Symbol management 5-149

Chapter 5
Symbol management

$Revision: 2.2 $
$Date; 1999/06/30 01:02:35 %

Symbol management is a lieks key function. Wthout some way to refer *
from one module to anothahere wuldn't be nuch use for a lingr’s ah-
er facilities. *

Binding and name resolution *

Linkers handle a variety of kinds of symbols. All linkers handle symbolic
references from one module to anoth&ach input module includes a *

symbol table. The symbols include: *

. Global symbols defined and perhaps referenced in the module.

. Global symbols referenced but not defined in this module (generat-
ly called externals). *

. Segnent names, which are usually also considered to be global
symbols defined to be at the beginning of thggrsent. *

. Non-global symbols, usually for detpgers and crash dump analy- *

sis. Thesarent really symbols needed for the linking procesg, b *
sometimes theare mixed in with global symbols so the linker has *
to at least skip\er them. Inother cases tlyecan be in a separate *
table in the file, or in a separate debug info file. (Optional)

. Line number information, to tell source language debuggers the
correspondence between source lines and object code. (Optional)

The linker reads all of the symbol tables in the input module, atrdats *
the useful information, which is sometimes all of the incoming info, fre+
guently just whas reeded to link. Then it builds the link-time symbol ta- *
bles and uses that to guide the linking process. Depending on the output
file format, the linlker may place some or all of the symbol information in*
the output file. *

5-150 Symbomanagement

Some formats hee nultiple symbol tables per fileFor example, ELF *
shared libraries can & acne symbol table with just the information need- *
ed for the dynamic linker and a separate, larger table useful foggiely *
and relinking. This isrt’necessarily a bad design; the dynamicdintable *
is usually much smaller than the full table and making it separate ca&n
speed up the dynamic linking process, which happens far more often than
a library is debugged or reliekl. *

Symbol table formats

Linker symbol tables are similar to those in compilers, although usually
simpler snce the kinds of symbols a liak needs to keep are usually less
comple than those in a compileMithin the linker, theres ane symbol
table listing the input files and library modulesgking the per-file infer
mation. Asecond symbol table handles global symbols, the ones that the
linker has to resoly anong input files. A third table may handle intra-
module debgging symbols, although more often than not the linker need
not create a full-fledged symbol table for dgbsymbols, needing only
pass the debugging symbols through from the input to the output file.

Within the linker itself, a symbol table is often kept as an array of table en-
tries, using a hash function to locate entries, or as an array of pointers, in-
dexed by a hash function, with all of the entries that hash together chained
from each headgeFigure 1. To locate a symbol in the table, the lank
computes a hash of the symbol name, uses that hash value modulo the
number of lbickets to select one of the hack udkets
(symhash[h%NBCKET] in the figure where h is the hash), runsvdo

the chain of symbols looking for the symbol.

Traditionally, linkers only supported short names, ranging from eight
charaters on IBM mainframes and early UNIX systems to six on most
DEC systems to asvieas twvo on some justly obscure minicomputers.
Modern linkers support much longer names, both because programmers
use longer names than yhased to (orin the case of Cobol, are no longer
willing to twist the names around to neakhem unique in the first eight
characters), and because compilerahgle’ names by adding extra char
acters to encode type information.

Symbol management 5-151

Older linkers with limited name lengths did a string comparison of each
symbol name in the lookup hash chain untilytheund a match or ran out

of symbols. These days, a program can easily containsynhamg sym-

bols that are identical up the laswfeharacters, as is often the case with
C++ mangled names, which makes the string comparisqgrensve. An

easy fix is to store the full hash value in the symbol table and to do the
string comparison only when the hashes maikpending on the con-
text, if a symbol is not found, the liek may either add it to the chain or
report an error.

Figure 51: Symbol table

Typical symbol table with hashes or hash headers with
chains of symbols
struct sym *symhash[NBUCKET];

struct sym {
struct sym *next;
int fullhash;/* full hash value */
char *symname,

.

Symbol management 5-153

Moduletables

The linker needs to trackvery input module seen during a linking run,
both modules linkedxplicitly and those extracted from libraries. Figure 2
shaws the structure of a simplified version of the module table for a GNU
linker that produces a.out object files. Since most of dyeiréormation

for each a.out file is in the file headtre table just stores a gopf the
header,

Figure 52: Module table

/* Nanme of this file. */

char *fil enane;

/* Nanme to use for the synbol giving address of text start */
char *| ocal _sym nane;

/* Describe the |ayout of the contents of the file */

/* The file's a.out header. */

struct exec header;

/* Ofset in file of debug synbol segnent, or 0 if there is none
i nt synseg_of fset;

/* Describe data fromthe file |oaded into core */

/* Synbol table of the file. */
struct nlist *synbols;

/* Size in bytes of string table. */
int string_size;

/* Pointer to the string table. */
char *strings;

/* Next two used only if ‘relocatable output’ or if needed for */
/* output of undefined reference |ine nunbers. */

*/

5-154 Symbomanagement

/* Text and data relocation info */
struct relocation_info *textrel
struct relocation_info *datarel

/* Relation of this file s segments to the output file */

[* Start of this file’s text seg in the output file core imge. */
int text_start address;
/* Start of this file's data seg in the output file core inage. */
int data_start address;
/* Start of this file s bss seg in the output file core imge. */
int bss_start_ address;
/* Ofset in bytes in the output file synbol table

of the first local synbol for this file. */
int local _synms_offset;

The table also contains pointers to in-memory copies of the symbol table
string table (since in an a.out files, the symbol name strings are in a sepa-
rate table from the symbol table itself), and relocation tables, along with
the computed offsets of the text, data, and bgmseats in the outputlf

the file is a libraryeach library member that is linked has itsromodule

table entry (Details not shown here.)

During the first pass, the liek reads in the symbol table from each file,
generally just coging it verbatim into an in-memoryuffer. In symbol
formats that put the symbol names in a separate string table, the linker also
reads in the symbol names and, for ease of subsequent processing, runs
down the symbol table and turns each name string offset into a pointer to
the in-memory version of the string.

Global symboal table

The linker keeps a global symbol table with an entry ¥eryesymbol ref-
erenced or defined iany input file, Figure 3.Each time the linker reads

an input file, it adds all of the fik'dobal symbols to the symbol table,
keeping a chain of the places where the symbol is defined or referenced.
When the first pass is done/egy global symbol should va exactly one

Symbol management 5-155

definition and zero or more references. (This is a minversomplifica-

tion, since UNIX object files disguise common blocks as undefined sym-
bols with non-zero values, but treaf s$raightfornard special case for the
linker to handle.)

Figure 53: Global symbol table

/* abstracted fromgnu |Id a.out */
struct gl osym
{
/* Pointer to next synbol in this symbol’'s hash bucket. */
struct glosym *|ink;
/* Nanme of this symbol. */
char *narme;
/* Value of this synbol as a gl obal synmbol. */
| ong val ue;
/* Chain of external 'nlist’s in files for this synmbol, both defs
and refs. */
struct nlist *refs;
/* Nonzero neans definitions of this synbol as commobn have been seen
and the value here is the |argest size specified by any of them */
i nt nmax_common_si ze;
/* Nonzero nmeans a definition of this global symbol is known to exist.
Li brary nenbers should not be |oaded on its account. */
char defi ned;
/* Nonzero neans a reference to this global symbol has been seen
inafile that is surely being | oaded.
A value higher than 1 is the n_type code for the synbol’s
definition. */
char referenced;
/* 1 neans that this synbol has nultiple definitions. 2 neans
that it has multiple definitions, and sone of them are set
el ements, one of which has been printed out already. */
unsi gned char mul tiply_defined;

}

5-156 Symbomanagement

As the symbols in each file are added to the global symbol table, tee link
links each entry from the file to its corresponding global symbol table en-
try, Figure 4. Relocation items generally refer to symbols byxndehe
modules ovn symbol table, so for eaclternal reference, the linker has
to be able to tell that, forxample, symbol 15 in module A is named
fruit, while symbol 12 in module B is also namiedui t , that is, its

the same symbolEach module has its own set of indices and needs its
own vector of pointers.

Figure 54: Resolving a symbol from a file to the global
symbol table

Each module entry points to vector of symbols from input
file, each of which is set to point to global symbol table en-

try.

Symbol management 5-157

linker symbol table
module Eman

Ll turned into
symbol table, !
indexed by list of pointers

entry number Into symbol
i " tabe

Symbol resolution

During the second pass of linking, the linker resolves symbol references as
it creates the output fileThe details of resolution interact with relocation
(Chapter 7), since in most object formats, relocation entries identify the
program references to the symbol. In the simplest case, in which the link-
er is creating an output file with absolute addresses (such as data refer
ences in Unix linkers) the address of the symbol simply replaces the sym-
bol reference. If the symbol is resolved to address 20486, the linker re-
places the reference with 20486.

5-158 Symbomanagement

Real situations are more comypleFor one thing, there are maways that

a ymbol might be referred to, in a data pointaran nstruction, or een
synthesized from multiple instructionsor another the output of the link-

er is itself frequently relocatablélhis means that if, sag ymbol is re-
solved to offset 426 in the data section, the output file has to contain a re-
locatable reference to data+426 where the symbol reference was.

The output file will usually hae a gmbol table of its own, so the liek
needs to create awevector of inde&es of the symbols to be used in the
output file, then map symbol numbers in outgoing relocation entries to
those ne indices.

Special symbols

Many systems use aWespecial symbols defined by the linker itselinix
systems all require that the linker defeteext , edat a, and end as the

end of the text, data, and bss segments, resggctiThe system sbrk()
routine usegnd as the address of the beginning of the runtime heap, so it
can be allocated contiguously with the existing data and bss.

For programs with constructor and destructor routines,ynhiakers create
tables of pointers to the routines from each input file, with @tickeated
symbol likk ~ CTOR LI ST__ that the language startup stub uses to
find the list and call all the routines.

Name mangling

The names used in object file symbol tables and in linking are often not
the same names used in the source programs from which the object files
were compiled. There are three reasons for th@dang name collisions,
name oerloading, and type checkinglhe process of turning the source
program names into the object file names is caltie mangling This
section discusses mangling typically done to names im&ahR, and C++
programs.

Simple C and Fortran name mangling

In older object formats (before maybe 1970), compilers used names from
the source program directly as the names in the object file, perhaps trun-
cating long names to a name length limit. Thisrked reasonably well,

Symbol management 5-159

but caused problems due to collisions with names reseby compilers
and libraries. For example, Fortran programs that do formatted 1/0 im-
plicitly call routines in the library to do their reads and writes. Other rou-
tines handle arithmetic errors, compheithmetic, and eerything else in a
programming language thattoo complicated to be generated as in-line
code.

The names of all of these routines are in effect reserved names, and part of
the programming folklore was to kwaovhat names not to use. As a-par
ticularly egregious example, this Fortran program would for quiteva fe
years crash an OS/360 system:

CALL MAIN

END

Why? TheOS/360 programming ceantion is that eery routine includ-

ing the main program has a name, and the name of the main program is
MAIN. When a Fortran main program starts, it calls the operating system
to catch a variety of arithmetic error traps, and each trap catch call allocat-
ed some space in a system table. But this program called itself velsursi
over and over agan, each time establishing another nested set of trap calls,
the system table ran out of space, and the system crashed. OS/390 is a lot
more rolust than its predecessors were 30 years ago, but theegserv
name problem remainslt’'s even worse in mixed language programs,
since code in all languages has Yoid using ay hame used by gmof the
language runtime libraries in use.

One approach to the resedvname problem was to use something other
than procedure calls to call the runtime libra@n the PDP-6 and -10, for
example, the interface to the Fortran I/O package was through a variety of
system call instruction that trapped back to the program rather than to the
operating system. This was aetrick, but it was quite specific to the
PDP-6/10 architecture and didrscale well, since there as no way for
mixed language code to share the trap, res ivpractical to link the mini-
mum necessary part of the 1/0 package because tleer@oveasy way to

tell which traps the input modules in a program used.

5-160 Symbomanagement

The approach taken on UNIX systems wasanglethe names of C and
Fortran procedures so thevouldn't inadwertently collide with names of
library and other routinesC procedure names were decorated with a lead-
ing underscore, so thakti n became_nmai n. Fortran names were further
mangled with both a leading and trailing underscore sccthlat became
cal c. (This particular approach made it possible to call C routines
whose names ended with an underscore fronrd&n, which made it pos-
sible to write Fortran libraries in C.) The only significant disadage of

this scheme is that it shrank the C name space from the 8 characters per
mitted by the object format to 7 characters for C and six characters for
Fortran. Atthe time, the Brtran-66 standard only required six character
names, so it wasnmuch of an imposition.

On other systems, compiler designers took an opposite okt assem-
blers and linkers permit characters in symbols that are forbidden in C and
C++ identifiers such as . and $. Rather than mangling names from C or
Fortran programs, the runtime libraries use names with forbidden charac-
ters that cart’ collide with application program names. The choice of
name mangling vs. collision-proof library names is one @&ldper con-
venience. Atthe time UNIX was reritten in C in about 1974, its authors
already had xensve assembler language libraries, and it was easier to
mangle the names of weC and C compatible routines than to go back and
fix all the existing codeNow, twenty years latethe assembler code has

all been rewritten fig imes and UNIX C compilers, particularly ones that
create COFF and ELF object files, no longer prepend the underscore.

C++ type encoding: types and scopes

Another use for mangled names is to encode scope and type information,
which makes it possible to use existing linkers to link programs in C++,
Ada, and other languages thav&aore compl& naming rules than do C,
Cobol, or Fortran.

In a C++ program, the programmer can define yrfamctions and ari-
able with the same name but different scopes and, for functigusnant
types. Asingle program may ka a dobal variableV and a static member
of a classC. : V. C++ permits function nameverloading, with seeral
functions having the same name bufat#nt arguments, such &§i nt

Symbol management 5-161

x) andf (fl oat x). Class definitions can include functions, including
overloaded names, andi@n functions that redefine built-in operators, that
is, a class can contain a function whose name isf@ctef> or ary other
built-in operator.

C++ was initially implemented as a translator called cfront that produced
C code and used an existing lerkso its author used name mangling to
produce names that can sneak through the C compiler into tee ik

the linker had to do with them was its usual job of matching identically
named defined and undefined global names. Since then, nearly all C++
compilers generate object code or at least assembler code dibectly
name mangling remains the standaraywo handle werloaded names.
Modern linkers no know enough about name mangling to demangle
names reported in error messagas, ttherwise lege mangled names
alone.

The influential Annotated C++ Reference Manual described the name
mangling scheme that cfront used, which with minariations has be-
come a de-facto standar@éVe cescribe it here.

Data variable names outside of C++ classestdgmt’mangled at allAn

array called oo has a mangled namefobo. Function names not associ-

ated with classes are mangled to encode the types of the arguments by ap-
pending__F and a string of letters that represent the argument types and
type modifiers listed in Figure 5. For example, a function
func(float, int, unsigned char) becomedunc__ Ffi Uc.

Class names are considered types, and are encoded as the length of the
class name follwed by the name, such d4®ai r. Classses can contain
names of internal classes to multipleds; these "qualified" names are
encoded as Q, a digit indicating the number @l and the encoded
class names, so First::Second:: Third becomes

@B5Fi rst 6Second5Thi rd. This means that a function that ¢sktwo

class aguments f (Pair, First::Second:: Third) becomes

f __F4Pai r B5Fi r st 6Second5Thi r d.

Figure 55: Type lettes in CG++ mangled names

5-162 Symbomanagement

Type Letter
void v
char C
short S
int

long

float

double

long double
varargs
unsigned
const

volatile

signed

pointer
reference
array of lengtm
function
pointer to nth member KB

D0 0w<O0c|® o™~

>
5

Tm

Class member functions are encoded as the function namenter-
scores, the encoded class name, then F and themants, so
cl::fn(void) becomed n__2cl Fv. All of the operators hee four
or five character encoded names as well, such ad for * and__aor
for | =. Special functions including constructodestructoy new, and
delete hge encodings as well _ct, dt, nw,and __dl. A con-
structor for class Pair taking ¢w character pointer guments
Pai r (char *, char*) becomes ct__4Pai r FPcPc.

Finally, snce mangled names can be so long, there arattartcut encod-
ings for functions with multiple arguments of the same type. The Tode
means "same type as the nth argument"Nmudmeans "n arguments the
same type as the mthgament. Afunctionsegnent (Pair, Pair)
would besegnent __ F4Pai r T1 and a functiort r apezoi d(Pai r,
Pair, Pair, Pair) wouldbetrapezoi d__F4Pai r N31.

Symbol management 5-163

Name mangling does the job of giving unique namesviepoyepossible

C++ object at the cost of tremendously long and (lacking linker and de-
bugger support) unreadable names in error messages and listings.
Nonetheless, C++ has an intrinsic problem that it has a potentially huge
namespace. Anscheme for representing the names of C++ objects has to
be nearly as verbose as nhame mangling, and mangled namegedbeha
advantage of being readable by at least some humans.

Early users of mangled names often found that althougbkrbnk theory
supported long names, in practice the long namestdibnk very well,

and performance was dreadful when linking programs that containgd man
long names that were identical up to the last ¢baracters. &rtunately,
symbol table algorithms are a well-understood subject, andone can
expect linkers to handle long names without trouble.

Link-timetype checking

Although mangled names only became popular with theradof C++,

the idea of linker type checking has been around for a long tihfest
encountered it in the Dartmouth PL/I linker in about 1974.) The idea of
linker type checking is quite straightfaavd. Mostlanguages he proce-
dures with declared argument types, and if the caller dogsss the num-

ber and type of arguments that the callee expectsait’ eror, often a
hard-to-diagnose error if the caller and callee are in separately compiled
files. For linker type checking, each defined or undefined global symbol
has associated with it a string representing tgaraent and return types,
similar to the mangled C++ argument types. When thestimksolves a
symbol, it compares the type strings for the reference and definition of the
symbol, and reports an error if hdon’t match. Anice property of this
scheme is that the linker need not understand the type encoding at all, just
whether the strings are the same or not.

Even in an ewironment with C++ mangled names, this type checking
would still be useful, since not all C++ type information is encoded into a
mangled name. The types that functions return, and types of global data
could profitably be checked by a scheme ltks one.

5-164 Symbomanagement

Weak external and other kinds of symbols

Up to this point, we/e mnsidered all linker global symbols to work the
same vay, and each mention of a name to be either a definition or a refer
ence to a symbolMany object formats can qualify a reference as weak or
strong. Astrong reference must be resaly while a weak reference may
be resolved if therg’a cefinition, but its mot an error if it5 not. Linker
processing of weak symbols is muchelikat for strong symbols xeept
that at the end of the first pass an undefined reference to anenigor.
Generally the linker defines undefined weak symbols to be ze@ua v
that application code can checkVeak symbols are primarily useful in
connection with libraries, so we revisit them in Chapter 6.

Maintaining debugging information

Modern compilers all support source languageudglmg. Thatmeans

that the programmer can depthe object code referring to source pro-
gram function andariable names, and set breakpoints and single step the
program. Compilersupport this by putting information in the object file
that provides a mapping from source file line numbers to object code ad-
dresses, and also describes all of the functicarsahes, types, and struc-
tures used in the program.

UNIX compilers hae wo somewhat different debug information formats,
stab (short for symbol table) that are used primarily in a.out, CaieF
non-System V ELF files, andWARF that was defined for System V ELF
files. Microsofthas defined their own formats for their Codes debug-
ger, with CV4 being the most recent.

Line number information

All symbolic deluggers need to be able to map between program address-
es and source line numbers. This lets users set breakpoints by line number
with the delbigger placing the breakpoint at the appropriate place in the
code, and also lets the debugger relate the program addresses in call stack
tracebacks and error reports back to source lines.

Line number information is simplexecpt with optimizing compilers that
can mee mde around so that the sequence of code in the object file
doesnt match the sequence of source lines.

Symbol management 5-165

For each line in the source file for which the compiler generatgcade,

the compiler emits a line number entry with the line number and the be-
ginning of the code. If a program address lies betweenlite number
entries, the delgger reports it as being the lower of the time numbers.

The line numbers need to be scoped by file name, both source file name
and include file nameSome formats do this by creating a list of files and
putting a file inde in each line number entryOthers intersperse "ge
include" and "end include" items in the list of line numbers, implicitly
maintaining a stack of line numbers.

When compiler optimization makes the generated code from a single state-
ment discontiguous, some object formats (notablyARF) let the com-

piler map each byte of object code back to a source line, using a lot of
space in the process, while others just emit approximate locations.

Symbol and variable information

Compilers also hae o emit the names, types, and locations of each pro-
gram\ariable. Thalehug symbol information is somdat more compbe

than mangled names are, because it needs to encode not just the type
names, but for structure types the definitions of the types so thggteb

can correctly format all of the subfields in a structure.

The symbol information is an implicit or explicit tree. At the togelen

each file is a list of typesaviables, and functions defined at the tolle

and within each of those are the fields of structures, variables defined with-
in functions, and so forthWithin functions, the tree includes ‘the
block" and "end block™ magks referring to line numbers, so the agier

can tell what variables are in scope at each point in the program.

The trickiest part of the symbol information is the location information.
The location of a static variable dodstiiange, but a local variable within

a a outine may be static, on the stack, in giser or in gotimized code,
moved from place to place in different parts of the routine. On most archi-
tectures, the standard calling sequence for routines maintains a chain of
saved gack and frame pointers for each nested routine, with the local stack
variables in each routine allocated at knowfsets from the frame pointer

In leaf routines or routines that allocate no local stack variables, a common
optimization is to skip setting the frame pointdihe debugger needs to

5-166 Symbomanagement

know about this in order both to interpret call stack tracebacks correctly
and to find local variables in a routine with no frame pointdeview
does this with a specific list of routines with no frame pointer.

Practical issues

For the most part, the linker just passes through debug information unin-
terpreted, perhaps relocatinggseent-relatie aldresses on the ay
through.

One thing that linkers are starting to do is detecting and removing dupli-
cated debug informationin C and particularly C++, programs usually
have a &t of header files that define types and declare functions, and each
source file includes the headers that define all of the types and functions
that file might use.

Compilers pass through the depinformation for gerything in all of the
header files that each source file includes. This means that if a particular
header file is included by 20 source files that are compiled aretllitmk
gether the linker will receve 2 copies of the debug information for that
file. Althoughdeluggers hee reve had aly trouble disrgarding the du-
plicated information, header files, particularly in C++, can be large which
means that the amount of duplicated header info can be substantial.

ers can safely discard the duplicated material, and increasingly do so, both
to speed the linker and debugger and te space. Insome cases, com-
pilers put the debug information directly into files or databases to be read
by the debgger bypassing the linkr, so he linker need only add or up-
date information about the rehai locations of the segments contried

by each source file, andyadata such as jump tables created by theelink
itself.

When the debug information is stored in an object file, sometimes the de-
bug information is intermixed with the ligt symbols in one big symbol
table, while sometimes the tware separateUnix systems added dedp
information to the compilers a little at a timeepthe years, so it all ended

up in one huge symbol tabl®©ther formats including Microso§’ECOFF

tend to separate liek symbols from debug symbols and both from line
numbers.

Symbol management 5-167

Sometimes the resulting depinformation goes into the output file, some-
times into a separate debfile, sometimes both. The advantage of putting

all of the debug information into the output file is simplicity in théd
process, since all of the information used to debug the program is present
in one place. The most obvious disadvantage is that it makesxthe e
ecutable file enormousAlso if the debug information is separated ous, it’
easy to build a finalersion of a program, then ship theeeutable but not

the debug files. This keeps the size of the shipped program aiad dis-
courages casualverse engineering, but the \a#opers still hae the de-

bug files if needed to debug errors found in the shipping projgbitlX
systems ha a 'strip” command that remes the debugging symbols
from an object file but doedrthange the code at allhe deelopers leep

the unstripped file and ship the strippedsion. Een though the twfiles

are diferent, the running code is the same and the debugger can use the
symbols from the unstripped file to debug a core dump made from the
stripped version.

Exercises

1. Writea C++ program with a lot of functions whose mangled names dif-
fer only in the last f& characters. Sebow long thg take to wmpile.
Change them so the mangled names$ediin the first fev characters.
Time a compile and link agn. Doyou need a v linker?

2. Investigate the debug symbol format that yoawdite linker uses.
(Some on-line resources are listed in the bibiograpWrite a program to
dump the debugging symbols from an object file and seenach of the
source program you can reconstruct from it.

Proj ect

Project 5-1: Extend the linker to handle symbol name resolutibtake

the linker read the symbol tables from each file and create a global symbol
table that subsequent parts of the linker can &seh symbol in the glob-

al symbol table needs to include, along with the name, whether the symbol
is defined, and which module defines it. Be sure to check for undefined
and multiply defined symbols.

5-168 Symbomanagement

Project 5-2: Add symbol value resolution to the lek Snce most sym-
bols are defined relag o segments in linler input files, the value of each
symbol has to be adjusted to account for the address to which each se
ment is relocatedFor example, if a symbol is defined as location 42 with-
in a file’s text segment, and the ggnent is relocated to 3710, the symbol
becomes 3752.

Project 5-3:Finish the vork from project 4-2; handle Unix-style common
blocks. Assigrocation values to each common block.

