
Storage allocation 4-119

Chapter 4
Storage allocation

$Revision: 2.3 $
$Date: 1999/06/15 03:30:36 $

A l inker or loader’s first major task is storage allocation. Once storage is*
allocated, the linker can proceed to subsequent phases of symbol binding*
and code fixups. Most of the symbols defined in a linkable object file are*
defined relative to storage areas within the file, so the symbols cannot be*
resolved until the areas’ addresses are known. *

As is the case with most other aspects of linking, the basic issues in stor- *
age allocation are straightforward, but the details to handle peculiarities of *
computer architecture and programming language semantics (and the in-*
teractions between the two) can get complicated. Most of the job of stor- *
age allocation can be handled in an elegant and relatively architecture-in- *
dependent way, but there are invariably a few details that require ad hoc *
machine specific hackery. *

Segments and addresses

Every object or executable file uses a model of the target address space.
Usually the target is the target computer’s application address space, but
there are cases where it’s something else, such as a shared library. The
fundamental issue in a relocating linker or loader is to ensure that all the
segments in a program are defined and have addresses, but that addresses
don’t overlap where they’re not supposed to.

Each of the linker’s input files contains a set of segments of various types.
Different kinds of segments are treated in different ways. Mostcommonly
all segments of a particular type. such as executable code, are concatenat-
ed into a single segment in the output file. Sometimes segments are
merged one on top of another, as for Fortran common blocks, and in an in-
creasing number of cases, for shared libraries and C++ special features,
the linker itself needs to create some segments and lay them out.

Storage layout is a two-pass process, since the location of each segment
can’t be assigned until the sizes of all segments that logically precede it

4-120 Storageallocation

are known.

Simple storage layout

In a simple but not unrealistic situation, the input to a linker consists of a
set of modules, call them M1 through Mn, each of which consists of a sin-
gle segment starting at location 0 of length L1 through Ln, and the target
address space also starts at zero, Figure 1.

Figure 4-1: Single segment storage allocation

bunch of segments all starting at zero are relocated one af-
ter another

The linker or loader examines each module in turn, allocating storage se-

Storage allocation 4-121

quentially. The starting address of Mi is the sum of L1 through Li-1, and
the length of the linked program is the sum of L1 through Ln.

Most architectures require that data be aligned on word boundaries, or at
least run faster if data is aligned, so linkers generally round each Li up to a
multiple of the most stringent alignment that the architecture requires, typ-
ically 4 or 8 bytes.

Example 1: Assume a main program called main is to be linked with three
subroutines called calif, mass, and newyork. (It allocates venture capital
geographically.) Thesizes of each routine are (in hex):

name size
main 1017
calif 920
mass 615
newyork 1390
Assume that storage allocation starts at location 1000 hex, and that the
alignment is four bytes. Then the allocations might be:

name location
main 1000- 2016
calif 2018- 2937
mass 2938- 2f4c
newyork 2f50- 42df
Due to alignment, one byte at 2017 and three bytes at 2f4d are wasted, not
enough to worry about.

Multiple segment types

In all but the simplest object formats, there are several kinds of segment, *
and the linker needs to group corresponding segments from all of the input*
modules together. On a Unix system with text and data segments, the*
linked file needs to have all of the text collected together, followed by all *
of the data, followed logically by the BSS.(Even though the BSS doesn’t *
take space in the output file, it needs to have space allocated to resolve *
BSS symbols, and to indicate the size of BSS to allocate when the output*
file is loaded.) This requires a two-level storage allocation strategy. *

4-122 Storageallocation

Now each module Mi has text size Ti, data size Di, and BSS size Bi, Fig- *
ure 2. *

*

Figure 4-2: Multiple segment storage allocation *

text, data, and BSS segments being combined separately *

Storage allocation 4-123

*
*

As it reads each input module, the linker allocates space for each of the Ti, *
Di, and Bi as though each segment were separately allocated at zero.Af- *

4-124 Storageallocation

ter reading all of the input files, the linker now knows the total size of each *
of the three segments, Ttot, Dtot, and Btot. Since the data segment follows *
the text segment, the linker adds Ttot to the address assigned for each of *
the data segments, and since the BSS segment follows both the text and*
data segments, the linker adds the sum of Ttot and Dtot to the allocated *
BSS segments. *

Again, the linker usually needs to round up each allocated size. *

Segment and page alignment *

If the text and data segments are loaded into separate memory pages, as is*
generally the case, the size of the text segment has to be rounded up to a *
full page and the data and BSS segment locations correspondingly adjust- *
ed. Many Unix systems use a trick that saves file space by starting the da- *
ta immediately after the text in the object file, and mapping that page in *
the file into virtual memory twice, once read-only for the text and once*
copy-on-write for the data. In that case, the data addresses logically start*
exactly one page beyond the end of the text, so rather than rounding up, *
the data addresses start exactly 4K or whatever the page size is beyond the *
end of the text. *

Example 2: We expand on Example 1 so that each routine has a text, data,
and bss segment. Theword alignment remains 4 bytes, but the page size
is 0x1000 bytes.

name text data bss
main 1017 320 50
calif 920 217 100
mass 615 300 840
newyork 1390 1213 1400
(all numbers hex)

The linker first lays out the text, then the data, then the bss.Note that the
data section starts on a page boundary at 0x5000, but the bss starts imme-
diately after the data, since at run time data and bss are logically one seg-
ment.

name text data bss

Storage allocation 4-125

main 1000- 2016 5000- 531f 695c- 69ab
calif 2018- 2937 5320- 5446 69ac- 6aab
mass 2938- 2f4c 5448- 5747 6aac- 72eb
newyork 2f50- 42df 5748- 695a 72ec- 86eb
There’s wasted space at the end of the page between 42e0 and 5000.The
bss segment ends in mid-page at 86eb, but typically programs allocate
heap space starting immediately after that.

Common blocks and other special segments

The straightforward segment allocation scheme above works nicely for
about 80% of the storage that linkers deal with. The rest is handled with
special case hacks. Here we look at some of the more popular ones.

Common

Common storage is a feature dating back to Fortran I in the 1950s. In the
original Fortran system, each subprogram (main program, function, or
subroutine) had its own statically declared and allocated scalar and array
variables. Therewas also a common area with scalars and arrays that all
subprograms could use.Common storage proved very useful, and in sub-
sequent versions of Fortran it was generalized from a single common
block (now known as blank common, as in the name consists of blanks) to
multiple named common blocks, with each subprogram declaring the
blocks that it uses.

For the first 40 years of its existence, Fortran didn’t support dynamic stor-
age allocation, and common blocks were the primary tool that Fortran pro-
grammers used to circumvent that restriction.Standard Fortran permits
blank common to be declared with different sizes in different routines,
with the largest size taking precedence.Fortran systems universally ex-
tend this to allow all common blocks to be declared with different sizes,
again with the largest size taking precedence.

Large Fortran programs often bump up against the memory limits in the
systems in which they run, so in the absence of dynamic memory alloca-
tion, programmers frequently rebuild a package, tweaking the sizes to fit
whatever problem a package is working on. All but one of the subpro-
grams in a package declare each common block as a one-element array.

4-126 Storageallocation

One of the subprograms declares the actual size of all the common blocks,
and at startup time puts the sizes in variables (in yet another common
block) that the rest of the package can use. This makes it possible to ad-
just the size of the blocks by changing and recompiling a single routine
that defines them, and then relinking.

As an added complication, starting in the 1960s Fortran added BLOCK
DATA to specify static initial data values for all or part of any common
block (except for blank common, a restriction rarely enforced.)Usually
the size of the common block in the BLOCK DAT A that initializes a block
is taken to be the block’s actual size at link time.

To handle common blocks, the linker treats the declaration of a common
block in an input file as a segment, but overlays all of the blocks with the
same name rather than concatenating these segments. Ituses the largest
declared size as the segment’s size, unless one of the input files has an ini-
tialized version of the segment. Insome systems, initialized common is a
separate segment type, while in others it’s just part of the data segment.

Unix linkers have always supported common blocks, since even the earli-
est versions of Unix had a Fortran subset compiler, and Unix versions of C
have traditionally treated uninitialized global variables much like common
blocks. Butthe pre-ELF versions of Unix object files only had the text,
data, and bss segments with no direct way to declare a common block.As
a special case hack, linkers treated a symbol that was flagged as undefined
but nonetheless had a non-zero value as a common block, with the value
being the size of the block. The linker took the largest value encountered
for such symbols as the size of the common block.For each block, it de-
fined the symbol in the bss segment of the output file, allocating the re-
quired amount of space after each symbol, Figure 3.

Figure 4-3: Unix common blocks

common at the end of bss

Storage allocation 4-127

C++ duplicate removal

In some compilation systems, C++ compilers produce a great deal of du-
plicated code due to virtual function tables, templates and extern inline
functions. Thedesign of those features implicitly expects an environment
in which all of the pieces of a program are processed simultaneously. A
virtual function table (usually abbreviated vtbl) contains the addresses of
all the virtual functions (routines that can be overridden in a subclass) for a
C++ class. Each class with any virtual functions needs a vtbl.Templates
are essentially macros with arguments that are datatypes, and that expand
into a distinct routines for every distinct set of type arguments. Whileit is
the programmer’s job to ensure that if there is a reference to normal rou-

4-128 Storageallocation

tines called, sayhash(int) and hash(char *) , there’s exactly
one definition of each kind of hash, a template version ofhash(T) auto-
matically creates versions ofhash for each data type that is used any-
where in the program as an argument tohash.

In an environment in which each source file is separately compiled, a
straightforward technique is to place in each object file all of the vtbls, ex-
panded template routines, and extern inlines used in that file, resulting in a
great deal of duplicated code.

The simplest approach at link time is to live with the duplication.The re-
sulting program works correctly, but the code bloat can bulk up the object
program to three times or more the size that it should be.

In systems stuck with simple-minded linkers, some C++ systems have
used an iterative linking approach, separate databases of what’s expanded
where, or added pragmas (source code hints to the compiler) that feed
back enough information to the compiler to generate just the code that’s
needed. We cover these in Chapter 11.

Many recent C++ systems have addressed the problem head-on, either by
making the linker smarter, or by integrating the linker with other parts of
the program development system.(We also touch on the latter approach in
chapter 11.) The linker approach has the compiler generate all of the pos-
sibly duplicate code in each object file, with the linker identifying and dis-
carding duplicates.

MS Windows linkers define a COMDAT flag for code sections that tells
the linker to discard all but one identically named sections.The compiler
gives the section the name of the template, suitably mangled to include the
argument types, Figure 4

Figure 4-4: Windows

IMAGE_COMDAT_SELECT_NODUPLICATES 1 Warn
if multiple identically named sections occur.
IMAGE_COMDAT_SELECT_ANY 2 Link one
identically named section, discard the rest.

Storage allocation 4-129

IMAGE_COMDAT_SELECT_SAME_SIZE
3 Link one identically named section, discard

the rest.Warn if a discarded section isn’t the same size.
IMAGE_COMDAT_SELECT_EXACT_MATCH 4 Link
one identically named section, discard the rest.Warn if a
discarded section isn’t identical in size and contents.(Not
implemented.)
IMAGE_COMDAT_SELECT_ASSOCIATIVE 5 Link this
section if another specified section is also linked.

The GNU linker deals with the template problem by defining a "link once"
type of section similar to common blocks. If the linker seessegments
with names of the form.gnu.linkonce.name it throws away all but the first
such segment with identical names.Again, compilers expand a template
to a .gnu.linkonce section with the name including the mangled template
name.

This scheme works pretty well, but it’s not a panacea.For one thing, it
doesn’t protect against the vtbls and expanded templates not actually being
functionally identical. Some linkers attempt to check that the discarded
segments are byte-for-byte identical to the one that’s kept. Thisis very
conservative, but can produce false errors if two files were compiled with
different optimization options or with different versions of the compiler.
For another, it doesn’t discard nearly as much duplicated code as it could.
In most C++ systems, all pointers have the same internal representation.
This means that a template instantiated with, say, a pointer to int type and
the same template instatiated with pointer to float will often generate iden-
tical code even though the C++ types are different. Somelinkers may at-
tempt to discard link-once sections which contain identical code to another
section, even when the names don’t quite match perfectly, but this issue re-
mains unsatisfactorily resolved.

Although we’ve been discussing templates up to this point, exactly the
same issues apply to extern inline functions and default constructor, copy,
and assignment routines, which can be handled the same way.

4-130 Storageallocation

Initializers and finalizers

Another problem not unique to C++ but exacerbated by it are initializers
and finalizers.Frequently, it’s easier to write libraries if they can arrange
to run an initializing routine when the program starts, and a finalizing rou-
tine when the program is about to exit. C++ allows static variables. Ifa
variable’s class has a constructor, that constructor needs to be called at
startup time to initialize the variable, and if it has a destructor, the destruc-
tor needs to be called at exit time. There are various ways to finesse this
without linker support, which we discuss in Chapter 11, but modern link-
ers generally do support this directly.

The usual approach is for each object file to put any startup code into an
anonymous routine, and to put a pointer to that routine into a segment
called.init or something similar. The linker concatenates all the.init seg-
ments together, thereby creating a list of pointers to all the startup rou-
tines. Theprogram’s startup stub need only run down the list and call all
the routines. Exit time code can be handled in much the same way, with a
segment called.fini.

It turns out that this approach is not altogether satisfactory, because some
startup code needs to be run earlier than others. The definition of C++
states that application-level constructors are run in an unpredictable order,
but the I/O and other system library constructors need to be run before
constructors in C++ applications are called.The ‘‘perfect’’ approach
would be for each init routine to list its dependencies explicitly and do a
topological sort. The BeOS dynamic linker does approximately that, using
library reference dependencies. (If library A depends on library B, library
B’s initializers probably need to run first.)

A much simpler approximation is to have sev eral initialization segments,
.init and .ctor, so the startup stub first calls the.init routines for library-
level initialization and then the.ctor routines for C++ constructors.The
same problem occurs at the end of the program, with the corresponding
segments being.dtor and.fini. One system goes so far as to allow the pro-
grammer to assign priority numbers, 0 to 127 for user code and 128-255
for system library code, and the linker sorts the initializer and finalizer
routines by priority before combining them so highest priority initializers

Storage allocation 4-131

run first. This is still not altogether satisfactory, since constructors can
have order dependencies on each other that cause hard-to-find bugs, but at
this point C++ makes it the programmer’s responsibility to prevent those
dependencies.

A variant on this scheme puts the actual initialization code in the.init seg-
ment. Whenthe linker combined them the segment would be in-line code
to do all of the initializations.A few systems have tried that, but it’s hard
to make it work on computers without direct addressing, since the chunk
of code from each object file needs to be able to address the data for its
own file, usually needing registers that point to tables of address data.The
anonymous routines set up their addressing the same way any other rou-
tine does, reducing the addressing problem to one that’s already solved.

IBM pseudo-registers

IBM mainframe linkers provide an interesting feature called ‘‘external
dummy’’ sections or ‘‘pseudo-registers.’’ T he 360 was one of the earlier
mainframe architectures without direct addressing, which means that small
shared data areas are expensive to implement. Eachroutine that refers to a
global object needs its own four-byte pointer to the object, which is a lot
of overhead if the object was only four bytes to start with. PL/I programs
need a four-byte pointer to each open file and other global objects, for ex-
ample. (PL/Iwas the only high-level language to use pseudo-registers, al-
though it didn’t provide application programmers with access to them.It
used them for pointers to control blocks for open files so application code
could include inline calls to the I/O system.)

A related problem is that OS/360 didn’t provide any support for what’s
now called per-process or task local storage, and very limited support for
shared libraries. If two jobs ran the same program, either the program was
marked reentrant, in which case they shared the entire program, code and
data, or not reentrant, in which case they shared nothing. All programs
were loaded into the same address space, so multiple instances of the same
program had to make their arrangements for instance-specific data.(Sys-
tem 360s didn’t hav ehardware memory relocation, and although 370s did,
it wasn’t until after several revisions of the OS/VS operating system that
the system provided per-process address spaces.)

4-132 Storageallocation

Pseudo-registers help solve both of these problems, Figure 5.Each input
file can declare pseudo-registers, also called external dummy sections.(A
dummy section in 360 assembler is analogous to a structure declaration.)
Each pseudo-register has a name, length, and alignment. At link time, the
linker collects all of the pseudo-registers into one logical segment, taking
the largest size and most restrictive assignment for each, and assigns them
all non-overlapping offsets in this logical segment.

But the linker doesn’t allocate space for the pseudo-register segment. It
merely calculates the size of the segment, and stores it in the program’s
data at a location marked by a special CXD, cumulative external dummy,
relocation item.To refer to a particular pseudo-register, program code us-
es yet another special XD, external dummy, relocation type to indicate
where to place the offset in the logical segment of one of the pseudo-regis-
ters.

The program’s initialization code dynamically allocates space for the
pseudo-registers, using a CXD to know how much space is needed, and
conventionally places the address of that region in register 12, which re-
mains unchanged for the duration of the program.Any part of the pro-
gram can get the address of a pseudo-register by adding the contents of
R12 to an XD item for that register. The usual way to do this is with a
load or store instruction, using R12 as the index register and and XD item
embedded as the address displacement field in the instruction. (The dis-
placement field is only 12 bits, but the XD item leaves the high four bits of
the 16-bit halfword zero, meaning base register zero, which produces the
correct result.)

Figure 4-5: Pseudo-registers

bunch of chunks of space pointed to by R12.various rou-
tines offsetting to them

Storage allocation 4-133

The result of all this is that all parts of the program have direct access to
all the pseudo-registers using load, store, and other RX format instruc-
tions. If multiple instances of a program are active, each instance allocates
a separate space with a different R12 value.

Although the original motivation for pseudo-registers is now largely obso-
lete, the idea of providing linker support for efficient access to thread-local
data is a good one, and has appeared in various forms in more modern sys-
tems, notably Windows32. Also,modern RISC machines share the 360’s
limited addressing range, and require tables of memory pointers to address
arbitrary memory locations. On many RISC UNIX systems, a compiler
creates two data segments in each module, one for regular data and one for
"small" data, static objects below some threshold size. The linker collects
all of the small data segments together, and arranges for program startup

4-134 Storageallocation

code to put the address of the combined small data segment in a reserved
register. This permits direct references to small data using based address-
ing relative to that register. Note that unlike pseudo-registers, the small
data storage is both laid out and allocated by the linker, and there’s only
one copy of the small data per process. Some UNIX systems support
threads, but per-thread storage is handled by explicit program code with-
out any special help from the linker.

Special tables

The last source of linker-allocated storage is the linker itself. Particularly
when a program uses shared libraries or overlays, the linker creates seg-
ments with pointers, symbols, and whatever else data are needed at run-
time to support the libraries or overlays. Oncethese segments are created,
the linker allocates storage for them the same way it does for any other
segments.

X86 segmented storage allocation

The peculiar requirements of 8086 and 80286 sort-of-segmented memory
addressing led to a a few specialized facilities. X86OMF object files give
each segment a name and optionally a class. All segments with the same
name are, depending on some flag bits set by the compiler or assembler,
combined into one big segment, and all the segments in a class are allocat-
ed contiguously in a block. Compilers and assemblers use class names to
mark types of segments such as code and static data, so the linker can allo-
cate all the segments of a given class together. So long as all of the seg-
ments in a class are less than 64K total, they can be treated as a single ad-
dressing ‘‘group’’ using a single segment register, which saves consider-
able time and space.

Figure 6 shows a program linked from three input files, main, able, and
baker. Main contains segments MAINCODE and MAINDAT A, able con-
tains ABLECODE, and ABLEDAT A, and baker contains BAKERCODE,
BAKERDAT A, and BAKERLDAT A. Each of the code sections in in the
CODE class and the data sections are in the DAT A class, but the BAK-
ERLDAT A "large data" section is not assigned to a class. In the linked
program, assuming the CODE sections are a total of 64K or less, they can
be treated as a single segment at runtime, using short rather than long call

Storage allocation 4-135

and jump instructions and a single unchanging CS code segment register.
Likewise, if all the DAT A fit in 64K they can be treated as a single seg-
ment using short memory reference instructions and a single unchanging
DS data segment register. The BAKERLDAT A segment is handled at run-
time as a separate segment, with code loading a segment register (usually
the ES) to refer to it.

Figure 4-6: X86

CODE class with MAINCODE, ABLECODE, BAKER-
CODE
DATA class with MAINDAT A, ABLEDAT A, BAKERDA-
TA
BAKERLDAT A

4-136 Storageallocation

Real mode and 286 protected mode programs are linked almost identical-
ly. The primary difference is that once the linker creates the linked seg-
ments in a protected mode program, the linker is done, leaving the actual
assignment of memory locations and segment numbers until the program
is loaded. In real mode, the linker has an extra step that allocates the seg-
ments to linear addresses and assigns "paragraph" numbers to the seg-
ments relative to the beginning of the program.Then at load time, the pro-
gram loader has to fix up all of the paragraph numbers in a real mode pro-
gram or segment numbers in a protected mode program to refer to the ac-
tual location where the program is loaded.

Linker control scripts

Traditionally, linkers offered the user limited control over the arrangement
of output data. As linkers started to target environments with messy mem-
ory organizations, such as embedded microprocessors, and multiple target
environments, it became necessary to provide finer grained control over
the arrangement both of data in the target address space and in the output
file. Simplelinkers with a fixed set of segments generally have switches to
specify the base address of each segment, for programs to be loaded into
something than the standard application environment. (Operatingsystem
kernels are the usual application for these switches.)Some linkers have
huge numbers of command line switches, often with provision to continue
the command line logically in a file, due to system limits on the length of
the actual command line.For example, the Microsoft linker has about
fifty command line switches that can set the characteristics of each section
in the file, the base address of the output, and a variety of other output de-
tails.

Other linkers have defined a script language to control the linker’s output.
The GNU linker, which also has a long list of command line switches, de-
fines such a language. Figure 7 shows a simple linker script that produces
COFF executables for System V Release 3.2 systems such as SCO Unix.

Figure 4-7: GNU linker control script for COFF executable

OUTPUT_FORMAT("coff-i386")

Storage allocation 4-137

SEARCH_DIR(/usr/local/lib);
ENTRY(_start)
SECTIONS
{
.text SIZEOF_HEADERS : {

*(.init)
*(.text)
*(.fini)
etext = .;

}
.data 0x400000 + (. & 0xffc00fff) : {
*(.data)
edata = .;

}
.bss SIZEOF(.data) + ADDR(.data) :
{
*(.bss)
*(COMMON)
end = .;

}
.stab 0 (NOLOAD) :
{
[.stab]

}
.stabstr 0 (NOLOAD) :
{
[.stabstr]

}
}

The first few lines describe the output format, which must be present in a
table of formats compiled into the linker, the place to look for object code
libraries, and the name of the default entry point,_start in this case.
Then it lists the sections in the output file.An optional value after the sec-
tion name says where the section starts, hence the.text section starts
immediately after the file headers.The .text section in the output file
contains the.init sections from all of the input files, then the.text

4-138 Storageallocation

sections, then the.fini sections. Thelinker defines the symboletext
to be the address after the.fini sections. Thenthe script sets the origin
of the.data section, to start on a 4K page boundary roughly 400000 hex
beyond the end of the text, and the section includes the.data sections
from all the input files, with the symboledata defined after them.Then
the .bss section starts right after the data and includes the input.bss
sections as well as any common blocks withend marking the end of the
bss. (COMMONis a keyword in the script language.) After that are two
sections for symbol table entries collected from the corresponding parts of
the input files, but not loaded at runtime, since only a debugger looks at
those symbols. The linker script language is considerably more flexible
than this simple example shows, and is adequate to describe everything
from simple DOS executables to Windows PE executables to complex
overlaid arrangements.

Embedded system storage allocation

Allocation in embedded systems is similar to the schemes we’ve seen so
far, only more complicated due to the complicated address spaces in which
programs must run.Linkers for embedded systems provide script lan-
guages that let the programmer define areas of the address space, and to al-
locate particular segments or object files into those areas, also specifying
the alignment requirements for segments in each area.

Linkers for specialized processors like DSPs have special features to sup-
port the peculiarities of each processor. For example, the Motorola 5600X
DSPs have support for circular buffers that have to be aligned at an ad-
dress that is a power of two at least as large as the buffer. The 56K object
format has a special segment type for these buffers, and the linker auto-
matically allocates them on a correct boundary, shuffling segments to min-
imize unused space.

Storage allocation in practice

We end this chapter by walking through the storage allocation for some
popular linkers.

Storage allocation 4-139

Storage allocation in Unix a.out linkers

Allocation in pre-ELF Unix linkers is only slightly more complex than the
idealized example at the beginning of the chapter, since the set of seg-
ments known in advance, Figure 8.Each input file has text, data, and bss
segments, and perhaps common blocks disguised as external symbols.
The linker collects the sizes of the text, data, and bss from each of the in-
put files, as well as from any objects taken from libraries. After reading
all of the objects, any unresolved external symbols with non-zero values
are taken to be common blocks, and are allocated at the end of bss.

Figure 4-8: a.out linking

picture of text, data, and bss/common from explicit and li-
brary objects being combined into three big segments

4-140 Storageallocation

At this point, the linker can assign addresses to all of the segments. The
text segment starts at a fixed location that depends on the variety of a.out
being created, either location zero (the oldest formats), one page past loca-
tion zero (NMAGIC formats), or one page plus the size of the a.out header

Storage allocation 4-141

(QMAGIC.) Thedata segment starts right after the data segment (old un-
shared a.out), on the next page boundary after the text segment (NMAG-
IC). In ev ery format, bss starts immediately after the data segment. With-
in each segment, the linker allocates the segments from each input file
starting at the next word boundary after the previous segment.

Storage allocation in ELF

ELF linking is somewhat more complex than a.out, because the set of in-
put segments can be arbitrarily large, and the linker has to turn the input
segments (sections in ELF terminology) into loadable segments (segments
in ELF terminology.) The linker also has to create the program header
table needed for the program loader, and some special sections needed for
dynamic linking, Figure 9.

Figure 4-9: ELF linking

Adapt figs from pages 2-7 and 2-8 of TIS ELF doc
show input sections turning into output segments.

4-142 Storageallocation

Storage allocation 4-143

ELF objects have the traditional text, data, and bss sections, now spelled
.text, .data, and .bss.They also often contain .init and .fini, for startup and
exit time code, as well as various odds and ends.The .rodata and .data1
sections are used in some compilers for read-only data and out-of-line data
literals. (Somealso have .rodata1 for out-of-line read-only data.)On
RISCsystems like MIPS with limited sized address offsets, .sbss and
.scommon, are "small" bss and common blocks to help group small ob-
jects into one directly addressable area, as we noted above in the discus-
sion of pseudo-registers. OnGNU C++ systems, there may also be
linkonce sections to be included into text, rodata, and data segments.

Despite the profusion of section types, the linking process remains about
the same. The linker collects each type of section from the input files to-
gether, along with sections from library objects. The linker also notes
which symbols will be resolved at runtime from shared libraries, and cre-
ates .interp, .got, .plt, and symbol table sections to support runtime linking.
(We defer discussion of the details until Chapter 9.) Once that is all done,
the linker allocates space in a conventional order. Unlike a.out, ELF ob-
jects are not loaded anywhere near address zero, but are instead loaded in
about the middle of the address space so the stack can grow down below
the text segment and the heap up from the end of the data, keeping the to-
tal address space in use relative compact. On386 systems, the text base
address is 0x08048000, which permits a reasonably large stack below the
text while still staying above address 0x08000000, permitting most pro-
grams to use a single second-level page table. (Recall that on the 386,
each second-level table maps 0x00400000 addresses.) ELF uses the
QMAGIC trick of including the header in the text segment, so the actual
text segment starts after the ELF header and program header table, typical-
ly at file offset 0x100.Then it allocates into the text segment .interp (the
logical link to the dynamic linker, which needs to run first), the dynamic
linker symbol table sections, .init, the .text and link-once text, and the
read-only data.

Next comes the data segment, which logically starts one page past the end
of the text segment, since at runtime the page is mapped in as both the last
page of text and the first page of data. The linker allocates the various .da-
ta and link-once data, the .got section and on platforms that use it, .sdata

4-144 Storageallocation

small data and the .got global offset table.

Finally come the bss sections, logically right after the data, starting with
.sbss (if any, to put it next to .sdata and .got), the bss segments, and com-
mon blocks.

Storage allocation in Windows linkers

Storage allocation for Windows PE files is somewhat simpler than for ELF
files, because the dynamic linking model for PE involves less support from
the linker at the cost of requiring more support from the compiler, Figure
10.

Figure 4-10: PE storage allocation

adapt from MS web site

Storage allocation 4-145

PE executable files are conventionally loaded at 0x400000, which is where
the text starts. The text section includes text from the input files, as well

4-146 Storageallocation

as initialize and finalize sections.Next comes the data sections, aligned on
a logical disk block boundary. (Disk blocks are usually smaller than mem-
ory pages, 512 or 1K rather than 4K on Windows machines.)Following
that are bss and common, .rdata relocation fixups (for DLL libraries that
often can’t be loaded at the expected target address), import and export ta-
bles for dynamic linking, and other sections such as Windows resources.

An unusual section type is .tls, thread local storage.A Windows process
can and usually does have multiple threads of control simultaneously ac-
tive. The .tls data in a PE file is allocated for each thread.It includes both
a block of data to initialize and an array of functions to call on thread start-
up and shutdown.

Exercises

1. Why does a linker shuffle around segments to put segments of the same
type next to each other?Wouldn’t it be easier to leave them in the original
order?

2. When,if ever, does it matter in what order a linker allocates storage for
routines? Inour example, what difference would it make if the linker allo-
cated newyork, mass, calif, main rather than main, calif, mass, newyork.
(We’ll ask this question again later when we discuss overlays and dynamic
linking, so you can disregard those considerations.)

3. In most cases a linker allocates similar sections sequentialy, for exam-
ple, the text of calif, mass, and newyork one after another. But it allocates
all common sections with the same name on top of each other. Why?

4. Is it a good idea to permit common blocks declared in different input
files with the same name but different sizes? Why or why not?

5. In example 1, assume that the programmer has rewritten the calif rou-
tine so that the object code is now hex 1333 long. Recompute the assigned
segment locations. In example 2, further assume that the data and bss
sizes for the rewritten calif routine are 975 and 120. Recompute the as-
signed segment locations.

Storage allocation 4-147

Project

Project 4-1: Extend the linker skeleton from project 3-1 to do simple
UNIX-style storage allocation. Assume that the only interesting segments
are.text, .data, and.bss. In the output file, text starts at hex 1000,
data starts at the next multiple of 1000 after the text, and bss starts on a 4
byte boundary after the data, Your linker needs to write out a partial object
file with the segment definitions for the output file.(You need not emit
symbols, relocations, or data at this point.)Within your linker, be sure you
have a data structure that will let you determine what address each seg-
ment in each input file has been assigned, since you’ll need that for project
in subsequent chapters. Use the sample routines in Example 2 to test your
allocator.

Project 4-2:Implement Unix-style common blocks. That is, scan the sym-
bol table for undefined symbols with non-zero values, and add space of ap-
propriate size to the .bss segment. Don’t worry about adjusting the sym-
bol table entries, that’s in the next chapter.

Project 4-3:Extend the allocator in 4-3 to handle arbitrary segments in in-
put files, combining all segments with identical names.A reasonable allo-
cation strategy would be to put at 1000 the segments with RP attributes,
then starting at the next 1000 boundary RWP attributes, then on a 4 bound-
ary RW attributes. Allocatecommon blocks in .bss with attribute RW.

