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Linkers and loaders, along with compilers and assemblersxguesigely *
sensitve © the architectural details, both the hardware architecture and the
architecture corentions required by the operating system of theigear *
computers. Irthis chapter we a@r enough computer architecture to un- *
derstand the jobs that linkersvieaio do. Thedescriptions of all of the *
computer architectures in this chapter are deliberately incomplete arid
leave aut the parts that donaffect the linler such as floating point and *
1/O. *

Two aspects of hardware architecture affect linkers: program addressifig
and instruction formatsOne of the things that a linker does is to modify *
addresses and offsets both in data memory and in instructiontsoth ~ *
cases, the linkr has to ensure that its modifications match the addressing
scheme that the computer uses; when modifying instructions it must fuf
ther ensure that the modifications daw'sult in an imalid instruction. *

At the end of the chaptewe dso look at address space architecture, that
is, what set of addresses a program has to work with.

Application Binary Interfaces

Every operating system presentsAgplication Binary Interfac€ABI) to
programs that run under that system. The ABI consists of programming
conventions that applications ki@ o follow to run under the operating
system. ABIS invaiably include a set of system calls and the technique to
invoke the system calls, as well as rules about what memory addresses a
program can use and often rules about usage of maclgiséers. From

the point of viev of an gplication, the ABI is as much a part of the system
architecture as the underlying hardware architecture, since a program will
fail equally badly if it violates the constraints of either.

In mary cases, the lindr has to do a significant part of the workdned
in complying with the ABI. For example, if the ABI requires that each
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program contains a table of all of the addresses of static data used by rou-
tines in the program, the linker often creates that table, by collecting ad-
dress information from all of the modules linked into the progrdime
aspect of the ABI that most often affects the linker is the definition of a
standard procedure call, a topic we return to later in this chapter.

Memory Addresses

Every computer includes a main memoffhe main memory wariably
appears as an array of storage locations, with each location having a nu-
meric addressThe addresses start at zero and run up to some large num-
ber determined by the number of bits in an address.

Byte Order and Alignment

Each storage location consists of a fixed number of Qigr the past 50
years computers kia been designed with storage locations consisting of
as mam as 64 lits and as f& as 1 hit, but nav nearly e/ery computer in
production addresses 8 bit byteSince much of the data that computers
handle, notably program addresses, are bigger than 8 bits, the computers
can also handle 16, 32, and often 64 or 128 bit data as well, with multiple
adjacent bytes grouped togeth€n some computers, notably those from
IBM and Motorola, the first (humerically lowest addressed) byte in multi-
byte data is the most significant byte, while others, notably DEC and Intel,
it's the least significant byte, Figure 1. In a nod3wlliver’s Travelsthe
IBM/Motorola byte order scheme is known &agy-endian while the
DEC!/Intel scheme ibttle-endian

Figure 21: Byte addressable memory

the usual picture of memory addresses



Architectural Issues 2-29

1 bytes i
16-bitwords | |
o | $hiwords | 8H
big-endian little-endian

The relatve nerits of the two schemes ha&e povoked vehement aju-
ments @er the years.In practice the major issue determining the choice
of byte order is compatibility with older systems, since it is considerably
easier to port programs and data betweenmachines with the same byte
order than between machines with different byte ordelany recent chip
designs can support either byte ordeith the choice made either by the
way the chip is wired up, by programming at system boot time, or iwa fe
cases een slected per application(On these switch-hitting chips, the
byte order of data handled by load and store instructions changes, but the
byte order of constants encoded in instructions doediisis the sort of
detail that keeps the life of the linker writer interesting.)

Multi-byte data must usually baligned on a natural boundaryThat is,
four byte data should be aligned on a four-byte boundexybyte on
two-byte, and so forth. Anotheray to think of it is that the address of
ary N byte datum should wa & least log2(N) lav zero bits. On some
systems (Intel x86, DECAX, IBM 370/390), misaligned data references
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work at the cost of reduced performance, while on others (most RISC
chips), misaligned data causes a prograaitf Exen on systems where
misaligned data donhtause a fault, the performance loss is usually great
enough that is worth the effort to maintain alignment where possible.

Marny processors also kia dignment requirements for program instruc-
tions. MostRISC chips require that instructions be aligned on-byte
boundaries.

Each architecture also definesgjisters a snall set of fied length high-
speed memory locations to which program instructions can refer directly
The number of registers varies from one architecture to andtber as

few as eght in the Intel architecture to 32 in some RISC desidResgis-

ters are almost uwariably the same size as a program address, that is, on a
system with 32 bit addresses, the registers are 32 bits, and on systems with
64 bit addresses, the registers are 64 bits as well.

Address formation

As a computer programxecutes, it loads and stores data to and from
memory as etermined by instructions in the program. The instructions
are themselves stored in memaryually a diferent part of memory from

the prograns data. Instructionsare logically &ecuted in the sequence
they are stored, except that jump instructions specify & pkace in the
program to start»@cuting instructions. (Some architectures use the term
branch for some or all jumpsutbwe call them all jumps here.) Each in-
struction that references data memory and each jump specifies the address
or addresses or the data to load or store, or of the instruction to jump to.
All computers hae a \ariety of instruction formats and address formation
rules that linkers hee © be @le to handle as tlggelocate addresses in in-
structions.

Although computer designers ygamme up with innumerable dgrent
and comple addressing schemes@ the years, most computers currently
in production hae a elatively simple addressing schemd&Designers
found that it5 hard to build a fast version of a complicated architecture,
and compilers rarely makgood use of complicated addressing features.)
We'l | use three architectures as examples:
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. The IBM 360/370/390 (which wh'refer to as the 370)Although
this is one of the oldest architectures still in use, its velgtclean
design has wrn well despite 35 years of added features, and has
been implemented in chips comparable in performance to modern
RISCs.

. SPARC V8 and V9.A popular RISC architecture, witkifly sim-
ple addressing. V8 uses 32 bit registers and addresses, V9 adds 64
bit registers and addresses. The SPARC design is similar to other
RISC architectures such as MIPS and Alpha.

. The Intel 386/486/Pentium (henceforth x86). One of the mest ar
cane and irregular architectures still in use, but undeniably the
most popular.

Instruction formats

Each architecture hasvaeal different instruction formatswe'll only ad-
dress the format details relai © program and data addressing, since
those are the main details that affect thedmihe 370 uses the same-for
mat for data references and jumps, while thaRBP has different formats
and the x86 has some common formats and some different.

Each instruction consists of an opcode, which determines what the instruc-
tion does, and operands. An operand may be encoded in the instruction it-
self (animmediateoperand), or located in memoryhe address of each
operand in memory has to be calculated somel@8metimes the address

is contained in the instruction (direct addressing.) More often the address
is found in one of the registers (register indirect), or calculated by adding a
constant in the instruction to the contents ofgster If the value in the
register is the address of a storage area, and the constant in the instruction
is the offset of the desired datum in the storage area, this scheme&is kno
asbasedaddressing. Ithe roles are swapped and the register contains the
offset, the scheme is known amlexedaddressing. Théelistinction be-
tween based and indal addressing isrt’'well-defined, and manarchitec-

tures combine them, e.g., the 370 has an addressing mode that adds togeth-
er two regsters and a constant in the instruction, arbitrarily calling one of
the registers the base register and the other th& redster, dthough the
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two are treated the same.

Other more complicated address calculation schemes are still inutise, b
for the most part the linker doesiiaveto worry about them since the
don't contain aw fields the linker has to adjust.

Some architectures use dtk length instructions, and some useiable
length instructions. All SPARC instructions are four bytes long, aligned
on four byte boundaries. IBM 370 instructions can be 2, 4, or 6 bytes
long, with the first tw bits of the first byte determining the length and for
mat of the instruction.Intel x86 instructions can be anywhere from one
byte to 14 long. The encoding is quite complex, partly because the x86
was ariginally designed for limited memory environments with a dense in-
struction encoding, and partly because the mestructions added in the
286, 386, and later chips had to be shoe-horned into unused bit patterns in
the existing instruction sefortunately from the point of viev of a linker

writer, the address and offset fields that adinkas to adjust all occur on
byte boundaries, so the linker generally need not be concerned with the in-
struction encoding.

Procedure Calls and Addressability

In the earliest computers, memories were small, and each instruction con-
tained an address field large enough to contain the addresg mearory
location in the computea s£heme nw called direct addressingBy the

early 1960s, addressable memomsvgetting large enough that an instruc-
tion set with a full address in each instruction wouldehamge instruc-

tions that took up too much of still-precious memoryp solve this prob-

lem, computer architects abandoned direct addressing in some or all of the
memory reference instructions, using iRdad base rgisters to preide

most or all of the bits used in addressifAgis allowed instructions to be
shorter at the cost of more complicated programming.

On architectures without direct addressing, including the IBM 370 and
SFARC, programs hae a ‘bootstrapping’ problem for data addressiné
routine uses base values irgisters to calculate data addresses, but the
standard way to get a base value intogagster is to load it from a memory
location which is in turn addressed from another base value igistere
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The bootstrap problem is to get the first basleerinto a register at the be-
ginning of the program, and subsequently to ensure that each routine has
the base values it needs to address the data it uses.

Procedure alls

Every ABI defines a standard procedure call sequence, using a combina-
tion of hardware-defined call instructions andwamtions about rgister

and memory useA hardware call instruction ses the return address (the
address of the instruction after the call) and jumps to the proceQure.
architectures with a hardware stack such as the x86 the return address is
pushed on the stack, while on other architecturessated in a regster,

with software having the responsibility tov@&the register in memory if
necessaryArchitectures with a stack generallywbkaa fardware return in-
struction that pops the return address from the stack and jumps to that ad-
dress, while other architectures usébaanch to address in gester’ in-
struction to return.

Within a procedure, data addressing falls into four categories:
. The caller can passgumentdo the procedure.

. Local variablesare allocated withing procedure and freed before
the procedure returns.

. Local staticdata is stored in a fixed location in memory and is pri-
vate to the procedure.

. Global staticdata is stored in a fixed location in memory and can
be referenced from maifferent procedures.
The chunk of stack memory allocated for a single procedure call is
known as astadk frame Figure 2 shows a typical stack frame.

Figure 2-2: Stak frame memory layout

Picture of a stack frame
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Arguments and localaviables are usually allocated on the stack. One of
the registers serves as a stack pointer which can be used as ajistse re
In a common ariant of this scheme, used with SPARC and x86, a separate
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frame pointer or base pointer register is loaded from the stack pointer at
the time a procedure starts. This makes it possible to push variable sized
objects on the stack, changing tredue in the stack pointer register to a
hard-to-predict value,u still lets the procedure address arguments and lo-
cals at fixed offsets from the frame pointer which ddegdrénge during a
procedures execution. Assuminghe stack grows from higher tower
addresses and that the frame pointer points to the address in memory
where the return address is stored, arguments are at smallgpd$gets

from the frame pointeend local variables at getive dfsets. Theperat-

ing system usually sets the initial stack pointer register before a program
starts, so the program need only update the register as needed when it
pushes and pops data.

For local and global static data, a compiler can generate a table of pointers
to all of the static objects that a routine references. If one of ¢hsters
contains a pointer to this table, the routine can addresdesired static
object by loading the pointer to the object from the table using the table
pointer register into anothergister using the table pointer register as a
base rgister then using that second register as the base register to address
the object. The trick, then, is to get the address of the table into the first
register On SPARC, the routine can load the table address into tis-re

ter using a sequence of instructions with immediate operands, and on the
SFARC or 370 the routine can use atant of a subroutine call instruction

to load the program counter (the register that keeps the address of-the cur
rent instruction) into a basegister though for reasons we discuss later
those techniques cause problems in library colldoetter solution is to

foist off the job of loading the table pointer on the rousin&ller, since

the caller will hae its avn table pointer already loaded and can get ad-
dress of the called routirgefable from its own table.

Figure 3 shows a typical routine calling sequence. Rfis the frame pointer
Rt is the table pointeend Rx is a temporary scratchgister The caller

saves its own table pointer in its own stack frame, then loads both the ad-
dress of the called routine and the called rousipeinter table into rgis-

ters, then makes the call’he called routine can then find all of its neces-
sary data using the table pointer in Rt, including addresses and table point-
ers for ay routines that it in turn calls.
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Figure 2-3: Idealized calling sequence

push argunments on the stack ...
store Rt - xxx(Rf) ; save caller’s table pointer in caller’s stack frane
load Rx « MW Rt) ; load address of called routine into tenp register
load Rt « NNN(Rt) ; load called routine’s table pointer
call (Rx) ; call routine at address in Rx
load Rt ~ xxx(Rf) ; restore caller’s table pointer

Several optimizations are often possiblen mary cases, all of the routines

in a module share a single pointer table, in which case intra-module calls
neednt change the table pointefhe SPARC covention is that an entire
library shares a single table, created by theelinrdo he table pointer g

ister can remain unchanged in intra-module calls. Calls within the same
module can usually be made using a version of‘tladf’’ i nstruction with

the offset to the called routine encoded in the instruction, wiakdsathe

need to load the address of the routine intogéster With both of these
optimizations, the calling sequence to a routine in the same module re-
duces to a single call instruction.

To return to the address bootstram quesiony Hoes this chain of table
pointers gets started? If each routine gets its table pointer loaded by the
preceding routine, where does the initial routine get its pointer? The an-
swer varies, but alays involves special-case coddhe main routines

table may be stored at adtk address, or the initial pointer value may be
tagged in thexecutable file so the operating system can load it before the
program startsNo matter what the technique is, ivanably needs some

help from the linker.

Data and instruction references

We row look more concretely at the way that programs in our three archi-
tectures address data values.
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IBM 370

The 1960s vintage System/360 started with a very straightforward data ad-
dressing scheme, which has become someone more complivetetieo

years as the 36(valved into the 370 and 39 very instruction that ref-
erences data memory calculates the address by adding a 12-bit unsigned
offset in the instruction to a base register and maybe ax mdgster.

There are 16 general registers, each 32 bits, numbered from 0 to 18, all b
one of which can be used as irdegsters. Ifregister O is specified in an
address calculation, the value 0 is used rather than the register contents.
(Register 0 exists and is usable for arithmetic, but not for addresdimg.)
instructions that takthe target address of a jump from giséer regster O
means dort’jump.

Figure 4 shows the major instruction formafs RX instruction contains

a regster operand and a single memory operand, whose address is calcu-
lated by adding the f#fet in the instruction to a base register andnde
register More often than not the indeegster is zero so the address is
just base plus tdet. Inthe RS, SI and SS formats, the 12 bit offset is
added to a basegmster An RS nstruction has one memory operand, with
one or two other operands being ingisters. AnSl instruction has one
memory operand, the other operand being an immediate 8 bit value in the
instruction An SS instruciton hasawnemory operands, storage to storage
operations. TheRR format has te regster operands and no memory
operands at all, although some RR instructions interpret one or both of the
registers as pointers to memoryhe 370 and 390 added some minariv
ations on these formats, but none with different data addressing formats.

Figure 2-4: IBM 370 instruction formats
Picture of IBM instruction formats RX, RS, SI, SS
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Instructions can directly address the lowest 4096 locations in memory by
specifying base register zero. This ability is essentialvunlével system
programming but is rnver used in application programs, all of which use
base register addressing.

Note that in all three instruction formats, the 12 bit addrefsetois al-
ways stored as thewn12 hits of a 16-bit aligned halfard. Thismakes it
possible to specify fixups to address offsets in object files withgute&n
erence to instruction formats, since the offset formatnaya the same.

The original 360 had 24 bit addressing, with an address in memory or a
register being stored in thevo24 hts of a 32 bit word, and the high eight
bits disrgarded. The370 extended addressing to 31 biténfortunately,

mary programs including OS/360, the most popular operating system,
stored flags or other data in the high byte of 32 bit address words in mem-
ory, so it wasnt possible to gtend the addressing to 32 bits in theiohs

way and still support existing object code. Instead, the system has 24 bit
and 31 bit modes, and atyamoment a CPU interprets 24 bit addresses or
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31 bit addressesA corvention enforced by a combination of haahe

and software states that an addressdwvith the high bit set contains a 31

bit address in the rest of the word, while one with the high bit clear con-
tains a 24 bit address. As a result, a linker has to be able to handle both 24
bit and 31 bit addresses since programs can and do switch modes depend-
ing on hav long ago a particular routine was writteRor historical rea-

sons, 370 linkers also handle 16 bit addresses, since early small models in
the 360 line often had 64K or less of main memory and programs used
load and store halfword instructions to manipulate address values.

Later models of the 370 and 390 addegnsented address spaces some-
what like those of the x86 series. These feature let the operating system
define multiple 31 bit address spaces that a program can addresx-with e
tremely complg rules defining access controls and address space switch-
ing. Asfar as | @n tell, there is no compiler or liak support for these
features, which are primarily used by high-performace database systems,
so we wort address them further.

Instruction addressing on the 370 is also reditistraightforvard. Inthe
original 360, the jumps (akys referred to as branch instructions) were all
RR or RX format. In RR jumps, the second register operand contained the
jump target, rgister 0 meaning donhjump. InRX jumps, the memory
operand is the jump t@et. Theprocedure call is Branch and Link (sup-
planted by the later Branch and Store for 31 bit addressing), which stores
the return address in a specifiedisger and then jumps to the address in
the second gaster in the RR form or to the second operand address in the
RX form.

For jumping around within a routine, the routine has to estabéiddress-
ability’”, that is, a base ggster that points to (or at least close to) the be-
ginning of the routine that RX instructions can use. Bwention, reyis-

ter 15 contains the address of the entry point to a routine and can be used
as a base gister Alternatvely an RR Branch and Link or Branch and
Store with a second register of zero stores the address of the subsequent
instruction in the first operandgister but doeshjump, and can be use to

set up a base register if the prior register contents are wnkn®inceRX
instructions hee a P hit offset field, a single base regist&overs” a 4K

chunk of code.If a routine is bigger than that, it has to use multiple base
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registers to ceer al of the routine$ code.

The 390 added relat forms of all of the jumps. In thesewméorms, the
instruction contains a signed 16 bifsaft which is logically shifted left
one bit (since instructions are aligned eerebytes) and added to the ad-
dress of the instruction to get the address of the jungettaiThesenew
formats use no ggster to compute the address, and permit jumps within
+/- 64K bytes, enough for intra-routine jumps in all but the largest rou-
tines.

SPARC

The SPARC comes close t@ihg up to its name as a reduced instruction
set processothough as the architecture haslged through nine er-
sions, the original simple design has wnosomewhat more comple
SFARC versions through V8 are 32 bit architectur88ARC V9 expands
the architecture to 64 bits.

SPARC V8

SFARC has four major instruction formats and 31 minor instruction for
mats, Figure 5, four jump formats, andtdata addressing modes.

In SPARC V8, there are 31 general purpose registers, each 32 bits, num-
bered from 1 to 31Reyister O is a pseudo-register thawvafls contains
the value zero.

An unusualregister windowscheme attempts to minimize the amount of
register saving and restoring at procedure calls and retdims.windavs
have little effect on linkers, so we am't discuss them further(Register
windows originated in the Bedtey RISC design from which SPARC is
descended.)

Data references use one ofotaddressing modes. One mode computes
the address by adding thaelwes in tvo regsters together(One of the rg-

isters can be r0 if the other register already contains the desired address.)
The other mode adds a 13 bit signed offset in the instruction to a gase re
ister.
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SFARC assemblers and lieks support a pseudo-direct addressing scheme
using a two-instruction sequence. Thetwstructions are SETHI, which
loads its 22 bit immediate value into the high 22 bits ofgéster and ze-

ros the lower 10 bits, followed by OR Immediate, which ORs its 13 bit im-
mediate value into the o part of the rgister The assembler and liek
arrange to put the high andnugarts of the desired 32 bit address into the
two instructions.

Figure 25: SPARC

30 bit call 22 bit branch and SETHI 19 bit branch 16 bit
branch (V9 only) op R+R op R+113

' - T

can [p|  displacement.
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The procedure call instruction and most conditional jump instructions (re-
ferred to as branches in SPARC literature) use velaidressing with
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various size branch offsets ranging from 16 to 30 bithatever the ofset

size, the jump shifts the offset avbits left, since all instructions ka ©

be at four-byte word addresses, sign extends the result to 32 or 64 bits, and
adds that value to the address of the jump or call instruction to get-the tar
get address. The call instruction uses a 30 fsetfwhich means it can
reach ag address in a 32 bit V8 address spaCalls store the return ad-
dress in register 15Various kinds of jumps use a 16, 19, or 22 bitef,
which is large enough to jump anywhere iry gohausibly sized routine.
The 16 bit format breaks thefgét into a two-bit high part and a fourteen-
bit low part stored in different parts of the instruction word, but that
doesnt cause ay great trouble for the linker.

SFARC also has a "Jump and Link" which computes the target address the
same \vay that data reference instructions do, by adding together either
two source registers or a sourcayister and a constant offset. It also can
store the the return address in a target register.

Procedure calls use Call or Jump and Link, which store the return address
in register 15, and jumps to the target address. Procedure return uses JMP
8[r15], to return tw instructions after the call(SFARC calls and jumps

are "delayed" and optionallyecute the instruction following the jump or

call before jumping.)

SPARC V9

SFARC V9 expands all of the registers to 64 bits, using the3d hts of
each rgister for old 32 bit programs. All existing instructions continue to
work as before, except that register operands awe G¥brather than 32
bits. Nev load and store instructions handle 64 bit data, amdbnanch
instructions can test either the 32 or 64 bit result of @que instructions.
SFARC V9 adds no ne instructions for synthesizing full 64 bit addresses,
nor is there a e call instruction. Full addresses can be synthesized via
lengthy sequences that create theot®2 kit halves of the address in sepa-
rate registers using SETHI and OR, shift the high half 32 bits to the left,
and OR the tw parts together In practice 64 bit addresses are loaded
from a pointer table, and inter-module calls load the address of get tar
routine from the table into a register and then use jump and link te mak
the call.
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Intel x86

The Intel x86 architecture is by far the most commethe three that we
discuss. lItfeatures an asymmetrical instruction set and segmented ad-
dresses. Therare six 32 bit general purpose registers named EAX, EBX,
ECX, EDX, ESI, and EDI, as well as dwegsters used primarily for ad-
dressing, EBP and ESéhd six specialized 16 bit segment registers CS,
DS, ES, FS, GS, and SShe lav half of each of the 32 bit registers can
be used as 16 bitgesters called AX, BX, CX, DX, SI, DI, BRnd SP

and the lav and high bytes of each of the AX through DX registers are
eight-bit reisters called AL, AH, BL, BH, CL, CH, DL, and DH. On the
8086, 186, and 286, mannstructions required its operands in specific
registers, but on the 386 and later chips, most but not all of the functions
that required specific gesters hae keen generalized to useyaregster.

The ESP is the hardware stack poingad alvays contains the address of
the current stackThe EBP pointer is usually used as a frame register that
points to the base of the current stack frame. (The instruction set encour
ages but doesnrequire this.)

At any moment an x86 is running in one of three modes: real mode which
emulates the original 16 bit 8086, 16 bit protected mode which was added
on the 286, or 32 bit protected mode which was added on thel83é.

we primarily discuss 32 bit protected mode. Protected moatvas the
x86’s motorious segmentation, but we’ll digigd that for the moment.

Most instructions that address addresses of data in memory use a common
instruction format, Figure 6(The ones that dohuse specific architecture
defined rgisters, e.g., the PUSH and POP instructionsyd use ESP to
address the stack.) Addresses are calculated by adding togetiuerain

of a signed 1, 2, or 4 byte displacement value in the instruction, a lgase re
ister which can be gnof the 32 bit rgisters, and an optional indeegs-

ter which can be gnof the 32 bit registers except ESPhe inde can be
logically shifted left O, 1, 2, or 3 bits to m&alt easier to inde arrays of
multi-byte values.

Figure 26: Generalized x86 instruction format
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one or tvo opcode bytes, optional mod R/M byte, optional
s-i-b byte, optional 1, 2, or 4 byte displacement

"3 optional optional optional
opcode - mod r/im s-i-b: aord E
one ortwo one one ,
‘hytes byte byte aord |
aord|

One, two, or four byte
address or displacement

Mod rim speeiﬁes address format
S-1-B specifies scaled index and/or base register

Address may be absolute or relative to base and/or index

Although it’s possible for a single instruction to include all of displace-
ment, base, and index, most just use a 32 bit displacement, whiatiesro
direct addressing, or a base with a one ar yte displacement, which
provides stack addressing and pointer dereferendingm a linker’s point

of view, direct addressing permits an instruction or data address to be em-
bedded anywhere in the program oy byte boundary.

Conditional and unconditional jumps and subroutine calls all useveelati
addressing. Aypjump instruction can va a 1 2, or 4byte offset which is
added to the address of the instruction following the instruction to get the
target address. Call instructions contain either a 4 byte absolute address,
or else use anof the the usual addressing modes to refer to a memory lo-
cation containing the target addresBhis permits jumps and calls yan
where in the current 32 bit address spadaconditional jumps and calls

also can compute the target address using the full data address calculation
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described abee, most often used to jump or call to an address stored in a
register Call instructions push the return address on the stack pointed to
by ESP.

Unconditional jumps and calls can alswéa 1l six byte sgment/offset
address in the instruction, or calculate the address at which ghe se
ment/ofset target address is store@ihese call instructions push both the
return address and the calfegegmnent numberto permit intersgment
calls and returns.

Paging and Virtual Memory

On most modern computers, each program can potentially addrass a v
amount of memoryfour gigabytes on a typical 32 bit machirfeav com-
puters actually hae that much memorand esen the ones that do need to
share it among multiple program®aging hardware divides a progran’
address space into fixed siages, typically 2K or 4K bytes in size, and
divides the physical memory of the computer ipége famesof the same
size. Thehardware conatinpage tableswith an entry for each page in the
address space, as shown in Figure 7.

Figure 27: Page napping

Picture of pages mapped through a big page table to real
page frames
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A page table entry can contain the real memory page frame for the page,
or flag bits to mark the page “not presénty hen an application program
attempts to use a page that is not present, lamedgenerates @age fult

which is handled by the operating systeihe operating system can load
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a aopy of the contents page from disk into a free page frame, then let the
application continue. By moving pages back and forth between main
memory and disk as needed, the operating system caidenartual
memorywhich appears to the application to be far larger than the real
memory in use.

Virtual memory comes at a cost, thoudhdividual instructions xecute

in a fraction of a microsecond, but a pagelf and consequent page in or
page out (transfer from disk to main memory or vice versa) takesake
milliseconds since it requires a disk transf€éhe more page faults a pro-
gram generates, the slower it runs, with the worst case theaghing all

page faults with no useful work getting done. The fewer pages a program
needs, the fewer page faults it will generate. If the linker can pack related
routines into a single page or a small group of pages, paging performance
improves.

If pages can be marked as read-ppérformace also impres. Read-on-

ly pages dort’need to be paged out sinceyttgan be reloaded from wher

eve they came from originally If identical pages logically appear in mul-
tiple address spaces, which often happens when multiple copies of the
same program are running, a single physical padeesifor all of the ad-
dress spaces.

An x86 with 32 bit addressing and 4K pagesnd need a page table with
2720 entries to map an entire address sp&aece each page table entry is
usually four bytes, this suld male the page tables an impractical 4
megabytes long. As a result, paged architectures page the page tables,
with upper leel page tables that point to thewler level page tables that
point to the actual page frames corresponding to virtual addresses. On the
370, each entry in the uppewnék page table (called the segment table)
maps 1MB of address space, so thgnsent table in 31 bit address mode
may contain up to 2048 entries. Each entry in the segment table may be
empty in which case the entire g@ent is not present, or may point to a
lower level page table that maps the pages in thgtmemt. EacHower

level page table has up to 256 entries, one for each 4K chunk of address
space in the ggnent. Thex86 divides up its page tables similarg-
though the boundaries arefdilent. Eachupper leel page table (called a
page directory) maps 4MB of address space, so the upgepégie table
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contains 1024 entries. Each lowevdepage table also contains 1024 en-
tries to map the 1024 4K pages in the 4MB of address space correspond-
ing to that page table. The SPARC architecture defines the page size as
4K, and has threeVels of page tables rather than two.

The two- or three-legel nature of page tables are invisible to applications
with one important xeception: the operating system can change the map-
ping for a lage chunk of the address space (1MB on the 370, 4MB on the
x86, 256K or 16MB on SPARC) by changing a single entry in an upper
level page table, so for ifiency reasons the address space is often man-
aged in chunks of that size by replacing individual secord page table
entries rather than reloading the whole page table on process switches.

The program address space

Every application program runs in an address space defined by a combina-
tion of the computes hardware and operating system. The linker or load-
er needs to create a runnable program that matches that address space.

The simplest kind of address space is that provided by PDP-11 versions of
Unix. Theaddress space is 64K bytes starting at location zero. The read-
only code of the program is loaded at location zero, with the read-write da-
ta following the code. The PDP-11 had 8K pages, so the data starts on the
8K boundary after the codeThe stack grows denward, starting at
64K-1, and as the stack and datavgrihe respectie aeas were enlged;

if they met the program ran out of spadgnix on the VAX, the follev-on

to the PDP-11, used a similar scheme. The firstliytes of @ery VAX

Unix program were zero (a registevearask saying not to se any-
thing.) Asa result, a null all-zero pointer wasaadys valid, and if a C pro-
gram used a null value as a string pointee zero byte at location zero
was treated as a null stringAs a result, a generation of Unix programs in
the 1980s contained hard-to-find bugsolaing null pointers, and for
mary years, Unix ports to other architectures provided a zero byte at loca-
tion zero because itag easier than finding and fixing all the null pointer

bugs.
Unix systems put each application program in a separate address space,

and the operating system in an address space logically separate from the
applications. Othesystems put multiple programs in the same address
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space, making the linker and particularly the load@b more comple
because a programectual load address ignknown until the prograns
about to be run.

MS-DOS on x86 systems uses no hardware protection, so the system and
running applications share the same address spdben the system runs

a program, it finds the lgest chunk of free memaqrwhich can be an

where in the address space, loads the program into it, and stdBMit.
mainframe operating systems do roughly the same thing, loading a pro-
gram into an ailable chunk of sailable address space. In both cases, ei-
ther the program loader or in some cases the program itself has to adjust to
the location where the program is loaded.

MS Windows has an unusual loading scheme. Each program is linked to
load at a standard starting address, butxkeutable program file contains
relocation information. When Wdows loads the program, it places the
program at that starting address if possible, but may load itvdoene

else if the preferred address tsavailable.

Mapped files

Virtual memory systems e data back and forth between real memory
and disk, paging data to disk when it doefihin real memory Original-

ly, paging all went to‘anonymous’ disk space separate from the named
files in the file system. Soon after thgention of paging, though, design-

ers noticed that it was possible to unify the paging system and the file sys-
tem by using the paging system to read and write named disk\leen

a program maps a file to a part of the progmaldress space, the operat-

ing system marks all of the pages in that part of the address space not pre-
sent, and uses the file as the paging disk for that part of the address space,
as in Figure 8.The program can read the file merely by referencing that
part of the address space, at which point the paging system loads the nec-
essary pages from disk.

Figure 28: Mapping a file

Program points to set of page frames that map to disk file or
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There are three ddrent approaches to handling writes to mapped files.
The simplest is to map a file read-onlyQ)R so that ay attempts to store

into the mapped region fail, usually causing the program to abidw.
second is to map the file read-write (RW), so that changes to the memory
copy of the file are paged back to the disk by the time the file is un-
mapped. Thehird is to map the file copy-on-write (@ not the most
felicitous acrogm). Thismaps the page read-only until the program at-
tempts to store into the page. At that time, the operating systemsmak
copy of the page which is then treated as agbei page not mapped from a
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file. Fromthe prograns point of view, mapping a file C®/ is very simi-

lar to allocating a fresh area of anonymous memory and reading tke file’
contents into that area, since changes the program makes are visible to that
program but not to gnother program that might ka mapped the same

file.

Shared libraries and programs

In nearly @ery system that handles multiple programs simultanepusly
each program has a separate set of page tables, giving each program a log-
ically separate address space. This makes a system considerably more ro-
bust, since buggy or malicious programs taamage or spon each oth-

er, but it potentially could cause performance problems. If a single pro-
gram or single program library is in use in more than one address space,
the system can sa a geat deal of memory if all of the address spaces
share a single physical gppf the program or library This is relatvely
straightforvard for the operating system to implement — just map xhe e
ecutable file into each prograsn&dress space. Unrelocated code and
read only data are mapped RO, writable data are mappéd Te oper

ating system can use the same physical page frame®fandRunwritten

COW data in all the processes that map the file. (If the code has to be re-
located at load time, the relocation process changes the code pages and
they haveto be treated as G& not RO.)

Considerable linker support is needed to entiis sharing wrk. Inthe
executable program, the linker needs to group all of tkeewgable code

into one part of the file that can be mappé&d, Bnd the data into another
part that can be mapped @O Each section has to start on a page bound-
ary, both logically in the address space and physically in the YWéen
several different programs use a shared libydhe linker needs to mark

the each program so that when each starts, the library is mapped into the
programs address space.

Paosition-independent code

When a program is in use inveeal different address spaces, the operating
system can usually load the program at the same place in each of the ad-
dress spaces in which it appears. This makes thernpb much easier
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since it can bind all of the addresses in the programed focations, and
no relocation need be done at the time the program is loaded.

Shared libraries complicate this situation considerabty some simple
shared library designs, each library is assigned a globally unique memory
address either at system boot time or at the time the libraries are created.
This puts the each library at a fixed address, but at the cost of creating a
serious bottleneck to shared library administration, since the global list of
library memory addresses has to be maintained by the system manager
Furthermore, if a ne version of a library appears that isger than the
previous \ersion and doesnfit into the address space assigned, the entire
set of shared libraries and, potentialiy of the programs that reference
them, may need to be relinked.

The alternatie is to permit different programs to map a library tofelient
places in the address spacEhis eases library administration, but the
compilet and linker, and program loader need to cooperate so that the li-
brary will work regardless of where in the address space the library ap-
pears.

One simple approach is to include standard relocation information with the
library, and when the library is mapped into each address space, the loader
can fix up ag relocatable addresses in the program to reflect the loaded
addresses. Unfortunatethie process of fixing upwolves writing into the
library’s code and data, which means that the pages will no longer be
shared, if thg're mapped C@/, or the program will crash if the pages are
mapped RO.

To avoid this problem, shared libraries use Position Independent Code
(PIC), code which will work rgardless of where in memory it is loaded.

All the code in shared libraries is usually PIC, so the code can be mapped
read-only Data pages still usually contain pointers which need relocation,
but since data pages are mappedWZ@yway, theres little sharing lost.

For the most part, PIC is pretty easy to creadd.three of the architec-
tures we discussed in this chapter use kedgtimps, so that jump instruc-
tions within the routines need no relocation. References to local data on
the stack use based addressing nadaih a kase rgister which doesrt’

need ay relocation, either The only challenges are calls to routines not in
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the shared libraryand references to global dat®irect data addressing
and the SPARC highfe regster loading trick wen’t work, because tlye
both require run-time relocatiorzortunately there are a variety of tricks
one can use to let PIC code handle inter-library calls and global \d&ta.
discuss them when we @ shared libraries in detail in Chapter 9 and 10.

Intel 386 Segmentation

The final topic in this chapter is the notorious Intel architectugeneata-

tion system. The x86 series is the only segmented architecture still in
common use, other than somgdey exBurroughs Unisys mainframes,
but since it’'s so ppular we haveto deal with it. Although, as wk'short-

ly discuss, 32 bit operating systems daonake any dgnificant use of s
mentation, older systems and the very popular 16-bit embeddsbivs

of the x86 series use it extevely.

The original 8086 was intended as a follow-on to Ingeltuite popular

8-bit 8080 and 8085 microprocessors. The 8080 has a 16 bit address
space, and the 8086 designers were torn between keeping the 16 bit ad-
dress space, which made translation of 8085 easier and permitted more
compact code, and providing a larger address spaceddggadroom”

for future applications in lger programs.They compromised, by prad-

ing multiple 16 bit address spaces. Each 16 bit address space was kno
as a segment.

A running x86 program has four aaisgnents defined by the fourge

ment rgisters. TheCS register defines the code segment, from which in-
structions are fetched. The DSgigter defines the data segment, from
which most data are loaded and stored. The SS register defines the stack
segment, used for the operands of push and pop instructions, the program
address values pushed and popped by call and return instructionsyand an
data reference made using the EBP or ESP as a lggstereThe ES rg-

ister defines thex¢ra segment, used by anfestring manipulation instruc-
tions. The386 and later chips define awnore segment registers FS and
GS. Ary data reference can be directed into a specific segment by using a
sgment oerride. For example, the instruction MOEAX,CS:TEMP
fetches a data value from the location TEMP in code segment rather than
the data sgment. TheFS and GS segments are only used vgmsat
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overrides.

The segment values need not all béedént. Mostprograms set the DS
and SS alues the same, so that pointers to stack variables and géobal v
ables can be used interchably. Some small programs set all fourgse
ment reisters the same, providing a single address space knowryas tin
model.

On the 8086 and 186, the architecture defined a fixed mapping fgpm se
ment numbers to memory addresses by shifting thmeet number four
bits to the left. Sggment number 0x123 would start at memory location
0x1230 for @ample. Thissimple addressing is known as real mogeo-
grammers often refer informally {waragraphs 16-byte units of memory
that a segment number can address.

The 286 added a protected mode, in which the operating system can map
segments to arbitrary places in real memory and can mark segments as not
present, providing sgnent based virtual memorfach segment can be
marked eecutable, readable, or read/write, providingreent-lerel pro-
tection. The386 extended protected mode to 32 bit addressing, so that
each segment can be up to 4GB in size rather than only 64K.

With 16 bit addressing, all but the smallest programe lahandle sg-
mented addresse<hanging the contents of a segment register is quite
slow, 9 dock cycles on a 486 compared to 1 cycle to change the contents
of a general purposegister As a lesult, programs and programmers to
go great lengths to pack code and data intovasdégments as possible to
avad having to change the contents of thgrsent rgisters. Linlers aid

this process by providinggroups’ that can collect related code or data in-

to a single sgment. Codeand data pointers can be either nedth an
offset value but no segment numbaarfar, with both segment and offset.

Compilers can generate code farious memory models which determine
whether code and data addresses are near or far éyitdedmallmodel

code makes all pointers near and has one code and one gla@nse
Medium model code has multiple code segments (one per program source
file) using far calls, but a single default datgreent. Lage model code

has multiple code and data segments and all pointers are fardwltdef
Writing efficient segmented code is very tyclend has been well docu-
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mented elsewhere.

Segymented addressing places significant demands on tles ligkery ad-

dress in a program has both a segment andfaet.ofObjecffiles consist

of multiple chunks of code which the linker packs intgmrsents. Eg-
cutable programs to be run in real modeeh® mark all of the sgment
numbers that occur in the program soythan be relocated to the actual
seggments where the program is loadétkecutable programs to be run in
protected mode further & to mark what data is to be loaded into what
segment and the protection (code, read-only data, read-write data) for each
segment.

Although the 386 supports all of the 16 bit segmentation features of the
286, as well as 32 bitevsions of all of the segmentation features, most 32
bit programs dor’use segmentation at alPaging, also added in the 386,
provides most of the practical benefits ofjsentation without the perfor
mance cost and the extra complications of writingmeant manipulation
code. Most386 operating systems run applications in thg timodel,

more often known as tH&at model since a segment on a 386 is no longer
tiny. They create a single code segment and a single data segment each
4GB long and mapping them both to the full 32 bit paged address space.
Even though the prograsionly using a single segment, that segment can
be the full size of the address space.

The 386 maks it possible to use both 16 bit and 32 bit segments in the
same program and aweoperating systems, notablyilidows 95 and 98,
take advantage of that abilityWindows 95 and 98 run a lot ofgecy Win-

dows 3.1 code in 16 bit genents in a shared address space, while each
nev 32 kit program runs in its own tynmodel address space, with the
16-bit programs’ address space mapped in to permit calls back and forth.

Embedded architectures

Linking for embedded systems posesasiety of problems that rarely oc-

cur in other emronments. Embeddedhips ha&e limited amounts of
memory and limited performance, but since an embedded program may be
built into chips in thousands or millions of devices, there are great incen-
tives to make programs run as fast as possible in as little memory as possi-
ble. Someembedded systems use low-cost versions of general-purpose
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chips, such as the Intel 80186, while others use specialized processors
such as the Motorola 56000 series of digital signal processors (DSPSs).

Address space quirks

Embededed systemsJeasnall address spaces with quirkayouts. A

64K address space can contain combinationsasff én-chip ROM and
RAM, slow off-chip ROM and RAM, on-chip peripherals, and-ciip pe-
ripherals. Therenay be seeral non-contiguous areas ofoR1 or RAM.

The 56000 has three address spaces of 64K 24-bit words, each with com-
binations of RAM, ROM, and peripherals.

Embedded chip delopment uses system boards that contain the proces-
sor chip along with supporting logic and chigstequently different de-
velopment boards for the same processor willehdfferent memory lay-
outs. Diferent models of chips ka dffering amounts of RAM and
ROM, so programmers ka  trade of the effort to squeeze a program
into a smaller memory versus thdra cost of using a moregensve va-

sion of the chip with more memory.

A linker for an embedded system needs a way to specify the layout of the
linked program in great detail, assigning particular kinds of code or data,
or even individual routines and variables, to specific addresses.

Non-uniform memory

References to on-chip memory are faster than those to off-chip, so in a
system with both kinds of memorje most time-critical routines need to

go in the fast memorySometimes it possible to squeeze all of the pro-
gram’ tme-critical code into the fast memory at link time. Other times it
malkes more sense to gppode or data from sl memory to fast memory

as needed, sos®al routines can share the same fast memory fatrelift
times. For this trick, its very useful to be able to tell a linker "put this
code at location XXXX bt link it as though i at bcation YYYY", so

the code will be correct whenstopied from XXXX in slav memory to
YYYY in fast memory at runtime.
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Memory alignment

DSPs frequently he dringent memory alignment requirements for-cer
tain kinds of data structures. The 56000 series, for example, has an ad-
dressing mode to handle circulanfiers \ery eficiently, so bng as the

base address of theifter is aligned on a peer-of-two boundary at least

as large as thauffer size (so a 50 wordufffer would need to be aligned on

a 64 word boundaryfor example.) TheFast Fourier Transform (FFT), an
extremely important calculation for signal processing, depends on address
bit manipulations that also require that the data on which an FFT operates
be paver-of-two digned. Unlike on conventional architectures, The align-
ment requirements depend on the sizes of the data arrays, so that packing
them efficiently into @ailable memory can be trigkand tedious.

Exercises

1. A SFARC program contains these instructiorf$hese aren’intended
as a useful program, just as some instruction format examples.)
Loc Hex Synbol i c

1000 40 00 03 00 CALL X

1004 01 00 00 00 NOP; no operation, for delay

1008 7F FF FE ED CALL Y

100C 01 00 00 00 NOP

1010 40 00 00 02 CALL Z

1014 01 00 00 00 NOP

1018 03 37 AB 6F SETH r1, 3648367 ; set high 22 bits of r1l
101C 82 10 62 EF ORI r1,r1,751; ORin low 10 bits of r1

la. Ina CALL instruction the high tw bits are the instruction code, and
the lowv 30 hits a signed word (not byte)feét. Whatare the he address-
es for X, Yand Z?

1b. What does the call to Z at location 1010 accomplish?

1c. Thetwo instructions at 1018 and 101C load a 32 bit address igto re
ister 1. The SETHI loads thewWo22 hts of the instruction into the high
22 bits of the rgister and the ORI logically os the lov 13 hbts of the in-
struction into the registeMhat address will register 1 contain?
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1d. If the linker maes X to be at bcation 2504(he but doesrt change
the location of the code in the example, to what will it change the instruc-
tion at location 1000 so it still refers to X ?

2. A Pentium program contains these instructioB®n’t forget that the
x86 is little-endian.

Loc Hex Symbol i c

1000 E8 12 34 00 00 CALL A

1005 E8 ?2? ?? ?? ?? CALL B

100A Al 12 34 00 00 MOV 9EAX, P

100F 03 05 ?? ?2? ?? ??ADD %EAX Q

2a. Atwhat location are routine A and data word P locatédp: On the

x86, relatve aldresses are computed relatio the byte addresafter the
instruction.) 2b If routine B is located at address OF00 and data word Q

is located at address 3456, what are the byte values of the ?? bytes in the
example? 3. Doea linker or loader need ttunderstand’every instruc-

tion in the target architectueeinstruction set? If a ne model of the tar

get adds ne& instructions, will the linker need to be changed to support
them? Whaif it adds nev addressing modes to existing instructionse lik

the 386 did relate o the 2867

4. Backin the Golden Age of computing, when programmeosked in

the middle of the night because that was the only timedbald get com-

puter time, rather than because thathen thg woke up, mary computers

used word rather than byte addresses. The PDP-6 and 10, for example had
36 bit words and 18 bit addressing, with each instruction beingrd w

with the operand address in thevlbalf of the word. (Programsould al-

so store addresses in the high half of a daiadwalthough there was no
direct instruction set support for thatdow different is linking for a wrd-
addressed architecture compared to linking for a byte addressed architec-
ture?

5. How hard would it be to build a retargetable kmkthat is, one that
could be built to handle dédrent target architectures by changing & fe
specific parts of the source code for thedirtk Hav about a multi-taget
linker, that could handle code for a variety of different architectures (al-
though not in the same linker job)?



