
Architectural Issues 2-27

Chapter 2
Architectural Issues

$Revision: 2.3 $
$Date: 1999/06/15 03:30:36 $

Linkers and loaders, along with compilers and assemblers, are exquisitely *
sensitive to the architectural details, both the hardware architecture and the*
architecture conventions required by the operating system of their target *
computers. Inthis chapter we cover enough computer architecture to un- *
derstand the jobs that linkers have to do. Thedescriptions of all of the *
computer architectures in this chapter are deliberately incomplete and*
leave out the parts that don’t affect the linker such as floating point and *
I/O. *

Tw o aspects of hardware architecture affect linkers: program addressing*
and instruction formats.One of the things that a linker does is to modify *
addresses and offsets both in data memory and in instructions.In both *
cases, the linker has to ensure that its modifications match the addressing*
scheme that the computer uses; when modifying instructions it must fur- *
ther ensure that the modifications don’t result in an invalid instruction. *

At the end of the chapter, we also look at address space architecture, that
is, what set of addresses a program has to work with.

Application Binary Interfaces

Every operating system presents anApplication Binary Interface(ABI) to
programs that run under that system. The ABI consists of programming
conventions that applications have to follow to run under the operating
system. ABI’s inv ariably include a set of system calls and the technique to
invoke the system calls, as well as rules about what memory addresses a
program can use and often rules about usage of machine registers. From
the point of view of an application, the ABI is as much a part of the system
architecture as the underlying hardware architecture, since a program will
fail equally badly if it violates the constraints of either.

In many cases, the linker has to do a significant part of the work involved
in complying with the ABI. For example, if the ABI requires that each

2-28 ArchitecturalIssues

program contains a table of all of the addresses of static data used by rou-
tines in the program, the linker often creates that table, by collecting ad-
dress information from all of the modules linked into the program.The
aspect of the ABI that most often affects the linker is the definition of a
standard procedure call, a topic we return to later in this chapter.

Memory Addresses

Every computer includes a main memory. The main memory invariably
appears as an array of storage locations, with each location having a nu-
meric address.The addresses start at zero and run up to some large num-
ber determined by the number of bits in an address.

Byte Order and Alignment

Each storage location consists of a fixed number of bits.Over the past 50
years computers have been designed with storage locations consisting of
as many as 64 bits and as few as 1 bit, but now nearly every computer in
production addresses 8 bit bytes.Since much of the data that computers
handle, notably program addresses, are bigger than 8 bits, the computers
can also handle 16, 32, and often 64 or 128 bit data as well, with multiple
adjacent bytes grouped together. On some computers, notably those from
IBM and Motorola, the first (numerically lowest addressed) byte in multi-
byte data is the most significant byte, while others, notably DEC and Intel,
it’s the least significant byte, Figure 1. In a nod toGulliver’s Travels the
IBM/Motorola byte order scheme is known asbig-endian while the
DEC/Intel scheme islittle-endian.

Figure 2-1: Byte addressable memory

the usual picture of memory addresses

Architectural Issues 2-29

The relative merits of the two schemes have provoked vehement argu-
ments over the years.In practice the major issue determining the choice
of byte order is compatibility with older systems, since it is considerably
easier to port programs and data between two machines with the same byte
order than between machines with different byte orders.Many recent chip
designs can support either byte order, with the choice made either by the
way the chip is wired up, by programming at system boot time, or in a few
cases even selected per application.(On these switch-hitting chips, the
byte order of data handled by load and store instructions changes, but the
byte order of constants encoded in instructions doesn’t. This is the sort of
detail that keeps the life of the linker writer interesting.)

Multi-byte data must usually bealigned on a natural boundary. That is,
four byte data should be aligned on a four-byte boundary, two-byte on
two-byte, and so forth. Another way to think of it is that the address of
any N byte datum should have at least log2(N) low zero bits. On some
systems (Intel x86, DEC VAX, IBM 370/390), misaligned data references

2-30 ArchitecturalIssues

work at the cost of reduced performance, while on others (most RISC
chips), misaligned data causes a program fault. Even on systems where
misaligned data don’t cause a fault, the performance loss is usually great
enough that it’s worth the effort to maintain alignment where possible.

Many processors also have alignment requirements for program instruc-
tions. MostRISC chips require that instructions be aligned on four-byte
boundaries.

Each architecture also definesregisters, a small set of fixed length high-
speed memory locations to which program instructions can refer directly.
The number of registers varies from one architecture to another, from as
few as eight in the Intel architecture to 32 in some RISC designs.Regis-
ters are almost invariably the same size as a program address, that is, on a
system with 32 bit addresses, the registers are 32 bits, and on systems with
64 bit addresses, the registers are 64 bits as well.

Address formation

As a computer program executes, it loads and stores data to and from
memory, as determined by instructions in the program. The instructions
are themselves stored in memory, usually a different part of memory from
the program’s data. Instructionsare logically executed in the sequence
they are stored, except that jump instructions specify a new place in the
program to start executing instructions. (Some architectures use the term
branch for some or all jumps, but we call them all jumps here.) Each in-
struction that references data memory and each jump specifies the address
or addresses or the data to load or store, or of the instruction to jump to.
All computers have a variety of instruction formats and address formation
rules that linkers have to be able to handle as they relocate addresses in in-
structions.

Although computer designers have come up with innumerable different
and complex addressing schemes over the years, most computers currently
in production have a relatively simple addressing scheme.(Designers
found that it’s hard to build a fast version of a complicated architecture,
and compilers rarely make good use of complicated addressing features.)
We’l l use three architectures as examples:

Architectural Issues 2-31

• The IBM 360/370/390 (which we’ll refer to as the 370).Although
this is one of the oldest architectures still in use, its relatively clean
design has worn well despite 35 years of added features, and has
been implemented in chips comparable in performance to modern
RISCs.

• SPARC V8 and V9.A popular RISC architecture, with fairly sim-
ple addressing. V8 uses 32 bit registers and addresses, V9 adds 64
bit registers and addresses. The SPARC design is similar to other
RISC architectures such as MIPS and Alpha.

• The Intel 386/486/Pentium (henceforth x86). One of the most ar-
cane and irregular architectures still in use, but undeniably the
most popular.

Instruction formats

Each architecture has several different instruction formats.We’l l only ad-
dress the format details relative to program and data addressing, since
those are the main details that affect the linker. The 370 uses the same for-
mat for data references and jumps, while the SPARC has different formats
and the x86 has some common formats and some different.

Each instruction consists of an opcode, which determines what the instruc-
tion does, and operands. An operand may be encoded in the instruction it-
self (animmediateoperand), or located in memory. The address of each
operand in memory has to be calculated somehow. Sometimes the address
is contained in the instruction (direct addressing.) More often the address
is found in one of the registers (register indirect), or calculated by adding a
constant in the instruction to the contents of a register. If the value in the
register is the address of a storage area, and the constant in the instruction
is the offset of the desired datum in the storage area, this scheme is known
asbasedaddressing. Ifthe roles are swapped and the register contains the
offset, the scheme is known asindexedaddressing. Thedistinction be-
tween based and indexed addressing isn’t well-defined, and many architec-
tures combine them, e.g., the 370 has an addressing mode that adds togeth-
er two registers and a constant in the instruction, arbitrarily calling one of
the registers the base register and the other the index register, although the

2-32 ArchitecturalIssues

two are treated the same.

Other more complicated address calculation schemes are still in use, but
for the most part the linker doesn’t hav eto worry about them since they
don’t contain any fields the linker has to adjust.

Some architectures use fixed length instructions, and some use variable
length instructions. All SPARC instructions are four bytes long, aligned
on four byte boundaries. IBM 370 instructions can be 2, 4, or 6 bytes
long, with the first two bits of the first byte determining the length and for-
mat of the instruction.Intel x86 instructions can be anywhere from one
byte to 14 long. The encoding is quite complex, partly because the x86
was originally designed for limited memory environments with a dense in-
struction encoding, and partly because the new instructions added in the
286, 386, and later chips had to be shoe-horned into unused bit patterns in
the existing instruction set.Fortunately, from the point of view of a linker
writer, the address and offset fields that a linker has to adjust all occur on
byte boundaries, so the linker generally need not be concerned with the in-
struction encoding.

Procedure Calls and Addressability

In the earliest computers, memories were small, and each instruction con-
tained an address field large enough to contain the address of any memory
location in the computer, a scheme now called direct addressing.By the
early 1960s, addressable memory was getting large enough that an instruc-
tion set with a full address in each instruction would have large instruc-
tions that took up too much of still-precious memory. To solve this prob-
lem, computer architects abandoned direct addressing in some or all of the
memory reference instructions, using index and base registers to provide
most or all of the bits used in addressing.This allowed instructions to be
shorter, at the cost of more complicated programming.

On architectures without direct addressing, including the IBM 370 and
SPARC, programs have a ‘‘bootstrapping’’ problem for data addressing.A
routine uses base values in registers to calculate data addresses, but the
standard way to get a base value into a register is to load it from a memory
location which is in turn addressed from another base value in a register.

Architectural Issues 2-33

The bootstrap problem is to get the first base value into a register at the be-
ginning of the program, and subsequently to ensure that each routine has
the base values it needs to address the data it uses.

Procedure calls

Every ABI defines a standard procedure call sequence, using a combina-
tion of hardware-defined call instructions and conventions about register
and memory use.A hardware call instruction saves the return address (the
address of the instruction after the call) and jumps to the procedure.On
architectures with a hardware stack such as the x86 the return address is
pushed on the stack, while on other architectures it’s sav ed in a register,
with software having the responsibility to save the register in memory if
necessary. Architectures with a stack generally have a hardware return in-
struction that pops the return address from the stack and jumps to that ad-
dress, while other architectures use a ‘‘branch to address in register’’ i n-
struction to return.

Within a procedure, data addressing falls into four categories:

• The caller can passargumentsto the procedure.

• Local variablesare allocated withing procedure and freed before
the procedure returns.

• Local staticdata is stored in a fixed location in memory and is pri-
vate to the procedure.

• Global staticdata is stored in a fixed location in memory and can
be referenced from many different procedures.
The chunk of stack memory allocated for a single procedure call is
known as astack frame. Figure 2 shows a typical stack frame.

Figure 2-2: Stack frame memory layout

Picture of a stack frame

2-34 ArchitecturalIssues

Arguments and local variables are usually allocated on the stack. One of
the registers serves as a stack pointer which can be used as a base register.
In a common variant of this scheme, used with SPARC and x86, a separate

Architectural Issues 2-35

frame pointer or base pointer register is loaded from the stack pointer at
the time a procedure starts. This makes it possible to push variable sized
objects on the stack, changing the value in the stack pointer register to a
hard-to-predict value, but still lets the procedure address arguments and lo-
cals at fixed offsets from the frame pointer which doesn’t change during a
procedure’s execution. Assumingthe stack grows from higher to lower
addresses and that the frame pointer points to the address in memory
where the return address is stored, arguments are at small positive offsets
from the frame pointer, and local variables at negative offsets. Theoperat-
ing system usually sets the initial stack pointer register before a program
starts, so the program need only update the register as needed when it
pushes and pops data.

For local and global static data, a compiler can generate a table of pointers
to all of the static objects that a routine references. If one of the registers
contains a pointer to this table, the routine can address any desired static
object by loading the pointer to the object from the table using the table
pointer register into another register using the table pointer register as a
base register, then using that second register as the base register to address
the object.The trick, then, is to get the address of the table into the first
register. On SPARC, the routine can load the table address into the regis-
ter using a sequence of instructions with immediate operands, and on the
SPARC or 370 the routine can use a variant of a subroutine call instruction
to load the program counter (the register that keeps the address of the cur-
rent instruction) into a base register, though for reasons we discuss later,
those techniques cause problems in library code.A better solution is to
foist off the job of loading the table pointer on the routine’s caller, since
the caller will have its own table pointer already loaded and can get ad-
dress of the called routine’s table from its own table.

Figure 3 shows a typical routine calling sequence. Rf is the frame pointer,
Rt is the table pointer, and Rx is a temporary scratch register. The caller
saves its own table pointer in its own stack frame, then loads both the ad-
dress of the called routine and the called routine’s pointer table into regis-
ters, then makes the call.The called routine can then find all of its neces-
sary data using the table pointer in Rt, including addresses and table point-
ers for any routines that it in turn calls.

2-36 ArchitecturalIssues

Figure 2-3: Idealized calling sequence

... push arguments on the stack ...
store Rt → xxx(Rf) ; save caller’s table pointer in caller’s stack frame
load Rx ← MMM(Rt) ; load address of called routine into temp register
load Rt ← NNN(Rt) ; load called routine’s table pointer
call (Rx) ; call routine at address in Rx
load Rt ← xxx(Rf) ; restore caller’s table pointer

Several optimizations are often possible.In many cases, all of the routines
in a module share a single pointer table, in which case intra-module calls
needn’t change the table pointer. The SPARC convention is that an entire
library shares a single table, created by the linker, so the table pointer reg-
ister can remain unchanged in intra-module calls. Calls within the same
module can usually be made using a version of the ‘‘call’ ’ i nstruction with
the offset to the called routine encoded in the instruction, which avoids the
need to load the address of the routine into a register. With both of these
optimizations, the calling sequence to a routine in the same module re-
duces to a single call instruction.

To return to the address bootstram quesion, how does this chain of table
pointers gets started? If each routine gets its table pointer loaded by the
preceding routine, where does the initial routine get its pointer? The an-
swer varies, but always involves special-case code.The main routine’s
table may be stored at a fixed address, or the initial pointer value may be
tagged in the executable file so the operating system can load it before the
program starts.No matter what the technique is, it invariably needs some
help from the linker.

Data and instruction references

We now look more concretely at the way that programs in our three archi-
tectures address data values.

Architectural Issues 2-37

IBM 370

The 1960s vintage System/360 started with a very straightforward data ad-
dressing scheme, which has become someone more complicated over the
years as the 360 evolved into the 370 and 390.Every instruction that ref-
erences data memory calculates the address by adding a 12-bit unsigned
offset in the instruction to a base register and maybe an index register.
There are 16 general registers, each 32 bits, numbered from 0 to 15, all but
one of which can be used as index registers. Ifregister 0 is specified in an
address calculation, the value 0 is used rather than the register contents.
(Register 0 exists and is usable for arithmetic, but not for addressing.)In
instructions that take the target address of a jump from a register, register 0
means don’t jump.

Figure 4 shows the major instruction formats.An RX instruction contains
a register operand and a single memory operand, whose address is calcu-
lated by adding the offset in the instruction to a base register and index
register. More often than not the index register is zero so the address is
just base plus offset. In the RS, SI and SS formats, the 12 bit offset is
added to a base register. An RS instruction has one memory operand, with
one or two other operands being in registers. AnSI instruction has one
memory operand, the other operand being an immediate 8 bit value in the
instruction An SS instruciton has two memory operands, storage to storage
operations. TheRR format has two register operands and no memory
operands at all, although some RR instructions interpret one or both of the
registers as pointers to memory. The 370 and 390 added some minor vari-
ations on these formats, but none with different data addressing formats.

Figure 2-4: IBM 370 instruction formats

Picture of IBM instruction formats RX, RS, SI, SS

2-38 ArchitecturalIssues

Instructions can directly address the lowest 4096 locations in memory by
specifying base register zero. This ability is essential in low-level system
programming but is never used in application programs, all of which use
base register addressing.

Note that in all three instruction formats, the 12 bit address offset is al-
ways stored as the low 12 bits of a 16-bit aligned halfword. Thismakes it
possible to specify fixups to address offsets in object files without any ref-
erence to instruction formats, since the offset format is always the same.

The original 360 had 24 bit addressing, with an address in memory or a
register being stored in the low 24 bits of a 32 bit word, and the high eight
bits disregarded. The370 extended addressing to 31 bits.Unfortunately,
many programs including OS/360, the most popular operating system,
stored flags or other data in the high byte of 32 bit address words in mem-
ory, so it wasn’t possible to extend the addressing to 32 bits in the obvious
way and still support existing object code. Instead, the system has 24 bit
and 31 bit modes, and at any moment a CPU interprets 24 bit addresses or

Architectural Issues 2-39

31 bit addresses.A convention enforced by a combination of hardware
and software states that an address word with the high bit set contains a 31
bit address in the rest of the word, while one with the high bit clear con-
tains a 24 bit address. As a result, a linker has to be able to handle both 24
bit and 31 bit addresses since programs can and do switch modes depend-
ing on how long ago a particular routine was written.For historical rea-
sons, 370 linkers also handle 16 bit addresses, since early small models in
the 360 line often had 64K or less of main memory and programs used
load and store halfword instructions to manipulate address values.

Later models of the 370 and 390 added segmented address spaces some-
what like those of the x86 series. These feature let the operating system
define multiple 31 bit address spaces that a program can address, with ex-
tremely complex rules defining access controls and address space switch-
ing. As far as I can tell, there is no compiler or linker support for these
features, which are primarily used by high-performace database systems,
so we won’t address them further.

Instruction addressing on the 370 is also relatively straightforward. Inthe
original 360, the jumps (always referred to as branch instructions) were all
RR or RX format. In RR jumps, the second register operand contained the
jump target, register 0 meaning don’t jump. In RX jumps, the memory
operand is the jump target. Theprocedure call is Branch and Link (sup-
planted by the later Branch and Store for 31 bit addressing), which stores
the return address in a specified register and then jumps to the address in
the second register in the RR form or to the second operand address in the
RX form.

For jumping around within a routine, the routine has to establish ‘‘address-
ability’’, that is, a base register that points to (or at least close to) the be-
ginning of the routine that RX instructions can use. By convention, regis-
ter 15 contains the address of the entry point to a routine and can be used
as a base register. Alternatively an RR Branch and Link or Branch and
Store with a second register of zero stores the address of the subsequent
instruction in the first operand register but doesn’t jump, and can be use to
set up a base register if the prior register contents are unknown. SinceRX
instructions have a 12 bit offset field, a single base register ‘‘covers’’ a 4K
chunk of code.If a routine is bigger than that, it has to use multiple base

2-40 ArchitecturalIssues

registers to cover all of the routine’s code.

The 390 added relative forms of all of the jumps. In these new forms, the
instruction contains a signed 16 bit offset which is logically shifted left
one bit (since instructions are aligned on even bytes) and added to the ad-
dress of the instruction to get the address of the jump target. Thesenew
formats use no register to compute the address, and permit jumps within
+/- 64K bytes, enough for intra-routine jumps in all but the largest rou-
tines.

SPARC

The SPARC comes close to living up to its name as a reduced instruction
set processor, although as the architecture has evolved through nine ver-
sions, the original simple design has grown somewhat more complex.
SPARC versions through V8 are 32 bit architectures.SPARC V9 expands
the architecture to 64 bits.

SPARC V8

SPARC has four major instruction formats and 31 minor instruction for-
mats, Figure 5, four jump formats, and two data addressing modes.

In SPARC V8, there are 31 general purpose registers, each 32 bits, num-
bered from 1 to 31.Register 0 is a pseudo-register that always contains
the value zero.

An unusualregister windowscheme attempts to minimize the amount of
register saving and restoring at procedure calls and returns.The windows
have little effect on linkers, so we won’t discuss them further. (Register
windows originated in the Berkeley RISC design from which SPARC is
descended.)

Data references use one of two addressing modes. One mode computes
the address by adding the values in two registers together. (One of the reg-
isters can be r0 if the other register already contains the desired address.)
The other mode adds a 13 bit signed offset in the instruction to a base reg-
ister.

Architectural Issues 2-41

SPARC assemblers and linkers support a pseudo-direct addressing scheme
using a two-instruction sequence. The two instructions are SETHI, which
loads its 22 bit immediate value into the high 22 bits of a register and ze-
ros the lower 10 bits, followed by OR Immediate, which ORs its 13 bit im-
mediate value into the low part of the register. The assembler and linker
arrange to put the high and low parts of the desired 32 bit address into the
two instructions.

Figure 2-5: SPARC

30 bit call 22 bit branch and SETHI 19 bit branch 16 bit
branch (V9 only) op R+R op R+I13

The procedure call instruction and most conditional jump instructions (re-
ferred to as branches in SPARC literature) use relative addressing with

2-42 ArchitecturalIssues

various size branch offsets ranging from 16 to 30 bits.Whatever the offset
size, the jump shifts the offset two bits left, since all instructions have to
be at four-byte word addresses, sign extends the result to 32 or 64 bits, and
adds that value to the address of the jump or call instruction to get the tar-
get address. The call instruction uses a 30 bit offset, which means it can
reach any address in a 32 bit V8 address space.Calls store the return ad-
dress in register 15.Various kinds of jumps use a 16, 19, or 22 bit offset,
which is large enough to jump anywhere in any plausibly sized routine.
The 16 bit format breaks the offset into a two-bit high part and a fourteen-
bit low part stored in different parts of the instruction word, but that
doesn’t cause any great trouble for the linker.

SPARC also has a "Jump and Link" which computes the target address the
same way that data reference instructions do, by adding together either
two source registers or a source register and a constant offset. It also can
store the the return address in a target register.

Procedure calls use Call or Jump and Link, which store the return address
in register 15, and jumps to the target address. Procedure return uses JMP
8[r15], to return two instructions after the call.(SPARC calls and jumps
are "delayed" and optionally execute the instruction following the jump or
call before jumping.)

SPARC V9

SPARC V9 expands all of the registers to 64 bits, using the low 32 bits of
each register for old 32 bit programs. All existing instructions continue to
work as before, except that register operands are now 64 rather than 32
bits. New load and store instructions handle 64 bit data, and new branch
instructions can test either the 32 or 64 bit result of a previous instructions.
SPARC V9 adds no new instructions for synthesizing full 64 bit addresses,
nor is there a new call instruction. Full addresses can be synthesized via
lengthy sequences that create the two 32 bit halves of the address in sepa-
rate registers using SETHI and OR, shift the high half 32 bits to the left,
and OR the two parts together. In practice 64 bit addresses are loaded
from a pointer table, and inter-module calls load the address of the target
routine from the table into a register and then use jump and link to make
the call.

Architectural Issues 2-43

Intel x86

The Intel x86 architecture is by far the most complex of the three that we
discuss. Itfeatures an asymmetrical instruction set and segmented ad-
dresses. Thereare six 32 bit general purpose registers named EAX, EBX,
ECX, EDX, ESI, and EDI, as well as two registers used primarily for ad-
dressing, EBP and ESP, and six specialized 16 bit segment registers CS,
DS, ES, FS, GS, and SS.The low half of each of the 32 bit registers can
be used as 16 bit registers called AX, BX, CX, DX, SI, DI, BP, and SP.
and the low and high bytes of each of the AX through DX registers are
eight-bit registers called AL, AH, BL, BH, CL, CH, DL, and DH. On the
8086, 186, and 286, many instructions required its operands in specific
registers, but on the 386 and later chips, most but not all of the functions
that required specific registers have been generalized to use any register.
The ESP is the hardware stack pointer, and always contains the address of
the current stack.The EBP pointer is usually used as a frame register that
points to the base of the current stack frame. (The instruction set encour-
ages but doesn’t require this.)

At any moment an x86 is running in one of three modes: real mode which
emulates the original 16 bit 8086, 16 bit protected mode which was added
on the 286, or 32 bit protected mode which was added on the 386.Here
we primarily discuss 32 bit protected mode. Protected mode involves the
x86’s notorious segmentation, but we’ll disregard that for the moment.

Most instructions that address addresses of data in memory use a common
instruction format, Figure 6.(The ones that don’t use specific architecture
defined registers, e.g., the PUSH and POP instructions always use ESP to
address the stack.) Addresses are calculated by adding together any or all
of a signed 1, 2, or 4 byte displacement value in the instruction, a base reg-
ister which can be any of the 32 bit registers, and an optional index regis-
ter which can be any of the 32 bit registers except ESP. The index can be
logically shifted left 0, 1, 2, or 3 bits to make it easier to index arrays of
multi-byte values.

Figure 2-6: Generalized x86 instruction format

2-44 ArchitecturalIssues

one or two opcode bytes, optional mod R/M byte, optional
s-i-b byte, optional 1, 2, or 4 byte displacement

Although it’s possible for a single instruction to include all of displace-
ment, base, and index, most just use a 32 bit displacement, which provides
direct addressing, or a base with a one or two byte displacement, which
provides stack addressing and pointer dereferencing.From a linker’s point
of view, direct addressing permits an instruction or data address to be em-
bedded anywhere in the program on any byte boundary.

Conditional and unconditional jumps and subroutine calls all use relative
addressing. Any jump instruction can have a 1, 2, or 4byte offset which is
added to the address of the instruction following the instruction to get the
target address. Call instructions contain either a 4 byte absolute address,
or else use any of the the usual addressing modes to refer to a memory lo-
cation containing the target address.This permits jumps and calls any-
where in the current 32 bit address space.Unconditional jumps and calls
also can compute the target address using the full data address calculation

Architectural Issues 2-45

described above, most often used to jump or call to an address stored in a
register. Call instructions push the return address on the stack pointed to
by ESP.

Unconditional jumps and calls can also have a full six byte segment/offset
address in the instruction, or calculate the address at which the seg-
ment/offset target address is stored.These call instructions push both the
return address and the caller’s segment number, to permit intersegment
calls and returns.

Paging and Virtual Memory

On most modern computers, each program can potentially address a vast
amount of memory, four gigabytes on a typical 32 bit machine.Few com-
puters actually have that much memory, and even the ones that do need to
share it among multiple programs.Paging hardware divides a program’s
address space into fixed sizepages, typically 2K or 4K bytes in size, and
divides the physical memory of the computer intopage framesof the same
size. Thehardware conatinspage tableswith an entry for each page in the
address space, as shown in Figure 7.

Figure 2-7: Page mapping

Picture of pages mapped through a big page table to real
page frames

2-46 ArchitecturalIssues

A page table entry can contain the real memory page frame for the page,
or flag bits to mark the page ‘‘not present.’’ W hen an application program
attempts to use a page that is not present, hardware generates apage fault
which is handled by the operating system.The operating system can load

Architectural Issues 2-47

a copy of the contents page from disk into a free page frame, then let the
application continue. By moving pages back and forth between main
memory and disk as needed, the operating system can provide virtual
memorywhich appears to the application to be far larger than the real
memory in use.

Vi rtual memory comes at a cost, though.Individual instructions execute
in a fraction of a microsecond, but a page fault and consequent page in or
page out (transfer from disk to main memory or vice versa) takes several
milliseconds since it requires a disk transfer. The more page faults a pro-
gram generates, the slower it runs, with the worst case beingthrashing, all
page faults with no useful work getting done. The fewer pages a program
needs, the fewer page faults it will generate. If the linker can pack related
routines into a single page or a small group of pages, paging performance
improves.

If pages can be marked as read-only, performace also improves. Read-on-
ly pages don’t need to be paged out since they can be reloaded from wher-
ev er they came from originally. If identical pages logically appear in mul-
tiple address spaces, which often happens when multiple copies of the
same program are running, a single physical page suffices for all of the ad-
dress spaces.

An x86 with 32 bit addressing and 4K pages would need a page table with
2ˆ20 entries to map an entire address space.Since each page table entry is
usually four bytes, this would make the page tables an impractical 4
megabytes long. As a result, paged architectures page the page tables,
with upper level page tables that point to the lower level page tables that
point to the actual page frames corresponding to virtual addresses. On the
370, each entry in the upper level page table (called the segment table)
maps 1MB of address space, so the segment table in 31 bit address mode
may contain up to 2048 entries. Each entry in the segment table may be
empty, in which case the entire segment is not present, or may point to a
lower level page table that maps the pages in that segment. Eachlower
level page table has up to 256 entries, one for each 4K chunk of address
space in the segment. Thex86 divides up its page tables similarly, al-
though the boundaries are different. Eachupper level page table (called a
page directory) maps 4MB of address space, so the upper level page table

2-48 ArchitecturalIssues

contains 1024 entries. Each lower level page table also contains 1024 en-
tries to map the 1024 4K pages in the 4MB of address space correspond-
ing to that page table. The SPARC architecture defines the page size as
4K, and has three levels of page tables rather than two.

The two- or three-level nature of page tables are invisible to applications
with one important exception: the operating system can change the map-
ping for a large chunk of the address space (1MB on the 370, 4MB on the
x86, 256K or 16MB on SPARC) by changing a single entry in an upper
level page table, so for efficiency reasons the address space is often man-
aged in chunks of that size by replacing individual second level page table
entries rather than reloading the whole page table on process switches.

The program address space

Every application program runs in an address space defined by a combina-
tion of the computer’s hardware and operating system. The linker or load-
er needs to create a runnable program that matches that address space.

The simplest kind of address space is that provided by PDP-11 versions of
Unix. Theaddress space is 64K bytes starting at location zero. The read-
only code of the program is loaded at location zero, with the read-write da-
ta following the code. The PDP-11 had 8K pages, so the data starts on the
8K boundary after the code.The stack grows downward, starting at
64K-1, and as the stack and data grow, the respective areas were enlarged;
if they met the program ran out of space.Unix on the VAX, the follow-on
to the PDP-11, used a similar scheme. The first two bytes of every VAX
Unix program were zero (a register save mask saying not to save any-
thing.) Asa result, a null all-zero pointer was always valid, and if a C pro-
gram used a null value as a string pointer, the zero byte at location zero
was treated as a null string.As a result, a generation of Unix programs in
the 1980s contained hard-to-find bugs involving null pointers, and for
many years, Unix ports to other architectures provided a zero byte at loca-
tion zero because it was easier than finding and fixing all the null pointer
bugs.

Unix systems put each application program in a separate address space,
and the operating system in an address space logically separate from the
applications. Othersystems put multiple programs in the same address

Architectural Issues 2-49

space, making the linker and particularly the loader’s job more complex
because a program’s actual load address isn’t known until the program’s
about to be run.

MS-DOS on x86 systems uses no hardware protection, so the system and
running applications share the same address space.When the system runs
a program, it finds the largest chunk of free memory, which can be any-
where in the address space, loads the program into it, and starts it.IBM
mainframe operating systems do roughly the same thing, loading a pro-
gram into an available chunk of available address space. In both cases, ei-
ther the program loader or in some cases the program itself has to adjust to
the location where the program is loaded.

MS Windows has an unusual loading scheme. Each program is linked to
load at a standard starting address, but the executable program file contains
relocation information. When Windows loads the program, it places the
program at that starting address if possible, but may load it somewhere
else if the preferred address isn’t available.

Mapped files

Virtual memory systems move data back and forth between real memory
and disk, paging data to disk when it doesn’t fit in real memory. Original-
ly, paging all went to ‘‘anonymous’’ disk space separate from the named
files in the file system. Soon after the invention of paging, though, design-
ers noticed that it was possible to unify the paging system and the file sys-
tem by using the paging system to read and write named disk files.When
a program maps a file to a part of the program’s address space, the operat-
ing system marks all of the pages in that part of the address space not pre-
sent, and uses the file as the paging disk for that part of the address space,
as in Figure 8.The program can read the file merely by referencing that
part of the address space, at which point the paging system loads the nec-
essary pages from disk.

Figure 2-8: Mapping a file

Program points to set of page frames that map to disk file or

2-50 ArchitecturalIssues

local RAM

There are three different approaches to handling writes to mapped files.
The simplest is to map a file read-only (RO), so that any attempts to store
into the mapped region fail, usually causing the program to abort.The
second is to map the file read-write (RW), so that changes to the memory
copy of the file are paged back to the disk by the time the file is un-
mapped. Thethird is to map the file copy-on-write (COW, not the most
felicitous acronym). This maps the page read-only until the program at-
tempts to store into the page. At that time, the operating system makes a
copy of the page which is then treated as a private page not mapped from a

Architectural Issues 2-51

file. Fromthe program’s point of view, mapping a file COW is very simi-
lar to allocating a fresh area of anonymous memory and reading the file’s
contents into that area, since changes the program makes are visible to that
program but not to any other program that might have mapped the same
file.

Shared libraries and programs

In nearly every system that handles multiple programs simultaneously,
each program has a separate set of page tables, giving each program a log-
ically separate address space. This makes a system considerably more ro-
bust, since buggy or malicious programs can’t damage or spy on each oth-
er, but it potentially could cause performance problems. If a single pro-
gram or single program library is in use in more than one address space,
the system can save a great deal of memory if all of the address spaces
share a single physical copy of the program or library. This is relatively
straightforward for the operating system to implement − just map the ex-
ecutable file into each program’s address space. Unrelocated code and
read only data are mapped RO, writable data are mapped COW. The oper-
ating system can use the same physical page frames for RO and unwritten
COW data in all the processes that map the file. (If the code has to be re-
located at load time, the relocation process changes the code pages and
they hav eto be treated as COW, not RO.)

Considerable linker support is needed to make this sharing work. In the
executable program, the linker needs to group all of the executable code
into one part of the file that can be mapped RO, and the data into another
part that can be mapped COW. Each section has to start on a page bound-
ary, both logically in the address space and physically in the file.When
several different programs use a shared library, the linker needs to mark
the each program so that when each starts, the library is mapped into the
program’s address space.

Position-independent code

When a program is in use in several different address spaces, the operating
system can usually load the program at the same place in each of the ad-
dress spaces in which it appears. This makes the linker’s job much easier,

2-52 ArchitecturalIssues

since it can bind all of the addresses in the program to fixed locations, and
no relocation need be done at the time the program is loaded.

Shared libraries complicate this situation considerably. In some simple
shared library designs, each library is assigned a globally unique memory
address either at system boot time or at the time the libraries are created.
This puts the each library at a fixed address, but at the cost of creating a
serious bottleneck to shared library administration, since the global list of
library memory addresses has to be maintained by the system manager.
Furthermore, if a new version of a library appears that is larger than the
previous version and doesn’t fit into the address space assigned, the entire
set of shared libraries and, potentially, all of the programs that reference
them, may need to be relinked.

The alternative is to permit different programs to map a library to different
places in the address space.This eases library administration, but the
compiler, and linker, and program loader need to cooperate so that the li-
brary will work regardless of where in the address space the library ap-
pears.

One simple approach is to include standard relocation information with the
library, and when the library is mapped into each address space, the loader
can fix up any relocatable addresses in the program to reflect the loaded
addresses. Unfortunately, the process of fixing up involves writing into the
library’s code and data, which means that the pages will no longer be
shared, if they’re mapped COW, or the program will crash if the pages are
mapped RO.

To avoid this problem, shared libraries use Position Independent Code
(PIC), code which will work regardless of where in memory it is loaded.
All the code in shared libraries is usually PIC, so the code can be mapped
read-only. Data pages still usually contain pointers which need relocation,
but since data pages are mapped COW anyway, there’s little sharing lost.

For the most part, PIC is pretty easy to create.All three of the architec-
tures we discussed in this chapter use relative jumps, so that jump instruc-
tions within the routines need no relocation. References to local data on
the stack use based addressing relative to a base register, which doesn’t
need any relocation, either. The only challenges are calls to routines not in

Architectural Issues 2-53

the shared library, and references to global data.Direct data addressing
and the SPARC high/low register loading trick won’t work, because they
both require run-time relocation.Fortunately, there are a variety of tricks
one can use to let PIC code handle inter-library calls and global data.We
discuss them when we cover shared libraries in detail in Chapter 9 and 10.

Intel 386 Segmentation

The final topic in this chapter is the notorious Intel architecture segmenta-
tion system. The x86 series is the only segmented architecture still in
common use, other than some legacy ex-Burroughs Unisys mainframes,
but since it’s so popular, we hav eto deal with it. Although, as we’ll short-
ly discuss, 32 bit operating systems don’t make any significant use of seg-
mentation, older systems and the very popular 16-bit embedded versions
of the x86 series use it extensively.

The original 8086 was intended as a follow-on to Intel’s quite popular
8-bit 8080 and 8085 microprocessors. The 8080 has a 16 bit address
space, and the 8086 designers were torn between keeping the 16 bit ad-
dress space, which made translation of 8085 easier and permitted more
compact code, and providing a larger address space to give ‘‘headroom’’
for future applications in larger programs.They compromised, by provid-
ing multiple 16 bit address spaces. Each 16 bit address space was known
as a segment.

A running x86 program has four active segments defined by the four seg-
ment registers. TheCS register defines the code segment, from which in-
structions are fetched. The DS register defines the data segment, from
which most data are loaded and stored. The SS register defines the stack
segment, used for the operands of push and pop instructions, the program
address values pushed and popped by call and return instructions, and any
data reference made using the EBP or ESP as a base register. The ES reg-
ister defines the extra segment, used by a few string manipulation instruc-
tions. The386 and later chips define two more segment registers FS and
GS. Any data reference can be directed into a specific segment by using a
segment override. For example, the instruction MOV EAX,CS:TEMP
fetches a data value from the location TEMP in code segment rather than
the data segment. TheFS and GS segments are only used via segment

2-54 ArchitecturalIssues

overrides.

The segment values need not all be different. Mostprograms set the DS
and SS values the same, so that pointers to stack variables and global vari-
ables can be used interchangably. Some small programs set all four seg-
ment registers the same, providing a single address space known as tiny
model.

On the 8086 and 186, the architecture defined a fixed mapping from seg-
ment numbers to memory addresses by shifting the segment number four
bits to the left. Segment number 0x123 would start at memory location
0x1230 for example. Thissimple addressing is known as real mode.Pro-
grammers often refer informally toparagraphs, 16-byte units of memory
that a segment number can address.

The 286 added a protected mode, in which the operating system can map
segments to arbitrary places in real memory and can mark segments as not
present, providing segment based virtual memory. Each segment can be
marked executable, readable, or read/write, providing segment-level pro-
tection. The386 extended protected mode to 32 bit addressing, so that
each segment can be up to 4GB in size rather than only 64K.

With 16 bit addressing, all but the smallest programs have to handle seg-
mented addresses.Changing the contents of a segment register is quite
slow, 9 clock cycles on a 486 compared to 1 cycle to change the contents
of a general purpose register. As a result, programs and programmers to
go great lengths to pack code and data into as few segments as possible to
avoid having to change the contents of the segment registers. Linkers aid
this process by providing ‘‘groups’’ that can collect related code or data in-
to a single segment. Codeand data pointers can be either near, with an
offset value but no segment number, or far, with both segment and offset.

Compilers can generate code for various memory models which determine
whether code and data addresses are near or far by default. Smallmodel
code makes all pointers near and has one code and one data segment.
Medium model code has multiple code segments (one per program source
file) using far calls, but a single default data segment. Large model code
has multiple code and data segments and all pointers are far by default.
Writing efficient segmented code is very tricky, and has been well docu-

Architectural Issues 2-55

mented elsewhere.

Segmented addressing places significant demands on the linker. Every ad-
dress in a program has both a segment and an offset. Objectfiles consist
of multiple chunks of code which the linker packs into segments. Exe-
cutable programs to be run in real mode have to mark all of the segment
numbers that occur in the program so they can be relocated to the actual
segments where the program is loaded.Executable programs to be run in
protected mode further have to mark what data is to be loaded into what
segment and the protection (code, read-only data, read-write data) for each
segment.

Although the 386 supports all of the 16 bit segmentation features of the
286, as well as 32 bit versions of all of the segmentation features, most 32
bit programs don’t use segmentation at all.Paging, also added in the 386,
provides most of the practical benefits of segmentation without the perfor-
mance cost and the extra complications of writing segment manipulation
code. Most386 operating systems run applications in the tiny model,
more often known as theflat model since a segment on a 386 is no longer
tiny. They create a single code segment and a single data segment each
4GB long and mapping them both to the full 32 bit paged address space.
Even though the program’s only using a single segment, that segment can
be the full size of the address space.

The 386 makes it possible to use both 16 bit and 32 bit segments in the
same program and a few operating systems, notably Windows 95 and 98,
take advantage of that ability. Windows 95 and 98 run a lot of legacy Win-
dows 3.1 code in 16 bit segments in a shared address space, while each
new 32 bit program runs in its own tiny model address space, with the
16-bit programs’ address space mapped in to permit calls back and forth.

Embedded architectures

Linking for embedded systems poses a variety of problems that rarely oc-
cur in other environments. Embeddedchips have limited amounts of
memory and limited performance, but since an embedded program may be
built into chips in thousands or millions of devices, there are great incen-
tives to make programs run as fast as possible in as little memory as possi-
ble. Someembedded systems use low-cost versions of general-purpose

2-56 ArchitecturalIssues

chips, such as the Intel 80186, while others use specialized processors
such as the Motorola 56000 series of digital signal processors (DSPs).

Address space quirks

Embededed systems have small address spaces with quirky layouts. A
64K address space can contain combinations of fast on-chip ROM and
RAM, slow off -chip ROM and RAM, on-chip peripherals, and off-chip pe-
ripherals. Theremay be several non-contiguous areas of ROM or RAM.
The 56000 has three address spaces of 64K 24-bit words, each with com-
binations of RAM, ROM, and peripherals.

Embedded chip development uses system boards that contain the proces-
sor chip along with supporting logic and chips.Frequently, different de-
velopment boards for the same processor will have different memory lay-
outs. Different models of chips have differing amounts of RAM and
ROM, so programmers have to trade off the effort to squeeze a program
into a smaller memory versus the extra cost of using a more expensive ver-
sion of the chip with more memory.

A l inker for an embedded system needs a way to specify the layout of the
linked program in great detail, assigning particular kinds of code or data,
or even individual routines and variables, to specific addresses.

Non-uniform memory

References to on-chip memory are faster than those to off-chip, so in a
system with both kinds of memory, the most time-critical routines need to
go in the fast memory. Sometimes it’s possible to squeeze all of the pro-
gram’s time-critical code into the fast memory at link time. Other times it
makes more sense to copy code or data from slow memory to fast memory
as needed, so several routines can share the same fast memory at different
times. For this trick, it’s very useful to be able to tell a linker "put this
code at location XXXX but link it as though it’s at location YYYY", so
the code will be correct when it’s copied from XXXX in slow memory to
YYYY in fast memory at runtime.

Architectural Issues 2-57

Memory alignment

DSPs frequently have stringent memory alignment requirements for cer-
tain kinds of data structures. The 56000 series, for example, has an ad-
dressing mode to handle circular buffers very efficiently, so long as the
base address of the buffer is aligned on a power-of-two boundary at least
as large as the buffer size (so a 50 word buffer would need to be aligned on
a 64 word boundary, for example.) TheFast Fourier Transform (FFT), an
extremely important calculation for signal processing, depends on address
bit manipulations that also require that the data on which an FFT operates
be power-of-two aligned. Unlike on conventional architectures, The align-
ment requirements depend on the sizes of the data arrays, so that packing
them efficiently into available memory can be tricky and tedious.

Exercises

1. A SPARC program contains these instructions.(These aren’t intended
as a useful program, just as some instruction format examples.)
Loc Hex Symbolic
1000 40 00 03 00 CALL X
1004 01 00 00 00 NOP; no operation, for delay
1008 7F FF FE ED CALL Y
100C 01 00 00 00 NOP
1010 40 00 00 02 CALL Z
1014 01 00 00 00 NOP
1018 03 37 AB 6F SETHI r1,3648367 ; set high 22 bits of r1
101C 82 10 62 EF ORI r1,r1,751; OR in low 10 bits of r1

1a. Ina CALL instruction the high two bits are the instruction code, and
the low 30 bits a signed word (not byte) offset. Whatare the hex address-
es for X, Y, and Z?

1b. What does the call to Z at location 1010 accomplish?

1c. Thetwo instructions at 1018 and 101C load a 32 bit address into reg-
ister 1. The SETHI loads the low 22 bits of the instruction into the high
22 bits of the register, and the ORI logically or’s the low 13 bits of the in-
struction into the register. What address will register 1 contain?

2-58 ArchitecturalIssues

1d. If the linker moves X to be at location 2504(hex) but doesn’t change
the location of the code in the example, to what will it change the instruc-
tion at location 1000 so it still refers to X ?

2. A Pentium program contains these instructions.Don’t forget that the
x86 is little-endian.
Loc Hex Symbolic
1000 E8 12 34 00 00 CALL A
1005 E8 ?? ?? ?? ?? CALL B
100A A1 12 34 00 00 MOV %EAX,P
100F 03 05 ?? ?? ?? ??ADD %EAX,Q

2a. Atwhat location are routine A and data word P located?(Tip: On the
x86, relative addresses are computed relative to the byte addressafter the
instruction.) 2b. If routine B is located at address 0F00 and data word Q
is located at address 3456, what are the byte values of the ?? bytes in the
example? 3. Doesa linker or loader need to ‘‘understand’’ every instruc-
tion in the target architecture’s instruction set? If a new model of the tar-
get adds new instructions, will the linker need to be changed to support
them? Whatif it adds new addressing modes to existing instructions, like
the 386 did relative to the 286?

4. Backin the Golden Age of computing, when programmers worked in
the middle of the night because that was the only time they could get com-
puter time, rather than because that’s when they woke up, many computers
used word rather than byte addresses. The PDP-6 and 10, for example had
36 bit words and 18 bit addressing, with each instruction being a word
with the operand address in the low half of the word. (Programscould al-
so store addresses in the high half of a data word, although there was no
direct instruction set support for that.)How different is linking for a word-
addressed architecture compared to linking for a byte addressed architec-
ture?

5. How hard would it be to build a retargetable linker, that is, one that
could be built to handle different target architectures by changing a few
specific parts of the source code for the linker? How about a multi-target
linker, that could handle code for a variety of different architectures (al-
though not in the same linker job)?

