
The Essence of C++
with examples in C++84, C++98, C++11, and C++14

Bjarne Stroustrup

Texas A&M University

www.stroustrup.com

Overview

• Aims and constraints

• C++ in four slides

• Resource management

• OOP: Classes and Hierarchies
– (very briefly)

• GP: Templates
– Requirements checking

• Challenges

Stroustrup - Essence - Going Native'13 3

What did/do I want?

• Type safety
– Encapsulate necessary unsafe operations

• Resource safety
– It’s not all memory

• Performance
– For some parts of almost all systems, it’s important

• Predictability
– For hard and soft real time

• Teachability
– Complexity of code should be proportional to the complexity of the task

• Readability
– People and machines (“analyzability”)

Stroustrup - Essence - Going Native'13 4

Who did/do I want it for?

• Primary concerns
– Systems programming

– Embedded systems

– Resource constrained systems

– Large systems

• Experts
– “C++ is expert friendly”

• Novices
– C++ Is not just expert friendly

Stroustrup - Essence - Going Native'13 5

What is C++?

A multi-paradigm

programming language

It’s C!

A hybrid language

An object-oriented

programming language

Template

meta-programming!

A random collection

of features

Embedded systems

programming language

Low level!

Buffer

overflows

Too big!

Generic programming

Class hierarchies

Classes

Stroustrup - Essence - Going Native'13 6

C++

Key strengths:
• software infrastructure
• resource-constrained applications

A light-weight abstraction
programming language

Stroustrup - Essence - Going Native'13 7

Programming Languages

Assembler

Cobol

Fortran

C++

C

Simula

C++11

General-purpose abstraction

Domain-specific
abstraction

Direct mapping to
hardware

Java

C#
BCPL

Stroustrup - Essence - Going Native'13 8

What does C++ offer?

• Not perfection
– Of course

• Not everything for everybody
– Of course

• A solid fundamental model
– Yes, really

• 30+ years of real-world “refinement”
– It works

• Performance
– A match for anything

• The best is buried in “compatibility stuff’’
– long-term stability is a feature

Stroustrup - Essence - Going Native'13 9

What does C++ offer?

• C++ in Four slides
– Map to hardware

– Classes

– Inheritance

– Parameterized types

• If you understand int and vector, you understand C++
– The rest is “details” (1,300+ pages of details)

Stroustrup - Essence - Going Native'13 10

• Primitive operations => instructions
– +, %, ->, [], (), …

• int, double, complex<double>, Date, …

• vector, string, thread, Matrix, …

• Objects can be composed by simple concatenation:
– Arrays

– Classes/structs

Map to Hardware

Stroustrup - Essence - Going Native'13

value

handle

value

value

value

handle

handle
value

value

11

Classes: Construction/Destruction

• From the first week of “C with Classes” (1979)

class X { // user-defined type

public: // interface

X(Something); // constructor from Something

~X(); // destructor

// …

private: // implementation

// …

};

“A constructor establishes the environment for the members to
run in; the destructor reverses its actions.”

Stroustrup - Essence - Going Native'13 12

Abstract Classes and Inheritance

• Insulate the user from the implementation
struct Device { // abstract class

virtual int put(const char*) = 0; // pure virtual function

virtual int get(const char*) = 0;

};

• No data members, all data in derived classes
– “not brittle”

• Manipulate through pointer or reference
– Typically allocated on the free store (“dynamic memory”)

– Typically requires some form of lifetime management (use resource
handles)

• Is the root of a hierarchy of derived classes

Stroustrup - Essence - Going Native'13 13

Parameterized Types and Classes

• Templates
– Essential: Support for generic programming

– Secondary: Support for compile-time computation

template<typename T>

class vector { /* … */ }; // a generic type

vector<double> constants = {3.14159265359, 2.54, 1, 6.62606957E-34, }; // a use

template<typename C>

void sort (Cont& c) { /* … */ } // a generic function

sort(constants); // a use

Stroustrup - Essence - Going Native'13 14

Not C++ (fundamental)

• No crucial dependence on a garbage collector
– GC is a last and imperfect resort

• No guaranteed type safety
– Not for all constructs

– C compatibility, history, pointers/arrays, unions, casts, …

• No virtual machine
– For many reasons, we often want to run on the real machine

– You can run on a virtual machine (or in a sandbox) if you want to

Stroustrup - Essence - Going Native'13 15

Not C++ (market realities)

• No huge “standard” library
– No owner

• To produce “free” libraries to ensure market share

– No central authority

• To approve, reject, and help integration of libraries

• No standard
– Graphics/GUI

• Competing frameworks

– XML support

– Web support

– …

Stroustrup - Essence - Going Native'13 16

Resource Management

Stroustrup - Essence - Going Native'13 17

Resource management
• A resource should be owned by a “handle”

– A “handle” should present a well-defined and useful abstraction
• E.g. a vector, string, file, thread

• Use constructors and a destructor
class Vector { // vector of doubles

Vector(initializer_list<double>); // acquire memory; initialize elements
~Vector(); // destroy elements; release memory
// …

private:
double* elem; // pointer to elements
int sz; // number of elements

};

void fct()
{

Vector v {1, 1.618, 3.14, 2.99e8}; // vector of doubles
// …

}

Stroustrup - Essence - Going Native'13

handle

Value

18

Resource management

• A handle usually is scoped
– Handles lifetime (initialization, cleanup), and more

Vector::Vector(initializer_list<double> lst)

:elem {new double[lst.size()]}, sz{lst.size()}; // acquire memory

{

uninitialized_copy(lst.begin(),lst.end(),elem); // initialize elements

}

Vector::~Vector()

{

delete[] elem; // destroy elements; release memory

};

Stroustrup - Essence - Going Native'13 19

Resource management

• What about errors?
– A resource is something you acquire and release

– A resource should have an owner

– Ultimately “root” a resource in a (scoped) handle

– “Resource Acquisition Is Initialization” (RAII)

• Acquire during construction

• Release in destructor

– Throw exception in case of failure

• Can be simulated, but not conveniently

– Never throw while holding a resource not owned by a handle

• In general
– Leave established invariants intact when leaving a scope

Stroustrup - Essence - Going Native'13 20

“Resource Acquisition is Initialization” (RAII)

• For all resources
– Memory (done by std::string, std::vector, std::map, …)

– Locks (e.g. std::unique_lock), files (e.g. std::fstream), sockets, threads
(e.g. std::thread), …

std::mutex mtx; // a resource

int sh; // shared data

void f()

{

std::lock_guard lck {mtx}; // grab (acquire) the mutex

sh+=1; // manipulate shared data

} // implicitly release the mutex

Stroustrup - Essence - Going Native'13 21

Pointer Misuse

• Many (most?) uses of pointers in local scope are not exception safe

void f(int n, int x)

{

Gadget* p = new Gadget{n}; // look I’m a java programmer!

// …

if (x<100) throw std::runtime_error{“Weird!”}; // leak

if (x<200) return; // leak

// …

delete p; // and I want my garbage collector!

}

– But, garbage collection would not release non-memory resources anyway

– But, why use a “naked” pointer?
Stroustrup - Essence - Going Native'13 22

Resource Handles and Pointers

• A std::shared_ptr releases its object at when the last shared_ptr to
it is destroyed

void f(int n, int x)
{

shared_ptr<Gadget> p {new Gadget{n}}; // manage that pointer!
// …
if (x<100) throw std::runtime_error{“Weird!”}; // no leak
if (x<200) return; // no leak
// …

}

– shared_ptr provides a form of garbage collection
– But I’m not sharing anything

• use a unique_ptr

Stroustrup - Essence - Going Native'13 23

Resource Handles and Pointers

• But why use a pointer at all?

• If you can, just use a scoped variable

void f(int n, int x)

{

Gadget g {n};

// …

if (x<100) throw std::runtime_error{“Weird!”}; // no leak

if (x<200) return; // no leak

// …

}

Stroustrup - Essence - Going Native'13 24

Why do we use pointers?

• And references, iterators, etc.

• To represent ownership
– Don’t! Instead, use handles

• To reference resources
– from within a handle

• To represent positions
– Be careful

• To pass large amounts of data (into a function)
– E.g. pass by const reference

• To return large amount of data (out of a function)
– Don’t! Instead use move operations

Stroustrup - Essence - Going Native'13 25

How to get a lot of data cheaply out of a function?

• Ideas
– Return a pointer to a new’d object

• Who does the delete?

- Return a reference to a new’d object

- Who does the delete?

- Delete what?

- Pass a target object

- We are regressing towards assembly code

- Return an object

- Copies are expensive

- Tricks to avoid copying are brittle

- Tricks to avoid copying are not general

- Return a handle
- Simple and cheap

Stroustrup - Essence - Going Native'13 26

Move semantics

• Return a Matrix
Matrix operator+(const Matrix& a, const Matrix& b)

{

Matrix r;

// copy a[i]+b[i] into r[i] for each i

return r;

}

Matrix res = a+b;

• Define move a constructor for Matrix
– don’t copy; “steal the representation”

……..

res:

r:

Stroustrup - Essence - Going Native'13 27

Move semantics

• Direct support in C++11: Move constructor
class Matrix {

Representation rep;
// …
Matrix(Matrix&& a) // move constructor
{

rep = a.rep; // *this gets a’s elements
a.rep = {}; // a becomes the empty Matrix

}
};

Matrix res = a+b;

……..

res:

r:

Stroustrup - Essence - Going Native'13 28

No garbage collection needed

• For general, simple, implicit, and efficient resource management

• Apply these techniques in order:
1. Store data in containers

• The semantics of the fundamental abstraction is reflected in the interface

• Including lifetime

2. Manage all resources with resource handles

• RAII

• Not just memory: all resources

3. Use “smart pointers”

• They are still pointers

4. Plug in a garbage collector

• For “litter collection”

• C++11 specifies an interface

• Can still leak non-memory resources
Stroustrup - Essence - Going Native'13 29

Range-for, auto, and move

• As ever, what matters is how features work in combination
template<typename C, typename V>
vector<Value_type<C>*> find_all(C& c, V v) // find all occurrences of v in c
{

vector<Value_type<C>*> res;
for (auto& x : c)

if (x==v)
res.push_back(&x);

return res;
}

string m {"Mary had a little lamb"};
for (const auto p : find_all(m,'a')) // p is a char*

if (*p!='a')
cerr << "string bug!\n";

Stroustrup - Essence - Going Native'13 30

RAII and Move Semantics

• All the standard-library containers provide it
• vector

• list, forward_list (singly-linked list), …

• map, unordered_map (hash table),…

• set, multi_set, …

• …

• string

• So do other standard resources
• thread, lock_guard, …

• istream, fstream, …

• unique_ptr, shared_ptr

• …

Stroustrup - Essence - Going Native'13 31

OOP

Stroustrup - Essence - Going Native'13 32

Class hierarchies

• Protection model

• No universal base class
– an unnecessary implementation-oriented artifact

– imposes avoidable space and time overheads.

– encourages underspecified (overly general) interfaces

• Multiple inheritance
– Separately consider interface and implementation

– Abstract classes provide the most stable interfaces

• Minimal run-time type identification
– dynamic_cast<D*>(pb)

– typeid(p) Stroustrup - Essence - Going Native'13

All users

public

Derived classes

protected

private

Class’ own members

33

Inheritance

• Use it
– When the domain concepts are hierarchical

– When there is a need for run-time selection among hierarchically ordered
alternatives

• Warning:
– Inheritance has been seriously and systematically overused and misused

• “When your only tool is a hammer everything looks like a nail”

Stroustrup - Essence - Going Native'13 34

GP

Stroustrup - Essence - Going Native'13 35

Generic Programming: Templates

• 1980: Use macros to express generic types and functions

• 1987 (and current) aims:
– Extremely general/flexible

• “must be able to do much more than I can imagine”

– Zero-overhead

• vector/Matrix/… to compete with C arrays

– Well-specified interfaces

• Implying overloading, good error messages, and maybe separate
compilation

• “two out of three ain’t bad”
– But it isn’t really good either

– it has kept me concerned/working for 20+ years

Stroustrup - Essence - Going Native'13 36

Templates

• Compile-time duck typing
– Leading to template metaprogramming

• A massive success in C++98, better in C++11, better still in C++14
– STL containers

• template<typename T> class vector { /* … */ };

– STL algorithms
• sort(v.begin(),v.end());

– And much more

• Better support for compile-time programming
– C++11: constexpr (improved in C++14)

Stroustrup - Essence - Going Native'13 37

Algorithms
• Messy code is a major source of errors and inefficiencies
• We must use more explicit, well-designed, and tested algorithms
• The C++ standard-library algorithms are expressed in terms of

half-open sequences [first:last)
– For generality and efficiency

void f(vector<int>& v, list<string>& lst)
{

sort(v.begin(),v.end()); // sort the vector using <

auto p = find(lst.begin(),lst.end(),"Aarhus"); // find “Aarhus” in the list

// …
}

• We parameterize over element type and container type

Stroustrup - Essence - Going Native'13 38

Algorithms

• Simple, efficient, and general implementation
– For any forward iterator

– For any (matching) value type

template<typename Iter, typename Value>

Iter find(Iter first, Iter last, Value val) // find first p in [first:last) so that *p==val

{

while (first!=last && *first!=val)

++first;

return first;

}

Stroustrup - Essence - Going Native'13 39

Algorithms and Function Objects

• Parameterization with criteria, actions, and algorithms

– Essential for flexibility and performance

void g(vector< string>& vs)

{

auto p = find_if(vs.begin(), vs.end(), Less_than{"Griffin"});

// …

}

Stroustrup - Essence - Going Native'13 40

Algorithms and Function Objects

• The implementation is still trivial

template<typename Iter, typename Predicate>

Iter find_if(Iter first, Iter last, Predicate pred) // find first p in [first:last) so that pred(*p)

{

while (first!=last && !pred(*first))

++first;

return first;

}

Stroustrup - Essence - Going Native'13 41

Function Objects and Lambdas
• General function object

– Can carry state

– Easily inlined (i.e., close to optimally efficient)

struct Less_than {

String s;

Less_than(const string& ss) :s{ss} {} // store the value to compare against

bool operator()(const string& v) const { return v<s; } // the comparison

};

Lambda notation
– We can let the compiler write the function object for us

auto p = std::find_if(vs.begin(),vs.end(),

[](const string& v) { return v<"Griffin"; });

Stroustrup - Essence - Going Native'13 42

Container algorithms

• The C++ standard-library algorithms are expressed in terms of half-
open sequences [first:last)
– For generality and efficiency
– If you find that verbose, define container algorithms

namespace Extended_STL {
// …
template<typename C, typename Predicate>
Iterator<C> find_if(C& c, Predicate pred)
{

return std::find_if(c.begin(),c.end(),pred);
}
// …

}

auto p = find_if(v, [](int x) { return x%2; }); // assuming v is a vector<int>

Stroustrup - Essence - Going Native'13 43

Duck Typing is Insufficient

• There are no proper interfaces

• Leaves error detection far too late
– Compile- and link-time in C++

• Encourages a focus on implementation details
– Entangles users with implementation

• Leads to over-general interfaces and data structures
– As programmers rely on exposed implementation “details”

• Does not integrate well with other parts of the language
– Teaching and maintenance problems

• We must think of generic code in ways similar to other code
– Relying on well-specified interfaces (like OO, etc.)

Stroustrup - Essence - Going Native'13 44

Generic Programming is just Programming

• Traditional code
double sqrt(double d); // C++84: accept any d that is a double

double d = 7;

double d2 = sqrt(d); // fine: d is a double

double d3 = sqrt(&d); // error: &d is not a double

• Generic code
void sort(Container& c); // C++14: accept any c that is a Container

vector<string> vs { "Hello", "new", "World" };

sort(vs); // fine: vs is a Container

sort(&vs); // error: &vs is not a Container

Stroustrup - Essence - Going Native'13 45

C++14: Constraints aka “Concepts lite”

• How do we specify requirements on template arguments?
– state intent

• Explicitly states requirements on argument types

– provide point-of-use checking

• No checking of template definitions

– use constexpr functions

• Voted as C++14 Technical Report

• Design by B. Stroustrup, G. Dos Reis, and A. Sutton

• Implemented by Andrew Sutton in GCC

• There are no C++0x concept complexities
– No concept maps

– No new syntax for defining concepts

– No new scope and lookup issues
Stroustrup - Essence - Going Native'13 46

What is a Concept?

• Concepts are fundamental
– They represent fundamental concepts of an application area

– Concepts are come in “clusters” describing an application area

• A concept has semantics (meaning)
– Not just syntax

– “Subtractable” is not a concept

• We have always had concepts
– C++: Integral, arithmetic

– STL: forward iterator, predicate

– Informally: Container, Sequence

– Algebra: Group, Ring, …

Stroustrup - Essence - Going Native'13 47

What is a Concept?

• Don’t expect to find a new fundamental concept every year

• A concept is not the minimal requirements for an implementation
– An implementation does not define the requirements

– Requirements should be stable

• Concepts support interoperability
– There are relatively few concepts

– We can remember a concept

Stroustrup - Essence - Going Native'13 48

C++14 Concepts (Constraints)

• A concept is a predicate on one or more arguments
– E.g. Sequence<T>() // is T a Sequence?

• Template declaration
template <typename S, typename T>

requires Sequence<S>()

&& Equality_comparable<Value_type<S>, T>()

Iterator_of<S> find(S& seq, const T& value);

• Template use
void use(vector<string>& vs)

{

auto p = find(vs,"Jabberwocky");

// …

} Stroustrup - Essence - Going Native'13 49

C++14 Concepts: Error handling

• Error handling is simple (and fast)

template<Sortable Cont>

void sort(Cont& container);

vector<double> vec {1.2, 4.5, 0.5, -1.2};

list<int> lst {1, 3, 5, 4, 6, 8,2};

sort(vec); // OK: a vector is Sortable

sort(lst); // Error at (this) point of use: Sortable requires random access

• Actual error message
error: ‘list<int>’ does not satisfy the constraint ‘Sortable’

Stroustrup - Essence - Going Native'13 50

C++14 Concepts: “Shorthand Notation”

• Shorthand notation
template <Sequence S, Equality_comparable<Value_type<S>> T>

Iterator_of<C> find(S& seq, const T& value);

• We can handle essentially all of the Palo Alto TR
– (STL algorithms) and more

• Except for the axiom parts

– We see no problems checking template definitions in isolation

• But proposing that would be premature (needs work, experience)

– We don’t need explicit requires much (the shorthand is usually fine)

Stroustrup - Essence - Going Native'13 51

C++14 Concepts: Overloading

• Overloading is easy
template <Sequence S, Equality_comparable<Value_type<S>> T>

Iterator_of<S> find(S& seq, const T& value);

template<Associative_container C>

Iterator_type<C> find(C& assoc, const Key_type<C>& key);

vector<int> v { /* ... */ };

multiset<int> s { /* … */ };

auto vi = find(v, 42); // calls 1st overload:

// a vector is a Sequence

auto si = find(s, 12-12-12); // calls 2nd overload:

// a multiset is an Associative_container

Stroustrup - Essence - Going Native'13 52

C++14 Concepts: Overloading

• Overloading based on predicates
– specialization based on subset

– Far easier than writing lots of tests

template<Input_iterator Iter>

void advance(Iter& p, Difference_type<Iter> n) { while (n--) ++p; }

template<Bidirectional_iterator Iter>

void advance(Iter& i, Difference_type<Iter> n)

{ if (n > 0) while (n--) ++p; if (n < 0) while (n++) --ip}

template<Random_access_iterator Iter>

void advance(Iter& p, Difference_type<Iter> n) { p += n; }

• We don’t say
Input_iterator < Bidirectional_iterator < Random_access_iterator

we compute it
Stroustrup - Essence - Going Native'13 53

C++14 Concepts: Definition

• How do you write constraints?
– Any bool expression

• Including type traits and constexpr function

– a requires(expr) expression

• requires() is a compile time intrinsic function

• true if expr is a valid expression

• To recognize a concept syntactically, we can declare it concept

– Rather than just constexpr

Stroustrup - Essence - Going Native'13 54

C++14 Concepts: “Terse Notation”

• We can use a concept name as the name of a type than satisfy
the concept

void sort(Container& c); // terse notation

– means
template<Container __Cont> // shorthand notation

void sort(__Cont& c);

– means
template<typename __Cont> // explicit use of predicate

requires Container<__Cont>()

void sort(__Cont)& c;

– Accepts any type that is a Container
vector<string> vs;

sort(vs);

Stroustrup - Essence - Going Native'13 55

C++14 Concepts: “Terse Notation”

• We have reached the conventional notation
– with the conventional meaning

• Traditional code
double sqrt(double d); // C++84: accept any d that is a double

double d = 7;

double d2 = sqrt(d); // fine: d is a double

double d3 = sqrt(&d); // error: &d is not a double

• Generic code
void sort(Container& c); // C++14: accept any c that is a Container

vector<string> vs { "Hello", "new", "World" };

sort(vs); // fine: vs is a Container

sort(&vs); // error: &vs is not a Container

Stroustrup - Essence - Going Native'13 56

C++14 Concepts: “Terse Notation”

• Consider std::merge

• Explicit use of predicates:
template<typename For,

typename For2,

typename Out>

requires Forward_iterator<For>()

&& Forward_iterator<For2>()

&& Output_iterator<Out>()

&& Assignable<Value_type<For>,Value_type<Out>>()

&& Assignable<Value_type<For2,Value_type<Out>>()

&& Comparable<Value_type<For>,Value_type<For2>>()

void merge(For p, For q, For2 p2, For2 q2, Out p);

• Headache inducing, and accumulate() is worse

Stroustrup - Essence - Going Native'13 57

C++14 Concepts: “Terse Notation”

• Better, use the shorthand notation
template<Forward_iterator For,

Forward_iterator For2,

Output_iterator Out>

requires Mergeable<For,For2,Out>()

void merge(For p, For q, For2 p2, For2 q2, Out p);

• Quite readable

Stroustrup - Essence - Going Native'13 58

C++14 Concepts: “Terse Notation”

• Better still, use the “terse notation”:

Mergeable{For,For2,Out} // Mergeable is a concept requiring three types

void merge(For p, For q, For2 p2, For2 q2, Out p);

• The
concept-name { identifier-list }

notation introduces constrained names

• Make simple things simple!

Stroustrup - Essence - Going Native'13 59

C++14 Concepts: “Terse Notation”

• Now we just need to define Mergeable:

template<typename For, typename For2, typename Out>

concept bool Mergeable()

{

return Forward_iterator<For>()

&& Forward_iterator<For2>()

&& Output_iterator<Out>()

&& Assignable<Value_type<For>,Value_type<Out>>()

&& Assignable<Value_type<For2,Value_type<Out>>()

&& Comparable<Value_type<For>,Value_type<For2>>();

}

• It’s just a predicate

Stroustrup - Essence - Going Native'13 60

Challenges

Stroustrup - Essence - Going Native'13 61

C++ Challenges

• Obviously, C++ is not perfect
– How can we make programmers prefer modern styles over low-level code

• which is far more error-prone and harder to maintain, yet no more efficient?

– How can we make C++ a better language given the Draconian constraints
of C and C++ compatibility?

– How can we improve and complete the techniques and models
(incompletely and imperfectly) embodied in C++?

• Solutions that eliminate major C++ strengths are not acceptable
– Compatibility

• link, source code

– Performance
• uncompromising

– Portability

– Range of application areas
• Preferably increasing the range

Stroustrup - Essence - Going Native'13 62

Long-term C++ Challenges
• Close more type loopholes

– in particular, find a way to prevent misuses of delete without spoiling RAII

• Simplify concurrent programming
– in particular, provide some higher-level concurrency models as libraries

• Simplify generic programming
– in particular, introduce simple and effective concepts

• Simplify programming using class hierarchies
– in particular, eliminate use of the visitor pattern

• Better support for combinations of object-oriented and generic programming
• Make exceptions usable for hard-real-time projects

– that will most likely be a tool rather than a language change

• Find a good way of using multiple address spaces
– as needed for distributed computing
– would probably involve defining a more general module mechanism that would

also address dynamic linking, and more.

• Provide many more domain-specific libraries
• Develop a more precise and formal specification of C++

Stroustrup - Essence - Going Native'13 63

“Paradigms”

• Much of the distinction between object-oriented
programming, generic programming, and “conventional
programming” is an illusion
– based on a focus on language features

– incomplete support for a synthesis of techniques

– The distinction does harm
• by limiting programmers, forcing workarounds

void draw_all(Container& c) // is this OOP, GP, or conventional?

requires Same_type<Value_type<Container>,Shape*>

{

for_each(c, [](Shape* p) { p->draw(); });

}

Stroustrup - Essence - Going Native'13 64

Questions?

Key strengths:
• software infrastructure
• resource-constrained applications

C++: A light-weight abstraction
programming language

Stroustrup - Essence - Going Native'13

Practice type-rich
programming

65

