
Object Files 3-59

Chapter 3
Object Files

$Revision: 2.6 $
$Date: 1999/06/29 04:21:48 $

Compilers and assemblers create object files containing the generated bi-*
nary code and data for a source file.Linkers combine multiple object files *
into one, loaders take object files and load them into memory. (In an inte- *
grated programming environment, the compilers, assemblers, and linkers *
are run implicitly when the user tells it to build a program, but they’re *
there under the covers.) In this chapter we delve into the details of object *
file formats and contents. *

What goes into an object file?

An object file contains five kinds of information.

• Header information:overall information about the file, such as the
size of the code, name of the source file it was translated from, and
creation date.

• Object code:Binary instructions and data generated by a compiler
or assembler.

• Relocation:A l ist of the places in the object code that have to be
fixed up when the linker changes the addresses of the object code.

• Symbols:Global symbols defined in this module, symbols to be
imported from other modules or defined by the linker.

• Debugging information:Other information about the object code
not needed for linking but of use to a debugger. This includes
source file and line number information, local symbols, descrip-
tions of data structures used by the object code such as C structure
definitions.
(Some object files contain even more than this, but these are plenty
to keep us occupied in this chapter.)

3-60 ObjectFiles

Not all object formats contain all of these kinds of information, and it’s
possible to have quite useful formats with little or no information beyond
the object code.

Designing an object format

The design of an object format is a compromise driven by the various uses
to which an object file is put.A fi le may belinkable, used as input by a
link editor or linking loader. It my be executable, capable of being loaded
into memory and run as a program,loadable, capable of being loaded into
memory as a library along with a program, or any combination of the
three. Someformats support just one or two of these uses, others support
all three.

A l inkable file contains extensive symbol and relocation information need-
ed by the linker along with the object code.The object code is often di-
vided up into many small logical segments that will be treated differently
by the linker. An executable file contains object code, usually page
aligned to permit the file to be mapped into the address space, but doesn’t
need any symbols (unless it will do runtime dynamic linking), and needs
little or no relocation information. The object code is a single large seg-
ment or a small set of segments that reflect the hardware execution envi-
ronment, most often read-only vs.read-write pages. Depending on the
details of a system’s runtime environment, a loadable file may consist
solely of object code, or may contain complete symbol and relocation in-
formation to permit runtime symbolic linking.

There is some conflict among these applications.The logically oriented
grouping of linkable segments rarely matches the hardware oriented
grouping of executable segments. Particularly on smaller computers, link-
able files are read and written by the linker a piece at a time, while ex-
ecutable files are loaded in their entirely into main memory. This distinc-
tion is most obvious in the completely different MS-DOS linkable OMF
format and executable EXE format.

We’l l tour a series of popular formats, starting with the simplest, and
working up to the most complicated.

Object Files 3-61

The null object format: MS-DOS .COM files

It’s quite possible to have a usable object file with no information in it
whatsoever other than the runnable binary code. The MS-DOS .COM for-
mat is the best-known example. A.COM file literally consists of nothing
other than binary code. When the operating system runs a .COM file, it
merely loads the contents of the file into a chunk of free memory starting
at offset 0x100, (0-FF are the, PSP, Program Segment Prefix with com-
mand line arguments and other parameters), sets the x86 segment registers
all to point to the PSP, the SP (stack pointer) register to the end of the seg-
ment, since the stack grows downward, and jumps to the beginning of the
loaded program.

The segmented architecture of the x86 makes this work. Sinceall x86
program addresses are interpreted relative to the base of the current seg-
ment and the segment registers all point to base of the segment, the pro-
gram is always loaded at segment-relative location 0x100. Hence, for a
program that fits in a single segment, no fixups are needed since segment-
relative addresses can be determined at link time.

For programs that don’t fit in a single segment, the fixups are the program-
mer’s problem, and there are indeed programs that start out by fetching
one of their segment registers, and adding its contents to stored segment
values elsewhere in the program. Of course, this is exactly the sort of tedi-
um that linkers and loaders are intended to automate, and MS-DOS does
that with .EXE files, described later in this chapter.

Code sections: Unix a.out files

Computers with hardware memory relocation (nearly all of them, these
days) usually create a new process with an empty address space for each
newly run program, in which case programs can be linked to start at a
fixed address and require no relocation at load time. The Unix a.out object
format handles this situation.

In the simplest case, an a.out file consisted of a small header followed by
the executable code (called the text section for historical reasons) and the
initial values for static data, Figure 1. The PDP-11 had only 16 bit ad-
dressing, which limited programs to a total of 64K. This limit quickly be-

3-62 ObjectFiles

came too small, so later models in the PDP-11 line provided separate ad-
dress spaces for code (I for Instruction space) and data (D space), so a sin-
gle program could contain both 64K of code and 64K of data.To support
this feature, the compilers, assembler, and linker were modified to create
two-section object files, with the code in the first section and the data in
the second section, and the program loader loaded the first section into a
process’ I space and the second into the D space.

Figure 3-1: Simplifed a.out

a.out header

text section

data section

other sections

Object Files 3-63

3-64 ObjectFiles

Separate I and D space had another performance advantage: since a pro-
gram couldn’t change its own I space, multiple copies of a single program
could share a single copy of a program’s code, while keeping separate
copies of the program’s data. Ona time-shared system like Unix, multiple
copies of the shell (the command interpreter) and network daemons are
common, and shared program code saves considerable real memory.

The only currently common computer that still uses separate addressing
for code and data is the 286 (or 386 in 16 bit protected mode).Even on
more modern machines with large address spaces, the operating system
can handle shared read-only code pages in virtual memory much more ef-
ficiently than read/write pages, so all modern loaders support them.This
means that linker formats must at the least mark read-only versus read-
write sections. In practice, most linker formats have many sections, such
as read-only data, symbols and relocation for subsequent linking, debug-
ging symbols, and shared library information.(Unix convention confus-
ingly calls the file sections segments, so we use that term in discussions of
Unix file formats.)

a.out headers

The header varies somewhat from one version of Unix to another, but the
version in BSD Unix, Figure 2 is typical. (In the examples in this chapter,
int values are 32 bits, and short are 16 bits.)

Figure 3-2: a.out header

int a_magic; // magic number
int a_text; // text segment size
int a_data; // initialized data size
int a_bss; // uninitialized data size
int a_syms; // symbol table size
int a_entry; // entry point
int a_trsize; // text relocation size
int a_drsize; // data relocation size

Object Files 3-65

The magic numbera_magic indicates what kind of executable file this is.
(Make this a footnote:Historically, the magic number on the original
PDP-11 was octal 407, which was a branch instruction that would jump
over the next seven words of the header to the beginning of the text seg-
ment. Thatpermitted a primitive form of position independent code.A
bootstrap loader could load the entire executable including the file header
to be loaded by into memory, usually at location zero, and then jump to the
beginning of the loaded file to start the program. Only a few standalone
programs ever used this ability, but the 407 magic number is still with us
25 years later.) Different magic numbers tell the operating system pro-
gram loader to load the file in to memory differently; we discuss these
variations below. The text and data segment sizesa_text anda_data
are the sizes in bytes of the read-only code and read-write data that follow
the header. Since Unix automatically initializes newly allocated memory
to zero, any data with an initial contents of zero or whose contents don’t
matter need not be present in the a.out file. The uninitialized sizea_bss
says how much uninitialized data (really zero-initialized) data logically
follows the data in the a.out file.

The a_entry field gives the starting address of the program, while
a_syms, a_trsize, and a_drsize say how much symbol table and
relocation information follow the data segment in the file. Programs that
have been linked and are ready to run need no symbol nor relocation info,
so these fields are zero in runnable files unless the linker has included
symbols for the debugger.

Interactions with virtual memory

The process involved when the operating system loads and starts a simple
two-segment file is straightforward, Figure 3:

Figure 3-3: Loading an a.out into a process

picture of file and segments with arrows pointing out data
flows

3-66 ObjectFiles

Object Files 3-67

• Read the a.out header to get the segment sizes.

• Check to see if there’s already a sharable code segment for this file.
If so, map that segment into the process’ address space. If not, cre-
ate one, map it into the address space, and read the text segment
from the file into the new memory segment.

• Create a private data segment large enough for the combined data
and BSS, map it into the process, and read the data segment from
the file into the data segment. Zeroout the BSS segment.

• Create and map in a stack segment (usually separate from the data
segment, since the data heap and stack grow separately.) Placear-
guments from the command line or calling program on the stack.

• Set registers appropriately and jump to the starting address.

This scheme (known as NMAGIC, where the N means new, as of about
1975) works quite well, and PDP-11 and early VAX Unix systems used it
for years for all object files, and linkable files used it throughout the life of
the a.out format into the 1990s.When Unix systems gained virtual memo-
ry, sev eral improvements to this simple scheme sped up program loading
and saved considerable real memory.

On a paging system, the simple scheme above allocates fresh virtual mem-
ory for each text segment and data segment. Sincethe a.out file is already
stored on the disk, the object file itself can be mapped into the process’ ad-
dress space. This saves disk space, since new disk space for virtual mem-
ory need only be allocated for pages that the program writes into, and can
speed program startup, since the virtual memory system need only load in
from disk the pages that the program’s actually using, not the whole file.

A few changes to the a.out format make this possible, Figure 4,. and cre-
ate what’s known as ZMAGIC format. These changes align the segments
in the object file on page boundaries. On systems with 4K pages, the a.out
header is expanded to 4K, and the text segment’s size is rounded up to the
next 4K boundary. There’s no need to round up the size of the data seg-

3-68 ObjectFiles

ment, since the BSS segment logically follows the data segment, and is ze-
roed by the program loader anyway.

Figure 3-4: Mapping an a.out into a process

Picture of file and segments, with page frames mapping in-
to segments

Object Files 3-69

ZMAGIC files reduce unneeded paging, but at the cost of wasting a lot of
disk space. The a.out header is only 32 bytes long, yet an entire 4K of
disk space is allocated. The gap between the text and data also wastes 2K,
half a 4K page, on average. Bothof these are fixed in the compact pagable

3-70 ObjectFiles

format known as QMAGIC.

Compact pagable files consider the a.out header to be part of the text seg-
ment, since there’s no particular reason that the code in the text segment
has to start at location zero. Indeed, program zero is a particularly bad
place to load a program since uninitialized pointer variables often contain
zero. Thecode actually starts immediately after the header, and the whole
page is mapped into the second page of the process, leaving the first page
unmapped so that pointer references to location zero will fail, Figure 5.
This has the harmless side-effect of mapping the header into the process as
well.

Figure 3-5: Mapping a compact a.out into a process

Picture of file and segments, with page frames mapping in-
to segments

Object Files 3-71

3-72 ObjectFiles

The text and data segments in a QMAGIC executable are each rounded up
to a full page, so the system can easily map file pages to address space
pages. Thelast page of the data segment is padded out with zeros for BSS
data; if there is more BSS data than fits in the padding area, the a.out head-
er contains the size of the remaining BSS area to allocate.

Although BSD Unix loads programs at location zero (or 0x1000 for
QMAGIC), other versions of Unix load programs at other addresses.For
example, System V for the Motorola 68K series loads at 0x80000000, and
for the 386 loads at 0x8048000. It doesn’t matter where the load address
is so long as it’s page aligned, and the linker and operating system can per-
manently agree what it is.

Relocation: MS-DOS EXE files

The a.out format is quite adequate for systems that assign a fresh address
space to each process so that every program can be loaded at the same log-
ical address.Many systems are not so fortunate. Some load all the pro-
grams into the same address space. Others give each program its own ad-
dress space, but don’t always load the program at the same address.(32
bit versions of Windows fall into this last category.)

In these cases, executable files containrelocation entriesoften calledfix-
ups that identify the places in the program where addresses need to be
modified when the program is loaded. One of the simplest formats with
fixups is the MS-DOS EXE format.

As we saw with the .COM format above, DOS loads a program into a con-
tiguous chunk of available real-mode memory. If the program doesn’t fit
in one 64K segment, the program has to use explicit segment numbers to
address program and data, and at load time the segment numbers in the
program have to be fixed up to match the address where the program is ac-
tually loaded. The segment numbers in the file are stored as though the
program will be loaded at location zero, so the fixup action is to add to
ev ery stored segment number the base paragraph number at which the pro-
gram is actually loaded. That is, if the program is loaded at location
0x5000, which is paragraph 0x500, a reference to segment 12 is relocated
to be a reference to segment 512. The offsets within the segments don’t
change, since the program is relocated as a unit, so the loader needn’t ad-

Object Files 3-73

just anything other than the segment numbers.

Each .EXE File starts with a header shown in Figure 6.Following the
header is some extra information of variable length (used for overlay load-
ers, self-extracting archives, and other application-specific hackery) and a
list of the fixup addresses in 32 bit segment:offset format. The fixup ad-
dresses are relative to the base of the program, so the fixups themselves
have to be relocated to find the addresses in the program to change.After
the fixups comes the program code.There may be more information, ig-
nored by the program loader, after the code. (In the example below, far
pointers are 32 bits with a 16 bit segment number and 16 bit offset.)

Figure 3-6: Format of .EXE file header

char signature[2] = "MZ";// magic number
short lastsize; // # bytes used in last block
short nblocks; // number of 512 byte blocks
short nreloc; // number of relocation entries
short hdrsize; // size of file header in 16 byte paragraphs
short minalloc; // minimum extra memory to allocate
short maxalloc; // maximum extra memory to allocate
void far *sp; // initial stack pointer
short checksum; // ones complement of file sum
void far *ip; // initial instruction pointer
short relocpos; // location of relocation fixup table
short noverlay; // Overlay number, 0 for program
char extra[]; // extra material for overlays, etc.
void far *relocs[]; // relocation entries, starts at relocpos

Loading an .EXE file is only slightly more complicated than loading a
.COM file.

• Read in the header, check the magic number for validity.

3-74 ObjectFiles

• Find a suitable area of memory. Theminalloc andmaxalloc
fields say the minimum and maximum number of extra paragraphs
of memory to allocate beyond the end of the loaded program.
(Linkers invariably default the minimum to the size of the pro-
gram’s BSS-like uninitialized data, and the maximum to 0xFFFF.)

• Create a PSP, the control area at the head of the program.

• Read in the program code immediately after the PSP. The
nblocks andlastsize fields define the length of the code.

• Start readingnreloc fixups atrelocpos. For each fixup, add
the base address of the program code to the segment number in the
fixup, then use the relocated fixup as a pointer to a program ad-
dress to which to add the base address of the program code.

• Set the stack pointer tosp, relocated, and jump toip, relocated, to
start the program.

Other than the peculiarities associated with segmented addressing, this is a
pretty typical setup for program loading. In a few cases, different pieces
of the program are relocated differently. In 286 protected mode, which
EXE files do not support, each segment of code or data in the executable
file is loaded into a separate segment in the system, but the segment num-
bers cannot for architectural reasons be consecutive. Each protected mode
executable has a table near the beginning listing all of the segments that
the program will require. The system makes a table of actual segment
numbers corresponding to each segment in the executable. Whenprocess-
ing fixups, the system looks up the logical segment number in that table
and replaces it with the actual segment number, a process more akin to
symbol binding than to relocation.

Some systems permit symbol resolution at load time as well, but we save
that topic for Chapter 10.

Symbols and relocation

The object formats we’ve considered so far are all loadable, that is, they
can be loaded into memory and run directly. Most object files aren’t load-
able, but rather are intermediate files passed from a compiler or assembler

Object Files 3-75

to a linker or library manager. These linkable files can be considerably
more complex than runnable ones. Runnable files have to be simple
enough to run on the ‘‘bare metal’’ of the computer, while linkable files
are processed by a layer of software which can do very sophisticated pro-
cessing. Inprinciple, a linking loader could do all of functions of a linker
as a program was loaded, but for efficiency reasons the loader is generally
as simple as possible to speed program startup.(Dynamic linking, which
we cover in chapter 10, moves a lot of the function of the linker into the
loader, with attendant performance loss, but modern computers are fast
enough that the gains from dynamic linking outweigh the performance
penalty.)

We look at five formats of increasing complexity: relocatable a.out used on
BSD UNIX systems, ELF used on System V, IBM 360 objects, the extend-
ed COFF linkable and PE executable formats used on 32 bit Windows, and
the OMF linkable format used on pre-COFF Windows systems.

Relocatable a.out

Unix systems have always used a single object format for both runnable
and linkable files, with the runnable files leaving out the sections of use
only to the linker. The a.out format we saw in Figure 2 includes several
fields used by the linker. The sizes of the relocation tables for the text and
data segments are ina_trsize anda_drsize, and the size of the sym-
bol table is ina_syms. The three sections follow the text and data, Fig-
ure 7.

Figure 3-7: Simplifed a.out

a.out header

text section

data section

text relocation

3-76 ObjectFiles

data relocation

symbol table

string table

Object Files 3-77

3-78 ObjectFiles

Relocation entries

Relocation entries serve two functions. Whena section of code is relocat-
ed to a different base address, relocation entries mark the places in the
code that have to be modified. Ina linkable file, there are also relocation
entries that mark references to undefined symbols, so the linker knows
where to patch in the symbol’s value when the symbol is finally defined.

Figure 8 shows the format of a relocation entry. Each entry contains the
address within the text or data section to be relocated, along with informa-
tion that defines what to do. The address is the offset from the beginning
of the text or data segment of a relocatable item. The length field says
how long the item is, values 0 through three mean 1, 2, 4, or (on some ar-
chitectures) 8 bytes. The pcrel flag means that this is a ‘‘PC relative’’
item, that is, it’s used in an instruction as a relative address.

Figure 3-8: Relocation entry format

Draw this with boxes

-- four byte address

-- three byte index, one bit pcrel flag, 2 bit length field, one
bit extern flag, four spare bits

Object Files 3-79

The extern flag controls the interpretation of the index field to determine
which segment or symbol the relocation refers to. If the extern flag is off,
this is a plain relocation item, and the index tells which segment (text, da-

3-80 ObjectFiles

ta, or BSS) the item is addressing. If the extern flag is on, this is a refer-
ence to an external symbol, and the index is the symbol number in the
file’s symbol table.

This relocation format is adequate for most machine architectures, but
some of the more complex ones need extra flag bits to indicate, e.g., three-
byte 370 address constants or high and low half constants on the SPARC.

Symbols and strings

The final section of an a.out file is the symbol table.Each entry is 12
bytes and describes a single symbol, Figure 9.

Figure 3-9: Symbol format

Draw this with boxes, too:

- four byte name offset

- one byte type

- one spare byte

- two byte debugger info

- four byte value

Object Files 3-81

Unix compilers permit arbitrarily long identifiers, so the name strings are
all in a string table that follows the symbol table. The first item in a sym-
bol table entry is the offset in the string table of the null-terminated name
of the symbol. In the type byte, if the low bit is set the symbol is external
(a misnomer, it’d better be called global, visible to other modules).Non-
external symbols are not needed for linking but can be used by debuggers.
The rest of the bits are the symbol type. The most important types in-
clude:

• text, data, or bss: A symbol defined in this module. External bit
may or may not be on.Value is the relocatable address in the mod-
ule corresponding to the symbol.

3-82 ObjectFiles

• abs: An absolute non-relocatable symbol. (Rare outside of debug-
ger info.) External bit may or may not be on.Value is the absolute
value of the symbol.

• undefined: A symbol not defined in this module.External bit must
be on. Value is usually zero, but see the ‘‘common block hack’’
below.
These symbol types are adequate for older languages such as C and
Fortran and, just barely, for C++.

As a special case, a compiler can use an undefined symbol to request that
the linker reserve a block of storage by that symbol’s name. Ifan unde-
fined external symbol has a non-zero value, that value is a hint to the link-
er how large a block of storage the program expects the symbol to address.
At link time, if there is no definition of the symbol, the linker creates a
block of storage by that name in the BSS segment with the size being the
largest hint value found in any of the linked modules. If the symbol is de-
fined in any module, the linker uses the definition and ignores the size
hints. This‘‘ common block hack’’ supports typical (albeit non standard
conformant) usage of Fortran common blocks and uninitialized C external
data.

a.out summary

The a.out format is a simple and effective one for relatively simple sys-
tems with paging. It has fallen out of favor because it doesn’t easily sup-
port for dynamic linking. Also, a.out doesn’t support C++, which requires
special treatment of initializer and finalizer code, very well.

Unix ELF

The traditional a.out format served the Unix community for over a decade,
but with the advent of Unix System V, AT&T decided that it needed some-
thing better to support cross-compilation, dynamic linking and other mod-
ern system features. Early versions of System V used COFF, Common
Object File Format, which was originally intended for cross-compiled em-
bedded systems and didn’t work all that well for a time-sharing system,
since it couldn’t support C++ or dynamic linking without extensions. In
later versions of System V, COFF was superseded by ELF, Executable and

Object Files 3-83

Linking Format. ELFhas been adopted by the popular freeware Linux
and BSD variants of Unix as well. ELF has an associated debugging for-
mat called DWARF which we visit in Chapter 5. In this discussion we
treat the 32 bit version of ELF. There are 64 bit variants that extend sizes
and addresses to 64 bits in a straightforward way.

ELF files come in three slightly different flavors: relocatable, executable,
and shared object. Relocatable files are created by compilers and assem-
blers but need to be processed by the linker before running.Executable
files have all relocation done and all symbols resolved except perhaps
shared library symbols to be resolved at runtime. Shared objects are
shared libraries, containing both symbol information for the linker and di-
rectly runnable code for runtime.

ELF files have an unusual dual nature, Figure 10. Compilers, assemblers,
and linkers treat the file as a set of logical sections described by a section
header table, while the system loader treats the file as a set of segments de-
scribed by a program header table.A single segment will usually consist
of several sections.For example, a ‘‘loadable read-only’’ segment could
contain sections for executable code, read-only data, and symbols for the
dynamic linker. Relocatable files have section tables, executable files have
program header tables, and shared objects have both. Thesections are in-
tended for further processing by a linker, while the segments are intended
to be mapped into memory.

Figure 3-10: Two views of an ELF file

linking view and execution view, adapted from fig 1-1 in
Intel TIS document

3-84 ObjectFiles

ELF files all start with the ELF header, Figure 11. The header is designed
to be decodable even on machines with a different byte order from the
file’s target architecture. The first four bytes are the magic number identi-
fying an ELF file, followed by three bytes describing the format of the rest
of the header. Once a program has read theclass and byteorder
flags, it knows the byte order and word size of the file and can do the nec-

Object Files 3-85

essary byte swapping and size conversions. Otherfields provide the size
and location of the section header and program header, if present,

Figure 3-11: ELF header

char magic[4] = "\177ELF";// magic number
char class; // address size, 1 = 32 bit, 2 = 64 bit
char byteorder; // 1 = little-endian, 2 = big-endian
char hversion; // header version, always 1
char pad[9];

short filetype; // file type: 1 = relocatable, 2 = executable,
// 3 = shared object, 4 = core image

short archtype; // 2 = SPARC, 3 = x86, 4 = 68K, etc.
int fversion; // file version, always 1
int entry; // entry point if executable
int phdrpos; // file position of program header or 0
int shdrpos; // file position of section header or 0
int flags; // architecture specific flags, usually 0
short hdrsize; // size of this ELF header
short phdrent; // size of an entry in program header
short phdrcnt; // number of entries in program header or 0
short shdrent; // size of an entry in section header
short phdrcnt; // number of entries in section header or 0
short strsec; // section number that contains section name strings

Relocatable files

A relocatable or shared object file is considered to be a collection of sec-
tions, defined in section headers, Figure 12. Each section contains a single
type of information, such as program code, read-only or read-write data,
relocation entries, or symbols.Every symbol defined in the module is de-
fined relative to a section, so a procedure’s entry point would be relative to
the program code section that contains that procedure’s code. Thereare
also two pseudo-sectionsSHN_ABS (number 0xfff1) which logically con-

3-86 ObjectFiles

tains absolute non-relocatable symbols, andSHN_COMMON (number
0xfff2) that contains uninitialized data blocks, the descendant of the a.out
common block hack. Section zero is always a null section, with an all-ze-
ro section table entry.

Figure 3-12: Section header

int sh_name; // name, index into the string table
int sh_type; // section type
int sh_flags; // flag bits, below
int sh_addr; // base memory address, if loadable, or zero
int sh_offset; // file position of beginning of section
int sh_size; // size in bytes
int sh_link; // section number with related info or zero
int sh_info; // more section-specific info
int sh_align; // alignment granularity if section is moved
int sh_entsize; // size of entries if section is an array

Section types include:

• PROGBITS: Program contents including code, data, and debugger
info.

• NOBITS: Like PROGBITS but no space is allocated in the file it-
self. Usedfor BSS data allocated at program load time.

• SYMTAB and DYNSYM: Symbol tables, described in more detail
later. TheSYMTAB table contains all symbols and is intended for
the regular linker, while DYNSYM is just the symbols for dynamic
linking. (Thelatter table has to be loaded into memory at runtime,
so it’s kept as small as possible.)

• STRTAB: A string table, analogous to the one in a.out files.Unlike
a.out files, ELF files can and often do contain separate string tables
for separate purposes, e.g. section names, regular symbol names,
and dynamic linker symbol names.

Object Files 3-87

• REL andRELA: Relocation information.REL entries add the relo-
cation value to the base value stored in the code or data, while
RELA entries include the base value for relocation in the relocation
entries themselves. (For historical reasons, x86 objects useREL
relocation and 68K objects useRELA.) Thereare a bunch of relo-
cation types for each architecture, similar to (and derived from) the
a.out relocation types.

• DYNAMIC andHASH: Dynamic linking information and the run-
time symbol hash table.
There are three flag bits used:ALLOC, which means that the sec-
tion occupies memory when the program is loaded,WRITE which
means that the section when loaded is writable, andEXECINSTR
which means that the section contains executable machine code.

A typical relocatable executable has about a dozen sections.Many of the
section names are meaningful to the linker, which looks for the section
types it knows about for specific processing, while either discarding or
passing through unmodified sections (depending on flag bits) that it
doesn’t know about.

Sections include:

• .text which is type PROGBITS with attributes ALLOC+EX-
ECINSTR. It’s the equivalent of the a.out text segment.

• .data which is type PROGBITS with attributes AL-
LOC+WRITE. It’s the equivalent of the a.out data segment.

• .rodata which is typePROGBITS with attribute ALLOC. It’s
read-only data, hence no WRITE.

• .bss which is type NOBITS with attributes ALLOC+WRITE.
The BSS section takes no space in the file, hence NOBITS, but is
allocated at runtime, hence ALLOC.

• .rel.text, .rel.data, and .rel.rodata, each which is
type REL or RELA. The relocation information for the corre-
sponding text or data section.

3-88 ObjectFiles

• .init and .fini, each type PROGBITS with attributes AL-
LOC+EXECINSTR. Theseare similar to.text, but are code to
be executed when the program starts up or terminates, respectively.
C and Fortran don’t need these, but they’re essential for C++ which
has global data with executable initializers and finalizers.

• .symtab, and .dynsym types SYMTAB and DYNSYM respec-
tively, regular and dynamic linker symbol tables. The dynamic
linker symbol table is ALLOC set, since it’s loaded at runtime.

• .strtab, and .dynstr both type STRTAB, a table of name
strings, for a symbol table or the section names for the section
table. Thedynstr section, the strings for the dynamic linker
symbol table, has ALLOC set since it’s loaded at runtime.
There are also some specialized sections like.got and.plt, the
Global Offset Table and Procedure Linkage Table used for dynam-
ic linking (covered in Chapter 10),.debug which contains sym-
bols for the debugger, .line which contains mappings from
source line numbers to object code locations again for the debug-
ger, and .comment which contains documentation strings, usual-
ly version control version numbers.

An unusual section type is.interp which contains the name of a pro-
gram to use as an interpreter. If this section is present, rather than running
the program directly, the system runs the interpreter and passes it the ELF
file as an argument. Unixhas for many years had self-running interpreted
text files, using
#! /path/to/interpreter

as the first line of the file. ELF extends this facility to interpreters which
run non-text programs. In practice this is used to call the run-time dynam-
ic linker to load the program and link in any required shared libraries.

The ELF symbol table is similar to the a.out symbol table.It consists of
an array of entries, Figure 13.

Figure 3-13: ELF symbol table

Object Files 3-89

int name; // position of name string in string table
int value; // symbol value, section relative in reloc,

// absolute in executable
int size; // object or function size
char type:4; // data object, function, section, or special case file
char bind:4; // local, global, or weak
char other; // spare
short sect; // section number, ABS, COMMON or UNDEF

The a.out symbol entry is fleshed out with a few more fields. The size
field tells how large a data object is (particularly for undefined BSS, the
common block hack again.) A symbol’s binding can be local, just visible
in this module, global, visible everywhere, or weak.A weak symbol is a
half-hearted global symbol: if a definition is available for an undefined
weak symbol, the linker will use it, but if not the value defaults to zero.

The symbol’s type is normally data or function. There is a section symbol
defined for each section, usually with the same name as the section itself,
for the benefit of relocation entries. (ELF relocation entries are all relative
to symbols, so a section symbol is necessary to indicate that an item is re-
located relative to one of the sections in the file.)A fi le entry is a pseudo-
symbol containing the name of the source file.

The section number is the section relative to which the symbol is defined,
e.g., function entry points are defined relative to .text. Three special
pseudo-sections also appear, UNDEF for undefined symbols, ABS for
non-relocatable absolute symbols, and COMMON for common blocks not
yet allocated.(The value of a COMMON symbol gives the required align-
ment granularity, and the size gives the minimum size. Once allocated by
the linker, COMMON symbols move into the.bss section.)

A typical complete ELF file, Figure 14, contains quite a few sections for
code, data, relocation information, linker symbols, and debugger symbols.
If the file is a C++ program, it will probably also contain.init, .fini,
.rel.init, and.rel.fini sections as well.

3-90 ObjectFiles

Figure 3-14: Sample relocatable ELF file

ELF header
.text
.data
.rodata
.bss
.sym
.rel.text
.rel.data
.rel.rodata
.line
.debug
.strtab
(section table, not considered to be a section)

Object Files 3-91

3-92 ObjectFiles

ELF executable files

An ELF executable file has the same general format as a relocatable ELF,
but the data are arranged so that the file can be mapped into memory and
run. Thefile contains a program header that follows the ELF header in the
file. The program header defines the segments to be mapped.The pro-
gram header, Figure 15, is an array of segment descriptions.

Figure 3-15: ELF program header

int type; // loadable code or data, dynamic linking info, etc.
int offset; // file offset of segment
int virtaddr; // virtual address to map segment
int physaddr; // physical address, not used
int filesize; // size of segment in file
int memsize; // size of segment in memory (bigger if contains BSS)
int flags; // Read, Write, Execute bits
int align; // required alignment, invariably hardware page size

An executable usually has only a handful of segments, a read-only one for
the code and read-only data, and a read-write one for read/write data.All
of the loadable sections are packed into the appropriate segments so the
system can map the file with one or two operations.

ELF files extend the ‘‘header in the address space’’ t rick used in QMAGIC
a.out files to make the executable files as compact as possible at the cost of
some slop in the address space.A segment can start and end at arbitrary
file offsets, but the virtual starting address for the segment must have the
same low bits modulo the alignment as the starting offset in the file, i.e,
must start in the same offset on a page. The system maps in the entire
range from the page where the segment starts to the page where the seg-
ment ends, even if the segment logically only occupies part of the first and
last pages mapped. Figure 16 shows a typical segment arrangement.

Object Files 3-93

Figure 3-16: ELF loadable segments

File offset Load address Type
ELF header 0 0x8000000
Program header 0x40 0x8000040
Read only text
(size 0x4500)

0x100 0x8000100 LOAD, Read/Execute

Read/write data
(file size 0x2200,
memory size 0x3500)

0x4600 0x8005600 LOAD, Read/Write/Execute

non-loadable info and optional section headers

The mapped text segment consists of the ELF header, program header, and
read-only text, since the ELF and program headers are in the same page as
the beginning of the text. Theread/write but the data segment in the file
starts immediately after the text segment. Thepage from the file is
mapped both read-only as the last page of the text segment in memory and
copy-on-write as the first page of the data segment. Inthis example, if a
computer has 4K pages, and in an executable file the text ends at
0x80045ff, then the data starts at 0x8005600. The file page is mapped into
the last page of the text segment at location 0x8004000 where the first
0x600 bytes contain the text from 0x8004000-0x80045ff, and into the data
segment at 0x8005000 where the rest of the page contain the initial con-
tents of data from 0x8005600-0x80056ff.

The BSS section again is logically continuous with the end of the read
write sections in the data segment, in this case 0x1300 bytes, the differ-
ence between the file size and the memory size.The last page of the data
segment is mapped in from the file, but as soon as the operating system
starts to zero the BSS segment, the copy-on-write system makes a private
copy of the page.

3-94 ObjectFiles

If the file contains.init or .fini sections, those sections are part of
the read only text segment, and the linker inserts code at the entry point to
call the.init section code before it calls the main program, and the
.fini section code after the main program returns.

An ELF shared object contains all the baggage of a relocatable and an ex-
ecutable file. It has the program header table at the beginning, followed by
the sections in the loadable segments, including dynamic linking informa-
tion. Following sections comprising the loadable segments are the relocat-
able symbol table and other information that the linker needs while creat-
ing executable programs that refer to the shared object, with the section
table at the end.

ELF summary

ELF is a moderately complex format, but it serves its purposes well.It’s a
flexible enough relocatable format to support C++, while being an efficient
executable format for a virtual memory system with dynamic linking, and
makes it easy to map executable pages directly into the program address
space. Italso permits cross-compilation and cross-linking from one plat-
form to another, with enough information in each ELF file to identify the
target architecture and byte order.

IBM 360 object format

The IBM 360 object format was designed in the early 1960s, but remains
in use today. It was originally designed for 80 column punch cards, but
has been adapted for disk files on modern systems. Each object file con-
tains a set of control sections (csects), which are optionally named sepa-
rately relocatable chunks of code and/or data.Typically each source rou-
tine is compiled into one csect, or perhaps one csect for code and another
for data. A csect’s name, if it has one, can be used as a symbol that ad-
dresses the beginning of the csect; other types of symbols include those
defined within a csect, undefined external symbols, common blocks, and a
few others. Eachsymbol defined or used in an object file is assigned a
small integer External Symbol ID (ESID). An object file is a sequence of
80 byte records in a common format, Figure 17.The first byte of each
record is 0x02, a value that marks the record as part of an object file.(A
record that starts with a blank is treated as a command by the linker.)

Object Files 3-95

Bytes 2-4 are the record type, TXT for program code or "text", ESD for an
external symbol directory that defines symbols and ESIDs, RLD for Relo-
cation Directory, and END for the last record that also defines the starting
point. Therest of the record up through byte 72 is specific to the record
type. Bytes73-80 are ignored. On actual punch cards they were usually a
sequence number.

An object file starts with some ESD records that define the csects and all
symbols, then the TXT records, the RLD records and the END.There’s
quite a lot of flexibility in the order of the records.Several TXT records
can redefine the contents of a single location, with the last one in the file
winning. This made it possible (and not uncommon) to punch a few
‘‘ patch’’ cards to stick at the end of an object deck, rather than reassem-
bling or recompiling.

Figure 3-17: IBM object record format

char flag = 0x2;
char rtype[3]; // three letter record type
char data[68]; // format specific data
char seq[8]; // ignored, usually sequence numbers

ESD records

Each object file starts with ESD records, Figure 18, that define the csects
and symbols used in the file and give them all ESIDs.

Figure 3-18: ESD format

char flag = 0x2; // 1
char rtype[3] = "ESD";// 2-4 three letter type
char pad1[6];
short nbytes; // 11-12 number of bytes of info: 16, 32, or 48
char pad2[2];
short esid; // 15-16 ESID of first symbol

3-96 ObjectFiles

{ // 17-72, up to 3 symbols
char name[8]; // blank padded symbol name
char type; // symbol type
char base[3]; // csect origin or label offset
char bits; // attribute bits
char len[3]; // length of object or csect ESID

}

Each ESD records defines up to three symbols with sequential ESIDs.
Symbols are up to eight EBCDIC characters. The symbol types are:

• SD and PC: Section Definition or Private Code, defines a csect.
The csect origin is the logical address of the beginning of the csect,
usually zero, and the length is the length of the csect. The attribute
byte contains flags saying whether the csect uses 24 or 31 bit pro-
gram addressing, and whether it needs to be loaded into a 24 or 31
bit address space. PC is a csect with a blank name; names of
csects must be unique within a program but there can be multiple
unnamed PC sections.

• LD: label definition.The base is the label’s offset within its csect,
the len field is the ESID of the csect. No attribute bits.

• CM: common. Len is the length of the common block, other fields
are ignored.

• ER and WX: external reference and weak external. Symbolsde-
fined elsewhere. Thelinker reports an error if an ER symbol isn’t
defined elsewhere in the program, but an undefined WX is not an
error.

• PR: pseudoregister, a small area of storage defined at link time but
allocated at runtime.Attribute bits give the required alignment, 1
to 8 bytes, and len is the size of the area.

Object Files 3-97

TXT records

Next come text records, Figure 19, that contain the program code and data.
Each text record defines up to 56 contiguous bytes within a single csect.

Figure 3-19: TXT format

char flag = 0x2; // 1
char rtype[3] = "TXT";// 2-4 three letter type
char pad;
char loc[3]; // 6-8 csect relative origin of the text
char pad[2];
short nbytes; // 11-12 number of bytes of info
char pad[2];
short esid; // 15-16 ESID of this csect
char text[56]; // 17-72 data

RLD records

After the text come RLD records, Figure 20, each of which contains a se-
quence of relocation entries.

Figure 3-20: RLD format

char flag = 0x2; // 1
char rtype[3] = "TXT";// 2-4 three letter type
char pad[6];
short nbytes; // 11-12 number of bytes of info
char pad[7];

{ // 17-72 four or eight-byte relocation entries
short t_esid; // target, ESID of referenced csect or symbol

// or zero for CXD (total size of PR defs)
short p_esid; // pointer, ESID of csect with reference

3-98 ObjectFiles

char flags; // type and size of ref,
char addr[3]; // csect-relative ref address

}

Each entry has the ESIDs of the target and the pointer, a flag byte, and the
csect-relative address of the pointer. The flag byte has bits giving the type
of reference (code, data, PR, or CXD), the length (1, 2, 3, or 4 bytes), a
sign bit saying whether to add or subtract the relocation, and a "same" bit.
If the "same" bit is set, the next entry omits the two ESIDs and uses the
same ESIDs as this entry.

END records

The end record, Figure 21, gives the starting address for the program, ei-
ther an address within a csect or the ESID of an external symbol.

Figure 3-21: END format

char flag = 0x2; // 1
char rtype[3] = "END";// 2-4 three letter type
char pad;
char loc[3]; // 6-8 csect relative start address or zero
char pad[6];
short esid; // 15-16 ESID of csect or symbol

Summary

Although the 80 column records are quite dated, the IBM object format is
still surprisingly simple and flexible. Extremelysmall linkers and loaders
can handle this format; on one model of 360, I used an absolute loader that
fit on a single 80 column punch card and could load a program, interpret-
ing TXT and END records, and ignoring the rest.

Object Files 3-99

Disk based systems either store object files as card images, or use a variant
version of the format with the same record types but much longer records
without sequence numbers. The linkers for DOS (IBM’s lightweight oper-
ating system for the 360) produce a simplified output format with in effect
one csect and a stripped down RLD without ESIDs.

Within object files, the individual named csects permit a programmer or
linker to arrange the modules in a program as desired, putting all the code
csects together, for example. Themain places this format shows its age is
in the eight-character maximum symbol length, and no type information
about individual csects.

Microsoft Portable Executable format

Microsoft’s Windows NT has extremely mixed heritage including earlier
versions of MS-DOS and Windows, Digital’s VAX VMS (on which many
of the programmers had worked), and Unix System V (on which many of
the rest of the programmers had worked.) NT’s format is adapted from
COFF, a file format that Unix versions used after a.out but before ELF.
We’l l take a look at PE and, where it differs from PE, Microsoft’s version
of COFF.

Windows developed in an underpowered environment with slow proces-
sors, limited RAM, and originally without hardware paging, so there was
always an emphasis on shared libraries to save memory, and ad-hoc tricks
to improve performance, some of which are apparent in the PE/COFF de-
sign. MostWindows executables containresources, a general term that
refers to objects such as cursors, icons, bitmaps, menus, and fonts that are
shared between the program and the GUI.A PE file can contain a re-
source directory for all of the resources the program code in that file uses.

PE executable files are intended for a paged environment, so pages from a
PE file are usually be mapped directly into memory and run, much like an
ELF executable. PE’s can be either EXE programs or DLL shared li-
braries (known as dynamic link libraries). The format of the two is the
same, with a status bit identifying a PE as one or the other. Each can con-
tain a list of exported functions and data that can be used by other PE files
loaded into the same address space, and a list of imported functions and
data that need to be resolved from other PE’s at load time. Each file con-

3-100 ObjectFiles

tains a set of chunks analogous to ELF segments that have variously been
called sections, segments, and objects.We call them sections here, the
term that Microsoft now uses.

A PE file, Figure 22, starts with a small DOS .EXE file that prints out
something like "This program needs Microsoft Windows." (Microsoft’s
dedication to certain kinds of backward compatibility is impressive.) A
previously unused field at the end of the EXE header points to the PE sig-
nature, which is followed by the file header which consists of a COFF sec-
tion and the ‘‘optional’’ header, which despite its name appears in all PE
files, and a list of section headers. The section headers describe the vari-
ous sections of the file.A COFF object file starts with the COFF header,
and omits the optional header.

Figure 3-22: Microsoft PE and COFF file

DOS header (PE only)
DOS program stub (PE only)
PE signature (PE only)
COFF header
Optional header (PE only)
Section table
Mappable sections (pointed to from section table)
COFF line numbers, symbols, debug info (optional in PE
File)

Object Files 3-101

Figure 23 shows the PE, COFF, and "optional" headers. The COFF header
describes the contents of the file, with the most important values being the
number of entries in the section table, The "optional" header contains
pointers to the most commonly used file sections.Addresses are all kept
as offsets from the place in memory that the program is loaded, also called
Relative Virtual Addresses or RVAs.

3-102 ObjectFiles

Figure 3-23: PE and COFF header

PE signature
char signature[4] = "PE\0\0";// magic number, also shows byte order

COFF header
unsigned short Machine;// required CPU, 0x14C for 80386, etc.
unsigned short NumberOfSections;// creation time or zero
unsigned long TimeDateStamp;// creation time or zero
unsigned long PointerToSymbolTable;// file offset of symbol table in COFF or zero
unsigned long NumberOfSymbols;// # entries in COFF symbol table or zero
unsigned short SizeOfOptionalHeader;// size of the following optional header
unsigned short Characteristics;// 02 = executable, 0x200 = nonrelocatable,

// 0x2000 = DLL rather than EXE

Optional header that follows PE header, not present in COFF objects
// COFF fields
unsigned short Magic;// octal 413, from a.out ZMAGIC
unsigned char MajorLinkerVersion;
unsigned char MinorLinkerVersion;
unsigned long SizeOfCode;// .text size
unsigned long SizeOfInitializedData;// .data size
unsigned long SizeOfUninitializedData;// .bss size
unsigned long AddressOfEntryPoint;// RVA of entry point
unsigned long BaseOfCode;// RVA of .text
unsigned long BaseOfData;// RVA of .data

// additional fields.

unsigned long ImageBase;// virtual address to map beginning of file
unsigned long SectionAlignment;// section alignment, typically 4096, or 64K
unsigned long FileAlignment;// file page alignment, typically 512
unsigned short MajorOperatingSystemVersion;
unsigned short MinorOperatingSystemVersion;
unsigned short MajorImageVersion;
unsigned short MinorImageVersion;
unsigned short MajorSubsystemVersion;
unsigned short MinorSubsystemVersion;
unsigned long Reserved1;

Object Files 3-103

unsigned long SizeOfImage;// total size of mappable image, rounded to SectionAlignment
unsigned long SizeOfHeaders;// total size of headers up through section table
unsigned long CheckSum;// often zero
unsigned short Subsystem;// required subsystem: 1 = native, 2 = Windows GUI,
// 3 = Windows non-GUI, 5 = OS/2, 7 = POSIX

unsigned short DllCharacteristics;// when to call initialization routine (obsolescent)
// 1 = process start, 2 = process end, 4 = thread start, 8 = thread end

unsigned long SizeOfStackReserve;// size to reserve for stack
unsigned long SizeOfStackCommit;// size to allocate initially for stack
unsigned long SizeOfHeapReserve;// size to reserve for heap
unsigned long SizeOfHeapCommit;// size to allocate initially for heap
unsigned long LoaderFlags;// obsolete
unsigned long NumberOfRvaAndSizes;// number of entries in following image data directory
// following pair is repeated once for each directory
{
unsigned long VirtualAddress;// relative virtual address of directory
unsigned long Size;

}

Directories are, in order:
Export Directory
Import Directory
Resource Directory
Exception Directory
Security Directory
Base Relocation Table
Debug Directory
Image Description String
Machine specific data
Thread Local Storage Directory
Load Configuration Directory

Each PE file is created in a way that makes it straightforward for the sys-
tem loader to map it into memory. Each section is physically aligned on a
disk block boundary or greater (the filealign value), and logically aligned
on a memory page boundary (4096 on the x86.) The linker creates a PE
file for a specific target address at which the file will be mapped (image-

3-104 ObjectFiles

base). Ifa chunk of address space at that address is available, as it almost
always is, no load-time fixups are needed.In a few cases such as the old
win32s compatbility system target addresses aren’t available so the loader
has to map the file somewhere else, in which case the file must contain re-
location fixups in the .reloc section that tell the loader what to change.
Shared DLL libraries also are subject to relocation, since the address at
which a DLL is mapped depends on what’s already occupying the address
space.

Following the PE header is the section table, an array of entries like Figure
24.

Figure 3-24: Section table

// array of entries
unsigned char Name[8];// section name in ASCII
unsigned long VirtualSize;// size mapped into memory
unsigned long VirtualAddress;// memory address relative to image base
unsigned long SizeOfRawData;// physical size, mumtiple of file alignment
unsigned long PointerToRawData;// file offset
// next four entries present in COFF, present or 0 in PE
unsigned long PointerToRelocations;// offset of relocation entries
unsigned long PointerToLinenumbers;// offset of line number entries
unsigned short NumberOfRelocations;// number of relocation entries
unsigned short NumberOfLinenumbers;// number of line number entries
unsigned long Characteristics;// 0x20 = text, 0x40 = data, 0x80 = bss, 0x200 = no-load,
// 0x800 = don’t link, 0x10000000 = shared,
// 0x20000000 = execute, 0x40000000 = read, 0x80000000 = write

Each section has both a file address and size (PointerToRawData and Size-
OfRawData) and a memory address and size (VirtualAddress and Virtual-
Size) which aren’t necessarily the same.The CPU’s page size is often
larger than the disk’s block size, typically 4K pages and 512 byte disk
blocks, and a section that ends in the middle of a page need not have
blocks for the rest of the page allocated, saving small amounts of disk

Object Files 3-105

space. Eachsection is marked with the hardware permissions appropriate
for the pages, e.g. read+execute for code and read+write for data.

PE special sections

A PE file includes .text, .data, and sometimes .bss sections like aUnix ex-
ecutable (usually under those names, in fact) as well as a lot of Windows-
specific sections.

• Exports: A l ist of the symbols defined in this module and visible to
other modules. EXE files typically export no symbols, or maybe
one or two for debugging. DLLsexport symbols for the routines
and data that they provide. Inkeeping with Windows space saving
tradition, exported symbols can be references via small integers
called export ordinals as well as by names. The exports section
contains an array of the RVAs of the exported symbols. It also
contains two parallel arrays of the name of the symbol (as the RVA
of an ASCII string), and the export ordinal for the symbol, sorted
by string name.To look up a symbol by name, perform a binary
search in the string name table, then find the entry in the ordinal
table in the position corresponding to the found name, and use that
ordinal to index the array of RVAs. (Thisis arguably faster than it-
erating over an array of three-word entries.) Exports can also be
‘‘ forwarders’’ in which case the RVA points to a string naming the
actual symbol which is found in another library.

• Imports: The imports table lists all of the symbols that need to be
resolved at load time from DLLs.The linker predetermines which
symbols will be found in which DLLs, so the imports table starts
with an import directory, consisting of one entry per referenced
DLL. Eachdirectory entry contains the name of the DLL, and par-
allel arrays one identifying the required symbols, and the other be-
ing the place in the image to store the symbol value. Theentries in
the first value can be either an ordinal (if the high bit is set), or a
pointer to a name string preceded by a guess at the ordinal to speed
up the search. The second array contains the place to store the
symbol’s value; if the symbol is a procedure, the linker will already
have adjusted all calls to the symbol to call indirectly via that loca-

3-106 ObjectFiles

tion, if the symbol is data, references in the importing module are
made using that location as a pointer to the actual data.(Some
compilers provide the indirection automatically, others require ex-
plicit program code.)

• Resources: The resource table is organized as a tree. The structure
supports arbitrarily deep trees, but in practice the tree is three lev-
els, resource type, name, and language.(Language here means a
natural language, this permits customizing executables for speakers
of languages other than English.)Each resource can have either a
name or and numbers.A typical resource might be type DIALOG
(Dialog box), name ABOUT (the About This Program box), lan-
guage English.Unlike symbols which have ASCII names, re-
sources have Unicode names to support non-English languages.
The actual resources are chunks of binary data, with the format of
the resource depending on the resource type.

• Thread Local Storage: Windows supports multiple threads of ex-
ecution per process. Each thread can have its own private storage,
Thread Local Storage or TLS. This section points to a chunk of
the image used to initialize TLS when a thread starts, and also con-
tains pointers to initialization routines to call when each thread
starts. Generallypresent in EXE but not DLL files, because Win-
dows doesn’t allocate TLS storage when a program dynamically
links to a DLL. (See Chapter 10.)

• Fixups: If the executable is moved, it is moved as a unit so all fix-
ups have the same value, the difference between the actual load ad-
dress and the target address. The fixup table, if present, contains
an array of fixup blocks, each containing the fixups for one 4K
page of the mapped executable. (Executables with no fixup table
can only be loaded at the linked target address.) Each fixup block
contains the base RVA of the page, the number of fixups, and an ar-
ray of 16 bit fixup entries. Each entry contains in the low 12 bits
the offset in the block that needs to be relocated, and in the high 4
bits the fixup type, e.g., add 32 bit value, adjust high 16 bits or low
16 bits (for MIPS architecture).This block-by-block scheme saves
considerable space in the relocation table, since each entry can be

Object Files 3-107

squeezed to two bytes rather than the 8 or 12 bytes the ELF equiv-
alent takes.

Running a PE executable

Starting a PE executable process is a relatively straightforward procedure.

• Read in the first page of the file with the DOS header, PE header,
and section headers.

• Determine whether the target area of the address space is available,
if not allocate another area.

• Using the information in the section headers, map all of the sec-
tions of the file to the appropriate place in the allocated address
space.

• If the file is not loaded into its target address, apply fixups.

• Go through the list of DLLs in the imports section and load any
that aren’t already loaded. (This process may be recursive.)

• Resolve all the imported symbols in the imports section.

• Create the initial stack and heap using values from the PE header.

• Create the initial thread and start the process.

PE and COFF

A Windows COFF relocatable object file has the same COFF file header
and section headers asa PE, but the structure is more similar to that of a
relocatable ELF file. COFF files don’t hav ethe DOS header nor the op-
tional header following the PE header. Each code or data section also car-
ries along relocation and line number information.(The line numbers in
an EXE file, if any, are collected in in a debug section not handled by the
system loader.) COFFobjects have section-relative relocations, like ELF
files, rather than RVA relative relocations, and invariably contain a symbol
table with the symbols needed. COFF files from language compilers typi-
cally do not contain any resources, rather, the resources are in a separate
object file created by a specialized resource compiler.

3-108 ObjectFiles

COFF files can also have sev eral other section types not used in PE.The
most notable is the .drective section which contains text command strings
for the linker. Compilers usually use .drective to tell the linker to search
the appropriate language-specific libraries. Some compilers including
MSVC also include linker directives to export code and data symbols
when creating a DLL. (This mixture of commands and object code goes
way back; IBM linkers accepted mixed card decks of commands and ob-
ject files in the early 1960s.)

PE summary

The PE file format is a competent format for a linearly addressed operating
system with virtual memory, with only small amounts of historical bag-
gage from its DOS heritage. It includes some extra features such as ordi-
nal imports and exports intended to speed up program loading on small
systems, but of debatable effectiveness on modern 32 bit systems.The
earlier NE format for 16 bit segmented executables was far more compli-
cated, and PE is a definite improvement.

Intel/Microsoft OMF files

The penultimate format we look at in this chapter is one of the oldest for-
mats still in use, the Intel Object Module Format. Inteloriginally defined
OMF in the late 1970s for the 8086.Over the years a variety of vendors,
including Microsoft, IBM, and Phar Lap (who wrote a very widely used
set of 32 bit extension tools for DOS), defined their own extensions. The
current Intel OMF is the union of the original spec and most of the exten-
sions, minus a few extensions that either collided with other extensions or
were never used.

All of the formats we’ve seen so far are intended for environments with
random access disks and enough RAM to do compiler and linker process-
ing in straightforward ways. OMFdates from the early days of micropro-
cessor development when memories were tiny and storage was often
punched paper tapes. As a result, OMF divides the object file into a series
of short records, Figure 25. Each record contains a type byte, a two-byte
length, the contents, and a checksum byte that makes the byte-wise sum of
the entire record zero.(Paper tape equipment had no built-in error detec-
tion, and errors due to dust or sticky parts were not rare.) OMF files are

Object Files 3-109

designed so that a linker on a machine without mass storage can do its job
with a minimum number of passes over the files. Usually 1 1/2 passes do
the trick, a partial pass to find the symbol names which are placed near the
front of each file, and then a full pass to do the linking and produce the
output.

Figure 3-25: OMF record format

picture of
-- type byte
-- two-byte length
-- variable length data
-- checksum byte

OMF is greatly complicated by the need to deal with the 8086 segmented
architecture. Oneof the major goal of an OMF linker is to pack code and
data into a minimum number of segments and segment groups.Every
piece of code or data in an OMF object is assigned to a segment, and each
segment in turn can be assigned to a segment group or segment class.(A
group must be small enough to be addressed by a single segment value, a
class can be any size, so groups are used for both addressing and storage
management, while classes are just for storage management.)Code can
reference segments and groups by name, and can also reference code with-

3-110 ObjectFiles

in a segment relative to the base of the segment or the base of the group.

OMF also contains some support for overlay linking, although no OMF
linker I know of has ever supported it, taking overlay instructions instead
from a separate directive file.

OMF records

OMF currently defines at least 40 record types, too many to enumerate
here, so we’ll look at a simple OMF file. (The complete spec is in the In-
tel TIS documents.)

OMF uses several coding techniques to make records as short as possible.
All name strings are variable length, stored as a length byte followed by
characters. Anull name (valid in some contexts) is a single zero byte.
Rather than refer to segments, symbols, groups, etc. by name, an OMF
module lists each name once in an LNAMES record and subsequently uses
a index into the list of names to define the names of segments, groups, and
symbols. Thefirst name is 1, the second 2, and so forth through the entire
set of names no matter how many LNAMES records they might have tak-
en. (Thissaves a small amount of space in the not uncommon case that a
segment and an external symbol have the same name since the definitions
can refer to the same string.)Indexes in the range 0 through 0x7f are
stored as one byte.Indexes from 0x80 through 0x7fff are stored as two
bytes, with the high bit in the first byte indicating a two-byte sequence.
Oddly, the low 7 bits of the first byte are the high 7 bits of the value and
the second byte is the low 8 bits of the value, the opposite of the native In-
tel order. Segments, groups, and external symbols are also referred to by
index, with separate index sequences for each.For example, assume a
module lists the names DGROUP, CODE, and DAT A, defining name in-
dexes 1, 2, and 3. Then the module defines two segments called CODE
and DAT A, referring to names 2 and 3. Since CODE is the first segment
defined, it will be segment index 1 and DAT A will be segment index 2.

The original OMF format was defined for the 16 bit Intel architecture.For
32 bit programs, there are new OMF types defined for the record types
where the address size matters.All of the 16 bit record types happened to
have even numerical codes, so the corresponding 32 bit record types have
the odd code one greater than the 16 bit type.

Object Files 3-111

Details of an OMF file

Figure 26 lists the records in a simple OMF file.

Figure 3-26: Typical OMF record sequence

THEADR program name
COMENT flags and options
LNAMES list of segment, group, and class names
SEGDEF segment (one record per segment)
GRPDEF group (one record per group)
PUBDEF global symbols
EXTDEF undefined external symbols (one per symbol)
COMDEF common blocks
COMENT end of pass1 info
LEDAT A chunk of code or data (multiple)
LIDAT A chunk of repeated data (multiple)
FIXUPP relocations and external ref fixups, each following
the LEDAT A or LIDAT A to which it refers
MODEND end of module

The file starts with a THEADR record that marks the start of the module
and gives the name of the module’s source file as a string. (If this module
were part of a library, it would start with a similar LHEADR record.)

The second record is a badly misnamed COMENT record which contains
configuration information for the linker. Each COMENT record contains
some flag bits saying whether to keep the comment when linked, a type
byte, and the comment text. Somecomment types are indeed comments,
e.g., the compiler version number or a copyright notice, but several of
them give essential linker info such as the memory model to use (tiny
through large), the name of a library to search after processing this file,
definitions of weak external symbols, and a grab-bag of other types of data
that vendors shoe-horned into the OMF format.

3-112 ObjectFiles

Next comes a series of LNAMES records that list all of the names used in
this module for segments, groups, classes, and overlays. Asnoted above,
the all the names in all LNAMES are logically considered an array with
the index of the first name being 1.

After the LNAMES record come SEGDEF records, one for each segment
defined in the module. The SEGDEF includes an index for the name of
the segment, and the class and overlay if any it belongs to. Also included
are the segment’s attributes including its alignment requirements and rules
for combining it with same-name segments in other modules, and its
length.

Next come GRPDEF records, if any, defining the groups in the module.
Each GRPDEF has the index for the group name and the indices for the
segments in the group.

PUBDEF records define "public" symbols visible to other modules.Each
PUBDEF defines one or more symbols within a single group or segment.
The record includes the index of the segment or group and for each sym-
bol, the symbol’s offset within the segment or group, its name, and a one-
byte compiler-specific type field.

EXTDEF records define undefined external symbols. Each record con-
tains the name of one symbol and a byte or two of debugger symbol type.
COMDEF records define common blocks, and are similar to EXTDEF
records except that they also define a minimum size for the symbol. All of
the EXTDEF and COMDEF symbols in the module are logically an array,
so fixups can refer to them by index.

Next comes an optional specialized COMENT record that marks the end
of pass 1 data. It tells the linker that it can skip the rest of the file in the
first pass of the linking process.

The rest of the file consists of the actual code and data of the program, in-
termixed with fixup records containing relocation and external reference
information. Thereare two kinds of data records LEDAT A (enumerated)
and LIDAT A (iterated). LEDAT A simply has the segment index and start-
ing offset, followed by the data to store there.LIDAT A also starts with the
segment and starting offset, but then has a possibly nested set of repeated

Object Files 3-113

blocks of data.LIDAT A efficiently handles code generated for statements
like this Fortran:
INTEGER A(20,20) /400*42/

A single LIDAT A can have a two- or four-byte block containing 42 and re-
peat it 400 times.

Each LEDAT A or LEDAT A that needs a fixup must be immediately fol-
lowed by the FIXUPP records. FIXUPP is by far the most complicated
record type.Each fixup requires three items: first the target, the address
being referenced, second the frame, the position in a segment or group rel-
ative to which the address is calculated, and third the location to be fixed
up. Sinceit’s very common to refer to a single frame in many fixups and
somewhat common to refer to a single target in many fixups, OMF defines
fixup threads, two-bit codes used as shorthands for frames or targets, so at
any point there can be up to four frames and four targets with thread num-
bers defined. Each thread number can be redefined as often as needed.
For example, if a module includes a data group, that group is usually used
as the frame for nearly every data reference in the module, so defining a
thread number for the base address of that group saves a great deal of
space. Inpractice a GRPDEF record is almost invariably followed by a
FIXUPP record defining a frame thread for that group.

Each FIXUPP record is a sequence of subrecords, with each subrecord ei-
ther defining a thread or a fixup.A thread definition subrecord has flag
bits saying whether it’s defining a frame or target thread.A target thread
definition contains the thread number, the kind of reference (segment rela-
tive, group relative, external relative), the index of the base segment, group
or symbol, and optionally a base offset. Aframe thread definition includes
the thread number, the kind of reference (all the kinds for target definition
plus two common special cases, same segment as the location and same
segment as the target.)

Once the threads are defined, a fixup subrecord is relatively simple. It
contains the location to fix up, a code specifying the type of fixup (16 bit
offset, 16 bit segment, full segment:offset, 8 bit relative, etc.), and the
frame and target. Theframe and target can either refer to previously de-
fined threads or be specified in place.

3-114 ObjectFiles

After the LEDAT A, LIDAT A, and FIXUPP records, the end of the module
is marked by a MODEND record, which can optionally specify the entry
point if the module is the main routine in a program.

A real OMF file would contain more record types for local symbols, line
numbers, and other debugger info, and in a Windows environment also in-
fo to create the imports and exports sections in a target NE file (the seg-
mented 16 bit predecessor of PE), but the structure of the module doesn’t
change. Theorder of records is quite flexible, particularly if there’s no
end of pass 1 marker. The only hard and fast rules are that THEADER
and MODEND must come first and last, FIXUPPs must immediately fol-
low the LEDAT A and LIDAT A to which they refer, and no intra-module
forward references are allowed. In particular, it’s permissible to emit
records for symbols, segments, and groups as they’re defined, so long as
they precede other records that refer to them.

Summary of OMF

The OMF format is quite complicated compared to the other formats
we’ve seen. Part of the complication is due to tricks to compress the data,
part due to the division of each module into many small records, part due
to incremental features added over the years, and part due to the inherent
complexity of segmented program addressing.The consistent record for-
mat with typed records is a strong point, since it both permits extension in
a straightforward way, and permits programs that process OMF files to
skip records they don’t understand.

Nonetheless, now that even small desktop computers have meg abytes of
RAM and large disks, the OMF division of the object into many small
records has become more trouble than it’s worth. Thesmall record type of
object module was very common up through the 1970s, but is now obso-
lescent.

Comparison of object formats

We’v e seen seven different object and executable formats in this chapter,
ranging from the trivial (.COM) to the sophisticated (ELF and PE) to the
rococo (OMF).Modern object formats such as ELF try to group all of the
data of a single type together to make it easier for linkers to process.They

Object Files 3-115

also lay out the file with virtual memory considerations in mind, so that
the system loader can map the file into the program’s address space with
as little extra work as possible.

Each object format shows the style of the system for which it was defined.
Unix systems have historically kept their internal interfaces simple and
well-defined, and the a.out and ELF formats reflect that in their relative
simplicity and the lack of special case features.Windows has gone in the
other direction, with process management and user interface intertwined.

Project

Here we define the simple object format used in the project assignments in
this book. Unlike nearly every other object format, this one consists en-
tirely of lines of ASCII text. This makes it possible to create sample ob-
ject files in a text editor, as well as making it easier to check the output
files from the project linker. Figure 27 sketches the format. The segment,
symbol, and relocation entries are represented as lines of text with fields
separated by spaces. Each line may have extra fields at the end which pro-
grams should be prepared to ignore. Numbers are all hexadecimal.

Figure 3-27: Project object format

LINK
nsegs nsyms nrels
-- segments --
-- symbols --
-- rels --
-- data --

The first line is the ‘‘magic number,’’ the wordLINK.

The second line contains at least three decimal numbers, the number of
segments in the file, the number of symbol table entries, and the number of
relocation entries. There may be other information after the three numbers
for extended versions of the linker. If there are no symbols or relocations,

3-116 ObjectFiles

the respective number is zero.

Next comes the segment definitions. Each segment definition contains the
segment name, the address where the segment logically starts, the length
of the segment in bytes, and a string of code letters describing the seg-
ment. Codeletters include R for readable, W for writable, and P for pre-
sent in the object file. (Other letters may be present as well.)A typical set
of segments for an a.out like file would be:
.text 1000 2500 RP
.data 4000 C00 RWP
.bss 5000 1900 RW

Segments are numbered in the order their definitions appear, with the first
segment being number 1.

Next comes the symbol table. Each entry is of the form:
name value seg type

The name is the symbol name. The value is the hex value of the symbol.
Seg is the segment number relative to which the segment is defined, or 0
for absolute or undefined symbols. The type is a string of letters including
D for defined or U for undefined. Symbols are also numbered in the order
they’re listed, starting at 1.

Next come the relocations, one to a line:
loc seg ref type ...

Loc is the location to be relocated, seg is the segment within which the lo-
cation is found, ref is the segment or symbol number to be relocated there,
and type is an architecture-dependent relocation type. Common types are
A4 for a four-byte absolute address, or R4 for a four-byte relative address.
Some relocation types may have extra fields after the type.

Following the relocations comes the object data. The data for each seg-
ment is a single long hex string followed by a newline. (This makes it
easy to read and write section data in perl.)Each pair of hex digits repre-
sents one byte. The segment data strings are in the same order as the seg-
ment table, and there must be segment data for each ‘‘present’’ segment.
The length of the hex string is determined by the the defined length of the

Object Files 3-117

segment; if the segment is 100 bytes long, the line of segment data is 200
characters, not counting the newline at the end.

Project 3-1:Write a perl program that reads an object files in this format
and stores the contents in a suitable form in perl tables and arrays, then
writes the file back out.The output file need not be identical to the input,
although it should be semantically equivalent. For example, the symbols
need not be written in the same order they were read, although if they’re
reordered, the relocation entries must be adjusted to reflect the new order
of the symbol table.

Exercises

1. Would a text object format like the project format be practical?(Hint:
See Fraser and Hanson’s paper "A Machine-Independent Linker.")

