Dynamic Linking and Loading 10-247

Chapter 10
Dynamic Linking and Loading

$Revision: 2.3%
$Date; 1999/06/15 03:30:36 $

Dynamic linking defers much of the linking process until a program starts
running. Itprovides a variety of benefits that are hard to get otherwise:

. Dynamically linked shared libraries are easier to create than statfc
linked shared libraries. *

. Dynamically linked shared libraries are easier to update than statit
linked shared libraries. *

. The semantics of dynamically linked shared libraries can be much
closer to those of unshared libraries.

. Dynamic linking permits a program to load and unload routines at
runtine, a facility that can otherwise be very difficult tove. *

There are a fe disadwantages, of course. The runtime performance cost¥
of dynamic linking are substantial compared to those of static linking*
since a large part of the linking process has to be redengtane a pro- *
gram runs.Every dynamically linked symbol used in a program has to be&
looked up in a symbol table and resadv (Wndows DLLs mitigate this *
cost somewhat, as we describe eloDynamic libraries are also lger *
than static libraries, since the dynamic oneshainclude symbol tables. *

Beyond issues of call compatibilitya dironic source of problems is
changes in library semantic&ince dynamic shared libraries are so easy
to update compared to unshared or static shared librariessa#y to
change libraries that are in use by existing programs, which means that the
behaior of those programs changese though "nothing has changed".
This is a frequent source of problems on Microsoitdvs, where pro-
grams use a lot of shared libraries, libraries go through a logrsfons,

and library version control is not very sophisticatétiost programs ship

with copies of all of the libraries tiiause, and installers often will inad-
vertently install an olderersion of a shared library on top of a newer one,
breaking programs that are expecting features found in the newer one.

10-248 Dynamid.inking and Loading

WEell-behared gpplications pop up a arning before installing an older li-
brary over a rewer one, buten 0, programs that depend on semantics of
older libraries hee been known to break when newer versions replace the
older ones.

ELF dynamic linking

Sun Microsystems’ SunOS introduced dynamic shared libraries to UNIX
in the late 1980sUNIX System V Release 4, which Sun cosdeped,
introduced the ELF object format and adapted the Sun scheme to ELF
ELF was clearly an imprx@ment wer the preious object formats, and by
the late 1990s it had become the standard for UNIX and UNEdi&-

tems including Linux and BSD dedtives.

Contents of an ELF file

As mentioned in Chapter 3, an ELF file can bevei@ as a set akctions,
interpreted by the lirde, or a £t of segments, interpreted by the program
loader ELF programs and shared librariesvbahe same general struc-
ture, but with different sets of segments and sections.

ELF shared libraries can be loaded at atidress, so theinvaiably use
position independent code (PIC) so that thet pages of the file need not

be relocated and can be shared among multiple processes. As described in
Chapter 8, ELF linkers support PIC code with a Globdksé&fTable

(GQOT) in each shared library that contains pointers to all of the static data
referenced in the program, Figure The dynamic linker resolves and re-
locates all of the pointers in the GOThis can be a performance issug b

in practice the GO is small except in very large libraries; a commonly
used version of the standard C library has only 180 entries in thief@O

over 350K of code.

Since the GO is in the same loadable ELF file as the code that references
it, and the relatie addresses within a file darchange rgardless of where

the program is loaded, the code can locate th€ @it a relatve aldress,

load the address of the G@nto a rgister and then load pointers from the
GOT wheneer it needs to address static data.library need not hee a
GOT if it references no static data, but in practice all libraries do.

text

data

Dynamic Linking and Loading 10-249

To support dynamic linking, each ELF shared libary and exebhutable
that uses shared libraries has a Procedure Linkalgie TPO). ThePLT
adds a leel of indirection for function calls analogous to that provided by
the GO for data. The PL also permits "lazy eduation”, that is, not re-
solving procedure addresses untilytine called for the first timeSince
the PO tends to hee a bt more entries than the GQove 600 in the C
library mentioned aba@), and most of the routines will v& be alled in
ary given program, that can both speed startup ane sansiderable time
overall.

Figure 10-1: PLT and GOT

picture of program with PLT
picture of library with PT and GOT

program library
call >
. . text
PLET ' [— !
| eLT
GOT cmt

data

10-250 Dynamid.inking and Loading

We dscuss the details of the Pbelow.

An ELF dynamically linked file contains all of the linker information that
the runtime linker will need to relocate the file and resahy undefined
symbols. The dynsymsection, the dynamic symbol table, contains all

of the files imported and xported symbols.The. dynstr and. hash
sections contain the name strings for the symbol, and a hash table the run-
time linker can use to look up symbols quickly.

The final extra piece of an ELF dynamically linked file is EIMNAM C
seggment (also marked as thelynam c section) which runtime dynamic
linker uses to find the information about the file the linker nekdsload-

ed as part of the datagseent, but is pointed to from the ELF file header
so the runtime dynamic linker can find it. Th¥ MAMIC section is a list

of tagged values and pointerSome entry types occur just in programs,
some just in libraries, some in both.

. NEEDED: the name of a library this file need&lways in pro-
grams, sometimes in libraries when one library is dependend on
anotheycan occur more than once.)

. SONAME: "shared object name", the name of the file the linker us-
es. (Libraries.)

. SYMTAB, STRTAB, HASH, SYMENT STRSZ,: point to the
symbol table, associated string and hash tables, size of a symbol
table entrysize of string table. (Both.)

. PLTGOT: points to the G@, or on sme architectures to the PL
(Both.)

. REL, RELSZ, and RELENT or RELA, RELASZ, and RELAENT
pointer to, number of, and size of relocation entriREL entries
don't contain addends, RELA entries do. (Both.)

. JVMPREL, PLTRELSZ, and PLTREL: pointer to, size, and format
(REL or RELA) of relocation table for data referred to by th&.PL
(Both.)

Dynamic Linking and Loading 10-251

. INIT and FINI: pointer to initializer and finalizer routines to be
called at program startup and finish. (Optional but usual in both.)

. A few other obscure types not often used.
An entire ELF shared library might look ékHgure 2. First come
the read-only parts, including the symbol tableT,Réxt, and read-
only data, then the read-write parts includingutar data, GO,
and the dynamic section. The bss logically fekothe last read-
write section, but as\abys isnt present in the file.

Figure 10-2: An ELF shared library

(Lots of pointer arrows here)

read-only pages:
.hash

.dynsym

.dynstr

plt

text

.rodata

read-write pages:
.data

.got

.dynamic

.bss

10-252 Dynamid.inking and Loading

,header
hash ~)
. &
read-only - -dynsym -
dynstr .
-plt .
- _calls
text -
' .rodata
read-write r.' '.data
< got
| WL
dynamic |

bss

Dynamic Linking and Loading 10-253

An ELF program looks much the same, but in the read-only segment has
init and fini routines, and an INTERP section near the front of the file to
specify the name of the dynamic linker (usually. so). Thedata sg-

ment has no GQ snce program files aretvelocated at runtime.

Loading a dynamically linked program

Loading a dynamically linked ELF program is a lengbut straightfor
ward process.

Starting the dynamic linker

When the operating system runs the program, it maps in treflgés as
normal, lt notes that there’an NTERPRETER section in thexe
ecutable. Thepecified interpreter is the dynamic laikd.so, which is it-
self in ELF shared library formatRather than starting the program, the
system maps the dynamic linker into a \w@ment part of the address
space as well and starts Id.so, passing on the staalxdiary vector of
information needed by the linkehe vector includes:

. AT _PHDR, A _PHENT and AT_PHNUM: The address of the
program header for the program file, the size of each entry in the
headerand the number of entries. This structure describes the se
ments in the loaded file. If the system hasmapped the program
into memory there may instead be a AEXECFD entry that con-
tains the file descriptor on which the program file is open.

. AT_ENTRY: starting address of the program, to which the dynam-
ic linker jumps after it has finished initialization.

. AT _BASE: The address at which the dynamic linker was loaded

At this point, bootstrap code at thegb®ing of Id.so finds its own GO

the first entry in which points to theYDNAMIC segment in the Id.so file.
From the dynamic segment, the linker can find its own relocation entries,
relocate pointers in its own data segment, and reswlde references to
the routines needed to loadeg/thing else. (The Linux Id.so names all of
the essential routines with names starting widlh _ and special-case code

10-254 Dynamid.inking and Loading

looks for symbols that start with the string and resolves them.)

The linker then initializes a chain of symbol tables with pointers to the
programs symbol table and the lirde’s avn symbol table.Conceptually,

the program file and all of the libraries loaded into a process share a single
symbol table. But rather than build a merged symbol table at runtime, the
linker keeps a lingd list of the symbol tables in each file. each file con-
tains a hash table to speed symbol lookup, with a set of hash headers and a
hash chain for each headdthe linker can search for a symbol quickly by
computing the symbd’hash value once, then running through apprpriate
hash chain in each of the symbol tables in the list.

Finding the libraries

Once the linkr's own initializations are done, it finds the names of the li-
braries required by the program. The progsambogram header has a
pointer to the "dynamic" segment in the file that contains dynamic linking
information. Thatsegment contains a pointedT_STRITAB, to the files
string table, and entries DT_NEEDED each of which contains thetan

the string table of the name of a required library.

For each library the linker finds the librarg’ BLF shared library file,
which is in itself a fairly compbe process. Thelibrary name in a
DT_NEEDED entry is something kklibXt.s0.6 (the Xt toolkit, \ersion
6.) Thelibrary file might in in ag of seveal library directories, and might
not evzen havethe same file nameOn my system, the actual name of that
library is /usr/X11R6/lib/libXt.s0.6.0, with thé0’’ at the end being a mi-
nor version number.

The linker looks in these places to find the library:

. If the dynamic segment contains an entry called DRTRR it's a
colon-separated list of directories to search for libraries. This entry
is added by a command line switch ovieonment variable to the
regular (not dynamic) linker at the time a program is ik It's
mostly used for subsystemsdikhtabases that load a collection of
programs and supporting libraries into a single directory.

Dynamic Linking and Loading 10-255

. If theres an evironment symbol LD_LIBRAR _PATH, it's treat-
ed as a colon-separated list of directories in which the linker looks
for the library This lets a deeloper build a ne version of a li-
brary, put it in the LD_LIBRARY_PATH and use it with risting
linked programs either to test theankeorary, or equally well to in-
strument the behavior of the program. (It skips this step if the pro-
gram is set-uid, for security reasons.)

. The linker looks in the library cache fileet ¢/ | d. so. conf
which contains a list of library names and patlifsthe library
name is present, it uses the corresponding péttis is the usual
way that most libraries are foundThe file name at the end of the
path need not bexactly the same as the library name, see the sec-
tion on library versions, belo)

. If all else fails, it looks in the default directory /usr/lib, and if the
library’s gill not found, displays an error message and exits.

Once its found the file containing the librarthe dynamic linker opens

the file, and reads the ELF header to find the program header which in turn
points to the files ssgments including the dynamic gment. Thelinker
allocates space for the librasytext and data segments and maps them in,
along with zeroed pages for the bss. From the libsadynamic sgment,

it adds the libraryg symbol table to the chain of symbol tables, and if the
library requires further libraries not already loaded, adgshaw libraries

to the list to be loaded.

When this process terminates, all of the librariaehmen mapped in, and
the loader has a logical global symbol table consisting of the union of all
of the symbol tables of the program and the mapped library.

Shared library initialization

Now the loader revisits each library and handles the libsasfbcation
entries, filling in the librang GOT and performing ay relocations needed
in the librarys data sgment. Load-timeelocations on an x86 include:

. R 386 _GLOB_[AT, used to initialize a GDentry to the address
of a symbol defined in another library.

10-256 Dynamid.inking and Loading

. R _386_32, a non-GDreference to a symbol defined in another li-
brary, generally a pointer in static data.

. R _386_RELAIVE, for relocatable data references, typically a
pointer to a string or other locally defined static data.

. R _386_JMP_SLQ@, used to initialize GO entries for the PL, de-
scribed later.

If a library has ani ni t section, the loader calls it to do library-specific
initializations, such as C++ static constructors, and.dn ni section is
noted to be run atxé time. (It doesrt do the init for the main program,
since thas handled in the program’'ovn startup code.) When this pass is
done, all of the libraries are fully loaded and readyxecate, and the
loader calls the programéntry point to start the program.

Lazy procedure linkage with the PLT

Programs that use shared libraries generally contain calls to a lot of func-
tions. Ina sngle run of the program mgnof the functions are wer
called, in error routines or other parts of the program thattareed. Fur
thermore, each shared library also contains calls to functions in other li-
braries, gen fewer of which will be &ecuted in a gien program run since
mary of them are in routines that the programenealls either directly or
indirectly.

To geed program startup, dynamically linked ELF programs use lazy
binding of procedure addresses. That is, the address of a procedure isn’
bound until the first time the procedure is called.

ELF supports lazy binding via the Procedure Linkageld, or PIL. Each
dynamically bound program and shared library has B Rith the PIT
containing an entry for each non-local routine called from the program or
library, Figure 3. Note that the HLin PIC code is itself PIC, so it can be
part of the read-only text segment.

Figure 10-3: PLT structure in x86 code

Special first entry

Dynamic Linking and Loading 10-257

PLTO: pushl GOT+4
j mp * GOT+8

Regular entries, non-PIC code:
PLTn: j np*GOT+m

push #rel oc_of f set

j mp PLTO

Regular entries, PIC code:
PLTn: j np* GOT+n(%&bx)
push #rel oc_of f set
j mp PLTO

All calls within the program or library to a particular routine are adjusted
when the program or library isilli to be calls to the routing'entry in the
PLT. The first time the program or library calls a routine, thd@ Bhtry
calls the runtime linker to res@vhe actual address of the routingfter

that, the PT entry jumps directly to the actual address, so after the first
call, the cost of using the PLis a sngle ectra indirect jump at a procedure
call, and nothing at a return.

The first entry in the PL, which we call PLTO, is special code to call the
dynamic linler. At load time, the dynamic linker automatically places tw
vaues in the GO@. At GOT+4 (the second word of the GOT) it puts a
code that identifies the particular librangt GOT+8, it puts the address
of the dynamic linkes symbol resolution routine.

The rest of the entries in the Blwhich we call PLTn, each start with an
indirect jump through a GDentry. Each PO entry has a corresponding
GOT entry which is initially set to point to the push instruction in th@ PL
entry that follows the jmp(In a PIC file this requires a loadtime reloca-
tion, but not anpensve gymbol lookup.) Falowing the jump is a push
instruction which pushes a relocation offset, tHsedfin the files reloca-
tion table of a special relocation entry of tyre386_JMP_SLOT. The
relocation entrys ymbol reference points to the symbol in the $ilg/m-
bol table, and its address points to theTG#try.

10-258 Dynamid.inking and Loading

This compact but rather baroque arragement means that the first time the
program or library calls a HLentry, the first jump in the PLentry in ef-

fect does nothing, since the G@ntry through which it jumps points back
into the PO entry. Then the push instruction pushes the offsslue
which indirectly identifies both the symbol to resolnd the GQ entry

into which to resolg it, and jumps to PLO. Theinstructions in PTO

push another code that identifies which program or library it is, and then
jumps into stub code in the dynamic linker with the tdentifying codes

at the top of the stack. Note that thiasna jump, rather than a call, &bo

the two identifying words just pushed is the return address back to the rou-
tine that called into the AL

Now the stub code sas dl the registers and calls an internal routine in
the dynamic linker to do the resolution. theotidentifying words stifce

to find the librarys symbol table and the routire'entry in that symbol
table. Thedynamic linker looks up the symbol value using the concatenat-
ed runtime symbol table, and stores the rousiagdress into the GDen-

try. Then the stub code restores thgisters, pops the twvords that the
PLT pushed, and jumpsfa the routine.The GO entry having been up-
dated, subsequent calls to thaffRintry jump directly to the routine itself
without entering the dynamic linker.

Other peculiarities of dynamic linking

The ELF linker and dynamic linker ¥ a bt of obscure code to handle
special cases and try and keep the runtime semantics as similar as possible
to whose of unshared libraries.

Static initializations

If a program has an external reference to a gloheahble defined in a
shared librarythe linker has to create in the program aycop the \ari-
able, since program data addresse® ltabe lound at link time, Figure 4.
This poses no problem for the code in the shared libsarge the code
can refer to theariable via a GO pointer which the dynamic linker can
fix up, but there is a problem if the library initializes tlzgiable. D deal
with this problem, the linker puts an entry in the progsamlocation
table (which otherwise just containsR 386 _JMP_SLOT,
R 386_G.0B _DAT, R 386_32, and R_386_RELATI VE entries) of

Dynamic Linking and Loading 10-259

type R_386_COPY that points to the place in the program where the cop
of the variable is defined, and tells the dynamicdmto coy the initial
value of that word of data from the shared library.

Figure 10-4: Global data initialization
Main program:
extern int token;

Routine in shared library:
int token = 42;

Although this feature is essential for certain kinds of code, it oc@rs v
rarely in practice.This is a band-aid, since it only works for singlerad
data. Theinitializers that do occur arevedys pointers to procedures or
other data, so the band-aid suffices.

Library versions

Dynamic libraries are generally named with major and miresions
numbers, lilkel i bc. so. 1. 1 but programs should be bound only to ma-
jor version numbers l&l i bc. so. 1 since minor versions are supposed
to be upward compatible.

To keep program loading reasonably fast, the system manager maintains a
cache file containing the full pathname most recent version of each library
which is updated by a configuration program whena rew library is in-
stalled.

To wupport this design, each dynamically linked library caveha ‘true
name" called th6€ONAME assigned at library creation tim&or exam-
ple, the library calledli bc.so.1.1 would hase a ©NAME of
l'ibc.so.1. (The SONAME defaults to the librag/mame.) Wherthe
linker builds a program that uses shared libraries, it lists the SONAMEs of
the libraries it used rather than the actual names of the librafies.

10-260 Dynamid.inking and Loading

cache creation program scans all of the directories that contain shared li-
braries, finds all of the shared librariestracts the SONAME from each
one, and where there are multiple libraries with the sameASAHA\ dis-

cards all but the highest version numbé&hen it writes the cache file with
SONAMEs and full pathnames so at runtime the dynamic linker can
quickly find the current version of each library.

Dynamic loading at runtime

Although the ELF dynamic lirde is usually called implcitly at program
load time and from PLentries, programs can also call it explicitly using
dl open() to load a shared library amdl syn{) to find the address of a
symbol, usually a procedure to call. Thos® nautines are actually sim-
ple wrappers that call back into the dynamic énkWhen the dynamic
linker loads a library vidl open() , it does the same relocation and sym-
bol resolution it does on grother library so he dynamically loaded pro-
gram can without anspecial arrangements call back to routines already
loaded and refer to global data in the running program.

This permits users to add extra functionality to programs without access to
the source code of the programs and withowheéhaving to stop and
restart the programs (useful when the program is somethimrg alik
database or a web sery Mainframeoperating systems t@ povided
access to “at routines” like this since at least the early 1960s, albeit with-
out such a carenient interfice, and it long been a way to add greakfle
bility to packaged applications. It also provides a way for programs-to e
tend themselves; theseno eason a program couldntrite a routine in C

or C++, run the compiler and liekto create a shared libratigen dynam-
ically load and run the mecode. (Mainframesort programs hee linked
and loaded custom inner loop code for each sort job for decades.)

Microsoft Dynamic Link Libraries

Microsoft Windows also preides shared libraries, called dynamic-link li-
braries or DLLs in a fashion similar to but somewhat simpler than ELF
shared libraries. The design of DLLs changed substantially between the
16 bit Windows 3.1 and the 32 bit Wdows NT and 95.This discussion
addresses only the more modern Win32 libraries. DLLs import procedure
addresses using a Rlike ssheme. Althougtihe design of DLLs wuld

Dynamic Linking and Loading 10-261

make it possible to import data addresses using al-® sheme, in
practice thg use a simpler scheme that requirgplieit program code to
dereference imported pointers to shared data.

In Windows, both programs and DLLs are PE format (portakéeigable)

files are intended to be memory mapped into a proddske Windows

3.1, where all applications shared a single address span82 \Wives

each application its own address space amdutables and libraries are
mapped into each address space wheredieused.For read-only code

this doesrt’ make any practical difference, but for data it means that each
application using a DLL gets its own gopf the DLLs data. (That a
slight oversimplification, since PE files can mark some sections as shared
data with a single cgpshared among all applications that use the filg, b
most data is unshared.)

Loading a Vihdows executable and DLLs is similar to loading a dynami-
cally linked ELF program, although in theiMdows case the dynamic
linker is part of the &rnel. Firstthe kernel maps in thexecutable file,
guided by section info in the PE headers. Then it maps in all of the DLLs
that the gecutable refers to, again guided by the PE headers in each DLL.

PE files can contain relocation entrie&n executable generally an't
contain them and so has to be mapped at the address for whiels it w
linked. DLLsall do contain relocation entries, and are relocated when
theyre mapped in if the address space for whicly tiere linked isrt
awailable. (Microsoftcalls runtime relocationebasing.)

All PE files, both gecutables and DLLs, ka an entry point, and the load-

er calls a DLIs entry point when the DLL is loaded, when the DLL is un-
loaded, and each time a process thread attaches to or detaches from the
DLL. (The loader passes an argument to say wts making each call.)

This provides a hook for static initializers and destructors analogous to the
ELF.init and. fini sections.

Imported and exported symbols in PE files

PE supports shared libraries withotgpecial sections of the file,edat a,
for exported data, that lists the symbols exported from a file, addt a,
that lists the symbols imported into a file. Program files generallg ha

10-262 Dynamid.inking and Loading

only an. i dat a section, while DLLs avays hare an . edat a and may

have a. i dat a if they use other DLLs. Symbols can be exported either

by symbol name, or by "ordinal”, a small igée that gies the index of

the symbol in the export address tablenking by ordinals is slightly

more efficient since itv@ids a symbol lookup, but considerably more er

ror prone since i§ up to he person who builds a DLL to ensure that ordi-
nals stay the same from one library version to anotimgoractice ordinals

are usually used to call system services that rarely change, and names for
eveaything else.

The. edat a section contains arxport directory table that describes the
rest of the section, followed by the tables that define the exported symbols,
Figure 5.

Figure 10-5: Structure of .edata section

export directory pointing to:
export address table
ordinal table

name pointer table

name strings

Dynamic Linking and Loading 10-263

parts of .edata section
\ . exploded view

directory |

address table
“ (of exported symbols)
ordinal ' e e | "'name pointed table
tables. T | , . (tonamesstrings)
!) f
l. - .
~ hame table
strings

The export address table contains thé\ Rrelatve virtual address, rela-

tive 1o the base of the PE file) of the symbol. If théARpoints back into

the. edat a section, its a 'forwarder" reference, and the value pointed to

is a string naming the symbol to use to satisfy the reference, probably de-
fined in a different DLL. The ordinal and name pointer tables are parallel,
with each entry in the name pointer table being t##& & the name string

10-264 Dynamid.inking and Loading

for the symbol, and the ordinal being the xdethe eport address table.
(Ordinals need not be zero-based; the ordinal base to subtract from ordinal
values to get the indan the export address table is stored in the export di-
rectory and is most often 1.) Exported symbols need not e hemes,
although in practice tlyealways do. The symbols in the name pointer
table are in alphabetical order to permit the loader to use a binary search.

The. i dat a section does the ceerse of what the edat a section does,

by mapping symbols or ordinals back into virtual addres3ée. section
consists of a null-terminated array of import directory tables, one per DLL
from which symbols are imported, followed by an import lookup table per
DLL, followed by a name table with hints, Figure 6.

Figure 10-6: Structure of .idata section

array of import directory tables, with lotsa arrows

each has import lookup tablevVR, time/date stamp, fer
warder chain (unused?), DLL name, import addre¥s R
table

NULL

import table, entries with high bit flag (table per DLL)
hint/name table

Dynamic Linking and Loading 10-265

import directory
table lookup table address tables
| ————__ Jfor'firstDLL" (in text segment)
| =f A). '
| —
|
. i] lookup table

, forsecond DLL
T

— - |

strings

For each imported DLL, there is an array of import addresses, typically in
the prograns text segment, into which the program loader places the re-
solved addressesThe import lookup table identifies the symbols to im-
port, with the entries in the import lookup table being parallel to those in
the import address tabldhe lookup table consists of 32 bit entries. If the
high bit of an entry is set, thewd31 hits are the ordinal of the symbol to
import, otherwise the entry is th&/R of an entry in the hint/name table.
Each hint/name entry consists of a four-byte hint that guesses tixeofnde

10-266 Dynamid.inking and Loading

the symbol in the DLE export name pointer table, followed by the null
terminated symbol namelrhe program loader uses the hint to probe the
export table, and if the symbol name matches, it uses that symbok, other
wise it binary searches the entire export table for the ngthéhe DLL
hasnt changed, or at least its list of exported symbols hadrdnged,
since the program that uses the DLL was linked, the guess will be right.)

Unlike ELF imported symbols, thealues of symbols imported via da-

t a are only placed in the import address table, not fixed yplaare else

in the importing file. For code addresses, this nesk little diference.
When the linker builds arxecutable or DLL, it creates in the text section
a table of misnamed "thunks", indirect jumps through the entries in the im-
port address table, and uses the addresses of the thunks as the address of
the imported routine, which is transparent to the program(i&e thunks

as well as most of the data in thedat a section actually come from a
stub library created at the same time as the DLL.) In recasions of
Microsoft's C and C++ compilerif the programmer knows that a routine
will be called in a DLL, the routine can be declared "dllimport", and the
compiler will emit an indirect call to the address table ertrgiding the
extra indirect jump.For data addresses, the situation is more problemati-
cal, since it harder to hide the extravd of indirection required to ad-
dress a symbol in anothexeeutable. Taditionally programmers just bit
the bullet and xplicitly declared imported variables to be pointers to the
real values andxglicitly dereferencd the pointers. Recent versions of Mi-
crosofts C and C++ compiler also let the programmer declare global data
to be "dllimport" and the compiler will emit the extra pointer deferences,
much like BLF code that references data indirectly via pointers in the
GOT.

Lazy binding

Recent versions of iWdows compilers hee alded delay loaded imports

to permit lazy symbol binding for procedures, somewhatthike ELF PII.

A delay-loaded DLL has a structure similar to thedat a import direc-

tory table, lnt not in the.idata section so the program loader do¢$an-

dle it automatically The entries in the import address table initially all
point to a helper routine that finds and loads the DLL and replaces the con-
tents of the address table with the actual addresses. The delay-loaded di-

Dynamic Linking and Loading 10-267

rectory table has a place to store the original contents of the import ad-
dress table so the values can be put back if the DLL is later unloktied.
crosoft provides a standard helper routing, its interfaces are document-

ed and programmers can write their own versions if need be.

Windows also permits programs to load and unload DLLs explicitly using
LoadLi brary andFreelLi brary, and to find addresses of symbols
usingCet Pr ocAddr ess.

DLLs and threads

One area in which the Mdows DLL model doesi’work particularly

well is thread local storageA Windows program can start multiple
threads in the same process, which share the process’ addressEsgdce.
thread has a small chunk of thread local storage (TLS) to keep data specif-
ic to that thread, such as pointers to data structures and resources that the
thead is usingThe TLS needs "slots" for the data from tixeomitable and

from each DLL that uses TLS. TheiMdows linker can create a .tls sec-
tion in a PE recutable, that defines the layout for the TLS needed by rou-
tines in the recutable and anDLLs to which it directly refers. Each time

the process creates a thread, the tieead gets its own TLS, created us-
ing the .tls section as a template.

The problem is that most DLLs can either be linked implicitly from the ex-
ecutable, or loaded explicitly withoadLi brary. DLLs loaded &plic-

itly don’'t automatically get .tls storage, and since a BLauthor cant
predict whether a library will be woked implicitly or explicitly, it can’t
depend on the .tls section.

Windows defines runtime system calls that allocate slots at the end of the
TLS. DLLsuse those calls rather than .tls unless the DLL isvknonly
to be irvoked implicitly.

OSF/1 pseudo-static shared libraries

OSF/1, the ill-fated UNIX variant from the Open Softwar@ufdation,

used a shared library scheme intermediate between static and dynamic
linking. Its authors noted that static linking is a lot faster than dynamic
since less relocation is needed, and that libraries are updated infrequently

10-268 Dynamid.inking and Loading

enough that system managers are willing to endure some pain wien the
update shared libraries, although not the g gohrelinking esery ex-
ecutable program in the entire system.

So OSF/1 took the approach of maintaining a global symbol table visible
to all processes, and loaded all the shared libraries into a sharable address
space at system boot time. This assigned all of the libraries addresses that
wouldn’t change while the system was runningach time a program
started, if it used shared libraries, it would map in the shared libraries and
symbol table and res@wndefined references in thgeeutable using the
global symbol table No load-time relocation was/er required since pro-
grams were all linked to load in a part of the address space dajwar

anteed to bewailable in each process, and the library relocation had al-
ready happened when theere loaded at boot time.

When one of the shared libraries changed, the system just had to be re-
booted normallyat which point the system loaded thewnibraries and
created a ne symbol table for gecutables to use.

This scheme was aler, but it wasnt very satisactory For one thing, pro-
cessing symbol lookups is considerably slower than processing relocation
entries, so\aiding relocation vasnt that much of a performance auh+

tage. for anotherdynamic linking provides the ability to load and run a
library at runtime, and the OSF/1 scheme digrovide for that.

Making shared libraries fast

Shared libraries, and ELF shared libraries in particatar be very sha. *
The slavdowns come from a variety of sourcesyesal of which we men- *

tioned in Chapter 8: *

. Load-time relocation of libraries *
. Load-time symbol resolution in libraries anceutables *

. Overhead due to PIC function prolog code *
. Overhead due to PIC indirect data references

. Slower code due to PIC reserved addressiggsters *

The first two problems can be ameliorated by caching, the latter

Dynamic Linking and Loading 10-269

two by retreating from pure PIC code. *

On modern computers with & address spacessitsually possible to
choose an address range for a shared librarysthailable in all or at

least most of the processes that use the libr@ne very eflective tech-

nique is similar to the Wdows approach. Either when the library is
linked or the first time a library is loaded, terveyi bind its addresses to

a chunk of address space. After that, each time a program links to the li-
brary use the same addresses of possible, which means that no relocation
will be necessarylf that address space is@vailable in a n& process,

the library is relocated as before.

SGI systems use the te@UICKSTART to describe the process of pre-re-
locating objects at linktime, or in a separate pass the shared library
BeOS caches the relocated library the first tingeldded into a process.
If multiple libraries depend on each othir principle it should be possi-
ble to pre-relocate and then pre-resaymbol references among libraries,
although I'm not ware of ary linkers that do so.

If a system uses pre-relocated libraries, PIC becomes a lot less important.
All the processes that load a library at its pre-relocated address can share
the librarys aode whether i AC or not, so a non-PIC library at a well-
chosen address can in practice be as sharable as PIC without the perfor
mance loss of PICThis is basically the static linked library approach
from Chapter 9, except that in case of address space collisions, rather than
the program failing the dynamic linker nes the libraries at some loss of
performance. \idows uses this approach.

BeOS implements cached relocated libraries with great thoroughness, in-
cluding preserving correct semantics when libaries change. When a ne
version of a library is installed BeOS notes tlaetfand creates a we
cached version rather than using the old cached version when programs re-
fer to the library Library changes can ¥@ a ipple efect. Whenlibrary

A refers to symbols in library B and B is updated, & nached version of

A will also hare o be ceated if ag of the referenced symbols in Busa
moved. Thisdoes mak the programmes' life easierbut it's not clear to

me that libraries are in practice updated often enough to merit the consid-
erable amount of system code needed to track library updates.

10-270 Dynamid.inking and Loading

Comparison of dynamic linking approaches

The Unix/ELF and Whdows/PE dynamic linking diér in several interest-
ing ways.

The ELF scheme uses a single name space per program, while the PE
scheme uses a hame space per librAry ELF executable lists the sym-
bols it needs and the libraries it needs, ibdoesrt record which symbol

is in which library A PE file, on the other hand, lists the symbols to im-
port from each library The PE scheme is less flexible but also more resis-
tant to inadvertent spoofinglmagine that an»acutable calls routine
AFUNC which is found in library A and BFUNC which is found in library
B. If a rew wersion of library A happens to define its own BFUNC, an
ELF program could use the weBFUNC in preference to the old one,
while a PE program auldn’t. Thisis a problem with some large libraries;
one partial solution is to use the poorly documented DT_FILTER and
DT_AUXILIARY fields to tell the dynamic linker what libraries this one
imports symbols from, so the liakwill search those libraries for import-
ed symbols before searching theeutable and the rest of the libraries.
The DT_SYMBOLICfield tells the dynamic linker to search the library’
own symbol table first, so that other libraries cannot shatura-library
references. (Thissn't aways desirable; consider the malloc hack de-
scribed in the previous chapderThesead-hoc approaches nakt less
likely that symbols in unrelated libraries will inadvertently skadie
correct symbols, but tpgre no substitude for a hierarchical link-time
name space as we’'ll see in Chapter 11 that bas.

The ELF scheme tries considerably harder than the PE scheme to maintain
the semantics of static linked prograniis.an ELF program, references to
data imported from another library are automatically reshlwhile a PE
program needs to treat imported data specidllye PE scheme has trou-

ble comparing the values of pointers to functions, since the address of an
imported function is the address of the "thunk" that calls it, not the address
of the actual function in the other librarfLF handles all pointers the
same.

At run-time, nearly all of the Widows dynamic linker is in the operating
system, while the ELF dynamic linker runs entirely as part of the applica-

Dynamic Linking and Loading 10-271

tion, with the lernel merely mapping in the initial files. Theintlows
scheme is guably faster snce it doesrt’haveto map and relocate the dy-
namic linker in each process before it starts linking. The ELF scheme is
definitely a lot more fidble. Sinceeach gecutable names the "inter
preter" program (n@ always the dynamic linker named Id.so) to use, dif-
ferent executables could use different interpreters without requrirygopn
erating system changes. In practice, this @sak easier to supporke
ecutables from variant versions of Unix, notably Linux and BSD, by mak-
ing a dynamic linker that links to compatibility libraries that support non-
natve exeutables.

Exercises

In ELF shared libraries, libraries are often linked so that calls from one
routine to another within a single shared library go through tfiiedaat
have their addresses bound at runtime. Is this useful? @vhkvhy not?

Imagine that a program calls a library routpleugh() that is found in a
shared libraryand the programmer builds a dynamically linked program
that uses that libraryLater the system manager notices tpatugh is a
silly name for a routine and installs axneersion of the library that calls
the routinexsazq instead. Whahappens when the xtetime the pro-
grammer runs the program?

If the runtime ewmironment \ariableLD Bl ND_NOWis set, the ELF dy-
namic loader binds all of the progra™L.T entries at load time What

would happen in the situtation in the previous probleiDf Bl ND_NOW
were set?

Microsoft implemented lazy procedure binding without operating system
assistance by adding some extraveieess in the linker and using the-e
isting facilities in the operating systerilow hard would it be to pnade
transparent access to shared dateidang the extra Ieel of pointers that

the current scheme uses?

Project

It's impractical to hild an entire dynamic linking system for our project
linker, ance much of the work of dynamic linking happens at runtime, not
link time. Much of the work of building a shared librarasvalready done

10-272 Dynamid.inking and Loading

in the project 8-3 that created PlQeeutables. Adynamically linked
shared library is just a PIGecutable with a well-defined list of imported
and exported symbols and a list of other libraries on which it depdiads.
mark the file as a shared library or aeaitable that uses shared libraries,
the first line is:

LINKLIB libl Iib2 ...

or

LINK libl lib2 ...

where the libs ae the names of other shared libraries on which this one
depends.

Project 10-1: Starting with the version of the linker from project 8-8; e
tend the linker to produce shared libraries aret@tables that need shared
libraries. Thelinker needs to takas ts input a list of input files to com-
bine into the outputx@cutable or libraryas well as other shared libraries

to search.The output file contains a symbol table with definegb¢eted)

and undefined (imported) symbols. Relocation types are the ones for PIC
files along with AS4 and RS4 for references to imported symbols.

Project 10-2: Write a run-time binderthat is, a program that takes aa e
ecutable that uses shared libraries and resoitg references. It should

read in the xecutable, then read in the necessary libraries, relocating them
to non-werlapping a&ailable addresses, and creating a logically gedr
symbol table.(You may want to actually create such a table, or use a list

of perfile tables as ELF does.) Then resoll of the relocations andxe

ternal references. When yoe’'done, all code and data should be assigned
memory addresses, and all addresses in the code and data should be re-
solved and relocated to the assigned addresses.

