
Symbol management 5-149

Chapter 5
Symbol management

$Revision: 2.2 $
$Date: 1999/06/30 01:02:35 $

Symbol management is a linker’s key function. Without some way to refer *
from one module to another, there wouldn’t be much use for a linker’s oth- *
er facilities. *

Binding and name resolution *

Linkers handle a variety of kinds of symbols. All linkers handle symbolic*
references from one module to another. Each input module includes a *
symbol table. The symbols include: *

• Global symbols defined and perhaps referenced in the module. *

• Global symbols referenced but not defined in this module (general-*
ly called externals). *

• Segment names, which are usually also considered to be global*
symbols defined to be at the beginning of the segment. *

• Non-global symbols, usually for debuggers and crash dump analy- *
sis. Thesearen’t really symbols needed for the linking process, but *
sometimes they are mixed in with global symbols so the linker has *
to at least skip over them. Inother cases they can be in a separate *
table in the file, or in a separate debug info file. (Optional) *

• Line number information, to tell source language debuggers the*
correspondence between source lines and object code. (Optional) *

The linker reads all of the symbol tables in the input module, and extracts *
the useful information, which is sometimes all of the incoming info, fre-*
quently just what’s needed to link. Then it builds the link-time symbol ta- *
bles and uses that to guide the linking process. Depending on the output*
file format, the linker may place some or all of the symbol information in *
the output file. *

5-150 Symbolmanagement

Some formats have multiple symbol tables per file.For example, ELF *
shared libraries can have one symbol table with just the information need- *
ed for the dynamic linker and a separate, larger table useful for debugging *
and relinking. This isn’t necessarily a bad design; the dynamic linker table *
is usually much smaller than the full table and making it separate can*
speed up the dynamic linking process, which happens far more often than*
a library is debugged or relinked. *

Symbol table formats

Linker symbol tables are similar to those in compilers, although usually
simpler, since the kinds of symbols a linker needs to keep are usually less
complex than those in a compiler. Within the linker, there’s one symbol
table listing the input files and library modules, keeping the per-file infor-
mation. Asecond symbol table handles global symbols, the ones that the
linker has to resolve among input files.A third table may handle intra-
module debugging symbols, although more often than not the linker need
not create a full-fledged symbol table for debug symbols, needing only
pass the debugging symbols through from the input to the output file.

Within the linker itself, a symbol table is often kept as an array of table en-
tries, using a hash function to locate entries, or as an array of pointers, in-
dexed by a hash function, with all of the entries that hash together chained
from each header, Figure 1. To locate a symbol in the table, the linker
computes a hash of the symbol name, uses that hash value modulo the
number of buckets to select one of the hack buckets
(symhash[h%NBUCKET] in the figure where h is the hash), runs down
the chain of symbols looking for the symbol.

Traditionally, linkers only supported short names, ranging from eight
charaters on IBM mainframes and early UNIX systems to six on most
DEC systems to as few as two on some justly obscure minicomputers.
Modern linkers support much longer names, both because programmers
use longer names than they used to (or, in the case of Cobol, are no longer
willing to twist the names around to make them unique in the first eight
characters), and because compilers ‘‘mangle’’ names by adding extra char-
acters to encode type information.

Symbol management 5-151

Older linkers with limited name lengths did a string comparison of each
symbol name in the lookup hash chain until they found a match or ran out
of symbols. These days, a program can easily contains many long sym-
bols that are identical up the last few characters, as is often the case with
C++ mangled names, which makes the string comparisons expensive. An
easy fix is to store the full hash value in the symbol table and to do the
string comparison only when the hashes match.Depending on the con-
text, if a symbol is not found, the linker may either add it to the chain or
report an error.

Figure 5-1: Symbol table

Typical symbol table with hashes or hash headers with
chains of symbols
struct sym *symhash[NBUCKET];

struct sym {
struct sym *next;
int fullhash;/* full hash value */
char *symname;
...

};

5-152 Symbolmanagement

Symbol management 5-153

Module tables

The linker needs to track every input module seen during a linking run,
both modules linked explicitly and those extracted from libraries. Figure 2
shows the structure of a simplified version of the module table for a GNU
linker that produces a.out object files. Since most of the key information
for each a.out file is in the file header, the table just stores a copy of the
header,

Figure 5-2: Module table

/* Name of this file. */
char *filename;
/* Name to use for the symbol giving address of text start */
char *local_sym_name;

/* Describe the layout of the contents of the file */

/* The file’s a.out header. */
struct exec header;
/* Offset in file of debug symbol segment, or 0 if there is none. */
int symseg_offset;

/* Describe data from the file loaded into core */

/* Symbol table of the file. */
struct nlist *symbols;
/* Size in bytes of string table. */
int string_size;
/* Pointer to the string table. */
char *strings;

/* Next two used only if ‘relocatable_output’ or if needed for */
/* output of undefined reference line numbers. */

5-154 Symbolmanagement

/* Text and data relocation info */
struct relocation_info *textrel;
struct relocation_info *datarel;

/* Relation of this file’s segments to the output file */

/* Start of this file’s text seg in the output file core image. */
int text_start_address;
/* Start of this file’s data seg in the output file core image. */
int data_start_address;
/* Start of this file’s bss seg in the output file core image. */
int bss_start_address;
/* Offset in bytes in the output file symbol table

of the first local symbol for this file. */
int local_syms_offset;

The table also contains pointers to in-memory copies of the symbol table
string table (since in an a.out files, the symbol name strings are in a sepa-
rate table from the symbol table itself), and relocation tables, along with
the computed offsets of the text, data, and bss segments in the output.If
the file is a library, each library member that is linked has its own module
table entry. (Details not shown here.)

During the first pass, the linker reads in the symbol table from each file,
generally just copying it verbatim into an in-memory buffer. In symbol
formats that put the symbol names in a separate string table, the linker also
reads in the symbol names and, for ease of subsequent processing, runs
down the symbol table and turns each name string offset into a pointer to
the in-memory version of the string.

Global symbol table

The linker keeps a global symbol table with an entry for every symbol ref-
erenced or defined inany input file, Figure 3.Each time the linker reads
an input file, it adds all of the file’s global symbols to the symbol table,
keeping a chain of the places where the symbol is defined or referenced.
When the first pass is done, every global symbol should have exactly one

Symbol management 5-155

definition and zero or more references. (This is a minor oversimplifica-
tion, since UNIX object files disguise common blocks as undefined sym-
bols with non-zero values, but that’s a straightforward special case for the
linker to handle.)

Figure 5-3: Global symbol table

/* abstracted from gnu ld a.out */
struct glosym
{
/* Pointer to next symbol in this symbol’s hash bucket. */
struct glosym *link;
/* Name of this symbol. */
char *name;
/* Value of this symbol as a global symbol. */
long value;
/* Chain of external ’nlist’s in files for this symbol, both defs

and refs. */
struct nlist *refs;
/* Nonzero means definitions of this symbol as common have been seen,

and the value here is the largest size specified by any of them. */
int max_common_size;
/* Nonzero means a definition of this global symbol is known to exist.

Library members should not be loaded on its account. */
char defined;
/* Nonzero means a reference to this global symbol has been seen

in a file that is surely being loaded.
A value higher than 1 is the n_type code for the symbol’s
definition. */

char referenced;
/* 1 means that this symbol has multiple definitions. 2 means

that it has multiple definitions, and some of them are set
elements, one of which has been printed out already. */

unsigned char multiply_defined;
}

5-156 Symbolmanagement

As the symbols in each file are added to the global symbol table, the linker
links each entry from the file to its corresponding global symbol table en-
try, Figure 4. Relocation items generally refer to symbols by index in the
module’s own symbol table, so for each external reference, the linker has
to be able to tell that, for example, symbol 15 in module A is named
fruit, while symbol 12 in module B is also namedfruit, that is, it’s
the same symbol.Each module has its own set of indices and needs its
own vector of pointers.

Figure 5-4: Resolving a symbol from a file to the global
symbol table

Each module entry points to vector of symbols from input
file, each of which is set to point to global symbol table en-
try.

Symbol management 5-157

Symbol resolution

During the second pass of linking, the linker resolves symbol references as
it creates the output file.The details of resolution interact with relocation
(Chapter 7), since in most object formats, relocation entries identify the
program references to the symbol. In the simplest case, in which the link-
er is creating an output file with absolute addresses (such as data refer-
ences in Unix linkers) the address of the symbol simply replaces the sym-
bol reference. If the symbol is resolved to address 20486, the linker re-
places the reference with 20486.

5-158 Symbolmanagement

Real situations are more complex. For one thing, there are many ways that
a symbol might be referred to, in a data pointer, in an instruction, or even
synthesized from multiple instructions.For another, the output of the link-
er is itself frequently relocatable.This means that if, say, a symbol is re-
solved to offset 426 in the data section, the output file has to contain a re-
locatable reference to data+426 where the symbol reference was.

The output file will usually have a symbol table of its own, so the linker
needs to create a new vector of indexes of the symbols to be used in the
output file, then map symbol numbers in outgoing relocation entries to
those new indices.

Special symbols

Many systems use a few special symbols defined by the linker itself.Unix
systems all require that the linker defineetext, edata, and end as the
end of the text, data, and bss segments, respectively. The system sbrk()
routine usesend as the address of the beginning of the runtime heap, so it
can be allocated contiguously with the existing data and bss.

For programs with constructor and destructor routines, many linkers create
tables of pointers to the routines from each input file, with a linker-created
symbol like ___CTOR_LIST__ that the language startup stub uses to
find the list and call all the routines.

Name mangling

The names used in object file symbol tables and in linking are often not
the same names used in the source programs from which the object files
were compiled. There are three reasons for this: avoiding name collisions,
name overloading, and type checking.The process of turning the source
program names into the object file names is calledname mangling. This
section discusses mangling typically done to names in C, Fortran, and C++
programs.

Simple C and Fortran name mangling

In older object formats (before maybe 1970), compilers used names from
the source program directly as the names in the object file, perhaps trun-
cating long names to a name length limit. This worked reasonably well,

Symbol management 5-159

but caused problems due to collisions with names reserved by compilers
and libraries. For example, Fortran programs that do formatted I/O im-
plicitly call routines in the library to do their reads and writes. Other rou-
tines handle arithmetic errors, complex arithmetic, and everything else in a
programming language that’s too complicated to be generated as in-line
code.

The names of all of these routines are in effect reserved names, and part of
the programming folklore was to know what names not to use. As a par-
ticularly egregious example, this Fortran program would for quite a few
years crash an OS/360 system:
CALL MAIN
END

Why? TheOS/360 programming convention is that every routine includ-
ing the main program has a name, and the name of the main program is
MAIN. When a Fortran main program starts, it calls the operating system
to catch a variety of arithmetic error traps, and each trap catch call allocat-
ed some space in a system table. But this program called itself recursively
over and over again, each time establishing another nested set of trap calls,
the system table ran out of space, and the system crashed. OS/390 is a lot
more robust than its predecessors were 30 years ago, but the reserved
name problem remains.It’s even worse in mixed language programs,
since code in all languages has to avoid using any name used by any of the
language runtime libraries in use.

One approach to the reserved name problem was to use something other
than procedure calls to call the runtime library. On the PDP-6 and -10, for
example, the interface to the Fortran I/O package was through a variety of
system call instruction that trapped back to the program rather than to the
operating system. This was a clever trick, but it was quite specific to the
PDP-6/10 architecture and didn’t scale well, since there was no way for
mixed language code to share the trap, nor was it practical to link the mini-
mum necessary part of the I/O package because there was no easy way to
tell which traps the input modules in a program used.

5-160 Symbolmanagement

The approach taken on UNIX systems was tomanglethe names of C and
Fortran procedures so they wouldn’t inadvertently collide with names of
library and other routines.C procedure names were decorated with a lead-
ing underscore, so thatmain became_main. Fortran names were further
mangled with both a leading and trailing underscore so thatcalc became
calc. (This particular approach made it possible to call C routines
whose names ended with an underscore from Fortran, which made it pos-
sible to write Fortran libraries in C.) The only significant disadvantage of
this scheme is that it shrank the C name space from the 8 characters per-
mitted by the object format to 7 characters for C and six characters for
Fortran. At the time, the Fortran-66 standard only required six character
names, so it wasn’t much of an imposition.

On other systems, compiler designers took an opposite tack.Most assem-
blers and linkers permit characters in symbols that are forbidden in C and
C++ identifiers such as . and $. Rather than mangling names from C or
Fortran programs, the runtime libraries use names with forbidden charac-
ters that can’t collide with application program names. The choice of
name mangling vs. collision-proof library names is one of developer con-
venience. Atthe time UNIX was rewritten in C in about 1974, its authors
already had extensive assembler language libraries, and it was easier to
mangle the names of new C and C compatible routines than to go back and
fix all the existing code.Now, twenty years later, the assembler code has
all been rewritten five times and UNIX C compilers, particularly ones that
create COFF and ELF object files, no longer prepend the underscore.

C++ type encoding: types and scopes

Another use for mangled names is to encode scope and type information,
which makes it possible to use existing linkers to link programs in C++,
Ada, and other languages that have more complex naming rules than do C,
Cobol, or Fortran.

In a C++ program, the programmer can define many functions and vari-
able with the same name but different scopes and, for functions, argument
types. Asingle program may have a global variableV and a static member
of a classC::V. C++ permits function name overloading, with several
functions having the same name but different arguments, such asf(int

Symbol management 5-161

x) andf(float x). Class definitions can include functions, including
overloaded names, and even functions that redefine built-in operators, that
is, a class can contain a function whose name is in effect >> or any other
built-in operator.

C++ was initially implemented as a translator called cfront that produced
C code and used an existing linker, so its author used name mangling to
produce names that can sneak through the C compiler into the linker. All
the linker had to do with them was its usual job of matching identically
named defined and undefined global names. Since then, nearly all C++
compilers generate object code or at least assembler code directly, but
name mangling remains the standard way to handle overloaded names.
Modern linkers now know enough about name mangling to demangle
names reported in error messages, but otherwise leave mangled names
alone.

The influential Annotated C++ Reference Manual described the name
mangling scheme that cfront used, which with minor variations has be-
come a de-facto standard.We describe it here.

Data variable names outside of C++ classes don’t get mangled at all.An
array calledfoo has a mangled name offoo. Function names not associ-
ated with classes are mangled to encode the types of the arguments by ap-
pending__F and a string of letters that represent the argument types and
type modifiers listed in Figure 5. For example, a function
func(float, int, unsigned char) becomesfunc__FfiUc.
Class names are considered types, and are encoded as the length of the
class name followed by the name, such as4Pair. Classses can contain
names of internal classes to multiple levels; these "qualified" names are
encoded as Q, a digit indicating the number of levels, and the encoded
class names, so First::Second::Third becomes
Q35First6Second5Third. This means that a function that takes two
class arguments f(Pair, First::Second::Third) becomes
f__F4PairQ35First6Second5Third.

Figure 5-5: Type letters in C++ mangled names

5-162 Symbolmanagement

Type Letter
void v
char c
short s
int i
long l
float f
double d
long double r
varargs e
unsigned U
const C
volatile V
signed S
pointer P
reference R
array of lengthn An_
function F
pointer to nth member MnS

Class member functions are encoded as the function name, two under-
scores, the encoded class name, then F and the arguments, so
cl::fn(void) becomesfn__2clFv. All of the operators have four
or five character encoded names as well, such as__ml for * and__aor
for |=. Special functions including constructor, destructor, new, and
delete have encodings as well__ct, __dt, __nw, and __dl. A con-
structor for class Pair taking two character pointer arguments
Pair(char*,char*) becomes__ct__4PairFPcPc.

Finally, since mangled names can be so long, there are two shortcut encod-
ings for functions with multiple arguments of the same type. The codeTn
means "same type as the nth argument" andNnm means "n arguments the
same type as the mth argument. Afunction segment(Pair, Pair)
would besegment__F4PairT1 and a functiontrapezoid(Pair,
Pair, Pair, Pair) would betrapezoid__F4PairN31.

Symbol management 5-163

Name mangling does the job of giving unique names to every possible
C++ object at the cost of tremendously long and (lacking linker and de-
bugger support) unreadable names in error messages and listings.
Nonetheless, C++ has an intrinsic problem that it has a potentially huge
namespace. Any scheme for representing the names of C++ objects has to
be nearly as verbose as name mangling, and mangled names do have the
advantage of being readable by at least some humans.

Early users of mangled names often found that although linkers in theory
supported long names, in practice the long names didn’t work very well,
and performance was dreadful when linking programs that contained many
long names that were identical up to the last few characters. Fortunately,
symbol table algorithms are a well-understood subject, and now one can
expect linkers to handle long names without trouble.

Link-time type checking

Although mangled names only became popular with the advent of C++,
the idea of linker type checking has been around for a long time.(I first
encountered it in the Dartmouth PL/I linker in about 1974.) The idea of
linker type checking is quite straightforward. Mostlanguages have proce-
dures with declared argument types, and if the caller doesn’t pass the num-
ber and type of arguments that the callee expects, it’s an error, often a
hard-to-diagnose error if the caller and callee are in separately compiled
files. For linker type checking, each defined or undefined global symbol
has associated with it a string representing the argument and return types,
similar to the mangled C++ argument types. When the linker resolves a
symbol, it compares the type strings for the reference and definition of the
symbol, and reports an error if they don’t match. Anice property of this
scheme is that the linker need not understand the type encoding at all, just
whether the strings are the same or not.

Even in an environment with C++ mangled names, this type checking
would still be useful, since not all C++ type information is encoded into a
mangled name. The types that functions return, and types of global data
could profitably be checked by a scheme like this one.

5-164 Symbolmanagement

Weak external and other kinds of symbols

Up to this point, we’ve considered all linker global symbols to work the
same way, and each mention of a name to be either a definition or a refer-
ence to a symbol.Many object formats can qualify a reference as weak or
strong. Astrong reference must be resolved, while a weak reference may
be resolved if there’s a definition, but it’s not an error if it’s not. Linker
processing of weak symbols is much like that for strong symbols, except
that at the end of the first pass an undefined reference to one isn’t an error.
Generally the linker defines undefined weak symbols to be zero, a value
that application code can check.Weak symbols are primarily useful in
connection with libraries, so we revisit them in Chapter 6.

Maintaining debugging information

Modern compilers all support source language debugging. Thatmeans
that the programmer can debug the object code referring to source pro-
gram function and variable names, and set breakpoints and single step the
program. Compilerssupport this by putting information in the object file
that provides a mapping from source file line numbers to object code ad-
dresses, and also describes all of the functions, variables, types, and struc-
tures used in the program.

UNIX compilers have two somewhat different debug information formats,
stab (short for symbol table) that are used primarily in a.out, COFF, and
non-System V ELF files, and DWARF that was defined for System V ELF
files. Microsofthas defined their own formats for their Codeview debug-
ger, with CV4 being the most recent.

Line number information

All symbolic debuggers need to be able to map between program address-
es and source line numbers. This lets users set breakpoints by line number
with the debugger placing the breakpoint at the appropriate place in the
code, and also lets the debugger relate the program addresses in call stack
tracebacks and error reports back to source lines.

Line number information is simple execpt with optimizing compilers that
can move code around so that the sequence of code in the object file
doesn’t match the sequence of source lines.

Symbol management 5-165

For each line in the source file for which the compiler generated any code,
the compiler emits a line number entry with the line number and the be-
ginning of the code. If a program address lies between two line number
entries, the debugger reports it as being the lower of the two line numbers.
The line numbers need to be scoped by file name, both source file name
and include file name.Some formats do this by creating a list of files and
putting a file index in each line number entry. Others intersperse "begin
include" and "end include" items in the list of line numbers, implicitly
maintaining a stack of line numbers.

When compiler optimization makes the generated code from a single state-
ment discontiguous, some object formats (notably DWARF) let the com-
piler map each byte of object code back to a source line, using a lot of
space in the process, while others just emit approximate locations.

Symbol and variable information

Compilers also have to emit the names, types, and locations of each pro-
gram variable. Thedebug symbol information is somewhat more complex
than mangled names are, because it needs to encode not just the type
names, but for structure types the definitions of the types so the debugger
can correctly format all of the subfields in a structure.

The symbol information is an implicit or explicit tree. At the top level in
each file is a list of types, variables, and functions defined at the top level,
and within each of those are the fields of structures, variables defined with-
in functions, and so forth.Within functions, the tree includes "begin
block" and "end block" markers referring to line numbers, so the debugger
can tell what variables are in scope at each point in the program.

The trickiest part of the symbol information is the location information.
The location of a static variable doesn’t change, but a local variable within
a a routine may be static, on the stack, in a register, or in optimized code,
moved from place to place in different parts of the routine. On most archi-
tectures, the standard calling sequence for routines maintains a chain of
saved stack and frame pointers for each nested routine, with the local stack
variables in each routine allocated at known offsets from the frame pointer.
In leaf routines or routines that allocate no local stack variables, a common
optimization is to skip setting the frame pointer. The debugger needs to

5-166 Symbolmanagement

know about this in order both to interpret call stack tracebacks correctly
and to find local variables in a routine with no frame pointer. Codeview
does this with a specific list of routines with no frame pointer.

Practical issues

For the most part, the linker just passes through debug information unin-
terpreted, perhaps relocating segment-relative addresses on the way
through.

One thing that linkers are starting to do is detecting and removing dupli-
cated debug information.In C and particularly C++, programs usually
have a set of header files that define types and declare functions, and each
source file includes the headers that define all of the types and functions
that file might use.

Compilers pass through the debug information for everything in all of the
header files that each source file includes. This means that if a particular
header file is included by 20 source files that are compiled and linked to-
gether, the linker will receive 20 copies of the debug information for that
file. Althoughdebuggers have nev er had any trouble disregarding the du-
plicated information, header files, particularly in C++, can be large which
means that the amount of duplicated header info can be substantial.Link-
ers can safely discard the duplicated material, and increasingly do so, both
to speed the linker and debugger and to save space. Insome cases, com-
pilers put the debug information directly into files or databases to be read
by the debugger, bypassing the linker, so the linker need only add or up-
date information about the relative locations of the segments contributed
by each source file, and any data such as jump tables created by the linker
itself.

When the debug information is stored in an object file, sometimes the de-
bug information is intermixed with the linker symbols in one big symbol
table, while sometimes the two are separate.Unix systems added debug
information to the compilers a little at a time over the years, so it all ended
up in one huge symbol table.Other formats including Microsoft’s ECOFF
tend to separate linker symbols from debug symbols and both from line
numbers.

Symbol management 5-167

Sometimes the resulting debug information goes into the output file, some-
times into a separate debug file, sometimes both. The advantage of putting
all of the debug information into the output file is simplicity in the build
process, since all of the information used to debug the program is present
in one place. The most obvious disadvantage is that it makes the ex-
ecutable file enormous.Also if the debug information is separated out, it’s
easy to build a final version of a program, then ship the executable but not
the debug files. This keeps the size of the shipped program down and dis-
courages casual reverse engineering, but the developers still have the de-
bug files if needed to debug errors found in the shipping project.UNIX
systems have a "strip" command that removes the debugging symbols
from an object file but doesn’t change the code at all.The developers keep
the unstripped file and ship the stripped version. Even though the two files
are different, the running code is the same and the debugger can use the
symbols from the unstripped file to debug a core dump made from the
stripped version.

Exercises

1. Writea C++ program with a lot of functions whose mangled names dif-
fer only in the last few characters. Seehow long they take to compile.
Change them so the mangled names differ in the first few characters.
Time a compile and link again. Doyou need a new linker?

2. Investigate the debug symbol format that your favorite linker uses.
(Some on-line resources are listed in the bibiography.) Write a program to
dump the debugging symbols from an object file and see how much of the
source program you can reconstruct from it.

Project

Project 5-1:Extend the linker to handle symbol name resolution.Make
the linker read the symbol tables from each file and create a global symbol
table that subsequent parts of the linker can use.Each symbol in the glob-
al symbol table needs to include, along with the name, whether the symbol
is defined, and which module defines it. Be sure to check for undefined
and multiply defined symbols.

5-168 Symbolmanagement

Project 5-2:Add symbol value resolution to the linker. Since most sym-
bols are defined relative to segments in linker input files, the value of each
symbol has to be adjusted to account for the address to which each seg-
ment is relocated.For example, if a symbol is defined as location 42 with-
in a file’s text segment, and the segment is relocated to 3710, the symbol
becomes 3752.

Project 5-3:Finish the work from project 4-2; handle Unix-style common
blocks. Assignlocation values to each common block.

