Loading and werlays 8-201

Chapter 8
Loading and overlays

$Revision: 2.3 $
$Date; 1999/06/15 03:30:36 $

Loading is the process of bringing a program into main memory so it can
run. Inthis chapter we look at the loading process, concentrating on load-
ing programs that va dready been linkd. Maly systems usedo have *
linking loaders that combined the linking and loading process, but those
have row practically disappeared, with the only one | Wnof on aurrent *
hardware being on MVS and the dynamic linkers Nvebver in chapter *
10. Linkingloaders weren’all that different from plain linkers, with the *
primary and obvious di#rence being that the output was left in memory
rather than placed in a file.

Basic loading

We uched on most of the basics of loading in Chapter 3, in thextafte
object file design. Loading is a little different depending on whether a
program is loaded by mapping into a process address space via the virtual
memory system or just read in using normal I/O calls.

On most modern systems, each program is loaded into a fresh address
space, which means that all programs are loaded at a known fixed address,
and can be linked for that address. In that case, loading is pretty simple:

. Read enough header information from the object file to find out
how much address space is needed.

. Allocate that address space, in separate segments if the object for
mat has separate segments.

. Read the program into the segments in the address space.

. Zero out ag bss space at the end of the program if the virtual

memory system doedrdo so aitomatically.

. Create a stack segment if the architecture needs one.



8-202 Loadingand werlays

. Set up ai runtime information such as prograngaments or en-
vironment variables.

. Start the program.
If the program isnt’ mapped through the virtual memory system,
reading in the object file just means reading in the file with normal
"read" system callsOn systems which support shared read-only
code sgments, the system needs to check whether thdready
a opy of the code sgment loaded in and use that rather than mak-
ing another cop

On systems that do memory mapping, the process is slightly more compli-
cated. Thesystem loader has to create the segments, then arrange to map
the file pages into the segments with appropriate permissions, read-only
(RO) or copy-on-write (C®/). In some cases, the same page is double
mapped at the end of one segment and the beginning of the ek, R
one and C® in the otherin formats like compact Unix a.out.The data
seggment is generally contiguous with the bss segment, so the loader has to
zero out the part of the last page after the end of the data (since the disk
version usually has symbols or something else there), and allocate enough
zero pages following the data toveothe bss segment.

Basic loading, with relocation

A few g/stems still do load time relocation faxeeutables, and mgndo
load time relocation of shared libraries. Someg MS-DOS, lack usable
hardware relocation. Others, BkMVS, hare hardware relocation but are
descended from systems that didmveit. Somehave hardware reloca-
tion but can load multiplexecutable programs and shared libraries into
the same address space, so linkerstcannt on having specific addresses
available.

As discussed in Chapter 7, load-time relocatiorarssimpler than link-

time relocation, because the entire program is relocated as a unit. If, for
example, the program is linked as though it would be loaded at location
zero, but is indct loaded at location 15000, all of the places in the pro-
gram that require fixups will get 15000 addédter reading the program

into memorythe loader consults the relocation items in the object file and
fixes up the memory locations to which the items point.



Loading and wverlays 8-203

Load-time relocation can present a performance problem, because code
loaded at different virtual addresses tarsually be shared between ad-
dress spaces, since the fixups for each address spacdeaendifOneap-

proach, used by MVS, and to some extent bgdaivs and AlX is to cre-

ate a shared memory area present in multiple address spaces and load oft-
used programs into that. (MVS calls this this link pack ar&aiy has the
problem that different processes dayet separate copies of writable data,

so the application has to be written to allocate all of its writable storage

explicitly.
Position-independent code

One popular solution to the dilemma of loading the same program at dif-
ferent addresses is position independent code (PTG¢. idea is simple,
separate the code from the data and generate codedhatchange re-
gadless of the address at whichsitbaded. Thatvay the code can be
shared among all processes, with only data pages bewajeptd each
process.

This is a surprisingly old idea. TSS/360 used it in 1966, and It den’
lieve it was original there. (TSS was notoriouslyggy, but | can report
from personal experience that the PIC features really worked.)

On modern architectures,gthot difficult to generate PICxecutable code.

Jumps and branches are generally either PCrelatirelatve o a kase
register set at runtime, so no load-time relocation is required for them.
The problem is with data addressinghe code cam’contain ay direct

data addresses, since thoseuld be relocatable andowldn't be RC.

The usual solution is to create a table of data addresses in a data page and
keep a pointer to that table in agrster so e code can use inds ad-
dressing relatie © that register to pick up the data. This works at the cost

of an extra indirection for each data reference, but thdik’'the question

of how to get the initial data address into the register

TSS/360 position independent code

TSS took a brute-force approackvery routine had te addresses, the
address of the code, known as the V-con (short for V style address con-
stant, which een non-PIC code needed) and the address of the data,



8-204 Loadingand werlays

known as the R-conThe standard OS/360 calling sequence requires that
the caller provide an 18awd register sz aea pointed to by register 13.
TSS extended the wa aea to 19 words and required that the caller place
callees R-con into that 19th word before making the call, Figur&each
routine had in its data gment the V-cons and R-cons for all of the rou-
tines that it called, and stored the appropriate R-con into the outgemg sa
area before each call. The main routine in a programveetaiavearea
from the operating system which provided the initial R-con.

Figure 81: TSS style two-address proceelaall

TSS style with R-con in the eaaea

Cal l er:

- copy Rcon into
save area

- load V-con into R15

- Call via R15

Cal | ee:

- load R con from save area
- addresses of sub-procedures
in data area



Loading and wverlays 8-205

: R13
Caller: -~ |
- copy R-¢on into e
savearea s’ ' register save
- load V-con into R15. | aredfof ‘T"anee
- Call'viaR15

Callee: ,i
- load R-con from save area . " Recon L72{R13]
- addresses of sub-procedures

in data area

This scheme wrked, but is poorly suited for modern systenfisr one
thing, copying the R-cons made the calling sequend&yb For anotherit
made procedure pointersdwvords, which didrt matter in the 1960sub
IS an issue n@ since in programs written in C, all pointersvhao be he
same size. (The C standard doesmandate it, but far too muckxisting
C code assumes it to do anything else.)



8-206 Loadingand werlays

Per-routine pointer tables

A simple modification used in some Unix systems is to treat the address of
a procedures data as the address of the procedure, and to place a pointer
to the procedure’mde at that address, Figure Po call a procedure, the
caller loads the data address into an agreed data poigitgerehen loads

the code address from the location pointed to by the data pointer into a
scratch register and calls the routine. This is easy to implement, and has
adequate if not fabulous performance.

Figure 82: Code via data pointers

[ROMP style data table with code pointer at thgitweing.]
Caller:
- Load pointer table
address into RP
- Load code address from
O(RP) into RC

- Call via RC

Cal | ee:

- RP points to pointer
tabl e

- Tabl e has addresses of
poi nter tables for
sub- procedur es



Loading and werlays 8-207

(-
a4 Per-procedure 7~

(ranps. RP - pointer table
- Load pointer table T }_

address info RP _[func: | -func: | codeaddress
- Load code address L _ other

from O(RP) into RC pointers
- Call via RC REET
Callee:: .
- RP. points to pointer,

table

- Table has addresses of
pointer tables for
sub-procedures

Table of Contents

IBM’s AIX uses a more sophisticatedrsion of this scheme. AIX pro-
grams group routines intmoduleswith a module typically being the ob-

ject code generated from a single C or C++ source file or a group of relat-
ed source files. The data segment of each module contains a table of con-



8-208 Loadingand werlays

tents (TOC), which contains the combined pointer tables for all of the rou-
tines in the module as well as some of the small static data for the routines.
Register 2 alvays contains the address of TOC for the current module,
permitting direct access to the static data in the TOC, and indirect address-
ing of code and data to which the TOC contains pointers. Calls within a
single module are a single "call" instruction, since the caller and callee
share the sameOC. Intermodule calls hee © switch TOCs before the

call and switch back afterwards.

Compilers generate all calls as a call instruction, followed by a placehold-
er no-op instruction, which is correct for intra-module calls. When the
linker encounters an intenodule call, it generates a routine called a glob-
al linkage orglink at the end of the modutetext segnent. Theglink
saves the callers TOC on the stack, loads the caledOC and address
from pointers in the the callerTOC, then jumps to the routing.he link-

er redirects each inter-module call to the glink for the called routine, and
patches the following no-op to a load instruction that restores @@ T
from the stack. Procedure pointers are pointers to a TOC/codeapair
calls through a pointer use a generic glink routine that usesQReahd
code address the pointer points to.

This scheme makes intra-module calls as fast as possitikr-module

calls returns are slowed somewhat by the detour through the glink routine,
but the slavdown is small compared to some of the altexestwe’ll see

in a moment.

ELF position independent code

Unix System V Release 4 (SVR4) introduced a PIC scheme similar to the
TOC scheme for its ELF shared libraries. The SVR4 schemevisump-
versally used by systems that use Elxieceitables, Figure 3lt has the ad-
vantage of returning to the normal a@ntion that the address of a proce-
dure is the address of the code for the procedugaxdiess of whether

one is calling PIC code, found in shared ELF libraries, or non-PIC code,
found in regular ELF »xecutables, at the cost of somewhat morerpar

tine overhead than the TOC scheme’s.



Loading and wverlays 8-209

Its designers noticed that an ELkeeutable consists of a group of code
pages followed by a group of data pages, agdrdéess of where in the
address space the program is loaded, the offset from the code to the data
doesnt change. Saf the code can load itsan address into a gester the

data will be at a known distance from that address, and references to data
in the prograns ovn data segment can use efficient based addressing with
fixed offsets.

The linker creates a global offset table (GOT) containing pointers to all of
the global data that thexezutable file addresses. (Each shared library has
its own G, and if the main program were compiled with PIC, which it
normally isn't, it would hge a GOT & well.) Sincethe linker creates the
GOT, there is only one pointer per ELKkeeutable for each datumgard-

less of hav mary routines in thexecutable refer to it.

If a procedure needs to refer to global or static datayp’'to he proce-
dure itself to load up the address of theTGOhe details &ry by architec-
ture, but the 386 code is typical:
call .L2;; push PCin on the stack
.L2:
popl %bx ;; PCinto register EBX
addl $ _GL.OBAL_OFFSET_TABLE +[.-.L2],%bx;; adjust ebx to GOT address

It consists of a call instruction to the immediately following location,
which has the effect of pushing the PC on the stack but not jumping, then
a pop to get the seed PC in a egster and an add immediate of thefelif

ence between the address theTGOd address the target of the call. In an
object file generated by a compjléreres a pecial R_386_GOTPC relo-
cation item for the operand of the addl instructidntells the linker to
substitute in the offset from the current instruction to the base address of
the GA, and also serves as a flag to the éinko build a GO@ in the out-

put file. In the output file, ther®no elocation needed for the instruction
since the distance from the addl to theTd©fixed.

Figure 83: PIC code and data with fixed offsets

picture of code page swing constant offset to dataven



8-210 Loadingand werlays

though loaded at different addresses irfed#nt address

spaces.
: L _,. Load address unknown
- XX0000 ©  at |ink time
+'Code | - ;--x-xnmg "o gall 1.2
R ¢ : , || L2: | popr&bx 7
it L [ | add $FFO, $bx
- !
| fixed distance from
L b . ,;_ﬁ,i,L XX1000 code to GOT
data . GOT

segment

Once the GO regster is loaded, code can reference local static data using
the GO regster as a basegister snce the distance from a static datum

in the prograns data segment to the QQs fixed at ink tine. Addresses

of global data arebhbound until the program is loaded (see Chapter 10),
so to reference global data, code has to load a pointer to the data from the
GOT and then deference the pointéfhis extra memory reference nesk
programs somewhat ster, dthough it's a st that most programmers are
willing to pay for the cowenience of dynamically linked librariesSpeed
critical code can use static shared libraries (Chapter 9) or no shared li-
braries at all.



Loading and werlays 8-211

To support PIC, ELF defines a handful of special relocation types for code
that uses the GDin addition R_386_GOTPC or its eqalent. Theexact
types are architecture-specific, but the x86 is typical:

. R 386 _@G0T32: The relatve location of the slot in the GO
where the linkr has placed a pointer to thevai symbol. Used
for indirectly referenced global data.

. R 386_GOTOFF: The distance from the base of the TG the
given symbol or address. Used to address static datavelatthe
GOlT.

. R 386_RELATI VE: Used to mark data addresses in a PIC shared
library that need to be relocated at load time.

For example, consider this scrap of C code:
static int a; /* static variable */
extern int b; /* global variable */

a =1, b= 2;

Variablea is allocated in the bss segment of the object file, which means it
is at a knavn fixed distance from the GO Object code can reference this
variable directly using the ebx as a base register and a-@latve dfset:

novl $1, a@OTOFF(%ebx) ;; R 386_GOTOFF reference to variable "a"

Variableb is global, and its location may not be krountil runtime if it
turns out to be in a different ELF library axeeutable. Inthis case, the
object code references a pointebtahich the linker creates in the GO

novl b@3O0T(%ebx), %eax;; R 386 _GOT32 ref to address of variable "b"
novl $2, (%eax)

Note that the compiler only creates the R_386_GOT32 reference, and it’
up to the linker to collect all such references andardiks for them in
the G{.

Finally, ELF shared libraries contain R_386_RELATIVE relocation entries
that the runtime loadgpart of the dynamic linker we examine in Chapter
10, uses to do loadtime relocaio8ince the text in shared libraries is in-



8-212 Loadingand werlays

variably PIC, theres no elocation entries for the code, but data tée’
PIC, so there is a relocation entry faely pointer in the data genent.
(Actually, you can build a shared library with non-PIC code, in which case
there will be relocation entries for the text as well, although almost no-
body does that since it makes the text non-sharable.)

PIC costs and benefits

The advantages of PIC are straighforward; it makes it possible to load
code without haing to do load-time relocation, and to share memory
pages of code among processemedhough thg don’t al have the same
address space allocated. The possible desstdges are shkalowns at

load time, in procedure calls, in function prolog and epilog, amedath
slower code.

At load time, although the codegseent of a PIC file needrbe relocated,
the data segment does. Indarlibraries, the TOC or GDcan be ery
large and it can taka bng time to resol dl the entries. This is as much

a problem with dynamic linking, which we’ll address in Chapter 10, as
with PIC. Handling R_386_RELATIVE items or the eepéent to relo-
cate GO pointers to data in the sameeeutable is fairly fast, but the
problem is that manGOT entries point to data in othexecutables and
require a symbol table lookup to resolve.

Calls in ELF eecutables are usually dynamically linkedge calls within
the same librarywhich adds significantverhead. V¢ revsit this in Chap-
ter 10.

Function prolog and epilogs in ELF files are quitevsi@hey haveto sare

and restore the GDregster, ebx in the x86, and the dummy call and pop

to get the program counter into ajister are quite sl From a perfor

mance viewpoint, the TOC approach used in AlX wins here, since each
procedure can assume that its TOC register is already set at procedure en-

try.

Finally, PIC code is bigger and si@r than non-PIC. The sh@own
varies greatly by architectures. On RISC systems with plentygi$tess
and no direct addressing, the loss of orgaster to be the TOC or GO
pointer isnt significant, and lacking direct addressingytimeed a constant



Loading and wverlays 8-213

pool of some sort gwvay. The worst case is on the x8&.only has six
registers, so losing one of them to be theT@®inter can mak wde sig-
nificantly worse. Sinceéhe x86 does he drect addressing, a reference to
external data that would be a simple MOr ADD instruction in non-PIC
code turns into a load of the address fo#d by the MQ® or ADD, which
both adds anxtra memory reference and uses yet another precigiss re
ter for the temporary pointer.

Paticularly on x86 systems, the performance loss in PIC code is signifi-
cant in speed-critical tasks, enough so that some systems retreat to a sort-
of-PIC approach for shared librarie®8Ve'll rewvisit this issue in the e

two chapters.

Bootstrap loading

The discussions of loading up to this poinvdal presumed that therg’
already an operating system or at least a program loader resident in the
computer to load the program of intere3te chain of programs being
loaded by other programs has to start sehese, so the obvious question

is haw is the first program loaded into the computer?

In modern computers, the first program the computer runs after adrardw
reset ivariably is stored in a ROM known as tbe bootstrap ROM. as in
"pulling ones =If up by the bootstrapsWhen the CPU is powered on or
reset, it sets its registers to a known st&de. x86 systems, forxample,

the reset sequence jumps to the address 16 bytesg theldop of the sys-
tem’s address space. The bootstrap ROM occupies the top 64K of the ad-
dress space andJ®1 code then starts up the comput&n IBM-compati-

ble x86 systems, the booOM code reads the first block of the flgpp
disk into memoryor if that fails the first block of the first hard disk, into
memory location zero and jumps to location zefthe program in block

zero in turn loads a slightly larger operating system boot program from a
known place on the disk into memognd jumps to that program which in
turn loads in the operating system and starts it. (There cavebemere
steps, e.g., a boot manager that decides from which disk partition to read
the operating system boot program, but the sequence of increasingly capa-
ble loaders remains.)



8-214 Loadingand werlays

Why not just load the operating system directly? Because you filaan
operating system loader into 512 bytes. The fingtl loader typically is

only able to load a single-segment program from a file witheal fname

in the top-leel directory of the boot disk.The operating system loader
contains more sophisticated code that can read and interpret a configura-
tion file, uncompress a compressed operating syskegutable, address
large amounts of memory (on an x86 the loader usually runs in real mode
which means that &’ tricky to address more than 1MB of memagryThe

full operating system can turn on the virtual memory system, loads the
drivers it needs, and then proceed to run uses-jgograms.

Marny Unix systems use a similar bootstrap process to getnusee pro-
grams running. The kernel creates a process, then stuffg ktttan pro-

gram, only a fer dozen bytes long, into that process. The finogram
executes a system call that runs /etc/init, the user mode initialization pro-
gram that in turn runs configuration files and starts the daemons and login
programs that a running system needs.

None of this matters much to the applicatiovelgrogrammeybut it be-

comes more interesting if youawt to write programs that run on the bare
hardware of the machine, since then you need to arrange to intercept the
bootstrap sequence somewhere and run your program rather than the usual
operating systemSome systems makhis quite easy (just stick the name

of your program in ATOEXEC.BAT and reboot \ihdows 95, for @am-

ple), others mak it nearly impossible. It also presents opportunities for
customized systemsk-or example, a single-application system could be
built over a Unix kernel by naming the application /etc/init.

Tree dructured overlays

We dose this chapter with a description of tree-structureetlays, a
widely used scheme in the days before virtual memory to fit programs into
memories smaller than the progran®verlays are another technique that
dates back to before 1960, and are still in use in some memory-constrained
environments. Seeral MS-DOS linkers in the 1980 supported them in a
form nearly identical to that used 25 years earlier on mainframe comput-
ers. Althoughoverlays are nw little used on corentional architectures,

the techniques that linkers use to create and man&geays remain inter



Loading and wverlays 8-215

esting. Alsothe intersggment call tricks desloped for werlays point the

way to dynamic linking. In environments l&kDSPs with constrained pro-
gram address spacesjeday techniques can be a good way to squeeze
programs in, especially sinceveslay managers tend to be smaillhe
0S/360 eerlay manager is only about 500 bytes, and | once wrote one for

a gaphics processor with a 512 word address space that used only a dozen
words or so.

Overlaid programs glide the code into a tree of segments, such as the one
in Figure 4.

Figure 84: A typical overlay tree
ROOT calls Aand D.A calls B and C, D calls E and F.



8-216

Loadingand werlays

The programmer manually assigns object files orviddal object code
sgments to verlay s@gments. Siblingseggments in the werlay tree share



Loading and werlays 8-217

the same memoryln the example, segments A and D share the same
memory B and C share the same memoagd E and F share the same
memory The sequence of gments that lead to a specific segment is
called a path, so the path for E includes the root, D, and E.

When the program starts, the system loads the root segment which con-
tains the entry point of the prograrkach time a routine makes a o

ward" intersggment call, the werlay manager ensures that the path to the
call target is loadedFor example, if the root calls a routine in segment A,
the orerlay manager loads section A ifgthot already loaded. If a routine

in A calls a routine in B the manager has to ensure that B is loaded, and if
a routine in the root calls a routine in B, the manager ensures that both A
and B are loadedUpwards calls dot’require ag linker help, since the
entire path from the root is already loaded.

Calls across the tree are knowneaslusivecalls and are usually consid-
ered to be an error sincesit'ot possible to returnOverlay linkers let the
programmer forcexelusive alls for situations where the called routine is
known not to return.

Defining overlays

Overlay linkers createdverlaid executables from ordinary input object
files. Theobjects dort contain ai overlay instructions, Intstead, the pro-
grammer specifies theverlay structure with a command language that the
linker reads and interprets. Figure 5 shows the samedayp structure as
before, with the names of the routines loaded into each segment.

Figure 85: A typical overlay tree

ROOT oontains rob and rick

calls A with aaron and andy and D.

A calls B (bill and betty) and C (chris), D (dick, dot) calls E
(edgar) and F (fran).



8-218 Loadingand werlays

' ROOT It

main()"
T Fobl ek

\
A D /
| “aaron() andy() 1 ¢ dick() dot()
e 1] e
L bill() =] E |F V
‘betty()  ‘chris() N o
| . edgar() = fran()

L em—

Figure 6 shass the linker commands that one mightegio the IBM 360
linker to create this structure. Spacing doeswdtter so we've indented
the commands to shothe tree structure OVERLAY commands define
the beginning of each segment; commands with the saer&y name



Loading and wverlays 8-219

define segments thav@lay each other Hence the first WERLAY AD
defines segment A, and the second defingeiseD. Overlay sgments
are defined in a depth first left to right trealkv INCLUDE commands
name logical files for the linker to read.

Figure 86: Linker commands

I NCLUDE ROB
I NCLUDE RI CK
OVERLAY AD
| NCLUDE AARCN, ANDY
OVERLAY BC
I NCLUDE BI LL, BETTY
OVERLAY BC
I NCLUDE CHRI S
OVERLAY AD
I NCLUDE DI CK, DOT
OVERLAY EF
I NCLUDE EDGAR
OVERLAY EF
| NCLUDE FRAN

It's up to he programmer to lay outverlays to be space fedcent. The
storage allocated for each segment is the maximum lengthyaffahe
s@gments that occypthe same space-or example, assume that the file
lengths in decimal are as follows.

Name Size

rob 500
rick 1500
aaron 3000
andy 1000
bill 1000

betty 1000



8-220 Loadingand werlays

chris 3000
dick 3000
dot 4000
edgar 2000
fran 3000

The storage allocation, looks éikHgure 7. Each segment starts immedi-
ately after the precedingg®ent in the path, and the total program size is
the length of the longest path. This program is fairly well balanced, with
the longest path being 11500 and the shortest being 8000. Juggling the
overlay structure to find one that is as compact as possible while still being
valid (no exclusive alls) and reasonably fefient is a black art requiring
considerable trial and erroSnce the werlays are defined entirely in the
linker, each trial requires a relink but no recompilation.

Figure 87: Overlay stoage hyout

0 rob

500 rick

2000 aaron 2000 dick

5000 andy 5000 dot

6000 bill 6000 chris

7000 betty 9000 ---- 9000 edgar 9000 fran
8000 ---- 11000 ---- 12000 ----

Implementation of overlays

The implementation of werlays is surprisingly simple. Once the letk
determines the layout of thegseents, relocates the code in eaajnsent
appropriately based on the memory location of trggm&mt. Thelinker

needs to create a segment table which goes in the oesg and, in
each segment, glue code for each routine that is thettaf a davnward

call from that segment.



Loading and werlays 8-221

The segment table, Figure 8, lists eacinsent, a flag to note if the e
ment is loaded, the gments path. andinformation needed to load the
segment from disk.

Figure 8-8: Idealized segment table

struct segtab {
struct segtab *path;// preceding segnent in path
bool ean ispresent;// true if this segment is |oaded
int menoffset; // relative | oad address
int diskoffset; // location in executable
int size; // segnent size

} segtab[];

The linker interposes the glue code in front of eactwrdeard call so the
overlay manager can ensure that the requirggineat(s) are loadedSeg-
ments can use glue code in highemldut not laver level routines. r
example, if routines in the root call aaron, dick, and béiiy root needs
glue code for each of those three symbols. If segment A contains calls to
bill, betty, and chris, A needs glue code for bill and chris, but can use the
glue for betty already present in the root. Allawvard calls (which are

to global symbols) are resolved to glue code, Figure 9, rather than to the
actual routine.The glue code has tovaaany egsters it changes, since it
has to be transparent to the calling and called routine, then jump into the
overlay managerproviding the address of the real routine and an indica-
tion of which segment that address is ihere we use a pointdmt an in-

dex into the segtab array would work as well.

Figure 89: Idealized glue code for x86

glue’ betty: call |oad overlay
.long betty // address of real routine
.long segtab+N // address of segnent B's segtab



8-222 Loadingand werlays

At runtime, the system loads in the roogmsent and starts it. At each
downward call, the glue code calls the#eday manager The manager
checks the target gments datus. Ifthe sgment is present, the manager
just jumps to the real routindf the segment is not present, the manager
loads the target segment ang anloaded preceding gments in the path,
marks ag conflicting sgments as not present, marks the newly loaded
segments as present, and jumps.

Overlay fine points

As always, details ma& degant tree structuredverlays messier than tiie
might be.

Data

We've been talking about structuring codeedays, without ag consider-

ation of where the data goetdividual routines may h& pivate data
loaded into the ggnents with the routines, butyadata that has to be re-
membered from one call to thexteneeds to be promoted high enough in
the tree that it wn't get unloaded and reloaded, which would losg an
changes made. In practice, it means that most global data usually ends up
in the root. When &trtran programs areverlaid, overlay linkers can posi-

tion common blocks appropriately to be used as communication areas.
For example, if dick calls eday and fran, and the latter aviboth refer to a
common block, that block has to reside in segment D to be a communica-
tion area.

Duplicated code

Frequently the werall structure of anwerlaid program can be impved

by duplicating code. In ourxample, imagine that chris and edgar both
call a routine called ggewhich is 500 bytes longA single copy of greg
would hare © go in the root, increasing the total loaded size of the pro-
gram, since placing it anywhere else in the tree would require a forbidden
exclusive all from either chris or edg On the other hand, if both ge
ments C and E include copies of greg, therall loaded size of the pro-
gram doesrt'increase, since the end of segment C would grom 9000



Loading and wverlays 8-223

to 9500 and of E from 11000 to 11500, both still smaller than the 12000
bytes that F requires.

Multiple regons

Frequentlya programs alling structure doeshimap very well to a single
tree. Owerlay systems handle multiple codgioms, with a separatever-
lay tree in each geon. Callsbetween regions wkys go through glue
code. ThdBM linker supports up to four regions, although in nxperi-
ence | neer found a use for more than two.

Overlay summary

Even though werlays hae keen rendered largely obsolete by virtual mem-
ory, they remain of historical interest because were the first significant use
of link-time code generation and modificatiohhey require a great deal

of manual programmer avk to design and specify thevalay structure,
generally with a lot of trial and error “digital oagni”, but they were a

very effectve way to squeeze a large program into limited memory.

Overlays originated the important technique of "wrapping" call instruc-
tions in the linker to turn a simple procedure call into one that did more
work, in this case, loading the requirededay. Linkers hae used wrap-
ping in a variety of \wys. Themost important is dynamic linking, which
we cover in chapter 10, to link to a called routine in a library that may not
have keen loaded yet. Wrapping is also useful for testing andgighg,

to insert checking or validation code in front of a suspect routine without
changing or recompiling the source file.

Exercises

Compile some small C routines with PIC and non-PIC cddiev much
slower is the PIC code than non-PIC? Is it enough slower to be warth ha
ing non-PIC versions of libraries for programmers in a hurry?

In the werlay example, assume that dick and dot each call both edgar and
fran, but dick and dot don¢all each other Restructure thewerlay so that

dick and dot share the same space, and adjust the structure so that the call
tree still works. Hav much space does theaslaid program ta& now?



8-224 Loadingand werlays

In the overlay segment table, theseho eplicit marking of conflicting
sgments. Wherhe werlay manager loads agment and the genent’s

path, hev does the manager determine what segments to mark as not pre-
sent?

In an overlaid program with no xxlusive alls, is it possible that a series
of calls could end up jumping to unloaded codgwary? Inthe example
above, what happens if rob calls bill, which calls aaron, which calls chris,
then the routines all returnflow hard would it be for the linker overlay
manager to detect or pent that problem?

Project

Project 8-1:Add a feature to the lirde to "wrap" routines. Create a liek
switch
-W nane

that wraps the gen routine. Changell references in the program to the
named routine to be referencesmoap _nane. (Be sure not to miss in-
ternal references within the segment in which the name is defined.)
Change the name of the routinerteal _nane. This lets the program-
mer write a wrapper routine calleat ap _nane that can call the original
routine ag eal _nane.

Project 8-2:Starting the linker skeleton from chapter 3, write a tool that
modifies an object file to wrap a name. That is, referencaan® turn

into external references tor ap_nane, and the existing routine is re-
namedr eal _name. Why would one want to use such a program rather
than building the feature into the lek (Hint: consider the case where
you're not the author or maintainer of the linker.)

Project 8-3: Add support to the linkr to produce »ecutables with posi-
tion-independent code &\&ld a fev new four-byte relocation types:

| oc seg ref GA4

|l oc seg ref GP4

loc seg ref GR4

| oc seg ref ER4

The types are:



Loading and wverlays 8-225

. GA4: (GOT address) At location loc, store the distance to th@ GO

. GP4: (GOT pointer) Put a pointer to symbol ref in the G@nd at
location loc, store the Glrelative dfset of that pointer.

. GR4: (GOT relative) Location loc contains an address igreent
ref. Replacdahat with the offset from the beginning of the G®
that address.

. ER4: (Executable relate) Location loc contains an address rela-
tive © the beginning of thexecutable. Theef field is ignored.

In your linker’s first pass, look for GP4 relocation entries, build aTGO
segment with all the required pointers, and allocate thd G&ment just
before the data and BSSgseents. Inthe second pass, handle the GA4,
GP4, and GR4 entries. In the output file, create ER4 relocation entries for
ary data that wuld hare o be elocated if the output file were loaded at
other than its nominal address. This would include anything marked by an
A4 or AS4 relocation entry in the input. (Hint: Doforget the GQ@.)



