Linking and Loading 1-7

Chapter 1
Linking and Loading

$Revision: 2.3 $
$Date; 1999/06/30 01:02:35 %

What do linkers and loaders do?

The basic job of anlinker or loader is simple: it binds more abstract *
names to more concrete names, which permits programmers to write code
using the more abstract names. That is, it takes a name written by a pto-
grammer such aget | i ne and binds it to “the location 612 bytes from *
the beginning of thexecutable code in moduieosys.” Or it may tale a *
more abstract numeric address suchths location 450 bytes beyond the *
beginning of the static data for this modulahd bind it to a numeric ad- *
dress. *

Address binding: a historical perspectve

A useful way to get some insight into what linkers and loaders do is to
look at their part in the delopment of computer programming systems.

The earliest computers were programmed entirely in machine language.
Programmers would write out the symbolic programs on sheets of, paper
hand assemble them into machine code and then toggle the machine code
into the computeror perhaps punch it on paper tape or cards. (Real hot-
shots could compose code directly at the switchésthe programmer

used symbolic addresses at all, the symbols were bound to addresses as the
programmer did his or her hand translatidint turned out that an instruc-

tion had to be added or deleted, the entire program had to be hand-inspect-
ed and ay addresses &cted by the added or deleted instruction adjusted.

The problem was that the names were bound to addresses toolearly
semblers sokd that problem by letting programmers write programs in
terms of symbolic names, with the assembler binding the names to ma-
chine addressedf the program changed, the programmer had to reassem-
ble it, but the wrk of assigning the addresses is pushédrom the pro-
grammer to the computer.

1-8 Linkingand Loading

Libraries of code compound the address assignment proliémee the
basic operations that computers can perform are so simple, useful pro-
grams are composed of subprograms that perform higheraled more
comple operations. computenstallations keep a library of pre-written
and debugged subprograms that programmers canug@n to use in ng
programs the write, rather than requiring programmers to write all their
own subprograms. Therogrammer then loads the subprograms in with
the main program to form a complete working program.

Programmers were using libraries of subprograves éefore thg used
assemblers. By947, John Mauchjywho led the ENIA project, wrote
about loading programs along with subprograms selected from a catalog of
programs stored on tapes, and of the need to relocate the subprograms’
code to reflect the addresses at whicly there loaded. Perhaps surpris-
ingly, these tw basic linker functions, relocation and library search, ap-
pear to predateven assemblers, as Mauchlkgected both the program

and subprograms to be written in machine language. The relocating loader
allowed the authors and users of the subprograms to write each subpro-
gram as though it would start at location zero, and to defer the actual ad-
dress binding until the subprograms were linked with a particular main
program.

With the adent of operating systems, relocating loaders separate from
linkers and libraries became necessdBgfore operating systems, each
program had the machisetntire memory at its disposal, so the program
could be assembled and latk for fixed memory addresses, knowing that
all addresses in the computeowld be aailable. Butwith operating sys-
tems, the program had to share the compmuteegmory with the operating
system and perhapsen with other programs, This means that the actual
addresses at which the program would be running weteaivn until the
operating system loaded the program into mepdeferring final address
binding past link time to load timeLinkers and loaders modivided up

the work, with linlers doing part of the address binding, assigning velati
addresses within each program, and the loader doing a final relocation step
to assign actual addresses.

Linking and Loading 1-9

As systems became more complex,ytiealled upon linkers to do more

and more complename management and address bindiRgitran pro-

grams used multiple subprograms and common blocks, areas of data
shared by multiple subprograms, and it was up to the linker to lay out stor
age and assign the addresses both for the subprograms and the common
blocks. Linlers increasingly had to deal with object code libraries.
cluding both application libraries written in Fortran and other languages,
and compiler support libraries called implcitly from compiled code to han-
dle I/O and other high-e&l operations.

Programs quickly became larger thamilable memoryso inkers preid-

ed overlays, a technique that let programmers arrange for different parts of
a program to share the same memaevigh each eerlay loaded on demand
when another part of the program called into Giverlays were widely

used on mainframes from the advent of disks around 1960 until the spread
of virtual memory in the mid-1970s, then reappeared on microcomputers
in the early 1980s in exactly the same form, and faded as virtual memory
appeared on PCs in the 1990hey're still used in memory limited em-
bedded environments, and may yet reappear in other places where precise
programmer or compiler control of memory usage imgsqerformance.

With the advent of hardware relocation and virtual memlarkers and
loaders actually got less complex, since each program coaiid lagre an

entire address space. Programs could be linked to be loaded at fixed ad-
dresses, with hardave rather than software relocation taking care gf an
load-time relocation.But computers with hardware relocatiovanably

run more than one program, frequently multiple copies of the same pro-
gram. Whena computer runs multiple instances of one program, some
parts of the program are the same among all running instancexfthe e
ecutable code, in particular), while other parts are unique to each instance.
If the parts that dobh’change can be separated out from the parts that do
change, the operating system can use a singleafdhe unchanging part,
saving considerable storage&Compilers and assemblers were modified to
create object code in multiple sections, with one section for read only code
and another section for writable data, thedinkad to be able to combine

all of sections of each type so that the éidiprogram would he dl the

code in one place and all of the data in anotfi@is didnt delay address

1-10 Linkingand Loading

binding aly more than it already a&s, since addresses were still assigned
at link time, but more work was deferred to the énko assign addresses
for all the sections.

Even when difierent programs are running on a computesse diferent
programs usually turn out to share a lot of common cdae.example,
nearly &ery program written in C uses routines suchfagpen and
pri nt f, database applications all use aglarccess library to connect to
the database, and programs running under a GUI such asdoM/MS
Windows, or the Macintosh all use pieces of the GUI libravost sys-
tems nav provide shaed libraries for programs to use, so that all the pro-
grams that use a library can share a singlg cbpt. Thisboth improes
runtime performance and\&s a bt of disk space; in small programs the
common library routines often takup nore space than the program itself.

In the simpler static shared libraries, each library is bound to specific ad-
dresses at the time the library is built, and theelinkinds program refer
ences to library routines to those specific addresses at link time. Static li-
braries turn out to be inceeniently inflexible, since programs potentially
have o be relinked every time ary part of the library changes, and the de-
tails of creating static shared libraries turn out to be very ted®ystems
added dynamically linkd libraries in which library sections and symbols
arent bound to actual addresses until the program that uses the library
starts running. Sometimes the binding is delayesh éarther than that;

with full-fledged dynamic linking, the addresses of called procedures
arent bound until the first call.Furthermore, programs can bind to li-
braries as the programs are running, loading libraries in the middle of pro-
gram e&ecution. Thisprovides a powerful and high-performance way to
extend the function of programs. MicrosoftiMiows in particular maés
extensve wse of runtime loading of shared libraries (known as DLLs, Dy-
namically Linked Libraries) to construct and extend programs.

Linking vs. loading

Linkers and loaders performveeal related but conceptually separate ac-
tions.

Linking and Loading 1-11

. Program loading: Copy a program from secondary storage (which
since about 1968 variably means a disk) into main memory so
it's ready to run. In some cases loading jusbives copying the
data from disk to memoyyn others it irvolves allocating storage,
setting protection bits, or arranging for virtual memory to map vir
tual addresses to disk pages.

. Relocation:Compilers and assemblers generally create each file of
object code with the program addresses starting at zero, viout fe
computers let you load your program at location zdfaa pro-
gram is created from multiple subprograms, all the subprograms
have o be baded at nony@rlapping addressesRelocation is the
process of assigning load addresses to #news parts of the pro-
gram, adjusting the code and data in the program to reflect the as-
signed addresses. In nyasystems, relocation happens more than
once. Its quite common for a linker to create a program from mul-
tiple subprograms, and create one didloutput program that starts
at zero, with the arious subprograms relocated to locations within
the big program.Then when the program is loaded, the system
picks the actual load address and the linked program is relocated as
a whole to the load address.

. Symbol esolution:When a program is built from multiple subpro-
grams, the references from one subprogram to another are made
using symbols; a main program might use a square root routine
calledsqrt, and the math library definesyrt . A linker resoles
the symbol by noting the location assignedtp t in the library
and patching the callerbject code to so the call instruction refers
to that location.

Although theres considerable werlap between linking and loading, St’
reasonable to define a program that does program loading as a éndder
one that does symbol resolution as adinkeither can do relocation, and
there hae been all-in-one linking loaders that do all three functions.

The line between relocation and symbol resolution can be .fisrzge
linkers already can res@veferences to symbols, onewto handle code
relocation is to assign a symbol to the base address of each part of the pro-

1-12 Linkingand Loading

gram, and treat relocatable addresses as references to the base address
symbols.

One important feature that linkers and loaders share is tlyabakie patch
object code, the only widely used programs to do so other than perhaps de-
buggers. Thids a uniquely paerful feature, albeit one that igteemely
machine specific in the details, and can lead to baffling bugs if done
wrong.

Two-pass linking

Now we turn to the general structure of lers. Linking,like compiling or
assembling, is fundamentally advyass processA linker takes as its in-

put a set of input object files, libraries, and perhaps command files, and
produces as its result an output object file, and perhaps ancillary informa-
tion such as a load map or a file containing debugger symbols, Figure 1.

Figure 1-1: The linker process

picture of linker taking input files, producing output file,
maybe also other junk

Linking and Loading 1-13

[]
—shared |
Fitbrentt

\

commandsine ‘object | | '. nm'mal)

argiments | files j LR 1Ill:‘r[rar|e rl
N) Ji i E'f:_q ,

-h.nk'.gf | SN _ /"j = hj
zontrol ! By 0 \L B T ;

el o~
(linker
|i e
-k 7 e

| Gebug | eiéﬁﬂt&b[é / | link/load |
e Lfite | |_map |

< file sl ~—_

Each input file contains a set ségmentscontiguous chunks of code or
data to be placed in the output file. Each input file also contains at least
onesymbol table Some symbols are exported, defined within the file for
use in other files, generally the names of routines within the file that can
be called from elsehere. Othesymbols are imported, used in the filg b

not defined, generally the names of routines called from but not present in

the file.

1-14 Linkingand Loading

When a linker runs, it first has to scan the input files to find the sizes of the
seggments and to collect the definitions and references of all of the symbols
It creates a segment table listing all of thgnsents defined in the input
files, and a symbol table with all of the symbols imported or exported.

Using the data from the first pass, the linker assigns numeric locations to
symbols, determines the sizes and location of tgensats in the output
address space, and figures out wheeeyéhing goes in the output file.

The second pass uses the information collected in the first pass to control
the actual linking procesdt reads and relocates the object code, substitut-
ing numeric addresses for symbol references, and adjusting memory ad-
dresses in code and data to reflect relocatgohaset addresses, and writes
the relocated code to the output filethen writes the output file, general-

ly with header information, the relocated segments, and symbol table in-
formation. Ifthe program uses dynamic linking, the symbol table contains
the info the runtime linker will need to reseldynamic symbols. In man
cases, the linker itself will generate small amounts of code or data in the
output file, such as "glue code" used to call routinevénays or dynam-

ically linked libraries, or an array of pointers to initialization routines that
need to be called at program startup time.

Whether or not the program uses dynamic linking, the file may also con-
tain a symbol table for relinking or dedpging that isrt’ used by the pro-
gram itself, but may be used by other programs that deal with the output
file.

Some object formats are relinkable, that is, the output file from orer link
run can be used as the input to a subsequerrlmik. This requires that
the output file contain a symbol tableditne in an input file, as well as all
of the other auxiliary information present in an input file.

Nearly all object formats wa provision for delngging symbols, so that
when the program is run under the control of audgler the debugger can

use those symbols to let the programmer control the program in terms of
the line numbers and names used in the source prodbampending on

the details of the object format, the dghing symbols may be interneiat

in a single symbol table with symbols needed by theelirdr there may

be one table for the linker and a separate, somewhat redundant table for

Linking and Loading 1-15

the debugger.

A few linkers appear to ek in one passThey do that by luffering some

or all of the contents of the input file in memory or disk during the linking
process, then reading theftered material later Since this is an imple-
mentation trick that doednfundamentally affect the two-pass nature of
linking, we dont address it further here.

Object code libraries

All linkers support object code libraries in one form or angtivéh most
also providing support for various kinds of shared libraries.

The basic principle of object code libraries is simple enough, Figuke 2.
library is little more than a set of object code files. (Indeed, on some sys-
tems you can literally catenate anch of object files together and use the
result as a link library After the linker processes all of thegrdar input

files, if ary imported names remain undefined, it runs through the library
or libraries and links in gnof the files in the library that export one or
more undefined names.

Figure 1-2: Object code libraries

Object files fed into the lirdg, with libraries containing lots
of files following along.

1-16 Linkingand Loading

| ‘Object A " library,1 library 2
calls B,C, D . ; =
Vi T RGN g P = @ E H
e = e " § ;’ — =/ TF |,
R s &S00 REE" (¥ € 11 5 T L Swileg
_. 4 S J | :."Y
I\\xhl mkﬂfg /.J' i \
S
g
— \d
c
© D -
‘. A
| E \
executable
; file

Shared libraries complicate this task a little by moving some of trk w
from link time to load time. The linker identifies the shared libraries that
resohe the undefined names in a linker run, but rather than linkiyg an
thing into the program, the linker notes in the output file the names of the
libraries in which the symbols were found, so that the shared library can
be bound in when the program is loaded. See Chapters 9 and 10 for the
details.

Linking and Loading 1-17

Relocation and code modification

The heart of a linker or loadsrections is relocation and code modifica-
tion. Whena compiler or assembler generates and object file, it generates
the code using the unrelocated addresses of code and data defined within
the file, and usually zeros for code and data defined/le¢se. Aspart of

the linking process, the linker modifies the object code to reflect the actual
addresses assigneéor example, consider this snippet of x86 code that
moves the contents of variabke to variableb using the eax register.

mov a, %eax

nov %ax, b

If a is defined in the same file at location 1234 &&d b is imported from
somewhere else, the generated object code will be:

Al 34 12 00 00 nov a, Yeax

A3 00 00 00 00 nmov %ax, b

Each instruction contains a one-byte operation code followed by a four
byte address. The first instruction has a reference to 1234 (bgtead,

since the x86 uses a right to left byte order) and the second a reference to
zero since the location bfis unknown.

Now assume that the linker links this code so that the section in wahiEh
located is relocated by 40000 bytes, ant turns out to be at keQA12.
The linker modifies the code to be:

Al 34 12 01 00 nov a, Y%eax

A3 12 9A 00 00 nov %ax, b

That is, it adds 10000 to the address in the first instructionvgat mefers

to a’s relocated address which is 11234, and it patches in the address for
b. These adjustments affect instructiongt &ry pointers in the data part

of an object file hee © be aljusted as well.

On older computers with small address spaces and direct addressing, the
modification process is fairly simple, since there are only only onecr tw
address formats that a linker has to hanéiiedern computers, including

all RISCs, require considerably more comptede modification. No sin-

gle instruction contains enough bits to hold a direct address, so the compil-

1-18 Linkingand Loading

er and linker hee b use complicated addressing tricks to handle data at
arbitrary addressedn some cases, #'possible to concoct an address us-
ing two or three instructions, each of which contains part of the address,
and use bit manipulation to combine the parts into a full addiasthis

case, the linker has to be prepared to modify each of the instructions ap-
propriately inserting some of the bits of the address into each instruction.
In other cases, all of the addresses used by a routine or group of routines
are placed in an array used as an “address pool”, initialization code sets
one of the machine gesters to point to that arragnd code loads pointers

out of the address pool as needed using that register as agisisz réhe

linker may hae o create the array from all of the addresses used in a pro-
gram, then modify instructions that so thatythefer to the approprate ad-
dress pool entryWe aldress this in Chapter 7.

Some systems require position independent code that will work correctly
regadless of where in the address space it is loadéckers generally
have o provide extra tricks to support that, separating out the parts of the
program that cab’be made position independent, and arranging for the
two parts to communicate. (See Chapter 8.)

Compiler Drivers

In most cases, the operation of the linker \gsible to the programmer or
nearly so, because sttun automatically as part of the compilation pro-
cess. Mostompilation systems ka acompiler driverthat automatically
invokes the phases of the compiler as needEdr example, if the pro-
grammer has ta C language source files, the compileveriwill run a
sequence of programs dikhis on a Unix system:

. C preprocessor on file A, creating preprocessed A

. C compiler on preprocessed A, creating assembler file A
. Assembler on assembler file A, creating object file A

. C preprocceor on file B, creating preprocessed B

. C compiler on preprocessed B, creating assembler file B

Linking and Loading 1-19

. Assembler on assembler file B, creating object file B
. Linker on object files A and B, and system C library

That is, it compiles each source file to assembler and then object code, and
links the object code togethéncluding ay needed routines from the sys-
tem C library.

Compiler drvers are often much clerer than this. They often compare

the creation dates of source and object files, and only recompile source
files that hae dhanged. (ThéJnix makeprogram is the classixample.)
Paticularly when compiling C++ and other object oriented languages,
compiler drvers can play all sorts of tricks to work around limitations in
linkers or object formatskor example, C++ templates define a potentially
infinite set of related routines, so to find the finite set of template routines
that a program actually uses, a compilevarcan link the programs’ ob-

ject files together with no template code, read the error messages from the
linker to see what’ undefined, call the C++ compiler to generate object
code for the necessary template routines and re-Ni&. over some of

these tricks in Chapter 11.

Linker command languages

Every linker has some sort of command language to control the linking
process. Athe \ery least the linker needs the list of object files and li-
braries to link. Generally there is a long list of possible options: whether
to keep debugging symbols, whether to use shared or unshared libraries,
which of seeral possible output formats to use. Most linkers permit some
way to goecify the address at which the linked code is to be bound, which
comes in handy when using a linker to link a systemmdl or other pro-
gram that doestrun under control of an operating system. In linkers that
support multiple code and datagseents, a linker command language can
specify the order in which segments are to be linked, special treatment for
certain kinds of segments, and other application-specific options.

There are four common techniques to pass commands to a linker:

. Command lineMost systems he&e a ommand line or the equ
alent, via which one can pass a mixture of file names and switches.
This is the usual approach for Unix andndbows linkers. Onsys-

1-20

Linkingand Loading

tems with limited length command lines, theresually a way to
direct the linker to read commands from a file and treat them as
though thg were on the command line.

Intermixed with object filesSome linkers, such as IBM mainframe
linkers, accept alternating object files and linker commands in a
single input file. This dates from the era of card decks, when one
would pile up object decks and hand-punched command cards in a
card reader.

Embedded in object filesSome object formats, notably Mi-
crosofts, permit linker commands to be embedded inside object
files. Thispermits a compiler to passyaoptions needed to link an
object file in the file itself.For example, the C compiler passes
commands to search the standard C library.

Sepaate configuration languge A few linkers hae a 1l fledged
configuration language to control linking. The GNU knkwvhich

can handle an enormous range of object file formats, machine ar
chitectures, and address spaceventions, has a comptecontrol
language that lets a programmer specify the order in whigh se
ments should be lirdd, rules for combining similar segmentgy-se
ment addresses, and a wide range of other optiotiser linkers

have less compbe languages to handle specific features such as
programmer-definedverlays.

Linking: a true-life example

We complete our introduction to linking with a small but real linking e
ample. Figure shows a pair of C language source files, m.c with a main
program that calls a routine namadand a.c that contains the routine
with a call to the library routinest r | en andprintf.

Figure 1-3: Source files

Source file m.c

extern void a(char *);

Linking and Loading 1-21

int main(int ac, char **av)

{

static char string[] = "Hello, world!'\n";

a(string);

}

Source file a.c
#i ncl ude <uni std. h>
#i ncl ude <string. h>

void a(char *s)

{

wite(l, s, strlen(s));

}

The main program m.c compiles, on my Pentium with GCC, into a 165
byte object file in the classic a.out object format, Figure 4. That object file
includes a fixed length headd6 bytes of "text" sgment, containing the
read only program code, and 16 bytes of "data" segment, containing the
string. Following that are tw relocation entries, one that marks the pushl
instruction that puts the address of the string on the stack in preparation
for the call toa, and one that marks the call instruction that transfers con-
trol to a. The symbol table exports the definition_ofai n, imports_a,

and contains a couple of other symbols for theudgbr (Each global
symbol is prefixed with an underscore, for reasons described in Chapter
5.) Notethat the pushl instruction refers to location 10 hex, the teatati
address for the string, sincesith the same object file, while the call refers

to location O since the address @f is unknown.

Figure 1-4: Object code for m.o

Sect i ons:
| dx Nane Size VIVA LMVA File off Algn

1-22 Linkingand Loading

0 .text 00000010 00000000 00000000 00000020 2**3
1 .data 00000010 00000010 00000010 00000030 2**3
Di sassenbly of section .text:

00000000 <_mai n>:

0: 55 pushl %bp
1: 89 e5 movl Y%esp, Yebp
3: 68 10 00 00 00 pushl $0x10
4: 32 .data
8: e8 f3 ff ff ff call 0
9: DISP32 _a
d: c¢9 | eave
e: c3 ret

The subprogram file a.c compiles into a 160 byte object file, Figure 5, with
the headera 28 lyte text segment, and no datéwo relocation entries
mark the calls tst rl en andwri t e, and the symbol tablexports _a

and imports strlenand_wite.

Figure 1-5: Object code for m.o

Secti ons:
| dx Nane Si ze VNVA LMVA File off Algn
0 .text 0000001c 00000000 00000000 00000020 2**2
CONTENTS, ALLOC, LOAD, RELOC, CODE
1 .data 00000000 0000001c 0000001c 0000003c 2**2

CONTENTS, ALLOC, LQAD, DATA
Di sassenbly of section .text:

00000000 <_a>:
0: 55 pushl %bp
1: 89 e5 nmovl Y%esp, Yebp
3: 53 pushl %ebx

Linking and Loading 1-23

4: 8b 5d 08 nmov| 0x8(%ebp) , Yebx
7: 53 pushl %ebx
8: e8 f3 ff ff ff call 0
9: DISP32 strlen
d: 50 pushl %eax
e: 53 pushl %ebx
f: 6a 01 pushl $0x1
11: e8 ea ff ff ff call 0
12: DISP32 wite
16: 8d 65 fc | eal -4(%bp), Yesp
19: 5b popl %ebx
la: c9 | eave
1b: c¢3 ret

To produce an xecutable program, the linker combines these thject

files with a standard startup initialization routine for C programs, and nec-
essary routines from the C libragroducing an xecutable file displayed

in part in Figure 6.

Figure 1-6: Selected parts of executable

Secti ons:

| dx Nane Size VNA LMVA File off Algn
0 .text 00000f e0 00001020 00001020 00000020 2**3
1 .data 00001000 00002000 00002000 00001000 2**3
2 .bss 00000000 00003000 00003000 00000000 2**3

Di sassenbly of section .text:
00001020 <start-c>:
1092: e8 0d 00 00 00 call 10a4 <_mai n>

000010a4 <_mai n>:

1-24 Linkingand Loading

10a4: 55 pushl %bp
10a5: 89 e5 novl Y%esp, Yebp
10a7: 68 24 20 00 00 pushl $0x2024
10ac: e8 03 00 00 00 call 10b4 < a>
10b1l: c9 | eave

10b2: c3 ret

000010b4 < a>:

10b4: 55 pushl %bp

10b5: 89 e5 novl Y%esp, Yebp
10b7: 53 pushl %ebx

10b8: 8b 5d 08 novl 0x8(Yebp) , %ebx
10bb: 53 pushl %ebx

10bc: e8 37 00 00 00 call 10f8 < strlen>
10cl: 50 pushl %ax

10c2: 53 pushl %ebx

10c3: 6a 01 pushl $0x1

10c5: e8 a2 00 00 00 call 116c < wite>
10ca: 8d 65 fc | eal -4(%ebp) , Y%esp
10cd: 5b popl %ebx

10ce: ¢9 | eave

10cf: c¢3 ret

000010f 8 <_strlen>:

0000116c < wite>:

The linker combined correspondingysgents from each input file, so there

is one combined text segment, one combined danes® and one bss
seggment (zero-initialized data, which theawnput files didnt use). Each
segment is padded out to a 4K boundary to match the x86 page size, so the
text segment is 4K (minus a 20 byte a.out header present in the file but not
logically part of the segment), the data and bss segments are also each 4K.

Linking and Loading 1-25

The combined text genent contains the text of library startup code called
start-c, then text from m.o relocated to 10a4, a.o relocated to 10b4,
and routines linked from the C libramglocated to higher addresses in the
text sgment. Thedata segment, not displayed here, contains the com-
bined data segments in the same order as the tgntes¢s. Sincdhe
code for_mai n has been relocated to address 10a4 hex, that address is
patched into the call instruction in start-@ithin the main routine, the
reference to the string is relocated to 2024 kiee strings final location in

the data segment, and the call is patched to 10b4, the final address of
Within _a, the callsto strl enand_wri t e are patched to the final ad-
dresses for those twoutines.

The eecutable also contains about a dozen other routines from the C li-
brary, not displayed here, that are called directly or indirectly from the
startup code or fromwr i t e (error routines, in the latter case.) The e
ecutable contains no relocation data, since this file format is not relinkable
and the operating system loads it at avkmdixed address. It contains a
symbol table for the benefit of a dejger dthough the recutable doest’

use the symbols and the symbol table can be strippéal ssivespace.

In this example, the code linked from the library is considerabletar
than the code for the program itselfhat's quite common, particularly
when programs use & graphics or windowing libraries, which pided

the impetus for shared libraries, Chapters 9 and 10. The linked program is
8K, but the identical program linked using shared libraries is only 264
bytes. Thisis a ty example, of course, but real programs ofteneha
equally dramatic space savings.

Exercises

What is the advantage of separating a linker and loader into separate pro-
grams? Undewhat circumstances auld a combined linking loader be
useful?

Nearly erery programming system produced in the past 50 years includes
a linker. Why?

In this chapter we'e dscussed linking and loading assembled or compiled
machine codeWould a linker or loader be useful in a purely intermeeti

1-26 Linkingand Loading

system that directly interprets source language cdde® about in a in-
terpretve g/stem that turns the source into an intermediate representation
like P-code or the dJa Mirtual Machine?

