Object Files 3-59

Chapter 3
Object Files

$Revision: 2.6 $
$Date; 1999/06/29 04:21:48 $

Compilers and assemblers create object files containing the generated*bi-
nary code and data for a source filenkers combine multiple object files *
into one, loaders takdoject files and load them into memoryn an inte- *
grated programming gmonment, the compilers, assemblers, anddisk *
are run implicitly when the user tells it to build a program, buy’'tee *
there under the eers.) Inthis chapter we dedvinto the details of object *
file formats and contents. *

What goes into an object file?
An object file contains fevkinds of information.

. Header informationoverall information about the file, such as the
size of the code, name of the source fileaswranslated from, and
creation date.

. Object codeBinary instructions and data generated by a compiler
or assembler.
. Relocation:A list of the places in the object code thaten# be

fixed up when the linker changes the addresses of the object code.

. Symbols:Global symbols defined in this module, symbols to be
imported from other modules or defined by the linker.

. Debuging information: Other information about the object code
not needed for linking but of use to a dgber This includes
source file and line number information, local symbols, descrip-
tions of data structures used by the object code such as C structure
definitions.

(Some object files contaiven more than this, but these are plenty
to keep us occupied in this chapter.)

3-60 ObjectFiles

Not all object formats contain all of these kinds of information, asd it’
possible to heae cuite useful formats with little or no information yaend
the object code.

Designing an object format

The design of an object format is a compromiseedrby the various uses
to which an object file is putA file may belinkable, used as input by a
link editor or linking loader It my be executable capable of being loaded
into memory and run as a progradoadable capable of being loaded into
memory as a library along with a program, oy @ombination of the
three. Somdormats support just one or &vof these uses, others support
all three.

A linkable file containsxensve symbol and relocation information need-
ed by the linker along with the object codEhe object code is often di-
vided up into may small logical segments that will be treatedfetiéntly

by the linler An executable file contains object code, usually page
aligned to permit the file to be mapped into the address space, buttdoesn
need ay symbols (unless it will do runtime dynamic linking), and needs
little or no relocation information. The object code is a single large se
ment or a small set of segments that reflect the hardwecet®n ewi-
ronment, most often read-only vsead-write pages. Depending on the
details of a systerm’runtime environment, a loadable file may consist
solely of object code, or may contain complete symbol and relocation in-
formation to permit runtime symbolic linking.

There is some conflict among these applicatioRise logically oriented
grouping of linkable sgments rarely matches the hardware oriented
grouping of @ecutable sgments. Rrticularly on smaller computers, link-
able files are read and written by the linker a piece at a time, while e
ecutable files are loaded in their entirely into main mematys distinc-
tion is most obious in the completely different MS-DOS linkable OMF
format and gecutable EXE format.

WEe'll tour a series of popular formats, starting with the simplest, and
working up to the most complicated.

Object Files 3-61

The null object format: MS-DOS .COM files

It's quite possible to hee a sable object file with no information in it
whatsoeger other than the runnable binary code. The MS-DOS .COM for
mat is the best-knowrxample. A.COM file literally consists of nothing
other than binary code. When the operating system runs a .COM file, it
merely loads the contents of the file into a chunk of free memory starting
at of'set 0x100, (O-FF are the, BSPogram Segment Prefix with com-
mand line aguments and other parameters), sets the x86 segmestere

all to point to the PSRhe SP (stack pointer)gister to the end of the ge
ment, since the stack growsvdowvard, and jumps to the beginning of the
loaded program.

The segmented architecture of the x86 makes tlik.wSinceall x86
program addresses are interpreted nedath the base of the currentgse
ment and the ggnent registers all point to base of the segment, the pro-
gram is alays loaded at sgment-relatre location 0x100. Hence, for a
program that fits in a single segment, no fixups are needed sgroerge
relatve aldresses can be determined at link time.

For programs that donfit in a sngle segment, the fixups are the program-
mer’s problem, and there are indeed programs that start out by fetching
one of their segment gesters, and adding its contents to storegirent
values elsewhere in the program. Of course, thigastty the sort of tedi-

um that linkers and loaders are intended to automate, and MS-DOS does
that with .EXE files, described later in this chapter.

Code sections: Unix a.out files

Computers with hardware memory relocation (nearly all of them, these
days) usually create aweorocess with an empty address space for each
newly run program, in which case programs can beekhko start at a
fixed address and require no relocation at load time. The Unix a.out object
format handles this situation.

In the simplest case, an a.out file consisted of a small headevddlloy

the executable code (called the text section for historical reasons) and the
initial values for static data, Figure 1. The PDP-11 had only 16 bit ad-
dressing, which limited programs to a total of 64K. This limit quickly be-

3-62 ObjectFiles

came too small, so later models in the PDP-11 line provided separate ad-
dress spaces for code (I for Instruction space) and data (D space), so a sin-
gle program could contain both 64K of code and 64K of datasupport

this feature, the compilers, assempéerd linker were modified to create
two-section object files, with the code in the first section and the data in
the second section, and the program loader loaded the first section into a
process’ | space and the second into the D space.

Figure 3-1: Simplifed a.out

a.out header
text section
data section

other sections

Object Files 3-63

a:out header

text section

~data section

- other’‘sections

ey

3-64 ObjectFiles

Separate | and D space had another performance advantage: since a pro-
gram couldrt change its own | space, multiple copies of a single program
could share a single cppf a programs wde, while keeping separate
copies of the program’'data. Ona ime-shared system kkUnix, multiple

copies of the shell (the command interpreter) and ertwWlaemons are
common, and shared program codeesaonsiderable real memory.

The only currently common computer that still uses separate addressing
for code and data is the 286 (or 386 in 16 bit protected mdfien on

more modern machines with ¢gr address spaces, the operating system
can handle shared read-only code pages in virtual memory much more ef-
ficiently than read/write pages, so all modern loaders support tiharms.
means that lingr formats must at the least mark read-only versus read-
write sections. In practice, most likformats hee marny sections, such

as read-only data, symbols and relocation for subsequent linkingg-deb
ging symbols, and shared library informatiofunix corvention confus-

ingly calls the file sections gments, so we use that term in discussions of
Unix file formats.)

a.out headers

The header varies somewhat from one version of Unix to andititethe
version in BSD Unix, Figure 2 is typical. (In theamples in this chapter
int values are 32 bits, and short are 16 bits.)

Figure 32: a.out header

nt a_magi c; // magi ¢ numnber

nt a_t ext; /] text segment size
nt a_dat a; /1 initialized data size
nt a bss; // uninitialized data size
nt a_syns; /1 synbol table size

nt a_entry; // entry point
nt a trsize; // text relocation size
nt a_drsize; // data relocation size

Object Files 3-65

The magic numbes_magi ¢ indicates what kind ofb@cutable file this is.

(Make this a footnote:Historically, the magic number on the original
PDP-11 was octal 407, which was a branch instruction tbatdyump
over the next seen words of the header to the beginning of the tegt se
ment. Thatpermitted a primitie form of position independent codé
bootstrap loader could load the entiseaitable including the file header
to be loaded by into memqgmysually at location zero, and then jump to the
beginning of the loaded file to start the program. Onlywa $&andalone
programs eer used this abilitybut the 407 magic number is still with us
25 years latey Different magic numbers tell the operating system pro-
gram loader to load the file in to memory differently; we discuss these
variations belav. The text and data segment sizeg ext anda_dat a

are the sizes in bytes of the read-only code and read-write data that follo
the header Since Unix automatically initializes mdy allocated memory

to zero, ag data with an initial contents of zero or whose contentstdon’
matter need not be present in the a.out file. The uninitializedhsizes

says hw much uninitialized data (really zero-initialized) data logically
follows the data in the a.out file.

The a_entry field gives the starting address of the program, while
a_syns, a trsize, anda_drsi ze say hov much symbol table and
relocation information follev the data segment in the file. Programs that
have keen linled and are ready to run need no symbol nor relocation info,
so these fields are zero in runnable files unless the linker has included
symbols for the debugger.

Interactions with virtual memory

The process wolved when the operating system loads and starts a simple
two-segment file is straightforward, Figure 3:

Figure 3-3: Loading an a.out into a process

picture of file and ggments with arrows pointing out data
flows

3-66 ObjectFiles

a.out sl

= te Tl
|- | X¢ process
text e e
jRAETEE Tk ﬁ,@ - segment

1 | ﬁ'

» data
 E———— -

. ; bss .'-

bss size QN docone =
from a.out 'heap |
header ; i

|
1
|

Object Files 3-67

. Read the a.out header to get the segment sizes.

. Check to see if therge’dready a sharable code segment for this file.
If so, map that segment into the process’ address space. If not, cre-
ate one, map it into the address space, and read the gextrge
from the file into the n@ memory segment.

. Create a priate data sgment large enough for the combined data
and BSS, map it into the process, and read the data segment from
the file into the data genent. Zeraut the BSS segment.

. Create and map in a stack segment (usually separate from the data
sgment, since the data heap and stackvgeparately) Placear-
guments from the command line or calling program on the stack.

. Set registers appropriately and jump to the starting address.

This scheme (known as NMAGIC, where the N meang, @ of eout
1975) works quite well, and PDP-11 and early VAX Unix systems used it
for years for all object files, and linkable files used it throughout the life of
the a.out format into the 19908Vhen Unix systems gained virtual memo-
ry, seveaal improvements to this simple scheme sped up program loading
and s&ed considerable real memory.

On a paging system, the simple schemevalabocates fresh virtual mem-

ory for each text segment and datgrsent. Sincehe a.out file is already
stored on the disk, the object file itself can be mapped into the process’ ad-
dress space. This\sss dsk space, since medisk space for virtual mem-

ory need only be allocated for pages that the program writes into, and can
speed program startup, since the virtual memory system need only load in
from disk the pages that the prograr&ctually using, not the whole file.

A few dchanges to the a.out format neakis possible, Figure 4,. and cre-

ate whats known as ZMAGIC format. These changes align thgnsents

in the object file on page boundaries. On systems with 4K pages, the a.out
header is expanded to 4K, and tha sgments sze is rounded up to the

next 4K boundary Theres no reed to round up the size of the datg-se

3-68 ObjectFiles

ment, since the BSS segment logically follows the data segment, and is ze-
roed by the program loader anyway.

Figure 34: Mapping an a.out into a process

Picture of file and ggments, with page frames mapping in-
to segments

3-69

Object Files
pagable
a.out file nheader page process
. (notmapped)
Gkt [T SN eonly T T e
| [mapped pages) | 42 S
Le ke :— ot -4 . segment
B B | (read-only)
~data | o -
S | - -
i 2l ~i | copyonwrite |, e
| | mappedpages | data -
bss . read
write
stack. "€ad
write

ZMAGIC files reduce unneeded pagingt ht the cost of wasting a lot of
disk space. The a.out header is only 32 bytes long, yet an entire 4K of
disk space is allocated. Thamgbetween the text and data also wastes 2K,
half a 4K page, onvarage. Bothof these are fixed in the compact phlg

3-70 ObjectFiles

format known as QMAGIC.

Compact paagble files consider the a.out header to be part of the tgxt se
ment, since there’no mrticular reason that the code in the texgnsent

has to start at location zero. Indeed, program zero is a particularly bad
place to load a program since uninitialized pointer variables often contain
zero. Thecode actually starts immediately after the heaahet the whole

page is mapped into the second page of the procegsddhe first page
unmapped so that pointer references to location zero ailijl Figure 5.

This has the harmless side-effect of mapping the header into the process as
well.

Figure 35: Mapping a compact a.out into a process

Picture of file and ggments, with page frames mapping in-
to segments

Object Files 3-71
pagable process
a.outfile | . .6l ~— — ., Page 0 not valid
" textpager” *" r——— address 0x1000
}» -‘-ill . o1 | [.'t xn‘t 3
-\ [_Feadohlyl="_ 51 ' segment
, = mapped pages = | (read-only)
- last text/first data A S i
) { double mapped i L ‘-].
+ = W copy 'on write L E i !
{ -"‘[| - / 1." F - 1
o \ | read
s SE e
| bss | Wwrite
’ theap g
|
| I
| ~ write

Note: this figure is supposed to be
almost the same as 3-4, so I've put the

different stuff in red.

3-72 ObjectFiles

The text and data segments in a QMAGKecaitable are each rounded up

to a full page, so the system can easily map file pages to address space
pages. Thdast page of the datageent is padded out with zeros for BSS
data; if there is more BSS data than fits in the padding area, the a.out head-
er contains the size of the remaining BSS area to allocate.

Although BSD Unix loads programs at location zero (or 0x1000 for
QMAGIC), other ersions of Unix load programs at other addresses.
example, System V for the Motorola 68K series loads at 0x80000000, and
for the 386 loads at 0x8048000. It do¢snatter where the load address

is so long as i$ page aligned, and the linker and operating system can per
manently agree what it is.

Relocation: MS-DOS EXE files

The a.out format is quite adequate for systems that assign a fresh address
space to each process so thareprogram can be loaded at the same log-
ical address.Many systems are not so fortunate. Some load all the pro-
grams into the same address space. Otheesegch program its own ad-
dress space, but dardlways load the program at the same addrg3&.

bit versions of Windows fall into this last category.)

In these casesxecutable files contaimelocation entriesoften calledfix-

ups that identify the places in the program where addresses need to be
modified when the program is loaded. One of the simplest formats with
fixups is the MS-DOS EXE format.

As we sav with the .COM format abee, DOS loads a program into a con-
tiguous chunk of ilable real-mode memorylif the program doesnfit

in one 64K segment, the program has to use explicit segment numbers to
address program and data, and at load time the segment numbers in the
program hge o be fixed up to match the address where the program is ac-
tually loaded. The segment numbers in the file are stored as though the
program will be loaded at location zero, so the fixup action is to add to
evay stored sgment number the base paragraph number at which the pro-
gram is actually loaded. That is, if the program is loaded at location
0x5000, which is paragraph 0x500, a reference to segment 12 is relocated
to be a reference to segment 512. The offsets within the segments don’
change, since the program is relocated as a unit, so the loadert @dedn’

Object Files 3-73

just anything other than the segment numbers.

Each .EXE File starts with a header shown in Figuré=@lowing the
header is somex&ra information of variable length (used foreday load-
ers, self-extracting arches, and other application-specific hackery) and a
list of the fixup addresses in 32 bigegent:ofset format. The fixup ad-
dresses are relaé o the base of the program, so the fixups theneselv
have o be elocated to find the addresses in the program to chakitg.

the fixups comes the program codehere may be more information, ig-
nored by the program loadedfter the code. (In the example belofar
pointers are 32 bits with a 16 bit segment number and 16 bit offset.)

Figure 3-6: Format of .EXE file header

char signature[2] = "M";// magic nunber

short lastsize; // # bytes used in |ast block

short nbl ocks; // nunmber of 512 byte bl ocks

short nreloc; // nunber of relocation entries

short hdrsize; // size of file header in 16 byte paragraphs
short mnalloc; // mnimmextra menmory to allocate

short nmaxalloc; // maximumextra menory to allocate

void far *sp; // initial stack pointer

short checksum // ones conplenent of file sum

void far *ip;// initial instruction pointer

short relocpos; // location of relocation fixup table
short noverlay; // Overlay nunber, 0 for program

char extra[];// extra material for overlays, etc.

void far *relocs[]; // relocation entries, starts at rel ocpos

Loading an .EXE file is only slightly more complicated than loading a
.COM file.

. Read in the headetheck the magic number for validity.

3-74 ObjectFiles

. Find a suitable area of memoryhemni nal | oc andnaxal | oc
fields say the minimum and maximum number xifae paragraphs
of memory to allocate lyend the end of the loaded program.
(Linkers irvariably default the minimum to the size of the pro-
gram’s BSS-like wninitialized data, and the maximum to OxFFFF.)

. Create a PSRhe control area at the head of the program.

. Read in the program code immediately after the .P3Re
nbl ocks andl ast si ze fields define the length of the code.

. Start readingnr el oc fixups atr el ocpos. For each fixup, add
the base address of the program code to the segment number in the
fixup, then use the relocated fixup as a pointer to a program ad-
dress to which to add the base address of the program code.

. Set the stack pointer t®p, relocated, and jump tiop, relocated, to
start the program.

Other than the peculiarities associated witnsented addressing, this is a
pretty typical setup for program loading. In avfeases, different pieces

of the program are relocated fdifently In 286 protected mode, which
EXE files do not support, eachgseent of code or data in theeeutable

file is loaded into a separate segment in the systenhthé segment num-
bers cannot for architectural reasons be consecuiiach protected mode
executable has a table near the beginning listing all of the segments that
the program will require. The system makes a table of actgahes®
numbers corresponding to eaclgreent in the xecutable. Wherprocess-

ing fixups, the system looks up the logical segment number in that table
and replaces it with the actual segment numagrocess more akin to
symbol binding than to relocation.

Some systems permit symbol resolution at load time as well, butwee sa
that topic for Chapter 10.

Symbols and relocation

The object formats weé mnsidered so far are all loadable, that isythe
can be loaded into memory and run directi§ost object files arehload-
able, lut rather are intermediate files passed from a compiler or assembler

Object Files 3-75

to a linker or library managerThese linkable files can be considerably
more complg than runnable ones. Runnable filesvdnap be smple
enough to run on the “bare metadf the computerwhile linkable files
are processed by a layer of software which can do very sophisticated pro-
cessing. Irprinciple, a linking loader could do all of functions of a &nk
as a program was loaded, but fdicéncy reasons the loader is generally
as simple as possible to speed program staif@pnamic linking, which
we cover in chapter 10, mees a bt of the function of the linker into the
loader with attendant performance losgjtlmodern computers arast
enough that the agns from dynamic linking outweigh the performance
penalty.)

We look at five formats of increasing compiigy: relocatable a.out used on
BSD UNIX systems, ELF used on SystenBM 360 objects, thextend-
ed COFF linkable and PEeeutable formats used on 32 biinlows, and
the OMF linkable format used on pre-COFF Windows systems.

Relocatable a.out

Unix systems ha dways used a single object format for both runnable
and linkable files, with the runnable files leaving out the sections of use
only to the linker. The a.out format we ain FHgure 2 includes seral
fields used by the lirde. The sizes of the relocation tables for the #nd

data segments are@n t r si ze anda_dr si ze, and the size of the sym-

bol table is ina_syns. The three sections follothe text and data, Fig-
ure 7.

Figure 3-7: Simplifed a.out

a.out header
text section
data section

text relocation

3-76 ObjectFiles

data relocation
symbol table

string table

Object Files 3-77

~-a.out header

text
| E

data’

text
reloc
==

‘data |
| reloc|

b=t
symbol
table

3-78 ObjectFiles

Relocation entries

Relocation entries seewwo functions. Whera sction of code is relocat-

ed to a different base address, relocation entries mark the places in the
code that hee © be nodified. Ina linkable file, there are also relocation
entries that mark references to undefined symbols, so the linkerskno
where to patch in the symbskalue when the symbol is finally defined.

Figure 8 shows the format of a relocation entiBach entry contains the
address within the text or data section to be relocated, along with informa-
tion that defines what to do. The address is the offset from theney

of the tet or data segment of a relocatable item. The length field says
how long the item is, alues 0 through three mean 1, 2, 4, or (on some ar
chitectures) 8 bytes. The pcrel flag means that this is a “PCvelati
item, that is, it used in an instruction as a relatialdress.

Figure 3-8: Relocation entry format

Draw this with boxes
-- four byte address

-- three byte index, one bit pcrel flag, 2 bit length field, one
bit extern flag, four spare bits

Object Files 3-79

Ili_ - '|- E .ﬁ ; _.l‘. " 1
o address

index

spare

-

. length
port B

The extern flag controls the interpretation of the xnfileld to determine
which sgment or symbol the relocation refers to. If the extern flagfjs of
this is a plain relocation item, and the irdells which segment (text, da-

3-80 ObjectFiles

ta, or BSS) the item is addressing. If teen flag is on, this is a refer
ence to an external symbol, and the mde the symbol number in the
file’s symbol table.

This relocation format is adequate for most machine architectunes, b
some of the more compl®nes need extra flag bits to indicate, e.g., three-
byte 370 address constants or high amdHalf constants on the SPARC.

Symbols and strings

The final section of an a.out file is the symbol talf&ach entry is 12
bytes and describes a single symbol, Figure 9.

Figure 3-9: Symbol format

Draw this with boxes, too:
- four byte name offset

- one byte type

- one spare byte

- two byte debugger info

- four byte value

Object Files 3-81

name offset
1, il = - cdebug info

e,

" — wvalue

Unix compilers permit arbitrarily long identifiers, so the name strings are
all in a string table that folles the symbol table. The first item in a sym-
bol table entry is the tdfet in the string table of the null-terminated name
of the symbol. In the type byte, if thewdoit is set the symbol isx¢éernal

(a misnomerit'd better be called global, visible to other moduleNpn-
external symbols are not needed for linking but can be used ggets.

The rest of the bits are the symbol type. The most important types in-
clude:

. text, data, or bss A symbol defined in this module. External bit
may or may not be onValue is the relocatable address in the mod-
ule corresponding to the symbol.

3-82 ObjectFiles

. abs An absolute non-relocatable symbol. (Rare outside ofigeb
ger info.) External bit may or may not be oWalue is the absolute
value of the symbol.

. undefined A symbol not defined in this moduld=xternal bit must
be on. Value is usually zero, but see the “common block hack’
below.

These symbol types are adequate for older languages such as C and
Fortran and, just barelyor C++.

As a special case, a compiler can use an undefined symbol to request that
the linker resery a Hock of storage by that symbslame. Ifan unde-

fined external symbol has a non-zero value, tahtevis a hint to the link-

er hav large a block of storage the program expects the symbol to address.
At link time, if there is no definition of the symbol, the linker creates a
block of storage by that name in the BS§nsent with the size being the
largest hint value found in grof the linked modules. If the symbol is de-
fined in ay module, the linker uses the definition and ignores the size
hints. This“ common block hack’'supports typical (albeit non standard
conformant) usage of Fortran common blocks and uninitializextésral

data.

a.out summary

The a.out format is a simple andeetive me for relatvely simple sys-
tems with paging. It has fallen out @ivior because it doeshéasily sup-
port for dynamic linking. Also, a.out doessupport C++, which requires
special treatment of initializer and finalizer code, very well.

Unix ELF

The traditional a.out format served the Unix community f@r @ decade,

but with the adent of Unix System VAT&T decided that it needed some-
thing better to support cross-compilation, dynamic linking and other mod-
ern system features. Early versions of System V used CC#tRmon
Object File Format, which as originally intended for cross-compiled em-
bedded systems and ditdmwork all that well for a time-sharing system,
since it couldrt support C++ or dynamic linking withoutxeensions. In
later versions of System, YOFF was superseded by ElHxecutable and

Object Files 3-83

Linking Format. ELFhas been adopted by the popular irare Linux

and BSD variants of Unix as well. ELF has an associated debugging for
mat called WVARF which we visit in Chapter 5. In this discussion we
treat the 32 bit version of ELFThere are 64 bit variants that extend sizes
and addresses to 64 bits in a straightforward way.

ELF files come in three slightly dérent flavors: relocatable, »ecutable,

and shared object. Relocatable files are created by compilers and assem-
blers lut need to be processed by the linker before runnibgcutable

files hare dl relocation done and all symbols resadv except perhaps
shared library symbols to be resolved at runtime. Shared objects are
shared libraries, containing both symbol information for the linker and di-
rectly runnable code for runtime.

ELF files hae an unusual dual nature, Figure 10. Compilers, assemblers,
and linkers treat the file as a set of logical sections described by a section
header table, while the system loader treats the file as a set of segments de-
scribed by a program header tabke single segment will usually consist

of several sections.For example, a “loadable read-onlysegment could
contain sections forxecutable code, read-only data, and symbols for the
dynamic linler. Relocatable files ha sction tables,»ecutable files hae
program header tables, and shared objeats bath. Thesections are in-
tended for further processing by a kmkwhile the segments are intended

to be mapped into memory.

Figure 310: Two views of an ELF file

linking view and execution view, adapted from fig 1-1 in
Intel TIS document

ObjectFiles

3-84
linkable executable
sections segments

_ELF 'headqr

(optional, | program header | describes segments
ignored) | table A

]

sections | | ..f-segments

describes = section header (optional,
sections ‘table ignored)

ELF files all start with the ELF headd&iigure 11. The header is designed

to be decodableven on nachines with a different byte order from the
file’s target architecture. The first four bytes are the magic number identi-
fying an ELF file, followed by three bytes describing the format of the rest
of the header Once a program has read théass and byt eor der

flags, it knows the byte order and word size of the file and can do the nec-

Object Files 3-85

essary byte swapping and size waeions. Otheffields prwide the size
and location of the section header and program hgageesent,

Figure 311: ELF header

char magic[4] = "\177ELF";// magi c numnber

char class; // address size, 1 = 32 bit, 2 = 64 bit
char byteorder; // 1 =1little-endian, 2 = big-endian
char hversion; // header version, always 1

char pad[9];

short filetype; // file type: 1 rel ocatabl e, 2 = executabl e,
/1 3 = shared object, 4 = core inmage

short archtype; // 2 = SPARC, 3 = x86, 4 = 68K, etc.

int fversion;// file version, always 1

int entry; // entry point if executable

int phdrpos; // file position of program header or 0

int shdrpos; // file position of section header or O

int flags; // architecture specific flags, usually O

short hdrsize; // size of this ELF header

short phdrent; // size of an entry in program header

short phdrcnt; // nunber of entries in program header or 0

short shdrent; // size of an entry in section header

short phdrcnt; // nunber of entries in section header or 0O

short strsec; // section nunber that contains section name strings

Relocatable files

A relocatable or shared object file is considered to be a collection of sec-
tions, defined in section headers, Figure 12. Each section contains a single
type of information, such as program code, read-only or read-write data,
relocation entries, or symbol&very symbol defined in the module is de-
fined relatve o a ®ction, so a proceduseitry point would be relate

the program code section that contains that proceslarde. Thereare

also two pseudo-sectionSHN_ABS (number Oxff 1) which logically con-

3-86

ObjectFiles

tains absolute non-relocatable symbols, &idN COMMON (number
0xfff2) that contains uninitialized data blocks, the descendant of the a.out
common block hack. Section zero isvays a null section, with an all-ze-

ro section table entry.

nt
nt
nt
nt
nt
nt
nt
nt
nt
nt

Figure 3-12: Section header

sh_nane; // name, index into the string table
sh_type; // section type

sh_flags; // flag bits, bel ow

sh_addr; // base menory address, if |oadable, or zero
sh _offset; // file position of beginning of section
sh size; [/ size in bytes

sh_link; // section nunber with related info or zero
sh_info; // nore section-specific info

sh_align; // alignnent granularity if section is noved
sh_entsize; // size of entries if section is an array

Section types include:

PROGBI TS: Program contents including code, data, andudeler
info.

NCBI TS: Like PROGBI TS but no pace is allocated in the file it-
self. Usedor BSS data allocated at program load time.

SYMI'AB and DYNSYM Symbol tables, described in more detail
later The SYMTAB table contains all symbols and is intended for
the regular linkr, while DYNSYMis just the symbols for dynamic
linking. (Thelatter table has to be loaded into memory at runtime,
so it's kept as small as possible.)

STRTAB: A string table, analogous to the one in a.out fildslike

a.out files, ELF files can and often do contain separate string tables
for separate purposes, e.g. section names, regular symbol names,
and dynamic linker symbol names.

Object Files 3-87

REL andRELA: Relocation information.REL entries add the relo-
cation value to the base value stored in the code or data, while
RELA entries include the base value for relocation in the relocation
entries themsebs. (for historical reasons, x86 objects UREL
relocation and 68K objects uRELA.) Thereare a bunch of relo-
cation types for each architecture, similar to (andvdérirom) the
a.out relocation types.

DYNAM C and HASH: Dynamic linking information and the run-
time symbol hash table.

There are three flag bits usedl:LOC, which means that the sec-
tion occupies memory when the program is loadd, TE which
means that the section when loaded is writable,E&(tCl NSTR
which means that the section contairecetable machine code.

A typical relocatable>ecutable has about a dozen sectiohtany of the
section names are meaningful to the dinkvhich looks for the section
types it knows about for specific processing, while either discarding or
passing through unmodified sections (depending on flag bits) that it
doesnt know about.

Sections include:

.t ext which is type PRGBITS with attributes ALLOC+EX-
ECINSTR. Its the equraent of the a.out text segment.

.data which is type PROGBITS with attuites AL-
LOC+WRITE. It’s the equraent of the a.out data segment.

. rodat a which is typePROGBI TS with attribute ALLOC. It’s
read-only data, hence no WRITE.

. bss which is type NOBITS with attrites ALLOC+WRITE.
The BSS section takes no space in the file, hence NOBITS, but is
allocated at runtime, hence ALLOC.

.rel.text, .rel.data, and.rel.rodata, each which is
type REL or RELA. The relocation information for the corre-
sponding text or data section.

3-88 ObjectFiles

. .init and.fini, each type PROGBITS with attributes AL-
LOC+EXECINSTR. Thesare similar to. t ext , but are code to
be executed when the program starts up or terminates, regggcti
C and Fortran dort’need these, Ui the/'re essential for C++ which
has global data withxecutable initializers and finalizers.

. .synt ab, and. dynsymtypes SYMRB and DYNSYM respec-
tively, regqular and dynamic linker symbol tables. The dynamic
linker symbol table is ALLOC set, sincesitoaded at runtime.

. .strtab, and . dynstr both type STRAB, a table of name
strings, for a symbol table or the section names for the section
table. Thedynstr section, the strings for the dynamic lark
symbol table, has ALLOC set sincesitbaded at runtime.

There are also some specialized sectiores. lgot and. pl t, the
Global Offset &ble and Procedure Linkage Table used for dynam-
ic linking (covered in Chapter 10), debug which contains sym-
bols for the debgger, .| i ne which contains mappings from
source line numbers to object code locations again for thageeb
ger, and . comment which contains documentation strings, usual-
ly version control version numbers.

An unusual section type is nt er p which contains the name of a pro-
gram to use as an interpretéf this section is present, rather than running
the program directlythe system runs the interpreter and passes it the ELF
file as an ggument. Unixhas for man years had self-running interpreted
text files, using

#! /path/to/interpreter

as the first line of the file. ELFxtends this facility to interpreters which
run non-text programs. In practice this is used to call the run-time dynam-
ic linker to load the program and link inyarequired shared libraries.

The ELF symbol table is similar to the a.out symbol taltileconsists of
an array of entries, Figure 13.

Figure 313: ELF symbol table

Object Files 3-89

int name; // position of name string in string table
int value; // synbol value, section relative in reloc,
/] absolute in executable
int size; // object or function size
char type:4; // data object, function, section, or special case file
char bind:4; // local, global, or weak
char other; // spare
short sect; // section nunmber, ABS, COVMON or UNDEF

The a.out symbol entry is fleshed out with @ f@ore fields. The size
field tells hav large a data object is (particularly for undefined BSS, the
common block hack an.) A symbols binding can be local, just visible
in this module, global, visibleverywhere, or weak A weak symbol is a
half-hearted global symbol: if a definition isadable for an undefined
weak symbol, the linker will use it, but if not the value defaults to zero.

The symbob type is normally data or function. There is a section symbol
defined for each section, usually with the same name as the section itself,
for the benefit of relocation entries. (ELF relocation entries are allveslati

to symbols, so a section symbol is necessary to indicate that an item is re-
located relatie o one of the sections in the fileA file entry is a pseudo-
symbol containing the name of the source file.

The section number is the section refatio which the symbol is defined,
e.g., function entry points are defined refatio . t ext. Three special
pseudo-sections also appe®NDEF for undefined symbols, ABS for
non-relocatable absolute symbols, and COMMON for common blocks not
yet allocated.(The value of a COMMON symbol\gs the required align-
ment granularityand the size gies the minimum size. Once allocated by
the linkef COMMON symbols mge into the. bss section.)

A typical complete ELF file, Figure 14, contains quite \a $ections for
code, data, relocation information, letksymbols, and debugger symbols.
If the file is a C++ program, it will probably also containni t, . fi ni,
.rel.init,and.rel.fini sections as well.

3-90

ObjectFiles

Figure 3-14: Sample relocatable ELF file

ELF header
ext

.data
.rodata
.bss

.Ssym
.rel.text
.rel.data
.rel.rodata
dine
.debug
.strtab

(section table, not considered to be a section)

Object Files 3-91

| _ELF header | - {(fiot considered sections)
(segment table) -

text

. .data

.sym
1 .re'l.text
rel .daﬁ:a_

-~ .rel.rodata

! | ...I_ine
F?debug_.
gt
| -s;i;:tion t'able:. “(not considered a section)

3-92 ObjectFiles

ELF executable files

An ELF executable file has the same general format as a relocatable ELF
but the data are arranged so that the file can be mapped into memory and
run. Thefile contains a program header that feléothe ELF header in the

file. Theprogram header defines the segments to be mapiesl.pro-

gram headeiFigure 15, is an array of segment descriptions.

Figure 315: ELF pogram header

nt type; // |oadable code or data, dynanic linking info, etc.

nt offset; // file offset of segnent

nt virtaddr; // virtual address to map segnent

nt physaddr; // physical address, not used

nt filesize; // size of segnent in file

nt mensize; // size of segment in nmenory (bigger if contains BSS)
nt flags; // Read, Wite, Execute bits

nt align; // required alignnment, invariably hardware page size

An executable usually has only a handful of segments, a read-only one for
the code and read-only data, and a read-write one for read/writeAlata.

of the loadable sections are padkinto the appropriate segments so the
system can map the file with one ootaperations.

ELF files extend the “header in the address spagek used in QMASIC

a.out files to mak the executable files as compact as possible at the cost of
some slop in the address spaéesegment can start and end at arbitrary

file offsets, but the virtual starting address for the segment musttia

same lov bits modulo the alignment as the starting offset in the file, i.e,
must start in the same offset on a page. The system maps in the entire
range from the page where thegsent starts to the page where thg-se
ment ends,\en if the sgment logically only occupies part of the first and
last pages mapped. Figure 16 shows a typical segment arrangement.

Object Files 3-93

Figure 316: ELF loadable segments

File offset | Load address yjpe
ELF header 0 0x8000000
Program header 0x40 0x8000040

Read only text
(size 0x4500) 0x100 0x8000100 | LOAD, Read/Execute

Read/write data
(file size 0x2200, 0x4600 0x8005600 | LOAD, Read/Write/Execute
memory size 0x3500

non-loadable info and optional section headers

174

The mapped text segment consists of the ELF hepdgram headeiend
read-only t&t, since the ELF and program headers are in the same page as
the beginning of the x. Theread/write lot the data segment in the file
starts immediately after the textgseent. Thepage from the file is
mapped both read-only as the last page of tktessgment in memory and
copy-on-write as the first page of the datgmeent. Inthis example, if a
computer has 4K pages, and in axeceitable file the text ends at
0x80045f, then the data starts at 0x8005600. The file page is mapped into
the last page of the text segment at location 0x8004000 where the first
0x600 bytes contain thextefrom 0x8004000-0x80045ff, and into the data
seggment at 0x8005000 where the rest of the page contain the initial con-
tents of data from 0x8005600-0x80056ff.

The BSS section again is logically continuous with the end of the read
write sections in the data segment, in this case 0x1300 bytes, fére dif
ence between the file size and the memory site last page of the data
segment is mapped in from the file, but as soon as the operating system
starts to zero the BSS segment, theyemp-write system makes a yaie

copy of the page.

3-94 ObjectFiles

If the file contains i nit or.fini sections, those sections are part of
the read only text segment, and the linker inserts code at the entry point to
call the.init section code before it calls the main program, and the

. fini section code after the main program returns.

An ELF shared object contains all the bageg of a relocatable and axt e
ecutable file. It has the program header table at the beginning, followed by
the sections in the loadablegseents, including dynamic linking informa-
tion. Following sections comprising the loadablgmsents are the relocat-
able symbol table and other information that thedmhkeeds while creat-

ing executable programs that refer to the shared object, with the section
table at the end.

ELF summary

ELF is a moderately compldormat, but it serves its purposes wdtls a
flexible enough relocatable format to support C++, while beingfaesit
executable format for a virtual memory system with dynamic linking, and
makes it easy to mapxecutable pages directly into the program address
space. ltalso permits cross-compilation and cross-linking from one plat-
form to anotherwith enough information in each ELF file to identify the
target architecture and byte order.

IBM 360 object format

The IBM 360 object format was designed in the early 1960s, but remains
in use today It was originally designed for 80 column punch cardsg, b

has been adapted for disk files on modern systems. Each object file con-
tains a set of control sections (csects), which are optionally nhamed sepa-
rately relocatable chunks of code and/or datgpically each source rou-

tine is compiled into one csect, or perhaps one csect for code and another
for data. A csects mame, if it has one, can be used as a symbol that ad-
dresses the ening of the csect; other types of symbols include those
defined within a csect, undefined external symbols, common blocks, and a
few others. Eachsymbol defined or used in an object file is assigned a
small integer External Symbol ID (ESID). An object file is a sequence of
80 byte records in a common format, Figure The first byte of each
record is 0x02, aalue that marks the record as part of an object (ie.
record that starts with a blank is treated as a command by the.)link

Object Files 3-95

Bytes 2-4 are the record type, TXT for program code ott";t&€SD for an
external symbol directory that defines symbols and ESIDs, RLD for Relo-
cation Directoryand END for the last record that also defines the starting
point. Therest of the record up through byte 72 is specific to the record
type. Bytes73-80 are ignored. On actual punch cardy there usually a
sequence number.

An object file starts with some ESD records that define the csects and all
symbols, then the TXT records, the RLD records and the ENi&re’s

quite a lot of flexibility in the order of the recordSeveral TXT records

can redefine the contents of a single location, with the last one in the file
winning. This made it possible (and not uncommon) to punchva fe

“ patch’ cards to stick at the end of an object deck, rather than reassem-
bling or recompiling.

Figure 317: IBM object recad format

char flag = 0x2;

char rtype[3]; // three letter record type

char data[68]; // format specific data

char seq[8]; // ignored, usually sequence nunbers

ESD records

Each object file starts with ESD records, Figure 18, that define the csects
and symbols used in the file angegihem all ESIDs.

Figure 318: ESD format

char flag = 0x2; // 1

char rtype[3] = "ESD';// 2-4 three letter type

char padl[6];

short nbytes; // 11-12 nunber of bytes of info: 16, 32, or 48
char pad?[2];

short esid; // 15-16 ESID of first synbol

3-96 ObjectFiles

{ [l 17-72, up to 3 synbols

char nane[8] ; /1 bl ank padded synmbol name
char type; /1 synbol type
char base[3]; /1l csect origin or |abel offset

char bits; [l attribute bits
char len[3]; /1 length of object or csect ESID

Each ESD records defines up to three symbols with sequential ESIDs.
Symbols are up to eight EBCDIC characters. The symbol types are:

. SD and PC: Section Definition or Rete Code, defines a csect.
The csect origin is the logical address of the beginning of the csect,
usually zero, and the length is the length of the csect. Theu&dtrib
byte contains flags saying whether the csect uses 24 or 31 bit pro-
gram addressing, and whether it needs to be loaded into a 24 or 31
bit address space. PC is a csect with a blank name; names of
csects must be unique within a program there can be multiple
unnamed PC sections.

. LD: label definition. The base is the labsldfset within its csect,
the len field is the ESID of the csect. No attribute bits.

. CM: common. Len is the length of the common block, other fields
are ignored.

. ER and WX: external reference and weakternal. Symbolge-

fined elswhere. Thdinker reports an error if an ER symbol isn’
defined elsewhere in the progranot lan undefined WX is not an
error.

. PR: pseudorgister a snall area of storage defined at link tim# b
allocated at runtimeAttribute bits gve the required alignment, 1
to 8 bytes, and len is the size of the area.

Object Files 3-97

TXT records

Next come text records, Figure 19, that contain the program code and data.
Each text record defines up to 56 contiguous bytes within a single csect.

Figure 3-19: TXT format
char flag = 0x2; // 1

char rtype[3] = "TXT";// 2-4 three letter type
char pad;
char 1oc[3]; /1 6-8 csect relative origin of the text

char pad[2];

short nbytes; // 11-12 nunber of bytes of info
char pad[2];

short esid; // 15-16 ESID of this csect

char text[56]; [l 17-72 data

RLD records

After the text come RLD records, Figure 20, each of which contains a se-
guence of relocation entries.

Figure 320: RLD format

char flag = 0x2; // 1

char rtype[3] = "TXT";// 2-4 three letter type
char pad[6];

short nbytes; // 11-12 nunber of bytes of info
char pad[7];

{ [l 17-72 four or eight-byte relocation entries
short t_esid,; /] target, ESID of referenced csect or synbo
/1 or zero for CXD (total size of PR defs)
short p_esid; /'l pointer, ESID of csect with reference

3-98 ObjectFiles

char flags; [// type and size of ref,
char addr[3]; /'l csect-relative ref address

}

Each entry has the ESIDs of the target and the pomfixg byte, and the
csect-relatie address of the pointeiThe flag byte has bits giving the type

of reference (code, data, PR, or CXD), the length (1, 2, 3, or 4 bytes), a
sign bit saying whether to add or subtract the relocation, and a "same" bit.
If the "same" bit is set, the next entry omits the #&5IDs and uses the
same ESIDs as this entry.

END records

The end record, Figure 21,vgs the starting address for the program, ei-
ther an address within a csect or the ESID of an external symbol.

Figure 3-21: END format
char flag = 0x2; // 1

char rtype[3] = "END';// 2-4 three letter type

char pad;

char | oc[3]; /1 6-8 csect relative start address or zero
char pad[6];

short esid; // 15-16 ESID of csect or synbol

Summary

Although the 80 column records are quite dated, the IBM object format is
still surprisingly simple and figble. Extremelysmall linkers and loaders

can handle this format; on one model of 360, | used an absolute loader that
fit on a single 80 column punch card and could load a program, interpret-
ing TXT and END records, and ignoring the rest.

Object Files 3-99

Disk based systems either store object files as card images, orarsa v
version of the format with the same record types but much longer records
without sequence numbers. The linkers for DOS (I8Nghtweight oper

ating system for the 360) produce a simplified output format withfectef
one csect and a stripped down RLD without ESIDs.

Within object files, the ingidual named csects permit a programmer or
linker to arrange the modules in a program as desired, putting all the code
csects togethefor exkample. Themain places this format shows its age is

in the eight-character maximum symbol length, and no type information
about individual csects.

Microsoft Portable Executable format

Microsoft's Windows NT has etremely mixed heritage including earlier
versions of MS-DOS and Wdows, Digital's VAX VMS (on which mag

of the programmers hadonked), and Unix System V (on which maaf

the rest of the programmers hadrked.) NTs format is adapted from
COFF a file format that Unix versions used after a.out but before. ELF
We'll take a bok at PE and, where it é8fs from PE, Microsof§ version

of COFF.

Windowns developed in an underpeered environment with sho proces-

sors, limited RAM, and originally without haréwne paging, so thereas

always an emphasis on shared libraries tees@emory and ad-hoc tricks

to improve performance, some of which are apparent in the PE/COFF de-
sign. MostWindowns executables contaimesources a general term that
refers to objects such as cursors, icons, bitmaps, menus, and fonts that are
shared between the program and the GAIPE file can contain a re-
source directory for all of the resources the program code in that file uses.

PE eecutable files are intended for a paged environment, so pages from a
PE file are usually be mapped directly into memory and run, muelanik

ELF executable. PES can be either EXE programs or DLL shared li-
braries (known as dynamic link libraries). The format of the tsvthe

same, with a status bit identifying a PE as one or the.oHa&mh can con-

tain a list of exported functions and data that can be used by other PE files
loaded into the same address space, and a list of imported functions and
data that need to be resolved from othersRiEbad time. Each file con-

3-100 ObjecFiles

tains a set of chunks analogous to ELF segments thatvagously been
called sections, segments, and objede all them sections here, the
term that Microsoft n@ uses.

A PE file, Figure 22, starts with a small DOS .EXE file that prints out
something lilke "This program needs Microsoft iddows." (Microsofts
dedication to certain kinds of backward compatibility is impressi A
previously unused field at the end of the EXE header points to the PE sig-
nature, which is followed by the file header which consists of a COFF sec-
tion and the‘optional” headey which despite its name appears in all PE
files, and a list of section headers. The section headers descritaithe v
ous sections of the fileA COFF object file starts with the COFF header
and omits the optional header.

Figure 3-22: Microsoft PE and COFF file

DOS header (PE only)

DOS program stub (PE only)

PE signature (PE only)

COFF header

Optional header (PE only)

Section table

Mappable sections (pointed to from section table)

COFF line numbers, symbols, debug info (optional in PE
File)

Object Files 3-101

DOS header |

See callouts in chapter
for the captions for all
these boxes.

B o Sl
e

Figure 23 shas the PE, COFFRnd "optional" headers. The COFF header
describes the contents of the file, with the most important values being the
number of entries in the section table, The "optional" header contains
pointers to the most commonly used file sectioAddresses are allejpt

as ofsets from the place in memory that the program is loaded, also called
Relative Mirtual Addresses orVAs.

3-102 ObjecFiles

Figure 3-23: PE and COFF header

PE signature
char signature[4] = "PE\O\0";// magi c number, al so shows byte order

COFF header
unsi gned short Machine;// required CPU, 0x14C for 80386, etc.
unsi gned short Nunber Of Sections;// creation tine or zero
unsi gned | ong Ti neDat eSt anp; // creation time or zero
unsi gned | ong Poi nt er ToSynbol Tabl e;// file offset of synbol table in COFF or
unsi gned | ong Nunmber Of Synbol s;// # entries in COFF synbol table or zero
unsi gned short SizeOf Optional Header;// size of the foll ow ng optional header
unsi gned short Characteristics;// 02 = executable, 0x200 = nonrel ocat abl e,
/1 0x2000 = DLL rather than EXE

Optional header that follows PE headw®t present in COFF objects
/1 COFF fields

unsi gned short Magic;// octal 413, froma.out ZMAG C
unsi gned char Maj or Li nker Ver si on;

unsi gned char M nor Li nker Ver si on;

unsi gned | ong Si zeOrF Code; // .text size

unsi gned | ong SizeOlnitializedData;// .data size

unsi gned | ong SizeOUninitializedData;// .bss size

unsi gned | ong AddressOf Ent ryPoi nt;// RVA of entry point
unsi gned | ong BaseOf Code; // RVA of .text

unsi gned | ong BaseO'Data;// RVA of .data

// additional fields.

unsi gned | ong | mmgeBase;// virtual address to map begi nning of file

unsi gned | ong Secti onAlignment;// section alignment, typically 4096, or 64K
unsi gned | ong FileAlignment;// file page alignnent, typically 512

unsi gned short Maj or Oper at i ngSyst enVer si on;

unsi gned short M nor Qper at i ngSyst enVer si on;

unsi gned short Maj orl mageVer si on;

unsi gned short M norl mageVer si on;

unsi gned short Maj or Subsyst enVer si on;

unsi gned short M nor Subsyst enVer si on;

unsi gned | ong Reservedl;

Object Files

3-103

unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned short
/1 3 = Wndows
unsi gned short
/1 1 = process
unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned | ong
/1 follow ng pa
{
unsi gned | ong
unsi gned | ong

}

Directories are, in
Export Directory
Import Directory

SizeOrImage;// total size of mappable i mage, rounded to Sectio
Si zeOXf Headers; // total size of headers up through section tab
CheckSum // often zero

Subsystem // required subsystem 1 = native, 2 = Wndows GU
non-GUJ, 5 = 0S8/2, 7 = PCsSI X

D | Characteristics;// when to call initialization routine (obs
start, 2 = process end, 4 = thread start, 8 = thread end

Si zeX St ackReserve;// size to reserve for stack

Si zeOFr StackConmit;// size to allocate initially for stack

Si zeOF HeapReserve;// size to reserve for heap

Si zeOf HeapConmit;// size to allocate initially for heap
Loader Fl ags;// obsol ete

Nunber Of RvaAndSi zes; // nunber of entries in followi ng i mrage da
r is repeated once for each directory

Virtual Address;// relative virtual address of directory
Si ze;

order:

Resource Directory
Exception Directory

Security Directory

Base Relocation Table

Debug Directory

Image Description String
Machine specific data

Thread Local Storage Directory
Load Configuration Directory

Each PE file is created in a way that makes it straigh#fiahfor the sys-

tem loader to map it into memor¥ach section is physically aligned on a
disk block boundary or greater (the filealign value), and logically aligned
on a memory page boundary (4096 on the x86.) Thelickeates a PE

file for a specific target address at which the file will be mapped (image-

3-104 ObjecFiles

base). Ifa chunk of address space at that addressataale, as it almost
always is, no load-time fixups are needdd.a fav cases such as the old
win32s compatbility system target addresses aewailable so the loader

has to map the file somewhere else, in which case the file must contain re-
location fixups in the .reloc section that tell the loader what to change.
Shared DLL libraries also are subject to relocation, since the address at
which a DLL is mapped depends on whateady occupying the address
space.

Fdlowing the PE header is the section table, an array of entreEdire
24.

Figure 3-24: Section table

/1 array of entries

unsi gned char Nane[8] ;// section nane in ASCl

unsi gned | ong Virtual Size;// size mapped into nenory

unsi gned | ong Virtual Address;// nenory address relative to i nage base

unsi gned | ong Si zeOr RawbDat a; // physical size, muntiple of file alignnment

unsi gned | ong Poi nt er ToRawbDat a; // file offset

/1 next four entries present in COFF, present or 0 in PE

unsi gned | ong Poi nt er ToRel ocations;// offset of relocation entries

unsi gned | ong Poi nt er ToLi nenunbers;// offset of |line nunber entries

unsi gned short Nunber Of Rel ocations;// nunber of relocation entries

unsi gned short Nunber O Li nenunbers;// nunber of |ine nunber entries

unsi gned | ong Characteristics;// 0x20 = text, 0Ox40 = data, 0x80 = bss, 0x200
/1 0x800 = don’t link, 0x10000000 = shared,
/1 0x20000000 = execute, 0x40000000 = read, 0x80000000 = write

Each section has both a file address and size (PaRaxData and Size-
OfRawData) and a memory address and size (VirtualAddress et
Size) which aren’necessarily the samerhe CPUS page size is often
larger than the disk’ Hock size, typically 4K pages and 512 byte disk
blocks, and a section that ends in the middle of a page needvet ha
blocks for the rest of the page allocated, saving small amounts of disk

Object Files 3-105

space. Eackection is marked with the hardve permissions appropriate
for the pages, e.g. reackeeute for code and read+write for data.

PE special sections

A PE file includes .text, .data, and sometimes .bss sectiana likix ex-
ecutable (usually under those namesaut)fas well as a lot of MWdows-
specific sections.

Exports A list of the symbols defined in this module and visible to
other modules. EXE files typicallyxport no symbols, or maybe
one or tw for delugging. DLLsexport symbols for the routines
and data that tlyeprovide. Inkeeping with Wndows space sang
tradition, eported symbols can be references via smallgere
called export ordinals as well as by names. The exports section
contains an array of theVRs of the exported symbols. It also
contains tw parallel arrays of the name of the symbol (as tH& R

of an ASCII string), and the export ordinal for the symbol, sorted
by string name.To look up a symbol by name, perform a binary
search in the string name table, then find the entry in the ordinal
table in the position corresponding to the found name, and use that
ordinal to ind& the array of RAs. (Thisis arguably faster than it-
erating @er an aray of three-word entries.) Exports can also be

“ forwarders’ in which case the VA points to a string naming the
actual symbol which is found in another library.

Imports The imports table lists all of the symbols that need to be
resoled at load time from DLLsThe linker predetermines which
symbols will be found in which DLLs, so the imports table starts
with an import directoryconsisting of one entry per referenced
DLL. Eachdirectory entry contains the name of the DLL, and par
allel arrays one identifying the required symbols, and the other be-
ing the place in the image to store the symladli®. Theentries in

the first value can be either an ordinal (if the high bit is set), or a
pointer to a name string preceded by a guess at the ordinal to speed
up the search. The second array contains the place to store the
symbol’s value; if the symbol is a procedure, the énkvill already

have aljusted all calls to the symbol to call indirectly via that loca-

3-106 ObjecFiles

tion, if the symbol is data, references in the importing module are
made using that location as a pointer to the actual d&eme
compilers provide the indirection automaticaliyhers require e

plicit program code.)

. ResourcesThe resource table isganized as a tree. The structure
supports arbitrarily deep treesjtbn practice the tree is threesle
els, resource type, name, and langua@@anguage here means a
natural language, this permits customizingogitables for spe&ks
of languages other than EnglistEach resource can veather a
name or and number® typical resource might be type DIALOG
(Dialog box), name ABOUT (the About This Program box), lan-
guage English.Unlike symbols which hae ASCIlI names, re-
sources ha Unicode names to support non-English languages.
The actual resources are chunks of binary data, with the format of
the resource depending on the resource type.

. Thread Local Stage Windows supports multiple threads of-e
ecution per process. Each thread cavehits ovn private storage,
Thread Local Storage or TLS. This section points to a chunk of
the image used to initialize TLS when a thread starts, and also con-
tains pointers to initialization routines to call when each thread
starts. Generallpresent in EXE but not DLL files, becausenw
dows doesrt’ dlocate TLS storage when a program dynamically
links to a DLL. (See Chapter 10.)

. Fixups If the executable is meed, it is moved as a mit so all fix-
ups hae the same value, the thfence between the actual load ad-
dress and the target address. The fixup table, if present, contains
an array of fixup blocks, each containing the fixups for one 4K
page of the mappedkecutable. (Ercutables with no fixup table
can only be loaded at the linked target address.) Each fixup block
contains the base\R of the page, the number of fixups, and an ar
ray of 16 bit fixup entries. Each entry contains in the 12 hts
the offset in the block that needs to be relocated, and in the high 4
bits the fixup type, e.g., add 32 bit value, adjust high 16 bitsaor lo
16 bits (for MIPS architecture)This block-by-block scheme &z
considerable space in the relocation table, since each entry can be

Object Files 3-107

squeezed to tavbytes rather than the 8 or 12 bytes the ELF\equi
alent takes.

Running a PE executable
Starting a PE»&cutable process is a reladly straightforward procedure.

. Read in the first page of the file with the DOS heaHE&r leader,
and section headers.

. Determine whether the target area of the address spa@dable,
if not allocate another area.

. Using the information in the section headers, map all of the sec-
tions of the file to the appropriate place in the allocated address
space.

. If the file is not loaded into its target address, apply fixups.

. Go through the list of DLLs in the imports section and loagl an
that arert already loaded. (This process may be rewerki

. Resole dl the imported symbols in the imports section.

. Create the initial stack and heap using values from the PE header.

. Create the initial thread and start the process.

PE and COFF

A Windows COFF relocatable object file has the same COFF file header
and section headers asFE, but the structure is more similar to that of a
relocatable ELF file. COFF files darflavethe DOS header nor the op-
tional header following the PE head&ach code or data section also-car
ries along relocation and line number informatigihe line numbers in

an EXE file, if ay, ae collected in in a debug section not handled by the
system loadey COFFobjects hae sction-relatve relocations, lie B_F

files, rather than YA relative relocations, and wrariably contain a symbol
table with the symbols needed. COFF files from language compilers typi-
cally do not contain gnresources, rathethe resources are in a separate
object file created by a specialized resource compiler.

3-108 ObjecFiles

COFF files can also ke veal other section types not used in PEhe

most notable is the .dree#i ®ction which contains text command strings
for the linker. Compilers usually use .dree# © tell the linker to search

the appropriate language-specific libraries. Some compilers including
MSVC also include linker direates to eport code and data symbols
when creating a DLL. (This mixture of commands and object code goes
way back; IBM linkers accepted mixed card decks of commands and ob-
ject files in the early 1960s.)

PE summary

The PE file format is a competent format for a linearly addressed operating
system with virtual memorywith only small amounts of historical bag-
gage from its DOS heritage. It includes some extra features such as ordi-
nal imports and»gorts intended to speed up program loading on small
systems, but of debatablefexftiveness on modern 32 bit systemBhe
earlier NE format for 16 bit ggnented recutables was far more compli-
cated, and PE is a definite impement.

Intel/Microsoft OMF files

The penultimate format we look at in this chapter is one of the oldest for
mats still in use, the Intel Object Modulerfat. Inteloriginally defined
OMF in the late 1970s for the 808@&ver the years a variety oemdors,
including Microsoft, IBM, and Phar Lap (who wrote ary widely used

set of 32 bit extension tools for DOS), defined their owteresions. The
current Intel OMF is the union of the original spec and most ofxtene
sions, minus a fe extensions that either collided with othextensions or
were neer used.

All of the formats we/e ®en so far are intended for environments with
random access disks and enough RAM to do compiler and linker process-
ing in straightforward wys. OMFdates from the early days of micropro-
cessor declopment when memories were {tirand storage was often
punched paper tapes. As a result, OMkddis the object file into a series

of short records, Figure 25. Each record contains a type byte-byte
length, the contents, and a checksum byte that makes the byte-wise sum of
the entire record zerdaPaper tape equipment had no built-in error detec-
tion, and errors due to dust or siigsarts were not rare.) OMF files are

Object Files 3-109

designed so that a lisk on a machine without mass storage can do its job
with a minimum number of passegeothe files. Usually 1 1/2 passes do

the trick, a partial pass to find the symbol names which are placed near the
front of each file, and then a full pass to do the linking and produce the
output.

Figure 325: OMF recod format

picture of

-- type byte

-- two-byte length

-- variable length data
-- checksum byte

- —— . i S E
Jl'ﬂl—--_ _— - i S el u

I
‘3'?‘3' |gngth data checksum

OMF is greatly complicated by the need to deal with the 808G aerted
architecture. Onef the major goal of an OMF linker is to pack code and
data into a minimum number of ggeents and segment groupBvery

piece of code or data in an OMF obiject is assigned to a segment, and each
sgment in turn can be assigned to a segment group or segment(élass.
group must be small enough to be addressed by a single segment value, a
class can be gmsize, so groups are used for both addressing and storage
management, while classes are just for storage managen@aue can
reference segments and groups by name, and can also reference code with-

3-110 ObjecFiles

in a segment relate the base of the segment or the base of the group.

OMF also contains some support fareday linking, although no OMF
linker | knov of has eer supported it, taking eerlay instructions instead
from a separate direvé file.

OMF records

OMF currently defines at least 40 record types, tooyntarenumerate
here, so we’'ll look at a simple OMF file. (The complete spec is in the In-
tel TIS documents.)

OMF uses seral coding techniques to makecords as short as possible.
All name strings are variable length, stored as a length byte followed by
characters. Anull name (valid in some contexts) is a single zero byte.
Rather than refer to gments, symbols, groups, etc. by name, an OMF
module lists each name once in an LNAMES record and subsequently uses
a index into the list of names to define the names gfremnts, groups, and
symbols. Thdirst name is 1, the second 2, and so forth through the entire
set of names no matterwaonarny LNAMES records themight have tak-

en. (Thissaves a snall amount of space in the not uncommon case that a
sggment and anxternal symbol hae the same name since the definitions
can refer to the same stringlhdexes in the range O through Ox7f are
stored as one bytelndexes from 0x80 through OxTff are stored as tw
bytes, with the high bit in the first byte indicating a two-byte sequence.
Oddly, the lov 7 bits of the first byte are the high 7 bits of the value and
the second byte is thewa bits of the value, the opposite of the matin-

tel order Segments, groups, andkiernal symbols are also referred to by
index, with separate indesequences for eachi-or example, assume a
module lists the names D@RIR, CODE, and [ATA, defining name in-
dexes 1, 2, ad 3. Then the module definesavsegments called CODE
and DATA, referring to names 2 and 3. Since CODE is the firgnsat
defined, it will be segment indd. and DATA will be segment inde2.

The original OMF format was defined for the 16 bit Intel architectbe.

32 bit programs, there arewmeéOMF types defined for the record types
where the address size mattefdl of the 16 bit record types happened to
have even numerical codes, so the corresponding 32 bit record types ha
the odd code one greater than the 16 bit type.

Object Files 3-111

Details of an OMF file

Figure 26 lists the records in a simple OMF file.

Figure 326: Typical OMF recad sequence

THEADR program name

COMENT flags and options

LNAMES list of segment, group, and class names
SEGDEF segment (one record per segment)
GRPDEF group (one record per group)

PUBDEF global symbols

EXTDEF undefined external symbols (one per symbol)
COMDEF common blocks

COMENT end of passl info

LEDATA chunk of code or data (multiple)

LIDATA chunk of repeated data (multiple)

FIXUPP relocations and external ref fixups, each vahg
the LEDATA or LIDATA to which it refers

MODEND end of module

The file starts with a THEADR record that marks the start of the module
and gves the name of the moduke®urce file as a string. (If this module
were part of a libraryit would start with a similar LHEADR record.)

The second record is a badly misnamed COMENT record which contains
configuration information for the lie Each COMENT record contains
some flag bits saying whether to keep the comment when linked, a type
byte, and the commentxdte Somecomment types are indeed comments,
e.g., the compiler version number or a yaght notice, but seral of

them gve essential linker info such as the memory model to usg (tin
through large), the name of a library to search after processing this file,
definitions of weak external symbols, and a grab-bag of other types of data
that vendors shoe-horned into the OMF format.

3-112 ObjecFiles

Next comes a series of LNAMES records that list all of the names used in
this module for segments, groups, classes, aadags. Asnoted abue,

the all the names in all LNAMES are logically considered an array with
the inde of the first name being 1.

After the LNAMES record come SEGDEF records, one for eagimeet
defined in the module. The SEGDEF includes anxrfde the name of

the segment, and the class andrlay if ary it belongs to. Also included

are the sgments atributes including its alignment requirements and rules
for combining it with same-name segments in other modules, and its
length.

Next come GRPDEF records, if yndefining the groups in the module.
Each GRPDEF has the indéor the group name and the indices for the
segments in the group.

PUBDEF records define "public" symbols visible to other modulssch
PUBDEF defines one or more symbols within a single groupgimeset.

The record includes the indef the segment or group and for each sym-
bol, the symbo$ dfset within the segment or group, its name, and a one-
byte compiler-specific type field.

EXTDEF records define undefined external symbols. Each record con-
tains the name of one symbol and a byte ar ¢dvdebugger symbol type.
COMDEF records define common blocks, and are similar to EXTDEF
records except that thelso define a minimum size for the symbol. All of
the EXTDEF and COMDEF symbols in the module are logically an,array
so fixups can refer to them by index.

Next comes an optional specialized COMENT record that marks the end
of pass 1 data. It tells the liakthat it can skip the rest of the file in the
first pass of the linking process.

The rest of the file consists of the actual code and data of the program, in-
termixed with fixup records containing relocation andeenal reference
information. Thereare two kinds of data records LEATA (enumerated)
and LIDATA (iterated). LEIATA simply has the segment indend start-
ing offset, follaved by the data to store therdelDATA also starts with the
segment and starting offset, but then has a possibly nested set of repeated

Object Files 3-113

blocks of data.LIDATA efficiently handles code generated for statements
like this Fortran:
| NTEGER A(20, 20) /400*42/

A single LIDATA can hae a wo- or four-byte block containing 42 and re-
peat it 400 times.

Each LEDATA or LEDATA that needs a fixup must be immediately fol-
lowed by the FIXUPP records. FIXUPP is byr the most complicated
record type.Each fixup requires three items: first the target, the address
being referenced, second the frame, the position in a segment or group rel-
ative to which the address is calculated, and third the location to éé fix

up. Sincet’s very common to refer to a single frame in méxups and
somavhat common to refer to a single target in pnérups, OMF defines

fixup threads two-bit codes used as shorthands for frames or targets, so at
ary point there can be up to four frames and fougets with thread num-

bers defined. Each thread number can be redefined as often as needed.
For example, if a module includes a data group, that group is usually used
as the frame for nearlyery data reference in the module, so defining a
thread number for the base address of that grougs sageat deal of
space. Inpractice a GRPDEF record is almostamably followed by a
FIXUPP record defining a frame thread for that group.

Each FIXUPP record is a sequence of subrecords, with each subrecord ei-
ther defining a thread or a fixuA thread definition subrecord has flag

bits saying whether &' defining a frame or target thread tamget thread
definition contains the thread numpiire kind of reference (segment rela-
tive, group relatve, external relatve), the inde of the base segment, group

or symbol, and optionally a basdsgft. Aframe thread definition includes

the thread numbethe kind of reference (all the kinds for target definition
plus two common special cases, same segment as the location and same
segment as the target.)

Once the threads are defined, a fixup subrecord isvaelyasimple. It
contains the location to fix up, a code specifying the type of fixup (16 bit
offset, 16 bit segment, full gment:ofset, 8 bit relatie, etc.), and the
frame and taget. Theframe and target can either refer to previously de-
fined threads or be specified in place.

3-114 ObjecFiles

After the LEDATA, LIDATA, and FIXUPP records, the end of the module
is marled by a MODEND record, which can optionally specify the entry
point if the module is the main routine in a program.

A real OMF file would contain more record types for local symbols, line
numbers, and other dedpger info, and in a Wdows environment also in-

fo to create the imports and exports sections in a target NE file @he se
mented 16 bit predecessor of PE), but the structure of the moduletdoesn’
change. Theorder of records is quite Kible, particularly if theres no

end of pass 1 magk The only hard and fast rules are that THEADER
and MODEND must come first and last, FIXUPPs must immediately fol-
low the LEDATA and LIDATA to which thg refer, and no intra-module
forward references are aed. In particular it's permissible to emit
records for symbols, segments, and groups asréhdefined, so long as
they precede other records that refer to them.

Summary of OMF

The OMF format is quite complicated compared to the other formats
we've een. Rrt of the complication is due to tricks to compress the data,
part due to the division of each module into snamall records, part due

to incremental features addedeothe years, and part due to the inherent
compleity of segmented program addressinthe consistent record for
mat with typed records is a strong point, since it both permxigngion in

a draightforward way, and permits programs that process OMF files to
skip records thedon’t understand.

Nonetheless, mo that even small desktop computers V& nmegaytes of
RAM and large disks, the OMF division of the object into ynamall
records has become more trouble thawitrth. Thesmall record type of
object module was very common up through the 1970s, butnisohso-
lescent.

Comparison of object formats

We've seen seen different object andxecutable formats in this chapter
ranging from the trivial (.COM) to the sophisticated (ELF and PE) to the
rococo (OMF). Modern object formats such as ELF try to group all of the
data of a single type together to reakeasier for linlers to processThey

Object Files 3-115

also lay out the file with virtual memory considerations in mind, so that
the system loader can map the file into the prograddress space with
as little extra work as possible.

Each object format sins the style of the system for which it was defined.
Unix systems hae hstorically kept their internal interfaces simple and
well-defined, and the a.out and ELF formats reflect that in theirvelati
simplicity and the lack of special case featurdéndows has gone in the
other direction, with process management and user interface intertwined.

Project

Here we define the simple object format used in the project assignments in
this book. Unlike rearly every other object format, this one consists en-
tirely of lines of ASCII tet. This makes it possible to create sample ob-
ject files in a text editoras well as making it easier to check the output
files from the project lindr. Figure 27 sketches the format. Thesent,
symbol, and relocation entries are represented as linestokitd fields
separated by spaces. Each line mayehatra fields at the end which pro-
grams should be prepared to ignore. Numbers are all hexadecimal.

Figure 3-27: Project object format

LINK

nsegs nsyms nrels
-- segments --

-- symbols --
--rels --

-- data --

The first line is the “magic numbgithe wordL| NK.

The second line contains at least three decimal numbers, the number of
seggments in the file, the number of symbol table entries, and the number of
relocation entries. There may be other information after the three numbers
for extended versions of the liak If there are no symbols or relocations,

3-116 ObjecFiles

the respectie rumber is zero.

Next comes the segment definitions. Each segment definition contains the
segment name, the address where the segment logically starts, the length
of the segment in bytes, and a string of code letters describingghe se
ment. Coddetters include R for readable, W for writable, and P for pre-
sent in the object file. (Other letters may be present as wetlypical set

of segments for an a.out ékile would be:

.text 1000 2500 RP

.data 4000 CO0 RWP

.bss 5000 1900 RW

Segyments are numbered in the order their definitions appéharthe first
segment being number 1.

Next comes the symbol table. Each entry is of the form:
nane val ue seg type

The name is the symbol name. The value is thevhtie of the symbol.

Sqj is the segment number relai o which the segment is defined, or 0
for absolute or undefined symbols. The type is a string of letters including
D for defined or U for undefined. Symbols are also numbered in the order
they're listed, starting at 1.

Next come the relocations, one to a line:
| oc seqg ref type ..

Loc is the location to be relocatedgss the segment within which the lo-
cation is found, ref is the gment or symbol number to be relocated there,
and type is an architecture-dependent relocation type. Common types are
A4 for a four-byte absolute address, or R4 for a four-byte velatidress.
Some relocation types mayvsaexra fields after the type.

Fdlowing the relocations comes the object data. The data for egeh se
ment is a single long kestring followed by a neline. (This malkes it
easy to read and write section data in pdgach pair of he digits repre-
sents one byte. Thegment data strings are in the same order as the se
ment table, and there must be segment data for gaelsent’ segment.
The length of the hestring is determined by the the defined length of the

Object Files 3-117

segment; if the sgment is 100 bytes long, the line of segment data is 200
characters, not counting the newline at the end.

Project 3-1:Write a perl program that reads an object files in this format
and stores the contents in a suitable form in perl tables and arrays, then
writes the file back outThe output file need not be identical to the input,
although it should be semantically ecplent. For example, the symbols
need not be written in the same ordelytiwere read, although if tiiee
reordered, the relocation entries must be adjusted to reflectwherader

of the symbol table.

Exercises

1. Would a text object format l&kthe project format be practical™int:
See Fraser and Hanssmaper "A Machine-Independent Linker.")

