Relocation 7-183

Chapter 7
Relocation

$Revision: 2.2 $
$Date; 1999/06/3001:02:35 %

Once a linker has scanned all of the input files to determine segment sizes,
symbol definitions and symbol references, figured out which library modt
ules to include, and decided where in the output address space all of the
segments will go, the ne stage is the heart of the linking process, reloca*
tion. We use relocation to refer both to the process of adjusting prograrh
addresses to account for non-zero segment origins, and the process of*re-
solving references toxgernal symbols, since the tmare frequently han- *
dled together *

The linker’s first pass lays out the positions of the various segments arfd
collects the sgment-relatie values of all global symbols in the program. *
Once the linker determines the position of each segment, it potentialty
needs to fix up all storage addresses to reflect théauations of the gp *
ments. Ommost architectures, addresses in data are absolute, while thaose
embedded in instructions may be absolute or velafThe linker needs to *
fixup accordinglyas we’ll discuss later *

The first pass also creates the global symbol table as described in Chapter
5. Thelinker also resolves stored references to global symbols to the syrh-
bols’ addresses. *

Har dwar e and software relocation

Since nearly all modern computersveaardware relocation, one might
wonder wly a linker or loader still does software relocation. (This ques-
tion confused me when programming a PDP-6 in the late 1960s, and the
situation has only gotten more complicated since th&hg answer has
partly to do with performance, and partly with binding time.

Hardware relocation allows an operating system te gach process a
separate address space that starts at a fixed known address, whesh mak
program loading easier and peats buggy programs in one address space
from damaging programs in other address spaSefiware linker or load-

7-184 Relocation

er relocation combines input files into one large file shegady to be
loaded into the address space provided by hardware relocation, frequently
with no load-time fixing up at all.

On a machine li& a 86 or 286 with seeral thousand segments, ibuld
indeed be possible to load one routine or global datum per segment, com-
pletely doing aay with software relocation. Each routine or datuimud
start at location zero in its segment, and all global references would be
handled as intesggment references looked up in the systesmgment ta-
bles and bound at runtim&Jnfortunately x86 sgment lookups areery
slow, and a program that did a segment lookup faarg inter-module call
or global data refrence would ke fslower than one linked caantionally.

Equally importantly dthough runtime binding can be useful (a topic we
cover in Chapter 10), most programs are bettdrawbiding it. For relia-
bility reasons, program files are best bound together and addresses fixed at
link time, so thg hold still during debugging and remain consistent after
shipping. Library'bit creep” is a chronic ancewy hard to debug source of
program errors when a program runs usingecgiht versions of libraries
than its authors anticipated. (MSiMlows applications are prone to this
problem due to the large number of shared librarieg ke, with difer-

ent versions of libraries often shipped withrious applications all loaded
on the same computgrEven without the werhead of 286 style genents,
dynamic linking tends to be far slower than static linking, and there’
point in paying for it where & not needed.

Link time and load timerelocation

Marny systems perform both link time and load time relocatiénlinker *
combines a set of input file into a single output file ready to be loaded at
specific address. If when the program is loaded, storage at that addr&ss
isn't available, the loader has to relocate the loaded program to reflect the
actual load addressOn some systems including MS-DOS and MVS, *
evay program is linked as though it will be loaded at location zero. Thé
actual address is chosen fronaitable storage and the program isvays *
relocated as & loaded. Orothers, notably MS Wdows, programs are *
linked to be loaded at a & address which is generallyagable, and no *
load-time relocation is needegoept in the unusual case that the standard

Relocation 7-185

address is already in use by something else. (Current versionaddAMy *
in practice neer do load-time relocation ofxecutable programs, although
they do relocate DLL shared librariesSimilarly, Unix systems neer relo-

cate ELF programs although theo relocate ELF shared libraries.) *

*

*

Load-time relocation is quite simple compared to link-time relocatfdn.

link time, different addresses need to be relocatddrdiit amounts de- *
pending on the size and locations of thgnsents. Atload time, on the *
other hand, the entire program isanably treated as a single biggseent *
for relocation purposes, and the loader needs only to adjust program &d-
dresses by the difference between the nominal and actual load addresses.

Symbol and segment relocation

The linker’s first pass lays out the positions of the various segments and
collects the sgment-relatre values of all global symbols in the program.
Once the linker determines the position of each segment, it needs to adjust
the stored addresses.

. Data addresses and absolute program address references within a
segment need to be adjusteBor example, if a pointer refers to lo-
cation 100, but the segment base is relocated to 1000, the pointer
needs to be adjusted to location 1100.

. Inter-sgment program references need to be adjusted as Aell.
solute address references need to be adjusted to reflecttipene
sition of the target address’ segment, while redasddresses need
to reflect the positions of both the targegrsent and the genent
in which the reference lies.

. References to global symbolsvesain be esohed. Ifan instruction
calls a routinedet onat e, and det onat e is at ofset 500 in a
segment that starts at 1000, the address in that instruction has to be
adjusted to refer to location 1500.
The requirements of relocation and symbol resolution are slightly
different. For relocation, the number of basauwes is fairly small,
the number of segments in an input file, but the object format has
to permit relocation of references toyasdress in ay segment.
For symbol resolution, the number of symbols as greaterbut in

7-186 Relocation

most cases the only action the linker needs te wath the symbol
is to plug the symbdd'value into a word in the program.

Many linkers unify segment and symbol relocation by treating eagh se
ment as a pseudo-symbol whose value is the base ofdheese This
makes sgment-relatre relocations a special case of symbol-rgatnes.

Even in linkers that unify the tevkinds of relocation, there is still one im-
portant difference between thedawinds: a symbol referenceviolves two
addends, the base address of the segment in which the symbol resides and
the offset of the symbol within thatgraent. Soméinkers precompute all

the symbol addresses before starting the relocation phase, adding-the se
ment base to the symbol value in the symbol table. Others look up the
seggment base do the addition as each item is relocated. In most cases,
theres no @mpelling reason to do it one way or the othiera few link-

ers, notably those for real-mode x86 code, a single location can be ad-
dressed relate o sveaal different sgments, so the linker can only deter
mine the address to use for a symbol in the comtean individual refer

ence using a specified segment.

Symbol lookups

Object formats imariably treat each filg’ &t of symbols as an arragnd
internally refer to the symbols using a small intetfer inde in that array.
This causes minor complications for the &nkas nmentioned in Chapter 5,
since each input file will he dfferent indees, as will the output if the
output is relinkable. The most straightforward way to handle this is to
keep an array of pointers for each input file, pointing to entries in the glob-
al symbol table.

Basic relocation techniques

Each relocatable object file contains a relocation table, a list of places in
each segment in the file that need to be relocalée. linker reads in the *
contents of the ggnent, applies the relocation items, then disposes of th&
segment, usually by writing it to the output file. Usually but natagis, *
relocation is a one-time operation and the resulting filet tentelocated *
acain. Someobject formats, notably the IBM 360, are relinkable aeelk *
all the relocation data in the output filén the case of the 360, the output *

Relocation 7-187

file needs to be relocated when loaded, so it has to keep all the relocatfon
information agway.) With Unix linkers, a linker option makes the output *
relinkable, and in some cases, notably shared libraries, the outpysal *
has relocation information since libraries need to be relocated when loaded
as well. *

In the simplest case, Figure 1, the relocation information for a segment is
just a list of places in the gment that need to be relocated. As thedmk
processes the gment, it adds the base position of the segment tcetlie v

at each location identified by a relocation entiyis handles direct ad-
dressing and pointer values in memory for a single segment.

Figure 7-1: Smple relocation entry

address | address | address | ...

Real programs on modern computers are sdgraemore complicated, due
to multiple segments and addressing modHEse classic Unix a.out fer
mat, Figure 2, is about the simplest that handles these issues.

Figure 7-2: a.out relocation entry

int address /* offset in text or data segnent */
unsigned int r_symbolnum: 24, [/* ordinal nunber of add synbol */

r _ pcrel : 1, /* 1 if value should be pc-relative */
r length : 2, [/* log base 2 of value’'s width */
r_extern: 1, /[/* 1 if need to add symbol to value */

Each object file has tweets of relocation entries, one for th&tteggment

and one for the datagment. (Thebss segment is defined to be all zero,
so theres mothing to relocate there.) Each relocation entry contains a bit
r _ext ern to specify whether this is ag®ent-relatre a symbol-rela-

7-188 Relocation

tive entry. If the bit is clearit's gment relatve and r _synbol numis
actually a code for the gment,N_TEXT (4), N_DATA (6), orN_BSS (8).
Thepc_rel ati ve bit specifies whether the reference is absolute or rela-
tive © the current location (“program counter”.)

The exact details of each relocation depend on the type and segments in-
volved. Inthe discussion belg TR, DR, and BR are the relocated bases
of the text, data, and bss segments, resmhcti

For a pointer or direct address within the same segment, the linker adds
TR or DR to the stored value already in the segment.

For a pointer or direct address from one segment to anotherlinker

adds the relocated base of the target segment, TR, DR, or BR to the stored
vaue. Sincea.out input files already k& the target addresses in each-se
ment relocated to the tentati egment positions in the mefile, this is all

that's necessary For example, assume that in the input file, the text starts
at 0 and data at 2000, and a pointer in the text segment points to offset 100
in the data sgment. Inthe input file, the stored pointer will V&the \alue

2200. Ifthe final relocated address of the data segment in the output turns
out to be 15000, then DR will be 13000, and thedinkill add 13000 to

the existing 2200 producing a final stored value of 15200.

Some architectures Y& dfferent sizes of addresseBoth the IBM 360
and Intel 386 ha oth 16 and 32 bit addresses, and the linkeve lgan-
erally supported relocation items of both sizes. In both casespito he
programmer who uses 16 bit addresses toemale that the addresses will
fit in the 16 bit fields; the linker doesrdo any more than verify that the
address fits.

Instruction relocation

Relocating addresses in instructions is somewhat trickier that relocating
pointers in data due to the profusion of often quirkstruction formats.

The a.out format described al@ohas only two relocation formats, abso-
lute and pc-relate, but most computer architectures require a longer list
of relocation formats to handle all the instruction formats.

Relocation 7-189

X86 instruction relocation

Despite the compleinstruction encodings on the x86, from the ér&
point of view the architecture is easy to handle because there are anly tw
kinds of addresses the linker has to handle, direct and poxeel@tie ig-

nore segmentation here, as do most 32 bitling Dataeference instruc-
tions can contain the 32 bit address of thgawhich the linker can relo-
cate the same asyaather 32 bit data address, adding the relocated base of
the segment in which the target resides.

Call and jump instructions use reletiaddressing, so the value in the in-
struction is the difference between the target address and the address of the
instruction itself. For calls and jumps within the same segment, no reloca-
tion is required since the rebai positions of addreses within a singlegse

ment neer changes. Br intersegment jumps the linker needs to add the
relocation for the target segment and subtract that of the instriscsamp’

ment. for a jump from the text to the data segment, kamneple, the relo-

cation value to apply would be DR-TR.

SPARC instruction relocation

Few architectures hae instruction encodings as liekfriendly as the x86.

The SPARC, for xample, has no direct addressing, four different branch
formats, and some specialized instructions used to synthesize a 32 bit ad-
dress, with indiidual instructions only containing part of an addreBse

linker needs to handle all of this.

Unlike the x86, none of the 3IRC instruction formats he room for a 32

bit address in the instruction itseff.his means that in the input files, the
target address of an instruction with a relocatable memory referende can’
be stored in the instruction itselinstead, SPARC relocation entries, Fig-
ure 3, hae an extra fieldr _addend which contains the 32 bit value to
which the reference is mad&ince SPARC relocation carbe described

as simply as x86, theavious type bits are replaced by at ype field that
contains a code that describes the format of the relocation. Also, rather
than dedicate a bit to distinguish between segment and symbol relocations,
each input file defines symbalg ext, . dat a, and . bss, that are de-
fined as the lnnings of their respee Egnents, and segment reloca-
tions refer to those symbols.

7-190 Relocation

Figure 7-3: SPARC relocation entry

int r_address; /* offset of of data to relocate */

int r_index: 24, /* synmbol table index of synbol */
r type:8; [/* relocation type*/

int r_addend; /* datum addend*/

The SPARC relocations fall into three gides: absolute addresses for
pointers in data, relat addresses ofarious sizes for branches and calls,

and the special SETHI absolute address hack. Absolute addresses are re-
located almost the same as on the x86, thestiakids TR, DR, or BR to

the stored &lue. Inthis case the addend in the relocation entryt re@lly
needed, since thesetoom for a full address in the stored value, but the
linker adds the addend to the stored value anyway for congistenc

For branches, the stored offset value is generally zero, with the addend be-
ing the offset to the target, the difference between the target address and
the address of the storedlwve. Thdinker adds the appropriate relocation
value to the addend to get the relocated netadildress. Theit shifts the
relative address right tw hits, since SPARC relat& aldresses are stored
without the lav bits, checks to makaure that the shiftedalue will fit in

the number of bits\ailable (16, 19, 22, or 30 depending on format),
masks the shifted address to that number of bits and adds it into the in-
struction. Thel6 bit format stores 14 \obits in the lav bits of the vord,

but the 15th and 16th bits are in bit positions 20 and ®”ie linker does

the appropriate shifting and masking to store those bits without modifying
the intervening bits.

The special SETHI hack synthesizes a 32 bit address with a SETHI in-
struction, which takes a 22 bialwe from the instruction and places it in

the 22 high bits of a gester followed by an OR immediate to the same
register which provides thewn 10 hts of the address. The linker handles
this with two gecialized relocation modes, one of which puts the 22 high
bits of the relocated address (the addend plus the appropriate relocated
seggment base) in thewn 22 hts of the stored value, and a second mode

Relocation 7-191

which puts the lv 10 hits of the relocated address in the/ [0 hits of the
stored alue. Unlike the branch modes ab® these relocation modes do

not check that each value fits in the stored bits, since in both cases the
stored bits don’represent the entire value.

Relocation on other architectures usesiations on the SPARC tech-
niques, with a different relocation type for each instruction format that can
address memory.

ECOFF segment relocation

Microsoft's COFF object format is an extendeersion of COFF which is
descended from a.out, scsitot surprising that W32 relocation bears a

lot of similarities to a.out relocation. Each section in a COFF object file
can hae a Ist of relocation entries similar to a.out entries, Figuré4e-
culiarity of COFF relocation entries is thatee on 32 bt machines,
theyre 10 bytes long, which means that on machines that require aligned
data, the linker cahjust load the entire relocation table into a memory ar
ray with a single read,ub rather has to read and unpack entries one at a
time. (COFFis old enough that saving owbytes per entry probably ap-
peared wrthwhile.) Ineach entrythe address is the\VR (relative virtual
address) of the stored data, the indethe segment or symbol index, and
the type is a machine specific relocation typer each section of the in-
put file, the symbol table contains an entry with a nane. ltkext , o
sgment relocations use the inxdef the symbol corresponding to the-tar
get section.

Figure 7-4: MS COFF relocation entry
int address; /* offset of of data to relocate */
int index; /* symbol index */
short type; /* relocation type */

On the x86, ECOFF relocations work muctlelikey do in aout. AnIM-
AGE_REL 1386_DIR32 is a 32 bit direct address or stored poiutel-

7-192 Relocation

AGE_REL 1386_DIR32NB is 32 bit direct address or stored pointer rela-
tive o the base of the progam, and an IMAGE_REL 1386 _REL32 is a pc-
relatve 3 hit address.A few aher relocation types support speciahnw
dows features, mentioned later.

ECOFF supports seral RISC processors including the MIPS, Alpha, and
Paver PC. These processors all present the same relocation issues the
SFARC does, branches with limited addressing and multi-instruction se-
guences to synthesize a direct addrdsS€OFF has relocation types to
handle each of those situations, along with theveaional full-word re-
locations.

MIPS, for example, has a jump instruction that contains a 26 bit address
which is shifted tw bits to the left and placed in the 28Mdits of the
program counterlearing the high four bits unchanged.he relocation

type IMAGE_REL_MIPS_JMRDDR relocates a branch target address.
Since theres no pace in the relocation item for the target address, the
stored instruction already contains the unrelocategetaaddress.To do

the relocation, the linker has to reconstruct the unrelocated target address
by extracting the M 26 hts of the stored instruction, shifting and mask-
ing, then add the relocated segment base for the target segment, then undo
the shifting and masking to reconstruct the instructionthe process, the
linker also has to check that thegeir address is reachable from the in-
struction.

MIPS also has an eqaient of the SETHI trick. MIPS instructions can
contain 16 bit literal alues. © load an arbitrary 32 bit value one uses a
LUI (load upper immediate) instruction to place the high half of an imme-
diate value in the high 16 bits of agigter followed by an ORI (OR im-
mediate) to place thewo16 hts in the rgister The relocation types IM-
AGE_REL_MIPS_REFHI and IMAGE_REL_MIPS_REFLO support this
trick, telling the linler to relocate the high orvohalf, respectiely, of the
target value in the relocated instruction. REFHI presents a problem
though. Imaginehat the target address before relocation ¥s(004.23456,

so the stored instruction would contain 0012, the high half of the unrelo-
cated alue. Nav imagine that the relocation value is 1EO0Othe final
value will be 123456 plus 1E000 which is 141456, so the staakct wvill

be 0014. But wit — to do this calculation, the linker needs the falue

Relocation 7-193

00123456, but only the 0012 is stored in the instruction. Where does it
find the lav half with 3456? ECOFF5 answer is that the next relocation
item after the REFHI is IMGE_REL_MIPS_RIR, in which the indg
contains the M half of the target for a preceding REFHThis is af
guably a better approach than using an extra addend field in each reloca-
tion item, since the PAIR item only occurs after REFHI, rather thest-w

ing space inery item. The disadvantage is that the order of relocation
items nav becomes important, while it wasioefore.

ELF relocation

ELF relocation is similar to a.out and COFF relocation. ELF does ratio-
nalize the issue of relocation items with addends and those witheurg ha

two kinds of relocation sections, SHT_REL without and SHT_RELA
with. In practice, all of the relocation sections in a single file are of the
same type, depending on the target architecture. If the architecture has
room for all the addends in the object code like x86 does, it uses REL,

if not it uses RELA.But in principle a compiler could ga sme space on
architectures that need addends by putting all the relocations with zero ad-
dends, e.g., procedure references, in a SHT_REL section and the rest in a
SHT_RELA.

ELF also adds some extra relocation types to handle dynamic linking and
position independent code, that we discuss in Chapter 8.

OMF relocation

OMF relocation is conceptually the same as the scheme® \de2ady
looked at, although the details are quite compl8inceOMF was origi-
nally designed for use on microcomputers with limited memory and stor
age, the format permits relocation todgikace without having to load an
entire segment into memon®OMF intermixes LIDATA or LEDATA data
records with FIXUPP relocation records, with each FIXUPP referring to
the preceding data. Hence, the linker can read affdrba data record,
then read a following FIXURRpply the relocations, and write out the re-
located data.FIXUPPs refer to relocatiorithreads’, two-bit codes that
indirectly refer to a frame, an OMF reloctation base. The linker has to
track the four acte frames, updating them as FIXUPP records redefine
them, and using them as FIXUPP records refer to them.

7-194 Relocation

Relinkable and relocatable output for mats

A few formats are relinkable, which means that the output file has a sym-
bol table and relocation information so it can be used as an input file in a
subsequent linkMany formats are relocatable, which means that the out-
put file has relocation information for load-time relocation.

For relinkable files, the linker needs to create a table of output relocation
entries from the input relocation entries. Some entries can be passed
through verbatim, some modified, and some discarded. Entriesgor se
ment-relatve fixups in formats that dontombine segments can generally

be passed through unmodified other than adjusting the segmert inde
since the final link will handle the relocation. In formats that do combine
seggments, the items’dfset needs to be adjusteBor example, in a linkd

a.out file, an incoming text gment has a genent-relatie relocation at
offset 400, but that segment is combined with other text segments so the
code from that segment is at location 3500. Then the relocation item is
modified to refer to location 3900 rather than 400.

Entries for symbol resolution can be passed through unmodified, changed
to segment relocations, or discarded. If atemal symbol remains unde-
fined, the linler passes through the relocation item, possibly adjusting the
offset and symbol indeto reflect combined segments and the order of
symbols in the output filse’symbol table. If the symbol is resolved, what
the linker does depends on the details of the symbol referdénite ref-
erence is a pc-relag ae within the same segment, the linker can discard
the relocation entrysince the relatie positions of the reference and the
target won’'t move If the reference is absolute or intEgment, the relo-
cation item turns into a segment-relatme.

For output formats that are relocatablet mot relinkable, the linker dis-
cards all relocation items other than segment-k&dixups.

Other relocation for mats

Although the most common format for relocation items is an array of fix-
ups, there are aveother possibilities, including chained references and
bitmaps. Mosformats also hae sgmnents that need to be treated special-
ly by the linker.

Relocation 7-195

Chained references

For external symbol references, one surprisingljedive format is a

linked list of references, with the links in the object code itsEiie sym-

bol table entry points to one reference, the word at that location points to a
subsequent reference, and so forth to the final reference which has a stop
value such as zero or -1. This works on architectures where address refer
ences are a full word, or at least enough bits werdbe maximum size of

an object file sgment. (SRRC branches, for example,Jea 22 hit off-

set which, since jnstructions are aligned on doyte boundaries, is
enough to ceer a 27 byte section, which is a reasonable limit on a single
file segment.)

This trick does not handle symbol references with offsets, which is usually
an acceptable limitation for code references but a problem for data. In C,
for example, one can write static initializers which point into the middle of
arrays:

extern int a[];

static int *ap = &[3];

On a 32 bit machine, the contentsapf area plus 12. A way around this
problem is either to use this technique just for code pointers, or else to use
the link list for the common case of references with risetfand some-
thing else for references with offsets.

Bit maps

On architectures l& the PDP-11, Z8000, and some DSPs that use abso-
lute addressing, code segments can end up with a lot of segment reloca-
tions since most memory reference instructions contain an address that
needs to be relocated. Rather than making a list of locations to fix up, it
can be more efficient to store fixups as a bit map, with one bivéoy e

word in a segment, the bit being set if the location needs to be fixed up.
On 16 bit architectures, a bit mapves ace if more than 1/16 of the
words in a segment need relocation; on a 32 bit architecture if more than
1/32 of the words need relocation.

7-196 Relocation

Special segments
Marny object formats define special segment formats that require special
relocation processing.

. Windows objects hee thread local storage (TLS), a speciafjse
ment containing global variables that is replicated for each thread
started within a process.

. IBM 360 objects hae "pseudorgisters”, similar to thread local
storage, an area with named subchunks referred to frdereatit
input files.

. Mary RISC architectures define "small" segments that are collect-

ed together into one area, with a register set at program startup to
point to that area allowing direct addressing fromvérere in the
program.

In each of these cases, the linker needs a special relocation type or
two to handle special segments.

For Windows thread local storage, the details of the relocation typalg) v
by architecture.For the x86, IMAGE_REL 1386 _SECREL fixups store
the target symbd’ dfset from the beginning of itsgment. Thidixup is
generally an instruction with an indeegster that is set at runtime to
point to the current threasTLS, so the SECREL provides the offset with-

in the TLS. For the MIPS and other RISC processors, there are both SE-
CREL fixups to store a 32 bit value as well as SECRELLO and SECREL-
HI (the latter followed by a PAIR, as with REFHI) to generate section-rel-
ative addresses.

For IBM pseudoregisters, the object format adde telocation types.

One is a PR pseudoregister reference, which stores the offset of the pseu-
doregistertypically into two bytes in a load or store instruction. The other

is CXD, the total size of the pseudgigers used in a program. Thzlwe

is used by runtime startup code to determing hmuch storage to allocate

for a set of pseudoregisters.

For small data sgments, object formats define a relocation type such as
GPREL (global pointer relocation) for MIPS or LITERAL for Alpha
which stores the offset of the target date in the small data @healinker

Relocation 7-197

defines a symbol likk_GP as the base of the small data area, so that run-
time startup code can load a pointer to the area into a fixed register.

Relocation special cases

Many object formats hee "weak" external symbols which are treated as
normal global symbols if some input file happens to define them, or zero
otherwise. (Se€hapter 5 for details.)These usually require no special
effort in the relocation process, since the symbol is either a normal defined
global, or else is zro. Eithemway, references are resolveddilny ather
symbol.

Some older object formats permitted much more comm@kcation than

the formats we/e dscussed hereln the IBM 360 format, for xaample,

each relocation item can either add or subtract the address to which it
refers, and multiple relocation items can modify the same location, permit-
ting references l&A- B where either or both of A and B are external sym-
bols.

Some older linkers permitted arbitrarily complelocations, with elabo-
rate r@erse polish strings representing link-time expressions to be re-
solved and stored into program memorklthough these schemes had
great gpressve power, it turned out to be power thataant very useful,

and modern linkers ha retreated to references with optional offsets.

Exercises

Why does a SPARC linkr check for addressverflow when relocating
branch addresses, but not when doing the high amddots of the ad-
dresses in a SETHI sequence?

In the MIPS example, a REFHI relocation item needs aviolig PAIR
item, but a REFLO doesn’ Why not?

References to symbols that are pseudo-registers and thread local storage
are resolved as offsets from the start of the segment, while normal symbol
references are resolved as absolute addresses. Why?

We said that a.out and COFF relocation doekahdle references kkA-B
where A and B are both global symbofSan you come up with a way to

7-198 Relocation

fake it?
Project

Recall that relocations are in this format:
| oc seg ref type ...

where loc is the location to be relocatedy sethe segment &' in, ref is
the segment or symbol to which the relocation refers, and type is the relo-
cation type.For concreteness, we define these relocation types:

. A4 Absolute reference. The four bytes at loc are an absolute refer
ence to segment ref.

. R4 Relatve reference. Thdour bytes at loc are a reledi refer-
ence to segment ref. That is, the bytes at loc contain teeedite
between the address after loc (loc+4) and the target address. (This
is the x86 relatie jump instruction format.)

. AS4 Absolute symbol reference. The four bytes at loc are an abso-
lute reference to symbol ref, with the addend being the value al-
ready stored at loc. (The addend is usually zero.)

. RS4 Relatve symbol reference.The four bytes at loc are a relai
reference to symbol ref, with the addend being the value already
stored at loc. (The addend is usually zero.)

. U2 Upper half reference. The tnbytes at loc are the most signifi-
cant two bytes of a reference to symbol ref.

. L2 Lower half reference. The twbytes at loc are the least signifi-
cant two bytes of a reference to symbol ref.

Project 7-1. Make the linker handle these relocation typdster the link-

er has created its symbol table and assigned the addresses of all gf the se
ments and symbols, process the relocation items in each inpuiKédgp

in mind that the relocations are defined tfeetfthe actual byte values of
the object data, not the hespresentation. ou're writing your linker in

perl, it's probably easiest to coat each sgment of object data to a bina-

ry string using the perl pack function, do the relocations theveddoack

to hex using unpack.

Relocation 7-199

Project 7-2: Which endian-ness did you assume when you handled your
relocations in project 7-1? Modify your linker to assume the other enndi-
an-ness instead.

