Advanced techniques 11-273

Chapter 11
Advanced techniques

$Revision: 2.1 $
$Date; 1999/06/04 20:30:28 $

This chapter describes a grab-bag of miscellaneous linker techniques that
dont fit very well anywhere else.

Techniques for C++

C++ presents three significant challenges to thestin®ne is its compli-
cated naming rules, in which multiple functions caneithae same name if
they havedifferent agument types. Name mangling addresses this well
enough that all linkers use it in some form or another.

The second is global initializers and destructors, routines that need to be
run before the main routine starts and after the main routitee & hisre-

guires that the linker collect the pieces of initializer and destructor code, or
at least pointers to them, into one place so that startupxéncbde can

run it all.

The third, and by far the most comyplssue inolves templates and Xe

tern inline" proceduresA C++ template defines an infinite family of pro-
cedures, with eachamily member being the template specialized by a
type. For example, a template might define a generic hash table,amith f

ily members being a hash table of integers, of floating point numbers, of
character strings, and of pointers to various sorts of struct8iese com-
puter memories are finite, the compiled program needs to contain all of the
members of the family that are actually used in the program, but shiouldn’
contain ai others. Ifthe C++ compiler tads the traditional approach of
treating each source file separatélgan't tell when it compiles a file that
uses templates whether some of the temptately members are used in
other source files. If the compiler &&ka conseative gproach and gen-
erates code for eaclrhily member used in each file, it will usually end
up with multiple copies of eacharhily member wasting space. If it
doesnt generate that code, it risks having noyapadl of a required &m-

ily member.

11-274 Adwanced techniques

Inline functions present a similar problemormally, inline functions are
expanded lile macros, but in some cases the compiler generatesvancon
tional out-of-line version of the functionlf several different files use a
single header file that contains an inline function and some of them require
an out-of-line version, the same problem of code duplication arises.

Some compilers v@ wsed approaches that change the source language to
help produce object code that can be linkeddiymb” linkers. Mary re-

cent C++ systems ke aldressed the problem head-on, either by making
the linker smarteror by integrating the linker with other parts of the pro-
gram deelopment systemWe look briefly at these latter approaches.

Trial linking

In systems stuck with simple-minded linkers, C++ systeras teed a &-
riety of tricks to get C++ programs lial. Anapproach pioneered by the
original cfront implementation is to do a trial link which will generally
fail, then hae te compiler duer (the program that runs theanous
pieces of the compileassemblerand linker) extract information from the
result of that link to finish the compiling and relink, Figure 1.

Figure 11-1: Trial linking

input files pass through linker to trial output plus errors,
then inputs plus info from errors plus maybe more generat-
ed objects pass through linker to final object

Advanced techniques 11-275

| source

: object files
 files g e without templates
error. . - linker-) T
messages
|
] compiler.
5>/ tomplate: > — | -'template
_ eéxpansion objects
‘ex'ECUtablwe |' L .‘I ¥
with ~—(linker— /€
| templates '

On Unix systems, if the linker canesole dl of the undefined references

in a link job, it can still optionally can also produce an output file which
can be used as the input to a subsequent linkTbk linker uses its usual
library search rules during the link, so the output file contains needed li-
brary routines as well as information from the input fileial linking
solves all of the C++ problems algoin a dow but effectve way.

For global initializers and destructors, the C++ compiler creates in each in-
put file routines that do the initialization and destruction. The routines are
logically anonymous, Wt the compiler gies them distinctve rames. Br
example, the GNU C++ compiler creates routines namé&il OB-

AL . 1. __4junk and_G.OBAL_.D. __ 4j unk to do initialization and
destruction of variables in a class caljegnk. After the trial link, the
linker driver examines the symbol table of the output file and makes lists

11-276 Adwanced techniques

of the global initializer and destructor routines, writes a small source file
with those lists in arrays (in either C or assembler). Then in the relink the
C++ startup andxat code uses the contents of the arrays to call all of the
appropriate routinesThis is essentially the same thing that C-vare
linkers do, just implemented outside the linker.

For templates and extern inlines, the compiler initially doegaherate

ary code for them at all. The trial link has undefined symbols for all of
the templates and extern inlines actually used in the program, which the
compiler drver can use to re-run the compiler and generate code for them,
then re-link.

One minor issue is to find the source code for the missing templates, since
it can be lurking in anof a potentially very lage number of source files.
Cfront used a simple ad-hoc technique, scanning the header files, and
guessing that a template declared oo. h is defined inf 0o. cc. Re-

cent versions of GCC use ‘aepository’ that notes the locations of tem-
plate definitions in small files created during the compilation progsfss.

ter the trial link, the compiler drer needs only scan those small files to
find the source to the templates.

Duplicate code elimination

The trial linking approach generates as little code as possible, then goes
back after the trial link to generateyarequired code that was left out the
first time. The cowerse approach is to generate all possible code, then
have the linker threv away the duplicates, Figure 2. The compiler gener
ates all of thex@anded templates and all of the extern inlines in each file
that uses themEach possibly redundant chunk of code is put inwa o
sggment with a name that uniquely identifies what it o example,

GCC puts each chunk in an ELF or COFF section called
.gnu. li nkonce. d. mangl ednanme where mangled name is the

“ mangled’ version of the function name with the type information added.
Some formats identify possibly redundant sections solely by name, while
Microsoft's COFF uses COMRBIT sections with explicit type flags to iden-

tify possibly redundant code sections. If there are multiple copies of a sec-
tion with the same name, the lekdiscards all but one of them at link
time.

Advanced techniques 11-277

Figure 11-2: Duplicate elimination

Input files with redundant sections pass into theelink
which collapses them into a single result (sub)section

|i ‘s?_urcé ' Cobject 1!

il . S — | ok

i A Tt templates/A, B

o= _ /| compiler -

;-' S S F"_‘T-——«- "

object 2
‘'t |
templates A, C

object3 |
templates’ B, D

_ linker

< executable |
it R

_..-ﬁteh'i:ilates‘- g & d’hp’licate"A and B removed'

11-278 Adwanced techniques

This approach does a good job of producirecetables with one cgpof

each routine, at the cost of verydarobject files with mancopies of tem-
plates. Italso offers at least the possibility of smaller final code than the
other approaches. In mawases, code generated when a templat&-is e
panded for different types is identicator example, a template that imple-
mented a bounds-checked array of <TYPE> would generally expand to
identical code for all pointer types, since in C++ pointers ak Itee same
representation. Ainker thats dready deleting redundant sections could
check for sections with identical contents and collapse multiple identical
sections to one. Some Windows linkers do this.

Database approaches

The GCC respository is a simplergion of a database. In the longer run,
tool vendors are moving w@rd database storage of source and object
code, such as the Montana environment in IBMsual Age C++.The
database tracks the location of each declaration and definition, which
makes it possible after a source change to figure out what theduali
routine dependencies are and recompile and relink just what has changed.

Incremental linking and relinking

For a long time, some linkers fi@ permitted incremental linking and re-
linking. Unix linkers provide & r flag that tells the linker to keep the
symbol and relocation information in the output file, so the output can be
used as the input to a subsequent link.

IBM mainframes hee dways had a “linkage editgt rather than a lindr.

In the IBM object format, the genents in each input file (IBM calls the
segments control sections or CSECTS) retain their individual identities in
the output file. One can re-edit a linked program and replace or delete
control sections.This feature was widely used in the 1960s and early
1970s when compiling and linking werewslenough that it was worth the
manual efort needed to arrange to relink a program, replacing just the
CSECTS that had been recompilethe replacement CSECTs need not
be the same size as the originals; thedimddjusts all of the relocation in-
formation in the output file as needed to account for the different locations
of CSECTSs than he noved.

Advanced techniques 11-279

In the mid to late 1980s, Quong and Linton at Stanford gjbr@ments
with incremental linking in a UNIX lin&r, to try and speed up the com-
pile-link-delug oscle. Thefirst time their linker runs, it links a coren-
tional statically linled executable, then stays ae#i in the background as a
daemon with the prograsi'symbol table remaing in memaryOn subse-
gent links, it only treats the input files thatvbahanged, replacing their
code in-place in the output file but leavingggthing else alone other than
fixing up references to symbols thavbanroved. Sincesggment sizes in

the recompiled files usually ddarchange very much from one link to the
next, they build the initial version of the output file with a small amount of
slop space between the input file segments, Figure 3. On each subsequent
link, so long as the changed input files’ segmengsriiagrown more than

the slop amount, the changed files’ segments replace Wieyseersions

in the output file. If thg havegrown past the end of the slop space, the
linker moves the subsequent segments in the output file using their slop
space. Ifmore than a small number ofgseents need to be wal, the
linker gives up and relinks from scratch.

Figure 11-3: Incremental linking

picture of inclink-ed object file with slop betweengse
ments, and v versions £gmnents pointing to replace old
ones

11-280 Adwanced techniques

incrementally
e emendinked . Updated
obj_é_ct versmn
B e | AT
Slﬂp 1 \J_,_._.._-—- -—--—-.: [{_ S
" / Ir’f.' /,.J__ = J ‘:
_______ S e T == : B,ﬁ%lm':gd in
e |9 [= | B | pldace/replaces
ﬁ"f :Jg { ¥ X J | ﬂew B | q]d ngwmﬂ]
; Pl r = \.-_,r-—;—,v—_:- — Qﬂ?dqu-' amd
.r,lrr : | ‘| (/_\ (L y ?"J
. i (o C
“slop ‘f-— :

The authors did considerable instrumentation to collect data on the number
of files compiled between linker runs in typicaldepment activities and

the change in segment sizeBhey found that typically only one or tw

files change, and the segmentswgranly by a fav bytes if at all. By
putting 100 bytes of slop between segmentsy #weided almost all re-
linking. They aso found that creating the output fdeg/mbol table,
which is essential for debugging, was as much work as creatingghe se
ments, and used similar technigques to update the symbol table incremen-
tally. Their performance results were quite dramatic, with links that took
20 or 30 seconds to do aa@ntionally dropping to half a second for an in-

Advanced techniques 11-281

cremental link. The primary drawback of their schenaes that the lingr
used about eight mgebytes to keep all of the symbols and other informa-
tion about the output file, which at the time was a lot of memooyksta-
tions rarely had more than 16MB.)

Some modern systems do incremental linking in much the saye¢hat
Quong and Linton did. The linker in Microsatsual studio links incre-
mentally by dedwult. Itleaves dop between modules and also can in some
circumstances nve an updated moduls from one part of theseutable to
anothey putting in some glue code at the old address.

Link time garbage collection

Lisp and other languages that allocate storage automatica#yfdramary
decades proded garbage ollection, a service that automatically identi-
fies and frees up storage tisatio bnger referred to by smother part of
the program.Several linkers offer an analogous facility to remeounused
code from object files.

Most program source and object files contain more than one procétiure.

a oompiler marks the boundaries between procedures, trer loak deter

mine what symbols each procedure defines, and what symbols each proce-
dure referencesAny procedure with no references at all is unused and
can safely be discarded. Each time a procedure is discarded, the link
should recompute the def/ref list, since the procedure just discarded might
have had the only reference to some other procedure which can in turn be
discarded.

One of the earlier systems to do link-time garbage collection is 4BM’
AIX. The XCOFF object files put each procedure in a separate section.
The linker uses symbol table entries to tell what symbols are defined in
each section, and relocation entries to tell what symbols are referenced.
By default, all unreferenced procedures are discarded, although the pro-
grammer can use linker switches to tell it not to garbage collect at all, or to
protect specific files or sections from collection.

Several Windows linkers, including Codearrior, the Watcom linkr, and
linker in recent versions of MicrosdadtVisual C++ can also garbage col-
lect. A optional compiler switch creates objects with "packaged" func-

11-282 Adwanced techniques

tions, each procedure in a separate section of the object file. Tke link
looks for sections with no references and deletes them. In most cases, the
linker looks at the same time for multiple procedures with identical con-
tents (usually from templatexgansions, mentioned al) and collapses

them as well.

An alternatve b a garbage collecting linker is morexttensve wse of li-
braries. Aprogrammer can turn each of the object filesdahinto a pro-

gram into a library with one procedure per library memthen link from

those libraries so the linker pulls in procedures as needed, but skips the
ones with no references. The hardest part is toengakh procedure a
separate object filelt typically requires some fairly messy preprocessing

of the source code to break multi-procedure source files inébasesmall

single procedure files, replicating the the data declarations and "include”
lines for header files in each one, and renaming internal procedures to pre-
vent name collisions. The result is a minimum sizecatable, at the cost

of considerably slower compiling and linking. This is a very old trick; the
DEC TOPS-10 assembiler in the late 1960s could be directed to generate
an object file with multiple independent sections that thestimkould treat

as a searchable library.

Link time optimization

On most systems, the linker is the only program in the softwaldiny
process that sees all of the pieces of a program that it is building at the
same time. That means that it has opportunities to do global optimization
that no other component can do, particularly if the program combines
modules written in different languages and compiled witfeiht com-
pilers. For example, in a language with class inheritance, calls to class
methods generally use indirect calls since a method mayedoedoen in

a aibclass. Buif there arert any subclasses, or there are subclassés b
none of them werride a particular method, the calls can be dirdctink-

er could mak ecial case optimizations 8khis to aoid some of the in-
efficiencies otherwise inherent in object oriented languagesnandez at
Princeton wrote an optimizing linker for Modula-3 thadsvable to turn
79% of indirect method calls into direct calls as well as reducing instruc-
tions eecuted by @er 10%.

Advanced techniques 11-283

A more aggresse gproach is to perform standard global optimizations
on an entire program at link timerivastava and Wall wrote an optimiz-

ing linker that decompiled RISC architecture object code into an interme-
diate form, applied high-&l optimizations such as inlining andweevel
optimizations such as substituting a faster but more limited instruction for
a dower and more general one, then regenerated the object Batieu-

larly on 64 bit architectures, the speedups from these optimizations can be
quite significant. On the 64 bit Alpha architecture, the general way to ad-
dress awy static or global data, or gnprocedure, is to load an address
pointer to the item from a pointer pool in memory into gister, then use

the register as a basegiger (The pointer pool is addressed by a global
pointer rgister) Their OM optimizing linker looled for situations where

a £quence of instructions refer toveral global or static variables that are
located close enough to each other thay ttaa all be addressed reladi

to the same pointeand rewrites object code to ren@mary pointer loads
from the global pool.lt also looks for procedure calls that are within the
32 bit address range of the branch-to-subroutine instruction and substitutes
that for a load and indirect call. It also can rearrange the allocation of
common blocks to place small blocks togihterincrease the number of
places where a single pointer can be used for multiple referebsasg
these and some other standard optimizations, OM\&shggnificant im-
provements in gecutables, removing as maas 11% of all instructions in
some of the SPEC benchmarks.

The Tera computer compilation suite does very aggedsk time opti-
mization to support theefas high-performance highly parallel architec-
ture. TheC compiler is little more than a parser that creates "object files"
containing tokenized versions of the source code. Therirdsolves all

of the references among modules and generates all of the objectltode.
aggressiely in-lines procedures, both within a single module and among
modules, since the code generator handles the entire program affonce.
get reasonable compilation performance, the system uses incremental
compilation and linking. On a recompile, the linker starts with theipre
ous version of thexecutable, rewrites the code for the source files that
have changed (which, due to the optimization and in-lining, may be in
code generated from files thatvba't changed) and creates aneipdat-

ed, xecutable. Fer of the compilation or linking techniques in thera

11-284 Adwanced techniques

system are vg but to date i5 unique in its combination of so mgaag-
gressve gptimization techniques in a single system.

Other linkers hee done other architecture-specific optimizatioriBhe
Multiflow VLIW machine had a very large number of registers, agd-re

ter saes and restores could be a major bottleneck. An experimental tool
used profile data to figure out what routines frequently called what other
routines. Itmodified the registers used in the code to minimize tee o
lapping registers used by both a calling routine and its callee, thereby min-
imizing the number of s@s and restores.

Link time code generation

Many linkers generate small amounts of the output object codexdon-e
ple the jump entries in the Plin Unix ELF files. But some gperimental
linkers do far more code generation than that.

The Srvastava and Wall optimizing linler starts by decompiling object
files back into intermediate code. In most cases, if the linker wants inter
mediate code, iif be st as easy for compilers to skip the code generation
step, create object files of intermediate code, and let ther ldkthe code
generation. Thad' actually what the Fernandez optimizer describedsabo
did. Thelinker can tak dl the intermediate code, do a big optimization
pass ger it, then generate the object code for the output file.

Theres a ouple of reasons that production letk rarely do code genera-

tion from intermediate code. One is that intermediate languages tend to be
related to the compiles’urce language. While &'not too hard to dese

an intermediate language that can handieraé Fortran-like languages
including C and C++, i$ considerably harder to devise one that can han-
dle those and also handle less similar languages such as Cobol and Lisp.
Linkers are generally expected to link object code frogncampiler or
assemblemaking language-specific intermediates problematical.

Link-time profiling and instrumentation

Several groups hee witten link-time profiling and optimization tools.
Romer et al. at the Uvarsity of Washington wrote Etch, an instrumenta-
tion tool for Windows x86 eecutables. lanalyzes ECOFFxecutables to
find all of the &ecutable code (which is typically intermixed with data) in

Advanced techniques 11-285

the main gecutable as well as in DLL libraries it callf. has been used to
build a call graph profiler and an instruction scheduldre lack of struc-

ture in ECOFF xecutables and the compiéy of the x86 instruction en-
coding were the major challenges to creating Etch.

Cohn et al. at DEC wrote Spike, aintfows optimization tool for Alpha

NT executables. Ifperformed both instrumentation, to add profiling code
to executables and DLLs, as well as optimization, using the profile data to
improve regster allocation and to regenize executables to impnee @ache
locality.

Link time assembler

An interesting compromise between linking traditional binary object code
and linking intermediate languages is to use assembler source as the object
language. Thénker assembles the entire program at once to generate the
output file. Minix, a small Unix-like g/stem that was the inspiration for
Linux did that.

Assembler is close enough to machine language that@mpiler can
generate it, while still being high enouglvdeto permit useful optimiza-

tions including dead code elimination, code rearrangement, and some
kinds of strength reduction, as well as standard assembler optimization
such as choosing the smallest version of an instruction that has enough bits
to handle a particular operand.

Such a system could be fast, since assembly can be very fast, particularly
if the object language is really a tokenized assembler rather than full as-
sembler source(ln assemblers, as in most othter compilers, the initial to-
kenizing is often the slowest part of the entire process.)

Load time code generation

Some systems defer code generation past link time to program load time.
Franz and Kistler created "Slim Binaries", orignally as a response to Mac-
intosh "fat binaries" that contain object code for both older 68000 Macs
and newer Power PC Mac4 slim binary is actually a compactly encod-

ed version of an abstract parse for a program module. The program loader
reads and expands the slim binary and generates the object code for the
module in memorywhich is then gecutable. Thenventors of slim bina-

11-286 Adwanced techniques

ries male the plausible claim that modern CPUs are so much faster than
disks that program loading time is dominated by disk I/O, aed with

the code generation step, slim binaries are abowsasd load because as
standard binaries because their disk files are small.

Slim binaries were originally created to support Oberon, a strongly typed
Pascal-like language, on the Macintosh and latend@ws for the x86, and
they apparently vork quite well on those platforms. The authors abso e
pect that slim binaries will work equally well with other source languages
and other architectureslhis is a much less credible claim; Oberon pro-
grams tend to beevy portable due to the strong typing and the consistent
runtime erironment, and the three target machines are quite similar with
identical data and pointer formats except for byte order on the A86.
long series of "umiersal intermediate language" projects dating back to the
UNCOL project in the 1950s ha failed after promising results with a
small number of source and target languages, and sheoeleason to
think that slim binaries wuldn't meet the same result. But as a distrib
tion format for a set of similar target environments, e.g. Macs with 68K or
PPC, or Windows with x86, Alpha, or MIPS, it should work well.

The IBM System/38 and AS/400Veawsed a similar technique for man
years to provide binary program compatibility among machines with dif-
ferent hardware architecture¥he defined machine language for the S/38
and AS/400 is a virtual architecture with a very large singld bxldress
space, neér actually implemented in hardave. Whera S38 or AS/400
binary program is loaded, the loader translates the virtual code into the ac-
tual machine code for whatar processor the machine on which it is run-
ning contains.The translated code is cached to speed loading on subse-
guent runs of the program. This has aka IBM to eolve the S/38 and

then AS/400 line from a midrange system with multi-board CPUs to a
deskside system using avwer PC CPU, maintaining binary compatibility
throughout. Thevirtual architecture is very tightly specified and the trans-
lations \ery complete, so programers can debug their program at the virtu-
al architecture Ml without reference to the physical CPUhis scheme
probably wouldn't have worked without a single endors complete con-

trol over the virtual architecture and all of the models of the computers on
which it runs, but i a \ery efective way to get a lot of performance out

Advanced techniques 11-287

of modestly priced hardware.
The Javalinking model

The Jaa pogramming language has a sophisticated and interesting load-
ing and linking model. The ¥va surce language is a strongly typed ob-
ject oriented language with a syntax similar to C++. What makes it inter
esting is that Ja dso defines a portable binary object code format,-a vir
tual machine thatxecutes programs in that binary format, and a loading
system that permits avdapogram to add code to itself on the fly.

Java aganizes a program intolasseswith each class in a program com-
piled into a separate logical (and usuallysibal) binary object code file.

Each class defines the fields that each class members contains, possibly
some static variables, and a set of procedures (methods) that manipulate
class membersJava uses single inheritance, so each class is a subclass of
some other class, with all classes being desendants from Weesahbase

class Object.A class inherits all of the fields and methods from its super
class, and can add wdields and methods, possiblyenriding existing
methods in the superclass.

Java loads one class at a timA. Java program starts by loading an initial
class in an implementation-dependerayw|f that class refers to other
classes, the other classes are loaded on demand wiemaheeeded A

Java gplication can either use the built-in bootstrap class loader which
loads clases from files on the local disk, or it can provide its own class
loader which can create or retreedasses anway it wants. Mostcom-

monly a custom class loader retwe dass files wer a network connec-

tion, but it could equally well generate code on the flyxtraet code from
compressed or encrypted files. When a class is loaded due to a reference
from another class, the system uses same loader that loaded the referring
class. Eaclelass loader has itsvm separate name space, gendf an -
plication run from the disk and one ruweo the net hee identically
named classes or class members, ther@rame collision.

The Jaa cefinition specifies the loading and linking process in consider
able detail. When the virtual machine needs to use a class, fitsads
the class by calling the class load€énce a class is loaded, the linking
process includegerificationthat the binary code is valid, apteparation

11-288 Adwanced techniques

allocating the static fields of the class. The final step of the process is
tialization, running an routines that initialize the static fields, which hap-
pens the first time that an instance of the class is created or a static func-
tion of the class is run.

Loading Javaclasses

Loading and linking are separate processes becays#ass needs to en-
sure that all of its superclasses are loaded and linked before linking can
start. Thismeans that the process conceptually crawls up and tivem do
the class inheritance tree, Figure Phe loading process starts by calling
the classLoaderprocedure with the name of the clasghe class loader
produces the class’ data somehthen callsdef i neCl ass to pass the

data to the virtual machinedef i neCl ass parses the class file and
checks for a ariety of format errors, throwing an exception if it findg.an

It also extracts the name of the class’ superclHgbe superclass ishal-

ready loaded, it calls classLoader rectelyito load the superclas§Vhen

that call returns, the superclass has been loaded and linked, at which point
the J&a g/stem proceeds to link the current classs.

Figure 11-4: Loading and linking a Java class file

crawling up and down the tree

Advanced techniques 11-289

(‘.Iéss ”trée

ébjecf L

Artist: this is a wavy equal sign
@ to show stuff is omitted

Loadingwalks ' Theniinkingand-
up the‘class tree g#mpcl'ass\\ * initialization walk |
() back down

1

/
.l'

\ superclass

A 7
| J I \

|' E I._ il

¥ S

5 —
) jclass [*;

The next step, verification, makes ariety of static correctness checks,
such as ensuring that each virtual instruction has a valid opcode, that the
target of each branch is a valid instruction, and that each instruction han-
dles the appropriate data type for the values it references. This speeds pro-
gram e&ecution since these checks need not be made when the code is run.
If verification finds errors, it throws axeeption. Therpreparation allo-

cates storage for all of the static members of the class, and intitializes them
to standard default values, typically zetdost Ja¥a implementations cre-

ate a method table at this point that contains pointers to all of the methods
defined for this class or inherited from a superclass.

11-290 Adwanced techniques

The final stage of Ja linking is resolution, which is analogous to dynam-

ic linking in other languages. Each class includesoastant poolthat
contains both corentional constants such as numbers and strings, and the
references to other classes. All references in a compiled clesstoeits
superclass, are symbolic, and are remwlafter the class is loade{The
superclass might ka been changed and recompiled after the claas, w
which is valid so long asvery field and method to which the class refers
remains defined in a compatiblay) Java dlows implementations to re-
solve references at grtime from the moment after verification, to the mo-
ment when an instruction actually uses the reference, such as calling a
function defined in a superclass or other cld&syardless of when it actu-

ally resolves a reference, aléd reference doedrcause an exception un-

til it' s used, so the program befes as hough Jaa wses lazy just-in-time
resolution. Thisflexibility in resolution time permits a wide variety of
possible implementationsOne that translated the class into veatma-

chine code could resadl of the references immediatelyo the address-

es and offsets could be embedded into the translated code, with jumps to
an exception routine at yamplace where a reference coultdbe resolved.

A pure interpreter might insteadaw and resee references as thige en-
countered as the code is interpreted.

The effect of the loading and linking design is that classes are loaded and
resohed as neededlava’s garbage collection applies to classes the same
as it applies to all other data, so if all references to a class are deleted, the
class itself can get unloaded.

The Jaa loading and linking model is the most compbd any we've en

in this book. But Jea dtempts to satisfy some rather contradictory goals,
portable type-safe code and also reasonasy é&ecution. Theloading

and linking model supports incremental loading, static verification of most
of the type safety criteria, and permits class-at-a-time translation to ma-
chine code for systems that want programs to run fast.

Exercises

How long does the linker you use &ato link a fairly large program2n-
strument your linker to see what it spends its time do{iyen without
linker source code you can probably do a system call trace which should

Advanced techniques 11-291

give you a pretty good idea.)

Look at the generated code from a compiler for C++ or another object ori-
ented languageHow much better could a link time optimizer neak?
What info could the compiler put in the object module to enakasier for

the linker to do interesting optimizationgPow badly do shared libraries
mess up this plan?

Sketch out a tokenized assembler language for yauarife CPU to use as
an object languageWhat's a gpod way to handle symbols in the pro-
gram?

The AS/400 uses binary translation to\pde binary code compatibility
among different machine models. Other architectures including the IBM
360/370/390, DEC AX, and Intel x86 use microde to implement the
same instruction set on different underlying haadsy Whatare the ad-
vantages of the AS/400 schemé&® microcoding? If you were defining a
computer architecture todayhich would you use?

Project

Project 11-1:Add a garbage collector to the Ik Assume that each in-

put file may hge multiple text segments named ext 1, . t ext 2, and

so forth. Build a global def/ref data structure using the symbol table and
relocation entries and identify the sections that are unreferentedl

have © add a command-line flag to mark the startup stub as referenced.
(What would happen if yuo didt?) Afterthe garbage collector runs, up-
date the sgment allocations to squeeze out space used by delejed se
ments.

Improve the garbage collector to mak iteratve. After each pass, update
the def/ref structure to reme references from logically deletedgseents
and run it again, repeating until nothing is deleted.

