
Relocation 7-183

Chapter 7
Relocation

$Revision: 2.2 $
$Date: 1999/06/30 01:02:35 $

Once a linker has scanned all of the input files to determine segment sizes,*
symbol definitions and symbol references, figured out which library mod-*
ules to include, and decided where in the output address space all of the*
segments will go, the next stage is the heart of the linking process, reloca-*
tion. We use relocation to refer both to the process of adjusting program*
addresses to account for non-zero segment origins, and the process of re-*
solving references to external symbols, since the two are frequently han- *
dled together. *

The linker’s first pass lays out the positions of the various segments and*
collects the segment-relative values of all global symbols in the program. *
Once the linker determines the position of each segment, it potentially*
needs to fix up all storage addresses to reflect the new locations of the seg- *
ments. Onmost architectures, addresses in data are absolute, while those*
embedded in instructions may be absolute or relative. The linker needs to *
fixup accordingly, as we’ll discuss later. *

The first pass also creates the global symbol table as described in Chapter*
5. Thelinker also resolves stored references to global symbols to the sym-*
bols’ addresses. *

Hardware and software relocation

Since nearly all modern computers have hardware relocation, one might
wonder why a linker or loader still does software relocation. (This ques-
tion confused me when programming a PDP-6 in the late 1960s, and the
situation has only gotten more complicated since then.)The answer has
partly to do with performance, and partly with binding time.

Hardware relocation allows an operating system to give each process a
separate address space that starts at a fixed known address, which makes
program loading easier and prevents buggy programs in one address space
from damaging programs in other address spaces.Software linker or load-

7-184 Relocation

er relocation combines input files into one large file that’s ready to be
loaded into the address space provided by hardware relocation, frequently
with no load-time fixing up at all.

On a machine like a 286 or 286 with several thousand segments, it would
indeed be possible to load one routine or global datum per segment, com-
pletely doing away with software relocation. Each routine or datum would
start at location zero in its segment, and all global references would be
handled as inter-segment references looked up in the system’s segment ta-
bles and bound at runtime.Unfortunately, x86 segment lookups are very
slow, and a program that did a segment lookup for every inter-module call
or global data refrence would be far slower than one linked conventionally.

Equally importantly, although runtime binding can be useful (a topic we
cover in Chapter 10), most programs are better off avoiding it. For relia-
bility reasons, program files are best bound together and addresses fixed at
link time, so they hold still during debugging and remain consistent after
shipping. Library"bit creep" is a chronic and very hard to debug source of
program errors when a program runs using different versions of libraries
than its authors anticipated. (MS Windows applications are prone to this
problem due to the large number of shared libraries they use, with differ-
ent versions of libraries often shipped with various applications all loaded
on the same computer.) Even without the overhead of 286 style segments,
dynamic linking tends to be far slower than static linking, and there’s no
point in paying for it where it’s not needed.

Link time and load time relocation

Many systems perform both link time and load time relocation.A l inker *
combines a set of input file into a single output file ready to be loaded at*
specific address. If when the program is loaded, storage at that address*
isn’t available, the loader has to relocate the loaded program to reflect the*
actual load address.On some systems including MS-DOS and MVS, *
ev ery program is linked as though it will be loaded at location zero. The*
actual address is chosen from available storage and the program is always *
relocated as it’s loaded. Onothers, notably MS Windows, programs are *
linked to be loaded at a fixed address which is generally available, and no *
load-time relocation is needed except in the unusual case that the standard*

Relocation 7-185

address is already in use by something else. (Current versions of Windows *
in practice never do load-time relocation of executable programs, although *
they do relocate DLL shared libraries.Similarly, Unix systems never relo- *
cate ELF programs although they do relocate ELF shared libraries.) *

Load-time relocation is quite simple compared to link-time relocation.At *
link time, different addresses need to be relocated different amounts de- *
pending on the size and locations of the segments. Atload time, on the *
other hand, the entire program is invariably treated as a single big segment *
for relocation purposes, and the loader needs only to adjust program ad-*
dresses by the difference between the nominal and actual load addresses. *

Symbol and segment relocation

The linker’s first pass lays out the positions of the various segments and
collects the segment-relative values of all global symbols in the program.
Once the linker determines the position of each segment, it needs to adjust
the stored addresses.

• Data addresses and absolute program address references within a
segment need to be adjusted.For example, if a pointer refers to lo-
cation 100, but the segment base is relocated to 1000, the pointer
needs to be adjusted to location 1100.

• Inter-segment program references need to be adjusted as well.Ab-
solute address references need to be adjusted to reflect the new po-
sition of the target address’ segment, while relative addresses need
to reflect the positions of both the target segment and the segment
in which the reference lies.

• References to global symbols have to be resolved. If an instruction
calls a routinedetonate, and detonate is at offset 500 in a
segment that starts at 1000, the address in that instruction has to be
adjusted to refer to location 1500.
The requirements of relocation and symbol resolution are slightly
different. For relocation, the number of base values is fairly small,
the number of segments in an input file, but the object format has
to permit relocation of references to any address in any segment.
For symbol resolution, the number of symbols is far greater, but in

7-186 Relocation

most cases the only action the linker needs to take with the symbol
is to plug the symbol’s value into a word in the program.

Many linkers unify segment and symbol relocation by treating each seg-
ment as a pseudo-symbol whose value is the base of the segment. This
makes segment-relative relocations a special case of symbol-relative ones.

Even in linkers that unify the two kinds of relocation, there is still one im-
portant difference between the two kinds: a symbol reference involves two
addends, the base address of the segment in which the symbol resides and
the offset of the symbol within that segment. Somelinkers precompute all
the symbol addresses before starting the relocation phase, adding the seg-
ment base to the symbol value in the symbol table. Others look up the
segment base do the addition as each item is relocated. In most cases,
there’s no compelling reason to do it one way or the other. In a few link-
ers, notably those for real-mode x86 code, a single location can be ad-
dressed relative to sev eral different segments, so the linker can only deter-
mine the address to use for a symbol in the context of an individual refer-
ence using a specified segment.

Symbol lookups

Object formats invariably treat each file’s set of symbols as an array, and
internally refer to the symbols using a small integer, the index in that array.
This causes minor complications for the linker, as mentioned in Chapter 5,
since each input file will have different indexes, as will the output if the
output is relinkable. The most straightforward way to handle this is to
keep an array of pointers for each input file, pointing to entries in the glob-
al symbol table.

Basic relocation techniques

Each relocatable object file contains a relocation table, a list of places in*
each segment in the file that need to be relocated.The linker reads in the *
contents of the segment, applies the relocation items, then disposes of the*
segment, usually by writing it to the output file. Usually but not always, *
relocation is a one-time operation and the resulting file can’t be relocated *
again. Someobject formats, notably the IBM 360, are relinkable and keep *
all the relocation data in the output file.(In the case of the 360, the output *

Relocation 7-187

file needs to be relocated when loaded, so it has to keep all the relocation*
information anyway.) With Unix linkers, a linker option makes the output *
relinkable, and in some cases, notably shared libraries, the output always *
has relocation information since libraries need to be relocated when loaded*
as well. *

In the simplest case, Figure 1, the relocation information for a segment is
just a list of places in the segment that need to be relocated. As the linker
processes the segment, it adds the base position of the segment to the value
at each location identified by a relocation entry. This handles direct ad-
dressing and pointer values in memory for a single segment.

Figure 7-1: Simple relocation entry

address | address | address | ...

Real programs on modern computers are somewhat more complicated, due
to multiple segments and addressing modes.The classic Unix a.out for-
mat, Figure 2, is about the simplest that handles these issues.

Figure 7-2: a.out relocation entry

int address /* offset in text or data segment */
unsigned int r_symbolnum : 24, /* ordinal number of add symbol */
r_pcrel : 1, /* 1 if value should be pc-relative */
r_length : 2, /* log base 2 of value’s width */
r_extern : 1, /* 1 if need to add symbol to value */

Each object file has two sets of relocation entries, one for the text segment
and one for the data segment. (Thebss segment is defined to be all zero,
so there’s nothing to relocate there.) Each relocation entry contains a bit
r_extern to specify whether this is a segment-relative or symbol-rela-

7-188 Relocation

tive entry. If the bit is clear, it’s segment relative and r_symbolnum is
actually a code for the segment,N_TEXT (4), N_DATA (6), orN_BSS (8).
Thepc_relative bit specifies whether the reference is absolute or rela-
tive to the current location (‘‘program counter’’.)

The exact details of each relocation depend on the type and segments in-
volved. Inthe discussion below, TR, DR, and BR are the relocated bases
of the text, data, and bss segments, respectively.

For a pointer or direct address within the same segment, the linker adds
TR or DR to the stored value already in the segment.

For a pointer or direct address from one segment to another, the linker
adds the relocated base of the target segment, TR, DR, or BR to the stored
value. Sincea.out input files already have the target addresses in each seg-
ment relocated to the tentative segment positions in the new file, this is all
that’s necessary. For example, assume that in the input file, the text starts
at 0 and data at 2000, and a pointer in the text segment points to offset 100
in the data segment. Inthe input file, the stored pointer will have the value
2200. If the final relocated address of the data segment in the output turns
out to be 15000, then DR will be 13000, and the linker will add 13000 to
the existing 2200 producing a final stored value of 15200.

Some architectures have different sizes of addresses.Both the IBM 360
and Intel 386 have both 16 and 32 bit addresses, and the linkers have gen-
erally supported relocation items of both sizes. In both cases, it’s up to the
programmer who uses 16 bit addresses to make sure that the addresses will
fit in the 16 bit fields; the linker doesn’t do any more than verify that the
address fits.

Instruction relocation

Relocating addresses in instructions is somewhat trickier that relocating
pointers in data due to the profusion of often quirky instruction formats.
The a.out format described above has only two relocation formats, abso-
lute and pc-relative, but most computer architectures require a longer list
of relocation formats to handle all the instruction formats.

Relocation 7-189

X86 instruction relocation

Despite the complex instruction encodings on the x86, from the linker’s
point of view the architecture is easy to handle because there are only two
kinds of addresses the linker has to handle, direct and pc-relative. (We ig-
nore segmentation here, as do most 32 bit linkers.) Datareference instruc-
tions can contain the 32 bit address of the target, which the linker can relo-
cate the same as any other 32 bit data address, adding the relocated base of
the segment in which the target resides.

Call and jump instructions use relative addressing, so the value in the in-
struction is the difference between the target address and the address of the
instruction itself.For calls and jumps within the same segment, no reloca-
tion is required since the relative positions of addreses within a single seg-
ment never changes. For intersegment jumps the linker needs to add the
relocation for the target segment and subtract that of the instruction’s seg-
ment. For a jump from the text to the data segment, for example, the relo-
cation value to apply would be DR-TR.

SPARC instruction relocation

Few architectures have instruction encodings as linker-friendly as the x86.
The SPARC, for example, has no direct addressing, four different branch
formats, and some specialized instructions used to synthesize a 32 bit ad-
dress, with individual instructions only containing part of an address.The
linker needs to handle all of this.

Unlike the x86, none of the SPARC instruction formats have room for a 32
bit address in the instruction itself.This means that in the input files, the
target address of an instruction with a relocatable memory reference can’t
be stored in the instruction itself.Instead, SPARC relocation entries, Fig-
ure 3, have an extra fieldr_addend which contains the 32 bit value to
which the reference is made.Since SPARC relocation can’t be described
as simply as x86, the various type bits are replaced by ar_type field that
contains a code that describes the format of the relocation. Also, rather
than dedicate a bit to distinguish between segment and symbol relocations,
each input file defines symbols.text, .data, and .bss, that are de-
fined as the beginnings of their respective segments, and segment reloca-
tions refer to those symbols.

7-190 Relocation

Figure 7-3: SPARC relocation entry

int r_address; /* offset of of data to relocate */
int r_index:24, /* symbol table index of symbol */

r_type:8; /* relocation type*/
int r_addend; /* datum addend*/

The SPARC relocations fall into three categories: absolute addresses for
pointers in data, relative addresses of various sizes for branches and calls,
and the special SETHI absolute address hack. Absolute addresses are re-
located almost the same as on the x86, the linker adds TR, DR, or BR to
the stored value. Inthis case the addend in the relocation entry isn’t really
needed, since there’s room for a full address in the stored value, but the
linker adds the addend to the stored value anyway for consistency.

For branches, the stored offset value is generally zero, with the addend be-
ing the offset to the target, the difference between the target address and
the address of the stored value. Thelinker adds the appropriate relocation
value to the addend to get the relocated relative address. Thenit shifts the
relative address right two bits, since SPARC relative addresses are stored
without the low bits, checks to make sure that the shifted value will fit in
the number of bits available (16, 19, 22, or 30 depending on format),
masks the shifted address to that number of bits and adds it into the in-
struction. The16 bit format stores 14 low bits in the low bits of the word,
but the 15th and 16th bits are in bit positions 20 and 21.The linker does
the appropriate shifting and masking to store those bits without modifying
the intervening bits.

The special SETHI hack synthesizes a 32 bit address with a SETHI in-
struction, which takes a 22 bit value from the instruction and places it in
the 22 high bits of a register, followed by an OR immediate to the same
register which provides the low 10 bits of the address. The linker handles
this with two specialized relocation modes, one of which puts the 22 high
bits of the relocated address (the addend plus the appropriate relocated
segment base) in the low 22 bits of the stored value, and a second mode

Relocation 7-191

which puts the low 10 bits of the relocated address in the low 10 bits of the
stored value. Unlike the branch modes above, these relocation modes do
not check that each value fits in the stored bits, since in both cases the
stored bits don’t represent the entire value.

Relocation on other architectures uses variations on the SPARC tech-
niques, with a different relocation type for each instruction format that can
address memory.

ECOFF segment relocation

Microsoft’s COFF object format is an extended version of COFF which is
descended from a.out, so it’s not surprising that Win32 relocation bears a
lot of similarities to a.out relocation. Each section in a COFF object file
can have a list of relocation entries similar to a.out entries, Figure 4.A pe-
culiarity of COFF relocation entries is that even on 32 bit machines,
they’re 10 bytes long, which means that on machines that require aligned
data, the linker can’t just load the entire relocation table into a memory ar-
ray with a single read, but rather has to read and unpack entries one at a
time. (COFFis old enough that saving two bytes per entry probably ap-
peared worthwhile.) Ineach entry, the address is the RVA (relative virtual
address) of the stored data, the index is the segment or symbol index, and
the type is a machine specific relocation type.For each section of the in-
put file, the symbol table contains an entry with a name like .text, so
segment relocations use the index of the symbol corresponding to the tar-
get section.

Figure 7-4: MS COFF relocation entry

int address; /* offset of of data to relocate */
int index; /* symbol index */
short type; /* relocation type */

On the x86, ECOFF relocations work much like they do in a.out. AnIM-
AGE_REL_I386_DIR32 is a 32 bit direct address or stored pointer, an IM-

7-192 Relocation

AGE_REL_I386_DIR32NB is 32 bit direct address or stored pointer rela-
tive to the base of the progam, and an IMAGE_REL_I386_REL32 is a pc-
relative 32 bit address.A few other relocation types support special Win-
dows features, mentioned later.

ECOFF supports several RISC processors including the MIPS, Alpha, and
Power PC. These processors all present the same relocation issues the
SPARC does, branches with limited addressing and multi-instruction se-
quences to synthesize a direct address.ECOFF has relocation types to
handle each of those situations, along with the conventional full-word re-
locations.

MIPS, for example, has a jump instruction that contains a 26 bit address
which is shifted two bits to the left and placed in the 28 low bits of the
program counter, leaving the high four bits unchanged.The relocation
type IMAGE_REL_MIPS_JMPADDR relocates a branch target address.
Since there’s no place in the relocation item for the target address, the
stored instruction already contains the unrelocated target address.To do
the relocation, the linker has to reconstruct the unrelocated target address
by extracting the low 26 bits of the stored instruction, shifting and mask-
ing, then add the relocated segment base for the target segment, then undo
the shifting and masking to reconstruct the instruction.In the process, the
linker also has to check that the target address is reachable from the in-
struction.

MIPS also has an equivalent of the SETHI trick. MIPS instructions can
contain 16 bit literal values. To load an arbitrary 32 bit value one uses a
LUI (load upper immediate) instruction to place the high half of an imme-
diate value in the high 16 bits of a register, followed by an ORI (OR im-
mediate) to place the low 16 bits in the register. The relocation types IM-
AGE_REL_MIPS_REFHI and IMAGE_REL_MIPS_REFLO support this
trick, telling the linker to relocate the high or low half, respectively, of the
target value in the relocated instruction. REFHI presents a problem
though. Imaginethat the target address before relocation is hex 00123456,
so the stored instruction would contain 0012, the high half of the unrelo-
cated value. Now imagine that the relocation value is 1E000.The final
value will be 123456 plus 1E000 which is 141456, so the stored value will
be 0014. But wait − to do this calculation, the linker needs the full value

Relocation 7-193

00123456, but only the 0012 is stored in the instruction. Where does it
find the low half with 3456? ECOFF’s answer is that the next relocation
item after the REFHI is IMAGE_REL_MIPS_PAIR, in which the index
contains the low half of the target for a preceding REFHI.This is ar-
guably a better approach than using an extra addend field in each reloca-
tion item, since the PAIR item only occurs after REFHI, rather than wast-
ing space in every item. The disadvantage is that the order of relocation
items now becomes important, while it wasn’t before.

ELF relocation

ELF relocation is similar to a.out and COFF relocation. ELF does ratio-
nalize the issue of relocation items with addends and those without, having
two kinds of relocation sections, SHT_REL without and SHT_RELA
with. In practice, all of the relocation sections in a single file are of the
same type, depending on the target architecture. If the architecture has
room for all the addends in the object code like the x86 does, it uses REL,
if not it uses RELA.But in principle a compiler could save some space on
architectures that need addends by putting all the relocations with zero ad-
dends, e.g., procedure references, in a SHT_REL section and the rest in a
SHT_RELA.

ELF also adds some extra relocation types to handle dynamic linking and
position independent code, that we discuss in Chapter 8.

OMF relocation

OMF relocation is conceptually the same as the schemes we’ve already
looked at, although the details are quite complex. SinceOMF was origi-
nally designed for use on microcomputers with limited memory and stor-
age, the format permits relocation to take place without having to load an
entire segment into memory. OMF intermixes LIDAT A or LEDAT A data
records with FIXUPP relocation records, with each FIXUPP referring to
the preceding data. Hence, the linker can read and buffer a data record,
then read a following FIXUPP, apply the relocations, and write out the re-
located data.FIXUPPs refer to relocation ‘‘threads’’, two-bit codes that
indirectly refer to a frame, an OMF reloctation base. The linker has to
track the four active frames, updating them as FIXUPP records redefine
them, and using them as FIXUPP records refer to them.

7-194 Relocation

Relinkable and relocatable output formats

A few formats are relinkable, which means that the output file has a sym-
bol table and relocation information so it can be used as an input file in a
subsequent link.Many formats are relocatable, which means that the out-
put file has relocation information for load-time relocation.

For relinkable files, the linker needs to create a table of output relocation
entries from the input relocation entries. Some entries can be passed
through verbatim, some modified, and some discarded. Entries for seg-
ment-relative fixups in formats that don’t combine segments can generally
be passed through unmodified other than adjusting the segment index,
since the final link will handle the relocation. In formats that do combine
segments, the item’s offset needs to be adjusted.For example, in a linked
a.out file, an incoming text segment has a segment-relative relocation at
offset 400, but that segment is combined with other text segments so the
code from that segment is at location 3500. Then the relocation item is
modified to refer to location 3900 rather than 400.

Entries for symbol resolution can be passed through unmodified, changed
to segment relocations, or discarded. If an external symbol remains unde-
fined, the linker passes through the relocation item, possibly adjusting the
offset and symbol index to reflect combined segments and the order of
symbols in the output file’s symbol table. If the symbol is resolved, what
the linker does depends on the details of the symbol reference.If the ref-
erence is a pc-relative one within the same segment, the linker can discard
the relocation entry, since the relative positions of the reference and the
target won’t move. If the reference is absolute or inter-segment, the relo-
cation item turns into a segment-relative one.

For output formats that are relocatable but not relinkable, the linker dis-
cards all relocation items other than segment-relative fixups.

Other relocation formats

Although the most common format for relocation items is an array of fix-
ups, there are a few other possibilities, including chained references and
bitmaps. Mostformats also have segments that need to be treated special-
ly by the linker.

Relocation 7-195

Chained references

For external symbol references, one surprisingly effective format is a
linked list of references, with the links in the object code itself.The sym-
bol table entry points to one reference, the word at that location points to a
subsequent reference, and so forth to the final reference which has a stop
value such as zero or -1. This works on architectures where address refer-
ences are a full word, or at least enough bits to cover the maximum size of
an object file segment. (SPARC branches, for example, have a 22 bit off-
set which, since instructions are aligned on four-byte boundaries, is
enough to cover a 224 byte section, which is a reasonable limit on a single
file segment.)

This trick does not handle symbol references with offsets, which is usually
an acceptable limitation for code references but a problem for data. In C,
for example, one can write static initializers which point into the middle of
arrays:
extern int a[];
static int *ap = &a[3];

On a 32 bit machine, the contents ofap area plus 12. A way around this
problem is either to use this technique just for code pointers, or else to use
the link list for the common case of references with no offset, and some-
thing else for references with offsets.

Bit maps

On architectures like the PDP-11, Z8000, and some DSPs that use abso-
lute addressing, code segments can end up with a lot of segment reloca-
tions since most memory reference instructions contain an address that
needs to be relocated. Rather than making a list of locations to fix up, it
can be more efficient to store fixups as a bit map, with one bit for every
word in a segment, the bit being set if the location needs to be fixed up.
On 16 bit architectures, a bit map saves space if more than 1/16 of the
words in a segment need relocation; on a 32 bit architecture if more than
1/32 of the words need relocation.

7-196 Relocation

Special segments

Many object formats define special segment formats that require special
relocation processing.

• Windows objects have thread local storage (TLS), a special seg-
ment containing global variables that is replicated for each thread
started within a process.

• IBM 360 objects have "pseudoregisters", similar to thread local
storage, an area with named subchunks referred to from different
input files.

• Many RISC architectures define "small" segments that are collect-
ed together into one area, with a register set at program startup to
point to that area allowing direct addressing from anywhere in the
program.
In each of these cases, the linker needs a special relocation type or
two to handle special segments.

For Windows thread local storage, the details of the relocation type(s) vary
by architecture.For the x86, IMAGE_REL_I386_SECREL fixups store
the target symbol’s offset from the beginning of its segment. Thisfixup is
generally an instruction with an index register that is set at runtime to
point to the current thread’s TLS, so the SECREL provides the offset with-
in the TLS. For the MIPS and other RISC processors, there are both SE-
CREL fixups to store a 32 bit value as well as SECRELLO and SECREL-
HI (the latter followed by a PAIR, as with REFHI) to generate section-rel-
ative addresses.

For IBM pseudoregisters, the object format adds two relocation types.
One is a PR pseudoregister reference, which stores the offset of the pseu-
doregister, typically into two bytes in a load or store instruction. The other
is CXD, the total size of the pseudoregisters used in a program. This value
is used by runtime startup code to determine how much storage to allocate
for a set of pseudoregisters.

For small data segments, object formats define a relocation type such as
GPREL (global pointer relocation) for MIPS or LITERAL for Alpha
which stores the offset of the target date in the small data area.The linker

Relocation 7-197

defines a symbol like _GP as the base of the small data area, so that run-
time startup code can load a pointer to the area into a fixed register.

Relocation special cases

Many object formats have "weak" external symbols which are treated as
normal global symbols if some input file happens to define them, or zero
otherwise. (SeeChapter 5 for details.)These usually require no special
effort in the relocation process, since the symbol is either a normal defined
global, or else it’s zero. Eitherway, references are resolved like any other
symbol.

Some older object formats permitted much more complex relocation than
the formats we’ve discussed here.In the IBM 360 format, for example,
each relocation item can either add or subtract the address to which it
refers, and multiple relocation items can modify the same location, permit-
ting references likeA-B where either or both of A and B are external sym-
bols.

Some older linkers permitted arbitrarily complex relocations, with elabo-
rate reverse polish strings representing link-time expressions to be re-
solved and stored into program memory. Although these schemes had
great expressive power, it turned out to be power that wasn’t very useful,
and modern linkers have retreated to references with optional offsets.

Exercises

Why does a SPARC linker check for address overflow when relocating
branch addresses, but not when doing the high and low parts of the ad-
dresses in a SETHI sequence?

In the MIPS example, a REFHI relocation item needs a following PAIR
item, but a REFLO doesn’t. Why not?

References to symbols that are pseudo-registers and thread local storage
are resolved as offsets from the start of the segment, while normal symbol
references are resolved as absolute addresses. Why?

We said that a.out and COFF relocation doesn’t handle references like A-B
where A and B are both global symbols.Can you come up with a way to

7-198 Relocation

fake it?

Project

Recall that relocations are in this format:
loc seg ref type ...

where loc is the location to be relocated, seg is the segment it’s in, ref is
the segment or symbol to which the relocation refers, and type is the relo-
cation type.For concreteness, we define these relocation types:

• A4 Absolute reference. The four bytes at loc are an absolute refer-
ence to segment ref.

• R4 Relative reference. Thefour bytes at loc are a relative refer-
ence to segment ref. That is, the bytes at loc contain the difference
between the address after loc (loc+4) and the target address. (This
is the x86 relative jump instruction format.)

• AS4 Absolute symbol reference. The four bytes at loc are an abso-
lute reference to symbol ref, with the addend being the value al-
ready stored at loc. (The addend is usually zero.)

• RS4 Relative symbol reference.The four bytes at loc are a relative
reference to symbol ref, with the addend being the value already
stored at loc. (The addend is usually zero.)

• U2 Upper half reference. The two bytes at loc are the most signifi-
cant two bytes of a reference to symbol ref.

• L2 Lower half reference. The two bytes at loc are the least signifi-
cant two bytes of a reference to symbol ref.

Project 7-1: Make the linker handle these relocation types.After the link-
er has created its symbol table and assigned the addresses of all of the seg-
ments and symbols, process the relocation items in each input file.Keep
in mind that the relocations are defined to affect the actual byte values of
the object data, not the hex representation. Ifyou’re writing your linker in
perl, it’s probably easiest to convert each segment of object data to a bina-
ry string using the perl pack function, do the relocations then convert back
to hex using unpack.

Relocation 7-199

Project 7-2: Which endian-ness did you assume when you handled your
relocations in project 7-1? Modify your linker to assume the other enndi-
an-ness instead.

