Libraries 6-169

Chapter 6
Libraries

Every modern linkr handles libraries, collections of object files that are*

included as needed in a linked program. In this chapter wer t@di- *
tional statically linked libraries, leaving the more comdeared libraries *
to Chapters 9 and 10. *
Purpose of libraries *

In the 1940s and early 1950s, programming shops had actual code librarfes
containing reels of tape or later decks of cards that a programoudd w *
visit and select routines to load with his program. Once loaders and link-
ers started to resavsymbolic references, it became possible to automatée
the process by selecting routines from the library that resaherwise *
undefined symbols. *

A library file is fundamentally no more than a collection of object files*
usually with some added directory information to mélfaster to search. *
As alays, the details are more complicated than the basic idea, so we
work them out in this chapteM/e use the term file to refer to a separate *
object file, and module to refer to an object file included in a library *

Library formats

The simplest library formats are just sequences of object modDlese-
guential media lik magnetic or paper tape, thesdittle point in adding a
directory since the linker has to read through the whole libraywa

and skipping wer library members is no slower than reading themGm.

disks, though, a directory can speed up library searching considerably and
is nov a gandard facility.

Using the operating system

0S/360 and its descendants including MVSvple partitioned data
sets(PDS), that contain named members, each of which can be treated as a
sequential file. The system provides features for giving multiple aliases to
a dngle memberfor treating multiple PDS as a single logical PDS for the
duration of a program, for enumerating the names in a logical PDS, and of
course for reading or writing the members. Member names are eight char

6-170 Libraries

acters which probably not coincidentally is the length of an external sym-
bol in a linker. (MVS introduces an extended PDS or PDSE which has
some support for names up to 1024 characters, for the benefit of C, C++,
and Cobol programmers.)

A linker library is merely a PDS where each member is an object file
named by its entry point. Object files that define multiple global symbols
have an dias for each global symbol manually created when the library is
built. The linker searches the logical PDS specified as the library for
members whose names match undefined symlfaisadvantage of this
scheme is that theseho dject library update program needed, since the
standard file maintenance utilities for PDS suffice.

Although I've reve seen a linker do so, a linker on a Unix-Eks/stem
could handle libraries the same way; the library would be a direthary
members object files within the directpnyith each file name being a
global symbol defined in the file. (UNIX permits multiple names for a sin-
gle file.)

Unix and Windows Archive files

UNIX linker libraries use artarchive” f ormat which can actually be used
for collections of ap types of files, although in practicesitarely used for
arything else. Libraries consist of an anaghieadeyfollowed by alternat-
ing file headers and obiject files. The earliest aesshimd no symbol di-
rectories, just a set of object files, but later versions hadus sorts of di-
rectories, settling down to one used for about a decade in B&bns
(text archive headers and a directory called. SYMDEF) and the current
version used with COFF or ELF libraries (text akehheaders with anxe
tension for long file names, directory callejlin System V.4, later er-
sions of BSD, and LinuxWindowvs ECOFF libraries use the same arehi
format as COFF libraries, but the directoaghough also called, has a
different format.

Unix archives

All modern Unix systems use minoanations of the same aretiformat,
Figure 1. The format uses onlyxtecharacters in the arckd headers,
which means that an areki d text files is itself a text file (a quality that

Libraries 6-171

has turned out in practice to be useless.) Eachvarctarts with the
“magic’ eight character string <ar ch>\ n, where\ n is a nev line.
Each archie member is preceded by a 60 byte header containing:

The name of the membgadded to 16 characters as described be-
low.

The modification date, as a decimal number of seconds since the
beginning of 1970.

The user and group IDs as decimal numbers.
The UNIX file mode as an octal number.

The size of the file in bytes as a decimal numlbiethe file size is
odd, the file§ cmontents are padded with a newline character to
malke the total lengthen, although the pad character tstount-

ed in the size field.

The two characters neerse quote and newline, to nmeathe header

a line of text and provide a simple check that the header is indeed a
header.

Each member header contains the modification time, user and
group IDs and file mode, although linkers ignore them.

char
char
char
char
char
char
char

Figure 6-1: Unix archive format

File header:
I <arch>\n
Member header:

nane[16]; /* nenber nane */
nodtine[12]; /* nodification tine */
uid[6]; /* user ID*/

gid[6]; /* group ID */

node[8]; /* octal file node */
size[10]; /* menber size */

eol[2]; /* reverese quote, newine */

6-172 Libraries

Member names that are 15 characters or less arevéulldy enough
spaces to pad the name to 16 characters, or in COFF or ELFearchi
slash followed by enough spaces to pad the total to 16 charagens.

and Wndows both use slashes to separate components in filenafres.)
version of this archie format used with a.out files didrsupport member
names longer than 16 characters, reflecting pre-BSD Unix file system that
limited file names to 14 characters per componégome BSD archies
actually did hae a povision for longer file names, but since linkers didn’
handle the longer names correctipbody used them.)COFF ELF and
Windows archwes dore names longer than 16 characters in an\achi
member called / . This member contains the long names separated by a
slash, newline pair on Unix or a null character omdgvs. Thename

field of the header for member with a long name contains a slashedllo

by the decimal offset in the/ member of the name string. Inikdows
archves, the// member must be the third member of the asehiln

Unix archves the member need not exist if there are no long names, b
follows the symbol directory if it does.

Although the symbol directory formatsueavaried somewhat, tiyeare all
functionally the same, mapping names to member positions so linkers can
directly more o and read the members theeed to use.

The a.out archies dore the directory in a member called. SYMDEF

which has to be the first member in the arehFigure 2. The member
starts with a wrd containing the size in bytes of the symbol table that fol-
lows it, so the number of entries in the table is 1/8 of #leevin that
word. Following the symbol table is a word containing the size of the
string table, and the string table, each string Yadio by a null byte Each
symbol table entry contains a zero-based offset into the string table of the
symbol’s nrame, and the file position of the header of the member that de-
fines the symbol.The symbols table entries are eemtionally in the or

der of the members in the file.

Figure 6-2: SYMDEF directory format

int tablesize; /* size in bytes of follow ng table */
struct syntable {

Libraries 6-173

int symbol; /* offset in string table */
int nenber; /* nenber pointer */

} syntable [];
int stringsize; /* size of string table */
char strings[]; /* null term nated strings */

COFF and ELF arciies use the otherwise impossible naméor the sym-

bol directory rather than . SYMDEF and use a somewhat simpler-for
mat, Figure 3.The first four byte value is the number of symbdisllow-

ing that is an array of file fslets of archie members, and a set of null ter
minated strings. The first offset points to the member that defines the
symbol named by the first string, and so forth. COFF eeshisually use

a big-endian byte order for the symbol tablgarelless of the nate hyte

order of the architecture.

Figure 6-3: COFF / ELF directory format

int nsynbols; /* nunmber of synbols */
int menber[]; /* nenber offsets */
char strings[]; /* null term nated strings */

Microsoft ECOFF archies add a second symbol directory membdégure
4, confusingly also callef that follows the first one.

Figure 6-4: ECOFF second symbol directory

int nmenbers; /* count of nenber offsets */

int members[]; /* nenber offsets */

i nt nsynbol s; /* nunber of synbols */

ushort symdx[]; /* pointers to menber offsets */

char strings[]; /* synbol nanes, in al phabetical order */

6-174 Libraries

The ECOFF directory consists of a count of member entries followed by
an array of member offsets, one per arehirember Following that is a
count of symbols, an array of two-byte member offset pointerswiedo

by the null terminated symbols in alphabetical ardBEre member d$et
pointers contain the one-based ixde the member offset table of the
member that defines the corresponding symbBot.example, to locate the
member corresponding to the fifth symbol, consult the fifth entry in the
pointer array which contains the ind| the members array of thefgdét

of the defining memberin theory the sorted symbols alldaster search-
ing, but in practice the speedup is not likely to bgdasince linkers typi-
cally scan the entire table looking for symbols to load, anyway.

Extension to 64 bits

Even if an archie contains objects for a 64 bit architecture, thenas
need to change the arehiformat for ELF or ECOFF unless the ak&hi
grows greater than 4GBNonetheless some 64 bit architecturegehe df-
ferent symbol directory format with a tfent member name such as
| SYMB4/ .

Intel OMF libraries

The final library format we look at is that used for Intel OMF libraries.
Again, a library is a set of object files with a directory of symbblslike
the Unix libraries, the directory is at the end of the file, Figure 5.

Figure 6-5: OMF libraries

LIBHED record

first object module (file)

second object module (file) ...
LIBNAM module names record
LIBLOC module locations record
LIBDIC symbol directory

Libraries 6-175

LIBHED record
first object module (file)

second object module (file)

LIBNAM module
names record

LIBLOC module
locations record

6-176 Libraries

The library starts with a LIBDIC record that contains the filsaifof the
LIBNAM record in a (block,déet) format used by Intal'ISIS operating
system. Thé.IBNAM simply contains a list of module names, each name
preceded by a count byte indicating the length of the name. The LIBLOC
record contains a parallel list of (block,offset) file locations where each
module starts.The LIBDIC contains a list of groups of counted strings
with the names defined in each module, each group followed by a null
byte to separate it from the subsequent group.

Although this format is a little clunk it contains the necessary informa-
tion and does the job.

Creating libraries

Each archie format has itswn technique for creating librarie®epend- *
ing on hav much support the operating system provides for the \achi *
format, library creation can wolve anything from standard system file *
management programs to library-specific tools.

At one end of the spectrum, IBM MVS libraries are created by the stari-
dard IEBCOPY utility that creates partitioned data sétsthe middle, *
Unix libraries are created by thar’ command that combines files into *
archves. For a.out archies, a separate program called ranlib added the
symbol directory reading the symbols from each membaeating the *
__. SYMDEF member and splicing it into the file. In principle ranlib *
could hae aeated the symbol directory as a real file, then called ar to irn
sert it in the archve, but in practice ranlib manipulated the axehdrectly. *
For COFF and ELF archies, the function of ranlib has med into ar *
which creates the sybol directory ifyaaf the members appear to be ob- *
ject modules, although ar still can create arehof nron-objects. *

At the other end of the spectrum, OMF avekiand Windows ECOFF *
archves ae created by specialized librarian programs, since those formats
have reve been used for anything other than object code libraries.

One minor issue for library creation is the order of object files, particularly
for the ancient formats that didmave a symbol directory Pre-ranlib

Libraries 6-177

Unix systems contained a pair of programs called lorder and tsort to help
create archies. Lordertook as its input a set of object files (not libraries),
and produced a dependgricst of what files refered to symbols in what
other files. (This is not hard to do; lorder was and still is typically imple-
mented as a shell script that extracts the symbols using a symbol listing
utility, does a little text processing on the symbols, then uses standard sort
and join utilities to create its output.) Tsort did a topological sort on the
output of lorderproducing a sorted list of files so each symbol is defined
after all the references to it, allowing a single sequential pesshe files

to resole dl undefined references. The output of lorder was used to con-
trol ar.

Although the symbol directories in modern librarieswaltbe linking pro-
cess to work mgerdless of the order of the objects within a librangst li-
braries are still created with lorder and tsort to speed up the linking pro-
cess.

Searching libraries

After a library is created, the liek has to be able to search fitibrary *
search generally happens during the first linker pass, after all of the indi-
vidual input files hee keen read. If the library or libraries e s/mbol *
directories, the linker reads in the directomyd checks each symbol in *
turn against the lirde’s symbol table. If the symbol is used but undefined, *
the linker includes that symbslfile from the library It's ot enough to *
mark the file for later loading; the liak has to process the symbols in the *
seggments in the library file just l&kthose in an explicitly linked fileThe *
s@gments go in the segment table, and the symbols, both defined and untle-
fined are entered into the global symbol tabités quite common for one *

library routine to refer to symbols in another library routine, f@neple, *
a higher level 1/0 routine like pri nt f might refer to a lower el put c *
orwrit e routine. *

Library symbol resolution is an intenadi process. Afterthe linker has *
made a passver the symbols in the directarif it i ncluded aw files from *
the library during that pass, it should reainother pass to resavany *
symbols required by the included files, until it makes a complete pass o *
the directory and finds nothing else to include. Not all linkers do this*

6-178 Libraries

mary just male a sngle sequential passve& the directory and miss gn *
backwards dependencies from a file to another file earlier in the library
Tools like tsort and lorder can minimize the difficulty due to single-pass*
linkers, but it5 not uncommon for programmers to explcitly list the same*
library several times on the linker command line to force multiple passe$
and resole dl the symbols. *

Unix linkers and manWindows linkers tak an ntermixed list of object *
files and libraries on the command line or in a control file, and process
each in orderso hat the programmer can control the order in which ob-*
jects are loaded and libraries are searched. Although in principle this of-
fers a great deal of flexibility and the ability to interposegbei versions *
of library routines by listing the prite versions before the libraryewr *
sions, in practice the ordered searchvjgles little extra utility Program- *
mers ivariably list all of their object files, then p@pplication-specific li- *
braries, then system libraries for math functions, netvecilities and the *
like, and finally the standard system libraries.

When programmers use multiple librariess itftten necessary to list li- *
braries more than once when there are circular dependencies among*li-
braries. Thats, if a routine in library A depends on a routine in library B, *
but another routine in library B depends on a routine in library A, neither
searching A followed by B or B foleed by A will find all of the required *
routines. Theproblem becomesven worse when the dependencies in- *
volve three or more librariesTelling the linker to search AB AorBAB, *
or sometimesven A B C D A B C D is inelggant but solves the problem. *
Since there are rarely ymuplicated symbols among the libraries, if the *
linker simply searched them all as a group as BMainframe linlers *
and AlX linker do, programmers would be well s=atv *

The primary &ception to this rule is that applications sometimes define
private versions of a fe routines, notablyral | oc andfree, for heap *
storage management, andmw to use them rather than the standard system
versions. er that case, a lirdt flag specifically sayingdon’t look for *
these symbols in the libraryould in most cases be preferable to getting*
the effect by putting the pdte malloc in the search order in front of the *
public one. *

Libraries 6-179

Performance issues

The primary performance issue related to libraries used to be the time
spent scanning libraries sequentiall@nce symbol directories became
standard, reading an input file from a library became insignificantheslo
than reading a separate input file, and so long as libraries are topologically
sorted, the linker rarely needs to reakore than one pasv@ the symbol
directory.

Library searches can still be wlaf a library has a lot of tywnmembers. A
typical Unix system library hasver 600 members.Paticularly in the
now-common case that all of the library members are combined at runtime
into a single shared library yamay, it'd probably be faster to create a sin-
gle object file that defines all of the symbols in the library and link using
that rather than searching a librarWe examine this in more detail in
Chapter 9.

Weak external symbols

The simple definition-reference model used for symbol resolution and li-
brary member selection turns out to be insufficiently flexible forynagn
plications. r example, most C programs call routines in pine nt f
family to format data for output. Printf can format all sorts of data, includ-
ing floating point, which means thatyaprogram that uses printf will get
the floating point libraries linked inven if the program doeshactually

use floating point.

For mary years, PDP-11 Unix programs had to trick the linkerviaica
linking the floating libraries in ingeronly programs. The C compiler
emitted a reference to the special symbbt used in ary routine that
used floating point code. The C library was arranged as in Figure 6, taking
adwantage of thedkct that the linker searched the library sequentidfly

the program used floating point, the reference to fltusmddicause the

real floating point routines to be linked, including the real version of fcvt,
the floating output routine. Then when the 1/0O module was linked to de-
fine printf, there was already a version of fcvt that satisfyed the reference
in the I/O module. In programs that ditinise floating point, the real
floating point routines wuldn’t be loaded, since thereouldn’t be any un-
defined symbols tlyeresolhed, and the reference to fcvt in the I/O module

6-180 Libraries

would be resolved by the stub floating routines that ¥otlee 1/0O routines
in the library.

Figure 6-6: Unix classic C library

Real floating point module, define fltused and fcvt
I/O module, defines printf, refers to fcvt
Stub floating routines, define stub fcvt

While this trick works, using it for more than one ordwymbols would
rapidly become unwieldyend its correct operation critically depends on
the order of the modules in the libraggmething thas easy to get wrong
when the librang rebuilt.

The solution to this dilemma is weakternal symbols, external symbols
that do not cause library members to be loaded. If a definition for the
symbol is &ailable, either in anlicitly linked file or due to a normal
external causing a library member to be linked, a weak external is edsolv
like a rormal external reference. But if no definition igitable, the weak
external is left undefined and infeft resolved to zero, which is not con-
sidered to be an erroin the case abe, the 1/O module would maka
weak reference to fcvt, the real floating point module wouldviottee 1/0O
module in the libraryand no stub routines would be necessddpw if
theres a eference to fltused, the floating point routines are linked and de-
fine fcvt. If not, the reference to fcvt remains unresdlv Thisno longer

is dependent on library ordend will work even if the library makes mul-
tiple resolution passeve the library.

ELF adds yet another kind of weak symbol, a weak definition as well as a
weak reference A weak definition defines a global symbol if no normal
definition is aailable. If a normal definition is @ailable, the weak defini-

tion is ignored. Weak definitions are infrequently usedtlran be useful

to define error stubs without putting the stubs in separate modules.

Libraries 6-181

Exercises

What should a linker do if tav modules in different libraries define the
same symbol? Is it an error?

Library symbol directories generally include only defined global symbols.
Would it be useful to include undefined global symbols as well?

When sorting object files using lorder and tsorg fssible that tsort
won't be ale to come up with a total order for the files. When will this
happen, and is it a problem?

Some library formats put the directory at the front of the library while oth-
ers put it at the end. What practical difference does it make?

Describe some other situations where wedkraals and weak definitions
are useful.

Project

This part of the project adds library searching to theelinkVe’ll experi-
ment with two different library formats. The first is the IBM-8kdrectory
format suggested early in the chaptArlibrary is a directoryeach mem-
ber is a file in the directorgach file having names for each of thgert-
ed files in the directorylf you're using a system that doessupport
Unix-style multiple namesake it. Give each file a single name (choose
one of the exported symbols). Then mmakfie named MAP that contains
lines of the form:

nane symsym sym. ..

where name is the fie'’rame and sym are the rest of the exported sym-
bols.

The second library format is a single fil€he library starts with a single
line:
LI BRARY nnnn pppppp

where nnnn is the number of modules in the library and pppppp isfthe of
set in the file where the library directory stafllowing that line are the
library members, one after anothéit the end of the file, starting atfeét

6-182 Libraries

pppppp is the library directgryhich consists of lines, one per module, in
the format:
pppppp 11111 syml synmR2 syn8 ...

where pppppp is the position in the file where the module starts, Il is the
length of the module, and the symi are the symbols defined in this module.

Project 6-1: Write a librarian that creates a directory-format library from a
set of object files. Be sure to do something reasonable with duplicate sym-
bols. Optionallyextend the librarian so it can @lan «isting library and

add, replace, or delete modules in place.

Project 6-2: Extend the linker to handle directory-format librarié&hen

the linker encounters a library in its list of input files, search the library
and include each module in the library that defines an undefined symbol.
Be sure you correctly handle library modules that depend on symbols de-
fined in other library members.

Project 6-3: Write a librarian that creates a directory-format library from a
set of object files. Note that you canbrrectly write the LIBRAR line

at the front of the file until you kmothe sizes of all of the moduleRea-
sonable approaches include writing a dummy library line, then seeking
back and rewriting line in place with the correct values, collecting the
sizes of the input files and computing the sizesuffiebng the entire file

in main memory Optionally, extend the librarian to update ariging li-

brary, and note that is a bt harder than updating a directory format li-
brary.

Project 6-4. Extend the linker to handle file-format libraries. When the
linker encounters a library in its list of input files, search the library and
include each module in the library that defines an undefined symbol.
You'll have o modify your routines that read object files so thay tten

read an object modules from the middle of a library.

