g. the mehanisms to boot

Linux kernels from Linux ombine an arhiteture-

spei� part with a more general framework, and

reent improvements of mehanisms related to ini-

trd (see setion 4) are ompletely arhiteture-

independent.

Setion 3.5 ontinues this disussion, examining the

hoie between kernel and user spae.

3 Loading drivers

Only loading the kernel is sometimes not enough,

beause the driver(s) needed to aess the root �le

system may not be inluded in the kernel. This se-

tion desribes the reasons for this seemingly para-

doxial situation and the solution adopted for it.

3.1 Coniting drivers

Very early, many Linux distributions enountered

the problem that some of the drivers they needed

to aess any further storage medium, e.g. the CD-

ROM, were oniting with the drivers they needed

in other ases.

This an happen quite easily with ISA ards, be-

ause the only way to probe for their presene used

to be to blindly write to registers at well-known ad-

dresses and to hek if the ard showed whatever

reation was expeted in this ase. If two ards hap-

pened to have some well-known addresses in om-

mon and did not respond graefully to inorret a-

esses, e.g. by entering a state that ould only be

left by following a ompliated reset proedure or, in

extreme ases, only by a hardware reset, one ould

not probe for one ard without upsetting systems

that used the other one.

In order to avoid suh onits, distributions started

to use large numbers of pre-ompiled kernels on-

taining only a small number of drivers eah. Suh

a distribution then either had to ship with several

oppy disks for all those kernels, or the user had to

pik the right kernel from the distribution medium

and make their own boot disk before installation.

This was hardly a satisfying situation.

The readily available solution to suh problems was

the use of kernel modules, whih an be loaded after

either performing a more detailed hardware on�g-

uration analysis than done by the kernel, or simply

after asking the user for advie.

3.2 Dynami kernel omposition

Loading modules before the kernel mounts the root

�le system is also desirable after installation, when

a ustomized kernel ontaining only the omponents

required on the respetive system should be used.

Ideally, one would go through regular kernel on-

�guration and ompile the kernel from srath for

this, but most users would be rather unpleasantly

surprised by the daunting task of having to pik

the right set from more than a thousand on�g-

uration options, partiularly sine many mistakes

would lead to an unbootable system. Also, there are

usually some dependenies among options that are



not aught by the kernel on�guration system, so

ertain hoies ould lead to obsure build failures.

Last but not least, building the kernel requires sev-

eral tools (ompiler, et.), whih are not neessarily

installed on every system, and the build proess may

also take a long time on slower mahines.

Linking a pre-ompiled monolithi kernel would

only o�er partial relief, beause it still requires al-

most all of the tools needed for ompilation, and

any onits would make the entire linking proess

fail.

Again, the most reasonable hoie is to use modules.

The modules framework is regularly used by many

people and is therefore quite reliable. If there are

onits among modules (e.g. missing or dupliate

symbols), the respetive module and any modules

depending on it annot be loaded, but this is still

safer than failing the entire build proess.

In priniple, a simpli�ed linker ould be built on the

basis of modules, o�ering all the advantages of a

modular system, while avoiding the slight overhead

introdued by modules. For some reason, suh a

linker was never implemented.

3.3 Chiken and modular eggs

The use of modules requires the presene of a �le

system.

3

While an installation oppy disk an on-

tain a �le system, this does not help for other me-

dia, e.g. a CD-ROM or the senario desribed in

the previous setion. Also, every one in a while,

oppy disk drives appear that an be aessed via

the BIOS, but that are not properly handled by the

regular oppy driver.

Fortunately, there is already a program that { by

de�nition { knows how to read data from the boot

medium under all irumstanes: the boot loader.

The logial onlusion was therefore to let the boot

loader load the modules too. In order to keep the

onept as exible as possible, and the work of the

boot loader simple, it loads a single �le that is pre-

sented to the kernel as a linear blok of memory.

The kernel then uses it as a RAM disk. Therefore,

the mehanism is alled \initial RAM disk" or short

3

An alternative approah that is proposed every one in

a while is to teah the boot loader to link modules into the

kernel at boot time. The problems of this approah have

been disussed in setion 2.6.
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Figure 10: Loading an initial RAM disk.

\initrd". As a pleasant synergy e�et, the RAM

disk driver automatially detets if the RAM disk is

ompressed, and unompresses it if neessary.

For debugging or for using the initrd mehanism

for other purposes than the initial RAM disk, the

boot ommand line option noinitrd an be used

to prevent automati use of the memory blok as a

RAM disk. Instead, its ontent is made available

via the blok devie /dev/initrd.

3.4 Using the initrd

One the RAM disk is loaded, any regular Linux

programs an be run from it. Initrd an be used in

two modes: either for the regular root �le system,

so the program run is the usual /sbin/init, or as

an intermediate environment in whih the system is

prepared for mounting the real �le system.

In the latter ase, a program alled /linuxr is in-

voked to perform the neessary initialization. When

/linuxr �nishes, the \real" root �le system is

mounted and it replaes the initial RAM disk. After

this, /sbin/init ommenes with the usual startup

proedures. The proess of hanging the root �le

system is desribed in setion 4.

3.5 Size matters

The main limitation of an initial RAM disk is that

there has to be enough memory for the kernel, the

initrd �le as loaded by the boot loader, the RAM

disk extrated from it by the RAM disk driver, and



any other data the kernel needs at that time. This

limits the size of ompressed initrds to roughly a

third of the memory not oupied by the kernel it-

self.

One obvious improvement is to free memory on-

taining the original initrd data immediately after it

has been read when building the RAM disk. This

will be implemented in the near future.

By the way, it is a ommon misoneption that

the use of initrd automatially implies that many

megabytes of preious memory will be wasted. This

misoneption omes from the fat that most pro-

grams are linked with the shared C library (lib),

and that some versions of lib are fairly large { typ-

ially up to around 4 MB. Even linking with the

stati version of lib, whih yields a program on-

taining only the library funtions whih are really

used, does not result in the desired size redution.

E.g. a program that does nothing at all (main(){})

still gets larger than 200 kB.

One reason for this is that lib has many internal

dependenies, whih require the inlusion of auxil-

iary omponents. When some of those dependenies

are removed, program sizes beome more reason-

able, e.g. the example above shrinks to a mere 3

kB. More work is needed in this diretion.

Another possibility is simply to refrain from using

any library at all. This is feasible for reasonably

simple programs. The miro-shell [12℄ is an example

for this.

4 Changing the root �le system

Changing the root �le system is similar to the task

of hanging a arpet while still standing on it. Most

people would probably suggest to jump up while try-

ing to throw the new arpet under one's feet, and

to smooth any wrinkles afterwards. The �rst im-

plemented solution, alled hange_root, is atually

remarkably similar to this approah. It is desribed

in setion 4.2.

A muh lazier possibility is to roll out the new arpet

next to the old one and to just walk over. This

muh more elegant approah, reently implemented

in a mehanism alled pivot_root, is desribed in

setion 4.3. A similar solution, involving layering

of the new root �le system on top of the old one,

is urrently being worked on. Its urrent design is

desribed in setion 4.4.

4.1 What's keeping it busy

Changing the root �le system is triky, beause the

design of Unix makes sure there is always something

aessing it. In partiular, at least the following

items are \busy" if any proess is running:

Mapped �les The exeutable of the proess

and any shared libraries used by

it.

Terminal Standard input, output, and er-

ror of that proess. Typially

/dev/onsole

Diretories The urrent diretory and the

urrent root diretory of the

proess.

Furthermore, the root �le system an also be busy

beause of:

Mount points Mounted �le systems (e.g.

/pro or any auxiliary �le

systems)

Demons Demon proesses or kernel

threads.

4.2 Feet in the air

Figure 11 illustrates the approah of awkwardly

jumping up while rearranging things underneath

one's feet. It works as follows:

� Kernel prepares initrd and starts /linuxr

� /linuxrmakes everything ready for mounting

the root �le system and writes the number of

the new root �le system devie to /pro/sys/

kernel/real-root-dev

� When /linuxr terminates, the kernel tries

to unmount the old root �le system and to

mount the �le system on the devie desribed

in /pro/sys/kernel/real-root-dev instead

� Kernel runs /sbin/init



One of the design goals for hange_root was to

make its use easy for shell sripts, in order to sim-

plify the transition to initrd.

/
Root and cwd
of process 1

/initrdnew_root

umount

root_dev

change_root

Figure 11: Changing the root �le system with

hange root.

The following table shows how well this approah

handles things keeping the root �le system busy:

Mapped �les Disappear at proess termina-

tion.

Terminal Closed at proess termination.

Diretories Not aessed after proess ter-

mination.

Mount points Una�eted.

Demons Una�eted.

Mount points and demons are still a problem.

Mount points an be avoided by simply unmount-

ing everything before /linuxr terminates. Demon

proesses an be more diÆult to avoid, and kernel

threads may refuse to disappear at all.

If hange_root fails to unmount the old root �le

system (beause it is kept busy by something), it

prints a warning and tries to mount it on a mount

point alled /initrd on the new root �le system

instead. One all aesses to the old root �le system

have been removed, it an the be unmounted like

any other mounted �le system. If no diretory alled

/initrd exists, hange_root gives up and leaves

the old root �le system mounted but inaessible.

4.3 Towards a general solution

While hange_root is good enough for most pur-

poses, it has a few undesirable restritions:

� It an only mount objets whih exist as a blok

devie, whih preludes NFS,

4

SMB, et.

5

� Kernel threads have beome quite popular and

some of them keep the root �le system busy.

� hange_root an only be used one, whih

makes it hard to debug initialization proe-

dures.

� If hange_root fails to mount the new root �le

system, the system hangs.

Besides, all the devie number magi and the hard-

oded names of hange_root are just plain ugly.

Already at the time when hange_root was intro-

dued, an alternative design based loosely on the

hroot system all was disussed. Reent improve-

ments in VFS have made it omparably easy to im-

plement, so this was �nally done.

/
Root and cwd of
all processes

old_rootnew_root

pivot_root

umountmount

current process)
(usually cwd of the

Figure 12: Changing the root �le system with

pivot root.

The new mehanism is alled pivot_root and �gure

12 shows how it works:

� The new root �le system is mounted like any

other �le system.

� A diretory is seleted as the loation for the

old (now urrent) root �le system.

� pivot_root is alled with the name of the di-

retory ontaining the new root �le system and

4

hange root was originally able to mount NFS root �le

systems using the \NFS root" mehanism built into the ker-

nel. Support for this disappeared after a while during a reor-

ganization of the NFS ode. Note that the new pivot root

mehanism an be used to leanly replae and even general-

ize the NFS root mehanism. It is therefore likely that the

latter will be phased out in future kernels.

5

Reent hanges in VFS may allow mounting of suh �le

systems even via their \anonymous" blok devie. However,

this would still be a fairly messy operation.



the name of the diretory for the old root �le

system.

� pivot_root moves the urrent root �le sys-

tem to the diretory for the old �le system and

makes the new root �le system the urrent root.

The most important di�erenes to hange_root are:

� An arbitrary �le system an beome the new

root, inluding NFS, SMB, et.

� pivot_root does not attempt to unmount the

old root �le system, yielding more preditable

behaviour than hange_root with its two fall-

bak levels.

� pivot_root an be invoked any number of

times, whih allows asading of root �le sys-

tem transitions, and makes it easier to debug

initialization sripts.

� pivot_root an be retried and is even re-

versible, whih also helps debugging.

Unfortunately, this does not yet help against

demons and kernel threads keeping the old root �le

system busy. The solution hosen is based on the

observation that most demons and kernel threads

are atually not interested in the �le system. They

just keep it busy beause they, like any other pro-

ess, referene their urrent diretory and their ur-

rent root diretory.

6

pivot_root therefore sans all

proesses and hanges their urrent diretory and

their urrent root diretory if they point to the old

root.

This operation is admittedly rather ugly, and the

doumented behaviour of pivot_root leaves it open

to hange only root and urrent diretory of the pro-

ess exeuting pivot_root. The impliations of this

are desribed in the pivot root man pages inluded

in [13, 14℄.

Unlike hange_root, whih makes all hanges in

a single step after /linuxr exits, pivot_root al-

lows for a gradual swith to the new root �le sys-

tem. This requires a bit more ooperation from user

spae for releasing any remaining referenes to the

old root �le system. The running exeutable and

6

Kernel threads an release their referenes to these two

diretories. Unfortunately, only very few kernel threads make

use of this possibility.

shared libraries aessed by it an be losed sim-

ply by exe'ing an exeutable on the new root �le

system. At the same time, the onsole an be on-

veniently losed and re-opened with the devie �le

on the new root �le system.
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Although all those operations an in priniple be

done before or after the all to pivot_root, it is

usually more onvenient to hange the root �le sys-

tem �rst, beause this avoids aidental use of items

on the old root �le systems, e.g. shared libraries.

To summarize, with pivot_root, the situation is

now as follows:

Mapped �les Changed by exe.

Terminal Closed and re-opened.

Diretories Changed with hdir and

hroot.

Mount points Una�eted (exept for new

root, whih is handled diretly

by pivot_root)

Demons Current and root diretory are

foribly hanged.

4.4 Union mounts

The need to foribly hange the urrent and root

diretories of proesses is the only remaining ugly

hak with pivot_root.

Alexander Viro is urrently designing so-alled

\union mounts", an extension of VFS that allows

multiple �le systems to be staked at a single mount

point. The �le systems are aessed only when try-

ing to look up items on that mount point.

To return to the arpet analogy, this gives us a tiny

path of ying arpet that we an use to avoid step-

ping on the real arpet while replaing it.

Although this work has not yet �nished at the time

of writing, one an already speulate on how it may

allow for a leaner use of the onepts introdued

by pivot_root.

Figure 13 illustrates how this onept may work.

The �le systems an be either diretly mounted and

unmounted at the root, or they an be moved from

or to other diretories.

7

When using devfs, a seond instane of it should be

mounted on the new root �le system for this purpose.
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old_root

remount

new_root

mount
/
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Root and cwd of

Figure 13: Changing the root �le system with union

mounts.

So the �nal situation is as follows:

Mapped �les Changed by exe.

Terminal Closed and re-opened.

Diretories Diretories hange is transpar-

ent.

Mount points Una�eted (exept if moving

mount points to root)

Demons Diretories hange is transpar-

ent.

The mehanism desribed in this setion is likely to

be added to the mainstream kernel in the very near

future.

5 Linux boots Linux

With the infrastruture disussed so far, we an use

any �le system the kernel an mount as the root �le

system. Now wouldn't it be nie if we ould also use

any �le the kernel an read as kernel or initrd ?

File system unaware boot loaders reah their lim-

its when �les are no longer stored in sequenes of

data setors on the disk, e.g. in the ase of software

RAID, there may be multiple instanes of the same

data blok, and a RAID5 array in reonstrution

mode needs to perform alulations over multiple

data bloks in order to obtain the ontent of a blok

on a defetive volume. Worse yet, the �les may not

even be on a loal disk, but maybe on an NFS or

HTTP server.

In priniple, any boot loader an of ourse aess

any resoures the kernel an aess too. The only

problem is that all the neessary funtionality needs

to be rebuilt in the boot loader. And one half a

dozen �le systems, RAID, a TCP/IP stak, NFS,

SMB, DHCP, HTTP, et. are added to a boot

loader, it probably looks like a omplete operating

system : : :

5.1 The ultimate boot loader

: : : whih brings us right to a very onvenient so-

lution: there is already a program that an aess

everything the kernel an aess { it's the kernel it-

self. And all the other tools that might be needed

(e.g. DHCP and suh) are onveniently available

too.

The only missing element is a means to boot a Linux

kernel from within Linux. The onept is basially

the same as for boot loaders running under some

other host operating system. However, some re-

quirements are slightly higher, beause it is desir-

able to have a solution that an be easily adapted for

all platform supported by Linux, and also the range

of possible system on�gurations is wider than for

most other suh boot loaders, e.g. it seems quite

unlikely that LOADLIN is ever used on multipro-

essor systems. On the other hand, the work an be

simpli�ed by making small hanges to the kernel.

Another requirement is to pass on data obtained

from the �rmware from kernel to kernel. E.g. on

i386, video mode, memory layout, SMP on�gura-

tion, et. are retrieved either diretly from the BIOS

or from memory areas initialized by the BIOS. Sine

these memory areas may be overwritten by the ker-

nel in normal operation, they either need to be pro-

teted if booting kernels from Linux is desired, or

the information ontained in them needs to be ex-

trated and passed on to the next kernel.

Finally, some operations done during initialization,

e.g. SCSI or IDE bus sans, may take a signi�ant

amount of time. It would be desirable to pass this

information from kernel to kernel in order to speed

up the boot proess.

There are urrently at least three di�erent imple-

mentations that allow booting a Linux kernel from

Linux: bootimg, LOBOS, and Two Kernel Monte.

The last two are desribed in [15℄ and [16℄, respe-

tively. Bootimg is desribed in setion 5.3 of this

paper.



5.2 What a waste ?

The onept of using a fully featured Unix kernel

as a boot loader may look like the perfet waste

of resoures. In the setion, we will onsider the

impliations on time, memory, and disk spae.

Note that these alulations may not apply to spe-

ial environments like embedded systems or small

battery-powered devies, whih may have very lit-

tle memory or use a slow CPU. Fortunately, the

exibility o�ered by the ability of booting a kernel

from Linux is hardly neessary in those ases, so an

optimized spei� solution an be hosen.

First time: loading a kernel and an initrd takes time.

Sine the kernel is probably ompressed, some more

time is spent for unompressing. If we assume that

any expensive bus sans are not repeated, and that

the hardware is not overly slow or obsolete, we ob-

tain:

1-2 se Loading 1-2 MB (kernel and initrd)

1-2 se Unompressing kernel and initrd

1 se Other overhead

3-5 se

Considering that a normal reboot typially takes 20-

60 seonds, this is a reasonably small inrease. Also,

reboots for on�guration hanges or kernel updates

are muh faster now, beause the old kernel an

diretly load the new one, without going through

BIOS or boot loader.

The peak memory utilization ours when the kernel

ating as boot loader has loaded the next kernel

along with its ompressed initrd. Assuming fairly

large kernels and initrds, we obtain:

1-2 MB Boot kernel (running)

2-4 MB Kernel data

1-2 MB initrd (mounted)

0.5-2 MB Compressed kernel

0.5-2 MB Compressed initrd

5-12 MB

Sine 5 MB is probably the minimum amount of

memory required for any usable Linux system, these

memory requirements an only beome a signi�ant

problem if using very large kernels or feature-laden

initrds, whih are of little use on systems with tight

memory onstraints.

Finally, the disk spae requirements:

1 MB Compressed boot kernel

1 MB Compressed initrd

2 MB

This is hardly notieable. Developers who fre-

quently hange their boot kernel may wish to keep

an additional kernel build tree for this purpose. This

takes about 100-120 MB.

5.3 Case study: bootimg on i386

This setion gives a rough overview of how bootimg

[17℄ urrently loads a Linux kernel. Note that this is

still work in progress, and major hanges are quite

probable. Bootimg onsists of two parts: a user

spae program that loads the neessary �les and

prepares a load map, and kernel ode that moves

the memory pages to the right loations and starts

the new kernel.
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Figure 14: Bootimg: set up from user spae.

As shown in �gure 14, the user spae program �rst

loads the kernel image and, optionally, an initrd �le

into its address spae (1). It registers the addresses

of these memory pages in an array of pointers (2).

Note that the data does not neessarily have to ome

from a disk, but it may as well be loaded over the



network, or bootimg ould even generate it on the

y, e.g. from objet modules. Next, bootimg opies

the parameter blok from the running kernel (3) and

adds the new boot ommand line and the initrd pa-

rameters (4). By opying the urrent parameter

blok, all other values set by the BIOS, e.g. the

memory on�guration, are preserved. Along with

the pointer array to the soure data, bootimg also

maintains a seond array (5) that ontains the tar-

get addresses in physial memory for all pages. One

all this is done, bootimg sets up a desriptor on-

taining pointers to the two arrays and some addi-

tional information (6), and invokes the bootimg sys-

tem all (7).

As shown in �gure 15, the bootimg system all �rst

opies the soure pages to kernel memory (1). This

is done mainly in order to hek aess permissions

and to ensure proper alignment of the pages, but it

also makes it easier to implement the rash dump

utility desribed in the next setion. When opy-

ing, bootimg also updates the soure pointers (2)

to point to the new pages in kernel memory.
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Sine

the pages have been alloated at arbitrary loa-

tions, they must be moved to the right plae before

the kernel an be started. This is done by a lit-

tle position-independent funtion that is opied to

its own memory page (3). This funtion moves all

pages to the loation indiated in the target address

array (4). If a target address happens to oinide

with a page that is still needed, the funtion opies

the ontent of the target page �rst to a free page.

Note that this may also inlude the page ontain-

ing the funtion itself. One all pages have reahed

their destination, the startup ode of the new kernel

is alled (6).

Two likely future hanges are the addition of sup-

port for referenes to physial pages in the soure

pointer array in order to support opying of data

that may hange after the all to bootimg (i.e. the

kernel message bu�er), and a split of the bootimg

user-spae program into a set of library funtions

and a simple utility alling them, in order to make

it easier to use bootimg in other programs.

8

It atually does this in two steps: �rst, it uses addresses

in the kernel address spae. Then, immediately before re-

ordering the memory pages, it hanges them to addresses in

physial memory. This way, the addresses are still available

if any operation fails before the reordering, and the pages an

be freed before the system all returns. This would be more

diÆult if the addresses were already translated to physial

memory addresses, beause the latter an not generally be

onverted bak to kernel address spae.
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Figure 15: Bootimg: memory reordering in the ker-

nel.

5.4 Other interesting appliations

Besides just booting Linux kernels from odd soures,

two other possible appliations for suh a meha-

nism have been proposed reently.

LinuxBIOS [2℄ takes the redution of boot loader

funtionality to the logial extreme and simply puts

a Linux kernel in the Flash EPROM that normally

holds the PC BIOS. This kernel an then at as a

very feature-rih boot loader.

Another interesting use is the reation of rash

dumps. Many traditional Unix systems an write

the memory ontent to disk when a kernel pani

ours. A rash dump an later be analyzed to de-

termine what has aused it. Sine a kernel pani

should only our in ases where the kernel has de-

teted a serious defet, it is not safe to assume that

the normal drivers an be used for writing that rash

dump. Even if the drivers still work, using them

may hange the system state suh that the problem

leading to the kernel pani an no longer be disov-

ered.

It is therefore desirable to use an subsystem that is

independent from the regular kernel for this task.



With a mehanism like bootimg, this is quite sim-

ple: a small kernel for taking the rash dump is

pre-loaded along with a suitable initial RAM disk,

and when a pani ours, the pre-loaded pages are

heksummed (they may have been damaged as a

result of the problem leading to the kernel pani),

and the kernel is launhed. It an then set up a new

lean environment and write the dump.

An implementation of suh a rash dumper, based

on bootimg, an be found at [18℄.
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7 Conlusion

Table 1 shows the evolution of boot onepts in the

history of Linux. Items still under development are

shown in italis. Also, boot loaders for other arhi-

tetures than i386 have been omitted.

The �rst boot loaders plainly got the kernel loaded,

without muh onveniene beyond this. The seond

generation of boot loaders overame the �le system

type onstraints and added many useful features,

suh as the boot ommand line or the ability to boot

other operating systems. Almost all boot loaders in

use today are of the seond generation.

The ability to use arbitrary �le systems as the root

�le system evolved slowly sine the beginning of

Linux. Sine the introdution of pivot_root, a

ompletely generi solution is available.

Finally, the ability to load kernels from other soures

than oppy or hard disks is omparably reent.

Sine the three urrent approahes to boot Linux

from Linux are already quite generi, onvergene

will probably be reahed soon.

As has been shown, the apparently simple at of

booting a Linux system is full of interesting prob-

lems. Modern Linux systems o�er a rih set of fea-

tures to handle those problems, and even more ex-

iting improvements ontinue to be developed.
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