
Advanced techniques 11-273

Chapter 11
Advanced techniques

$Revision: 2.1 $
$Date: 1999/06/04 20:30:28 $

This chapter describes a grab-bag of miscellaneous linker techniques that
don’t fit very well anywhere else.

Techniques for C++

C++ presents three significant challenges to the linker. One is its compli-
cated naming rules, in which multiple functions can have the same name if
they hav edifferent argument types. Name mangling addresses this well
enough that all linkers use it in some form or another.

The second is global initializers and destructors, routines that need to be
run before the main routine starts and after the main routine exits. Thisre-
quires that the linker collect the pieces of initializer and destructor code, or
at least pointers to them, into one place so that startup and exit code can
run it all.

The third, and by far the most complex issue involves templates and "ex-
tern inline" procedures.A C++ template defines an infinite family of pro-
cedures, with each family member being the template specialized by a
type. For example, a template might define a generic hash table, with fam-
ily members being a hash table of integers, of floating point numbers, of
character strings, and of pointers to various sorts of structures.Since com-
puter memories are finite, the compiled program needs to contain all of the
members of the family that are actually used in the program, but shouldn’t
contain any others. If the C++ compiler takes the traditional approach of
treating each source file separately, it can’t tell when it compiles a file that
uses templates whether some of the template family members are used in
other source files. If the compiler takes a conservative approach and gen-
erates code for each family member used in each file, it will usually end
up with multiple copies of each family member, wasting space. If it
doesn’t generate that code, it risks having no copy at all of a required fam-
ily member.

11-274 Advanced techniques

Inline functions present a similar problem.Normally, inline functions are
expanded like macros, but in some cases the compiler generates a conven-
tional out-of-line version of the function.If several different files use a
single header file that contains an inline function and some of them require
an out-of-line version, the same problem of code duplication arises.

Some compilers have used approaches that change the source language to
help produce object code that can be linked by ‘‘dumb’’ l inkers. Many re-
cent C++ systems have addressed the problem head-on, either by making
the linker smarter, or by integrating the linker with other parts of the pro-
gram development system.We look briefly at these latter approaches.

Tr ial linking

In systems stuck with simple-minded linkers, C++ systems have used a va-
riety of tricks to get C++ programs linked. Anapproach pioneered by the
original cfront implementation is to do a trial link which will generally
fail, then have the compiler driver (the program that runs the various
pieces of the compiler, assembler, and linker) extract information from the
result of that link to finish the compiling and relink, Figure 1.

Figure 11-1: Trial linking

input files pass through linker to trial output plus errors,
then inputs plus info from errors plus maybe more generat-
ed objects pass through linker to final object

Advanced techniques 11-275

On Unix systems, if the linker can’t resolve all of the undefined references
in a link job, it can still optionally can also produce an output file which
can be used as the input to a subsequent link job. The linker uses its usual
library search rules during the link, so the output file contains needed li-
brary routines as well as information from the input file.Trial linking
solves all of the C++ problems above in a slow but effective way.

For global initializers and destructors, the C++ compiler creates in each in-
put file routines that do the initialization and destruction. The routines are
logically anonymous, but the compiler gives them distinctive names. For
example, the GNU C++ compiler creates routines named_GLOB-
AL_.I.__4junk and_GLOBAL_.D.__4junk to do initialization and
destruction of variables in a class calledjunk. After the trial link, the
linker driver examines the symbol table of the output file and makes lists

11-276 Advanced techniques

of the global initializer and destructor routines, writes a small source file
with those lists in arrays (in either C or assembler). Then in the relink the
C++ startup and exit code uses the contents of the arrays to call all of the
appropriate routines.This is essentially the same thing that C++-aware
linkers do, just implemented outside the linker.

For templates and extern inlines, the compiler initially doesn’t generate
any code for them at all. The trial link has undefined symbols for all of
the templates and extern inlines actually used in the program, which the
compiler driver can use to re-run the compiler and generate code for them,
then re-link.

One minor issue is to find the source code for the missing templates, since
it can be lurking in any of a potentially very large number of source files.
Cfront used a simple ad-hoc technique, scanning the header files, and
guessing that a template declared infoo.h is defined infoo.cc. Re-
cent versions of GCC use a ‘‘repository’’ that notes the locations of tem-
plate definitions in small files created during the compilation process.Af-
ter the trial link, the compiler driver needs only scan those small files to
find the source to the templates.

Duplicate code elimination

The trial linking approach generates as little code as possible, then goes
back after the trial link to generate any required code that was left out the
first time. The converse approach is to generate all possible code, then
have the linker throw away the duplicates, Figure 2. The compiler gener-
ates all of the expanded templates and all of the extern inlines in each file
that uses them.Each possibly redundant chunk of code is put in its own
segment with a name that uniquely identifies what it is.For example,
GCC puts each chunk in an ELF or COFF section called
.gnu.linkonce.d.mangledname where mangled name is the
‘‘ mangled’’ version of the function name with the type information added.
Some formats identify possibly redundant sections solely by name, while
Microsoft’s COFF uses COMDAT sections with explicit type flags to iden-
tify possibly redundant code sections. If there are multiple copies of a sec-
tion with the same name, the linker discards all but one of them at link
time.

Advanced techniques 11-277

Figure 11-2: Duplicate elimination

Input files with redundant sections pass into the linker
which collapses them into a single result (sub)section

11-278 Advanced techniques

This approach does a good job of producing executables with one copy of
each routine, at the cost of very large object files with many copies of tem-
plates. Italso offers at least the possibility of smaller final code than the
other approaches. In many cases, code generated when a template is ex-
panded for different types is identical.For example, a template that imple-
mented a bounds-checked array of <TYPE> would generally expand to
identical code for all pointer types, since in C++ pointers all have the same
representation. Alinker that’s already deleting redundant sections could
check for sections with identical contents and collapse multiple identical
sections to one. Some Windows linkers do this.

Database approaches

The GCC respository is a simple version of a database. In the longer run,
tool vendors are moving toward database storage of source and object
code, such as the Montana environment in IBM’s Visual Age C++. The
database tracks the location of each declaration and definition, which
makes it possible after a source change to figure out what the individual
routine dependencies are and recompile and relink just what has changed.

Incremental linking and relinking

For a long time, some linkers have permitted incremental linking and re-
linking. Unix linkers provide a-r flag that tells the linker to keep the
symbol and relocation information in the output file, so the output can be
used as the input to a subsequent link.

IBM mainframes have always had a ‘‘linkage editor,’’ rather than a linker.
In the IBM object format, the segments in each input file (IBM calls the
segments control sections or CSECTs) retain their individual identities in
the output file. One can re-edit a linked program and replace or delete
control sections.This feature was widely used in the 1960s and early
1970s when compiling and linking were slow enough that it was worth the
manual effort needed to arrange to relink a program, replacing just the
CSECTS that had been recompiled.The replacement CSECTs need not
be the same size as the originals; the linker adjusts all of the relocation in-
formation in the output file as needed to account for the different locations
of CSECTs than have moved.

Advanced techniques 11-279

In the mid to late 1980s, Quong and Linton at Stanford did experiments
with incremental linking in a UNIX linker, to try and speed up the com-
pile-link-debug cycle. Thefirst time their linker runs, it links a conven-
tional statically linked executable, then stays active in the background as a
daemon with the program’s symbol table remaing in memory. On subse-
qent links, it only treats the input files that have changed, replacing their
code in-place in the output file but leaving everything else alone other than
fixing up references to symbols that have moved. Sincesegment sizes in
the recompiled files usually don’t change very much from one link to the
next, they build the initial version of the output file with a small amount of
slop space between the input file segments, Figure 3. On each subsequent
link, so long as the changed input files’ segments haven’t grown more than
the slop amount, the changed files’ segments replace the previous versions
in the output file. If they hav egrown past the end of the slop space, the
linker moves the subsequent segments in the output file using their slop
space. Ifmore than a small number of segments need to be moved, the
linker gives up and relinks from scratch.

Figure 11-3: Incremental linking

picture of inclink-ed object file with slop between seg-
ments, and new version’s segments pointing to replace old
ones

11-280 Advanced techniques

The authors did considerable instrumentation to collect data on the number
of files compiled between linker runs in typical development activities and
the change in segment sizes.They found that typically only one or two
files change, and the segments grow only by a few bytes if at all. By
putting 100 bytes of slop between segments, they avoided almost all re-
linking. They also found that creating the output file’s symbol table,
which is essential for debugging, was as much work as creating the seg-
ments, and used similar techniques to update the symbol table incremen-
tally. Their performance results were quite dramatic, with links that took
20 or 30 seconds to do conventionally dropping to half a second for an in-

Advanced techniques 11-281

cremental link. The primary drawback of their scheme was that the linker
used about eight megabytes to keep all of the symbols and other informa-
tion about the output file, which at the time was a lot of memory (worksta-
tions rarely had more than 16MB.)

Some modern systems do incremental linking in much the same way that
Quong and Linton did. The linker in Microsoft’s visual studio links incre-
mentally by default. It leaves slop between modules and also can in some
circumstances move an updated moduls from one part of the executable to
another, putting in some glue code at the old address.

Link time garbage collection

Lisp and other languages that allocate storage automatically have for many
decades provided garbage collection, a service that automatically identi-
fies and frees up storage that’s no longer referred to by any other part of
the program.Several linkers offer an analogous facility to remove unused
code from object files.

Most program source and object files contain more than one procedure.If
a compiler marks the boundaries between procedures, the linker can deter-
mine what symbols each procedure defines, and what symbols each proce-
dure references.Any procedure with no references at all is unused and
can safely be discarded. Each time a procedure is discarded, the linker
should recompute the def/ref list, since the procedure just discarded might
have had the only reference to some other procedure which can in turn be
discarded.

One of the earlier systems to do link-time garbage collection is IBM’s
AIX. The XCOFF object files put each procedure in a separate section.
The linker uses symbol table entries to tell what symbols are defined in
each section, and relocation entries to tell what symbols are referenced.
By default, all unreferenced procedures are discarded, although the pro-
grammer can use linker switches to tell it not to garbage collect at all, or to
protect specific files or sections from collection.

Several Windows linkers, including Codewarrior, the Watcom linker, and
linker in recent versions of Microsoft’s Visual C++ can also garbage col-
lect. A optional compiler switch creates objects with "packaged" func-

11-282 Advanced techniques

tions, each procedure in a separate section of the object file. The linker
looks for sections with no references and deletes them. In most cases, the
linker looks at the same time for multiple procedures with identical con-
tents (usually from template expansions, mentioned above) and collapses
them as well.

An alternative to a garbage collecting linker is more extensive use of li-
braries. Aprogrammer can turn each of the object files linked into a pro-
gram into a library with one procedure per library member, then link from
those libraries so the linker pulls in procedures as needed, but skips the
ones with no references. The hardest part is to make each procedure a
separate object file.It typically requires some fairly messy preprocessing
of the source code to break multi-procedure source files into several small
single procedure files, replicating the the data declarations and "include"
lines for header files in each one, and renaming internal procedures to pre-
vent name collisions. The result is a minimum size executable, at the cost
of considerably slower compiling and linking. This is a very old trick; the
DEC TOPS-10 assembler in the late 1960s could be directed to generate
an object file with multiple independent sections that the linker would treat
as a searchable library.

Link time optimization

On most systems, the linker is the only program in the software building
process that sees all of the pieces of a program that it is building at the
same time. That means that it has opportunities to do global optimization
that no other component can do, particularly if the program combines
modules written in different languages and compiled with different com-
pilers. For example, in a language with class inheritance, calls to class
methods generally use indirect calls since a method may be overridden in
a subclass. Butif there aren’t any subclasses, or there are subclasses but
none of them override a particular method, the calls can be direct.A l ink-
er could make special case optimizations like this to avoid some of the in-
efficiencies otherwise inherent in object oriented languages.Fernandez at
Princeton wrote an optimizing linker for Modula-3 that was able to turn
79% of indirect method calls into direct calls as well as reducing instruc-
tions executed by over 10%.

Advanced techniques 11-283

A more aggressive approach is to perform standard global optimizations
on an entire program at link time.Srivastava and Wall wrote an optimiz-
ing linker that decompiled RISC architecture object code into an interme-
diate form, applied high-level optimizations such as inlining and low-level
optimizations such as substituting a faster but more limited instruction for
a slower and more general one, then regenerated the object code.Particu-
larly on 64 bit architectures, the speedups from these optimizations can be
quite significant. On the 64 bit Alpha architecture, the general way to ad-
dress any static or global data, or any procedure, is to load an address
pointer to the item from a pointer pool in memory into a register, then use
the register as a base register. (The pointer pool is addressed by a global
pointer register.) Their OM optimizing linker looked for situations where
a sequence of instructions refer to several global or static variables that are
located close enough to each other that they can all be addressed relative
to the same pointer, and rewrites object code to remove many pointer loads
from the global pool.It also looks for procedure calls that are within the
32 bit address range of the branch-to-subroutine instruction and substitutes
that for a load and indirect call. It also can rearrange the allocation of
common blocks to place small blocks togther, to increase the number of
places where a single pointer can be used for multiple references.Using
these and some other standard optimizations, OM achieves significant im-
provements in executables, removing as many as 11% of all instructions in
some of the SPEC benchmarks.

The Tera computer compilation suite does very aggressive link time opti-
mization to support the Tera’s high-performance highly parallel architec-
ture. TheC compiler is little more than a parser that creates "object files"
containing tokenized versions of the source code. The linker resolves all
of the references among modules and generates all of the object code.It
aggressively in-lines procedures, both within a single module and among
modules, since the code generator handles the entire program at once.To
get reasonable compilation performance, the system uses incremental
compilation and linking. On a recompile, the linker starts with the previ-
ous version of the executable, rewrites the code for the source files that
have changed (which, due to the optimization and in-lining, may be in
code generated from files that haven’t changed) and creates a new, updat-
ed, executable. Few of the compilation or linking techniques in the Tera

11-284 Advanced techniques

system are new, but to date it’s unique in its combination of so many ag-
gressive optimization techniques in a single system.

Other linkers have done other architecture-specific optimizations.The
Multiflow VLIW machine had a very large number of registers, and regis-
ter saves and restores could be a major bottleneck. An experimental tool
used profile data to figure out what routines frequently called what other
routines. Itmodified the registers used in the code to minimize the over-
lapping registers used by both a calling routine and its callee, thereby min-
imizing the number of saves and restores.

Link time code generation

Many linkers generate small amounts of the output object code, for exam-
ple the jump entries in the PLT in Unix ELF files. But some experimental
linkers do far more code generation than that.

The Srivastava and Wall optimizing linker starts by decompiling object
files back into intermediate code. In most cases, if the linker wants inter-
mediate code, it’d be just as easy for compilers to skip the code generation
step, create object files of intermediate code, and let the linker do the code
generation. That’s actually what the Fernandez optimizer described above
did. Thelinker can take all the intermediate code, do a big optimization
pass over it, then generate the object code for the output file.

There’s a couple of reasons that production linkers rarely do code genera-
tion from intermediate code. One is that intermediate languages tend to be
related to the compiler’s source language. While it’s not too hard to devise
an intermediate language that can handle several Fortran-like languages
including C and C++, it’s considerably harder to devise one that can han-
dle those and also handle less similar languages such as Cobol and Lisp.
Linkers are generally expected to link object code from any compiler or
assembler, making language-specific intermediates problematical.

Link-time profiling and instrumentation

Several groups have written link-time profiling and optimization tools.
Romer et al. at the University of Washington wrote Etch, an instrumenta-
tion tool for Windows x86 executables. Itanalyzes ECOFF executables to
find all of the executable code (which is typically intermixed with data) in

Advanced techniques 11-285

the main executable as well as in DLL libraries it calls.It has been used to
build a call graph profiler and an instruction scheduler. The lack of struc-
ture in ECOFF executables and the complexity of the x86 instruction en-
coding were the major challenges to creating Etch.

Cohn et al. at DEC wrote Spike, a Windows optimization tool for Alpha
NT executables. Itperformed both instrumentation, to add profiling code
to executables and DLLs, as well as optimization, using the profile data to
improve register allocation and to reorganize executables to improve cache
locality.

Link time assembler

An interesting compromise between linking traditional binary object code
and linking intermediate languages is to use assembler source as the object
language. Thelinker assembles the entire program at once to generate the
output file. Minix, a small Unix-like system that was the inspiration for
Linux did that.

Assembler is close enough to machine language that any compiler can
generate it, while still being high enough level to permit useful optimiza-
tions including dead code elimination, code rearrangement, and some
kinds of strength reduction, as well as standard assembler optimization
such as choosing the smallest version of an instruction that has enough bits
to handle a particular operand.

Such a system could be fast, since assembly can be very fast, particularly
if the object language is really a tokenized assembler rather than full as-
sembler source.(In assemblers, as in most othter compilers, the initial to-
kenizing is often the slowest part of the entire process.)

Load time code generation

Some systems defer code generation past link time to program load time.
Franz and Kistler created "Slim Binaries", orignally as a response to Mac-
intosh "fat binaries" that contain object code for both older 68000 Macs
and newer Power PC Macs.A slim binary is actually a compactly encod-
ed version of an abstract parse for a program module. The program loader
reads and expands the slim binary and generates the object code for the
module in memory, which is then executable. Theinventors of slim bina-

11-286 Advanced techniques

ries make the plausible claim that modern CPUs are so much faster than
disks that program loading time is dominated by disk I/O, and even with
the code generation step, slim binaries are about as fast to load because as
standard binaries because their disk files are small.

Slim binaries were originally created to support Oberon, a strongly typed
Pascal-like language, on the Macintosh and later Windows for the x86, and
they apparently work quite well on those platforms. The authors also ex-
pect that slim binaries will work equally well with other source languages
and other architectures.This is a much less credible claim; Oberon pro-
grams tend to be very portable due to the strong typing and the consistent
runtime environment, and the three target machines are quite similar with
identical data and pointer formats except for byte order on the x86.A
long series of "universal intermediate language" projects dating back to the
UNCOL project in the 1950s have failed after promising results with a
small number of source and target languages, and there’s no reason to
think that slim binaries wouldn’t meet the same result. But as a distribu-
tion format for a set of similar target environments, e.g. Macs with 68K or
PPC, or Windows with x86, Alpha, or MIPS, it should work well.

The IBM System/38 and AS/400 have used a similar technique for many
years to provide binary program compatibility among machines with dif-
ferent hardware architectures.The defined machine language for the S/38
and AS/400 is a virtual architecture with a very large single level address
space, never actually implemented in hardware. Whena S/38 or AS/400
binary program is loaded, the loader translates the virtual code into the ac-
tual machine code for whatever processor the machine on which it is run-
ning contains.The translated code is cached to speed loading on subse-
quent runs of the program. This has allowed IBM to evolve the S/38 and
then AS/400 line from a midrange system with multi-board CPUs to a
deskside system using a power PC CPU, maintaining binary compatibility
throughout. Thevirtual architecture is very tightly specified and the trans-
lations very complete, so programers can debug their program at the virtu-
al architecture level without reference to the physical CPU.This scheme
probably wouldn’t hav eworked without a single vendor’s complete con-
trol over the virtual architecture and all of the models of the computers on
which it runs, but it’s a very effective way to get a lot of performance out

Advanced techniques 11-287

of modestly priced hardware.

The Jav a linking model

The Java programming language has a sophisticated and interesting load-
ing and linking model. The Java source language is a strongly typed ob-
ject oriented language with a syntax similar to C++. What makes it inter-
esting is that Java also defines a portable binary object code format, a vir-
tual machine that executes programs in that binary format, and a loading
system that permits a Java program to add code to itself on the fly.

Java org anizes a program intoclasses, with each class in a program com-
piled into a separate logical (and usually physical) binary object code file.
Each class defines the fields that each class members contains, possibly
some static variables, and a set of procedures (methods) that manipulate
class members.Java uses single inheritance, so each class is a subclass of
some other class, with all classes being desendants from the universal base
class Object.A class inherits all of the fields and methods from its super-
class, and can add new fields and methods, possibly overriding existing
methods in the superclass.

Java loads one class at a time.A Java program starts by loading an initial
class in an implementation-dependent way. If that class refers to other
classes, the other classes are loaded on demand when they are needed.A
Java application can either use the built-in bootstrap class loader which
loads clases from files on the local disk, or it can provide its own class
loader which can create or retrieve classes any way it wants. Mostcom-
monly a custom class loader retrieves class files over a network connec-
tion, but it could equally well generate code on the fly or extract code from
compressed or encrypted files. When a class is loaded due to a reference
from another class, the system uses same loader that loaded the referring
class. Eachclass loader has its own separate name space, so even if an ap-
plication run from the disk and one run over the net have identically
named classes or class members, there’s no name collision.

The Java definition specifies the loading and linking process in consider-
able detail. When the virtual machine needs to use a class, first itloads
the class by calling the class loader. Once a class is loaded, the linking
process includesverificationthat the binary code is valid, andpreparation,

11-288 Advanced techniques

allocating the static fields of the class. The final step of the process isini-
tialization, running any routines that initialize the static fields, which hap-
pens the first time that an instance of the class is created or a static func-
tion of the class is run.

Loading Jav aclasses

Loading and linking are separate processes because any class needs to en-
sure that all of its superclasses are loaded and linked before linking can
start. Thismeans that the process conceptually crawls up and then down
the class inheritance tree, Figure 4.The loading process starts by calling
the classLoaderprocedure with the name of the class.The class loader
produces the class’ data somehow, then callsdefineClass to pass the
data to the virtual machine.defineClass parses the class file and
checks for a variety of format errors, throwing an exception if it finds any.
It also extracts the name of the class’ superclass.If the superclass isn’t al-
ready loaded, it calls classLoader recursively to load the superclass.When
that call returns, the superclass has been loaded and linked, at which point
the Java system proceeds to link the current classs.

Figure 11-4: Loading and linking a Java class file

crawling up and down the tree

Advanced techniques 11-289

The next step, verification, makes a variety of static correctness checks,
such as ensuring that each virtual instruction has a valid opcode, that the
target of each branch is a valid instruction, and that each instruction han-
dles the appropriate data type for the values it references. This speeds pro-
gram execution since these checks need not be made when the code is run.
If verification finds errors, it throws an exception. Thenpreparation allo-
cates storage for all of the static members of the class, and intitializes them
to standard default values, typically zero.Most Java implementations cre-
ate a method table at this point that contains pointers to all of the methods
defined for this class or inherited from a superclass.

11-290 Advanced techniques

The final stage of Java linking is resolution, which is analogous to dynam-
ic linking in other languages. Each class includes aconstant poolthat
contains both conventional constants such as numbers and strings, and the
references to other classes. All references in a compiled class, even to its
superclass, are symbolic, and are resolved after the class is loaded.(The
superclass might have been changed and recompiled after the class was,
which is valid so long as every field and method to which the class refers
remains defined in a compatible way.) Java allows implementations to re-
solve references at any time from the moment after verification, to the mo-
ment when an instruction actually uses the reference, such as calling a
function defined in a superclass or other class.Regardless of when it actu-
ally resolves a reference, a failed reference doesn’t cause an exception un-
til it’ s used, so the program behaves as though Java uses lazy just-in-time
resolution. Thisflexibility in resolution time permits a wide variety of
possible implementations.One that translated the class into native ma-
chine code could resolve all of the references immediately, so the address-
es and offsets could be embedded into the translated code, with jumps to
an exception routine at any place where a reference couldn’t be resolved.
A pure interpreter might instead wait and resove references as they’re en-
countered as the code is interpreted.

The effect of the loading and linking design is that classes are loaded and
resolved as needed.Java’s garbage collection applies to classes the same
as it applies to all other data, so if all references to a class are deleted, the
class itself can get unloaded.

The Java loading and linking model is the most complex of any we’ve seen
in this book. But Java attempts to satisfy some rather contradictory goals,
portable type-safe code and also reasonably fast execution. Theloading
and linking model supports incremental loading, static verification of most
of the type safety criteria, and permits class-at-a-time translation to ma-
chine code for systems that want programs to run fast.

Exercises

How long does the linker you use take to link a fairly large program?In-
strument your linker to see what it spends its time doing.(Even without
linker source code you can probably do a system call trace which should

Advanced techniques 11-291

give you a pretty good idea.)

Look at the generated code from a compiler for C++ or another object ori-
ented language.How much better could a link time optimizer make it?
What info could the compiler put in the object module to make it easier for
the linker to do interesting optimizations?How badly do shared libraries
mess up this plan?

Sketch out a tokenized assembler language for your favorite CPU to use as
an object language.What’s a good way to handle symbols in the pro-
gram?

The AS/400 uses binary translation to provide binary code compatibility
among different machine models. Other architectures including the IBM
360/370/390, DEC VAX, and Intel x86 use microde to implement the
same instruction set on different underlying hardware. Whatare the ad-
vantages of the AS/400 scheme?Of microcoding? If you were defining a
computer architecture today, which would you use?

Project

Project 11-1:Add a garbage collector to the linker. Assume that each in-
put file may have multiple text segments named.text1, .text2, and
so forth. Build a global def/ref data structure using the symbol table and
relocation entries and identify the sections that are unreferenced.You’ll
have to add a command-line flag to mark the startup stub as referenced.
(What would happen if yuo didn’t?) After the garbage collector runs, up-
date the segment allocations to squeeze out space used by deleted seg-
ments.

Improve the garbage collector to make it iterative. After each pass, update
the def/ref structure to remove references from logically deleted segments
and run it again, repeating until nothing is deleted.

