
Linking and Loading 1-7

Chapter 1
Linking and Loading

$Revision: 2.3 $
$Date: 1999/06/30 01:02:35 $

What do linkers and loaders do?

The basic job of any linker or loader is simple: it binds more abstract *
names to more concrete names, which permits programmers to write code*
using the more abstract names. That is, it takes a name written by a pro-*
grammer such asgetline and binds it to ‘‘the location 612 bytes from *
the beginning of the executable code in moduleiosys.’’ Or it may take a *
more abstract numeric address such as ‘‘the location 450 bytes beyond the *
beginning of the static data for this module’’ and bind it to a numeric ad- *
dress. *

Address binding: a historical perspective

A useful way to get some insight into what linkers and loaders do is to
look at their part in the development of computer programming systems.

The earliest computers were programmed entirely in machine language.
Programmers would write out the symbolic programs on sheets of paper,
hand assemble them into machine code and then toggle the machine code
into the computer, or perhaps punch it on paper tape or cards. (Real hot-
shots could compose code directly at the switches.)If the programmer
used symbolic addresses at all, the symbols were bound to addresses as the
programmer did his or her hand translation.If it turned out that an instruc-
tion had to be added or deleted, the entire program had to be hand-inspect-
ed and any addresses affected by the added or deleted instruction adjusted.

The problem was that the names were bound to addresses too early. As-
semblers solved that problem by letting programmers write programs in
terms of symbolic names, with the assembler binding the names to ma-
chine addresses.If the program changed, the programmer had to reassem-
ble it, but the work of assigning the addresses is pushed off f rom the pro-
grammer to the computer.

1-8 Linkingand Loading

Libraries of code compound the address assignment problem.Since the
basic operations that computers can perform are so simple, useful pro-
grams are composed of subprograms that perform higher level and more
complex operations. computerinstallations keep a library of pre-written
and debugged subprograms that programmers can draw upon to use in new
programs they write, rather than requiring programmers to write all their
own subprograms. Theprogrammer then loads the subprograms in with
the main program to form a complete working program.

Programmers were using libraries of subprograms even before they used
assemblers. By1947, John Mauchly, who led the ENIAC project, wrote
about loading programs along with subprograms selected from a catalog of
programs stored on tapes, and of the need to relocate the subprograms’
code to reflect the addresses at which they were loaded. Perhaps surpris-
ingly, these two basic linker functions, relocation and library search, ap-
pear to predate even assemblers, as Mauchly expected both the program
and subprograms to be written in machine language. The relocating loader
allowed the authors and users of the subprograms to write each subpro-
gram as though it would start at location zero, and to defer the actual ad-
dress binding until the subprograms were linked with a particular main
program.

With the advent of operating systems, relocating loaders separate from
linkers and libraries became necessary. Before operating systems, each
program had the machine’s entire memory at its disposal, so the program
could be assembled and linked for fixed memory addresses, knowing that
all addresses in the computer would be available. Butwith operating sys-
tems, the program had to share the computer’s memory with the operating
system and perhaps even with other programs, This means that the actual
addresses at which the program would be running weren’t known until the
operating system loaded the program into memory, deferring final address
binding past link time to load time.Linkers and loaders now divided up
the work, with linkers doing part of the address binding, assigning relative
addresses within each program, and the loader doing a final relocation step
to assign actual addresses.

Linking and Loading 1-9

As systems became more complex, they called upon linkers to do more
and more complex name management and address binding.Fortran pro-
grams used multiple subprograms and common blocks, areas of data
shared by multiple subprograms, and it was up to the linker to lay out stor-
age and assign the addresses both for the subprograms and the common
blocks. Linkers increasingly had to deal with object code libraries.in-
cluding both application libraries written in Fortran and other languages,
and compiler support libraries called implcitly from compiled code to han-
dle I/O and other high-level operations.

Programs quickly became larger than available memory, so linkers provid-
ed overlays, a technique that let programmers arrange for different parts of
a program to share the same memory, with each overlay loaded on demand
when another part of the program called into it.Overlays were widely
used on mainframes from the advent of disks around 1960 until the spread
of virtual memory in the mid-1970s, then reappeared on microcomputers
in the early 1980s in exactly the same form, and faded as virtual memory
appeared on PCs in the 1990s.They’re still used in memory limited em-
bedded environments, and may yet reappear in other places where precise
programmer or compiler control of memory usage improves performance.

With the advent of hardware relocation and virtual memory, linkers and
loaders actually got less complex, since each program could again have an
entire address space. Programs could be linked to be loaded at fixed ad-
dresses, with hardware rather than software relocation taking care of any
load-time relocation.But computers with hardware relocation invariably
run more than one program, frequently multiple copies of the same pro-
gram. Whena computer runs multiple instances of one program, some
parts of the program are the same among all running instance (the ex-
ecutable code, in particular), while other parts are unique to each instance.
If the parts that don’t change can be separated out from the parts that do
change, the operating system can use a single copy of the unchanging part,
saving considerable storage.Compilers and assemblers were modified to
create object code in multiple sections, with one section for read only code
and another section for writable data, the linker had to be able to combine
all of sections of each type so that the linked program would have all the
code in one place and all of the data in another. This didn’t delay address

1-10 Linkingand Loading

binding any more than it already was, since addresses were still assigned
at link time, but more work was deferred to the linker to assign addresses
for all the sections.

Even when different programs are running on a computer, those different
programs usually turn out to share a lot of common code.For example,
nearly every program written in C uses routines such asfopen and
printf, database applications all use a large access library to connect to
the database, and programs running under a GUI such as X Window, MS
Windows, or the Macintosh all use pieces of the GUI library. Most sys-
tems now provideshared libraries for programs to use, so that all the pro-
grams that use a library can share a single copy of it. Thisboth improves
runtime performance and saves a lot of disk space; in small programs the
common library routines often take up more space than the program itself.

In the simpler static shared libraries, each library is bound to specific ad-
dresses at the time the library is built, and the linker binds program refer-
ences to library routines to those specific addresses at link time. Static li-
braries turn out to be inconveniently inflexible, since programs potentially
have to be relinked every time any part of the library changes, and the de-
tails of creating static shared libraries turn out to be very tedious.Systems
added dynamically linked libraries in which library sections and symbols
aren’t bound to actual addresses until the program that uses the library
starts running. Sometimes the binding is delayed even farther than that;
with full-fledged dynamic linking, the addresses of called procedures
aren’t bound until the first call.Furthermore, programs can bind to li-
braries as the programs are running, loading libraries in the middle of pro-
gram execution. Thisprovides a powerful and high-performance way to
extend the function of programs. Microsoft Windows in particular makes
extensive use of runtime loading of shared libraries (known as DLLs, Dy-
namically Linked Libraries) to construct and extend programs.

Linking vs. loading

Linkers and loaders perform several related but conceptually separate ac-
tions.

Linking and Loading 1-11

• Program loading:Copy a program from secondary storage (which
since about 1968 invariably means a disk) into main memory so
it’s ready to run. In some cases loading just involves copying the
data from disk to memory, in others it involves allocating storage,
setting protection bits, or arranging for virtual memory to map vir-
tual addresses to disk pages.

• Relocation:Compilers and assemblers generally create each file of
object code with the program addresses starting at zero, but few
computers let you load your program at location zero.If a pro-
gram is created from multiple subprograms, all the subprograms
have to be loaded at non-overlapping addresses.Relocation is the
process of assigning load addresses to the various parts of the pro-
gram, adjusting the code and data in the program to reflect the as-
signed addresses. In many systems, relocation happens more than
once. It’s quite common for a linker to create a program from mul-
tiple subprograms, and create one linked output program that starts
at zero, with the various subprograms relocated to locations within
the big program.Then when the program is loaded, the system
picks the actual load address and the linked program is relocated as
a whole to the load address.

• Symbol resolution:When a program is built from multiple subpro-
grams, the references from one subprogram to another are made
using symbols; a main program might use a square root routine
calledsqrt, and the math library definessqrt. A linker resolves
the symbol by noting the location assigned tosqrt in the library,
and patching the caller’s object code to so the call instruction refers
to that location.

Although there’s considerable overlap between linking and loading, it’s
reasonable to define a program that does program loading as a loader, and
one that does symbol resolution as a linker. Either can do relocation, and
there have been all-in-one linking loaders that do all three functions.

The line between relocation and symbol resolution can be fuzzy. Since
linkers already can resolve references to symbols, one way to handle code
relocation is to assign a symbol to the base address of each part of the pro-

1-12 Linkingand Loading

gram, and treat relocatable addresses as references to the base address
symbols.

One important feature that linkers and loaders share is that they both patch
object code, the only widely used programs to do so other than perhaps de-
buggers. Thisis a uniquely powerful feature, albeit one that is extremely
machine specific in the details, and can lead to baffling bugs if done
wrong.

Tw o-pass linking

Now we turn to the general structure of linkers. Linking,like compiling or
assembling, is fundamentally a two pass process.A l inker takes as its in-
put a set of input object files, libraries, and perhaps command files, and
produces as its result an output object file, and perhaps ancillary informa-
tion such as a load map or a file containing debugger symbols, Figure 1.

Figure 1-1: The linker process

picture of linker taking input files, producing output file,
maybe also other junk

Linking and Loading 1-13

Each input file contains a set ofsegments, contiguous chunks of code or
data to be placed in the output file. Each input file also contains at least
onesymbol table. Some symbols are exported, defined within the file for
use in other files, generally the names of routines within the file that can
be called from elsewhere. Othersymbols are imported, used in the file but
not defined, generally the names of routines called from but not present in
the file.

1-14 Linkingand Loading

When a linker runs, it first has to scan the input files to find the sizes of the
segments and to collect the definitions and references of all of the symbols
It creates a segment table listing all of the segments defined in the input
files, and a symbol table with all of the symbols imported or exported.

Using the data from the first pass, the linker assigns numeric locations to
symbols, determines the sizes and location of the segments in the output
address space, and figures out where everything goes in the output file.

The second pass uses the information collected in the first pass to control
the actual linking process.It reads and relocates the object code, substitut-
ing numeric addresses for symbol references, and adjusting memory ad-
dresses in code and data to reflect relocated segment addresses, and writes
the relocated code to the output file.It then writes the output file, general-
ly with header information, the relocated segments, and symbol table in-
formation. If the program uses dynamic linking, the symbol table contains
the info the runtime linker will need to resolve dynamic symbols. In many
cases, the linker itself will generate small amounts of code or data in the
output file, such as "glue code" used to call routines in overlays or dynam-
ically linked libraries, or an array of pointers to initialization routines that
need to be called at program startup time.

Whether or not the program uses dynamic linking, the file may also con-
tain a symbol table for relinking or debugging that isn’t used by the pro-
gram itself, but may be used by other programs that deal with the output
file.

Some object formats are relinkable, that is, the output file from one linker
run can be used as the input to a subsequent linker run. This requires that
the output file contain a symbol table like one in an input file, as well as all
of the other auxiliary information present in an input file.

Nearly all object formats have provision for debugging symbols, so that
when the program is run under the control of a debugger, the debugger can
use those symbols to let the programmer control the program in terms of
the line numbers and names used in the source program.Depending on
the details of the object format, the debugging symbols may be intermixed
in a single symbol table with symbols needed by the linker, or there may
be one table for the linker and a separate, somewhat redundant table for

Linking and Loading 1-15

the debugger.

A few linkers appear to work in one pass.They do that by buffering some
or all of the contents of the input file in memory or disk during the linking
process, then reading the buffered material later. Since this is an imple-
mentation trick that doesn’t fundamentally affect the two-pass nature of
linking, we don’t address it further here.

Object code libraries

All linkers support object code libraries in one form or another, with most
also providing support for various kinds of shared libraries.

The basic principle of object code libraries is simple enough, Figure 2.A
library is little more than a set of object code files. (Indeed, on some sys-
tems you can literally catenate a bunch of object files together and use the
result as a link library.) After the linker processes all of the regular input
files, if any imported names remain undefined, it runs through the library
or libraries and links in any of the files in the library that export one or
more undefined names.

Figure 1-2: Object code libraries

Object files fed into the linker, with libraries containing lots
of files following along.

1-16 Linkingand Loading

Shared libraries complicate this task a little by moving some of the work
from link time to load time. The linker identifies the shared libraries that
resolve the undefined names in a linker run, but rather than linking any-
thing into the program, the linker notes in the output file the names of the
libraries in which the symbols were found, so that the shared library can
be bound in when the program is loaded. See Chapters 9 and 10 for the
details.

Linking and Loading 1-17

Relocation and code modification

The heart of a linker or loader’s actions is relocation and code modifica-
tion. Whena compiler or assembler generates and object file, it generates
the code using the unrelocated addresses of code and data defined within
the file, and usually zeros for code and data defined elsewhere. Aspart of
the linking process, the linker modifies the object code to reflect the actual
addresses assigned.For example, consider this snippet of x86 code that
moves the contents of variablea to variableb using the eax register.
mov a,%eax
mov %eax,b

If a is defined in the same file at location 1234 hex and b is imported from
somewhere else, the generated object code will be:
A1 34 12 00 00 mov a,%eax
A3 00 00 00 00 mov %eax,b

Each instruction contains a one-byte operation code followed by a four-
byte address. The first instruction has a reference to 1234 (byte reversed,
since the x86 uses a right to left byte order) and the second a reference to
zero since the location ofb is unknown.

Now assume that the linker links this code so that the section in whicha is
located is relocated by hex 10000 bytes, andb turns out to be at hex 9A12.
The linker modifies the code to be:
A1 34 12 01 00 mov a,%eax
A3 12 9A 00 00 mov %eax,b

That is, it adds 10000 to the address in the first instruction so now it refers
to a’s relocated address which is 11234, and it patches in the address for
b. These adjustments affect instructions, but any pointers in the data part
of an object file have to be adjusted as well.

On older computers with small address spaces and direct addressing, the
modification process is fairly simple, since there are only only one or two
address formats that a linker has to handle.Modern computers, including
all RISCs, require considerably more complex code modification. No sin-
gle instruction contains enough bits to hold a direct address, so the compil-

1-18 Linkingand Loading

er and linker have to use complicated addressing tricks to handle data at
arbitrary addresses.In some cases, it’s possible to concoct an address us-
ing two or three instructions, each of which contains part of the address,
and use bit manipulation to combine the parts into a full address.In this
case, the linker has to be prepared to modify each of the instructions ap-
propriately, inserting some of the bits of the address into each instruction.
In other cases, all of the addresses used by a routine or group of routines
are placed in an array used as an ‘‘address pool’’, initialization code sets
one of the machine registers to point to that array, and code loads pointers
out of the address pool as needed using that register as a base register. The
linker may have to create the array from all of the addresses used in a pro-
gram, then modify instructions that so that they refer to the approprate ad-
dress pool entry. We address this in Chapter 7.

Some systems require position independent code that will work correctly
regardless of where in the address space it is loaded.Linkers generally
have to provide extra tricks to support that, separating out the parts of the
program that can’t be made position independent, and arranging for the
two parts to communicate. (See Chapter 8.)

Compiler Dri vers

In most cases, the operation of the linker is invisible to the programmer or
nearly so, because it’s run automatically as part of the compilation pro-
cess. Mostcompilation systems have acompiler driverthat automatically
invokes the phases of the compiler as needed.For example, if the pro-
grammer has two C language source files, the compiler driver will run a
sequence of programs like this on a Unix system:

• C preprocessor on file A, creating preprocessed A

• C compiler on preprocessed A, creating assembler file A

• Assembler on assembler file A, creating object file A

• C preprocceor on file B, creating preprocessed B

• C compiler on preprocessed B, creating assembler file B

Linking and Loading 1-19

• Assembler on assembler file B, creating object file B

• Linker on object files A and B, and system C library

That is, it compiles each source file to assembler and then object code, and
links the object code together, including any needed routines from the sys-
tem C library.

Compiler drivers are often much cleverer than this.They often compare
the creation dates of source and object files, and only recompile source
files that have changed. (TheUnix makeprogram is the classic example.)
Particularly when compiling C++ and other object oriented languages,
compiler drivers can play all sorts of tricks to work around limitations in
linkers or object formats.For example, C++ templates define a potentially
infinite set of related routines, so to find the finite set of template routines
that a program actually uses, a compiler driver can link the programs’ ob-
ject files together with no template code, read the error messages from the
linker to see what’s undefined, call the C++ compiler to generate object
code for the necessary template routines and re-link.We cover some of
these tricks in Chapter 11.

Linker command languages

Every linker has some sort of command language to control the linking
process. Atthe very least the linker needs the list of object files and li-
braries to link. Generally there is a long list of possible options: whether
to keep debugging symbols, whether to use shared or unshared libraries,
which of several possible output formats to use. Most linkers permit some
way to specify the address at which the linked code is to be bound, which
comes in handy when using a linker to link a system kernel or other pro-
gram that doesn’t run under control of an operating system. In linkers that
support multiple code and data segments, a linker command language can
specify the order in which segments are to be linked, special treatment for
certain kinds of segments, and other application-specific options.

There are four common techniques to pass commands to a linker:

• Command line:Most systems have a command line or the equiv-
alent, via which one can pass a mixture of file names and switches.
This is the usual approach for Unix and Windows linkers. Onsys-

1-20 Linkingand Loading

tems with limited length command lines, there’s usually a way to
direct the linker to read commands from a file and treat them as
though they were on the command line.

• Intermixed with object files:Some linkers, such as IBM mainframe
linkers, accept alternating object files and linker commands in a
single input file. This dates from the era of card decks, when one
would pile up object decks and hand-punched command cards in a
card reader.

• Embedded in object files:Some object formats, notably Mi-
crosoft’s, permit linker commands to be embedded inside object
files. Thispermits a compiler to pass any options needed to link an
object file in the file itself.For example, the C compiler passes
commands to search the standard C library.

• Separate configuration language: A few linkers have a full fledged
configuration language to control linking. The GNU linker, which
can handle an enormous range of object file formats, machine ar-
chitectures, and address space conventions, has a complex control
language that lets a programmer specify the order in which seg-
ments should be linked, rules for combining similar segments, seg-
ment addresses, and a wide range of other options.Other linkers
have less complex languages to handle specific features such as
programmer-defined overlays.

Linking: a true-life example

We complete our introduction to linking with a small but real linking ex-
ample. Figure3 shows a pair of C language source files, m.c with a main
program that calls a routine nameda, and a.c that contains the routine
with a call to the library routinesstrlen andprintf.

Figure 1-3: Source files

Source file m.c
extern void a(char *);

Linking and Loading 1-21

int main(int ac, char **av)
{
static char string[] = "Hello, world!\n";

a(string);
}

Source file a.c
#include <unistd.h>
#include <string.h>

void a(char *s)
{
write(1, s, strlen(s));

}

The main program m.c compiles, on my Pentium with GCC, into a 165
byte object file in the classic a.out object format, Figure 4. That object file
includes a fixed length header, 16 bytes of "text" segment, containing the
read only program code, and 16 bytes of "data" segment, containing the
string. Following that are two relocation entries, one that marks the pushl
instruction that puts the address of the string on the stack in preparation
for the call toa, and one that marks the call instruction that transfers con-
trol to a. The symbol table exports the definition of_main, imports_a,
and contains a couple of other symbols for the debugger. (Each global
symbol is prefixed with an underscore, for reasons described in Chapter
5.) Notethat the pushl instruction refers to location 10 hex, the tentative
address for the string, since it’s in the same object file, while the call refers
to location 0 since the address of_a is unknown.

Figure 1-4: Object code for m.o

Sections:
Idx Name Size VMA LMA File off Algn

1-22 Linkingand Loading

0 .text 00000010 00000000 00000000 00000020 2**3
1 .data 00000010 00000010 00000010 00000030 2**3

Disassembly of section .text:

00000000 <_main>:
0: 55 pushl %ebp
1: 89 e5 movl %esp,%ebp
3: 68 10 00 00 00 pushl $0x10
4: 32 .data

8: e8 f3 ff ff ff call 0
9: DISP32 _a

d: c9 leave
e: c3 ret

...

The subprogram file a.c compiles into a 160 byte object file, Figure 5, with
the header, a 28 byte text segment, and no data.Tw o relocation entries
mark the calls tostrlen andwrite, and the symbol table exports_a
and imports_strlen and_write.

Figure 1-5: Object code for m.o

Sections:
Idx Name Size VMA LMA File off Algn
0 .text 0000001c 00000000 00000000 00000020 2**2

CONTENTS, ALLOC, LOAD, RELOC, CODE
1 .data 00000000 0000001c 0000001c 0000003c 2**2

CONTENTS, ALLOC, LOAD, DATA
Disassembly of section .text:

00000000 <_a>:
0: 55 pushl %ebp
1: 89 e5 movl %esp,%ebp
3: 53 pushl %ebx

Linking and Loading 1-23

4: 8b 5d 08 movl 0x8(%ebp),%ebx
7: 53 pushl %ebx
8: e8 f3 ff ff ff call 0
9: DISP32 _strlen

d: 50 pushl %eax
e: 53 pushl %ebx
f: 6a 01 pushl $0x1
11: e8 ea ff ff ff call 0

12: DISP32 _write
16: 8d 65 fc leal -4(%ebp),%esp
19: 5b popl %ebx
1a: c9 leave
1b: c3 ret

To produce an executable program, the linker combines these two object
files with a standard startup initialization routine for C programs, and nec-
essary routines from the C library, producing an executable file displayed
in part in Figure 6.

Figure 1-6: Selected parts of executable

Sections:
Idx Name Size VMA LMA File off Algn
0 .text 00000fe0 00001020 00001020 00000020 2**3
1 .data 00001000 00002000 00002000 00001000 2**3
2 .bss 00000000 00003000 00003000 00000000 2**3

Disassembly of section .text:

00001020 <start-c>:
...

1092: e8 0d 00 00 00 call 10a4 <_main>
...

000010a4 <_main>:

1-24 Linkingand Loading

10a4: 55 pushl %ebp
10a5: 89 e5 movl %esp,%ebp
10a7: 68 24 20 00 00 pushl $0x2024
10ac: e8 03 00 00 00 call 10b4 <_a>
10b1: c9 leave
10b2: c3 ret

...

000010b4 <_a>:
10b4: 55 pushl %ebp
10b5: 89 e5 movl %esp,%ebp
10b7: 53 pushl %ebx
10b8: 8b 5d 08 movl 0x8(%ebp),%ebx
10bb: 53 pushl %ebx
10bc: e8 37 00 00 00 call 10f8 <_strlen>
10c1: 50 pushl %eax
10c2: 53 pushl %ebx
10c3: 6a 01 pushl $0x1
10c5: e8 a2 00 00 00 call 116c <_write>
10ca: 8d 65 fc leal -4(%ebp),%esp
10cd: 5b popl %ebx
10ce: c9 leave
10cf: c3 ret

...
000010f8 <_strlen>:
...

0000116c <_write>:
...

The linker combined corresponding segments from each input file, so there
is one combined text segment, one combined data segment and one bss
segment (zero-initialized data, which the two input files didn’t use). Each
segment is padded out to a 4K boundary to match the x86 page size, so the
text segment is 4K (minus a 20 byte a.out header present in the file but not
logically part of the segment), the data and bss segments are also each 4K.

Linking and Loading 1-25

The combined text segment contains the text of library startup code called
start-c, then text from m.o relocated to 10a4, a.o relocated to 10b4,
and routines linked from the C library, relocated to higher addresses in the
text segment. Thedata segment, not displayed here, contains the com-
bined data segments in the same order as the text segments. Sincethe
code for_main has been relocated to address 10a4 hex, that address is
patched into the call instruction in start-c.Within the main routine, the
reference to the string is relocated to 2024 hex, the string’s final location in
the data segment, and the call is patched to 10b4, the final address of_a.
Within _a, the calls to_strlen and_write are patched to the final ad-
dresses for those two routines.

The executable also contains about a dozen other routines from the C li-
brary, not displayed here, that are called directly or indirectly from the
startup code or from_write (error routines, in the latter case.) The ex-
ecutable contains no relocation data, since this file format is not relinkable
and the operating system loads it at a known fixed address. It contains a
symbol table for the benefit of a debugger, although the executable doesn’t
use the symbols and the symbol table can be stripped off to sav espace.

In this example, the code linked from the library is considerably larger
than the code for the program itself.That’s quite common, particularly
when programs use large graphics or windowing libraries, which provided
the impetus for shared libraries, Chapters 9 and 10. The linked program is
8K, but the identical program linked using shared libraries is only 264
bytes. Thisis a toy example, of course, but real programs often have
equally dramatic space savings.

Exercises

What is the advantage of separating a linker and loader into separate pro-
grams? Underwhat circumstances would a combined linking loader be
useful?

Nearly every programming system produced in the past 50 years includes
a linker. Why?

In this chapter we’ve discussed linking and loading assembled or compiled
machine code.Would a linker or loader be useful in a purely interpretive

1-26 Linkingand Loading

system that directly interprets source language code?How about in a in-
terpretive system that turns the source into an intermediate representation
like P-code or the Java Virtual Machine?

