Shared libraries 9-227

Chapter 9
Shared libraries

$Revision: 2.3 $
$Date; 1999/06/15 03:30:36 $

Program libraries date back to the earliest days of computing, since pro-
grammers quickly realized that theould sae a bt of time and dbrt by *
reusing chunks of program cod&Vith the adent of compilers for lan- *
guages like Fortran and COBOL, libraries became an gné part of pro- *
gramming. Compiledanguages use libraries explictly when a program*
calls a standard procedure such as sqrt(), andugee libraries implicitly — *
for 1/0O, corversions, sorting, and mgrother functions too compteto ex- *
press as in-line code. As languagesehgptten more compie libraries *
have gtten correspondingly more compleWhen| wrote a Fortran 77 *
compiler twenty years ago, the runtime librargsnalready more evk *
than the compiler itself, and a Fortran 77 library is far simpler than one fdr
C++. *

The gravth of language libraries means not only that all programs includ&
library code, bt that most programs include a lot of the same library code®
Every C program, for example, uses the system call liprearly all use *
the standard 1/O library routines such as printf, andymae other popu- *
lar libraries for math, networking, and other common functiomhis *
means that in a typical Unix system with a thousand compiled programns,
theres dose to a thousand copies of printf. If all those programs could
share a single cgpof the library routines theuse, the savings in disk *
space would be substantiglOn a Unix system without shared libraries, *
theres five © ten m@abytes of copies of printf alonejven more impor *
tant, if running programs could share a single in-memory obghe li- *
braries, the main memory savings could be very significant, bethgsa *
memory and improving paging behavior *

All shared library schemes work essentially the sarag vt link time, *
the linker searches through libraries as usual to find modules thateesol¥
otherwise undefined external symboBut rather than copying the con- *
tents of the module into the output file, the énknakes a note of what li- *
brary the module came from, and puts a list of the libraries inxhe e*

9-228 Sharetibraries

ecutable. Whenhe program is loaded, startup code finds those librarie$
and maps them into the progranaidress space before the program starts;}
Figure 1. Standard operating system file mapping semantics automatically
share pages that are mapped read-only oy-oapwrite. Thestartup code *
that does the mapping may be in the operating systemxebetable, ina *
special dynamic linker mapped into the process’ address space, or some
combination of the three.

Figure 9-1: Program with shared libraries

Picture of gecutable, shared libraries

main excutable, app librarg library

files from different places

arrows shw refs from main to app, mainto C, app to C

Shared libraries 9-229

mydir/myprog Sl e
Ishlibflibc

executable i

program /€ runtime

library
I

lappl/lib/applib
/ i
|| application
library

In this chapterwe look at static linked shared libraries, that is, libraries
where program and data addresses in libraries are bourectdables at

link time. In the next chapter we look at the considerably more cample
dynamic linked libraries. Although dynamic linking is more flexible and
more "modern”, i8 dso a lot slower than static linking because a great
deal of work that would otherwise Veleen done once at link time is re-
done each time a dynamically linked program starts. Also, dynamically
linked programs usually use extigiie” code to call routines in shared li-

9-230 Sharetibraries

braries. Theglue usually contains geral jumps, which can sl down
calls considerably On systems that support both static and dynamic
shared libraries, unless programs need tkteaeflexibility of dynamic
linking, they’re faster and smaller with static linked libraries.

Binding time

Shared libraries raise binding time issues thattdauply to cowentional-
ly linked programs.A program that uses a shared library depends wn ha
ing that shared libraryvailable when the program is rur©ne kind of er
ror occurs when the required libraries atgmésent. Thers not much to
be done in that case other than printing a cryptic error message&ignd e

ing.

A much more interesting problem occurs when the library is preseant, b
the library has changed since the program wagdinkna conventionally

linked program, symbols are bound to addresses and library code is bound
to the eecutable at link time, so the library the programswinked with is

the one it uses gardless of subsequent changes to the libranth static
shared libraries, symbols are still bound to addresses at link time, but li-
brary code isrt’ bound to the wecutable until run time.(With dynamic
shared libraries, they’re both delayed until runtime.)

A static linked share library canthange very much without breaking the
programs that it is bound tdSince the addresses of routines and data in
the library are bound into the programyashanges in the addresses to
which the program is bound will causevbe.

A static shared library can sometimes be updated without breaking the
programs that use it, if the updates can be made in a way thatewe

ary addresses in the library that programs dependTdms permits "minor
version" updates, typically for small bug éis. Lager changes unaid-

ably change program addresses, which means that a system either needs
multiple versions of the librayyor forces programmers to relink all their
programs each time the library changéspractice, the solution isvari-

ably multiple versions, since disk space is cheap and trackimg elery
executable that might he used a shared library is rarely possible.

Shared libraries 9-231

Shared libraries in practice

In the rest of this chapter we concentrate on the static shared libraries pro-
vided in UNIX System V Release 3.2 (COFF format), older Linux systems
(a.out format), and the BSD/OS detive o 4.4BSD (a.out and ELF fer
mats.) Allthree work nearly the same, but some of the differences are in-
structve. The SVR3.2 implementation required changes in the linker to
support searching shared libraries, axigesve gerating system support

to do the runtime startup required. The Linux implemention required one
small tweak to the linkr and added a single system call to assist in library
mapping. TheBSD/OS implementation made no changes at all to the
linker or operating system, using a shell script to provide the necessary ar
guments to the linker and a modified version of the standard C library
startup routine to map in the libraries.

Address space management

The most dificult aspect of shared libraries is address space management.
Each shared library occupies a fixed piece of address space in each pro-
gram in which it is usedDifferent libraries hee © use non-gerlapping
addresses if tlyecan be used in the same program. Althoughpt'ssible

to check mechanically that libraries dbaverlap, assigning address space

to libraries is a black art. On the one hand, you want teleane slop in
between them so if a weversion of one library grows a little, itom’t

bump into the next library up. On the other hand, gdike to put your
popular libraries as close together as possible to minimize the number of
page tables needed. (Recall that on an x86, for example stlaesxond

level table for each 4MB block of address spacevadti a pocess.)

Theres invaiably a master table of shared library address space on each
system, with libraries starting some place in the address spacedy

from applications.Linux’s dart at h& 60000000, BSD/OS at a0000000.
Commercial vendors subdivide the address space further betesédarv
supplied libraries and user and third-party libraries which start at
a0800000 in BSD/OS, for example.

Generally both the code and data addresses for each librarypéioilg
defined, with the data area starting on a page boundary a page abietw
the end of the codeThis makes it possible to create minor version up-

9-232 Sharetibraries

dates, since the updates frequently dohange the data layout, but just
add or change code.

Each indvidual shared library exports symbols, both code and data, and
usually also imports symbols if the library depends on other librafks.
though it would werk if one just linked routines together into a shared li-
brary in haphazard ordereal libraries use some discipline in assigning
addresses to makt easier or at kast possible, to update a library without
changing the addresses of exported symbBt®. code addresses, rather
than eporting the actual address of each routine, the library contains a
table of jump instructions which jump to all of the routines, with the ad-
dresses of the jump instructiongperted as the addresses of the routines.
All jump instruction are the same size, so the addresses in the jump table
are easy to compute andmwt change from version to version so long as
no entries are added or deleted in the middle of the t&hte. extra jump

per routine is an insignificant sWdown, kut since the actual routine ad-
dresses are not visible,me&ersions of the library will be compatibleen

if routines in the n@ version arert’al the same sizes and addresses as in
the old version.

For exported data, the situation is more difficult, since tisene esy way

to add a leel of indirection like the one for code addresses. In practice it
turns out that>gorted data tends to be tables of known sizes that change
rarely such as the array d@¥l LE structures for the C standard 1/O library

or single word values l&ker r no (the error code from the most recent
system call) oit znane (pointers to tw grings giving the name of the
current time zone.With some manual effort, the programmer who creates
the shared library can collect the exported data at the front of the data sec-
tion in front of aly anorymous data that are part of individual routines,
making it less likely that exported addresses will change from erston

to the next.

Structur e of shared libraries

The shared library is arxecutable format file that contains all of the Ii-
brary code and data, ready to be mapped in, Figure 2.

Shared libraries 9-233

Figure 9-2: Structue of ypical shared library

File headera.out, COFFor BELF header
(Initialization routine, not avays present)
Jump table

Code

Global data

Private data

Some shared libraries start with a small bootstrap routine used to map in
the rest of the libraryAfter that comes the jump table, aligned on a page
boundary if its not the first thing in the libraryThe exported address of
each public routine in the library is the jump table entfgllowing the

jump table is the rest of thextesection (the jump table is considered to be
text, since its executable code), then theq@orted data and ate data.

The bss segment logically follows the data, but as ynoHimer executable

file, isn't actually present in the file.

Creating shared libraries

A UNIX shared library actually consists ofdwelated files, the shared li-
brary itself and a stub library for the linker to ugelibrary creation utili-
ty takes as input a normal library in anahiformat and some files of con-
trol information and uses them to create create tloefites. Thestub li-
brary contains no code or data at all (other than possibly daiotstrap
routine) but contains symbol definitions for programsduohkvith the li-
brary to use.

Creating the shared librarymolves these basic steps, which we discuss in
greater detail below:

. Determine at what address the librargode and data will be load-
ed.
. Scan through the input library to find all of the exported code sym-

bols. (Oneof the control files may be a list of some of symbols not
to export, if thg’'re just used for inter-routine communication with-
in the library.)

9-234 Sharetibraries

. Make up te jump table with an entry for each exported code sym-
bol.
. If theres an nitialization or loader routine at the beginning of the

library, compile or assemble that.

. Create the shared library: Run the linker and linkrghing to-
gether into one bigxecutable format file.

. Create the stub library: Extract the necessary symbols from the
newly created shared libraryeconcile those symbols with the
symbols from the input librayycreate a stub routine for each li-
brary routine, then compile or assemble the stubs and combine
them into the stub libraryln COFF libraries, thers’dso a little
initialization code placed in the stub library to be linked into each
executable.

Creating the jump table

The easiest ay to create the jump table is to write an assembler source
file full of jump instructions, Figure 3, and assemble it. Each jump in-
struction needs to be labelled in a systematic way so that the addresses can
later be extracted for the stub library.

A minor complication occurs on architectureslike x86 that hae dffer-

ent sizes of jump instructiond-or libraries containing less than 64K of
code, short 3 byte jumps are adequdater libraries larger than that,
longer 5 byte jumps are necessakixed sizes of jumps ardn/ery satis-
factory, both because it makes the table addresses harder to compute and
because it mads it far harder to makthe jump table compatible in future
builds of the library The simplest solution is to maldl of the jumps the
largest size.Alternatively, make dl of the jumps short, and for routines
that are too farwaay for short jumps, generate anonymous long jump in-
structions at the end of the table to which short instructions can jump.
(That's wsually more trouble than &'worth, since jump tables are rarely
more than a f@ hundred entries in the first place.)

Figure 9-3: Jump table

Shared libraries 9-235

start on a page boundary
.align 8; align on 8-byte boundary for variable |ength insns
JUWP read: jnmp _read
.align 8
JUMP wite: jnmp _wite

_read: ... code for read()

_wite: ... code for wite()

Creating the shared library

Once the jump table and, if needed, the loader routine are created, creating
the shared library is easylust run the linker with suitable switches to
make the code and data start at the right places, and link together the boot-
strap, the jump tables, and all of the routines from the input librEms

both assigns addresses t@rgthing in the library and creates the shared
library file.

One minor complication wrolves interlibrary references. If you're creat-

ing, say a ared math library that uses routines from the shared C library
the references ka o be nade correctly Assuming that the library whose
routines are needed has already been built when the linker buildsathe ne
library, it needs only to search the old libraygub library just like any

normal executable that refers to the old libraryhis will get all of the ref-
erences correct. The only remaining issue is that there needs to be some
way to ensure that anprograms that use the wdibrary also link to the

old library. Suitable design of the mestub library can ensure that.

Creating the stub library

Creating the stub library is one of the trickier parts of the shared library
process. Br each routine in the real librampe stub library needs to con-
tain a corresponding entry that defines both tkgoded and imported
global symbols.

9-236 Sharetibraries

The data global symbols are whesethe linker put them in the shared li-
brary image, and the most reasonable way to get their values is to create
the shared library with a symbol table and extract the symbols from that
symbol table.For code global symbols, the entry points are all in the jump
table, so it gqually easy todract the symbols from the shared library or
compute the addresses from the base address of the jump table and each
symbol’s position in the table.

Unlike a rormal library module, a module in the stub library contains no
code nor data, but just has symbol definitions. The symbuésthde db-
fined as absolute numbers rather than relocatable, since the shared library
has already had all of its relocation donkhe library creation program
extracts each routine from the input libraand from that routine gets the
defined and undefined globals, as well as the typ& ¢redata) of each
global. Itthen writes the stub routine, usually as a little assembler pro-
gram, defining each text global as the address of the jump tablesantry
data or bss global as the actual address in the shared, ld@n@ryach un-
defined global as undefinetlvhen it has a complete set of stub sources, it
assembles them all and combines them into a normal librarywarchi

COFF stub libraries use a fifent, more primitie design. Thg're single
object files with two named sectionsThe. | i b section contains all of the
relocation information pointing at the shared libraryd the. i ni t sec-
tion contains initialization code that is lied into each client program,
typically to initialize variables in the shared library.

Linux shared libraries are simpler still, an a.out file containing the symbol
definitions with "set gctor" symbols described in more detail belmr
use at program link time.

Shared libraries v@ rames assigned that are mechanicallyvedrfrom
the original library adding a version numbeif the original library vas
called/ I'i b/ l'i bc. a, the usual name for the C libragnd the current
library wversion is 4.0, the stub library might be
/lib/libc_s.4.0.0.a and the shared Ilibrary image
/shlib/libc_s.4.0.0. (The extra zero allows for minor version up-
dates.) Oncehe libraries are mad into the appropriate directories
they're ready to use.

Shared libraries 9-237

Version naming

Any shared library system needs a way to handle multiple versions of li-
braries. Wherma library is updated, the meversion may or may not be ad-
dress-compatible and call-compatible with previoessions. Unixsys-
tems address this issue with the multi-numbension names mentioned
above.

The first number changes each time w necompatible version of the li-
brary is releasedA program linked with a 4.x.x library canise a 3.x.X

nor a 5.x.x. The second number is the minersion. OnSun systems,
each &ecutable requires a minor version at least as great as the one with
which the &ecutable was lingd. Ifit were linked with 4.2.x, forxample,

it would run with a 4.3.x library but not a 4.1.QQther systems treat the
second component as an extension of the the first component, ge an e
ecutable linked with a 4.2.x library will only run with a 4.2.x libraijhe

third component is umersally treated as a patchvée Executables prefer

the highest\ailable patch leel, but ary patch level will do.

Different systems ta&kdightly different approaches to finding the appro-
priate libraries at runtime. Sun systemwéia firly comple runtime
loader that looks at all of the file names in the library directory and picks
the best one. Linux systems use symbolic linksvimdathe search pro-
cess. Ifthe latest version of the libc.so library is version 4.2.2, the li-
brarys name islibc_s.4.2.2, but the library is also linked to

i bc_s. 4. 2 so the loader need only open the shorter name and the cor
rect version is selected.

Most systems permit shared libraries to reside in multiple directofies.
ervironment variable such a€D LI BRARY_PATH can werride the path

built into the eecutable, permitting deslopers to substitute libraryev-

sions in their puate directories for delgging or performance testing.
(Programs that use the "set user ID" feature to run as other than the current
user hae t ignore LD LI BRARY_PATH to prevent a malicious user

from substituting a trojan horse library.)

9-238 Sharetibraries

Linking with shared libraries

Linking with static shared libraries is far simpler than creating the li-
braries, because the process of creating the stub libraries has already done
nearly all the hard work to makhe linker resole program addresses to

the appropriate places in the libraries. The only hard part is arranging for
the necessary shared libraries to be mapped in when the program starts.

Each format provides a trick to let the linker create a list of libraries that
startup code can use to map in the libraries. COFF libraries use a brute
force approach; ad hoc code in the éinkreates a section in the COFF file
with the names of the libraries. The Linux linker had a somewhat less
brute force approach that created a special symbol type called a&€set v
tor". Setvectors are treated l&k normal global symbols, except that if
there are multiple definitions, the definitions are all put in an array named
by the symbol. Each shared library stub defines a set vector symbol
____SHARED LI BRARI ES__ that is the address of a structure containing
the name, version, and load address of the librahe linker creates an
array of pointers to each of those structures and calls iISHARED LI -

BRARI ES __ so the runtime startup code can useTiie BSD/OS shaed
library scheme uses no linkr tricks at all. Rather, the shell script
wrapper used to create a shared executable runs down the list of li-
braries passed as arguments to the command or used implicitly (the C
library), extracts the file names and load addesses for those libraries
from a list in a system file, writes a little assembler soce file contain-

ing an array of structures containing library names and load addess-

es, assembles that file, and includes the object file in the list ofgar
ments to the linker.

In each case, the references from the program code to the library addresses
are resolved automatically from the addresses in the stub library.

Running with shared libraries

Starting a program that uses shared librarieslves three steps: loading
the executable, mapping the libraries, and doing library-specific initializa-
tion. Ineach case, the programeeutable is loaded into memory by the
system in the usualay. After that, the different schemesveige. The
System V.3 kernel had extensions to handle COFF shared lixenyta-

Shared libraries 9-239

bles and the kernel internally looked at the list of libraries and mapped
them in before starting the program. The disadages of this scheme
were ‘kernel bloat”, adding more code to the nonglalg kernel, and in-
flexibility, since it didnt permit ary flexibility or upgradability in future
versions. (SystenV.4 scrapped the whole scheme and went to ELF dy-
namic shared libraries which we address in the next chapter.)

Linux added a single uselib() system call that took the file name and ad-
dress of a library and mapped it into the program address space. The start-
up routine bound into thexecutable ran down the list of libraries, doing a
uselib() on each.

The BSD/OS scheme uses the standard mmap() system call that maps
pages of a file into the address space and a bootstrap routine thagds link
into each shared library as the first thing in the libraiye startup routine

in the eecutable runs den the table of shared libraries, and for each one
opens the file, maps the first page of the file to the load address, and then
calls the bootstrap routine which is at a fixed location near thiarbeg

of that page following thexecutable file headerThe bootstrap routine

then maps the rest of the text segment, the data segment, and maps fresh
address space for the bss segment, then returns.

Once the segments are all mapped, teasigen some library-specific ini-
tialization to do, for example, putting a pointer to the systevir@mment
strings in the global ariable envi r on specified by standard CThe
COFF implementation collects the initialization code from theni t
seggments in the program file, and runs it from the program startup code.
Depending on the library it may or may not call routines in the shared li-
brary The Linux implemention doesndo ay library initialization and
documents the problem thaanables defined in both the program and the
library dont work very well.

In the BSD/OS implementation, the bootstrap routine for the C library re-
ceives a winter to the table of shared libraries and maps in all of the other
libraries, minimizing the amount of code that has to be linked intgiddi

ual eecutables. Recentersions of BSD use ELF formaixecutables.
The ELF header hasiant er p section containing the name of an "inter
preter" program to use when running the fig&SD uses the shared C Ii-

9-240 Sharetibraries

brary as the interpretewhich means that the kernel maps in the shared C
library before the program starts, saving therleead of some system
calls. Thelibrary bootstrap routine does the same initializations, maps the
rest of the libraries, and, via a pointealls the main routine in the pro-
gram.

The malloc hack, and other shared library problems

Although static shared libraries Jea excellent performance, their long-
term maintenance is difficult and error-prone, as this anecdote illustrates.

In a static librarydl intra-library calls are permanently bound, and it
possible to substitute a pate version of a routine by redefining the rou-
tine in a program that uses the libraRor the most part, thatot a prob-
lem since fer programs redefine standard library routines tilkad() or
strcnp(), or even if they do it’'s not a major problem if the program us-
es a pwate version ofst r cnp() while routines in the library call the
standard version.

But a lot of programs define theiwn versions ofmal | oc() and
free(), the routines that allocate heap storage, and multgigions of
those routines in a program dowork. Thestandardst r dup() routine,

for example, returns a pointer to a string allocated by malloc, which the
application can free when no longer need#dhe library allocated the
string one version of malloc, but the application freed that string with a
different version of free, chaos would ensue.

To permit applications to provide their owrengions of malloc and free,

the System V.3 shared C library uses an ugly hack, Figure 4. The s/stem’
maintainers redefined malloc and free as indirect calls through pointers
bound into the data part of the shared library that we’llraallll oc_ptr
andfree_ptr.

extern void *(*malloc_ptr)(size_t);

extern void (*free_ptr)(void *);

#define malloc(s) (*malloc_ptr)(s)

#define free(s) (*free_ptr)(s)

Shared libraries 9-241

Figure 9-4: The malloc hack

picture of program, shared C library.
malloc pointer and init code
indirect calls from library code

shared

program library

"I | call |

| ;a:unc{) malloc() |

\ Il malloc()

malloc() Ay

AT I & |
| R I\Q' H gk

* pointer to malloc

Then thg recompiled the entire C librargnd added these lines (or the as-
sembler eqwialent) to the. i ni t section of the stub librango hey are
included in gery program that uses the shared library.

#undef mal | oc

#undef free

mal | oc_ptr = &mal |l oc;
free ptr = &free;

9-242 Sharetibraries

Since the stub library is bound into the application, not the shared Jibrary
its references to malloc and free are resolat the time each program is
linked. Iftheres a pivate version of malloc and free, it puts pointers to
them in the pointers, otherwise it will use the standard librargion. Ei-

ther way, the library and the application use the same version of malloc
and free.

Although the implementation of this trick made maintenance of the library
harder and doesrt’ scale to more than aviehand-chosen names, the idea
that intra-library calls can be made through pointers that are resolved at
program runtime is a good one, so long asaitomated and doedrre-

quire fragile manual source code tweak¥e'll find out hev the automat-

ed version works in the next chapter.

Name conflicts in global data remain a problem with static shared li-
braries. Considethe small program in Figure 5. If you compile and link
it with any of the shared libraries we described in this chapterill print

a datus code of zero rather than the correct error code. sTheatause

int errno;

defines a n& instance of errno which igrbound to the one in the shared
library. If you uncomment thext er n, the program works, becausemno
it's an undefined global reference which the linker binds to the errno in the
shared library As we’ll see, dynamic linking solves this problem as well,
at some cost in performance.

Figure 95: Address conflict example

#i ncl ude <stdi o. h>

/* extern */
int errno;

mai n()

{
unl i nk("/non-existent-file");
printf("Status was %\ n", errno);

Shared libraries 9-243

Finally, even the jump table in Unix shared libraries has been known to
cause compatibility problems. From the point ofwigf routines outside

a dared librarythe address of eaclxmorted routine in the library is the
address of the jump table entrut from the point of vier of routines
within the library the address of that routine may be the jump table,entry
or may be the real entry point to which the table entry jumps. Theee ha
been cases where a library routine compared an address passedjas an ar
ment to see if it were one of the other routines in the libnaryrder to do
some special case processing.

An obvious but less than totallyfe€tive lution is to bind the address of
the routine to the jump table entry while building the shared libsarge

that ensures that all symbolic references to routines within the library are
resoled to the table entryBut if two routines are within the same object
file, the reference in the object file is usually a re¢ateference to the
routines address in the text genent. (Sincat’s in the same object file,
the routines aldress is known and other than this peculiar case, share’
reason to maka ymbolic reference back into the same object filkl)
though it would be possible to scan relocatabie teferences for alues

that match eported symbol addresses, the most practical solution to this
problem is ‘don’t do that”, don’t write code that depends on recognizing
the address of a library routine.

Windows DLLs hae a smilar problem, since within each EXE or DLL,

the addresses of imported routines are considered to be the addresses of
the stub routines that makndirect jumps to the real address of the rou-
tine. Again, the most practical solution to the problem is “dalo that”

Exercises

If you look in a /shlib directory on a Unix system with shared libraries,
you'll usually see three or four versions of each library with names lik
libc_s.2.0.1andlibc_s.3.0.0. Why not just hae the most re-
cent one?

9-244 Sharetibraries

In a stub librarywhy is it important to include all of the undefined globals
for each routine,\&n if the undefined global refers to another routine in
the shared library?

What difference would it makif a dub library were a single large«e
ecutable with all of the librarg’symbols as in COFF or Linux, or an actu-
al library with separate modules?

Project

WEe'll extend the linker to support static shared librari@is involves
several subprojects, first to create the shared libraries, and then tadink e
ectables with the shared libraries.

A shared library in our system is merely an object file which isbin&t a
given address. Therean be no relocations and no unresdlgymbol ref-
erences, although references to other shared libraries are OK. Stub li-
braries are normal directory-format or file-format libraries, with each entry
in the library containing thexported (absolute) and imported symbols for
the corresponding library member but no text or d&ach stub library

has to tell the linkr the name of the corresponding shared libréryou

use directory format stub libraries, a file called "LIBRARAME" con-

tains lines of tet. Thefirst line is the name of the corresponding shared
library, and the rest of the lines are the names of other shared libraries up-
on which this one depends. (The spacevgrs name collisions with
symbols.) Ifyou use file format libraries, the initial line of the library has
extra fields:

LI BRARY nnnn pppppp fffff ggggg hhhhh ...

where ffff i s the name of the shared library and the subsequent fields are
the names of gnother shared libraries on which it depends.

Project 9-1: Make the linker produce static shared libraries and stub li-
braries from regular directory or file format librariel$.you haven't a-
ready done so, yoll'have 1o add a linker flag to set the base address at
which the linker allocates the@ments. Thenput is a regular libraryand
stub libraries for an other shared libraries on which this one depends.
The output is anxecutable format shared library containing thgreents

of all of the members of the input libragnd a stub library with a stub

Shared libraries 9-245

member corresponding to each member of the input library.

Project 9-2:Extend the linker to createxecutables using static shared li-
braries. ProjecB-1 already has most of the work of searching stub li-
braries symbol resolution, since thaymhat an xecutable refers to sym-
bols in a shared library is the same as tlay what one shared library
refers to anotherThe linker needs to put the names of the required li-
braries in the output file, so that the runtime loader knows what to load.
Have the linker create a segment calleldi b that contains the names of
the shared libraries as strings with a null byte separating the strings and
two null bytes at the end. Create a symb&HARED LI BRARI ES that
refers to the beginning of thd i b section to which code in the startup
routine can refer.

