
C++20: C++ at 40
stability and evolution

Bjarne Stroustrup
Morgan Stanley, Columbia University

www.stroustrup.com

2019 and 1979

Power and connectivity

Stroustrup - C++ at 40 - CppCon'19 3

C++ inside

Presenter
Presentation Notes
I wonder about 2059.

Then – early 1980s
• Ken and Dennis had only just proved that semi-portable systems

programming could be done (almost) without assembler
• C didn’t have function prototypes
• Lint was state of the art static program analysis

• Most computers were <1MB and <1MHz
• PDP11s were cool
• VT100s were state of the art
• A “personal computer” about $3000 (pre-inflation $$$)
• The IBM PC was still in the future

• “Everybody” “knew” that “OO” was useless
• too slow, too special-purpose, and too difficult for ordinary mortals

Stroustrup - C++ at 40 - CppCon'19 4

Presenter
Presentation Notes
1000th of a Rasperry Pi’s power, 100* more expensive, 10000* heavier, served 40 researchers

Present and use C++ as a modern language

• This is a talk about C++ as it is today (C++20)
• new != good != old and new != bad != old
• I am not labeling examples as C++98, C++14, C++20, etc.
• I will, occasionally, give a historical perspective; we have come a long way

• This is not a talk about “details”
• Every technical point mentioned here has a one-hour talk this week

Stroustrup - C++ at 40 - CppCon'19 5

General approach – a recommendation

• Using C++
• focus on the essentials
• use “advanced features” only when necessary

• Teaching C++
• focus on the essentials
• don't hide the key features and techniques in a mess of information
• Tell the truth

• only the truth
• but not the whole truth at once
• gradually increase the level of detail

• Distinguish between what’s legal and what’s effective
• Better tool support is needed

• E.g. for the C++ Core Guidelines
Stroustrup - C++ at 40 - CppCon'19 6

Presenter
Presentation Notes
No, it’s not easy; Years of experiments with “A Tour of C++”: diagnostics

C++: principled and eclectic

• C++ a general-purpose programming language for the
definition, implementation and use of lightweight abstractions

• Language design is not just product development
• Coherent design philosophy is essential
• Stable over decades

• Whatever it takes for production code
• The world is unimaginably diverse
• Much of the world is messy
• Many applications require stability over decades
• Often, C++ is “the only thing that works”

• Simple enough for “casual use”
• Don’t try to enforce some idea of “theoretical purity”
• Don’t be “expert only”
• Make simple things simple

Stroustrup - C++ at 40 - CppCon'19 7

Presenter
Presentation Notes
Google manager story

C++ high-level aims (aka principles)

• Evolutionary
• Stable (backwards compatible)
• Support gradual adoption

• Make simple things simple
• Don’t make complicated tasks impossible
• Don’t make complicated tasks unreasonably hard to do

• Zero-overhead principle
• What you don't use, you don't pay for (aka ``no distributed fat'')
• What you do use, you couldn't hand-code any better

• Aim high
• Significantly change the way we design and implement software
• Change the way we think

Stroustrup - C++ at 40 - CppCon'19 8

Presenter
Presentation Notes
Manage complexity

The value of a
programming language
is in the quality of its
applications

Stroustrup - C++ at 40 - CppCon'19 9

Presenter
Presentation Notes
Everywhere! It’s what keeps me going; it’s what I think might inspire you; science!

We changed the world!

• Programming and design
• Abstraction: direct expression of ideas
• Better use of better hardware
• Code analysis and compiler construction

• Applications
• Scale and sophistication
• Engineering, science, …
• … Stroustrup - C++ at 40 - CppCon'19 10

2019 and 1979

Power and connectivity

Stroustrup - C++ at 40 - CppCon'19 11

C++ inside

C++ has been driving dramatic changes
in many many areas

Presenter
Presentation Notes
I wonder about 2059.

Key C++ "Rules of thumb"

1. A static type system with equal support for built-in and user-defined types
2. Value and reference semantics

3. Direct use of machine and operating system resources
4. Systematic and general resource management (RAII)
5. Support composition of software from separately developed parts

6. Support for object-oriented programming
7. Support for generic programming
8. Support for compile-time programming

9. Concurrency through libraries supported by intrinsics
10.…

Stroustrup - C++ at 40 - CppCon'19 12

My guide
for this talk

Presenter
Presentation Notes
I will try to describe this as reflected in C++20 without going into exactly when a features was added or what we did/do before

A language is not just a list of features

• C++ is (most deliberately) evolving
• Too fast for some, too slow for some

• Maintaining coherency is hard
• Requires articulated principles
• Aim for steady gradual improvement (aka evolution)

• There was and is a plan
• H. Hinnant, B. Stroustrup, R. Orr, D. Vandevoorde, and M. Wong: Direction for

ISO C++ (R*). P0939R*. (The Direction Group)
• B. Stroustrup: Remember the Vasa! P0977r0. 2018-03-6.
• Jan Christiaan van Winkel, Jose Daniel Garcia, Ville Voutilainen, Roger Orr,

Michael Wong, Sylvain Bonnal: Operating principles for evolving C++.
P0559R0. 2017-01-31. (Heads of National standards delegations)

• B. Stroustrup: Thoughts about C++17. 2015-05-15.
• B. Stroustrup: Evolving a language in and for the real world: C++ 1991-2006.

ACM HOPL-III. 2007.
• B. Stroustrup: The design and evolution of C++. Addison-Wesley. 1994.

Stroustrup - C++ at 40 - CppCon'19 13

Key C++ "Rules of thumb"

1. A static type system with equal support for built-in and user-defined types
2. Value and reference semantics

3. Direct use of machine and operating system resources
4. Systematic and general resource management (RAII)
5. Support composition of software from separately developed parts

6. Support for object-oriented programming
7. Support for generic programming
8. Support for compile-time programming

9. Concurrency through libraries supported by intrinsics
10.…

Stroustrup - C++ at 40 - CppCon'19 14

Presenter
Presentation Notes
I will try to describe this as reflected in C++20 without going into exactly when a features was added or what we did/do before

A static type system – the base of all

• Compile-time error detection
• e.g., list<int> lst; … sort(lst); // error: no random access in lists
• Run-time error-handling can get expensive and complicated

• Performance
• Direct expression of ideas simplifies optimization
• Move computation from run-time to compile-time

• Flexibility through compile-time resolution
• Overloading

• e.g., sqrt(2);
• Generic programming

• e.g., vector<int> v; … auto p = find(v,42);
• Metaprogramming

• e.g., conditional<(sizeof(int)<4),double, int> x;
• Compile-time evaluation

• e.g., static_assert(weekday(August/3/2019)==Sunday);
Stroustrup - C++ at 40 - CppCon'19 15

Key C++ "Rules of thumb"

1. A static type system with equal support for built-in and user-defined types
2. Value and reference semantics

3. Direct use of machine and operating system resources
4. Systematic and general resource management (RAII)
5. Support composition of software from separately developed parts

6. Support for object-oriented programming
7. Support for generic programming
8. Support for compile-time programming

9. Concurrency through libraries supported by intrinsics
10.…

Stroustrup - C++ at 40 - CppCon'19 16

Presenter
Presentation Notes
I will try to describe this as reflected in C++20 without going into exactly when a features was added or what we did/do before

Value and reference semantics

• We need both to represent essential concepts

• We can supply value semantics to any type

x = y + z; // could be int, or complex<double>, or Matrix, or …
x = y; // x is a copy of y

// x and y are independent objects

• We can supply pointer/reference semantics for any type

p = x; // could be a T, and shared_ptr<T>, or …
p = q; // p and q points to the same object

Stroustrup - C++ at 40 - CppCon'19 17

Value

handle

Value and reference semantics
• Value types

• All our most common types
• Integers, characters, strings, containers, …

• Ideal semantics (often regular)
• Easily allocated on stack
• Inlining
• Often implemented using pointers

• Pointers/references
• All kinds of pointers and references “point” to some object

• T*, T&, unique_ptr<T>, Forward_iterator
• Essential for passing information around efficiently

• auto p = find(lst, "something interesting");
• sort(v);

• Essential for building non-trivial objects (data structures)

• Both are needed for optimal use of machine resources
Stroustrup - C++ at 40 - CppCon'19 18

Value

handle

Presenter
Presentation Notes
Often mentioned as a source of complexity and confusion – but both are necessary and more powerful/elegant than either

Equal support for built-in types
and user-defined types
• Regularity is essential for generic programming and much more

template<Element T> class Vector {
public:

Vector(initializer_list<T>);
// …
T* elem; // T* can point to any Element type

// user-defined or built-in
};

// We can parameterize with any Element type:

Vector<int> vi = {1,2,3}; // built-in
Vector<complex<double>> vc = {{1,2},{3,4},{5,6}}; // user-defined
Vector<Vector<int>> vvi = {{1,2,3}, {4,5,6}, {7,8,9}}; // recursive

Stroustrup - C++ at 40 - CppCon'19 19

Value

handle

Presenter
Presentation Notes
The Vector provides a level of abstraction on top of the T* level

Key C++ "Rules of thumb"

1. A static type system with equal support for built-in and user-defined types
2. Value and reference semantics

3. Direct use of machine and operating system resources
4. Systematic and general resource management (RAII)
5. Support composition of software from separately developed parts

6. Support for object-oriented programming
7. Support for generic programming
8. Support for compile-time programming

9. Concurrency through libraries supported by intrinsics
10.…

Stroustrup - C++ at 40 - CppCon'19 20

Presenter
Presentation Notes
Red: main topic; blue: essential support

• Primitive operations maps to machine instructions
• Arithmetic: +, -, *, /, %
• Access: ->, [], (), …
• Bitwise logical: &, |, ^ (exclusive or), ~ (complement), >> and << (shift), rotate

• Memory is a set of sequences of objects
• Pointers are machine addresses

• Objects can be composed by simple concatenation
• Arrays
• Classes/structs

• A simple abstraction of hardware

Direct use of machine resources

Stroustrup - C++ at 40 - CppCon'19

value value

handle

handle

value

value

21

value

address

value

Presenter
Presentation Notes
More and more students don’t understand this and the implications of this; credit: DMR

Direct use of machine resources

• bitset
• Manipulate contiguous sequences of bits of arbitrary sizes
• &, |, ^ (exclusive or), ~ (complement), >> and << (shift), rotate

• span
• Manipulate contiguous sequences of objects
array<byte,1024> a;
// …
span s { a }; // no explicit element type or size
for (const auto x : s) f(x); // no range checking and no range error
for (auto& x : s) x = 99;

span s2 {a,512}; // you can give a size if you want to
span<byte> s3 {a}; // you can give an element type if you want to

Stroustrup - C++ at 40 - CppCon'19 22

Type
inference

Presenter
Presentation Notes
Aside: C++20; I will use the standard library freely; adding a size is to drop a level of abstraction opening opportunities for errors

The onion principle

Stroustrup - C++ at 40 - CppCon'19 23

• Layers of abstraction
• The more layers you peel off, the more you cry

• Management of complexity

Key C++ "Rules of thumb"

1. A static type system with equal support for built-in and user-defined types
2. Value and reference semantics

3. Direct use of machine and operating system resources
4. Systematic and general resource management (RAII)
5. Support composition of software from separately developed parts

6. Support for object-oriented programming
7. Support for generic programming
8. Support for compile-time programming

9. Concurrency through libraries supported by intrinsics
10.…

Stroustrup - C++ at 40 - CppCon'19 24

Constructor/destructor pairs (RAII)

• An archetype of a resource manager: “Gadget”
• A resource is anything that must be acquired and given back
• A user doesn’t need to know which resources Gadget uses

class Gadget {
Gadget(/* arguments */); // initialize/construct

// incl. acquire any resources needed
~Gadget(); // clean up any mess

// incl. releasing any resources held
// … copy and move …
// … rest of user interface …

private:
// … representation …

};

Stroustrup - C++ at 40 - CppCon'19 25

Systematic general resource management

• Every resource must have an owner
• Responsible for its cleanup (destruction)
• Don’t use built-in pointers (T*) to manage ownership

• Anchor resources in scopes

void f(int n, int x)
{

Gadget g {n}; // we don’t need to know which resources g owns
// …
if (x<100) throw run_time_error{"Weird!"}; // no leak
if (x<200) return; // no leak
// …

}

Stroustrup - C++ at 40 - CppCon'19 26

Systematic general resource management

• Control the complete object life cycle
• Creation, copy, move, destruction

Gadget f(int n, int x)
{

Gadget g {n}; // g may be huge
// g may contain non-copyable objects

// …
return g; // no leak, no copy

// no pointers
// no explicit memory management

}

auto gg = f(1,2); // move the Gadget out of f

Stroustrup - C++ at 40 - CppCon'19 27

Gadget

stuff

g:

Gadgetgg:

first

second

Presenter
Presentation Notes
RV optimization or move

General resource management
• Make resource release implicit and guaranteed (RAII)
• All C++ standard-library containers manage their elements

• vector
• list, forward_list (singly-linked list), …
• map, unordered_map (hash table),…
• set, multiset, …
• string, path

• Many C++ standard-library classes manage non-memory resources
• thread, jthread, shared_mutex, scoped_lock, …
• istream, fstream, …
• unique_ptr, shared_ptr

• A container can hold a non-memory resource
• This all works recursively, e.g., vector<forward_list<pair<string,jthread>>

Stroustrup - C++ at 40 - CppCon'19

handle

Value

28

GC is neither sufficient nor ideal

Key C++ "Rules of thumb"

1. A static type system with equal support for built-in and user-defined types
2. Value and reference semantics

3. Direct use of machine and operating system resources
4. Systematic and general resource management (RAII)
5. Support composition of software from separately developed parts

6. Support for object-oriented programming
7. Support for generic programming
8. Support for compile-time programming

9. Concurrency through libraries supported by intrinsics
10.…

Stroustrup - C++ at 40 - CppCon'19 29

Presenter
Presentation Notes
I will try to describe this as reflected in C++20 without going into exactly when a features was added or what we did/do before

Modules

export module map_printer; // we are defining a module

import std; // the order of imports is unimportant
import my_containers;

export
template<forward_range S>

requires Printable<KeyType<S>> && Printable<Value_type<S>>
void print_map(const S& m) {

for (const auto& [key,val] : m) // break out key and value
cout << key << " -> " << val << '\n';

}

Stroustrup - C++ at 40 - CppCon'19 30

Modules

• Support clean code
• Minimizes dependencies
• Avoids circular dependencies
• Modularity

import A;
import B;
means the same as
import B;
import A;

• Only the used parts of an imported module are turned
into generated code

• There is only one “copy” of a module, analyzed once

Stroustrup - C++ at 40 - CppCon'19 31

Composition

• All major features support composition
• Modules
• Classes
• Concepts
• Templates
• Functions
• Aliases

Stroustrup - C++ at 40 - CppCon'19 32

Key C++ "Rules of thumb"

1. A static type system with equal support for built-in and user-defined types
2. Value and reference semantics

3. Direct use of machine and operating system resources
4. Systematic and general resource management (RAII)
5. Support composition of software from separately developed parts

6. Support for object-oriented programming
7. Support for generic programming
8. Support for compile-time programming

9. Concurrency through libraries supported by intrinsics
10.…

Stroustrup - C++ at 40 - CppCon'19 33

Generic programming

• Write code that works for types that meet abstract requirements
• E.g., is a forward iterator, is integral, is regular, can be sorted

• These requirements are defined as concepts
• A concept is a compile-time predicate on a set of types and values
template<typename R>
concept Sortable_range =

random_access_range<R> // has begin()/end(), ++, [], +, …
&& permutable<iterator_t<R>> // has swap(), etc.
&& indirect_strict_weak_order<R>; // has <, etc.

• Use
void sort(Sortable_range auto&);
sort(vec); // OK: sort a vector with ordered elements
sort(lst); // error: trying to sort a list with ordered elements

Stroustrup - C++ at 40 - CppCon'19 34

Generic programming
• Selection based on abstract requirements

void sort(Sortable_range auto& container); // container must be sortable

template<typename R>
concept Forward_sortable_range =

forward_range<R>
&& sortable<iterator_t<R>>;

void sort(Forward_sortable_range auto& seq); // random access not required

sort(vec); // OK: use sort of Sortable_range
sort(lst); // OK: use sort of Forward_sortable_range

• We don’t have to say
• “Forward_sortable_range is less strict than Sortable_range”
• we compute that from their definitions

Stroustrup - C++ at 40 - CppCon'19 35

Flexibility
composability

Presenter
Presentation Notes
But what if I want to sort lists; flexibility, composability; no rigid hierarchies

Generic programming

• GP is “just programming”
• A concept specifies an interface
• A type specifies and interface plus a layout
• In principle, there is little difference between sort(v) and sqrt(x)
• “as close to ordinary programming, but not closer”

• By default sort() uses < for comparison
• We can specify our own comparison
template<random_access_range R, class Cmp = less>

requires sortable_range<R, Cmp>
constexpr void sort(R&& r, Cmp cmp = {});

sort(v, [](const auto& x, const auto& y) { return x>y; });
sort(vs, [](const auto& x, const auto& y) { return lower_case_less(x,y); });

Stroustrup - C++ at 40 - CppCon'19 36

Key C++ "Rules of thumb"

1. A static type system with equal support for built-in and user-defined types
2. Value and reference semantics

3. Direct use of machine and operating system resources
4. Systematic and general resource management (RAII)
5. Support composition of software from separately developed parts

6. Support for object-oriented programming
7. Support for generic programming
8. Support for compile-time programming

9. Concurrency through libraries supported by intrinsics
10.…

Stroustrup - C++ at 40 - CppCon'19 37

Object-oriented programming

• Hierarchy
• From the dawn of time (1969)
• For run-time resolution

class Shape {
virtual void draw() =0; // abstract class
// …

};

class Circle : public Shape {
void draw() override;
// …

};

class Triangle : public Shape {
void draw() override;
// …

};
Stroustrup - C++ at 40 - CppCon'19 38

Shape

Circle

Triangle
Smiley_face

Still useful and popular

Object-oriented programming
• Sometimes, pointer-semantics is essential

• You need pointers/references for run-time polymorphism

void draw_all(forward_range auto& s) // Ye good olde draw shapes example
requires derived_from<Value_type<s>, Shape>

{
for (auto& x : s) s->draw();

}

void some_use(Point p2, Point p3)
{

vector<shared_ptr<Shape>> lst = {
make_shared<Circle>(Point{0,0}, 42),
make_shared<Triangle>(Point{20,200}, p2, p3),
// …

};
// …
draw_all(lst);

}; Stroustrup - C++ at 40 - CppCon'19 39

Shape

Circle

Triangle
Smiley_faceUse “smart” pointers

to avoid leaks

Object-oriented programming?

• What if I don’t need run-time resolution?
• Maybe use static resolution?

using Vec = vector<variant<Circle,Triangle,Smiley>>;

void draw_all(Vec& vec)
{

for (auto& v: vec) {
visit(overloaded { // set of alternatives

[](Circle& c) { c.draw(); },
[](Triangle& t) { t.draw(); },
[](Smiley& s) { s.draw(); },

}, v);
}

}

Stroustrup - C++ at 40 - CppCon'19 40

Best when the variant types
are of roughly the same size

Presenter
Presentation Notes
“Classical example” but we use equivalent in performance critical code

Oops!

• overloaded() didn’t make it in time for C++20
• C++ is extensible

• Build what you need
• Or – better – use one of the existing libraries

template<class... Ts>
struct overloaded : Ts... { // collect N types

using Ts::operator()...; // call for each of the N types
};

// deduce template argument types:
template<class... Ts> overloaded(Ts...) -> overloaded<Ts...>;

Stroustrup - C++ at 40 - CppCon'19 41

Key C++ "Rules of thumb"

1. A static type system with equal support for built-in and user-defined types
2. Value and reference semantics

3. Direct use of machine and operating system resources
4. Systematic and general resource management (RAII)
5. Support composition of software from separately developed parts

6. Support for object-oriented programming
7. Support for generic programming
8. Support for compile-time programming

9. Concurrency through libraries supported by intrinsics
10.…

Stroustrup - C++ at 40 - CppCon'19 42

Presenter
Presentation Notes
I will try to describe this as reflected in C++20 without going into exactly when a features was added or what we did/do before

Direct use of system resources

• Simple locking (RAII)
mutex m1;
int sh1; // shared data

mutex m2;
int sh2; // some other shared data

void obvious()
{

// ...
scoped_lock lck1 {m1,m2}; // acquire both locks
// manipulate shared data:
sh1+=sh2;

} // release both locks

Stroustrup - C++ at 40 - CppCon'19 43

Direct use of system resources

• “Double-locked initialization” using atomics

mutex mx; // expensive OS supported synchronization
atomic<bool> initx; // relatively cheap atomic variable
int x; // shared variable
if (!initx) {

lock_guard lck {mx};
if (!initx) x = 42;
initx= true;

}
// … use x …

• No data race

Stroustrup - C++ at 40 - CppCon'19 44

Direct use of system resources

• There is always a lower level

mutex mx;
atomic<bool> initx;
int x;
if (!initx.load(memory_order_acquire) {

mx.lock();
if (!initx.load(memory_order_relaxed) {

x = 42;
initx.store(true, memory_order_release);

}
mx.unlock();

}
// … use x …

• Don’t lower the level of abstraction unless you really need to
Stroustrup - C++ at 40 - CppCon'19 45

Presenter
Presentation Notes
Ideally (and often) the code on the previous slide and this slide generates identical code

C++ is tunable and evolves

• Common scenario
• pX: See X is faster than / as fast as / almost as fast as C++ !!!
• pC++: but your C++ version is poor C++, not colloquial

• try this version; it’s as fast as / faster than X
• pX: That’s cheating: that’s not pure OO, FP, X !
• pC++2: pC++’s version is still quite slow

• here’s a much faster version
• pX: but the X version is much easier / elegant / safer / …
• pC++2: but I need the performance

• C++ evolves
• (soon after) pC++3: here is a C++ library that does that
• (years later) pC++4: ISO C++ now has a feature that does that

Stroustrup - C++ at 40 - CppCon'19 46

C++ is tunable

• Make simple things simple
• Don’t make complicated tasks impossible
• Don’t make complicated tasks unreasonably hard to do
• The onion principle

• Don’t drop to lower levels of abstraction
• Unless you really, really need to
• Hide messy code behind clean interfaces

• Always measure
• But be careful

• results on your laptop may not apply to a server
• And vice versa

Stroustrup - C++ at 40 - CppCon'19 47

Presenter
Presentation Notes
Don’t say “efficient” without measurement and carefully considering what the numbers mean

Direct use of system resources

• jthread: Joining thread (RAII)

void user()
{

jthread t1 { my_task1 };
jthread t2 { my_task2 };
// …

} // jthreads implicitly join here

Stroustrup - C++ at 40 - CppCon'19 48

Direct use of system resources

• What if you decide that the result of a thread isn’t needed?
• E.g., find_any() after some thread found “it”

auto my_task = [] (stop_token tok)
{

while (!tok.stop_requested()) { // is a result still needed?
// … do work ...

}
};

void user()
{

jthread t1 { my_task }; // stop_token implicitly supplied by jthread
jthread t2 { my_task };
// …
if (t1_no_longer_needed) t1.request_stop();
// …

} Stroustrup - C++ at 40 - CppCon'19 49

Parallel algorithms

• Don’t fiddle with threads and locks if you don’t have to

sort(v);
sort(unseq,v); // try to vectorize
sort(par,v); // try to parallelize
sort(par_unseq,v); // try to vectorize and parallelize

void scale(vector<double>& v, int s)
{

// …
for_each(unseq, v, [s](integral auto& x) { x *= s; });
// …

}

Stroustrup - C++ at 40 - CppCon'19 50

Oops!

• The parallel versions of range sort didn’t make it in time for C++20
• C++ is extensible

• Build what you need
• Or – better – use one of the existing libraries

// in the standard:
template<class ExecutionPolicy, class RandomAccessIterator>

void sort(ExecutionPolicy&& exec,
RandomAccessIterator first, RandomAccessIterator last);

// what I wanted:
void sort(execution_policy auto&& exec, random_access_range r)
{

sort(exec, r.begin(), r.end());
}

Stroustrup - C++ at 40 - CppCon'19 51

Key C++ "Rules of thumb"

1. A static type system with equal support for built-in and user-defined types
2. Value and reference semantics

3. Direct use of machine and operating system resources
4. Systematic and general resource management (RAII)
5. Support composition of software from separately developed parts

6. Support for object-oriented programming
7. Support for generic programming
8. Support for compile-time programming

9. Concurrency through libraries supported by intrinsics
10.…

Stroustrup - C++ at 40 - CppCon'19 52

Compile-time computation

• Move computation from run-time to compile-time
• For performance and elegance
• Do it once, rather than a billion times
• Don’t need run-time error handlers
• You can’t have a data race on a constant

• It’s everywhere
• Overloading and virtual functions
• Templates
• Variadic templates
• Constexpr functions and user-defined types

Stroustrup - C++ at 40 - CppCon'19 53

Compile-time computation
• Type-rich programming at compile time

constexpr int isqrt(int n) // evaluate at compile time for constant arguments
{

int i = 1;
while (i*i<n) ++i;
return i-(i*i!=n);

}

constexpr int s1 = isqrt(9); // s1 is 3
constexpr int s2 = isqrt(1234); // s2 is 35

Stroustrup - C++ at 40 - CppCon'19 54

Compile-time computation
• Not just built-in types

cout << weekday{June/21/2016} << '\n'; // cout << “Tuesday\n”
static_assert(weekday{June/21/2016}==Tuesday); // At compile time

• Compile-time computation tends to be invisible
auto z = sqrt(3+2.7i); // call sqrt(complex<double>)
auto d = 5min+10s+200us+300ns; // a duration
auto s = "This is not a pointer to char"s; // a string

// implementations:
constexpr complex<double> operator""i(long double d) { return {0,d}; }
constexpr seconds operator""s(unsigned long long s) {return s; }
constexpr string operator""s(const char* str, size_t len) { return {str, len}; }

Stroustrup - C++ at 40 - CppCon'19 55

Key C++ "Rules of thumb"

1. A static type system with equal support for built-in and user-defined types
2. Value and reference semantics

3. Direct use of machine and operating system resources
4. Systematic and general resource management (RAII)
5. Support composition of software from separately developed parts

6. Support for object-oriented programming
7. Support for generic programming
8. Support for compile-time programming

9. Concurrency through libraries supported by intrinsics
10.…

Stroustrup - C++ at 40 - CppCon'19 56

Presenter
Presentation Notes
I will try to describe this as reflected in C++20 without going into exactly when a features was added or what we did/do before

Direct use of hardware

• Functions
• Stack frames

Stroustrup - C++ at 40 - CppCon'19 57

• Coroutines
• Invocation frames

Coroutines: Better generators and pipelines

• Lazy evaluation

int main()
{

auto src = seq(2); // infinite int sequence:
// 2,3,4,5,6,7,8,9,10,11…

auto s = sieve(src); // filter out non-primes:
// 2,3,5,7,11,…

auto t = take(s, 10'000); // get first 10,000 primes
// 2,3,5 … 104729

print(t); // print them
}

Stroustrup - C++ at 40 - CppCon'19 58

Coroutines (a bit of boilerplate)

generator<Int> seq(int start) // generate an infinite sequence
{

while (true) co_yield start++; // yield the next int
}

generator<Int> take(generator<Int>& src, Int count) // Take elements
{

if (count <= 0) co_return;
for (auto v : src) {

co_yield v; // yield the next int
if (--count == 0) // we’re done

break;
}

} Stroustrup - C++ at 40 - CppCon'19 59

Coroutines: Better generators and pipelines

generator<Int> sieve(generator<Int>& src) // Eratosthenes
{

Int p = head(src);
co_yield p; // yield the first non-filtered prime
auto f = filter(src, [p](auto val) { return val % p; });
co_yield sieve(f); // yield the next prime

// stack up the filters
// …->f(2)->f(3)->f(5)->…

}

template <typename Pred> // Filter out (skip) !pred elements
generator<Int> filter(generator<Int>& src, Pred pred)
{

for (auto v : src) if (pred(v)) co_yield v;
} Stroustrup - C++ at 40 - CppCon'19 60

Output

Stroustrup - C++ at 40 - CppCon'19 61

2 3 5 7 11 13 17 19 23 29 … 104707 104711 104717 104723 104729

Generic Sieve

• Did you notice that I use Int rather than int?
• using Int = int;

• What if I want more primes than fits in an int?
• using Int = long long;

• Even more primes?
• using Int = Big_int;

• A brute force approach
• Just illustrating combinations of features and techniques

Stroustrup - C++ at 40 - CppCon'19 62

Coroutines: simpler asynchronous use

• A major use of coroutines is to simplify and speed up
asynchronous operations

Task<> start() // Infinite read/write socket task
{

char data[1024]; // Buffer
while (true) {

auto n = co_await socket.async_read_some(buffer(data));
co_await async_write(socket, buffer(data,n));

}
}

Stroustrup - C++ at 40 - CppCon'19 63

Putting it all together

• Language features are meant to be used in combination
• And together with libraries

• Examples
• Reference semantics enables the efficient implementation of advanced

types with value semantics (e.g., jthread and vector).
• Uniform rules for built-in and user-defined types simplifies generic

programming (built-in types are not special cases).
• Compile-time programming makes a range of abstraction techniques

affordable for effective use of hardware.
• RAII allows use of user-defined types without taking specific actions to

support their implementations' use of resources.
• …

Stroustrup - C++ at 40 - CppCon'19 64

Libraries

• A user shouldn’t have to care whether a feature is
implemented in the language or in a library

• Library design is language design
• Language design is library design

• The standard library should follow the same design
guidelines as the language

• We are not perfect at that

• We need great libraries

Stroustrup - C++ at 40 - CppCon'19 65

Presenter
Presentation Notes
A language determines what libraries can look likeA language determines what performance can be delivered

Libraries
• You don’t have to do it all by yourself from scratch
• Std

• The STL, ranges, concepts
• Iostreams, locale, format
• Chrono, dates, time zones
• Threads, locks, atomics, futures, …
• Random
• File system
• String, regex
• Variant, tuple, pair, shared_ptr, unique_ptr, traits, …
• …

• Other (lots and lots)
• Boost, Qt, Poco, asio, CopperSpice, GSL, Eigen, …
• https://en.cppreference.com/w/cpp/links/libs

Stroustrup - C++ at 40 - CppCon'19 66

Key C++ "Rules of thumb"

1. A static type system with equal support for built-in and user-defined types
2. Value and reference semantics

3. Direct use of machine and operating system resources
4. Systematic and general resource management (RAII)
5. Support composition of software from separately developed parts

6. Support for object-oriented programming
7. Support for generic programming
8. Support for compile-time programming

9. Concurrency through libraries supported by intrinsics
10.…

Stroustrup - C++ at 40 - CppCon'19 67

Presenter
Presentation Notes
I will try to describe this as reflected in C++20 without going into exactly when a features was added or what we did/do before

Chrono

Stroustrup - C++ at 40 - CppCon'19 68

• time_points, durations
• days, months, years
• Time zones

int main()
{

using namespace std::chrono;
for (auto m = local_days{January/9/2019};

year_month_day{m}.year() < 2020y;
m += weeks{2}) {

zoned_time london{"Europe/London", m + 18h};
cout << london << '\n';
cout << zoned_time{"America/New_York", london} << '\n';
cout << zoned_time{"Etc/UTC", london} << '\n';
cout << '\n';

}
}

Presenter
Presentation Notes
The schedule for the DG meetings as mailed by Howard Hinnant

Output

Stroustrup - C++ at 40 - CppCon'19 69

2019-01-09 18:00:00 GMT
2019-01-09 13:00:00 EST
2019-01-09 18:00:00 UTC

2019-01-23 18:00:00 GMT
2019-01-23 13:00:00 EST
2019-01-23 18:00:00 UTC

…

What I didn’t mention

Except as implementation details and asides
• Sizes
• Raw pointers
• Allocation and deallocation
• Loop-control variables
• Casts
• Macros

• That’s for lower levels of abstraction (often in implementations)

• How we used to do things (aka now)
• Most “details”

Stroustrup - C++ at 40 - CppCon'19 72

Presenter
Presentation Notes
Obviously, we must know about those, but they shouldn’t dominate our thinking or designs

Guidelines

• Write modern C++
• Not C or 1988-vintage C++ (whenever you can)

• We must distinguish between
• What’s legal and what’s good
• What works and what’s maintainable
• What runs and what’s affordable (time and space)?

• You can write type- and resource-safe C++
• No leaks
• No memory corruption
• No garbage collector
• No limitation of expressibility
• No performance degradation
• ISO C++
• Tool enforced (eventually)

Stroustrup - C++ at 40 - CppCon'19 73

Key C++ "Rules of thumb“
about 40 years old

1. A static type system with equal support for built-in and user-defined types
2. Value and reference semantics

3. Direct use of machine and operating system resources
4. Systematic and general resource management (RAII)
5. Support composition of software from separately developed parts

6. Support for object-oriented programming
7. Support for generic programming
8. Support for compile-time programming

9. Concurrency through libraries supported by intrinsics
10.…

Stroustrup - C++ at 40 - CppCon'19 74

Presenter
Presentation Notes
Yes, that’s in D&E, and D&E reflects work from the earliest days (1979 and onwards)

So, what is C++20?

• The best approximation of C++’s ideals
• so far

• As big an improvement over C++11 as C++11 was over C++98
• A major “release”

• Lots of useful features
• Simpler, more expressive, faster code that compiles faster
• Modules
• Concepts
• Coroutines
• Ranges
• Dates
• Span
• Better compile-time programming support
• Many “minor features”

• Some significant

Stroustrup - C++ at 40 - CppCon'19 75

All available now,
But not yet in all
implementations

So, what is C++20?

• C++ a general-purpose programming language for the
definition, implementation and use of lightweight abstractions

• Not a grab bag of features
• A set of ideals
• A set of design principles

• A stage in an evolutionary process
• … -> C++98 -> C++11 -> C++14 -> C++17 -> C++20 -> …

• A process
• WG21

Stroustrup - C++ at 40 - CppCon'19 76

Remember WG21’s hard work
1989 … 2019

Stroustrup - C++ at 40 - CppCon'19 77

The future* **

• C++20
• The best approximation of C++’s ideals so far

• Not perfect, of course

• C++23
• “Completes C++20”
• Plus

• Standard modules
• Library support for coroutines
• Executors & networking

• Maybe
• Static reflection
• Pattern matching

Stroustrup - C++ at 40 - CppCon'19 78

* First approximation
suggested by
Ville Voutilainen.
Supported by
the Direction Group

** It is hard to make predictions,
especially about the future

– Niels Bohr

Presenter
Presentation Notes
“So you have instituted world peace and cured cancer; what are you going to do next?”

C++20 is great!

• The votes have started
• Large parts are in implementations shipping now
• All major parts will ship in all major implementations in 2020
• Not perfect, of course
• Lots of in-depth talks at CppCon’19

Stroustrup - C++ at 40 - CppCon'19 79

	C++20: C++ at 40�stability and evolution
	2019 and 1979
	Then – early 1980s
	Present and use C++ as a modern language
	General approach – a recommendation
	C++: principled and eclectic
	C++ high-level aims (aka principles)
	Slide Number 9
	We changed the world!
	2019 and 1979
	Key C++ "Rules of thumb"
	A language is not just a list of features
	Key C++ "Rules of thumb"
	A static type system – the base of all
	Key C++ "Rules of thumb"
	Value and reference semantics
	Value and reference semantics
	Equal support for built-in types and user-defined types
	Key C++ "Rules of thumb"
	Direct use of machine resources
	Direct use of machine resources
	The onion principle
	Key C++ "Rules of thumb"
	Constructor/destructor pairs (RAII)
	Systematic general resource management
	Systematic general resource management
	General resource management
	Key C++ "Rules of thumb"
	Modules
	Modules
	Composition
	Key C++ "Rules of thumb"
	Generic programming
	Generic programming
	Generic programming
	Key C++ "Rules of thumb"
	Object-oriented programming
	Object-oriented programming
	Object-oriented programming?
	Oops!
	Key C++ "Rules of thumb"
	Direct use of system resources
	Direct use of system resources
	Direct use of system resources
	C++ is tunable and evolves
	C++ is tunable
	Direct use of system resources
	Direct use of system resources
	Parallel algorithms
	Oops!
	Key C++ "Rules of thumb"
	Compile-time computation
	Compile-time computation
	Compile-time computation
	Key C++ "Rules of thumb"
	Direct use of hardware
	Coroutines: Better generators and pipelines
	Coroutines (a bit of boilerplate)
	Coroutines: Better generators and pipelines
	Output
	Generic Sieve
	Coroutines: simpler asynchronous use
	Putting it all together
	Libraries
	Libraries
	Key C++ "Rules of thumb"
	Chrono
	Output
	What I didn’t mention
	Guidelines
	Key C++ "Rules of thumb“�	about 40 years old
	So, what is C++20?
	So, what is C++20?
	Remember WG21’s hard work�1989 … 2019
	The future* **
	C++20 is great!

