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Chapter 4
Storage allocation

$Revision: 2.3 $
$Date; 1999/06/15 03:30:36 $

A linker or loades first major task is storage allocation. Once storage i%
allocated, the linker can proceed to subsequent phases of symbol binding
and code fixups. Most of the symbols defined in a linkable object file are
defined relatie o gorage areas within the file, so the symbols cannot bé&
resolved until the areas’ addresses arevkno *

As is the case with most other aspects of linking, the basic issues-in stbr
age allocation are straightfoand, but the details to handle peculiarities of *
computer architecture and programming language semantics (and the in-
teractions between the two) can get complicated. Most of the job ef stor
age allocation can be handled in argaté and relatiely architecture-in-  *
dependent &y, but there are weriably a fev details that require ad hoc *
machine specific hackery *

Segments and addresses

Every object or gecutable file uses a model of the target address space.
Usually the target is the target compwtegplication address spaceajtb
there are cases wheresitbomething else, such as a shared librarize
fundamental issue in a relocating lerkor loader is to ensure that all the
segments in a program are defined andehaldresses, but that addresses
don't overlap where they’re not supposed to.

Each of the linkr’s input files contains a set of segments of various types.
Different kinds of segments are treated in differesgsy Mostcommonly

all segments of a particular type. such @xcetable code, are concatenat-

ed into a single segment in the output file. Sometimes segments are
meiged one on top of anothexs br Fortran common blocks, and in an in-
creasing number of cases, for shared libraries and C++ special features,
the linker itself needs to create some segments and lay them out.

Storage layout is a two-pass process, since the location of egolerge
cant be asigned until the sizes of all segments that logically precede it
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are known.
Simple storage layout

In a simple It not unrealistic situation, the input to a linker consists of a
set of modules, call them 1Vlhrough , each of which consists of a sin-

gle s@ment starting at location O of length through L, and the taget
address space also starts at zero, Figure 1.

Figure 41: Single segment stage dlocation

bunch of sgments all starting at zero are relocated one af-
ter another
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The linker or loader»amines each module in turn, allocating storage se-
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quentially The starting address ofiN‘is the sum of |- through L, and
the length of the linked program is the sum thlhrough L.

Most architectures require that data be aligned ordvwoundaries, or at
least run faster if data is aligned, so linkers generally round qaqhtb a
multiple of the most stringent alignment that the architecture requires, typ-
ically 4 or 8 bytes.

Example 1: Assume a main program called main is to bedimkth three
subroutines called calif, mass, andvgerk. (It allocates venture capital
geographically Thesizes of each routine are (in hex):

name size
main 1017
calif 920
mass 615
nevyork 1390

Assume that storage allocation starts at location 10Q0 dred that the
alignment is four bytes. Then the allocations might be:

name location
main 1000 2016
calif 2018- 2937
mass 2938 2f4dc

newyork 2f50- 42df
Due to alignment, one byte at 2017 and three bytes at 2f4d are wasted, not
enough to worry about.

Multiple segment types

In all but the simplest object formats, there aneerse kinds of sgment, *
and the linker needs to group corresponding segments from all of the input
modules togetherOn a Unix system with text and data segments, the*
linked file needs to lva dl of the text collected togethefollowed by all  *
of the data, followed logically by the BS$Even though the BSS doesn’  *
take gace in the output file, it needs tovhapace allocated to res@v *
BSS symbols, and to indicate the size of BSS to allocate when the outgut
file is loaded.) This requires a twovs storage allocation strategy *
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Now each module I\I/Ihas text size deata size I%) and BSS size F}Fig-
ure 2.

Figure 4-2: Multiple segment stage dlocation *

text, data, and BSS segments being combined separately
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As it reads each input module, the Bnlallocates space for each of tr}e T *
Di' and BI as though each segment were separately allocated atAdero. *
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ter reading all of the input files, the linkenn&nows the total size of each *
of the three segmentst '{' Dto ., and Btot' Since the data segment fas *
the text segment, the ﬁak adtds Iot to the address assigned for each of*
the data segments, and since the BSS segment follows both the text &nd
data segments, the linker adds the sumt8{ dand qot to the allocated *

BSS sgments. *
Again, the linker usually needs to round up each allocated size.
Segment and page alignment *

If the text and data segments are loaded into separate memory pages, 4s is
generally the case, the size of the texjnsent has to be rounded up to a *
full page and the data and BSsent locations correspondingly adjust- *
ed. Mary Unix systems use a trick thatvea file space by starting the da- *

ta immediately after the xein the object file, and mapping that page in *
the file into virtual memory twice, once read-only for the text and oncé
copy-on-write for the data. In that case, the data addresses logically stért
exactly one page beyond the end of the,tgo rather than rounding up, *
the data addresses start exactly 4K or wieatthe page size is pend the  *
end of the tet. *

Example 2: V€ expand on Example 1 so that each routine hagtadata,
and bss sgment. Theword alignment remains 4 bytes, but the page size
is 0x1000 bytes.

name tet data bss
main 1017 320 50
calif 920 217 100
mass 615 300 840

nevyork 1390 1213 1400
(all numbers hex)

The linker first lays out the text, then the data, then the Mete that the
data section starts on a page boundary at Ox500@hé bss starts imme-
diately after the data, since at run time data and bss are logicallygne se
ment.

name tet data bss
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main 1000 2016 5000 531f 695c- 69ab
calif 2018-2937 5320-5446  69ac 6aab
mass 2938 2f4c  5448- 5747 6aac 72eb

newyork  2f50-42df 5748-695a 72ec 86eb

Theres wasted space at the end of the page between 42e0 andB890.

bss segment ends in mid-page at 86eb, but typically programs allocate
heap space starting immediately after that.

Common blocks and other special segments

The straightforward segment allocation schemevabaorks nicely for
about 80% of the storage that linkers deal with. The rest is handled with
special case hacks. Here we look at some of the more popular ones.

Common

Common storage is a feature dating back to Fortran | in the 1950s. In the
original Fortran system, each subprogram (main program, function, or
subroutine) had itsven statically declared and allocated scalar and array
variables. Theravas dso a common area with scalars and arrays that all
subprograms could us€€ommon storage pved very useful, and in sub-
sequent versions of Fortran itas generalized from a single common
block (nav known as blank common, as in the name consists of blanks) to
multiple named common blocks, with each subprogram declaring the
blocks that it uses.

For the first 40 years of its existence, Fortran didapport dynamic ster

age allocation, and common blocks were the primary tool that Fortran pro-
grammers used to circumvent that restricti@@tandard Fortran permits
blank common to be declared with different sizes ifietght routines,

with the lagest size taking precedencEortran systems uwmérsally ex-

tend this to allev al common blocks to be declared with different sizes,
again with the largest size taking precedence.

Large Fortran programs often bump up against the memory limits in the
systems in which therun, so in the absence of dynamic memory alloca-
tion, programmers frequently rebuild a package, tweaking the sizes to fit
whatever problem a package is working on. All but one of the subpro-
grams in a package declare each common block as a one-element array
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One of the subprograms declares the actual size of all the common blocks,
and at startup time puts the sizes in variables (in yet another common
block) that the rest of the package can use. This makes it possible to ad-
just the size of the blocks by changing and recompiling a single routine

that defines them, and then relinking.

As an added complication, starting in the 1960s Fortran added BLOCK
DATA to gecify static initial data alues for all or part of gncommon
block (except for blank common, a restriction rarely enforceddgually

the size of the common block in the BLOCKTA that initializes a block

is taken to be the blockectual size at link time.

To handle common blocks, the liek treats the declaration of a common
block in an input file as a segment, buéertays all of the blocks with the
same name rather than concatenating thegmesgts. Ituses the layest
declared size as thegsaents gze, unless one of the input files has an ini-
tialized version of the ggnent. Insome systems, initialized common is a
separate segment type, while in othessjitst part of the data segment.

Unix linkers hae dways supported common blocks, sinaerethe earli-

est versions of Unix had a Fortran subset comaet Unix versions of C

have traditionally treated uninitialized global variables mucle ldlommon
blocks. Butthe pre-ELF versions of Unix object files only had thd,te
data, and bss segments with no direaywo declare a common blocRs

a ecial case hack, linkers treated a symbol that was flagged as undefined
but nonetheless had a non-zero value as a common block, wittaliie v
being the size of the block. The linker took the largest value encountered
for such symbols as the size of the common bldéd. each block, it de-
fined the symbol in the bss segment of the output file, allocating the re-
guired amount of space after each symbol, Figure 3.

Figure 4-3: Unix common blocks

common at the end of bss
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C++ duplicate removal

In some compilation systems, C++ compilers produce a great deal of du-
plicated code due to virtual function tables, templates and extern inline
functions. Thedesign of those features implicitly expects anirmment

in which all of the pieces of a program are processed simultaned\isly
virtual function table (usually abbreviated vtbl) contains the addresses of
all the virtual functions (routines that can heroidden in a subclass) for a
C++ class. Each class withyawirtual functions needs a vtblTemplates

are essentially macros withgairments that are datatypes, and thxgaad

into a distinct routines forvery distinct set of type guments. Whilet is

the programmes’ job to ensure that if there is a reference to normal rou-
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tines called, saynash(i nt) andhash(char *) , theres exactly
one definition of each kind of hash, a template versidmash( T) auto-
matically creates versions dfash for each data type that is usedyan
where in the program as an argumertiash.

In an ewironment in which each source file is separately compiled, a
straightforvard technique is to place in each object file all of the vtkis, e
panded template routines, and extern inlines used in that file, resulting in a
great deal of duplicated code.

The simplest approach at link time is teeliwith the duplication.The re-
sulting program works correctliut the code bloat can bulk up the object
program to three times or more the size that it should be.

In systems stuck with simple-minded lark, some C++ systemsvea
used an iterate linking approach, separate databases of wieapanded
where, or added pragmas (source code hints to the compiler) that feed
back enough information to the compiler to generate just the cods that’
needed. W cove these in Chapter 11.

Many recent C++ systems Y@ aldressed the problem head-on, either by
making the linker smartgor by integrating the linker with other parts of

the program deslopment system(We dso touch on the latter approach in
chapter 11.) The linker approach has the compiler generate all of the pos-
sibly duplicate code in each object file, with the linker identifying and dis-
carding duplicates.

MS Windows linkers define a COMAX flag for code sections that tells
the linker to discard all but one identically nhamed sectidriee compiler
gives the section the name of the template, suitably mangled to include the
argument types, Figure 4

Figure 44: Windows

IMAGE_COMDAT_SELECT_NODUPLICAES 1 Warn
if multiple identically named sections occur.
IMAGE_COMDAT_SELECT_ANY 2 Link one
identically named section, discard the rest.
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IMAGE_COMDAT_SELECT_SAME_SIZE

3 Link one identically named section, discard
the rest.Warn if a discarded section igrthe same size.
IMAGE_COMDAT_SELECT_EXACT MACH 4 Link
one identically named section, discard the r&garn if a
discarded section isnidentical in size and contentéNot
implemented.)
IMAGE_COMDAT_SELECT_ASSOCIAIVE 5 Link this
section if another specified section is also linked.

The GNU linker deals with the template problem by defining a "link once"
type of section similar to common blocks. If the Bnkseessegments
with names of the forngnu.linkoncerame it throwsaay al but the first
such segment with identical name&gain, compilers xpand a template

to a .gnu.linkbnce section with the name including the mangled template
name.

This scheme works pretty well, butsithot a panaceaFor one thing, it
doesnt protect against the vtbls angganded templates not actually being
functionally identical. Some lirdes attempt to check that the discarded
seggments are byte-for-byte identical to the one thigpt. Thisis very
conservatie, but can producealse errors if tw files were compiled with
different optimization options or with different versions of the compiler
For another it doesnt discard nearly as much duplicated code as it could.
In most C++ systems, all pointersvieathe same internal representation.
This means that a template instantiated with, agpinter to int type and

the same template instatiated with pointer to float will often generate iden-
tical code gen though the C++ types are fdifent. Somdinkers may at-
tempt to discard link-once sections which contain identical code to another
section, gen when the names ddmjuite match perfectfybut this issue re-
mains unsatisfactorily resolved.

Although weve keen discussing templates up to this point, exactly the
same issues apply tatern inline functions and default constructarpy,
and assignment routines, which can be handled the same way.



4-130 Storagallocation

Initializers and finalizers

Another problem not unique to C+tutbexacerbated by it are initializers
and finalizers.Frequentlyit's easier to write libraries if thecan arrange

to run an initializing routine when the program starts, and a finalizing rou-
tine when the program is about tite C++ allows static ariables. Ifa
variable’s dass has a constructdhat constructor needs to be called at
startup time to initialize the variable, and if it has a destruttterdestruc-

tor needs to be called at exit time. There agous ways to finesse this
without linker support, which we discuss in Chapter 11, but modern link-
ers generally do support this directly.

The usual approach is for each object file to pytstartup code into an
anorymous routine, and to put a pointer to that routine intogmsat
called.init or something similar The linker concatenates all thgit seg-
ments togetherthereby creating a list of pointers to all the startup rou-
tines. Theprograms$ gartup stub need only run down the list and call all
the routines. EXxit time code can be handled in much the sayewvth a
segment calledini.

It turns out that this approach is not altogether satisfy because some
startup code needs to be run earlier than others. The definition of C++
states that applicationdd constructors are run in an unpredictable qrder
but the 1/0 and other system library constructors need to be run before
constructors in C++ applications are calledhe ‘perfect’ approach
would be for each init routine to list its dependencies explicitly and do a
topological sort. The BeOS dynamic linker does approximately that, using
library reference dependencies. (If library A depends on library B, library
B’s initializers probably need to run first.)

A much simpler approximation is to V& veal initialization sgments,

Init and.ctor, so he startup stub first calls thimit routines for library-

level initialization and then thector routines for C++ constructorsThe

same problem occurs at the end of the program, with the corresponding
sgments beingdtor and.fini. One system goes so far as to alline pro-
grammer to assign priority numbers, 0 to 127 for user code and 128-255
for system library code, and the linker sorts the initializer and finalizer
routines by priority before combining them so highest priority initializers
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run first. This is still not altogether sataftory since constructors can

have ader dependencies on each other that cause hard-to-find bugs, but at
this point C++ makes it the programnserésponsibility to preent those
dependencies.

A variant on this scheme puts the actual initialization code irirtheseg-

ment. Wherthe linker combined them the segment would be in-line code
to do all of the initializationsA few g/stems hee fied that, but i hard

to male it work on computers without direct addressing, since the chunk
of code from each object file needs to be able to address the data for its
own file, usually needing registers that point to tables of address Haga.
anorymous routines set up their addressing the sameaty other rou-

tine does, reducing the addressing problem to ones ihatady solved.

IBM pseudo-registers

IBM mainframe linkers prade an interesting feature calle@xternal
dummy’ sections or ‘pseudo-registers. T he 360 was one of the earlier
mainframe architectures without direct addressing, which means that small
shared data areas argensve © implement. Eachoutine that refers to a
global object needs its own felyte pointer to the object, which is a lot

of overhead if the object was only four bytes to start with. PL/lI programs
need a foubyte pointer to each open file and other global objectsxfor e
ample. (PL/lwas the only high-lgel language to use pseudo-registers, al-
though it didnt provide application programmers with access to thdéim.
used them for pointers to control blocks for open files so application code
could include inline calls to the I/O system.)

A related problem is that OS/360 ditiprovide ary support for what

now called pefprocess or task local storage, and very limited support for
shared libraries. If tevjobs ran the same program, either the progras w
marked reentrant, in which case yhehared the entire program, code and
data, or not reentrant, in which caseytlshared nothing. All programs

were loaded into the same address space, so multiple instances of the same
program had to maktheir arrangements for instance-specific dd&ys-

tem 360s didri’havehardware memory relocation, and although 370s did,

it wasnt until after seeral revisions of the OS/VS operating system that

the system provided per-process address spaces.)
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Pseudo-rgisters help sokr both of these problems, Figure &ach input

file can declare pseudo-registers, also caligdreal dummy sectiong/A
dummy section in 360 assembler is analogous to a structure declaration.)
Each pseudo-register has a name, length, and alignment. At link time, the
linker collects all of the pseudogisters into one logical segment, taking
the largest size and most restrietessignment for each, and assigns them
all non-overlapping offsets in this logical segment.

But the linler doesrt alocate space for the pseudo-registegnsent. It
merely calculates the size of the segment, and stores it in the pregram’
data at a location maekl by a special CXD, cumula# exernal dummy
relocation item.To refer to a particular pseudogister program code us-

es yet another special XD, external dummglocation type to indicate
where to place the fsiet in the logical segment of one of the pseudysre
ters.

The prograns initialization code dynamically allocates space for the
pseudo-rgisters, using a CXD to kmohow much space is needed, and
cornventionally places the address of thagiom in register 12, which re-
mains unchanged for the duration of the prograkny part of the pro-

gram can get the address of a pseudo-register by adding the contents of
R12 to an XD item for that gister The usual way to do this is with a
load or store instruction, using R12 as the xagjster and and XD item
embedded as the address displacement field in the instruction. (The dis-
placement field is only 12 bits, but the XD itemMesathe high four bits of

the 16-bit halfword zero, meaning base register zero, which produces the
correct result.)

Figure 45: Pseudo-egsters

bunch of chunks of space pointed to by R3}2rious rou-
tines offsetting to them
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object file

reference to pseudo-register PR, '
_ . linker assigned offset 20

I_register 12

B 20(R12) )

The result of all this is that all parts of the programehdrect access to

all the pseudo-registers using load, store, and other RX format instruc-
tions. Ifmultiple instances of a program are agteach instance allocates

a eparate space with a different R12 value.

Although the original motiation for pseudo-registers iswdargely obso-

lete, the idea of prading linker support for efficient access to thread-local
data is a good one, and has appeared in various forms in more modern sys-
tems, notably Widows32. Also,modern RISC machines share the 360’
limited addressing range, and require tables of memory pointers to address
arbitrary memory locations. On mamiISC UNIX systems, a compiler
creates tw data segments in each module, one for regular data and one for
"small" data, static objects b&some threshold size. The linker collects

all of the small data segments togetlaad arranges for program startup
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code to put the address of the combined small dgtaesg in a reseed
register This permits direct references to small data using based address-
ing relatve  that register Note that unlike pseudo-rgisters, the small

data storage is both laid out and allocated by thestirskd theres anly

one copy of the small data per process. Some UNIX systems support
threads, but pethread storage is handled by explicit program code with-
out ary special help from the linker.

Special tables

The last source of lirde-allocated storage is the liekitself. Paticularly
when a program uses shared libraries arlays, the linler creates gp
ments with pointers, symbols, and whateelse data are needed at run-
time to support the libraries ovelays. Oncehese segments are created,
the linker allocates storage for them the same way it does foother
segments.

X86 segmented storage allocation

The peculiar requirements of 8086 and 80286 sort-of-segmented memory
addressing led to a avespecialized &cilities. X860MF obiject files gie

each segment a name and optionally a class. All segments with the same
name are, depending on some flag bits set by the compiler or assembler
combined into one big segment, and all thgnsents in a class are allocat-

ed contiguously in a block. Compilers and assemblers use class names to
mark types of segments such as code and static data, so @recankallo-

cate all the segments of avgn dass togetherSo long as all of the ge

ments in a class are less than 64K totaly tiam be treated as a single ad-
dressing ‘group” using a single segmentgister which saes mnsider-

able time and space.

Figure 6 shows a program linked from three input files, main, able, and
baker Main contains sgments MAINCODE and MAINBTA, able con-
tains ABLECODE, and ABLEBTA, and baker contains &KERCODE,
BAKERDATA, and BAKERLDATA. Each of the code sections in in the
CODE class and the data sections are in tA€ADclass, but the BK-
ERLDATA "large data" section is not assigned to a class. In thedink
program, assuming the CODE sections are a total of 64K or legsathe

be treated as a singlegseent at runtime, using short rather than long call
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and jump instructions and a single unchanging CS cagleesd rgister.
Likewise, if all the DATA fit in 64K they can be treated as a singleggse
ment using short memory reference instructions and a single unchanging
DS data segmentgister The BAKERLDATA segment is handled at run-
time as a separate segment, with code loadingraesg register (usually

the ES) to refer to it.

Figure 46: X86
CODE class with MAINCODE, ABLECODE, BKER-
CODE
DATA class with MAINDATA, ABLEDATA, BAKERDA-
TA
BAKERLDATA
‘MAIN
| MAINCODE | > | MAINCODE | CODE
MAINDATA | | /ABLECODE |
| BAKERCODE | group
e MSII;DATH DATA
. | BAKERDATA group
| ABLECODE | - 'BAKERLDATA'
| ABLEDATA. |
(L Ak
BAKER
.,B‘A'KERCGDEE(
BAKERDATA|

BAKERLDATAI
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Real mode and 286 protected mode programs arediakmost identical-

ly. The primary difference is that once the linker creates the linkgd se
ments in a protected mode program, the linker is done, leaving the actual
assignment of memory locations angrsent numbers until the program

is loaded. In real mode, the linker has an extra step that allocategthe se
ments to linear addresses and assigns "paragraph” numbers t@-the se
ments relatie © the beginning of the progranihen at load time, the pro-
gram loader has to fix up all of the paragraph numbers in a real mode pro-
gram or segment numbers in a protected mode program to refer to the ac-
tual location where the program is loaded.

Linker control scripts

Traditionally, linkers offered the user limited controlen the arrangement

of output data. As linkers started to target environments with messy mem-
ory omanizations, such as embedded microprocessors, and multigé tar
ervironments, it became necessary tovpte finer grained controlver

the arrangement both of data in theg&raddress space and in the output
file. Simplelinkers with a fixed set of segments generallyelsvitches to
specify the base address of each segment, for programs to be loaded into
something than the standard applicatiomiremment. (Operatingystem
kernels are the usual application for these switch&aijne linkers hae

huge numbers of command line switches, often witipi@an to continue

the command line logically in a file, due to system limits on the length of
the actual command lineFor example, the Microsoft linker has about
fifty command line switches that can set the characteristics of each section
in the file, the base address of the output, arariaty of other output de-
tails.

Other linkers hee defined a script language to control the &ng autput.

The GNU linker, which also has a long list of command line switches, de-
fines such a language. Figure 7 shows a simple linker script that produces
COFF eecutables for System V Release 3.2 systems such as SCO Unix.

Figure 47: GNU linker control script for COFF»cutable
OUTPUT_FORMAT( " cof f - i 386")
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SEARCH DI R(/usr/local/lib);
ENTRY(_start)
SECTI ONS
{
.text SIZEOF_HEADERS : {
*(.init)
*(.text)
*(.fini)
etext =
}
.data 0x400000 + (. & OxffcOOfff) : {
*(.data)
edata =

}
.bss SIZEOF(.data) + ADDR(.data)

{

*(. bss)

*( COVVON)

end = .;

}
.stab 0 (NOLOAD) :
{

[ .stab ]

}
.stabstr 0 (NOLOAD)

{
[ .stabstr ]

}
}

The first fav lines describe the output format, which must be present in a
table of formats compiled into the liek the place to look for object code
libraries, and the name of the default entry poirstt art in this case.
Then it lists the sections in the output fikn optional value after the sec-
tion name says where the section starts, hencettea&t section starts
immediately after the file header§he . t ext section in the output file
contains the i ni t sections from all of the input files, then theext
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sections, then thef i ni sections. Théinker defines the symbelt ext

to be the address after théi ni sections. Thethe script sets the origin

of the. dat a section, to start on a 4K page boundary roughly 400000 he
beyond the end of the text, and the section includes tied a sections

from all the input files, with the symbeldat a defined after themThen

the . bss section starts right after the data and includes the inpst
sections as well as yrcommon blocks witrend marking the end of the
bss. (COMMONis a lkeyword in the script language.) After that areotw
sections for symbol table entries collected from the corresponding parts of
the input files, but not loaded at runtime, since only a debugger looks at
those symbols. The linker script language is considerably modiélée
than this simple >xample shows, and is adequate to descniaeything

from simple DOS xecutables to Widows PE eecutables to compie
overlaid arrangements.

Embedded system storage allocation

Allocation in embedded systems is similar to the schemegevaeén so

far, only more complicated due to the complicated address spaces in which
programs must runlinkers for embedded systems provide script lan-
guages that let the programmer define areas of the address space, and to al-
locate particular ggments or object files into those areas, also specifying
the alignment requirements for segments in each area.

Linkers for specialized processorselibSPs hae gecial features to sup-
port the peculiarities of each processbor example, the Motorola 5600X
DSPs hae support for circular bffers that hee © be digned at an ad-

dress that is a power of tvat least as large as thafter. The 56K object

format has a special segment type for thadéets, and the linker auto-
matically allocates them on a correct boundsamyffling segments to min-
imize unused space.

Storage allocation in practice

We end this chapter by alking through the storage allocation for some
popular linkers.
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Storage allocation in Unix a.out linkers

Allocation in pre-ELF Unix linkers is only slightly more compldnan the
idealized example at the beginning of the chamiace the set of gp
ments known in advance, Figure Bach input file has text, data, and bss
sgments, and perhaps common blocks disguisedxesnal symbols.

The linker collects the sizes of the text, data, and bss from each of the in-
put files, as well as from grobjects taken from libraries. After reading

all of the objects, anunresolhed external symbols with non-zeralues

are taken to be common blocks, and are allocated at the end of bss.

Figure 4-8: a.out linking

picture of text, data, and bss/common fraxpleit and li-
brary objects being combined into three big segments
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B explicitly linked objects output file
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At this point, the linker can assign addresses to all of thgnsmts. The

text segment starts at a fixed location that depends onatietyvof a.out

being created, either location zero (the oldest formats), one page past loca-
tion zero (NMAGIC formats), or one page plus the size of the a.out header
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(QMAGIC.) Thedata segment starts right after the data segment (old un-
shared a.out), on the next page boundary after teségment (NMA-

IC). In evay format, bss starts immediately after the datarsnt. Wth-

in each segment, the linker allocates the segments from each input file
starting at the next word boundary after the previous segment.

Storage allocation in ELF

ELF linking is somewhat more compl¢han a.out, because the set of in-
put segments can be arbitrarily large, and theehrias to turn the input
seggments (sections in ELF terminology) into loadabignsents (sgments

in ELF terminology) Thelinker also has to create the program header
table needed for the program logd®rd some special sections needed for
dynamic linking, Figure 9.

Figure 49: ELF linking

Adapt figs from pages 2-7 and 2-8 of TIS ELF doc
shaw input sections turning into output segments.
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ELF objects hee the traditional text, data, and bss sectionsy goelled

text, .data, and .bssThey aso often contain .init and .fini, for startup and
exit time code, as well as various odds and endse .rodata and .datal
sections are used in some compilers for read-only data and out-of-line data
literals. (Somealso ha&e rodatal for out-of-line read-only data®n
RISCsystems li& MIPS with limited sized address offsets, .sbss and
.scommon, are "small* bss and common blocks to help group small ob-
jects into one directly addressable area, as we noteg albthe discus-

sion of pseudo-gasters. OnGNU C++ systems, there may also be
linkonce sections to be included into text, rodata, and data segments.

Despite the profusion of section types, the linking process remains about
the same. The linker collects each type of section from the input files to-
gether dong with sections from library objects. The lerkalso notes
which symbols will be resobd at runtime from shared libraries, and cre-
ates .interp, .got, .plt, and symbol table sections to support runtime linking.
(We defer discussion of the details until Chapter 9.) Once that is all done,
the linker allocates space in a wemtional order Unlike aout, ELF ob-

jects are not loaded anywhere near address zero, but are instead loaded in
about the middle of the address space so the stack cardgwa below

the text segment and the heap up from the end of the @afaink the to-

tal address space in use relatiompact. On386 systems, the text base
address is 0x08048000, which permits a reasonalyg stiack bel the

text while still staying abee aldress 0x08000000, permitting most pro-
grams to use a single seconddepage table. (Recall that on the 386,
each seconddel table maps 0x00400000 addresses.) ELF uses the
QMAGIC trick of including the header in the text segment, so the actual
text segment starts after the ELF header and program header table, typical-
ly at file offset 0x100.Then it allocates into the text segment .interp (the
logical link to the dynamic lindgr, which needs to run first), the dynamic
linker symbol table sections, .init, the .text and link-oncd, tend the
read-only data.

Next comes the data segment, which logically starts one page past the end
of the text segment, since at runtime the page is mapped in as both the last
page of text and the first page of data. The linker allocates the various .da-
ta and link-once data, the .got section and on platforms that use it, .sdata
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small data and the .got global offset table.

Finally come the bss sections, logically right after the data, starting with
.Sbss (if ay, to put it next to .sdata and .got), the bss segments, and com-
mon blocks.

Storage allocation in Windows linkers

Storage allocation for Wdows PE files is somewhat simpler than for ELF
files, because the dynamic linking model for P#lives less support from
the linker at the cost of requiring more support from the combiigure
10.

Figure 410: PE stoage dlocation

adapt from MS web site
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PE ecutable files are comntionally loaded at 0x400000, which is where
the text starts. The text section included feom the input files, as well
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as initialize and finalize sectionslext comes the data sections, aligned on

a logical disk block boundary(Disk blocks are usually smaller than mem-
ory pages, 512 or 1K rather than 4K omndéws machines.)Following

that are bss and common, .rdata relocation fixups (for DLL libraries that
often cant be loaded at the expected target address), import and export ta-
bles for dynamic linking, and other sections such as Windows resources.

An unusual section type is .tls, thread local storayéVindows process
can and usually does Y multiple threads of control simultaneously ac-
tive. The .tls data in a PE file is allocated for each thrétmhcludes both

a bdock of data to initialize and an array of functions to call on thread start-
up and shutdown.

Exercises

1. Why does a linker shuffle around segments to put segments of the same
type next to each otherf®/ouldn’t it be easier to lege them in the original
order?

2. When|f ever, does it matter in what order a linker allocates storage for
routines? Irour example, what difference would it negik the linker allo-
cated newyork, mass, calif, main rather than main, calif, masgjone
(We’ll ask this question again later when we discusslays and dynamic
linking, so you can disgard those considerations.)

3. Inmost cases a linker allocates similar sections sequeribalgcam-
ple, the text of calif, mass, and newyork one after anotet it allocates
all common sections with the same name on top of each dfteyr?

4. Isit a good idea to permit common blocks declared ifediht input
files with the same name but different sizes?y\ihwhy not?

5. Inexample 1, assume that the programmer has rewritten the calif rou-
tine so that the object code ismbex 1333 long. Recompute the assigned
sgment locations. In example 2, further assume that the data and bss
sizes for the rewritten calif routine are 975 and 120. Recompute the as-
signed segment locations.
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Project

Project 4-1: Extend the linker skeleton from project 3-1 to do simple
UNIX-style storage allocation. Assume that the only interestigghsats

are. text,.data, and. bss. In the output file, tet starts at he 1000,

data starts at the next multiple of 1000 after th¢ #nd bss starts on a 4
byte boundary after the data, Your linker needs to write out a partial object
file with the segment definitions for the output filg‘ou need not emit
symbols, relocations, or data at this poind)thin your linker, be sure you

have a dita structure that will let you determine what address eagh se
ment in each input file has been assigned, since you'll need that for project
in subsequent chapters. Use the sample routines in Example 2 to test your
allocator.

Project 4-2:Implement Unix-style common blocks. That is, scan the sym-
bol table for undefined symbols with non-zero values, and add space of ap-
propriate size to the .bssgseent. Dont worry about adjusting the sym-

bol table entries, thatin the next chapter.

Project 4-3:Extend the allocator in 4-3 to handle arbitrary segments in in-
put files, combining all ggnents with identical name#\ reasonable allo-
cation strategy would be to put at 1000 the segments with RRutdsrjb
then starting at the k1000 boundary RWP attributes, then on a 4 bound-
ary RW attributes. Allocatecommon blocks in .bss with attribut®\R



