
Loading and overlays 8-201

Chapter 8
Loading and overlays

$Revision: 2.3 $
$Date: 1999/06/15 03:30:36 $

Loading is the process of bringing a program into main memory so it can*
run. In this chapter we look at the loading process, concentrating on load-*
ing programs that have already been linked. Many systems usedto have *
linking loaders that combined the linking and loading process, but those*
have now practically disappeared, with the only one I know of on current *
hardware being on MVS and the dynamic linkers we’ll cover in chapter *
10. Linking loaders weren’t all that different from plain linkers, with the *
primary and obvious difference being that the output was left in memory*
rather than placed in a file. *

Basic loading

We touched on most of the basics of loading in Chapter 3, in the context of
object file design. Loading is a little different depending on whether a
program is loaded by mapping into a process address space via the virtual
memory system or just read in using normal I/O calls.

On most modern systems, each program is loaded into a fresh address
space, which means that all programs are loaded at a known fixed address,
and can be linked for that address. In that case, loading is pretty simple:

• Read enough header information from the object file to find out
how much address space is needed.

• Allocate that address space, in separate segments if the object for-
mat has separate segments.

• Read the program into the segments in the address space.

• Zero out any bss space at the end of the program if the virtual
memory system doesn’t do so automatically.

• Create a stack segment if the architecture needs one.

8-202 Loadingand overlays

• Set up any runtime information such as program arguments or en-
vironment variables.

• Start the program.
If the program isn’t mapped through the virtual memory system,
reading in the object file just means reading in the file with normal
"read" system calls.On systems which support shared read-only
code segments, the system needs to check whether there’s already
a copy of the code segment loaded in and use that rather than mak-
ing another copy.

On systems that do memory mapping, the process is slightly more compli-
cated. Thesystem loader has to create the segments, then arrange to map
the file pages into the segments with appropriate permissions, read-only
(RO) or copy-on-write (COW). In some cases, the same page is double
mapped at the end of one segment and the beginning of the next, RO in
one and COW in the other, in formats like compact Unix a.out.The data
segment is generally contiguous with the bss segment, so the loader has to
zero out the part of the last page after the end of the data (since the disk
version usually has symbols or something else there), and allocate enough
zero pages following the data to cover the bss segment.

Basic loading, with relocation

A few systems still do load time relocation for executables, and many do
load time relocation of shared libraries. Some, like MS-DOS, lack usable
hardware relocation. Others, like MVS, have hardware relocation but are
descended from systems that didn’t hav eit. Somehave hardware reloca-
tion but can load multiple executable programs and shared libraries into
the same address space, so linkers can’t count on having specific addresses
available.

As discussed in Chapter 7, load-time relocation is far simpler than link-
time relocation, because the entire program is relocated as a unit. If, for
example, the program is linked as though it would be loaded at location
zero, but is in fact loaded at location 15000, all of the places in the pro-
gram that require fixups will get 15000 added.After reading the program
into memory, the loader consults the relocation items in the object file and
fixes up the memory locations to which the items point.

Loading and overlays 8-203

Load-time relocation can present a performance problem, because code
loaded at different virtual addresses can’t usually be shared between ad-
dress spaces, since the fixups for each address space are different. Oneap-
proach, used by MVS, and to some extent by Windows and AIX is to cre-
ate a shared memory area present in multiple address spaces and load oft-
used programs into that. (MVS calls this this link pack area.)This has the
problem that different processes don’t get separate copies of writable data,
so the application has to be written to allocate all of its writable storage
explicitly.

Position-independent code

One popular solution to the dilemma of loading the same program at dif-
ferent addresses is position independent code (PIC).The idea is simple,
separate the code from the data and generate code that won’t change re-
gardless of the address at which it’s loaded. Thatway the code can be
shared among all processes, with only data pages being private to each
process.

This is a surprisingly old idea. TSS/360 used it in 1966, and I don’t be-
lieve it was original there. (TSS was notoriously buggy, but I can report
from personal experience that the PIC features really worked.)

On modern architectures, it’s not difficult to generate PIC executable code.
Jumps and branches are generally either PC-relative or relative to a base
register set at runtime, so no load-time relocation is required for them.
The problem is with data addressing.The code can’t contain any direct
data addresses, since those would be relocatable and wouldn’t be PIC.
The usual solution is to create a table of data addresses in a data page and
keep a pointer to that table in a register, so the code can use indexed ad-
dressing relative to that register to pick up the data. This works at the cost
of an extra indirection for each data reference, but there’s still the question
of how to get the initial data address into the register. ,

TSS/360 position independent code

TSS took a brute-force approach.Every routine had two addresses, the
address of the code, known as the V-con (short for V style address con-
stant, which even non-PIC code needed) and the address of the data,

8-204 Loadingand overlays

known as the R-con.The standard OS/360 calling sequence requires that
the caller provide an 18 word register save area pointed to by register 13.
TSS extended the save area to 19 words and required that the caller place
callee’s R-con into that 19th word before making the call, Figure 1.Each
routine had in its data segment the V-cons and R-cons for all of the rou-
tines that it called, and stored the appropriate R-con into the outgoing save
area before each call. The main routine in a program received a sav earea
from the operating system which provided the initial R-con.

Figure 8-1: TSS style two-address procedure call

TSS style with R-con in the save area
Caller:
- copy R-con into
save area

- load V-con into R15
- Call via R15

Callee:
- load R-con from save area
- addresses of sub-procedures
in data area

Loading and overlays 8-205

This scheme worked, but is poorly suited for modern systems.For one
thing, copying the R-cons made the calling sequence bulky. For another, it
made procedure pointers two words, which didn’t matter in the 1960s but
is an issue now since in programs written in C, all pointers have to be the
same size. (The C standard doesn’t mandate it, but far too much existing
C code assumes it to do anything else.)

8-206 Loadingand overlays

Per- routine pointer tables

A simple modification used in some Unix systems is to treat the address of
a procedure’s data as the address of the procedure, and to place a pointer
to the procedure’s code at that address, Figure 2.To call a procedure, the
caller loads the data address into an agreed data pointer register, then loads
the code address from the location pointed to by the data pointer into a
scratch register and calls the routine. This is easy to implement, and has
adequate if not fabulous performance.

Figure 8-2: Code via data pointers

[ROMP style data table with code pointer at the beginning.]
Caller:
- Load pointer table
address into RP

- Load code address from
0(RP) into RC

- Call via RC

Callee:
- RP points to pointer
table

- Table has addresses of
pointer tables for
sub-procedures

Loading and overlays 8-207

Table of Contents

IBM’ s AIX uses a more sophisticated version of this scheme. AIX pro-
grams group routines intomoduleswith a module typically being the ob-
ject code generated from a single C or C++ source file or a group of relat-
ed source files. The data segment of each module contains a table of con-

8-208 Loadingand overlays

tents (TOC), which contains the combined pointer tables for all of the rou-
tines in the module as well as some of the small static data for the routines.
Register 2 always contains the address of TOC for the current module,
permitting direct access to the static data in the TOC, and indirect address-
ing of code and data to which the TOC contains pointers. Calls within a
single module are a single "call" instruction, since the caller and callee
share the same TOC. Inter-module calls have to switch TOCs before the
call and switch back afterwards.

Compilers generate all calls as a call instruction, followed by a placehold-
er no-op instruction, which is correct for intra-module calls. When the
linker encounters an inter-module call, it generates a routine called a glob-
al linkage orglink at the end of the module’s text segment. Theglink
saves the caller’s TOC on the stack, loads the callee’s TOC and address
from pointers in the the caller’s TOC, then jumps to the routine.The link-
er redirects each inter-module call to the glink for the called routine, and
patches the following no-op to a load instruction that restores the TOC
from the stack. Procedure pointers are pointers to a TOC/code pair, and
calls through a pointer use a generic glink routine that uses the TOC and
code address the pointer points to.

This scheme makes intra-module calls as fast as possible.Inter-module
calls returns are slowed somewhat by the detour through the glink routine,
but the slowdown is small compared to some of the alternatives we’ll see
in a moment.

ELF position independent code

Unix System V Release 4 (SVR4) introduced a PIC scheme similar to the
TOC scheme for its ELF shared libraries. The SVR4 scheme is now uni-
versally used by systems that use ELF executables, Figure 3.It has the ad-
vantage of returning to the normal convention that the address of a proce-
dure is the address of the code for the procedure, regardless of whether
one is calling PIC code, found in shared ELF libraries, or non-PIC code,
found in regular ELF executables, at the cost of somewhat more per-rou-
tine overhead than the TOC scheme’s.

Loading and overlays 8-209

Its designers noticed that an ELF executable consists of a group of code
pages followed by a group of data pages, and regardless of where in the
address space the program is loaded, the offset from the code to the data
doesn’t change. Soif the code can load its own address into a register, the
data will be at a known distance from that address, and references to data
in the program’s own data segment can use efficient based addressing with
fixed offsets.

The linker creates a global offset table (GOT) containing pointers to all of
the global data that the executable file addresses. (Each shared library has
its own GOT, and if the main program were compiled with PIC, which it
normally isn’t, it would have a GOT as well.) Sincethe linker creates the
GOT, there is only one pointer per ELF executable for each datum regard-
less of how many routines in the executable refer to it.

If a procedure needs to refer to global or static data, it’s up to the proce-
dure itself to load up the address of the GOT. The details vary by architec-
ture, but the 386 code is typical:
call .L2 ;; push PC in on the stack

.L2:
popl %ebx ;; PC into register EBX
addl $_GLOBAL_OFFSET_TABLE_+[.-.L2],%ebx;; adjust ebx to GOT address

It consists of a call instruction to the immediately following location,
which has the effect of pushing the PC on the stack but not jumping, then
a pop to get the saved PC in a register and an add immediate of the differ-
ence between the address the GOT and address the target of the call. In an
object file generated by a compiler, there’s a special R_386_GOTPC relo-
cation item for the operand of the addl instruction.It tells the linker to
substitute in the offset from the current instruction to the base address of
the GOT, and also serves as a flag to the linker to build a GOT in the out-
put file. In the output file, there’s no relocation needed for the instruction
since the distance from the addl to the GOT is fixed.

Figure 8-3: PIC code and data with fixed offsets

picture of code page showing constant offset to data even

8-210 Loadingand overlays

though loaded at different addresses in different address
spaces.

Once the GOT register is loaded, code can reference local static data using
the GOT register as a base register, since the distance from a static datum
in the program’s data segment to the GOT is fixed at link tine. Addresses
of global data aren’t bound until the program is loaded (see Chapter 10),
so to reference global data, code has to load a pointer to the data from the
GOT and then deference the pointer. This extra memory reference makes
programs somewhat slower, although it’s a cost that most programmers are
willing to pay for the convenience of dynamically linked libraries.Speed
critical code can use static shared libraries (Chapter 9) or no shared li-
braries at all.

Loading and overlays 8-211

To support PIC, ELF defines a handful of special relocation types for code
that uses the GOT in addition R_386_GOTPC or its equivalent. Theexact
types are architecture-specific, but the x86 is typical:

• R_386_GOT32: The relative location of the slot in the GOT
where the linker has placed a pointer to the given symbol. Used
for indirectly referenced global data.

• R_386_GOTOFF: The distance from the base of the GOT to the
given symbol or address. Used to address static data relative to the
GOT.

• R_386_RELATIVE: Used to mark data addresses in a PIC shared
library that need to be relocated at load time.

For example, consider this scrap of C code:
static int a; /* static variable */
extern int b; /* global variable */
...
a = 1; b= 2;

Variablea is allocated in the bss segment of the object file, which means it
is at a known fixed distance from the GOT. Object code can reference this
variable directly, using the ebx as a base register and a GOT-relative offset:
movl $1,a@GOTOFF(%ebx);; R_386_GOTOFF reference to variable "a"

Variableb is global, and its location may not be known until runtime if it
turns out to be in a different ELF library or executable. Inthis case, the
object code references a pointer tob which the linker creates in the GOT:
movl b@GOT(%ebx),%eax;; R_386_GOT32 ref to address of variable "b"
movl $2,(%eax)

Note that the compiler only creates the R_386_GOT32 reference, and it’s
up to the linker to collect all such references and make slots for them in
the GOT.

Finally, ELF shared libraries contain R_386_RELATIVE relocation entries
that the runtime loader, part of the dynamic linker we examine in Chapter
10, uses to do loadtime relocaion.Since the text in shared libraries is in-

8-212 Loadingand overlays

variably PIC, there’s no relocation entries for the code, but data can’t be
PIC, so there is a relocation entry for every pointer in the data segment.
(Actually, you can build a shared library with non-PIC code, in which case
there will be relocation entries for the text as well, although almost no-
body does that since it makes the text non-sharable.)

PIC costs and benefits

The advantages of PIC are straighforward; it makes it possible to load
code without having to do load-time relocation, and to share memory
pages of code among processes even though they don’t all have the same
address space allocated. The possible disadvantages are slowdowns at
load time, in procedure calls, in function prolog and epilog, and overall
slower code.

At load time, although the code segment of a PIC file needn’t be relocated,
the data segment does. In large libraries, the TOC or GOT can be very
large and it can take a long time to resolve all the entries. This is as much
a problem with dynamic linking, which we’ll address in Chapter 10, as
with PIC. Handling R_386_RELATIVE items or the equivalent to relo-
cate GOT pointers to data in the same executable is fairly fast, but the
problem is that many GOT entries point to data in other executables and
require a symbol table lookup to resolve.

Calls in ELF executables are usually dynamically linked, even calls within
the same library, which adds significant overhead. We revisit this in Chap-
ter 10.

Function prolog and epilogs in ELF files are quite slow. They hav eto save
and restore the GOT register, ebx in the x86, and the dummy call and pop
to get the program counter into a register are quite slow. From a perfor-
mance viewpoint, the TOC approach used in AIX wins here, since each
procedure can assume that its TOC register is already set at procedure en-
try.

Finally, PIC code is bigger and slower than non-PIC. The slowdown
varies greatly by architectures. On RISC systems with plenty of registers
and no direct addressing, the loss of one register to be the TOC or GOT
pointer isn’t significant, and lacking direct addressing they need a constant

Loading and overlays 8-213

pool of some sort anyway. The worst case is on the x86.It only has six
registers, so losing one of them to be the GOT pointer can make code sig-
nificantly worse. Sincethe x86 does have direct addressing, a reference to
external data that would be a simple MOV or ADD instruction in non-PIC
code turns into a load of the address followed by the MOV or ADD, which
both adds an extra memory reference and uses yet another precious regis-
ter for the temporary pointer.

Particularly on x86 systems, the performance loss in PIC code is signifi-
cant in speed-critical tasks, enough so that some systems retreat to a sort-
of-PIC approach for shared libraries.We’l l revisit this issue in the next
two chapters.

Bootstrap loading

The discussions of loading up to this point have all presumed that there’s
already an operating system or at least a program loader resident in the
computer to load the program of interest.The chain of programs being
loaded by other programs has to start somewhere, so the obvious question
is how is the first program loaded into the computer?

In modern computers, the first program the computer runs after a hardware
reset invariably is stored in a ROM known as tbe bootstrap ROM. as in
"pulling one’s self up by the bootstraps."When the CPU is powered on or
reset, it sets its registers to a known state.On x86 systems, for example,
the reset sequence jumps to the address 16 bytes below the top of the sys-
tem’s address space. The bootstrap ROM occupies the top 64K of the ad-
dress space and ROM code then starts up the computer. On IBM-compati-
ble x86 systems, the boot ROM code reads the first block of the floppy
disk into memory, or if that fails the first block of the first hard disk, into
memory location zero and jumps to location zero.The program in block
zero in turn loads a slightly larger operating system boot program from a
known place on the disk into memory, and jumps to that program which in
turn loads in the operating system and starts it. (There can be even more
steps, e.g., a boot manager that decides from which disk partition to read
the operating system boot program, but the sequence of increasingly capa-
ble loaders remains.)

8-214 Loadingand overlays

Why not just load the operating system directly? Because you can’t fit an
operating system loader into 512 bytes. The first level loader typically is
only able to load a single-segment program from a file with a fixed name
in the top-level directory of the boot disk.The operating system loader
contains more sophisticated code that can read and interpret a configura-
tion file, uncompress a compressed operating system executable, address
large amounts of memory (on an x86 the loader usually runs in real mode
which means that it’s tricky to address more than 1MB of memory.) The
full operating system can turn on the virtual memory system, loads the
drivers it needs, and then proceed to run user-level programs.

Many Unix systems use a similar bootstrap process to get user-mode pro-
grams running. The kernel creates a process, then stuffs a tiny little pro-
gram, only a few dozen bytes long, into that process. The tiny program
executes a system call that runs /etc/init, the user mode initialization pro-
gram that in turn runs configuration files and starts the daemons and login
programs that a running system needs.

None of this matters much to the application level programmer, but it be-
comes more interesting if you want to write programs that run on the bare
hardware of the machine, since then you need to arrange to intercept the
bootstrap sequence somewhere and run your program rather than the usual
operating system.Some systems make this quite easy (just stick the name
of your program in AUTOEXEC.BAT and reboot Windows 95, for exam-
ple), others make it nearly impossible. It also presents opportunities for
customized systems.For example, a single-application system could be
built over a Unix kernel by naming the application /etc/init.

Tr ee structured overlays

We close this chapter with a description of tree-structured overlays, a
widely used scheme in the days before virtual memory to fit programs into
memories smaller than the programs.Overlays are another technique that
dates back to before 1960, and are still in use in some memory-constrained
environments. Several MS-DOS linkers in the 1980 supported them in a
form nearly identical to that used 25 years earlier on mainframe comput-
ers. Althoughoverlays are now little used on conventional architectures,
the techniques that linkers use to create and manage overlays remain inter-

Loading and overlays 8-215

esting. Also,the inter-segment call tricks developed for overlays point the
way to dynamic linking. In environments like DSPs with constrained pro-
gram address spaces, overlay techniques can be a good way to squeeze
programs in, especially since overlay managers tend to be small.The
OS/360 overlay manager is only about 500 bytes, and I once wrote one for
a graphics processor with a 512 word address space that used only a dozen
words or so.

Overlaid programs divide the code into a tree of segments, such as the one
in Figure 4.

Figure 8-4: A typical overlay tree

ROOT calls A and D.A calls B and C, D calls E and F.

8-216 Loadingand overlays

The programmer manually assigns object files or individual object code
segments to overlay segments. Siblingsegments in the overlay tree share

Loading and overlays 8-217

the same memory. In the example, segments A and D share the same
memory, B and C share the same memory, and E and F share the same
memory. The sequence of segments that lead to a specific segment is
called a path, so the path for E includes the root, D, and E.

When the program starts, the system loads the root segment which con-
tains the entry point of the program.Each time a routine makes a "down-
ward" inter-segment call, the overlay manager ensures that the path to the
call target is loaded.For example, if the root calls a routine in segment A,
the overlay manager loads section A if it’s not already loaded. If a routine
in A calls a routine in B the manager has to ensure that B is loaded, and if
a routine in the root calls a routine in B, the manager ensures that both A
and B are loaded.Upwards calls don’t require any linker help, since the
entire path from the root is already loaded.

Calls across the tree are known asexclusivecalls and are usually consid-
ered to be an error since it’s not possible to return.Overlay linkers let the
programmer force exclusive calls for situations where the called routine is
known not to return.

Defining overlays

Overlay linkers created overlaid executables from ordinary input object
files. Theobjects don’t contain any overlay instructions, Intstead, the pro-
grammer specifies the overlay structure with a command language that the
linker reads and interprets. Figure 5 shows the same overlay structure as
before, with the names of the routines loaded into each segment.

Figure 8-5: A typical overlay tree

ROOT contains rob and rick
calls A with aaron and andy and D.
A calls B (bill and betty) and C (chris), D (dick, dot) calls E
(edgar) and F (fran).

8-218 Loadingand overlays

Figure 6 shows the linker commands that one might give to the IBM 360
linker to create this structure. Spacing doesn’t matter, so we’ve indented
the commands to show the tree structure.OVERLAY commands define
the beginning of each segment; commands with the same overlay name

Loading and overlays 8-219

define segments that overlay each other. Hence the first OVERLAY AD
defines segment A, and the second defines segmnt D. Overlay segments
are defined in a depth first left to right tree walk. INCLUDE commands
name logical files for the linker to read.

Figure 8-6: Linker commands

INCLUDE ROB
INCLUDE RICK
OVERLAY AD
INCLUDE AARON, ANDY
OVERLAY BC
INCLUDE BILL, BETTY

OVERLAY BC
INCLUDE CHRIS

OVERLAY AD
INCLUDE DICK, DOT
OVERLAY EF
INCLUDE EDGAR

OVERLAY EF
INCLUDE FRAN

It’s up to the programmer to lay out overlays to be space effiecent. The
storage allocated for each segment is the maximum length of any of the
segments that occupy the same space.For example, assume that the file
lengths in decimal are as follows.

Name Size
rob 500
rick 1500
aaron 3000
andy 1000
bill 1000
betty 1000

8-220 Loadingand overlays

chris 3000
dick 3000
dot 4000
edgar 2000
fran 3000
The storage allocation, looks like Figure 7. Each segment starts immedi-
ately after the preceding segment in the path, and the total program size is
the length of the longest path. This program is fairly well balanced, with
the longest path being 11500 and the shortest being 8000. Juggling the
overlay structure to find one that is as compact as possible while still being
valid (no exclusive calls) and reasonably efficient is a black art requiring
considerable trial and error. Since the overlays are defined entirely in the
linker, each trial requires a relink but no recompilation.

Figure 8-7: Overlay storage layout

0 rob
500 rick

2000 aaron 2000 dick
5000 andy 5000 dot

6000 bill 6000 chris
7000 betty 9000 ---- 9000 edgar 9000 fran
8000 ---- 11000 ---- 12000 ----

Implementation of overlays

The implementation of overlays is surprisingly simple. Once the linker
determines the layout of the segments, relocates the code in each segment
appropriately based on the memory location of the segment. Thelinker
needs to create a segment table which goes in the root segment, and, in
each segment, glue code for each routine that is the target of a downward
call from that segment.

Loading and overlays 8-221

The segment table, Figure 8, lists each segment, a flag to note if the seg-
ment is loaded, the segment’s path. andinformation needed to load the
segment from disk.

Figure 8-8: Idealized segment table

struct segtab {
struct segtab *path;// preceding segment in path
boolean ispresent;// true if this segment is loaded
int memoffset; // relative load address
int diskoffset; // location in executable
int size; // segment size

} segtab[];

The linker interposes the glue code in front of each downward call so the
overlay manager can ensure that the required segment(s) are loaded.Seg-
ments can use glue code in higher level but not lower level routines. For
example, if routines in the root call aaron, dick, and betty, the root needs
glue code for each of those three symbols. If segment A contains calls to
bill, betty, and chris, A needs glue code for bill and chris, but can use the
glue for betty already present in the root. All downward calls (which are
to global symbols) are resolved to glue code, Figure 9, rather than to the
actual routine.The glue code has to save any registers it changes, since it
has to be transparent to the calling and called routine, then jump into the
overlay manager, providing the address of the real routine and an indica-
tion of which segment that address is in.Here we use a pointer, but an in-
dex into the segtab array would work as well.

Figure 8-9: Idealized glue code for x86

glue’betty: call load_overlay
.long betty // address of real routine
.long segtab+N // address of segment B’s segtab

8-222 Loadingand overlays

At runtime, the system loads in the root segment and starts it. At each
downward call, the glue code calls the overlay manager. The manager
checks the target segment’s status. Ifthe segment is present, the manager
just jumps to the real routine.If the segment is not present, the manager
loads the target segment and any unloaded preceding segments in the path,
marks any conflicting segments as not present, marks the newly loaded
segments as present, and jumps.

Overlay fine points

As always, details make elegant tree structured overlays messier than they
might be.

Data

We’v e been talking about structuring code overlays, without any consider-
ation of where the data goes.Individual routines may have private data
loaded into the segments with the routines, but any data that has to be re-
membered from one call to the next needs to be promoted high enough in
the tree that it won’t get unloaded and reloaded, which would lose any
changes made. In practice, it means that most global data usually ends up
in the root. When Fortran programs are overlaid, overlay linkers can posi-
tion common blocks appropriately to be used as communication areas.
For example, if dick calls edgar and fran, and the latter two both refer to a
common block, that block has to reside in segment D to be a communica-
tion area.

Duplicated code

Frequently the overall structure of an overlaid program can be improved
by duplicating code. In our example, imagine that chris and edgar both
call a routine called greg which is 500 bytes long.A single copy of greg
would have to go in the root, increasing the total loaded size of the pro-
gram, since placing it anywhere else in the tree would require a forbidden
exclusive call from either chris or edgar. On the other hand, if both seg-
ments C and E include copies of greg, the overall loaded size of the pro-
gram doesn’t increase, since the end of segment C would grow from 9000

Loading and overlays 8-223

to 9500 and of E from 11000 to 11500, both still smaller than the 12000
bytes that F requires.

Multiple regions

Frequently, a program’s calling structure doesn’t map very well to a single
tree. Overlay systems handle multiple code regions, with a separate over-
lay tree in each region. Callsbetween regions always go through glue
code. TheIBM linker supports up to four regions, although in my experi-
ence I never found a use for more than two.

Overlay summary

Even though overlays have been rendered largely obsolete by virtual mem-
ory, they remain of historical interest because were the first significant use
of link-time code generation and modification.They require a great deal
of manual programmer work to design and specify the overlay structure,
generally with a lot of trial and error ‘‘digital origami’’, but they were a
very effective way to squeeze a large program into limited memory.

Overlays originated the important technique of "wrapping" call instruc-
tions in the linker to turn a simple procedure call into one that did more
work, in this case, loading the required overlay. Linkers have used wrap-
ping in a variety of ways. Themost important is dynamic linking, which
we cover in chapter 10, to link to a called routine in a library that may not
have been loaded yet. Wrapping is also useful for testing and debugging,
to insert checking or validation code in front of a suspect routine without
changing or recompiling the source file.

Exercises

Compile some small C routines with PIC and non-PIC code.How much
slower is the PIC code than non-PIC? Is it enough slower to be worth hav-
ing non-PIC versions of libraries for programmers in a hurry?

In the overlay example, assume that dick and dot each call both edgar and
fran, but dick and dot don’t call each other. Restructure the overlay so that
dick and dot share the same space, and adjust the structure so that the call
tree still works. How much space does the overlaid program take now?

8-224 Loadingand overlays

In the overlay segment table, there’s no explicit marking of conflicting
segments. Whenthe overlay manager loads a segment and the segment’s
path, how does the manager determine what segments to mark as not pre-
sent?

In an overlaid program with no exclusive calls, is it possible that a series
of calls could end up jumping to unloaded code anyway? Inthe example
above, what happens if rob calls bill, which calls aaron, which calls chris,
then the routines all return?How hard would it be for the linker or overlay
manager to detect or prevent that problem?

Project

Project 8-1:Add a feature to the linker to "wrap" routines. Create a linker
switch
-w name

that wraps the given routine. Changeall references in the program to the
named routine to be references towrap_name. (Be sure not to miss in-
ternal references within the segment in which the name is defined.)
Change the name of the routine toreal_name. This lets the program-
mer write a wrapper routine calledwrap_name that can call the original
routine asreal_name.

Project 8-2:Starting the linker skeleton from chapter 3, write a tool that
modifies an object file to wrap a name. That is, references toname turn
into external references towrap_name, and the existing routine is re-
namedreal_name. Why would one want to use such a program rather
than building the feature into the linker. (Hint: consider the case where
you’re not the author or maintainer of the linker.)

Project 8-3:Add support to the linker to produce executables with posi-
tion-independent code We add a few new four-byte relocation types:
loc seg ref GA4
loc seg ref GP4
loc seg ref GR4
loc seg ref ER4

The types are:

Loading and overlays 8-225

• GA4: (GOT address) At location loc, store the distance to the GOT.

• GP4: (GOT pointer) Put a pointer to symbol ref in the GOT, and at
location loc, store the GOT-relative offset of that pointer.

• GR4: (GOT relative) Location loc contains an address in segment
ref. Replacethat with the offset from the beginning of the GOT to
that address.

• ER4: (Executable relative) Location loc contains an address rela-
tive to the beginning of the executable. Theref field is ignored.

In your linker’s first pass, look for GP4 relocation entries, build a GOT
segment with all the required pointers, and allocate the GOT segment just
before the data and BSS segments. Inthe second pass, handle the GA4,
GP4, and GR4 entries. In the output file, create ER4 relocation entries for
any data that would have to be relocated if the output file were loaded at
other than its nominal address. This would include anything marked by an
A4 or AS4 relocation entry in the input. (Hint: Don’t forget the GOT.)

