
Shared libraries 9-227

Chapter 9
Shared libraries

$Revision: 2.3 $
$Date: 1999/06/15 03:30:36 $

Program libraries date back to the earliest days of computing, since pro-*
grammers quickly realized that they could save a lot of time and effort by *
reusing chunks of program code.With the advent of compilers for lan- *
guages like Fortran and COBOL, libraries became an integral part of pro- *
gramming. Compiledlanguages use libraries explictly when a program*
calls a standard procedure such as sqrt(), and they use libraries implicitly *
for I/O, conversions, sorting, and many other functions too complex to ex- *
press as in-line code. As languages have gotten more complex, libraries *
have gotten correspondingly more complex. WhenI wrote a Fortran 77 *
compiler twenty years ago, the runtime library was already more work *
than the compiler itself, and a Fortran 77 library is far simpler than one for*
C++. *

The growth of language libraries means not only that all programs include*
library code, but that most programs include a lot of the same library code.*
Every C program, for example, uses the system call library, nearly all use *
the standard I/O library routines such as printf, and many use other popu- *
lar libraries for math, networking, and other common functions.This *
means that in a typical Unix system with a thousand compiled programs,*
there’s close to a thousand copies of printf. If all those programs could*
share a single copy of the library routines they use, the savings in disk *
space would be substantial.(On a Unix system without shared libraries, *
there’s five to ten megabytes of copies of printf alone.)Even more impor- *
tant, if running programs could share a single in-memory copy of the li- *
braries, the main memory savings could be very significant, both saving *
memory and improving paging behavior. *

All shared library schemes work essentially the same way. At link time, *
the linker searches through libraries as usual to find modules that resolve *
otherwise undefined external symbols.But rather than copying the con- *
tents of the module into the output file, the linker makes a note of what li- *
brary the module came from, and puts a list of the libraries in the ex- *

9-228 Sharedlibraries

ecutable. Whenthe program is loaded, startup code finds those libraries*
and maps them into the program’s address space before the program starts,*
Figure 1. Standard operating system file mapping semantics automatically*
share pages that are mapped read-only or copy-on-write. Thestartup code *
that does the mapping may be in the operating system, the executable, in a *
special dynamic linker mapped into the process’ address space, or some*
combination of the three. *

Figure 9-1: Program with shared libraries

Picture of executable, shared libraries
main excutable, app library, C library
files from different places
arrows show refs from main to app, main to C, app to C

Shared libraries 9-229

In this chapter, we look at static linked shared libraries, that is, libraries
where program and data addresses in libraries are bound to executables at
link time. In the next chapter we look at the considerably more complex
dynamic linked libraries.Although dynamic linking is more flexible and
more "modern", it’s also a lot slower than static linking because a great
deal of work that would otherwise have been done once at link time is re-
done each time a dynamically linked program starts. Also, dynamically
linked programs usually use extra ‘‘glue’’ code to call routines in shared li-

9-230 Sharedlibraries

braries. Theglue usually contains several jumps, which can slow down
calls considerably. On systems that support both static and dynamic
shared libraries, unless programs need the extra flexibility of dynamic
linking, they’re faster and smaller with static linked libraries.

Binding time

Shared libraries raise binding time issues that don’t apply to conventional-
ly linked programs.A program that uses a shared library depends on hav-
ing that shared library available when the program is run.One kind of er-
ror occurs when the required libraries aren’t present. There’s not much to
be done in that case other than printing a cryptic error message and exit-
ing.

A much more interesting problem occurs when the library is present, but
the library has changed since the program was linked. Ina conventionally
linked program, symbols are bound to addresses and library code is bound
to the executable at link time, so the library the program was linked with is
the one it uses regardless of subsequent changes to the library.. With static
shared libraries, symbols are still bound to addresses at link time, but li-
brary code isn’t bound to the executable until run time.(With dynamic
shared libraries, they’re both delayed until runtime.)

A static linked share library can’t change very much without breaking the
programs that it is bound to.Since the addresses of routines and data in
the library are bound into the program, any changes in the addresses to
which the program is bound will cause havoc.

A static shared library can sometimes be updated without breaking the
programs that use it, if the updates can be made in a way that don’t move
any addresses in the library that programs depend on.This permits "minor
version" updates, typically for small bug fixes. Larger changes unavoid-
ably change program addresses, which means that a system either needs
multiple versions of the library, or forces programmers to relink all their
programs each time the library changes.In practice, the solution is invari-
ably multiple versions, since disk space is cheap and tracking down every
executable that might have used a shared library is rarely possible.

Shared libraries 9-231

Shared libraries in practice

In the rest of this chapter we concentrate on the static shared libraries pro-
vided in UNIX System V Release 3.2 (COFF format), older Linux systems
(a.out format), and the BSD/OS derivative of 4.4BSD (a.out and ELF for-
mats.) All three work nearly the same, but some of the differences are in-
structive. The SVR3.2 implementation required changes in the linker to
support searching shared libraries, and extensive operating system support
to do the runtime startup required. The Linux implemention required one
small tweak to the linker and added a single system call to assist in library
mapping. TheBSD/OS implementation made no changes at all to the
linker or operating system, using a shell script to provide the necessary ar-
guments to the linker and a modified version of the standard C library
startup routine to map in the libraries.

Address space management

The most difficult aspect of shared libraries is address space management.
Each shared library occupies a fixed piece of address space in each pro-
gram in which it is used.Different libraries have to use non-overlapping
addresses if they can be used in the same program. Although it’s possible
to check mechanically that libraries don’t overlap, assigning address space
to libraries is a black art. On the one hand, you want to leave some slop in
between them so if a new version of one library grows a little, it won’t
bump into the next library up. On the other hand, you’d like to put your
popular libraries as close together as possible to minimize the number of
page tables needed. (Recall that on an x86, for example, there’s a second
level table for each 4MB block of address space active in a process.)

There’s inv ariably a master table of shared library address space on each
system, with libraries starting some place in the address space far away
from applications.Linux’s start at hex 60000000, BSD/OS at a0000000.
Commercial vendors subdivide the address space further between vendor
supplied libraries and user and third-party libraries which start at
a0800000 in BSD/OS, for example.

Generally both the code and data addresses for each library are explicitly
defined, with the data area starting on a page boundary a page or two after
the end of the code.This makes it possible to create minor version up-

9-232 Sharedlibraries

dates, since the updates frequently don’t change the data layout, but just
add or change code.

Each individual shared library exports symbols, both code and data, and
usually also imports symbols if the library depends on other libraries.Al-
though it would work if one just linked routines together into a shared li-
brary in haphazard order, real libraries use some discipline in assigning
addresses to make it easier, or at least possible, to update a library without
changing the addresses of exported symbols.For code addresses, rather
than exporting the actual address of each routine, the library contains a
table of jump instructions which jump to all of the routines, with the ad-
dresses of the jump instructions exported as the addresses of the routines.
All jump instruction are the same size, so the addresses in the jump table
are easy to compute and won’t change from version to version so long as
no entries are added or deleted in the middle of the table.One extra jump
per routine is an insignificant slowdown, but since the actual routine ad-
dresses are not visible, new versions of the library will be compatible even
if routines in the new version aren’t all the same sizes and addresses as in
the old version.

For exported data, the situation is more difficult, since there’s no easy way
to add a level of indirection like the one for code addresses. In practice it
turns out that exported data tends to be tables of known sizes that change
rarely, such as the array ofFILE structures for the C standard I/O library
or single word values like errno (the error code from the most recent
system call) ortzname (pointers to two strings giving the name of the
current time zone.)With some manual effort, the programmer who creates
the shared library can collect the exported data at the front of the data sec-
tion in front of any anonymous data that are part of individual routines,
making it less likely that exported addresses will change from one version
to the next.

Structur e of shared libraries

The shared library is an executable format file that contains all of the li-
brary code and data, ready to be mapped in, Figure 2.

Shared libraries 9-233

Figure 9-2: Structure of typical shared library

File header, a.out, COFF, or ELF header
(Initialization routine, not always present)
Jump table
Code
Global data
Private data

Some shared libraries start with a small bootstrap routine used to map in
the rest of the library. After that comes the jump table, aligned on a page
boundary if it’s not the first thing in the library. The exported address of
each public routine in the library is the jump table entry. Following the
jump table is the rest of the text section (the jump table is considered to be
text, since it’s executable code), then the exported data and private data.
The bss segment logically follows the data, but as in any other executable
file, isn’t actually present in the file.

Creating shared libraries

A UNIX shared library actually consists of two related files, the shared li-
brary itself and a stub library for the linker to use.A l ibrary creation utili-
ty takes as input a normal library in archive format and some files of con-
trol information and uses them to create create the two files. Thestub li-
brary contains no code or data at all (other than possibly a tiny bootstrap
routine) but contains symbol definitions for programs linked with the li-
brary to use.

Creating the shared library involves these basic steps, which we discuss in
greater detail below:

• Determine at what address the library’s code and data will be load-
ed.

• Scan through the input library to find all of the exported code sym-
bols. (Oneof the control files may be a list of some of symbols not
to export, if they’re just used for inter-routine communication with-
in the library.)

9-234 Sharedlibraries

• Make up the jump table with an entry for each exported code sym-
bol.

• If there’s an initialization or loader routine at the beginning of the
library, compile or assemble that.

• Create the shared library: Run the linker and link everything to-
gether into one big executable format file.

• Create the stub library: Extract the necessary symbols from the
newly created shared library, reconcile those symbols with the
symbols from the input library, create a stub routine for each li-
brary routine, then compile or assemble the stubs and combine
them into the stub library. In COFF libraries, there’s also a little
initialization code placed in the stub library to be linked into each
executable.

Creating the jump table

The easiest way to create the jump table is to write an assembler source
file full of jump instructions, Figure 3, and assemble it. Each jump in-
struction needs to be labelled in a systematic way so that the addresses can
later be extracted for the stub library.

A minor complication occurs on architectures like the x86 that have differ-
ent sizes of jump instructions.For libraries containing less than 64K of
code, short 3 byte jumps are adequate.For libraries larger than that,
longer 5 byte jumps are necessary. Mixed sizes of jumps aren’t very satis-
factory, both because it makes the table addresses harder to compute and
because it makes it far harder to make the jump table compatible in future
builds of the library. The simplest solution is to make all of the jumps the
largest size.Alternatively, make all of the jumps short, and for routines
that are too far away for short jumps, generate anonymous long jump in-
structions at the end of the table to which short instructions can jump.
(That’s usually more trouble than it’s worth, since jump tables are rarely
more than a few hundred entries in the first place.)

Figure 9-3: Jump table

Shared libraries 9-235

... start on a page boundary
.align 8 ; align on 8-byte boundary for variable length insns
JUMP_read: jmp _read
.align 8
JUMP_write: jmp _write
...
_read: ... code for read()
...
_write: ... code for write()

Creating the shared library

Once the jump table and, if needed, the loader routine are created, creating
the shared library is easy. Just run the linker with suitable switches to
make the code and data start at the right places, and link together the boot-
strap, the jump tables, and all of the routines from the input library. This
both assigns addresses to everything in the library and creates the shared
library file.

One minor complication involves interlibrary references. If you’re creat-
ing, say, a shared math library that uses routines from the shared C library,
the references have to be made correctly. Assuming that the library whose
routines are needed has already been built when the linker builds the new
library, it needs only to search the old library’s stub library, just like any
normal executable that refers to the old library. This will get all of the ref-
erences correct. The only remaining issue is that there needs to be some
way to ensure that any programs that use the new library also link to the
old library. Suitable design of the new stub library can ensure that.

Creating the stub library

Creating the stub library is one of the trickier parts of the shared library
process. For each routine in the real library, the stub library needs to con-
tain a corresponding entry that defines both the exported and imported
global symbols.

9-236 Sharedlibraries

The data global symbols are wherever the linker put them in the shared li-
brary image, and the most reasonable way to get their values is to create
the shared library with a symbol table and extract the symbols from that
symbol table.For code global symbols, the entry points are all in the jump
table, so it’s equally easy to extract the symbols from the shared library or
compute the addresses from the base address of the jump table and each
symbol’s position in the table.

Unlike a normal library module, a module in the stub library contains no
code nor data, but just has symbol definitions. The symbols have to be de-
fined as absolute numbers rather than relocatable, since the shared library
has already had all of its relocation done.The library creation program
extracts each routine from the input library, and from that routine gets the
defined and undefined globals, as well as the type (text or data) of each
global. It then writes the stub routine, usually as a little assembler pro-
gram, defining each text global as the address of the jump table entry, each
data or bss global as the actual address in the shared library, and each un-
defined global as undefined.When it has a complete set of stub sources, it
assembles them all and combines them into a normal library archive.

COFF stub libraries use a different, more primitive design. They’re single
object files with two named sections.The.lib section contains all of the
relocation information pointing at the shared library, and the.init sec-
tion contains initialization code that is linked into each client program,
typically to initialize variables in the shared library.

Linux shared libraries are simpler still, an a.out file containing the symbol
definitions with "set vector" symbols described in more detail below for
use at program link time.

Shared libraries have names assigned that are mechanically derived from
the original library, adding a version number. If the original library was
called/lib/libc.a, the usual name for the C library, and the current
library version is 4.0, the stub library might be
/lib/libc_s.4.0.0.a and the shared library image
/shlib/libc_s.4.0.0. (The extra zero allows for minor version up-
dates.) Oncethe libraries are moved into the appropriate directories
they’re ready to use.

Shared libraries 9-237

Version naming

Any shared library system needs a way to handle multiple versions of li-
braries. Whena library is updated, the new version may or may not be ad-
dress-compatible and call-compatible with previous versions. Unixsys-
tems address this issue with the multi-number version names mentioned
above.

The first number changes each time a new incompatible version of the li-
brary is released.A program linked with a 4.x.x library can’t use a 3.x.x
nor a 5.x.x. The second number is the minor version. OnSun systems,
each executable requires a minor version at least as great as the one with
which the executable was linked. If it were linked with 4.2.x, for example,
it would run with a 4.3.x library but not a 4.1.x.Other systems treat the
second component as an extension of the the first component, so an ex-
ecutable linked with a 4.2.x library will only run with a 4.2.x library. The
third component is universally treated as a patch level. Executables prefer
the highest available patch level, but any patch level will do.

Different systems take slightly different approaches to finding the appro-
priate libraries at runtime. Sun systems have a fairly complex runtime
loader that looks at all of the file names in the library directory and picks
the best one. Linux systems use symbolic links to avoid the search pro-
cess. If the latest version of the libc.so library is version 4.2.2, the li-
brary’s name is libc_s.4.2.2, but the library is also linked to
libc_s.4.2 so the loader need only open the shorter name and the cor-
rect version is selected.

Most systems permit shared libraries to reside in multiple directories.An
environment variable such asLD_LIBRARY_PATH can override the path
built into the executable, permitting developers to substitute library ver-
sions in their private directories for debugging or performance testing.
(Programs that use the "set user ID" feature to run as other than the current
user have to ignore LD_LIBRARY_PATH to prevent a malicious user
from substituting a trojan horse library.)

9-238 Sharedlibraries

Linking with shared libraries

Linking with static shared libraries is far simpler than creating the li-
braries, because the process of creating the stub libraries has already done
nearly all the hard work to make the linker resolve program addresses to
the appropriate places in the libraries. The only hard part is arranging for
the necessary shared libraries to be mapped in when the program starts.

Each format provides a trick to let the linker create a list of libraries that
startup code can use to map in the libraries. COFF libraries use a brute
force approach; ad hoc code in the linker creates a section in the COFF file
with the names of the libraries. The Linux linker had a somewhat less
brute force approach that created a special symbol type called a "set vec-
tor". Set vectors are treated like normal global symbols, except that if
there are multiple definitions, the definitions are all put in an array named
by the symbol. Each shared library stub defines a set vector symbol
___SHARED_LIBRARIES__ that is the address of a structure containing
the name, version, and load address of the library. The linker creates an
array of pointers to each of those structures and calls it___SHARED_LI-
BRARIES__ so the runtime startup code can use it.The BSD/OS shared
library scheme uses no linker tricks at all. Rather, the shell script
wrapper used to create a shared executable runs down the list of li-
braries passed as arguments to the command or used implicitly (the C
library), extracts the file names and load addresses for those libraries
fr om a list in a system file, writes a little assembler source file contain-
ing an array of structures containing library names and load address-
es, assembles that file, and includes the object file in the list of argu-
ments to the linker.

In each case, the references from the program code to the library addresses
are resolved automatically from the addresses in the stub library.

Running with shared libraries

Starting a program that uses shared libraries involves three steps: loading
the executable, mapping the libraries, and doing library-specific initializa-
tion. In each case, the program executable is loaded into memory by the
system in the usual way. After that, the different schemes diverge. The
System V.3 kernel had extensions to handle COFF shared library executa-

Shared libraries 9-239

bles and the kernel internally looked at the list of libraries and mapped
them in before starting the program. The disadvantages of this scheme
were ‘‘kernel bloat’’, adding more code to the nonpagable kernel, and in-
flexibility, since it didn’t permit any flexibility or upgradability in future
versions. (SystemV.4 scrapped the whole scheme and went to ELF dy-
namic shared libraries which we address in the next chapter.)

Linux added a single uselib() system call that took the file name and ad-
dress of a library and mapped it into the program address space. The start-
up routine bound into the executable ran down the list of libraries, doing a
uselib() on each.

The BSD/OS scheme uses the standard mmap() system call that maps
pages of a file into the address space and a bootstrap routine that is linked
into each shared library as the first thing in the library. The startup routine
in the executable runs down the table of shared libraries, and for each one
opens the file, maps the first page of the file to the load address, and then
calls the bootstrap routine which is at a fixed location near the beginning
of that page following the executable file header. The bootstrap routine
then maps the rest of the text segment, the data segment, and maps fresh
address space for the bss segment, then returns.

Once the segments are all mapped, there’s often some library-specific ini-
tialization to do, for example, putting a pointer to the system environment
strings in the global variable environ specified by standard C.The
COFF implementation collects the initialization code from the.init
segments in the program file, and runs it from the program startup code.
Depending on the library it may or may not call routines in the shared li-
brary. The Linux implemention doesn’t do any library initialization and
documents the problem that variables defined in both the program and the
library don’t work very well.

In the BSD/OS implementation, the bootstrap routine for the C library re-
ceives a pointer to the table of shared libraries and maps in all of the other
libraries, minimizing the amount of code that has to be linked into individ-
ual executables. Recentversions of BSD use ELF format executables.
The ELF header has ainterp section containing the name of an "inter-
preter" program to use when running the file.BSD uses the shared C li-

9-240 Sharedlibraries

brary as the interpreter, which means that the kernel maps in the shared C
library before the program starts, saving the overhead of some system
calls. Thelibrary bootstrap routine does the same initializations, maps the
rest of the libraries, and, via a pointer, calls the main routine in the pro-
gram.

The malloc hack, and other shared library problems

Although static shared libraries have excellent performance, their long-
term maintenance is difficult and error-prone, as this anecdote illustrates.

In a static library, all intra-library calls are permanently bound, and it’s not
possible to substitute a private version of a routine by redefining the rou-
tine in a program that uses the library. For the most part, that’s not a prob-
lem since few programs redefine standard library routines likeread() or
strcmp(), or even if they do it’s not a major problem if the program us-
es a private version ofstrcmp() while routines in the library call the
standard version.

But a lot of programs define their own versions ofmalloc() and
free(), the routines that allocate heap storage, and multiple versions of
those routines in a program don’t work. Thestandardstrdup() routine,
for example, returns a pointer to a string allocated by malloc, which the
application can free when no longer needed.If the library allocated the
string one version of malloc, but the application freed that string with a
different version of free, chaos would ensue.

To permit applications to provide their own versions of malloc and free,
the System V.3 shared C library uses an ugly hack, Figure 4. The system’s
maintainers redefined malloc and free as indirect calls through pointers
bound into the data part of the shared library that we’ll callmalloc_ptr
andfree_ptr.
extern void *(*malloc_ptr)(size_t);
extern void (*free_ptr)(void *);
#define malloc(s) (*malloc_ptr)(s)
#define free(s) (*free_ptr)(s)

Shared libraries 9-241

Figure 9-4: The malloc hack

picture of program, shared C library.
malloc pointer and init code
indirect calls from library code

Then they recompiled the entire C library, and added these lines (or the as-
sembler equivalent) to the.init section of the stub library, so they are
included in every program that uses the shared library.
#undef malloc
#undef free

malloc_ptr = &malloc;
free_ptr = &free;

9-242 Sharedlibraries

Since the stub library is bound into the application, not the shared library,
its references to malloc and free are resolved at the time each program is
linked. If there’s a private version of malloc and free, it puts pointers to
them in the pointers, otherwise it will use the standard library version. Ei-
ther way, the library and the application use the same version of malloc
and free.

Although the implementation of this trick made maintenance of the library
harder, and doesn’t scale to more than a few hand-chosen names, the idea
that intra-library calls can be made through pointers that are resolved at
program runtime is a good one, so long as it’s automated and doesn’t re-
quire fragile manual source code tweaks.We’l l find out how the automat-
ed version works in the next chapter.

Name conflicts in global data remain a problem with static shared li-
braries. Considerthe small program in Figure 5. If you compile and link
it with any of the shared libraries we described in this chapter, it will print
a status code of zero rather than the correct error code. That’s because
int errno;

defines a new instance of errno which isn’t bound to the one in the shared
library. If you uncomment theextern, the program works, because now
it’s an undefined global reference which the linker binds to the errno in the
shared library. As we’ll see, dynamic linking solves this problem as well,
at some cost in performance.

Figure 9-5: Address conflict example

#include <stdio.h>

/* extern */
int errno;

main()
{
unlink("/non-existent-file");
printf("Status was %d\n", errno);

Shared libraries 9-243

}

Finally, even the jump table in Unix shared libraries has been known to
cause compatibility problems. From the point of view of routines outside
a shared library, the address of each exported routine in the library is the
address of the jump table entry. But from the point of view of routines
within the library, the address of that routine may be the jump table entry,
or may be the real entry point to which the table entry jumps. There have
been cases where a library routine compared an address passed as an argu-
ment to see if it were one of the other routines in the library, in order to do
some special case processing.

An obvious but less than totally effective solution is to bind the address of
the routine to the jump table entry while building the shared library, since
that ensures that all symbolic references to routines within the library are
resolved to the table entry. But if two routines are within the same object
file, the reference in the object file is usually a relative reference to the
routine’s address in the text segment. (Sinceit’s in the same object file,
the routine’s address is known and other than this peculiar case, there’s no
reason to make a symbolic reference back into the same object file.)Al-
though it would be possible to scan relocatable text references for values
that match exported symbol addresses, the most practical solution to this
problem is ‘‘don’t do that’’, don’t write code that depends on recognizing
the address of a library routine.

Windows DLLs have a similar problem, since within each EXE or DLL,
the addresses of imported routines are considered to be the addresses of
the stub routines that make indirect jumps to the real address of the rou-
tine. Again, the most practical solution to the problem is ‘‘don’t do that.’’

Exercises

If you look in a /shlib directory on a Unix system with shared libraries,
you’ll usually see three or four versions of each library with names like
libc_s.2.0.1 andlibc_s.3.0.0. Why not just have the most re-
cent one?

9-244 Sharedlibraries

In a stub library, why is it important to include all of the undefined globals
for each routine, even if the undefined global refers to another routine in
the shared library?

What difference would it make if a stub library were a single large ex-
ecutable with all of the library’s symbols as in COFF or Linux, or an actu-
al library with separate modules?

Project

We’l l extend the linker to support static shared libraries.This involves
several subprojects, first to create the shared libraries, and then to link ex-
ectables with the shared libraries.

A shared library in our system is merely an object file which is linked at a
given address. Therecan be no relocations and no unresolved symbol ref-
erences, although references to other shared libraries are OK. Stub li-
braries are normal directory-format or file-format libraries, with each entry
in the library containing the exported (absolute) and imported symbols for
the corresponding library member but no text or data.Each stub library
has to tell the linker the name of the corresponding shared library. If you
use directory format stub libraries, a file called "LIBRARY NAME" con-
tains lines of text. Thefirst line is the name of the corresponding shared
library, and the rest of the lines are the names of other shared libraries up-
on which this one depends. (The space prevents name collisions with
symbols.) Ifyou use file format libraries, the initial line of the library has
extra fields:
LIBRARY nnnn pppppp fffff ggggg hhhhh ...

where fffff i s the name of the shared library and the subsequent fields are
the names of any other shared libraries on which it depends.

Project 9-1: Make the linker produce static shared libraries and stub li-
braries from regular directory or file format libraries.If you haven’t al-
ready done so, you’ll have to add a linker flag to set the base address at
which the linker allocates the segments. Theinput is a regular library, and
stub libraries for any other shared libraries on which this one depends.
The output is an executable format shared library containing the segments
of all of the members of the input library, and a stub library with a stub

Shared libraries 9-245

member corresponding to each member of the input library.

Project 9-2:Extend the linker to create executables using static shared li-
braries. Project9-1 already has most of the work of searching stub li-
braries symbol resolution, since the way that an executable refers to sym-
bols in a shared library is the same as the way that one shared library
refers to another. The linker needs to put the names of the required li-
braries in the output file, so that the runtime loader knows what to load.
Have the linker create a segment called.lib that contains the names of
the shared libraries as strings with a null byte separating the strings and
two null bytes at the end. Create a symbol_SHARED_LIBRARIES that
refers to the beginning of the.lib section to which code in the startup
routine can refer.

