
Booting Linux: The History and the Future

Werner Almesberger

Werner.Almesberger�ep
.
h

June 25, 2000

Abstra
t

Booting an operating system means to mediate be-

tween a usually very basi
, and frequently unreli-

able system environment (e.g. the PC BIOS), the

fun
tionality required by the operating system it-

self, and the sometimes rather sophisti
ated setups

users wish to
reate.

From the humble beginnings of the
oppy boot se
-

tor, the Linux boot pro
ess has grown ri
h fun
tion-

ality, with versatile boot loaders (LILO, LOADLIN,

GRUB, et
.), several boot image formats, and an

in
reasing variety of operations that
an be done

even before the system is fully booted, e.g. load-

ing of driver modules before mounting the root �le

system.

The boot pro
ess is also be
oming more diÆ
ult

with time: new peripherals with interesting fun
-

tionality and sometimes even more interesting prob-

lems get widely deployed and need to be supported,

users
reate new and
ompli
ated system
on�gura-

tions and still need to be able to boot, and last but

not least, new fun
tionality is
onstantly added to

the kernel, and some of it, e.g. new �le systems,
an

also a�e
t the boot pro
ess.

All the
ompli
ations the boot pro
ess has to handle

are even worse during system installation, be
ause

a large number of possible
on�gurations must be

onsidered, but storage spa
e is limited. Frequently

a single
oppy disk has to suÆ
e for the �rst steps.

This paper des
ribes the boot pro
ess under Linux,

the
hallenges it has to fa
e, and how it evolved to

meet them. Besides this histori
al overview, whi
h

also illustrates general design
on
epts, some more

re
ent additions are dis
ussed in detail.

1 Introdu
tion

The boot pro
ess
onsists of two major phases: (1)

loading the Linux kernel into memory and passing

ontrol to it, and (2) initializing the normal oper-

ation environment. Some of the possible ways to

performs these steps are depi
ted in �gure 1.

Hardware startup

Linux kernel

Mount initrd

Firmware (BIOS)

Boot selector

Legacy OS

Linux loader boot loader
Linux−capable

Li
nu

x
ke

rn
el

B
oo

t l
oa

de
r

Mount root file system

/sbin/init

/linuxrc

System runs

Figure 1: Boot pro
ess overview.

While this paper fo
uses mainly on the i386 ar
hi-

te
ture, many
on
epts also apply to other ar
hite
-

tures supported by Linux.

1.1 Loading the kernel

The �rst phase is the domain of boot loaders. They

have to retrieve the kernel exe
utable and possibly

additional data from some storage media, e.g. a

disk, or from an external sour
e, e.g. from a boot

server on the network, load them at the right mem-

ory lo
ation, maybe
hange the exe
ution mode of

the pro
essor, and start the kernel.

Boot loaders typi
ally perform some additional

tasks, like providing the kernel with parameters su
h

as information retrieved from the �rmware or the

boot
ommand line. Some boot loaders
an also a
t

as a boot sele
tor and load other operating systems.

The duties of boot loaders and some
ommon de-

signs are dis
ussed in more detail in se
tion 2. An

introdu
tion to boot
on
epts on i386 in general
an

be found in [1℄.

1.2 Up and running

On
e the kernel is running, it initializes its inter-

nal data stru
tures, dete
ts hardware
omponents

and a
tivates the
orresponding drivers, et
., until

it eventually be
omes ready to run user-spa
e pro-

grams. Before it
an start the user-spa
e environ-

ment, it needs to provide it with a �le system, so it

has to mount the root �le system �rst.

In order to mount the root �le system, the kernel

needs two things: it needs to know the media on

whi
h the root �le system is lo
ated, and it needs

drivers to a

ess that media. In the most
ommon

on�guration, when the root �le system is simply

an ext2 partition on an IDE disk, this is simple: the

number of the root devi
e is passed to the kernel as a

parameter, and the IDE driver is typi
ally
ompiled

into the kernel.

1.3 Compli
ations

Things get more
ompli
ated if the kernel has no

driver for the devi
e. This is quite
ommon for the

\generi
" kernels that are used when installing a

new Linux system, be
ause a kernel with all avail-

able drivers would simply be far too big, and some

drivers may also upset other hardware when probing

for their devi
es.

This problem is solved by the initrd me
hanism,

whi
h allows the use of a RAM disk before mount-

ing the a
tual root �le system. This RAM disk is

loaded by the boot loader. initrd is des
ribed in

se
tion 3.

While initrd has proven to be very useful, the design

of the me
hanism used to mount the root �le system

after initrd has
ompleted its work was never quite

satisfa
tory. Also, other
hanges in the kernel made

it in
reasingly diÆ
ult to use that me
hanism in a

\
lean" way. Se
tion 4 dis
usses those issues in more

detail.

1.4 The future

Three new
hallenges await the boot pro
ess in the

future: (1) the �rmware and any hardware the boot

loaders have to interfa
e with will grow more fun
-

tionality | and, if the past is any indi
ation of the

future, a ri
her set of bugs too. (2) �le systems
on-

taining kernel images will be
ome more
omplex,

e.g. journaling �le systems or RAID, and
orre
tly

interpreting their
ontent will be very diÆ
ult for

boot loaders. (3) people will want to load kernels

from other exoti
 sour
es, e.g. from the network,

using a se
ure
onne
tion.

Boot
process

New hard− and firmware

Linux system

advances
architecture configurations

More complex

Figure 2: The boot pro
ess is fa
ing new
hallenges

from three dire
tions.

While there is little
hoi
e but to tea
h the boot

loaders to deal with their immediate �rmware and

hardware environment, loading the kernel from dif-

�
ult to a

ess media
an be greatly simpli�ed by

leaving most of the work to a Linux kernel. Se
tion

5 elaborates further on this topi
.

2 Boot loaders

A boot loader performs the following tasks:

� de
ide what to load, e.g. by prompting the user

� load the kernel and possibly additional data,

su
h as an initrd or parameters for the kernel

� set up an exe
ution environment suitable for

the kernel, e.g. put the CPU in privileged mode

� run the kernel

2.1 Taxonomy

Boot loaders
ome in many sizes and shapes. As

shown in �gure 3, we will distinguish the following

four types of them:

� spe
ialized loaders, e.g. the
oppy boot se
tor

LinuxBIOS [2℄, SYSLINUX [3℄, Netboot [4℄

� general loaders running under another operat-

ing system, e.g. LOADLIN [5℄, ArLo [6℄

� �le system aware general loaders running on the

�rmware, e.g. Shoela
e, GRUB [7℄, SILO

� �le system unaware general loaders running on

the �rmware, e.g. LILO [8℄

FS−unaware

Specialized

FS−aware

By other OS

No abstraction

Device abstraction

File abstraction
User space

Operating system

Firmware

Hardware

Figure 3: Layers at whi
h boot loaders intera
t with

the underlying servi
es.

Spe
ialized loaders typi
ally know only one storage

devi
e, e.g.
ash memory or the
oppy disk, on

whi
h a small number of kernels is stored in some

format spe
i�
 to the boot loader.

Boot loaders that run under another operating sys-

tem normally use the servi
es provided by the host

operating system for reading the kernel image and

additional data. This frees them from having to

know the stru
ture of the underlying �le system or

any properties of the a
tual store devi
es. One of

their disadvantages is that they have to take spe-

ial pre
autions when loading the kernel, in order

to keep the host operating system operational until

they are ready to run the Linux kernel, e.g. they

must not overwrite memory lo
ations o

upied by

the host operating system. Another disadvantage is

that the entire boot pro
ess takes longer than with

other boot loaders, be
ause the host operating sys-

tem needs some time to boot too.

File system aware boot loaders are almost little op-

erating systems by themselves: they know the stru
-

ture of one or more �le systems, they a

ess devi
es

via the servi
es provided by the �rmware, and some-

times, they may even have their own drivers to a
-

ess hardware dire
tly.

File system unaware boot loaders rely on a third

party to map the on-disk data stru
tures to a more

general and more
onvenient representation. E.g.

in the
ase of LILO, the so-
alled map installer

(/sbin/lilo) uses the �le system drivers already

ontained in the Linux kernel to perform this map-

ping, and simply writes the list of data se
tor lo
a-

tions in its map �le. A des
ription of LILO internals

an be found in [9℄.

2.2 File system awareness

The la
k of �le system awareness is a
ommon
om-

plaint about LILO, and
ompeting boot loaders ad-

vertize their ability to read �le systems without

prior mapping as one of their main features. It is

therefore interesting to
ompare the two approa
hes.

Figure 4 shows what a �le system aware boot loader

does when using the Se
ond Extended �le system:

�rst, the �le is written to disk, via the ext2 �le sys-

tem driver. The �le system driver adds a bit of

meta information. At boot time, the boot loader

interprets the ext2 meta information and loads the

orresponding data se
tors into memory. In order

to do so,it has to
ontain a simpli�ed version of the

�le system driver.

A �le system unaware boot loader (�gure 5) requires

an additional step after writing the �le: the map-

ping, during whi
h the generalized meta information

is written. The boot loader uses this meta informa-

ext2

Kernel image

Kernel

Disk

Boot
loader

Meta data Kernel image data

ext2(ro)

Figure 4: Data
ow with �le system aware boot

loader.

tion to retrieve the a
tual data. The meta data

generated by the �le system driver is not needed.

Kernel

Disk

Boot
loader

ext2

read list

Meta data (map file)
Kernel image data

Kernel image

Map

Meta data

Figure 5: Data
ow with �le system unaware boot

loader.

File system unaware boot loaders have the main dis-

advantage that the map installer has to be run af-

ter adding new kernel images and after an already

mapped kernel image
hanges its on-disk lo
ation

for some reason.

However, they have one big advantage: if a �le sys-

tem is supported by the Linux kernel and if it ful�lls

some fairly basi
 properties, they
an load a kernel

from it without requiring any
hange to the boot

loader or the map installer. And this is the main

reason why LILO was designed to be �le system un-

aware.

2.3 File system history and LILO

In the early days of Linux, the only boot loaders

available were the
oppy boot se
tor and Shoela
e,

a �le system aware boot loader inherited from

Minix. Shoela
e only supported the Minix �le sys-

tem. Sin
e also Linux supported only the Minix

�le system ba
k then, this was no limitation. How-

ever, it be
ame soon
lear that the Minix �le sys-

tem, la
king some fun
tionality traditionally found

in Unix �le systems, e.g. distin
t
reation, modi�-

ation, and a

ess time for �les, and also restri
ting

�le names to 14
hara
ters, was not good enough as

the primary �le system for Linux.

In order to allow for the implementation of other

�le systems, the VFS (Virtual File System) inter-

fa
e was added, whi
h qui
kly led to the
reation

of a wide variety of new �le systems, among them

the Extended �le system, Xiafs (named after its au-

thor), and also a \big" variant of the Minix �le

system that raised the �le name length limit to a

whole thirty
hara
ters. There was �er
e
ompeti-

tion among the �le systems, and it was quite un-

ertain whi
h design would eventually prevail, or if

there would a
tually be a single \winner".

In all this
onfusion, one thing was
lear: no mat-

ter what �le system one favoured, in order to boot

from the hard disk, the root �le system had to be

Minix, be
ause Shoela
e did not support anything

else. LILO was written to �ll this gap. Sin
e imple-

menting and maintaining support for a large number

of di�erent �le systems (at that time there were al-

ready Minix, Extended (ext), and Xiafs in the main-

stream kernel, some people had ported BSD FFS,

and there was no end in sight) appeared hardly de-

sirable, and the boot loader should not prevent peo-

ple from experimenting with new �le system propos-

als, a �le system unaware design was
hosen.

This approa
h turned out to be very su

essful.

Even today, LILO
an boot from most disk �le sys-

tems supported by the Linux kernel. However, sin
e

ext2 has be
ome the de fa
to standard, and has been

so for many years, �le system aware boot loader de-

signs have been su

essfully tried again, and some

of them have already gained a
ertain popularity.

While ext2 was handling everybody's daily work,

�le system designers have been busy with the next

generation of �le systems, whose key feature is sup-

port for journaling. Considering that there are now

Minix

Big Minixextfs Xiafs

ext2
"modern" Unix
Fully featured

Limited Unix

ext3

?

Journaling
XFS JFSReiser

Figure 6: Evolution of the \standard" Linux �le

system.

(again) several
ompeting proposals (�gure 6), it

seems likely that the need for the
exibility o�ered

by a �le system unaware boot loader will again be-

ome strong.

2.4 Other things to load

A Linux boot loader does not only load the kernel

image, but it has to give further data to the kernel,

e.g. the initial RAM disk, whi
h allows the kernel to

set up a fully fun
tional user spa
e without a

essing

any peripherals. This is dis
ussed in se
tion 3.

Other additional data is a parameter blo
k used dur-

ing kernel initialization. It typi
ally
ontains things

like the number of the devi
e with the root parti-

tion, the desired video mode for the system
onsole,

the boot
ommand line, et
. The type of infor-

mation and its layout are ar
hite
ture-spe
i�
. It

is also quite
ommon that the parameter blo
k is

merged from multiple sour
es, e.g. LILO
an sele
-

tively overwrite the default VGA mode.

2.5 i386 details

One problem that is
onstantly plaguing the authors

of boot loaders, parti
ularly on the i386 platform,

are the various disk size limits imposed by hardware

or, more frequently, �rmware. A good dis
ussion of

most known limits
an be found in [10℄. The usual

e�e
t of using a hard disk that ex
eeds su
h a limit

is that the part of the disk beyond the limit is only

a

essible under some
ir
umstan
es.

One su
h limit that has earned parti
ular fame in

the Linux world is the 1024
ylinder limit
ommonly

en
ountered when using LILO. It originates from

the BIOS, whi
h only supports a maximum of 1024

ylinders in the traditional fun
tions for a

essing

hard disks. This limit is ex
eeded on all hard disks

larger than 8 GB, and sometimes even with smaller

ones. Sin
e LILO uses the BIOS for all disk opera-

tions, all �les a

essed by it had to be within the �rst

1024
ylinders of the hard disk. In 1995, an exten-

sion
alled \Enhan
ed Disk Drive Spe
i�
ation" [11℄

raised the limits of the BIOS interfa
e by a fa
tor

of roughly 2

40

to a more reasonable 2

73

bytes. Un-

fortunately, it took some more years until one
ould

be reasonably sure that
orre
t implementations of

EDD were widely deployed. Support for EDD has

been added to a development version of LILO in

1999, and later versions released for general use and

maintained by John Co�man also support EDD.

1MB

16MB

64MB

End of

zImage

bzImage

initrd

Maximum amount of
memory reported by
int 0x15,0x88

Maximum amount of
memory accessible with
i286 BIOS functions

Maximum amount of
memory accessible in
real modeBoot sector

loaded by
BIOS or MBR

Free space for kernel
data

memory

Figure 7: Simpli�ed memory layout at boot time on

i386.

Another interesting problem on i386 are the various

memory size limits (�gure 7). First of all, in the so-

alled real mode, the CPU has a 4+16 bit address

spa
e giving it a

ess to only 1 MB. Sin
e the CPU is

in real mode when the boot se
tor is started, early

boot loaders were not able to load kernels (
alled

\Image") larger than several hundred kilobytes.

1

This was soon found to be too
on�ning, and
om-

pressed kernel images were introdu
ed. Compressed

kernels (
alled \zImage") were still limited to 512

kB, but on
e started, they un
ompressed themselves

1

Some of the lower address spa
e is reserved for the BIOS

and video memory, and some spa
e is also
laimed by the

boot loader. This leaves 512 kB for loading the kernel.

to higher memory lo
ations. This in
reased the

maximum kernel size to approximately 1 MB.

After a few years, also this be
ame a problem, and a

me
hanism was added to load bigger kernels,
alled

\bzImage". A bzImage is loaded above the 1 MB

barrier, then un
ompresses itself, and moves the re-

sulting un
ompressed kernel down to 1 MB. The

parameter blo
k
ontained in the
oppy boot se
tor

and the real mode setup
ode are still loaded at their

original addresses below 1 MB. This is des
ribed in

more detail at the end of this se
tion.

Be
ause zImage is inferior to bzImage in almost all

respe
ts, support for it is likely to be phased out in

the near future.

In order to load the bzImage above 1 MB, the boot

loader either swit
hes to a CPU mode giving a
-

ess to the full address spa
e, or it runs still in real

mode but uses spe
ial BIOS fun
tions for the
opy.

Unfortunately, those BIOS fun
tions originate from

the i286 era and may still use the so-
alled prote
ted

mode of the i286 with a 8+16 bit address spa
e, giv-

ing a

ess only to 16 MB. While 15 MB

2

should be

more than suÆ
ient for
ompressed kernels alone, it

also limits the maximum size of initrds, whi
h use

the spa
e not o

upied by the kernel. Sin
e the 16

MB limit
omes from the boot loader but does not

exist in the kernel, it is likely to disappear in the

future. Some boot loaders are already using
opy

me
hanisms that do not have this restri
tion.

The next barrier is 64 MB, whi
h is the amount of

memory that
an be traditionally reported by the

BIOS. All newer BIOSes support me
hanisms that

an report larger memory sizes, and kernels have

re
ently started using them. It is not
lear if the 64

MB limit is likely to ever be
ome a serious problem

for boot loaders.

The maximum kernel size is also limited by the page

tables the kernel sets up prior to its own initializa-

tion. For a long time, only 4 MB were mapped.

Sin
e kernels started to ex
eed this limit, it was re-

ently raised to 8 MB.

It should be noted that all these restri
tions only

apply to the kernel image loaded at boot time. Any

additional
ode loaded by modules
an use all of the

memory the kernel is willing to provide.

2

The lower megabyte is reserved for BIOS, boot loader,

video memory, et
.

The loading of a bzImage is a fairly intri
ate pro
e-

dure, as shown in �gure 8. First, the boot loader

loads the kernel setup se
tors (1) and the
om-

pressed kernel (2), and jumps to the setup
ode

(3). The bzImage
onsists of the
ompressed ker-

nel
ode (\text") and data, and a small pie
e of

un
ompressed
ode for extra
ting the kernel. On
e

�nished, the setup
ode jumps to the extra
tor (4).

Then, the kernel is un
ompressed into a low memory

region below 1 MB (5), and a high memory region

after the end of the loaded bzImage (6). By us-

ing the low memory region, the extra
tion pro
ess

redu
es its peak memory usage by 568 kB.

11
Kernel extractor

Kernel setup

Mover

(low)

K t+d

Kernel

Boot

loader

5 7 8

9

10

K t+d
6

(high)

Kernel text+data

(compressed)bzImage

0
4kB

8kB

1

0x90000

4

3

1MB

2

End

Figure 8: Loading a bzImage.

When the kernel is extra
ted, it needs to be moved

to 1 MB. This is done by a mover fun
tion whi
h is

opied to a low address (7 and 8). After moving the

un
ompressed kernel to its destination (9 and 10),

the mover jumps to the kernel entry point (11).

2.6 Adding new features

When adding new fun
tionality to the boot pro
ess,

frequently the question arises where it should be

implemented { in the boot loader or in the kernel ?

Figure 9 illustrates this
hoi
e.

With a large number of di�erent ar
hite
tures and

possibly a large number of boot loaders per ar
hi-

Linux
kernel

Alpha

ARM

i386,ia64

m68k

MIPS(64)

PPC

S390

SuperH

(Ultra)SPARC

LOADLIN
LILO
GRUB

nuni

Etherboot

SysLinux
Netboot

...

...

Figure 9: Where to add a new feature ?

te
ture, it is
lear that additions requiring major

hanges in boot loaders are not likely to be met

with mu
h enthusiasm. With the number of sup-

ported ar
hite
tures in
reasing, even ar
hite
ture-

dependent
hanges should not be
onsidered lightly.

The introdu
tion of the initial RAM disk was the

last time a
hange a�e
ting all ar
hite
tures and

most boot loaders was made. Fortunately, most au-

thors agreed on the usefulness of initrd, and it is

well supported today.

More re
ent extensions of the boot pro
ess try to

stay within the kernel, e.g. the me
hanisms to boot

Linux kernels from Linux
ombine an ar
hite
ture-

spe
i�
 part with a more general framework, and

re
ent improvements of me
hanisms related to ini-

trd (see se
tion 4) are
ompletely ar
hite
ture-

independent.

Se
tion 3.5
ontinues this dis
ussion, examining the

hoi
e between kernel and user spa
e.

3 Loading drivers

Only loading the kernel is sometimes not enough,

be
ause the driver(s) needed to a

ess the root �le

system may not be in
luded in the kernel. This se
-

tion des
ribes the reasons for this seemingly para-

doxi
al situation and the solution adopted for it.

3.1 Con
i
ting drivers

Very early, many Linux distributions en
ountered

the problem that some of the drivers they needed

to a

ess any further storage medium, e.g. the CD-

ROM, were
on
i
ting with the drivers they needed

in other
ases.

This
an happen quite easily with ISA
ards, be-

ause the only way to probe for their presen
e used

to be to blindly write to registers at well-known ad-

dresses and to
he
k if the
ard showed whatever

rea
tion was expe
ted in this
ase. If two
ards hap-

pened to have some well-known addresses in
om-

mon and did not respond gra
efully to in
orre
t a
-

esses, e.g. by entering a state that
ould only be

left by following a
ompli
ated reset pro
edure or, in

extreme
ases, only by a hardware reset, one
ould

not probe for one
ard without upsetting systems

that used the other one.

In order to avoid su
h
on
i
ts, distributions started

to use large numbers of pre-
ompiled kernels
on-

taining only a small number of drivers ea
h. Su
h

a distribution then either had to ship with several

oppy disks for all those kernels, or the user had to

pi
k the right kernel from the distribution medium

and make their own boot disk before installation.

This was hardly a satisfying situation.

The readily available solution to su
h problems was

the use of kernel modules, whi
h
an be loaded after

either performing a more detailed hardware
on�g-

uration analysis than done by the kernel, or simply

after asking the user for advi
e.

3.2 Dynami
 kernel
omposition

Loading modules before the kernel mounts the root

�le system is also desirable after installation, when

a
ustomized kernel
ontaining only the
omponents

required on the respe
tive system should be used.

Ideally, one would go through regular kernel
on-

�guration and
ompile the kernel from s
rat
h for

this, but most users would be rather unpleasantly

surprised by the daunting task of having to pi
k

the right set from more than a thousand
on�g-

uration options, parti
ularly sin
e many mistakes

would lead to an unbootable system. Also, there are

usually some dependen
ies among options that are

not
aught by the kernel
on�guration system, so

ertain
hoi
es
ould lead to obs
ure build failures.

Last but not least, building the kernel requires sev-

eral tools (
ompiler, et
.), whi
h are not ne
essarily

installed on every system, and the build pro
ess may

also take a long time on slower ma
hines.

Linking a pre-
ompiled monolithi
 kernel would

only o�er partial relief, be
ause it still requires al-

most all of the tools needed for
ompilation, and

any
on
i
ts would make the entire linking pro
ess

fail.

Again, the most reasonable
hoi
e is to use modules.

The modules framework is regularly used by many

people and is therefore quite reliable. If there are

on
i
ts among modules (e.g. missing or dupli
ate

symbols), the respe
tive module and any modules

depending on it
annot be loaded, but this is still

safer than failing the entire build pro
ess.

In prin
iple, a simpli�ed linker
ould be built on the

basis of modules, o�ering all the advantages of a

modular system, while avoiding the slight overhead

introdu
ed by modules. For some reason, su
h a

linker was never implemented.

3.3 Chi
ken and modular eggs

The use of modules requires the presen
e of a �le

system.

3

While an installation
oppy disk
an
on-

tain a �le system, this does not help for other me-

dia, e.g. a CD-ROM or the s
enario des
ribed in

the previous se
tion. Also, every on
e in a while,

oppy disk drives appear that
an be a

essed via

the BIOS, but that are not properly handled by the

regular
oppy driver.

Fortunately, there is already a program that { by

de�nition { knows how to read data from the boot

medium under all
ir
umstan
es: the boot loader.

The logi
al
on
lusion was therefore to let the boot

loader load the modules too. In order to keep the

on
ept as
exible as possible, and the work of the

boot loader simple, it loads a single �le that is pre-

sented to the kernel as a linear blo
k of memory.

The kernel then uses it as a RAM disk. Therefore,

the me
hanism is
alled \initial RAM disk" or short

3

An alternative approa
h that is proposed every on
e in

a while is to tea
h the boot loader to link modules into the

kernel at boot time. The problems of this approa
h have

been dis
ussed in se
tion 2.6.

Kernel

Data

initrd

RAM disk
Loaded by
boot loader

Copied by RAM
disk driver

May be made available
/dev/initrdas

Figure 10: Loading an initial RAM disk.

\initrd". As a pleasant synergy e�e
t, the RAM

disk driver automati
ally dete
ts if the RAM disk is

ompressed, and un
ompresses it if ne
essary.

For debugging or for using the initrd me
hanism

for other purposes than the initial RAM disk, the

boot
ommand line option noinitrd
an be used

to prevent automati
 use of the memory blo
k as a

RAM disk. Instead, its
ontent is made available

via the blo
k devi
e /dev/initrd.

3.4 Using the initrd

On
e the RAM disk is loaded, any regular Linux

programs
an be run from it. Initrd
an be used in

two modes: either for the regular root �le system,

so the program run is the usual /sbin/init, or as

an intermediate environment in whi
h the system is

prepared for mounting the real �le system.

In the latter
ase, a program
alled /linuxr
 is in-

voked to perform the ne
essary initialization. When

/linuxr
 �nishes, the \real" root �le system is

mounted and it repla
es the initial RAM disk. After

this, /sbin/init
ommen
es with the usual startup

pro
edures. The pro
ess of
hanging the root �le

system is des
ribed in se
tion 4.

3.5 Size matters

The main limitation of an initial RAM disk is that

there has to be enough memory for the kernel, the

initrd �le as loaded by the boot loader, the RAM

disk extra
ted from it by the RAM disk driver, and

any other data the kernel needs at that time. This

limits the size of
ompressed initrds to roughly a

third of the memory not o

upied by the kernel it-

self.

One obvious improvement is to free memory
on-

taining the original initrd data immediately after it

has been read when building the RAM disk. This

will be implemented in the near future.

By the way, it is a
ommon mis
on
eption that

the use of initrd automati
ally implies that many

megabytes of pre
ious memory will be wasted. This

mis
on
eption
omes from the fa
t that most pro-

grams are linked with the shared C library (lib
),

and that some versions of lib
 are fairly large { typ-

i
ally up to around 4 MB. Even linking with the

stati
 version of lib
, whi
h yields a program
on-

taining only the library fun
tions whi
h are really

used, does not result in the desired size redu
tion.

E.g. a program that does nothing at all (main(){})

still gets larger than 200 kB.

One reason for this is that lib
 has many internal

dependen
ies, whi
h require the in
lusion of auxil-

iary
omponents. When some of those dependen
ies

are removed, program sizes be
ome more reason-

able, e.g. the example above shrinks to a mere 3

kB. More work is needed in this dire
tion.

Another possibility is simply to refrain from using

any library at all. This is feasible for reasonably

simple programs. The mi
ro-shell [12℄ is an example

for this.

4 Changing the root �le system

Changing the root �le system is similar to the task

of
hanging a
arpet while still standing on it. Most

people would probably suggest to jump up while try-

ing to throw the new
arpet under one's feet, and

to smooth any wrinkles afterwards. The �rst im-

plemented solution,
alled
hange_root, is a
tually

remarkably similar to this approa
h. It is des
ribed

in se
tion 4.2.

A mu
h lazier possibility is to roll out the new
arpet

next to the old one and to just walk over. This

mu
h more elegant approa
h, re
ently implemented

in a me
hanism
alled pivot_root, is des
ribed in

se
tion 4.3. A similar solution, involving layering

of the new root �le system on top of the old one,

is
urrently being worked on. Its
urrent design is

des
ribed in se
tion 4.4.

4.1 What's keeping it busy

Changing the root �le system is tri
ky, be
ause the

design of Unix makes sure there is always something

a

essing it. In parti
ular, at least the following

items are \busy" if any pro
ess is running:

Mapped �les The exe
utable of the pro
ess

and any shared libraries used by

it.

Terminal Standard input, output, and er-

ror of that pro
ess. Typi
ally

/dev/
onsole

Dire
tories The
urrent dire
tory and the

urrent root dire
tory of the

pro
ess.

Furthermore, the root �le system
an also be busy

be
ause of:

Mount points Mounted �le systems (e.g.

/pro
 or any auxiliary �le

systems)

Demons Demon pro
esses or kernel

threads.

4.2 Feet in the air

Figure 11 illustrates the approa
h of awkwardly

jumping up while rearranging things underneath

one's feet. It works as follows:

� Kernel prepares initrd and starts /linuxr

� /linuxr
makes everything ready for mounting

the root �le system and writes the number of

the new root �le system devi
e to /pro
/sys/

kernel/real-root-dev

� When /linuxr
 terminates, the kernel tries

to unmount the old root �le system and to

mount the �le system on the devi
e des
ribed

in /pro
/sys/kernel/real-root-dev instead

� Kernel runs /sbin/init

One of the design goals for
hange_root was to

make its use easy for shell s
ripts, in order to sim-

plify the transition to initrd.

/
Root and cwd
of process 1

/initrdnew_root

umount

root_dev

change_root

Figure 11: Changing the root �le system with

hange root.

The following table shows how well this approa
h

handles things keeping the root �le system busy:

Mapped �les Disappear at pro
ess termina-

tion.

Terminal Closed at pro
ess termination.

Dire
tories Not a

essed after pro
ess ter-

mination.

Mount points Una�e
ted.

Demons Una�e
ted.

Mount points and demons are still a problem.

Mount points
an be avoided by simply unmount-

ing everything before /linuxr
 terminates. Demon

pro
esses
an be more diÆ
ult to avoid, and kernel

threads may refuse to disappear at all.

If
hange_root fails to unmount the old root �le

system (be
ause it is kept busy by something), it

prints a warning and tries to mount it on a mount

point
alled /initrd on the new root �le system

instead. On
e all a

esses to the old root �le system

have been removed, it
an the be unmounted like

any other mounted �le system. If no dire
tory
alled

/initrd exists,
hange_root gives up and leaves

the old root �le system mounted but ina

essible.

4.3 Towards a general solution

While
hange_root is good enough for most pur-

poses, it has a few undesirable restri
tions:

� It
an only mount obje
ts whi
h exist as a blo
k

devi
e, whi
h pre
ludes NFS,

4

SMB, et
.

5

� Kernel threads have be
ome quite popular and

some of them keep the root �le system busy.

�
hange_root
an only be used on
e, whi
h

makes it hard to debug initialization pro
e-

dures.

� If
hange_root fails to mount the new root �le

system, the system hangs.

Besides, all the devi
e number magi
 and the hard-

oded names of
hange_root are just plain ugly.

Already at the time when
hange_root was intro-

du
ed, an alternative design based loosely on the

hroot system
all was dis
ussed. Re
ent improve-

ments in VFS have made it
omparably easy to im-

plement, so this was �nally done.

/
Root and cwd of
all processes

old_rootnew_root

pivot_root

umountmount

current process)
(usually cwd of the

Figure 12: Changing the root �le system with

pivot root.

The new me
hanism is
alled pivot_root and �gure

12 shows how it works:

� The new root �le system is mounted like any

other �le system.

� A dire
tory is sele
ted as the lo
ation for the

old (now
urrent) root �le system.

� pivot_root is
alled with the name of the di-

re
tory
ontaining the new root �le system and

4

hange root was originally able to mount NFS root �le

systems using the \NFS root" me
hanism built into the ker-

nel. Support for this disappeared after a while during a reor-

ganization of the NFS
ode. Note that the new pivot root

me
hanism
an be used to
leanly repla
e and even general-

ize the NFS root me
hanism. It is therefore likely that the

latter will be phased out in future kernels.

5

Re
ent
hanges in VFS may allow mounting of su
h �le

systems even via their \anonymous" blo
k devi
e. However,

this would still be a fairly messy operation.

the name of the dire
tory for the old root �le

system.

� pivot_root moves the
urrent root �le sys-

tem to the dire
tory for the old �le system and

makes the new root �le system the
urrent root.

The most important di�eren
es to
hange_root are:

� An arbitrary �le system
an be
ome the new

root, in
luding NFS, SMB, et
.

� pivot_root does not attempt to unmount the

old root �le system, yielding more predi
table

behaviour than
hange_root with its two fall-

ba
k levels.

� pivot_root
an be invoked any number of

times, whi
h allows
as
ading of root �le sys-

tem transitions, and makes it easier to debug

initialization s
ripts.

� pivot_root
an be retried and is even re-

versible, whi
h also helps debugging.

Unfortunately, this does not yet help against

demons and kernel threads keeping the old root �le

system busy. The solution
hosen is based on the

observation that most demons and kernel threads

are a
tually not interested in the �le system. They

just keep it busy be
ause they, like any other pro-

ess, referen
e their
urrent dire
tory and their
ur-

rent root dire
tory.

6

pivot_root therefore s
ans all

pro
esses and
hanges their
urrent dire
tory and

their
urrent root dire
tory if they point to the old

root.

This operation is admittedly rather ugly, and the

do
umented behaviour of pivot_root leaves it open

to
hange only root and
urrent dire
tory of the pro-

ess exe
uting pivot_root. The impli
ations of this

are des
ribed in the pivot root man pages in
luded

in [13, 14℄.

Unlike
hange_root, whi
h makes all
hanges in

a single step after /linuxr
 exits, pivot_root al-

lows for a gradual swit
h to the new root �le sys-

tem. This requires a bit more
ooperation from user

spa
e for releasing any remaining referen
es to the

old root �le system. The running exe
utable and

6

Kernel threads
an release their referen
es to these two

dire
tories. Unfortunately, only very few kernel threads make

use of this possibility.

shared libraries a

essed by it
an be
losed sim-

ply by exe
'ing an exe
utable on the new root �le

system. At the same time, the
onsole
an be
on-

veniently
losed and re-opened with the devi
e �le

on the new root �le system.

7

Although all those operations
an in prin
iple be

done before or after the
all to pivot_root, it is

usually more
onvenient to
hange the root �le sys-

tem �rst, be
ause this avoids a

idental use of items

on the old root �le systems, e.g. shared libraries.

To summarize, with pivot_root, the situation is

now as follows:

Mapped �les Changed by exe
.

Terminal Closed and re-opened.

Dire
tories Changed with
hdir and

hroot.

Mount points Una�e
ted (ex
ept for new

root, whi
h is handled dire
tly

by pivot_root)

Demons Current and root dire
tory are

for
ibly
hanged.

4.4 Union mounts

The need to for
ibly
hange the
urrent and root

dire
tories of pro
esses is the only remaining ugly

ha
k with pivot_root.

Alexander Viro is
urrently designing so-
alled

\union mounts", an extension of VFS that allows

multiple �le systems to be sta
ked at a single mount

point. The �le systems are a

essed only when try-

ing to look up items on that mount point.

To return to the
arpet analogy, this gives us a tiny

pat
h of
ying
arpet that we
an use to avoid step-

ping on the real
arpet while repla
ing it.

Although this work has not yet �nished at the time

of writing, one
an already spe
ulate on how it may

allow for a
leaner use of the
on
epts introdu
ed

by pivot_root.

Figure 13 illustrates how this
on
ept may work.

The �le systems
an be either dire
tly mounted and

unmounted at the root, or they
an be moved from

or to other dire
tories.

7

When using devfs, a se
ond instan
e of it should be

mounted on the new root �le system for this purpose.

umount

old_root

remount

new_root

mount
/

all processes
Root and cwd of

Figure 13: Changing the root �le system with union

mounts.

So the �nal situation is as follows:

Mapped �les Changed by exe
.

Terminal Closed and re-opened.

Dire
tories Dire
tories
hange is transpar-

ent.

Mount points Una�e
ted (ex
ept if moving

mount points to root)

Demons Dire
tories
hange is transpar-

ent.

The me
hanism des
ribed in this se
tion is likely to

be added to the mainstream kernel in the very near

future.

5 Linux boots Linux

With the infrastru
ture dis
ussed so far, we
an use

any �le system the kernel
an mount as the root �le

system. Now wouldn't it be ni
e if we
ould also use

any �le the kernel
an read as kernel or initrd ?

File system unaware boot loaders rea
h their lim-

its when �les are no longer stored in sequen
es of

data se
tors on the disk, e.g. in the
ase of software

RAID, there may be multiple instan
es of the same

data blo
k, and a RAID5 array in re
onstru
tion

mode needs to perform
al
ulations over multiple

data blo
ks in order to obtain the
ontent of a blo
k

on a defe
tive volume. Worse yet, the �les may not

even be on a lo
al disk, but maybe on an NFS or

HTTP server.

In prin
iple, any boot loader
an of
ourse a

ess

any resour
es the kernel
an a

ess too. The only

problem is that all the ne
essary fun
tionality needs

to be rebuilt in the boot loader. And on
e half a

dozen �le systems, RAID, a TCP/IP sta
k, NFS,

SMB, DHCP, HTTP, et
. are added to a boot

loader, it probably looks like a
omplete operating

system : : :

5.1 The ultimate boot loader

: : : whi
h brings us right to a very
onvenient so-

lution: there is already a program that
an a

ess

everything the kernel
an a

ess { it's the kernel it-

self. And all the other tools that might be needed

(e.g. DHCP and su
h) are
onveniently available

too.

The only missing element is a means to boot a Linux

kernel from within Linux. The
on
ept is basi
ally

the same as for boot loaders running under some

other host operating system. However, some re-

quirements are slightly higher, be
ause it is desir-

able to have a solution that
an be easily adapted for

all platform supported by Linux, and also the range

of possible system
on�gurations is wider than for

most other su
h boot loaders, e.g. it seems quite

unlikely that LOADLIN is ever used on multipro-

essor systems. On the other hand, the work
an be

simpli�ed by making small
hanges to the kernel.

Another requirement is to pass on data obtained

from the �rmware from kernel to kernel. E.g. on

i386, video mode, memory layout, SMP
on�gura-

tion, et
. are retrieved either dire
tly from the BIOS

or from memory areas initialized by the BIOS. Sin
e

these memory areas may be overwritten by the ker-

nel in normal operation, they either need to be pro-

te
ted if booting kernels from Linux is desired, or

the information
ontained in them needs to be ex-

tra
ted and passed on to the next kernel.

Finally, some operations done during initialization,

e.g. SCSI or IDE bus s
ans, may take a signi�
ant

amount of time. It would be desirable to pass this

information from kernel to kernel in order to speed

up the boot pro
ess.

There are
urrently at least three di�erent imple-

mentations that allow booting a Linux kernel from

Linux: bootimg, LOBOS, and Two Kernel Monte.

The last two are des
ribed in [15℄ and [16℄, respe
-

tively. Bootimg is des
ribed in se
tion 5.3 of this

paper.

5.2 What a waste ?

The
on
ept of using a fully featured Unix kernel

as a boot loader may look like the perfe
t waste

of resour
es. In the se
tion, we will
onsider the

impli
ations on time, memory, and disk spa
e.

Note that these
al
ulations may not apply to spe-

ial environments like embedded systems or small

battery-powered devi
es, whi
h may have very lit-

tle memory or use a slow CPU. Fortunately, the

exibility o�ered by the ability of booting a kernel

from Linux is hardly ne
essary in those
ases, so an

optimized spe
i�
 solution
an be
hosen.

First time: loading a kernel and an initrd takes time.

Sin
e the kernel is probably
ompressed, some more

time is spent for un
ompressing. If we assume that

any expensive bus s
ans are not repeated, and that

the hardware is not overly slow or obsolete, we ob-

tain:

1-2 se
 Loading 1-2 MB (kernel and initrd)

1-2 se
 Un
ompressing kernel and initrd

1 se
 Other overhead

3-5 se

Considering that a normal reboot typi
ally takes 20-

60 se
onds, this is a reasonably small in
rease. Also,

reboots for
on�guration
hanges or kernel updates

are mu
h faster now, be
ause the old kernel
an

dire
tly load the new one, without going through

BIOS or boot loader.

The peak memory utilization o

urs when the kernel

a
ting as boot loader has loaded the next kernel

along with its
ompressed initrd. Assuming fairly

large kernels and initrds, we obtain:

1-2 MB Boot kernel (running)

2-4 MB Kernel data

1-2 MB initrd (mounted)

0.5-2 MB Compressed kernel

0.5-2 MB Compressed initrd

5-12 MB

Sin
e 5 MB is probably the minimum amount of

memory required for any usable Linux system, these

memory requirements
an only be
ome a signi�
ant

problem if using very large kernels or feature-laden

initrds, whi
h are of little use on systems with tight

memory
onstraints.

Finally, the disk spa
e requirements:

1 MB Compressed boot kernel

1 MB Compressed initrd

2 MB

This is hardly noti
eable. Developers who fre-

quently
hange their boot kernel may wish to keep

an additional kernel build tree for this purpose. This

takes about 100-120 MB.

5.3 Case study: bootimg on i386

This se
tion gives a rough overview of how bootimg

[17℄
urrently loads a Linux kernel. Note that this is

still work in progress, and major
hanges are quite

probable. Bootimg
onsists of two parts: a user

spa
e program that loads the ne
essary �les and

prepares a load map, and kernel
ode that moves

the memory pages to the right lo
ations and starts

the new kernel.

1

2

5

7

bootimg

Kernel memory
Disk

Descr

Physical addresses of target pages

Pointers to source pages in user memory

4

Param
3

6

. . .

Figure 14: Bootimg: set up from user spa
e.

As shown in �gure 14, the user spa
e program �rst

loads the kernel image and, optionally, an initrd �le

into its address spa
e (1). It registers the addresses

of these memory pages in an array of pointers (2).

Note that the data does not ne
essarily have to
ome

from a disk, but it may as well be loaded over the

network, or bootimg
ould even generate it on the

y, e.g. from obje
t modules. Next, bootimg
opies

the parameter blo
k from the running kernel (3) and

adds the new boot
ommand line and the initrd pa-

rameters (4). By
opying the
urrent parameter

blo
k, all other values set by the BIOS, e.g. the

memory
on�guration, are preserved. Along with

the pointer array to the sour
e data, bootimg also

maintains a se
ond array (5) that
ontains the tar-

get addresses in physi
al memory for all pages. On
e

all this is done, bootimg sets up a des
riptor
on-

taining pointers to the two arrays and some addi-

tional information (6), and invokes the bootimg sys-

tem
all (7).

As shown in �gure 15, the bootimg system
all �rst

opies the sour
e pages to kernel memory (1). This

is done mainly in order to
he
k a

ess permissions

and to ensure proper alignment of the pages, but it

also makes it easier to implement the
rash dump

utility des
ribed in the next se
tion. When
opy-

ing, bootimg also updates the sour
e pointers (2)

to point to the new pages in kernel memory.

8

Sin
e

the pages have been allo
ated at arbitrary lo
a-

tions, they must be moved to the right pla
e before

the kernel
an be started. This is done by a lit-

tle position-independent fun
tion that is
opied to

its own memory page (3). This fun
tion moves all

pages to the lo
ation indi
ated in the target address

array (4). If a target address happens to
oin
ide

with a page that is still needed, the fun
tion
opies

the
ontent of the target page �rst to a free page.

Note that this may also in
lude the page
ontain-

ing the fun
tion itself. On
e all pages have rea
hed

their destination, the startup
ode of the new kernel

is
alled (6).

Two likely future
hanges are the addition of sup-

port for referen
es to physi
al pages in the sour
e

pointer array in order to support
opying of data

that may
hange after the
all to bootimg (i.e. the

kernel message bu�er), and a split of the bootimg

user-spa
e program into a set of library fun
tions

and a simple utility
alling them, in order to make

it easier to use bootimg in other programs.

8

It a
tually does this in two steps: �rst, it uses addresses

in the kernel address spa
e. Then, immediately before re-

ordering the memory pages, it
hanges them to addresses in

physi
al memory. This way, the addresses are still available

if any operation fails before the reordering, and the pages
an

be freed before the system
all returns. This would be more

diÆ
ult if the addresses were already translated to physi
al

memory addresses, be
ause the latter
an not generally be

onverted ba
k to kernel address spa
e.

2

before reordering

Descr

1

3

Kernel memory

after reordering

5

4

Physical addresses of target pages

Pointers to source pages in user memory
then to source pages in kernel memory

. . .

Figure 15: Bootimg: memory reordering in the ker-

nel.

5.4 Other interesting appli
ations

Besides just booting Linux kernels from odd sour
es,

two other possible appli
ations for su
h a me
ha-

nism have been proposed re
ently.

LinuxBIOS [2℄ takes the redu
tion of boot loader

fun
tionality to the logi
al extreme and simply puts

a Linux kernel in the Flash EPROM that normally

holds the PC BIOS. This kernel
an then a
t as a

very feature-ri
h boot loader.

Another interesting use is the
reation of
rash

dumps. Many traditional Unix systems
an write

the memory
ontent to disk when a kernel pani

o

urs. A
rash dump
an later be analyzed to de-

termine what has
aused it. Sin
e a kernel pani

should only o

ur in
ases where the kernel has de-

te
ted a serious defe
t, it is not safe to assume that

the normal drivers
an be used for writing that
rash

dump. Even if the drivers still work, using them

may
hange the system state su
h that the problem

leading to the kernel pani

an no longer be dis
ov-

ered.

It is therefore desirable to use an subsystem that is

independent from the regular kernel for this task.

With a me
hanism like bootimg, this is quite sim-

ple: a small kernel for taking the
rash dump is

pre-loaded along with a suitable initial RAM disk,

and when a pani
 o

urs, the pre-loaded pages are

he
ksummed (they may have been damaged as a

result of the problem leading to the kernel pani
),

and the kernel is laun
hed. It
an then set up a new

lean environment and write the dump.

An implementation of su
h a
rash dumper, based

on bootimg,
an be found at [18℄.

6 A
knowledgements

Many people have
ontributed to LILO over the

years by reporting bugs and suggesting improve-

ments. Development has stalled in the last years,

but John Co�man is now
arrying on the tor
h with

fresh energy.

The ar
hite
tures for the initial RAM disk and for

bzImage are a joint work with Hans Lermen.

The design of pivot_root was strongly in
uen
ed

by dis
ussions in the linux-kernel mailing list. In

parti
ular,
omments from H. Peter Anvin, Linus

Torvalds, and Matthew Wil
ox helped to shape the

urrent design, and Alexander Viro is
urrently re-

�ning the
on
ept.

The basi
 idea for bootimg
omes from an imple-

mentation for SVR4 written by Markus Wild in the

early nineties. The memory reordering algorithm

of bootimg was strongly inspired by FiPaBoL, de-

signed mainly by Otfried Cheong and Roger Gam-

mans, and implemented by the latter.

7 Con
lusion

Table 1 shows the evolution of boot
on
epts in the

history of Linux. Items still under development are

shown in itali
s. Also, boot loaders for other ar
hi-

te
tures than i386 have been omitted.

The �rst boot loaders plainly got the kernel loaded,

without mu
h
onvenien
e beyond this. The se
ond

generation of boot loaders over
ame the �le system

type
onstraints and added many useful features,

su
h as the boot
ommand line or the ability to boot

other operating systems. Almost all boot loaders in

use today are of the se
ond generation.

The ability to use arbitrary �le systems as the root

�le system evolved slowly sin
e the beginning of

Linux. Sin
e the introdu
tion of pivot_root, a

ompletely generi
 solution is available.

Finally, the ability to load kernels from other sour
es

than
oppy or hard disks is
omparably re
ent.

Sin
e the three
urrent approa
hes to boot Linux

from Linux are already quite generi
,
onvergen
e

will probably be rea
hed soon.

As has been shown, the apparently simple a
t of

booting a Linux system is full of interesting prob-

lems. Modern Linux systems o�er a ri
h set of fea-

tures to handle those problems, and even more ex-

iting improvements
ontinue to be developed.

Referen
es

[1℄ Almesberger, Werner. LILO User's guide,

ftp://metalab.un
.edu/pub/Linux/

system/boot/lilo/

[2℄ Minni
h, Ron; Hendri
ks, James; Webster,

Dale. The Linux BIOS Home Page, http://

www.a
l.lanl.gov/linuxbios/

[3℄ Anvin, H. Peter. SYSLINUX, http:

//www.kernel.org/pub/linux/utils/boot/

syslinux/

[4℄ Kuhlmann, Gero. Netboot, ftp:

//metalab.un
.edu/pub/Linux/system/

boot/ethernet/netboot-0.8.1.tar.gz

[5℄ Lermen, Hans. LOADLIN, ftp://metalab.

un
.edu/pub/Linux/system/boot/loaders/

lodlin16.tgz

[6℄ Cheong, Otfried. Arlo { Arm boot loader, ftp:

//ftp.
al
aria.net/pub/arlo051.tgz

[7℄ Boleyn, Eri
h; et al. GNU GRUB, http://

www.gnu.org/software/grub/grub.html

[8℄ Almesberger, Werner; Co�man, John.

LILO { Generi
 boot loader for Linux,

ftp://metalab.un
.edu/pub/Linux/

system/boot/lilo/

The humble beginnings

1991 Linux boots stand-alone from
oppy.

Shoela
e is used to boot from Minix �le system on hard disk.

Beyond Minix

1992 LILO allows booting from (almost) arbitrary �le systems and of other operating systems.

BOOTLIN allows booting from DOS.

1994 LOADLIN repla
es BOOTLIN.

SYSLINUX reads FAT (MS-DOS)
oppies.

1995 GRUB, a modern �le system aware boot loader.

Root �le system abstra
tion

1991 Root �le system devi
e
an be set in kernel image.

1995 NFS root mounts root �le system from NFS server.

1996 Initial RAM disk support added to kernel.

hange_root me
hanism.

2000 pivot_root me
hanism.

Union root mount.

Early freeing of initrd memory pages.

Kernel image abstra
tion

1996 Netboot boots from Ethernet, using TFTP.

1999 GRUB supports TFTP boot too.

2000 Linux boots Linux.

LinuxBIOS.

Table 1: Evolution of the boot pro
ess. (Work in progress is shown in itali
s.)

[9℄ Almesberger, Werner. LILO Te
hni
al

overview, ftp://metalab.un
.edu/pub/

Linux/system/boot/lilo/

[10℄ Brouwer, Andries. Large Disk HOWTO,

http://www.win.tue.nl/~aeb/linux/

Large-Disk.html

[11℄ Phoenix Te
hnologies Ltd. Enhan
ed Disk

Drive Spe
i�
ation Ver 1.1, http://www.

phoenix.
om/produ
ts/spe
s-edd11.pdf

[12℄ Almesberger, Werner. ush { mi
ro shell,

ftp://i
aftp.epfl.
h/pub/people/

almesber/psion/ush-2.tar.gz

[13℄ Brouwer, Andries. util-linux: Mis
ellaneous

utilities for Linux, ftp://ftp.win.tue.nl/

pub/linux-lo
al/utils/util-linux/

[14℄ Brouwer, Andries. man pages for Linux,

ftp://ftp.win.tue.nl/pub/linux-lo
al/

manpages/

[15℄ Minni
h, Ron. LOBOS: (Linux OS Boots OS)

Booting a kernel in 32-bit mode, http://www.

a
l.lanl.gov/linuxbios/papers/lobos.ps

[16℄ Hendriks, Erik. Two Kernel Monte (Linux

loading Linux on x86), http://www.s
yld.

om/software/monte.html

[17℄ Almesberger, Werner. bootimg ftp:

//i
aftp.epfl.
h/pub/people/almesber/

mis
/bootimg-
urrent.tar.gz

[18℄ Mission Criti
al Linux. Kernel Core Dump,

http://www.mission
riti
allinux.
om/

te
hnology/
oredump/

