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"If you're like me, you're excited by what people do with template metaprogramming (TMP) but are frustrated at the lack of clear guidance

and powerful tools. Well, this is the book we've been waiting for. With help from the excellent Boost Metaprogramming Library, David and
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Aleksey take TMP from the laboratory to the workplace with readable prose and practical examples, showing that "compile-time STL" is as

able as its runtime counterpart. Serving as a tutorial as well as a handbook for experts, this is the book on C++ template

metaprogramming."-Chuck Allison, Editor, The C++ Source 

C++ Template Metaprogramming sheds light on the most powerful idioms of today's C++, at long last delivering practical

metaprogramming tools and techniques into the hands of the everyday programmer.

A metaprogram is a program that generates or manipulates program code. Ever since generic programming was introduced to C++,

programmers have discovered myriad "template tricks" for manipulating programs as they are compiled, effectively eliminating the barrier

between program and metaprogram. While excitement among C++ experts about these capabilities has reached the community at large,

their practical application remains out of reach for most programmers. This book explains what metaprogramming is and how it is best

used. It provides the foundation you'll need to use the template metaprogramming effectively in your own work.

This book is aimed at any programmer who is comfortable with idioms of the Standard Template Library (STL). C++ power-users will gain

a new insight into their existing work and a new fluency in the domain of metaprogramming. Intermediate-level programmers who have

learned a few advanced template techniques will see where these tricks fit in the big picture and will gain the conceptual foundation to use

them with discipline. Programmers who have caught the scent of metaprogramming, but for whom it is still mysterious, will finally gain a

clear understanding of how, when, and why it works. All readers will leave with a new tool of unprecedented power at their disposal-the

Boost Metaprogramming Library.

The companion CD-ROM contains all Boost C++ libraries, including the Boost Metaprogramming Library and its reference documentation,

along with all of the book's sample code and extensive supplementary material.
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The C++ In-Depth Series

Bjarne Stroustrup, Editor

"I have made this letter longer than usual, because I lack the time to make it short."

—BLAISE PASCAL

The advent of the ISO/ANSI C++ standard marked the beginning of a new era for C++ programmers. The standard offers many new 

facilities and opportunities, but how can a real-world programmer find the time to discover the key nuggets of wisdom within this mass of 

information? The C++ In-Depth Series minimizes learning time and confusion by giving programmers concise, focused guides to specific 

topics.

Each book in this series presents a single topic, at a technical level appropriate to that topic. The Series' practical approach is designed to 

lift professionals to their next level of programming skills. Written by experts in the field, these short, in-depth monographs can be read and 

referenced without the distraction of unrelated material. The books are cross-referenced within the Series, and also reference The C++ 

Programming Language by Bjarne Stroustrup.

As you develop your skills in C++, it becomes increasingly important to separate essential information from hype and glitz, and to find the 

in-depth content you need in order to grow. The C++ In-Depth Series provides the tools, concepts, techniques, and new approaches to 

C++ that will give you a critical edge.
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Preface

In 1998 Dave had the privilege of attending a workshop in Generic Programming at Dagstuhl Castle in Germany. Near the end of the 

workshop, a very enthusiastic Kristof Czarnecki and Ullrich Eisenecker (of Generative Programming fame) passed out a few pages of C++ 

source code that they billed as a complete Lisp implementation built out of C++ templates. At the time it appeared to Dave to be nothing 

more than a curiosity, a charming but impractical hijacking of the template system to prove that you can write programs that execute at 

compile time. He never suspected that one day he would see a role for metaprogramming in most of his day-to-day programming jobs. In 

many ways, that collection of templates was the precursor to the Boost Metaprogramming Library (MPL): It may have been the first library 

designed to turn compile-time C++ from an ad hoc collection of "template tricks" into an example of disciplined and readable software 

engineering. With the availability of tools to write and understand metaprograms at a high level, we've since found that using these 

techniques is not only practical, but easy, fun, and often astoundingly powerful.

Despite the existence of numerous real systems built with template metaprogramming and the MPL, many people still consider 

metaprogramming to be other-worldly magic, and often as something to be avoided in day-to-day production code. If you've never done 

any metaprogramming, it may not even have an obvious relationship to the work you do. With this book, we hope to lift the veil of mystery, 

so that you get an understanding not only of how metaprogramming is done, but also why and when. The best part is that while much of 

the mystery will have dissolved, we think you'll still find enough magic left in the subject to stay as inspired about it as we are.

—Dave and Aleksey

     

 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



     

Acknowledgments

We thank our reviewers, Douglas Gregor, Joel de Guzman, Maxim Khesin, Mat Marcus, Jeremy Siek, Jaap Suter, Tommy Svensson, 

Daniel Wallin, and Leor Zolman, for keeping us honest. Special thanks go to Luann Abrahams, Brian McNamara, and Eric Niebler, who 

read and commented on every page, often when the material was still very rough. We also thank Vesa Karvonen and Paul Mensonides for 

reviewing Appendix A in detail. For their faith that we'd write something of value, we thank our editors, Peter Gordon and Bjarne 

Stroustrup. David Goodger and Englebert Gruber built the ReStructuredText markup language in which this book was written. Finally, we 

thank the Boost community for creating the environment that made our collaboration possible.

     

 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



     

Dave's Acknowledgments

In February of 2004 I used an early version of this book to give a course for a brave group of engineers at Oerlikon Contraves, Inc. Thanks 

to all my students for struggling through the tough parts and giving the material a good shakedown. Special thanks go to Rejean Senecal 

for making that investment high-performance code with a long future, against the tide of a no-investment mentality.

Chuck Allison, Scott Meyers, and Herb Sutter have all encouraged me to get more of my work in print—thanks guys, I hope this is a good

start.

I am grateful to my colleagues on the C++ standards committee and at Boost for demonstrating that even with egos and reputations at 

stake, technical people can accomplish great things in collaboration. It's hard to imagine where my career would be today without these 

communities. I know this book would not have been possible without them.

Finally, for taking me to see the penguins, and for reminding me to think about them at least once per chapter, my fondest thanks go to 

Luann.

     

 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



     

Aleksey's Acknowledgments

My special thanks go to my teammates at Meta for being my "extended family" for the past five years, and for creating and maintaining the 

most rewarding work environment ever. A fair amount of knowledge, concepts, and ideas reflected in this book were shaped during the 

pair programming sessions, seminars, and casual insightful discussions that we held here.

I also would like to thank all the people who in one or another way contributed to the development of the Boost Metaprogramming

Library—the tool that in some sense this book is centered around. There are many of them, but in particular, John R. Bandela, Fernando

Cacciola, Peter Dimov, Hugo Duncan, Eric Friedman, Douglas Gregor, David B. Held, Vesa Karvonen, Mat Marcus, Paul Mensonides,

Jaap Suter, and Emily Winch all deserve a special thank you.

My friends and family provided me with continued encouragement and support, and it has made a big difference in this journey—thank you

all so much!

Last but not least, I thank Julia for being herself, for believing in me, and for everything she has done for me. Thank you for everything.

     

 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



     

Making the Most of This Book

The first few chapters of this book lay the conceptual foundation you'll need for most everything else we cover, and chapters generally

build on material that has come before. That said, feel free to skip ahead for any reason—we've tried to make that possible by providing

cross-references when we use terms introduced earlier on.

Chapter 10, Domain-Specific Embedded Languages, is an exception to the rule that later chapters depend on earlier ones. It focuses 

mostly on concepts, and only appears late in the book because at that point you'll have learned the tools and techniques to put 

Domain-Specific Embedded Languages into play in real code. If you only remember one chapter by the time you're done, make it that one.

Near the end of many chapters, you'll find a Details section that summarizes key ideas. These sections usually add new material that 

deepens the earlier discussion,
[1]

 so even if you are inclined to skim them the first time through, we suggest you refer back to them later.

[1] We borrowed this idea from Andrew Koenig and Barbara Moo's Accelerated C++: Practical Programming By 

Example [KM00].

We conclude most chapters with exercises designed to help you develop both your programming and conceptual muscles. Those marked

with asterisks are expected to be more of a workout than the others. Not all exercises involve writing code—some could be considered

"essay questions"—and you don't have to complete them in order to move on to later chapters. We do suggest you look through them, 

give a little thought to how you'd answer each one, and try your hand at one or two; it's a great way to gain confidence with what you've 

just read.
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Supplementary Material

This book comes with a companion CD that supplies the following items in electronic form

Sample code from the book.

A release of the Boost C++ libraries. Boost has become known for high-quality, peer-reviewed, portable, generic, and freely

reusable C++ libraries. We make extensive use of one Boost library throughout the book—the Boost Metaprogramming Library

(MPL)—and we discuss several others.

A complete MPL reference manual, in HTML and PDF form.

Boost libraries discussed in this book that are not yet part of an official release.

The index.html file at the top level of the CD will provide you with a convenient guide to all of its contents. Additional and updated material, 

including the inevitable errata, will appear on the book's Web site: http://www.boost-consulting.com/mplbook. You'll also find a place there 

to report any mistakes you might find.
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Trying It Out

To compile any of the examples, just put the CD's boost_1_32_0/ directory into your compiler's #include path.

The libraries we present in this book go to great lengths to hide the problems of less-than-perfect compilers, so it's unlikely that you'll have 

trouble with the examples we present here. That said, we divide C++ compilers roughly into three categories.

Those with mostly conforming template implementations. On these compilers, the examples and libraries "just work." Almost 

anything released since 2001, and a few compilers released before then, fall into this category.

A.

Those that can be made to work, but require some workarounds in user code.B.

Those that are too broken to use effectively for template metaprogramming.C.

Appendix D lists the compilers that are known to fall into each of these categories. For those in category B, Appendix D refers to a list of 

portability idioms. These idioms have been applied to the copies of the book's examples that appear on the accompanying CD, but to avoid 

distracting the majority of readers they don't appear in the main text.

The CD also contains a portability table with a detailed report of how various compilers are doing with our examples. GCC is available free 

for most platforms, and recent versions have no problems handling the code we present here.

Even if you have a relatively modern compiler from category A, it might be a good idea to grab a copy of GCC with which to cross-check 

your code. Often the easiest way to decipher an inscrutable error message is to see what some other compiler has to say about your 

program. If you find yourself struggling with error messages as you try to do the exercises, you might want to skip ahead and read the first 

two sections of Chapter 8, which discusses how to read and manage diagnostics.

And now, on to C++ Template Metaprogramming!
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Chapter 1. Introduction

You can think of this chapter as a warm-up for the rest of the book. You'll get a chance to exercise your tools a little and go through a short 

briefing on basic concepts and terminology. By the end you should have at least a vague picture of what the book is about, and (we hope) 

you'll be eager to move on to bigger ideas.
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1.1. Getting Started

One of the nice things about template metaprograms is a property they share with good old traditional systems: Once a metaprogram is

written, it can be used without knowing what's under the hood—as long as it works, that is.

To build your confidence in that, let us begin by presenting a tiny C++ program that simply uses a facility implemented with template 

metaprogramming:

    #include "libs/mpl/book/chapter1/binary.hpp"

    #include <iostream>

    int main()

    {

        std::cout << binary<101010>::value << std::endl;

        return 0;

    }

Even if you were always good at binary arithmetic and can tell what the output of the program will be without actually running it, we still 

suggest that you go to the trouble of trying to compile and run the example. Besides contributing to building your confidence, it's a good 

test of whether your compiler is able to handle the code we present in this book. The program should write the decimal value of the binary 

number 101010:

    42

to the standard output.
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1.2. So What's a Metaprogram?

If you dissect the word metaprogram literally, it means "a program about a program."
[1]

 A little less poetically, a metaprogram is a program 

that manipulates code. It may be an odd-sounding concept, but you're probably already familiar with several such beasts. Your C++ 

compiler is one example: it manipulates your C++ code to produce assembly language or machine code.

[1] In philosophy and, as it happens, programming, the prefix "meta" is used to mean "about" or "one level of 

description higher," as derived from the original Greek meaning "beyond" or "behind."

Parser generators such as YACC [Joh79] are another kind of program-manipulating program. The input to YACC is a high-level parser 

description written in terms of grammar rules and attached actions brace-enclosed. For instance, to parse and evaluate arithmetic 

expressions with the usual precedence rules, we might feed YACC the following grammar description:

   expression : term

              | expression '+' term { $$ = $1 + $3; }

              | expression '-' term { $$ = $1 - $3; }

              ;

   term : factor

        | term '*' factor { $$ = $1 * $3; }

        | term '/' factor { $$ = $1 / $3; }

        ;

   factor : INTEGER

          | group

          ;

   group : '(' expression ')'

         ;

In response, YACC would generate a C/C++ source file containing (among other things), a yyparse function that we can call to parse text 

against the grammar and execute the appropriate actions:
[2]

[2] This is provided that we also implemented an appropriate yylex function to tokenize the text. See Chapter 10 for a 

complete example or, better yet, pick up a YACC manual.

   int main()

   {

     extern int yyparse();

     return yyparse();

   }

The user of YACC is operating mostly in the domain of parser design, so we'll call YACC's input language the domain language of this 

system. Because the rest of the user's program typically requires a general-purpose programming system and must interact with the 
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generated parser, YACC translates the domain language into the host language, C, which the user then compiles and links together with 

her other code. The domain language thus undergoes two translation steps, and the user is always very conscious of the boundary 

between it and the rest of her program.
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1.3. Metaprogramming in the Host Language

YACC is an example of a translator—a metaprogram whose domain language differs from its host language. A more interesting form of

metaprogramming is available in languages such as Scheme [SS75]. The Scheme metaprogrammer defines her domain language as a 

subset of the legal programs in Scheme itself, and the metaprogram executes in the same translation step used to process the rest of the 

user's program. Programmers move between ordinary programming, metaprogramming, and writing in the domain language, often without 

being aware of the transition, and they are able to seamlessly combine multiple domains in the same system.

Amazingly, if you have a C++ compiler, this is precisely the kind of metaprogramming power you hold in your fingertips. The rest of this 

book is about unlocking that power and showing how and when to use it.
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1.4. Metaprogramming in C++

In C++, it was discovered almost by accident [Unruh94], [Veld95b] that the template mechanism provides a rich facility for native language 

metaprogramming. In this section we'll explore the basic mechanisms and some common idioms used for metaprogramming in C++.

1.4.1 Numeric Computations

The earliest C++ metaprograms performed integer computations at compile time. One of the very first metaprograms was shown at a C++ 

committee meeting by Erwin Unruh; it was actually an illegal code fragment whose error messages contained a sequence of computed 

prime numbers!

Since illegal code is hard to use effectively in a larger system, let's examine a slightly more practical application. The following 

metaprogram (which lies at the heart of our little compiler test above) transliterates unsigned decimal numerals into their binary 

equivalents, allowing us to express binary constants in a recognizable form.

   template <unsigned long N>

   struct binary

   {

       static unsigned const value

          = binary<N/10>::value << 1   // prepend higher bits

            | N%10;                    // to lowest bit

   };

   template <>                           // specialization

   struct binary<0>                      // terminates recursion

   {

       static unsigned const value = 0;

   };

   unsigned const one   =    binary<1>::value;

   unsigned const three =   binary<11>::value;

   unsigned const five  =  binary<101>::value;

   unsigned const seven =  binary<111>::value;

   unsigned const nine  = binary<1001>::value;

If you're wondering "Where's the program?" we ask you to consider what happens when we access the nested ::value member of 

binary<N>. The binary template is instantiated again with a smaller N, until N reaches zero and the specialization is used as a termination

condition. That process should have the familiar flavor of a recursive function call—and what is a program, after all, but a function?

Essentially, the compiler is being used to interpret our little metaprogram.
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Error Checking

There's nothing to prevent a user from passing binary a number such as 678, whose decimal representation is not also 

valid binary. The result would make a strange sort of sense (it would be 6x2
2
 + 7x2

1
 + 8x2

0
), but nonetheless an input 

like 678 probably indicates a bug in the user's logic. In Chapter 3 we'll show you how to ensure that binary<N>::value only 

compiles when N's decimal representation is composed solely of 0s and 1s.

Because the C++ language imposes a distinction between the expression of compile-time and runtime computation, metaprograms look 

different from their runtime counterparts. As in Scheme, the C++ metaprogrammer writes her code in the same language as the ordinary 

program, but in C++ only the compile-time subset of the full language is available to her. Compare the previous example with this 

straightforward runtime version of binary:

   unsigned binary(unsigned long N)

   {

       return N == 0 ? 0 : N%10 + 2 * binary(N/10);

   }

A key difference between the runtime and compile time versions is the way termination conditions are handled: our meta-binary uses 

template specialization to describe what happens when N is zero. Terminating specializations are a common characteristic of nearly all 

C++ metaprograms, though in some cases they will be hidden behind the interface of a metaprogramming library.

Another important difference between runtime and compile time C++ is highlighted by this version of binary, which uses a for loop in lieu of 

recursion.

   unsigned binary(unsigned long N)

   {

       unsigned result = 0;

       for (unsigned bit = 0x1; N; N /= 10, bit <<= 1)

       {

           if (N%10)

               result += bit;

       }

       return result;

   }

Though more verbose than the recursive version, many C++ programmers will be more comfortable with this one, not least because at 

runtime iteration is sometimes more efficient than recursion.

The compile-time part of C++ is often referred to as a "pure functional language" because of a property it shares with languages such as 

Haskell: (meta)data is immutable and (meta)functions can have no side effects. As a result, compile-time C++ has nothing corresponding 

to the non-const variables used in runtime C++. Since you can't write a (non-infinite) loop without examining some mutable state in its 

termination condition, iteration is simply beyond reach at compile time. Therefore, recursion is idiomatic for C++ metaprograms.

1.4.2 Type Computations
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Much more important than its ability to do compile time numeric computations is C++'s ability to compute with types. As a matter of fact, 

type computation will dominate the rest of this book, and we'll cover examples of it in the very first section of the next chapter. By the time 

we're through, you'll probably think of template metaprogramming as "computing with types."

Although you may have to read Chapter 2 to understand the specifics of type computation, we'd like to give you a sense of its power. 

Remember our YACC expression evaluator? It turns out we don't need to use a translator to get that kind of power and convenience. With 

appropriate surrounding code from the Boost Spirit library, the following legal C++ code has equivalent functionality.

   expr =

         ( term[expr.val = _1] >> '+' >> expr[expr.val += _1] )

       | ( term[expr.val = _1] >> '-' >> expr[expr.val -= _1] )

       | term[expr.val = _1]

       ;

   term =

         ( factor[term.val = _1] >> '*' >> term[term.val *= _1] )

       | ( factor[term.val = _1] >> '/' >> term[term.val /= _1] )

       | factor[term.val = _1]

       ;

   factor =

         integer[factor.val = _1]

       | ( '(' >> expr[factor.val = _1] >> ')' )

       ;

Each assignment stores a function object that parses and evaluates the bit of grammar on its right hand side. The behavior of each stored 

function object, when invoked, is determined entirely by the type of the expression used to construct it, and the type of each expression is 

computed by a metaprogram associated with the various operators used.

Just like YACC, the Spirit library is a metaprogram that generates parsers from grammar specifications. Unlike YACC, Spirit defines its 

domain language as a subset of C++ itself. If you don't see how that's possible at this point, don't worry. By the time you finish this book, 

you will.
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1.5. Why Metaprogramming?

So, what are the benefits of metaprogramming? There are definitely simpler ways to address the same kinds of problems we've been 

discussing here. Let's take a look at two other approaches and see how they stack up when applied to the interpretation of binary 

numerals and parser construction.

1.5.1 Alternative 1: Runtime Computation

Most straightforwardly, we could do the computation at runtime instead of compile time. For example, we might use one of the binary

function implementations shown earlier, or a parsing system could be designed to interpret the input grammar at runtime the first time we 

ask it to parse.

The most obvious reason to rely on a metaprogram is that by doing as much work as possible before the resulting program starts, we get 

faster programs. When a grammar is compiled, YACC performs substantial parse table generation and optimization steps that, if done at 

runtime, could noticeably degrade a program's overall performance. Similarly, because binary does its work at compile time, its ::value is 

available as a compile-time constant, and the compiler can encode it directly in the object code, saving a memory lookup when it is used.

A subtler but perhaps more important argument for using a metaprogram is that the result of the computation can interact more deeply 

with the target language. For example, the size of a C++ array can only be legally specified by a compile-time constant like 

binary<N>::value—not by a runtime function's return value. The brace-enclosed actions in a YACC grammar can contain arbitrary C/C++

code to be executed as part of the generated parser. That's only possible because the actions are processed during grammar compilation

and passed on to the target C/C++ compiler.

1.5.2 Alternative 2: User Analysis

Instead of doing computation at runtime or compile time, we could just do it by hand. After all, it's common practice to translate binary 

numbers to hexadecimal so that they can be used directly as C++ literals, and the translation steps performed by YACC and Boost.Spirit 

to convert the grammar description into a parser are well-known.

If the alternative is writing a metaprogram that will only be used once, one could argue that user analysis is more convenient: It certainly is 

easier to translate one binary number than to write a correct metaprogram to do so. It only takes a few such instances to tip the balance of 

convenience in the opposite direction, though. Furthermore, once the metaprogram is written, its benefits of convenience can be spread 

across a community of other programmers.

Regardless of how many times it's used, a metaprogram enables its user to write more expressive code, because she can specify the 

result in a form that corresponds to her mental model. In a context where the values of individual bits are meaningful, it makes much more 

sense to write binary<101010>::value than 42 or the traditional 0x2a. Similarly, the C source to a handwritten parser usually obscures the 

logical relationships among its grammar elements.

Finally, because humans are fallible, and because the logic of a metaprogram only needs to be written once, the resulting program is more 

likely to be correct and maintainable. Translating binary numbers is such a mundane task that it's easy to pay too little attention and get it
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wrong. By contrast—as anyone who's done it can attest—writing parse tables by hand requires too much attention, and preventing 

mistakes is reason enough to use a parser generator such as YACC.

1.5.3 Why C++ Metaprogramming?

In a language such as C++, where the domain language is just a subset of the language used in the rest of the program, 

metaprogramming is even more powerful and convenient.

The user can enter the domain language directly, without learning a foreign syntax or interrupting the flow of her code.

Interfacing metaprograms with other code, especially other metaprograms, becomes much smoother.

No additional build step (like the one imposed by YACC) is required.

In traditional programming it is very common to find oneself trying to achieve the right balance of expressivity, correctness, and efficiency. 

Metaprogramming often allows us to interrupt that classic tension by moving the computation required for expressivity and correctness 

from runtime to compile time.
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1.6. When Metaprogramming?

You've just seen some examples of the why of template metaprogramming, and you've had a tiny glimpse of the how, but we haven't 

discussed when metaprogramming is appropriate. However, we've touched on most of the relevant criteria for using template 

metaprogramming already. As a guideline, if any three of the following conditions apply to you, a metaprogrammed solution may be 

appropriate.

You want the code to be expressed in terms of the abstractions of the problem domain. For example, you might want a parser 

to be expressed by something that looks like a formal grammar rather than as tables full of numbers or as a collection of 

subroutines; you might want array math to be written using operator notation on matrix and vector objects rather than as loops 

over sequences of numbers.

You would otherwise have to write a great deal of boilerplate implementation code.

You need to choose component implementations based on the properties of their type parameters.

You want to take advantage of valuable properties of generic programming in C++ such as static type checking and behavioral 

customization, without loss of efficiency.

You want to do it all within the C++ language, without an external tool or custom source code generator.
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1.7. Why a Metaprogramming Library?

Rather than building up metaprograms from scratch, we'll be working with the high-level facilities of the Boost Metaprogramming Library 

(MPL). Even if you didn't pick up this book to explore the MPL, we think you'll find your investment in learning it to be well worthwhile 

because of the benefits the MPL can bring to your day-to-day work.

Quality. Most programmers who use template metaprogramming components see them—quite properly—as implementation

details to be applied toward some greater purpose. By contrast, the MPL authors saw the job of developing useful, high-quality

tools and idioms as their central mission. On average, the components in the Boost Metaprogramming Library are more flexible

and better implemented than what one would produce along the way to some other goal, and you can expect more

optimizations and improvements in the future as updates are released.

1.

Reuse. All libraries encapsulate code in reusable components. More importantly, a well-designed generic library establishes a 

framework of concepts and idioms that provides a reusable mental model for approaching problems. Just as the C++ Standard 

Template Library gave us iterators and a function object protocol, the Boost Metaprogramming Library provides type iterators 

and a metafunction protocol. A well-considered framework of idioms focuses the metaprogrammer's design decisions and 

enables her to concentrate on the task at hand.

2.

Portability. A good library can smooth over the ugly realities of platform differences. While in theory no C++ metaprogram 

should be concerned with these issues, in practice support for templates remains inconsistent even six years after 

standardization. No surprises here: C++ templates are the language's furthest-reaching and most complicated feature, a fact 

that also accounts for the power of metaprogramming in C++.

3.

Fun. Repeating the same boilerplate code over and over is tedious. Quickly assembling high-level components into readable, 

elegant designs is fun! The MPL reduces boredom by eliminating the need for the most commonly repeated metaprogramming 

patterns. In particular, terminating specializations and explicit recursion are often easily and elegantly avoided.

4.

Productivity. Aside from personal gratification, the health of our projects depends on having fun programming. When we stop

having fun we get tired, slow, and sloppy—and buggy code is even more costly than slowly written code.

5.

As you can see, the Boost Metaprogramming Library is motivated by the same practical considerations that underlie the development of 

any other library. We think its emergence is a sign that template metaprogramming is finally ready to leave the realm of the esoteric and 

find a home in the everyday repertoire of working C++ programmers.

Finally, we'd like to emphasize the fourth item above: The MPL not only makes metaprogramming practical and easy, but it's also a great 

pleasure to work with. We hope that you'll enjoy learning about it as much as we have enjoyed using and developing it.
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Chapter 2. Traits and Type Manipulation

We hope the numerical bias of Chapter 1 didn't leave you with the impression that most metaprograms are arithmetic in nature. In fact, 

numeric computation at compile time is comparatively rare. In this chapter you'll learn the basics of what is going to be a recurring theme: 

metaprogramming as "type computation."
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2.1. Type Associations

In C++, the entities that can be manipulated at compile time, called metadata, are divided roughly into two categories: types and non-types. 

Not coincidentally, all the kinds of metadata can be used as template parameters. The constant integer values used in Chapter 1 are 

among the non-types, a category that also includes values of nearly everything else that can be known at compile time: the other integral 

types, enums, pointers and references to functions and "global" objects, and pointers to members.
[1]

[1] The standard also allows templates to be passed as template parameters. If that's not mind-bending enough for 

you, these parameters are treated in the standard "as types for descriptive purposes." Templates aren't types, 

though, and can't be passed to another template where a type is expected.

It's easy to imagine doing calculations on some kinds of non-type metadata, but it may surprise you to learn that there is also a way to do

calculations with types. To get a feeling for what that means—and why it matters—we're going to look at one of the simplest algorithms

from the C++ standard library: iter_swap. It is iter_swap's humble duty to take two iterators and exchange the values of the objects they 

refer to. It looks something like this:

    template <class ForwardIterator1, class ForwardIterator2>

    void iter_swap(ForwardIterator1 i1, ForwardIterator2 i2)

    {

        T tmp = *i1;

        *i1 = *i2;

        *i2 = tmp;

    }

If at this point you're wondering where T came from, you've got a sharp eye. It hasn't been defined, and iter_swap can't compile if we write it 

that way. Informally, of course, T is the type you get when the iterator is dereferenced, what's known in the C++ standard (section 24.1) as 

the iterator's value type. Okay, but how do we name that type?

2.1.1 Using a Direct Approach

In case you already know the answer chosen by the authors of the standard library, we'll ask you to forget it for the time being; we have a 

couple of deeper points to make. Instead, imagine we're implementing the standard library ourselves and choosing its method of handling 

iterators. We're going to end up writing a lot of algorithms, and many of them will need to make an association between an iterator type 

and its value type. We could require all iterator implementations to supply a nested type called value_type, which we'd access directly:

    template <class ForwardIterator1, class ForwardIterator2>

    void iter_swap(ForwardIterator1 i1, ForwardIterator2 i2)

    {

        typename                      // (see Language Note)

          ForwardIterator1::value_type tmp = *i1;

        *i1 = *i2;
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        *i2 = tmp;

    }

C++ Language Note

The C++ standard requires the typename keyword when we use a dependent name as though it refers to a type. 

ForwardIterator1::value_type may or may not name a type, depending on the particular ForwardIterator1 that is passed. 

See Appendix B for more information about typename.

That's a perfectly good strategy for making type associations, but it's not very general. In particular, iterators in C++ are modeled on the 

design of pointers, with the intention that plain pointers should themselves be valid iterators. Unfortunately, pointers can't have nested 

types; that privilege is reserved for classes:

    void f(int* p1, int* p2)

    {

        iter_swap(p1,p2); // error: int* has no member 'value_type'

    }

2.1.2 Taking the Long Way Around

We can solve any problem by introducing an extra level of indirection.

—Butler Lampson

Lampson's idea is so universal in programming that Andrew Koenig
[2]

 is fond of calling it "the Fundamental Theorem of Software 

Engineering" (FTSE). We may not be able to add a nested ::value_type to all iterators, but we can add it to a template that takes the 

iterator type as a parameter. In the standard library this template, called iterator_traits, has a simple signature:

[2] Andrew Koenig is the co-author of Accelerated C++ and project editor for the C++ standard. For an 

acknowledgment that does justice to his many contributions to C++ over the years, see almost any one of Bjarne 

Stroustrup's C++ books.

    template <class Iterator> struct iterator_traits;

Here's how we put it to work in iter_swap:

    template <class ForwardIterator1, class ForwardIterator2>

    void iter_swap(ForwardIterator1 i1, ForwardIterator2 i2)

    {

        typename

          iterator_traits<ForwardIterator1>::value_type tmp = *i1;
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        *i1 = *i2;

        *i2 = tmp;

    }

iterator_traits is so named because it describes properties (or traits) of its argument. In this case, the traits being described are the 

iterator's five associated types: value_type, reference, pointer, difference_type, and iterator_category.

The most important feature of traits templates is that they give us a way to associate information with a type non-intrusively. In other words, 

if your ornery coworker Hector gives you some iterator-like type called hands_off that refers to an int, you can assign it a value_type without 

disturbing the harmony of your workgroup. All you have to do is add an explicit specialization of iterator_traits, and iter_swap will see the 

type int when it asks about the value_type of Hector's iterator:
[3]

[3] For a brief review of template specialization and instantiation, see the Details section at the end of this chapter.

    namespace std

    {

      template <>

      struct iterator_traits<Hector::hands_off>
      {

          typedef int value_type;
          four more typedefs...

      };

    }

This non-intrusive aspect of traits is precisely what makes iterator_traits work for pointers: the standard library contains the following partial

specialization of iterator_traits, which describes the value_type of all pointers:

    template <class T>

    struct iterator_traits<T*> {

        typedef T value_type;
        ...four more typedefs

    };

Thanks to the indirection through iterator_traits, generic functions can now access an iterator's associated types uniformly, whether or not 

it happens to be a pointer.

2.1.3 Finding a Shortcut

While specialization is a perfectly general mechanism, it's not nearly as convenient as adding nested types to classes. Specialization 

comes with a lot of baggage: You may have to close the namespaces you're working in and open the namespace of the traits template, 

and then you'll have to write the text of the traits specialization itself. That's not a very efficient use of keystrokes: its nested typedef is the 

only information that really counts for anything.

Thoughtfully, the standard library provides a shortcut that allows the author of an iterator to control the types nested in its iterator_traits just 

by writing member types in the iterator. The primary iterator_traits template
[4]

 reaches into the iterator to grab its member types:

[4] The C++ standard refers to ordinary template declarations and definitions—as opposed to partial or explicit (full)
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specializations—as primary templates.

    template <class Iterator>

    struct iterator_traits {

        typedef typename Iterator::value_type value_type;

        ...four more typedefs

    };

Here you can see the "extra level of indirection" at work: Instead of going directly to Iterator:: value_type, iter_swap gets there by asking 

iterator_traits for the iterator's value_type. Unless some specialization overrides the primary iterator_traits template, iter_swap sees the 

same value_type as it would have if it had directly accessed a nested type in the iterator.
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2.2. Metafunctions

If at this point you have begun to notice some similarity between traits templates and ordinary functions, that's good. The parameters and 

nested types of a traits template play similar roles at compile time to those played by function parameters and return values at runtime. 

The binary template from Chapter 1 is certainly function-like. If the "type computation" performed by iterator_traits seems a little too banal to 

be compared to a function, though, we understand; rest assured that things will quickly get more interesting.

Apart from passing and returning types instead of values, traits templates exhibit two significant features that we don't see in ordinary 

functions:

Specialization. We can non-intrusively alter the result of a traits template for particular "values" (types) of its parameters just

by adding a specialization. We can even alter the result for a whole range of "values" (e.g., all pointers) by using partial 

specialization. Specialization would be really strange if you could apply it to regular functions. Imagine being able to add an 

overload of std::abs that is called only when its argument is an odd number!

Multiple "return values." While ordinary functions map their arguments to just one value, traits often have more than one

result. For example, std::iterator_traits contains five nested types: value_type, reference, pointer, difference_type, and 

iterator_category. It's not even uncommon to find traits templates that contain nested constants or static member functions. 

std::char_traits is an example of just such a component in the standard library.

Still, class templates are enough like functions that we can get some serious mileage out of the analogy. To capture the idea of "class 

templates-as-functions," we'll use the term metafunctions. Metafunctions are a central abstraction of the Boost Metaprogramming Library, 

and formalizing them is an important key to its power. We'll be discussing metafunctions in depth in Chapter 3, but we're going to cover 

one important difference between metafunctions and classic traits right here.

The traits templates in the standard library all follow the "multiple return values" model. We refer to this kind of traits template as a "blob," 

because it's as though a handful of separate and loosely related metafunctions were mashed together into a single unit. We will avoid this 

idiom at all costs, because it creates major problems.

First of all, there's an efficiency issue: The first time we reach inside the iterator_traits for its ::value_type, the template will be instantiated. 

That means a lot of things to the compiler, but to us the important thing is that at that point the compiler has to work out the meaning of 

every declaration in the template body that happens to depend on a template parameter. In the case of iterator_traits, that means 

computing not only the value_type, but the four other associated types as well—even if we're not going to use them. The cost of these

extra type computations can really add up as a program grows, slowing down the compilation cycle. Remember that we said type

computations would get much more interesting? "More interesting" also means more work for your compiler, and more time for you to drum

your fingers on the desk waiting to see your program work.

Second, and more importantly, "the blob" interferes with our ability to write metafunctions that take other metafunctions as arguments. To 

wrap your mind around that, consider a trivial runtime function that accepts two function arguments:

    template <class X, class UnaryOp1, class UnaryOp2>

    X apply_fg(X x, UnaryOp1 f, UnaryOp2 g)

    {

        return f(g(x));

    }

That's not the only way we could design apply_fg, though. Suppose we collapsed f and g into a single argument called blob, as follows:

    template <class X, class Blob>

    X apply_fg(X x, Blob blob)

    {

        return blob.f(blob.g(x));

    }
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The protocol used to call f and g here is analogous to the way you access a "traits blob": to get a result of the "function," you reach in and 

access one of its members. The problem is that there's no single way to get at the result of invoking one of these blobs. Every function like 

apply_fg will use its own set of member function names, and in order to pass f or g on to another such function we might need to repackage 

it in a wrapper with new names.

"The blob" is an anti-pattern (an idiom to be avoided), because it decreases a program's overall interoperability, or the ability of its 

components to work smoothly together. The original choice to write apply_fg so that it accepts function arguments is a good one, because 

it increases interoperability.

When the callable arguments to apply_fg use a single protocol, we can easily exchange them:

    #include <functional>

    float log2(float);

    int a = apply_fg(5.Of,    std::negate<float>(), log2);

    int b = apply_fg(3.14f,   log2, std::negate<float>());

The property that allows different argument types to be used interchangeably is called polymorphism; literally, "the ability to take multiple 

forms."

Polymorphism

In C++, there are two kinds of polymorphism. Dynamic polymorphism allows us to handle objects of multiple derived 

types through a single base class pointer or reference. Static polymorphism, which we've been discussing in this 

chapter, allows objects of different types to be manipulated in the same way merely by virtue of their support for a 

common syntax. The words dynamic and static indicate that the actual type of the object is determined at runtime or 

compile time, respectively. Dynamic polymorphism, along with "late-binding" or "runtime dispatch" (provided in C++ by 

virtual functions), is a key feature of object-oriented programming. Static polymorphism (also known as parametric 

polymorphism) is essential to generic programming.

To achieve polymorphism among metafunctions, we'll need a single way to invoke them. The convention used by the Boost libraries is as 

follows:

    metafunction-name<type-arguments...>::type

From now on, when we use the term metafunction, we'll be referring to templates that can be "invoked" with this syntax.
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2.3. Numerical Metafunctions

You might find it astonishing that even metafunctions that yield numbers are invoked as shown above. No, we're not asking you to give the 

name type to something that is really a number. The result ::type of a metafunction with a numerical result really is a type—a type known as

an integral constant wrapper, whose nested ::value member is an integral constant. We'll explore the details of integral constant 

wrappers in Chapter 4, but in the meantime, the following example should give you a feeling for what we mean:

    struct five // integral constant wrapper for the value 5

    {

        static int const value = 5;
        typedef int value_type;

        ...more declarations...

    };

So, to get at the value of a numerical metafunction result, we can write:

    metafunction-name<type arguments...>::type::value

Likewise, integral constants are passed to metafunctions in similar wrappers. This extra level of indirection might seem inconvenient, but 

by now you can probably guess the reason for it: Requiring all metafunctions to accept and return types makes them more uniform, more 

polymorphic, and more interoperable. You'll see lots of examples of how this application of the FTSE pays off in the next few chapters.
[5]

[5] You may have noticed that the metafunction protocol seems to prevent us from achieving the very goal that was 

our reason for making metafunctions polymorphic: we wanted to be able to write metafunctions that take other 

metafunctions as arguments. Since metafunctions are templates, not types, we can't pass them where types are 

expected. For now we'll just have to ask you to suspend your disbelief for the rest of this chapter; we promise to 

deal with that issue in Chapter 3.

All those benefits aside, writing ::type::value whenever you want to compute an actual integral constant does grow somewhat tedious. 

Purely as a convenience, a numerical metafunction author may decide to provide an identical nested ::value directly in the metafunction 

itself. All of the numerical metafunctions from the Boost library we cover in this book do just that. Note that although it's okay to take 

advantage of ::value when you know it's supplied by the metafunction you're calling, you can't count on a nested ::value in general, even 

when you know the metafunction yields a numerical result.
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2.4. Making Choices at Compile Time

If at this point you still find yourself a little nonplussed at the idea of type computations, we can hardly blame you. Admittedly, using a 

metafunction to find the value_type of an iterator is not much more than a kind of glorified table lookup. If this idea of "computation with 

types" is going to have legs, there's got to be more to it than making type associations.

2.4.1 More iter_swap

To see how we can put metafunctions to use in real code, let's go back to playing "C++ standard library implementor." Sorry to say it, but 

by now we'll have received a flood of bug reports from our performance-minded customers, complaining that the way we defined iter_swap

in section 2.1.3 is horribly inefficient for some iterators. Apparently one guy tried passing in the iterators of std::list<std::vector<std::string> >, 

which iterate over vectors of strings, and his profiler told him that iter_swap was the performance bottleneck.

In hindsight, it's hard to be very surprised: The first statement in iter_swap makes a copy of the value referenced by one of the iterators. 

Since copying a vector means copying all of its elements, and each string element copied or assigned is likely to require a dynamic 

memory allocation and a bitwise copy of the string's characters, this starts to look pretty bad for performance.

Fortunately, there's a workaround. Because the standard library provides an efficient version of swap for vectors that just exchanges a few 

internal pointers, we can tell our customer to simply dereference the iterators and call swap on the results:

    std::swap(*i1, *i2);

That response isn't very satisfying, though. Why shouldn't iter_swap be equally efficient? In a flash of inspiration, we remember the 

fundamental theorem of software engineering: Can't we just add a level of indirection and delegate the responsibility for efficiency to swap?

    template <class ForwardIterator1, class ForwardIterator2>

    void iter_swap(ForwardIterator1 i1, ForwardIterator2 i2)

    {

        std::swap(*i1,*i2);

    }

That looks good, but running our test suite shows that calling swap doesn't always work. Did you notice that iter_swap will accept two 

iterators of different types? It seems one of the tests tries to exchange the value pointed to by an int* with the one pointed to by a long*

using iter_swap. The swap function, however, only operates on two objects of the same type:

    template <class T> void swap(T& x, T& y);

The implementation of iter_swap above causes a compilation error when we try to use it on int* and long*, because no std::swap overload 
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matches the argument types (int, long).

We could try to solve this problem by leaving the slow implementation of iter_swap in place, and adding an overload:

    // Generalized (slow) version

    template <class ForwardIterator1, class ForwardIterator2>

    void iter_swap(ForwardIterator1 i1, ForwardIterator2 i2)

    {

        typename

          iterator_traits<ForwardIterator1>::value_type

        tmp = *i1;

        *i1 = *i2;

        *i2 = tmp;

    }

    // A better match when the two iterators are the same type

    template <class ForwardIterator>

    void iter_swap(ForwardIterator i1, ForwardIterator i2)

    {

        std::swap(*i1, *i2); // sometimes faster

    }

The C++ rules for partial ordering of function templates say that the new overload is a better match, when it matches. That handles the 

problem for int* and long* and passes the test suite. We ship it!

2.4.2 A Fly in the Ointment

Pretty soon, though, someone will notice that we're still missing an important opportunity for optimization. Consider what happens when we 

call iter_swap on the iterators of std::vector<std::string> and std::list<std::string>. The two iterators will have the same value_type—with its

own efficient swap—but since the iterators themselves are different types, the fast iter_swap overload that uses it won't be called. What's 

needed here is a way to get iter_swap to work on two different iterator types that share a single value_type.

Since we're playing "standard library implementor," we can always try rewriting swap so it works on two different types:

    template <class T1, class T2>

    void swap(T1& a, T2& b)

    {

        T1 tmp = a;

        a = b;

        b = tmp;

    }

This simple fix will handle most of the cases our users encounter.

2.4.3 Another Fly!

Unfortunately, there's a category of iterators for which this still won't work: those whose operator* yields a proxy reference. A proxy 
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reference isn't, in fact, a reference at all, but a class that tries to emulate one: For an iterator that's both readable and writable, a proxy 

reference is just a class that is both convertible to, and assignable from, the value_type.

The best-known example of such an iterator is that of vector<bool>,
[6]

 a container that stores each of its elements in a single bit. Since 

there's no such thing as a real reference to a bit, a proxy is used so the vector behaves almost exactly like any other vector. The proxy's 

operator=(bool) writes into the appropriate bit of the vector, and its operator bool() returns TRue if and only if that bit is set in the vector, 

something like:

[6] The problem might easily have been missed by our regression tests; some people aren't even convinced 

vector<bool>::iterator is a valid iterator. The subject of how vector<bool> and its iterators fit into the standard has 

been the subject of much debate. Herb Sutter even wrote two papers for the C++ standards committee ([n1185], 

[n1211]), and a Guru of the Week [GotW50] about the problems. Work has begun in the committee on a system of 

new iterator concepts [n1550] that, we hope, will help to resolve the issues.

    struct proxy

    {

       proxy& operator=(bool x)

       {

           if (x)

               bytes[pos/8] |= (1u << (pos%8));

           else

               bytes[pos/8] &= ~(1u << (pos%8));

           return *this;

       }

       operator bool() const

       {

           return bytes[pos/8] & (1u << (pos%8));

       }

       unsigned char* bytes;

       size_t pos;

    };

    struct bit_iterator

    {

       typedef bool value_type;

       typedef proxy reference;

       more typedefs...

       proxy operator*() const;

       more operations...

    };

Now consider what happens when iter_swap dereferences a bit_iterator and tries to pass a couple of proxy references off to std::swap. 

Recall that since swap modifies its arguments, they are passed by non-const reference. The problem is that the proxies returned by 

operator* are temporaries, and the compiler will issue an error when we try to pass temporaries as non-const reference arguments. Most of 

the time that's the right decision, because any changes we made to the temporaries would just disappear into the ether. The original 

implementation of iter_swap, though, works fine on the iterators of vector<bool>.

2.4.4 The Flyswapper
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What's needed, finally, is a way to pick the "fast" implementation of iter_swap only when the iterators have the same value_type and their 

reference types are real references, not proxies. To make these choices, we need some way to ask (and answer!) the questions "Is T a real 

reference?" and "Are these two value_types the same?"

Boost contains an entire library of metafunctions designed to query and manipulate fundamental traits like type identity and 

"reference-ness." Given the appropriate type traits, we can decide whether to use swap or do the swapping ourselves:

    #include <boost/type_traits/is_reference.hpp>

    #include <boost/type_traits/is_same.hpp>

    #include <iterator>  // for iterator_traits

    #include <utility>   // for swap

    template <bool use_swap> struct iter_swap_impl; // see text

    namespace std {

    template <class ForwardIterator1, class ForwardIterator2>

    void iter_swap(ForwardIterator1 i1, ForwardIterator2 i2)

    {

        typedef iterator_traits<ForwardIterator1> traits1;

        typedef typename traits1::value_type v1;

        typedef typename traits1::reference r1;

        typedef iterator_traits<ForwardIterator2> traits2;

        typedef typename traits2::value_type v2;

        typedef typename traits2::reference r2;

        bool const use_swap = boost::is_same<v1,v2>::value

                              && boost::is_reference<r1>::value

                              && boost::is_reference<r2>::value;

We haven't closed the final brace on iter_swap, but at this point all we have to do is find a way to pick different behaviors based on the 

value of use_swap. There are actually lots of ways to approach that problem, many of which we'll cover in Chapter 9. We've cleverly 

anticipated the need for dispatching by forward-declaring iter_swap_impl.
[7]

 We can provide the two behaviors in specializations of 

iter_swap_impl (outside the body of iter_swap):

[7] A little unnatural foresight is the authors' prerogative!

    template <>

    struct iter_swap_impl<true>  // the "fast" one

    {

        template <class ForwardIterator1, class ForwardIterator2>

        static void do_it(ForwardIterator1 i1, ForwardIterator2 i2)

        {

            std::swap(*i1, *i2);

        }

    };

    template <>

    struct iter_swap_impl<false>  // the one that always works

    {

        template <class ForwardIterator1, class ForwardIterator2>

        static void do_it(ForwardIterator1 i1, ForwardIterator2 i2)

        {

            typename

              iterator_traits<ForwardIterator1>::value_type
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            tmp = *i1;

            *i1 = *i2;

            *i2 = tmp;

        }

    };

Now iter_swap_impl <use_swap>::do_it provides an appropriate implementation of iter_swap for either possible value of use_swap. 

Because do_it is a static member function, iter_swap can call it without constructing an instance of iter_swap_impl:

    iter_swap_impl<use_swap>::do_it(*i1,*i2);

Now we can close the brace and breathe a sigh of relief while our regression tests all pass. We ship! There is much rejoicing! Our 

customers have an iter_swap that is both fast and correct.
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2.5. A Brief Tour of the Boost Type Traits Library

It turns out that almost every serious template metaprogram ends up needing facilities like those provided by the Boost. Type Traits. The 

library has proven so useful that it has been accepted into the C++ standard committee's first "Technical Report" ([n1424], [n1519]), a 

harbinger of things to come in the next official standard. For a complete reference, see the documentation in the libs/type_traits

subdirectory of your Boost distribution, or at http://www.boost.org/libs/type_traits.

2.5.1 General

There are a few things you need to know about the library as a whole: First, as you may have guessed from the iter_swap example, all of 

the library's metafunctions are in namespace boost, and there's a simple convention for #include-ing the header that defines any of them:

    #include <boost/type_traits/ metafunction-name.hpp>

Second, as we implied earlier, all of Boost's numerical metafunctions, as a convenience, provide a nested ::value directly in the 

metafunction. It may be a bit strange to think of bool-valued metafunctions like is_reference as "numerical," but C++ classifies bool as an 

integral type and the same convention applies to all integral-valued metafunctions.

Third, there are a few type traits (e.g., has_trivial_destructor) that require non-standard compiler support in order to be fully functional. A 

few compilers, notably Metrowerks CodeWarrior and SGI MipsPro, have actually implemented the necessary primitives. On other 

compilers, these traits generally are correct for some types and degrade "gracefully and safely" for others. By "gracefully" we mean that 

even when the traits don't have the correct result, their use will still compile.

To understand what we mean by "safely," you have to know that these traits are mostly used to decide whether certain optimizations are 

possible. For example, the storage for a type with a trivial destructor may be reused without destroying the object it contains. If, however, 

you can't determine that the type has a trivial destructor, you must destroy the object before reusing its storage. When 

has_trivial_destructor<T> can't determine the correct result value, it returns false so that generic code will always take the safe route and 

invoke T's destructor.

Last, be aware that type categorization metafunctions like is_enum<T>, which we describe next, generally ignore cv-qualification (const and 

volatile), so that is_enum<T const> always has the same result as is_enum<T>.

Each of the following subsections describes a different group of traits.

2.5.2 Primary Type Categorization

These unary metafunctions determine which of the fundamental type categories described in the C++ standard applies to their argument. 

For any given type T, one and only one of these metafunctions should yield a true result.

Nine traits cover the type categories that most people are familiar with. There's not much to say about is_void<T>, is_pointer<T>, 

is_reference<T>, is_array<T>, and is_enum<T>; they do just what you'd expect. is_integral<T> identifies char, bool, and all the varieties of 

signed and unsigned integer types. Similarly, is_float<T> identifies the floating-point types float, double, and long double. Unfortunately, 

without compiler support, is_union<T> always returns false, thus is_class<T> is true for both classes and unions.
[8]
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[8] Classes may be declared using the struct keyword, but they are still classes according to the C++ standard. In 

fact, the following two declarations are interchangeable:

class X;

struct X; // declares the same X

struct is only distinguished from class in definitions, where struct causes bases and members to be public by default.

There are two more categories that most programmers encounter less often. Pointers to member functions, which have the form

R (C::*)(args...) cv

and pointers to data members, written as

D C::*

are identified by is_member_pointer<T>. Note that is_pointer doesn't identify these types, even though they're called pointers.

Lastly, is_function<T> identifies function types of the form

R (args...)

Many people never see an unadorned function type, because of the way function names, when not immediately invoked, automatically 

become function pointers or references of the form

R (*) (args...) or R (&) (args...)

Table 2.1 lists the primary type traits.
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Table 2.1. Primary Type Categorization

Primary Trait ::type::value and ::value

is_array<T> true iff T is an array type.

is_class<T> TRue iff T is a class type; without compiler support, may also report TRue for unions.

is_enum<T> true iff T is an enumeration type.

is_float<T> TRue iff T is a floating-point type.

is_function<T> true iff T is a function type.

is_integral<T> true iff T is an integral type.

is_member_pointer<T> TRue iff T is a pointer to function or data member.

is_pointer<T> TRue iff T is a pointer type (but not a pointer to member).

is_reference<T> true iff T is a reference type.

is_union<T> TRue iff T is a union; without compiler support, always reports false.

is_void<T> true iff T is of the form cv void.

2.5.3 Secondary Type Categorization

The traits in Table 2.2 represent useful groupings of, or distinctions within, the primary categories.

Table 2.2. Secondary Type Categorization

Secondary Trait ::type::value and ::value

is_arithmetic<T> is_integral<T>::value ||

is_float<T>::value

is_compound<T> !is_fundamental<T>::value

is_fundamental<T> is_arithmetic<T>::value ||

is_void<T>::value

is_member_function_pointer<T> true iff T is a pointer to member function.

is_object<T> !(is_function<T>::value ||

is_reference<T>::value ||

is_void<T>::value)

is_scalar<T> is_arithmetic<T>::value

|| is_enum<T>::value ||

is_pointer<T>::value ||

is_member_pointer<T>::value
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2.5.4 Type Properties

The type traits library uses the term properties as a kind of catch-all term for traits other than those directly related to the standard type 

categories. The simplest traits in this group are is_const and is_volatile, which detect their arguments' cv-qualification. The rest of the type 

properties are summarized in Tables 2.3 and 2.4.

Table 2.3. Type Properties

Type Property ::type::value and ::value

alignment_of<T> A positive multiple of T's memory alignment requirements (the library tries to 

minimize that multiple).

is_empty<T> true iff the compiler optimizes away space for empty base classes and T is an 

empty class.

is_polymorphic<T> TRue iff T is a class with at least one virtual member function.

Table 2.4. More Type Properties

Type Property ::type::value and ::value

has_nothrow_assign<T> TRue only if T has a non-throwing assignment operator.

has_nothrow_constructor<T> TRue only if T has a non-throwing default constructor.

has_nothrow_copy<T> true only if T has a non-throwing copy constructor.

has_trivial_assign<T> TRue only if T has a trivial assignment operator.

has_trivial_constructor<T> TRue only if T has a trivial default constructor.

has_trivial_copy<T> true only if T has a trivial copy constructor.

is_pod<T>
true only if T is a POD type.

[9]

is_stateless<T> true only if T is empty and its constructors and destructors are 

trivial.

[9] POD stands for "plain old data." Believe it or not, that's a technical term in the C++ standard. The standard gives 

us license to make all kinds of special assumptions about POD types. For example, PODs always occupy 

contiguous bytes of storage; other types might not. A POD type is defined to be either a scalar, an array of PODs, or 

a struct or union that has no user-declared constructors, no user-declared copy assignment, no user-declared 

destructor, no private or protected non-static data members, no base classes, no non-static data members of 
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non-POD, reference, or pointer to member type, or array of such types, and no virtual functions.

The traits in Table 2.4 are most useful for selecting optimizations. With compiler support they can be implemented more accurately, 

allowing only if to be replaced by if and only if (iff) in the table.

2.5.5 Relationships Between Types

The library contains three important metafunctions that indicate relationships between types. We've already seen is_same<T,U>, whose 

::value is true when T and U are identical types. is_convertible<T,U> yields true if and only if an object of type T can be implicitly converted 

to type U. Finally, is_base_and_derived<B,D>::value is TRue if and only if B is a base class of D.

2.5.6 Type Transformations

The metafunctions listed in Table 2.5 perform fundamental type manipulations. Note that unlike other type traits metafunctions we've 

discussed so far, members of this group yield type results rather than Boolean values. You can think of them as being operators in the 

"arithmetic of types."

Table 2.5. Transformations Types

Transformation ::type

remove_const<T> T without any top-level const. For example, const int becomes int, but const int* remains 

unchanged.

remove_volatile<T> T without any top-level volatile. For example, volatile int becomes int.

remove_cv<T> T without any top-level cv-qualifiers. For example, const volatile int becomes int.

remove_reference<T> T without any top-level reference. For example, int& becomes int but int* remains 

unchanged.

remove_bounds<T> T without any top-level array brackets. For example, int[2][3] becomes int[3].

remove_pointer<T> T without any top-level pointer. For example, int* becomes int, but int& remains 

unchanged.

add_reference<T> If T is a reference type, then T, otherwise T&.

add_pointer<T> remove_reference<T>::type*. For example, int and int& both become int*.

add_const<T> T const

add_volatile<T> T volatile

add_cv<T> T const volatile

At this point you might be wondering why we bothered with the last three transformations in the table. After all, add_const<T>::type is just a 
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more verbose way to write T const. It turns out that it's important to be able to express even the simplest transformations in metafunction 

form so they can be passed on to other metafunctions (which, as promised, we'll show you how to do in the next chapter).
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2.6. Nullary Metafunctions

Probably the most important thing we've done in this chapter has been to describe the "metafunction" concept, but there's one question we 

still haven't answered: What does a nullary (zero-argument) metafunction look like?

From the requirements standpoint, a nullary metafunction is any type, whether it's a plain class or a class template specialization, that 

provides us with a nested ::type member. For instance, add_const<int> is a nullary metafunction that always returns the same result: int 

const.

The easiest way to write a nullary metafunction is to go with a simple struct:

    struct always_int

    {

        typedef int type;

    };
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2.7. Metafunction Definition

Finally, we have everything we need to write a complete, formal description of metafunctions.

Definition

A metafunction is either

a class template, all of whose parameters are types

or

a class

with a publicly accessible nested result type called type.
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2.8. History

The Boost Type Traits library was inspired by a component in SGI's STL implementation that looked something like this:

    struct true_type {}; struct false_type {};

    template <class T> struct type_traits // assume nothing

    {

       typedef false_type has_trivial_default_constructor;

       typedef false_type has_trivial_copy_constructor;

       typedef false_type has_trivial_assignment_operator;

       typedef false_type has_trivial_destructor;

       typedef false_type is_POD_type;

    };

    template<> struct type_traits<char> // specialization for char

    {

       typedef true_type has_trivial_default_constructor;

       typedef true_type has_trivial_copy_constructor;

       typedef true_type has_trivial_assignment_operator;

       typedef true_type has_trivial_destructor;

       typedef true_type is_POD_type;

    };

    more specializations follow...

It's interesting to note that although the SGI type traits yielded result types, it's still a "blob," which kills polymorphism. The SGI designers 

must have had other reasons for using nested types instead of bool constants.
[10]

[10] For a clue as to one possible reason, see section 9.2.3.

Boost. Type Traits was the first C++ library that explicitly recognized the importance of using single-valued metafunctions. Boost rejected 

the "blob" design primarily because it would reserve a very general name, type_traits, for a single template. The name seemed to demand

that any new traits be assimilated there—a Borg blob! Anyone who wanted to write a similar component would have felt compelled to go in

and modify this one template, potentially causing bugs. At the time, the positive impact this choice would have on efficiency and

interoperability wasn't well understood.

The designers established a convention that traits with a Boolean result would have a ::value and those with a type result would have a 

::type, so users didn't have to guess at how to invoke a given trait. That choice indicates that they recognized the value of polymorphism, 

even if they didn't reach the ultimate conclusion that all metafunctions should supply a ::type.

As a matter of fact, the type traits weren't seen as "metafunctions" until work on the Boost Metaprogramming Library (MPL) was begun. At 

that point, the convention used in the Type Traits library became the basis for the uniform protocol used by MPL metafunctions, and Boost 

Type Traits library was updated accordingly.
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2.9. Details

We've covered a lot of ground in this chapter; the journey from traits to metafunctions takes us from the ad hoc type associations used in 

the simplest generic programs, to the fundamentals that allow metaprogramming to be viewed as a first-class coding activity. We also 

dipped into the mechanics of C++ templates, got an overview of the type traits library, and saw some of its components in action. In such a 

broad landscape, some important details are bound to be missed; we'll fill them in as we review the chapter's most important points.

Specialization

The meaning of specialization as applied to C++ templates can be tough to get a handle on, because it's used in two different ways. Its 

first usage refers to a template with specific arguments filled in, as in iterator_traits<int*>. In other words, a template specialization names 

the actual class (or function, in the case of function template specializations) that results from replacing its parameters with specific 

arguments.

The second use of specialization shows up in "explicit specialization" and "partial specialization"; we showed both explicit and partial 

specializations of iterator_traits in this chapter. The name "explicit" is probably not well-chosen, since partial specializations are just as 

explicit; you can think of "explicit specialization" as meaning "full specialization" without any loss of understanding.

To remember the syntax rules for declaring class template specializations (the second meaning), keep this form in mind:

    template <variable part>

    struct template-name<fixed part>

In an explicit (or full) specialization, the variable part is empty and the fixed part consists of concrete template arguments. In a partial 

specialization, the variable part contains a parameter list, and at least one argument in the fixed part depends on those parameters.

Primary template

The declaration of a template that is not a specialization (second meaning above) is called the primary template. We can think of the 

primary template as covering the general case, while specializations cover various special cases.

Instantiation

The moment the compiler needs to know much more about a template than what its arguments are—the names of its members or the
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identity of its base classes, for example—the template will be instantiated. At that point, the compiler fills in the actual values of all the

template parameters, picks the best-matching explicit or partial specialization (if any), figures out all of the types and constants used in

declarations in the template body, and rechecks those declarations for errors. It does not, however, instantiate definitions (such as member 

function bodies) until they are actually used. For example:

    template <class T, class U>

    struct X

    {

        int f(T* x) // declaration

        {

           U y[10]; // definition

           return 0;

        }

    };

    typedef X<int&, char> t1; // OK; no instantiation yet

    t1 x1;                    // error: pointer to int& illegal

    typedef X<int, char&> t2;

    t2 x2;                    // OK; declarations check out

    int a = x2.f();           // error: array of char& illegal

As you can see, template instantiation can affect not only compilation speed, but whether your program compiles at all!

The blob

A class with lots of members (including member functions) is known in the object-oriented programming literature as a "blob" [BMMM98]. 

The members of a class are all "coupled" to one another, because they must be declared together. To avoid coupling and increase 

modularity, avoid this anti-pattern. Instead, define separate traits as independent metafunctions.

Metadata

A "value" that can be manipulated by the C++ compile-time machinery can be thought of as metadata. In template metaprogramming, the 

two most common kinds of metadata are types and integer (including bool) constants. The compile-time part of C++ is often referred to as 

a "pure functional language" because metadata is immutable and metafunctions can't have any side effects.

Polymorphism

Literally, "having many forms." In computer languages polymorphism has come to mean the ability to manipulate different types through a 

common interface. Having a consistent interface is the best way to ensure that code is reusable and components interoperate naturally. 

Because C++ templates do not inherently treat the different kinds of metadata polymorphically, MPL follows the convention of using type 

wrappers around non-type metadata. In particular, numerical metadata is represented as a type with a nested numeric constant member 

called ::value.
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Metafunction

A "function" that operates on metadata and can be "invoked" at compile time. For the remainder of this book, a template or class will only 

be called a metafunction if it has no non-type parameters and returns a type called type. The arguments to the class template are the 

inputs to the compile time computation, and the ::type member is its result. Thus, expressions like:

    some_metafunction<Arg1, Arg2>::type

are analogous to runtime computations like:

    some_function(arg1, arg2)

Numerical metafunction

A metafunction that returns a wrapper type for a numerical value. As a convenience, many numerical metafunctions themselves provide a 

nested ::value member, so that you can write:

    some_numerical_metafunction<Arg>::value

instead of the more general:

    some_numerical_metafunction<Arg>::type::value

if you want to access the numerical result directly.

Nullary metafunction

Any class with a publicly accessible ::type can be used as a metafunction that accepts no arguments. As a consequence of this definition, 

any metafunction specialization (first meaning above), such as boost::remove_pointer<char*>, is a legal nullary metafunction.

Traits

A technique for establishing associations between pieces of metadata via class template specializations. A key feature of the traits idiom is 

that it's non-intrusive: We can establish a new mapping without modifying the associated items themselves. MPL metafunctions can be 

viewed as a special case of traits, where there is only one result value for any input.
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Type traits

The Boost Type Traits library is a metafunction library. It contains a few metafunctions for low-level type manipulation. For example, the 

result of add_reference is always a reference type:

    boost::add_reference<char>::type      // char&

    boost::add_reference<int&>::type      // int&

The Type Traits library is mainly comprised of Boolean-valued metafunctions that can be used to answer questions about the fundamental 

properties of any type. For example:

    boost::is_reference<char>::value      // false

    boost::is_reference<int&>::value      // true
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2.10. Exercises

2-0. Write a unary metafunction add_const_ref<T> that returns T if it is a reference type, and otherwise returns T 

const&. Write a program to test your metafunction. Hint: you can use boost::is_same to test the results.

2-1. Write a ternary metafunction replace_type<c,x,y> that takes an arbitrary compound type c as its first parameter, 

and replaces all occurrences of a type x within c with y:

    typedef replace_type< void*, void, int >::type t1; // int*

    typedef replace_type<

        int const*[10]

      , int const

      , long

    >::type t2; // long* [10]

    typedef replace_type<

        char& (*)(char&)

      , char&

      , long&

    >::type t3; // long& (*)(long&)

You can limit the function types you operate on to those with fewer than two arguments.

2-2.
The boost::polymorphic_downcast function template

[11]
 implements a checked version of static_cast intended 

for downcasting pointers to polymorphic objects:

[11] See http://www.boost.org/libs/conversion/cast.htm.

    template <class Target, class Source>

    inline Target polymorphic_downcast(Source* x)

    {

        assert( dynamic_cast<Target>(x) == x );

        return static_cast<Target>(x);

    }

In released software, the assertion disappears and polymorphic_downcast can be as efficient as a simple 

static_cast. Use the type traits facilities to write an implementation of the template that allows both pointer and 

reference arguments:

    struct A {};
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    struct B : A {};

    B b;

    A* a_ptr = &b;

    B* b_ptr = polymorphic_downcast<B*>(a_ptr);

    A& a_ref = b;

    B& b_ref = polymorphic_downcast<B&>(b_ref);

2-3. Use the type traits facilities to implement a type_descriptor class template, whose instances, when streamed, 

print the type of their template parameters:
[12]

[12] We cannot use runtime type information (RTTI) to the same effect since, according 

to 18.5.1 [lib.type.info] paragraph 7 of the standard, typeid(T). name() is not guaranteed 

to return a meaningful result.

    // prints "int"

    std::cout << type_descriptor<int>();

    // prints "char*"

    std::cout << type_descriptor<char*>();

    // prints "long const*& volatile"

    std::cout << type_descriptor<long const*& volatile>();

You can assume that type_descriptor's template parameter is limited to compound types built from the 

following four integral types: char, short int, int, and long int.

2-4. Write an alternative solution for exercise 2-3 that does not use the Type Traits library. Compare the solutions.

2-5. Change the type_descriptor template from exercise 2-3 to output a pseudo-English description of the type, 

along the lines of the explain command of the cdecl program:
[13]

[13] http://linuxcommand.org/man_pages/cdecl1.html.

    // prints "array of pointer to function returning pointer to "

    //        "char"

    std::cout << type_descriptor< char *(*[])() >();

2-6*. While at first sight the type algebra supplied by the Type Traits library might seem complete, it's not. There are 

at least a few type categories, relationships, and transformations that are not covered by the library's facilities. 

For example, they don't provide a way to get the corresponding unsigned counterpart of a signed integer type.

Try to identify as many of these missing parts as you can—there is at least one in each traits category, and we

can think of at least 11 in all. Design an interface and come up with a motivating use case for each of the

missing traits.
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2-7*. One of the nice things about touring the Type Traits library is that we also made a minitour of the C++ runtime 

type system. Each of the primary type categories, plus the const and volatile qualifiers, is a fundamental 

building block that can be used in constructing arbitrarily rich types.

All possible C++ types are possible "values" of type metadata, which leads to the question, "What does C++'s 

compile-time type system look like?" Write a short description of the static type system of compile time C++. 

Hint: a static type system restricts the values that can be passed to particular functions.

2-8*. Describe the effect of making all metadata polymorphic in terms of static and dynamic type checking.
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Chapter 3. A Deeper Look at Metafunctions

With the foundation laid so far, we're ready to explore one of the most basic uses for template metaprogramming techniques: adding static 

type checking to traditionally unchecked operations. We'll look at a practical example from science and engineering that can find 

applications in almost any numerical code. Along the way you'll learn some important new concepts and get a taste of metaprogramming 

at a high level using the MPL.
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3.1. Dimensional Analysis

The first rule of doing physical calculations on paper is that the numbers being manipulated don't stand alone: most quantities have 

attached dimensions, to be ignored at our peril. As computations become more complex, keeping track of dimensions is what keeps us

from inadvertently assigning a mass to what should be a length or adding acceleration to velocity—it establishes a type system for

numbers.

Manual checking of types is tedious, and as a result, it's also error-prone. When human beings become bored, their attention wanders and 

they tend to make mistakes. Doesn't type checking seem like the sort of job a computer might be good at, though? If we could establish a 

framework of C++ types for dimensions and quantities, we might be able to catch errors in formulae before they cause serious problems in 

the real world.

Preventing quantities with different dimensions from interoperating isn't hard; we could simply represent dimensions as classes that only 

work with dimensions of the same type. What makes this problem interesting is that different dimensions can be combined, via 

multiplication or division, to produce arbitrarily complex new dimensions. For example, take Newton's law, which relates force to mass and 

acceleration:

Since mass and acceleration have different dimensions, the dimensions of force must somehow capture their combination. In fact, the 

dimensions of acceleration are already just such a composite, a change in velocity over time:

Since velocity is just change in distance (l) over time (t), the fundamental dimensions of acceleration are:

And indeed, acceleration is commonly measured in "meters per second squared." It follows that the dimensions of force must be:

and force is commonly measured in kg(m/s
2
), or "kilogram-meters per second squared." When multiplying quantities of mass and 

acceleration, we multiply their dimensions as well and carry the result along, which helps us to ensure that the result is meaningful. The 

formal name for this bookkeeping is dimensional analysis, and our next task will be to implement its rules in the C++ type system. John 

Barton and Lee Nackman were the first to show how to do this in their seminal book, Scientific and Engineering C++ [BN94]. We will recast 

their approach here in metaprogramming terms.

3.1.1 Representing Dimensions

An international standard called Système International d'Unites breaks every quantity down into a combination of the dimensions mass, 

length or position, time, charge, temperature, intensity, and angle. To be reasonably general, our system would have to be able to 
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represent seven or more fundamental dimensions. It also needs the ability to represent composite dimensions that, like force, are built 

through multiplication or division of the fundamental ones.

In general, a composite dimension is the product of powers of fundamental dimensions.
[1]

 If we were going to represent these powers for 

manipulation at runtime, we could use an array of seven ints, with each position in the array holding the power of a different fundamental 

dimension:

[1] Divisors just contribute negative exponents, since 1/x = x-1.

    typedef int dimension[7]; // m  l  t  ...

    dimension const mass      = {1, 0, 0, 0, 0, 0, 0};

    dimension const length    = {0, 1, 0, 0, 0, 0, 0};

    dimension const time      = {0, 0, 1, 0, 0, 0, 0};

    ...

In that representation, force would be:

    dimension const force = {1, 1, -2, 0, 0, 0, 0};

that is, mlt
-2

. However, if we want to get dimensions into the type system, these arrays won't do the trick: they're all the same type! 

Instead, we need types that themselves represent sequences of numbers, so that two masses have the same type and a mass is a 

different type from a length.

Fortunately, the MPL provides us with a collection of type sequences. For example, we can build a sequence of the built-in signed integral 

types this way:

    #include <boost/mpl/vector.hpp>

    typedef boost::mpl::vector<

         signed char, short, int, long> signed_types;

How can we use a type sequence to represent numbers? Just as numerical metafunctions pass and return wrapper types having a nested 

::value, so numerical sequences are really sequences of wrapper types (another example of polymorphism). To make this sort of thing 

easier, MPL supplies the int_<N> class template, which presents its integral argument as a nested ::value:

    #include <boost/mpl/int.hpp>

    namespace mpl = boost::mpl; // namespace alias

    static int const five = mpl::int_<5>::value;

Namespace Aliases

namespace alias = namespace-name;

declares alias to be a synonym for namespace-name. Many examples in this book will use mpl:: to indicate boost::mpl::, 

but will omit the alias that makes it legal C++.
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In fact, the library contains a whole suite of integral constant wrappers such as long_ and bool_, each one wrapping a different type of 

integral constant within a class template.

Now we can build our fundamental dimensions:

    typedef mpl::vector<

       mpl::int_<1>, mpl::int_<0>, mpl::int_<0>, mpl::int_<0>

     , mpl::int_<0>, mpl::int_<0>, mpl::int_<0>

    > mass;

    typedef mpl::vector<

       mpl::int_<0>, mpl::int_<1>, mpl::int_<0>, mpl::int_<0>

     , mpl::int_<0>, mpl::int_<0>, mpl::int_<0>

    > length;

    ...

Whew! That's going to get tiring pretty quickly. Worse, it's hard to read and verify: The essential information, the powers of each 

fundamental dimension, is buried in repetitive syntactic "noise." Accordingly, MPL supplies integral sequence wrappers that allow us to 

write:

    #include <boost/mpl/vector_c.hpp>

    typedef mpl::vector_c<int,1,0,0,0,0,0,0> mass;

    typedef mpl::vector_c<int,0,1,0,0,0,0,0> length;  // or position

    typedef mpl::vector_c<int,0,0,1,0,0,0,0> time;

    typedef mpl::vector_c<int,0,0,0,1,0,0,0> charge;

    typedef mpl::vector_c<int,0,0,0,0,1,0,0> temperature;

    typedef mpl::vector_c<int,0,0,0,0,0,1,0> intensity;

    typedef mpl::vector_c<int,0,0,0,0,0,0,1> angle;

Even though they have different types, you can think of these mpl::vector_c specializations as being equivalent to the more verbose 

versions above that use mpl::vector.

If we want, we can also define a few composite dimensions:

    // base dimension:        m l  t ...

    typedef mpl::vector_c<int,0,1,-1,0,0,0,0> velocity;     // l/t

    typedef mpl::vector_c<int,0,1,-2,0,0,0,0> acceleration; // l/(t2)

    typedef mpl::vector_c<int,1,1,-1,0,0,0,0> momentum;     // ml/t

    typedef mpl::vector_c<int,1,1,-2,0,0,0,0> force;        // ml/(t2)

And, incidentally, the dimensions of scalars (like pi) can be described as:

    typedef mpl::vector_c<int,0,0,0,0,0,0,0> scalar;

3.1.2 Representing Quantities
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The types listed above are still pure metadata; to typecheck real computations we'll need to somehow bind them to our runtime data. A 

simple numeric value wrapper, parameterized on the number type T and on its dimensions, fits the bill:

    template <class T, class Dimensions>

    struct quantity

    {

        explicit quantity(T x)

           : m_value(x)

        {}

        T value() const { return m_value; }

     private:

        T m_value;

    };

Now we have a way to represent numbers associated with dimensions. For instance, we can say:

    quantity<float,length> l( 1.0f );

    quantity<float,mass> m( 2.0f );

Note that Dimensions doesn't appear anywhere in the definition of quantity outside the template parameter list; its only role is to ensure that 

l and m have different types. Because they do, we cannot make the mistake of assigning a length to a mass:

    m = l;   // compile time type error

3.1.3 Implementing Addition and Subtraction

We can now easily write the rules for addition and subtraction, since the dimensions of the arguments must always match.

    template <class T, class D>

    quantity<T,D>

    operator+(quantity<T,D> x, quantity<T,D> y)

    {

      return quantity<T,D>(x.value() + y.value());

    }

    template <class T, class D>

    quantity<T,D>

    operator-(quantity<T,D> x, quantity<T,D> y)

    {

      return quantity<T,D>(x.value() - y.value());

    }

These operators enable us to write code like:

    quantity<float,length> len1( 1.0f );

    quantity<float,length> len2( 2.0f );
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    len1 = len1 + len2;   // OK

but prevent us from trying to add incompatible dimensions:

    len1 = len2 + quantity<float,mass>( 3.7f ); // error

3.1.4 Implementing Multiplication

Multiplication is a bit more complicated than addition and subtraction. So far, the dimensions of the arguments and results have all been 

identical, but when multiplying, the result will usually have different dimensions from either of the arguments. For multiplication, the relation:

implies that the exponents of the result dimensions should be the sum of corresponding exponents from the argument dimensions. Division 

is similar, except that the sum is replaced by a difference.

To combine corresponding elements from two sequences, we'll use MPL's transform algorithm. TRansform is a metafunction that iterates 

through two input sequences in parallel, passing an element from each sequence to an arbitrary binary metafunction, and placing the result 

in an output sequence.

    template <class Sequence1, class Sequence2, class BinaryOperation>

    struct transform;  // returns a Sequence

The signature above should look familiar if you're acquainted with the STL TRansform algorithm that accepts two runtime sequences as 

inputs:

    template <

        class InputIterator1, class InputIterator2

      , class OutputIterator, class BinaryOperation

    >

    void transform(

        InputIterator1 start1, InputIterator2 finish1

      , InputIterator2 start2

      , OutputIterator result, BinaryOperation func);

Now we just need to pass a BinaryOperation that adds or subtracts in order to multiply or divide dimensions with mpl::transform. If you look 

through the MPL reference manual, you'll come across plus and minus metafunctions that do just what you'd expect:

    #include <boost/static_assert.hpp>

    #include <boost/mpl/plus.hpp>

    #include <boost/mpl/int.hpp>

    namespace mpl = boost::mpl;

    BOOST_STATIC_ASSERT((

        mpl::plus<

            mpl::int_<2>
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          , mpl::int_<3>

        >::type::value == 5

    ));

BOOST_STATIC_ASSERT

is a macro that causes a compilation error if its argument is false. The double parentheses are required because the C++ 

preprocessor can't parse templates: it would otherwise be fooled by the comma into treating the condition as two 

separate macro arguments. Unlike its runtime analogue assert(...), BOOST_STATIC_ASSERT can also be used at class 

scope, allowing us to put assertions in our metafunctions. See Chapter 8 for an in-depth discussion.

At this point it might seem as though we have a solution, but we're not quite there yet. A naive attempt to apply the transform algorithm in 

the implementation of operator* yields a compiler error:

    #include <boost/mpl/transform.hpp>

    template <class T, class D1, class D2>

    quantity<

        T

      , typename mpl::transform<D1,D2,mpl::plus>::type

    >

    operator*(quantity<T,D1> x, quantity<T,D2> y) { ... }

It fails because the protocol says that metafunction arguments must be types, and plus is not a type, but a class template. Somehow we 

need to make metafunctions like plus fit the metadata mold.

One natural way to introduce polymorphism between metafunctions and metadata is to employ the wrapper idiom that gave us 

polymorphism between types and integral constants. Instead of a nested integral constant, we can use a class template nested within a 

metafunction class:

    struct plus_f

    {

        template <class T1, class T2>

        struct apply

        {

           typedef typename mpl::plus<T1,T2>::type type;

        };

    };

Definition
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A metafunction class is a class with a publicly accessible nested metafunction called apply.

Whereas a metafunction is a template but not a type, a metafunction class wraps that template within an ordinary non-templated class, 

which is a type. Since metafunctions operate on and return types, a metafunction class can be passed as an argument to, or returned 

from, another metafunction.

Finally, we have a BinaryOperation type that we can pass to transform without causing a compilation error:

    template <class T, class D1, class D2>

    quantity<

        T

      , typename mpl::transform<D1,D2,plus_f>::type // new dimensions

    >

    operator*(quantity<T,D1> x, quantity<T,D2> y)

    {

        typedef typename mpl::transform<D1,D2,plus_f>::type dim;

        return quantity<T,dim>( x.value() * y.value() );

    }

Now, if we want to compute the force exerted by gravity on a five kilogram laptop computer, that's just the acceleration due to gravity (9.8 

m/sec
2
) times the mass of the laptop:

    quantity<float,mass> m(5.0f);

    quantity<float,acceleration> a(9.8f);

    std::cout << "force = " << (m * a).value();

Our operator* multiplies the runtime values (resulting in 6.0f), and our metaprogram code uses TRansform to sum the meta-sequences of 

fundamental dimension exponents, so that the result type contains a representation of a new list of exponents, something like:

    vector_c<int,1,1,-2,0,0,0,0>

However, if we try to write:

    quantity<float,force> f = m * a;

we'll run into a little problem. Although the result of m * a does indeed represent a force with exponents of mass, length, and time 1, 1, and 

-2 respectively, the type returned by TRansform isn't a specialization of vector_c. Instead, transform works generically on the elements of its 

inputs and builds a new sequence with the appropriate elements: a type with many of the same sequence properties as 

vector_c<int,1,1,-2,0,0,0,0>, but with a different C++ type altogether. If you want to see the type's full name, you can try to compile the 

example yourself and look at the error message, but the exact details aren't important. The point is that force names a different type, so the 

assignment above will fail.

In order to resolve the problem, we can add an implicit conversion from the multiplication's result type to quantity<float,force>. Since we 

can't predict the exact types of the dimensions involved in any computation, this conversion will have to be templated, something like:

    template <class T, class Dimensions>

    struct quantity
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    {

        // converting constructor

        template <class OtherDimensions>

        quantity(quantity<T,OtherDimensions> const& rhs)

          : m_value(rhs.value())

        {

        }

        ...

Unfortunately, such a general conversion undermines our whole purpose, allowing nonsense such as:

    // Should yield a force, not a mass!

    quantity<float,mass> bogus = m * a;

We can correct that problem using another MPL algorithm, equal, which tests that two sequences have the same elements:

    template <class OtherDimensions>

    quantity(quantity<T,OtherDimensions> const& rhs)

      : m_value(rhs.value())

    {

      BOOST_STATIC_ASSERT((

         mpl::equal<Dimensions,OtherDimensions>::type::value

      ));

    }

Now, if the dimensions of the two quantities fail to match, the assertion will cause a compilation error.

3.1.5 Implementing Division

Division is similar to multiplication, but instead of adding exponents, we must subtract them. Rather than writing out a near duplicate of 

plus_f, we can use the following trick to make minus_f much simpler:

    struct minus_f

    {

        template <class T1, class T2>

        struct apply

          : mpl::minus<T1,T2> {};

    };

Here minus_f::apply uses inheritance to expose the nested type of its base class, mpl::minus, so we don't have to write:

    typedef typename ...::type type

We don't have to write typename here (in fact, it would be illegal), because the compiler knows that dependent names in apply's initializer 

list must be base classes.
[2]

 This powerful simplification is known as metafunction forwarding; we'll apply it often as the book goes on.
[3]
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[2] In case you're wondering, the same approach could have been applied to plus_f, but since it's a little subtle, we 

introduced the straightforward but verbose formulation first.

[3] Users of EDG-based compilers should consult Appendix C for a caveat about metafunction forwarding. You can 

tell whether you have an EDG compiler by checking the preprocessor symbol __EDG_VERSION__, which is 

defined by all EDG-based compilers.

Syntactic tricks notwithstanding, writing trivial classes to wrap existing metafunctions is going to get boring pretty quickly. Even though the 

definition of minus_f was far less verbose than that of plus_f, it's still an awful lot to type. Fortunately, MPL gives us a much simpler way to 

pass metafunctions around. Instead of building a whole metafunction class, we can invoke transform this way:

    typename mpl::transform<D1,D2, mpl::minus<_1,_2> >::type

Those funny looking arguments (_1 and _2) are known as placeholders, and they signify that when the TRansform's BinaryOperation is 

invoked, its first and second arguments will be passed on to minus in the positions indicated by _1 and _2, respectively. The whole type 

mpl::minus<_1,_2> is known as a placeholder expression.

Note

MPL's placeholders are in the mpl::placeholders namespace and defined in boost/mpl/placeholders.hpp. In this book we 

will usually assume that you have written:

    #include<boost/mpl/placeholders.hpp>

    using namespace mpl::placeholders;

so that they can be accessed without qualification.

Here's our division operator written using placeholder expressions:

    template <class T, class D1, class D2>

    quantity<

        T

      , typename mpl::transform<D1,D2,mpl::minus<_1,_2> >::type

    >

    operator/(quantity<T,D1> x, quantity<T,D2> y)

    {

       typedef typename

         mpl::transform<D1,D2,mpl::minus<_1,_2> >::type dim;

       return quantity<T,dim>( x.value() / y.value() );

    }

This code is considerably simpler. We can simplify it even further by factoring the code that calculates the new dimensions into its own 
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metafunction:

    template <class D1, class D2>

    struct divide_dimensions
      : mpl::transform<D1,D2,mpl::minus<_1,_2> > // forwarding again

    {};

    template <class T, class D1, class D2>

    quantity<T, typename divide_dimensions<D1,D2>::type>

    operator/(quantity<T,D1> x, quantity<T,D2> y)

    {

       return quantity<T, typename divide_dimensions<D1,D2>::type>(

          x.value() / y.value());

    }

Now we can verify our "force-on-a-laptop" computation by reversing it, as follows:

    quantity<float,mass> m2 = f/a;

    float rounding_error = std::abs((m2 - m).value());

If we got everything right, rounding_error should be very close to zero. These are boring calculations, but they're just the sort of thing that 

could ruin a whole program (or worse) if you got them wrong. If we had written a/f instead of f/a, there would have been a compilation error, 

preventing a mistake from propagating throughout our program.
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3.2. Higher-Order Metafunctions

In the previous section we used two different forms—metafunction classes and placeholder expressions—to pass and return

metafunctions just like any other metadata. Bundling metafunctions into "first class metadata" allows TRansform to perform an infinite 

variety of different operations: in our case, multiplication and division of dimensions. Though the idea of using functions to manipulate other 

functions may seem simple, its great power and flexibility [Hudak89] has earned it a fancy title: higher-order functional programming. A 

function that operates on another function is known as a higher-order function. It follows that TRansform is a higher-order metafunction: a 

metafunction that operates on another metafunction.

Now that we've seen the power of higher-order metafunctions at work, it would be good to be able to create new ones. In order to explore 

the basic mechanisms, let's try a simple example. Our task is to write a metafunction called twice, which—given a unary metafunction f and 

arbitrary metadata x—computes:

This might seem like a trivial example, and in fact it is. You won't find much use for twice in real code. We hope you'll bear with us anyway: 

Because it doesn't do much more than accept and invoke a metafunction, twice captures all the essential elements of "higher-orderness" 

without any distracting details.

If f is a metafunction class, the definition of twice is straightforward:

    template <class F, class X>

    struct twice

    {

       typedef typename F::template apply<X>::type once;    // f(x)

       typedef typename F::template apply<once>::type type; // f(f(x))

    };

Or, applying metafunction forwarding:

    template <class F, class X>

    struct twice

      : F::template apply<

           typename F::template apply<X>::type

        >

    {};
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C++ Language Note

The C++ standard requires the template keyword when we use a dependent name that refers to a member template. 

F::apply may or may not name a template, depending on the particular F that is passed. See Appendix B for more 

information about template.

Given the need to sprinkle our code with the template keyword, it would be nice to reduce the syntactic burden of invoking metafunction 

classes. As usual, the solution is to factor the pattern into a metafunction:

    template <class UnaryMetaFunctionClass, class Arg>

    struct apply1

      : UnaryMetaFunctionClass::template apply<Arg>

    {};

Now twice is just:

    template <class F, class X>

    struct twice

      : apply1<F, typename apply1<F,X>::type>

    {};

To see twice at work, we can apply it to a little metafunction class built around the add_pointer metafunction:

    struct add_pointer_f

    {

        template <class T>

        struct apply : boost::add_pointer<T> {};

    };

Now we can use twice with add_pointer_f to build pointers-to-pointers:

    BOOST_STATIC_ASSERT((

        boost::is_same<

             twice<add_pointer_f, int>::type

           , int**

        >::value

    ));
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3.3. Handling Placeholders

Our implementation of twice already works with metafunction classes. Ideally, we would like it to work with placeholder expressions, too, 

much the same as mpl::transform allows us to pass either form. For example, we would like to be able to write:

    template <class X>

    struct two_pointers

        : twice<boost::add_pointer<_1>, X>

    {};

But when we look at the implementation of boost::add_pointer, it becomes clear that the current definition of twice can't work that way.

    template <class T>

    struct add_pointer

    {

        typedef T* type;

    };

To be invokable by twice, boost::add_pointer<_1> would have to be a metafunction class, along the lines of add_pointer_f. Instead, it's just a 

nullary metafunction returning the almost senseless type _1*. Any attempt to use two_pointers will fail when apply1 reaches for a nested 

::apply metafunction in boost::add_pointer<_1> and finds that it doesn't exist.

We've determined that we don't get the behavior we want automatically, so what next? Since mpl::transform can do this sort of thing, there

ought to be a way for us to do it too—and so there is.

3.3.1 The lambda Metafunction

We can generate a metafunction class from boost::add_pointer<_1>, using MPL's lambda metafunction:

    template <class X>

    struct two_pointers

      : twice<typename mpl::lambda<boost::add_pointer<_1> >::type, X>

    {};

    BOOST_STATIC_ASSERT((

        boost::is_same<

            typename two_pointers<int>::type

          , int**

        >::value

    ));
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We'll refer to metafunction classes like add_pointer_f and placeholder expressions like boost::add_pointer<_1> as lambda expressions. 

The term, meaning "unnamed function object," was introduced in the 1930s by the logician Alonzo Church as part of a fundamental theory 

of computation he called the lambda-calculus.
[4]

 MPL uses the somewhat obscure word lambda because of its well-established precedent 

in functional programming languages.

[4] See http://en.wikipedia.org/wiki/Lambda_calculus for an in-depth treatment, including a reference to Church's 

paper proving that the equivalence of lambda expressions is in general not decidable.

Although its primary purpose is to turn placeholder expressions into metafunction classes, mpl::lambda can accept any lambda expression, 

even if it's already a metafunction class. In that case, lambda returns its argument unchanged. MPL algorithms like transform call lambda

internally, before invoking the resulting metafunction class, so that they work equally well with either kind of lambda expression. We can 

apply the same strategy to twice:

    template <class F, class X>

    struct twice

       : apply1<

             typename mpl::lambda<F>::type

           , typename apply1<

                 typename mpl::lambda<F>::type

               , X

             >::type

         >

    {};

Now we can use twice with metafunction classes and placeholder expressions:

    int* x;

    twice<add_pointer_f, int>::type          p = &x;

    twice<boost::add_pointer<_1>, int>::type q = &x;

3.3.2 The apply Metafunction

Invoking the result of lambda is such a common pattern that MPL provides an apply metafunction to do just that. Using mpl::apply, our 

flexible version of twice becomes:

    #include <boost/mpl/apply.hpp>

    template <class F, class X>

    struct twice

       : mpl::apply<F, typename mpl::apply<F,X>::type>

    {};

You can think of mpl::apply as being just like the apply1 template that we wrote, with two additional features:

While apply1 operates only on metafunction classes, the first argument to mpl::apply can be any lambda expression (including 1.
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those built with placeholders).

While apply1 accepts only one additional argument to which the metafunction class will be applied, mpl::apply can invoke its first 

argument on any number from zero to five additional arguments.
[5]

 For example:

[5] See the Configuration Macros section of the MPL reference manual for a description of how to change 

the maximum number of arguments handled by mpl::apply.

2.

    // binary lambda expression applied to 2 additional arguments

    mpl::apply<

        mpl::plus<_1,_2>

      , mpl::int_<6>

      , mpl::int_<7>
    >::type::value // == 13

Guideline

When writing a metafunction that invokes one of its arguments, use mpl::apply so that it works with lambda expressions.
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3.4. More Lambda Capabilities

Lambda expressions provide much more than just the ability to pass a metafunction as an argument. The two capabilities described next 

combine to make lambda expressions an invaluable part of almost every metaprogramming task.

3.4.1 Partial Metafunction Application

Consider the lambda expression mpl::plus<_1,_1>. A single argument is directed to both of plus's parameters, thereby adding a number to 

itself. Thus, a binary metafunction, plus, is used to build a unary lambda expression. In other words, we've created a whole new 

computation! We're not done yet, though: By supplying a non-placeholder as one of the arguments, we can build a unary lambda 

expression that adds a fixed value, say 42, to its argument:

    mpl::plus<_1, mpl::int_<42> >

The process of binding argument values to a subset of a function's parameters is known in the world of functional programming as partial 

function application.

3.4.2 Metafunction Composition

Lambda expressions can also be used to assemble more interesting computations from simple metafunctions. For example, the following 

expression, which multiplies the sum of two numbers by their difference, is a composition of the three metafunctions multiplies, plus, and 

minus:

    mpl::multiplies<mpl::plus<_1,_2>, mpl::minus<_1,_2> >

When evaluating a lambda expression, MPL checks to see if any of its arguments are themselves lambda expressions, and evaluates 

each one that it finds. The results of these inner evaluations are substituted into the outer expression before it is evaluated.
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3.5. Lambda Details

Now that you have an idea of the semantics of MPL's lambda facility, let's formalize our understanding and look at things a little more 

deeply.

3.5.1 Placeholders

The definition of "placeholder" may surprise you:

Definition

A placeholder is a metafunction class of the form mpl::arg<X>.

3.5.1.1 Implementation

The convenient names _1, _2,... _5 are actually typedefs for specializations of mpl::arg that simply select the Nth argument for any N.
[6]

The implementation of placeholders looks something like this:

[6] MPL provides five placeholders by default. See the Configuration Macros section of the MPL reference manual 

for a description of how to change the number of placeholders provided.

    namespace boost { namespace mpl { namespace placeholders {

    template <int N> struct arg; // forward declarations

    struct void_;

    template <>

    struct arg<1>

    {

        template <

          class A1, class A2 = void_, ... class Am = void_>
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        struct apply

        {

            typedef A1 type; // return the first argument

        };

    };

    typedef arg<1> _1;

    template <>

    struct arg<2>

    {

        template <

          class A1, class A2, class A3 = void_, ...class Am = void_

        >

        struct apply

        {

            typedef A2 type; // return the second argument

        };

    };

    typedef arg<2> _2;

    more specializations and typedefs...

    }}}

Remember that invoking a metafunction class is the same as invoking its nested apply metafunction. When a placeholder in a lambda 

expression is evaluated, it is invoked on the expression's actual arguments, returning just one of them. The results are then substituted 

back into the lambda expression and the evaluation process continues.

3.5.1.2 The Unnamed Placeholder

There's one special placeholder, known as the unnamed placeholder, that we haven't yet defined:

    namespace boost { namespace mpl { namespace placeholders {

    typedef arg<-1> _; // the unnamed placeholder

    }}}

The details of its implementation aren't important; all you really need to know about the unnamed placeholder is that it gets special 

treatment. When a lambda expression is being transformed into a metafunction class by mpl::lambda,

the nth appearance of the unnamed placeholder in a given template specialization is replaced with _n.

So, for example, every row of Table 3.1 contains two equivalent lambda expressions.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Table 3.1. Unnamed Placeholder Semantics

mpl::plus<_,_> mpl::plus<_1,_2>

boost::is_same<

    _

  , boost::add_pointer<_>

>

boost::is_same<

    _1

  , boost::add_pointer<_1>

>

mpl::multiplies<

   mpl::plus<_,_>

 , mpl::minus<_,_>

>

mpl::multiplies<

   mpl::plus<_1,_2>

 , mpl::minus<_1,_2>

>

Especially when used in simple lambda expressions, the unnamed placeholder often eliminates just enough syntactic "noise" to 

significantly improve readability.

3.5.2 Placeholder Expression Definition

Now that you know just what placeholder means, we can define placeholder expression:

Definition

A placeholder expression is either:

a placeholder

or

a template specialization with at least one argument that is a placeholder expression.

In other words, a placeholder expression always involves a placeholder.
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3.5.3 Lambda and Non-Metafunction Templates

There is just one detail of placeholder expressions that we haven't discussed yet. MPL uses a special rule to make it easier to integrate 

ordinary templates into metaprograms: After all of the placeholders have been replaced with actual arguments, if the resulting template 

specialization X doesn't have a nested ::type, the result of lambda is just X itself.

For example, mpl::apply<std::vector<_>, T> is always just std::vector<T>. If it weren't for this behavior, we would have to build trivial 

metafunctions to create ordinary template specializations in lambda expressions:

    // trivial std::vector generator

    template<class U>

    struct make_vector { typedef std::vector<U> type; };

    typedef mpl::apply<make_vector<_>, T>::type vector_of_t;

Instead, we can simply write:

    typedef mpl::apply<std::vector<_>, T>::type vector_of_t;

3.5.4 The Importance of Being Lazy

Recall the definition of always_int from the previous chapter:

    struct always_int

    {

        typedef int type;

    };

Nullary metafunctions might not seem very important at first, since something like add_pointer<int> could be replaced by int* in any lambda 

expression where it appears. Not all nullary metafunctions are that simple, though:

    struct add_pointer_f

    {

        template <class T>

        struct apply : boost::add_pointer<T> {};

    };

    typedef mpl::vector<int, char*, double&> seq;

    typedef mpl::transform<seq, boost::add_pointer<_> > calc_ptr_seq;

Note that calc_ptr_seq is a nullary metafunction, since it has TRansform's nested ::type. A C++ template is not instantiated until we actually 

"look inside it," though. Just naming calc_ptr_seq does not cause it to be evaluated, since we haven't accessed its ::type yet.

Metafunctions can be invoked lazily, rather than immediately upon supplying all of their arguments. We can use lazy evaluation to improve 

compilation time when a metafunction result is only going to be used conditionally. We can sometimes also avoid contorting program 

structure by naming an invalid computation without actually performing it. That's what we've done with calc_ptr_seq above, since you can't 

legally form double&*. Laziness and all of its virtues will be a recurring theme throughout this book.
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3.6. Details

By now you should have a fairly complete view of the fundamental concepts and language of both template metaprogramming in general 

and of the Boost Metaprogramming Library. This section reviews the highlights.

Metafunction forwarding

The technique of using public derivation to supply the nested type of a metafunction by accessing the one provided by its base class.

Metafunction class

The most basic way to formulate a compile-time function so that it can be treated as polymorphic metadata; that is, as a type. A 

metafunction class is a class with a nested metafunction called apply.

MPL

Most of this book's examples will use the Boost Metaprogramming Library. Like the Boost type traits headers, MPL headers follow a simple 

convention:

    #include <boost/mpl/component-name.hpp>

If the component's name ends in an underscore, however, the corresponding MPL header name does not include the trailing underscore. 

For example, mpl::bool_ can be found in <boost/mpl/bool.hpp>. Where the library deviates from this convention, we'll be sure to point it out 

to you.

Higher-order function

A function that operates on or returns a function. Making metafunctions polymorphic with other metadata is a key ingredient in higher-order 

metaprogramming.

Lambda expression
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Simply put, a lambda expression is callable metadata. Without some form of callable metadata, higher-order metafunctions would be 

impossible. Lambda expressions have two basic forms: metafunction classes and placeholder expressions.

Placeholder expression

A kind of lambda expression that, through the use of placeholders, enables in-place partial metafunction application and metafunction 

composition. As you will see throughout this book, these features give us the truly amazing ability to build up almost any kind of complex 

type computation from more primitive metafunctions, right at its point of use:

    // find the position of a type x in some_sequence such that:

    //         x is convertible to 'int'

    //      && x is not 'char'

    //      && x is not a floating type

    typedef mpl::find_if<

          some_sequence

        , mpl::and_<

              boost::is_convertible<_1,int>

            , mpl::not_<boost::is_same<_1,char> >

            , mpl::not_<boost::is_float<_1> >

          >

        >::type iter;

Placeholder expressions make good on the promise of algorithm reuse without forcing us to write new metafunction classes. The 

corresponding capability is often sorely missed in the runtime world of the STL, since it is often much easier to write a loop by hand than it 

is to use standard algorithms, despite their correctness and efficiency advantages.

The lambda metafunction

A metafunction that transforms a lambda expression into a corresponding metafunction class. For detailed information on lambda and the 

lambda evaluation process, please see the MPL reference manual.

The apply metafunction

A metafunction that invokes its first argument, which must be a lambda expression, on its remaining arguments. In general, to invoke a 

lambda expression, you should always pass it to mpl::apply along with the arguments you want to apply it to in lieu of using lambda and 

invoking the result "manually."

Lazy evaluation
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A strategy of delaying evaluation until a result is required, thereby avoiding any unnecessary computation and any associated unnecessary 

errors. Metafunctions are only invoked when we access their nested ::types, so we can supply all of their arguments without performing 

any computation and delay evaluation to the last possible moment.
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3.7. Exercises

3-0. Use BOOST_STATIC_ASSERT to add error checking to the binary template presented in section 1.4.1, so that 

binary<N>::value causes a compilation error if N contains digits other than 0 or 1.

3-1. Turn vector_c<int,1,2,3> into a type sequence with elements (2,3,4) using TRansform.

3-2. Turn vector_c<int,1,2,3> into a type sequence with elements (1,4,9) using TRansform.

3-3. Turn T into T**** by using twice twice.

3-4. Turn T into T**** using twice on itself.

3-5. There's still a problem with the dimensional analysis code in section 3.1. Hint: What happens when you do:

       f = f + m * a;

Repair this example using techniques shown in this chapter.

3-6. Build a lambda expression that has functionality equivalent to twice. Hint: mpl::apply is a metafunction!

3-7*. What do you think would be the semantics of the following constructs:

    typedef mpl::lambda<mpl::lambda<_1> >::type t1;

    typedef mpl::apply<_1,mpl::plus<_1,_2> >::type t2;

    typedef mpl::apply<_1,std::vector<int> >::type t3;

    typedef mpl::apply<_1,std::vector<_1> >::type t4;

    typedef mpl::apply<mpl::lambda<_1>,std::vector<int> >::type t5;

    typedef mpl::apply<mpl::lambda<_1>,std::vector<_1> >::type t6;

    typedef mpl::apply<mpl::lambda<_1>,mpl::plus<_1,_2> >::type t7;

    typedef mpl::apply<_1,mpl::lambda< mpl::plus<_1,_2> > >::type t8;

Show the steps used to arrive at your answers and write tests verifying your assumptions. Did the library 

behavior match your reasoning? If not, analyze the failed tests to discover the actual expression semantics. 

Explain why your assumptions were different, what behavior you find more coherent, and why.

3-8*. Our dimensional analysis framework dealt with dimensions, but it entirely ignored the issue of units. A length 

can be represented in inches, feet, or meters. A force can be represented in newtons or in kg m/sec
2
. Add the 

ability to specify units and test your code. Try to make your interface as syntactically friendly as possible for the 
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user.
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Chapter 4. Integral Type Wrappers and Operations

As we hinted earlier, the MPL supplies a group of wrapper templates that, like int_, are used to make integer values into polymorphic 

metadata. There's actually more to these wrappers than meets the eye, and in this chapter we'll uncover the details of their structure. We'll 

also explore some of the metafunctions that operate on them, and discuss how best to write metafunctions returning integral constants.
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4.1. Boolean Wrappers and Operations

bool is not just the simplest integral type, but also one of the most useful. Most of the type traits are bool-valued, and as mentioned earlier, 

play an important role in many metaprograms. The MPL type wrapper for bool values is defined this way:

   template< bool x > struct bool_

   {

       static bool const value = x;        // 1

       typedef bool_<x> type;              // 2

       typedef bool value_type;            // 3

       operator bool() const { return x; } // 4

   };

Let's walk through the commented lines above one at a time:

By now this line should come as no surprise to you. As we've said earlier, every integral constant wrapper contains a ::value.1.

Every integral constant wrapper is a nullary metafunction that returns itself. The reasons for this design choice will become 

clear in short order.

2.

The wrapper's ::value_type indicates the (cv-unqualified) type of its ::value.3.

Each bool_<x> specialization is quite naturally convertible to a bool of value x.4.

The library also supplies two convenient typedefs:

   typedef bool_<false> false_;

   typedef bool_<true> true_;

4.1.1 Type Selection

So far, we've only made decisions at compile time by embedding them in ad hoc class template specializations: the terminating conditions 

of recursive algorithms (like the binary template we wrote in Chapter 1) say "if the argument is zero, calculate the result this way, otherwise, 

do it the other (default) way." We also specialized iter_swap_impl to select one of two implementations inside iter_swap:

   iter_swap_impl<use_swap>::do_it(*i1,*i2);

Instead of hand-crafting a template specialized for each choice we make, we can take advantage of an MPL metafunction whose purpose 

is to make choices: mpl::if_<C,T,F>::type is T if C::value is TRue, and F otherwise. Returning to our iter_swap example, we can now use 
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classes with mnemonic names in lieu of an iter_swap_impl template:

   #include <boost/mpl/if.hpp>

   struct fast_swap

   {

       template <class ForwardIterator1, class ForwardIterator2>

       static void do_it(ForwardIterator1 i1, ForwardIterator2 i2)

       {

           std::swap(*i1, *i2);

       }

   };

   struct reliable_swap

   {

       template <class ForwardIterator1, class ForwardIterator2>

       static void do_it(ForwardIterator1 i1, ForwardIterator2 i2)

       {

           typename

             std::iterator_traits<ForwardIterator1>::value_type

           tmp = *i1;

           *i1 = *i2;

           *i2 = tmp;

       }

   };

The line of iter_swap that invoked iter_swap_impl's do_it member can be rewritten as:

   mpl::if_<

       mpl::bool_<use_swap>

     , fast_swap

     , reliable_swap

   >::type::do_it(i1,i2);

That may not seem like much of an improvement: complexity has just been moved from the definition of iter_swap_impl into the body of 

iter_swap. It does clarify the code, though, by keeping the logic for choosing an implementation of iter_swap inside its definition.

For another example, let's look at how we might optimize the passing of function parameters in generic code. In general, an argument 

type's copy-constructor might be expensive, so a generic function ought to accept parameters by reference. That said, it's usually wasteful 

to pass anything so trivial as a scalar type by reference: on some compilers, scalars are passed by value in registers, but when passed by 

reference they are forced onto the stack. What's called for is a metafunction, param_type<T>, that returns T when it is a scalar, and T 

const& otherwise.

We might use it as follows:

   template <class T>

   class holder

   {

    public:

       holder(typename param_type<T>::type x);

       ...

    private:

       T x;

   };

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



The parameter to the constructor of holder<int> is of type int, while holder<std:: vector<int> >'s constructor takes a std::vector<int> const&. 

To implement param_type, we might use mpl::if_ as follows:

   #include <boost/mpl/if.hpp>

   #include <boost/type_traits/is_scalar.hpp>

   template <class T>

   struct param_type

     : mpl::if_<

           typename boost::is_scalar<T>::type

         , T

         , T const&

       >

   {};

Unfortunately, that implementation would prevent us from putting reference types in a holder: since it's illegal to form a reference to a 

reference, instantiating holder<int&> is an error. The Boost. Type Traits give us a workaround, since we can instantiate add_reference<T>

on a reference type—in that case it just returns its argument:

   #include <boost/mpl/if.hpp>

   #include <boost/type_traits/add_reference.hpp>

   template <class T>

   struct param_type

     : mpl::if_<

           typename boost::is_scalar<T>::type

         , T

         , typename boost::add_reference<T const>::type

       >

   {};

4.1.2 Lazy Type Selection

This approach isn't entirely satisfying, because it causes add_reference<T const> to be instantiated even if T is a scalar, wasting 

compilation time. Delaying a computation until it's absolutely needed is called lazy evaluation. Some functional programming languages, 

such as Haskell, do every computation lazily, with no special prompting. In C++, we have to do lazy evaluation explicitly. One way to delay 

instantiation of add_reference until it's needed is to have mpl::if_ select one of two nullary metafunctions, and then invoke the one selected:

   #include <boost/mpl/if.hpp>

   #include <boost/mpl/identity.hpp>

   #include <boost/type_traits/add_reference.hpp>

   template <class T>

   struct param_type

     : mpl::if_<           // forwarding to selected transformation

           typename boost::is_scalar<T>::type

         , mpl::identity<T>

         , boost::add_reference<T const>

       >::type

   {};
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Note our use of mpl::identity, a metafunction that simply returns its argument. Now param_type<T> returns the result of invoking either 

mpl::identity<T> or boost:: add_reference<T const>, depending on whether T is a scalar.

This idiom is so common in metaprograms that MPL supplies a metafunction called eval_if, defined this way:

   template <class C, class TrueMetafunc, class FalseMetafunc>

   struct eval_if

     : mpl::if_<C,TrueMetafunc,FalseMetafunc>::type

   {};

Whereas if_ returns one of two arguments based on a condition, eval_if invokes one of two nullary metafunction arguments based on a 

condition and returns the result. We can now simplify our definition of param_type slightly by forwarding directly to eval_if:

   #include <boost/mpl/eval_if.hpp>

   #include <boost/mpl/identity.hpp>

   #include <boost/type_traits/add_reference.hpp>

   template <class T>

   struct param_type

     : mpl::eval_if<

           typename boost::is_scalar<T>::type

         , mpl::identity<T>

         , boost::add_reference<T const>

       >     // no ::type here

   {};

By taking advantage of the fact that Boost's integral metafunctions all supply a nested ::value, we can make yet another simplification to 

param_type:

   template <class T>

   struct param_type

     : mpl::eval_if<

           boost::is_scalar<T>
         , mpl::identity<T>

         , boost::add_reference<T const>

       >

   {};

Specializations of Boost metafunctions that, like is_scalar, return integral constant wrappers, happen to be publicly derived from those very 

same wrappers. As a result, the metafunction specializations are not just valid integral constant wrappers in their own right, but they inherit 

all the useful properties outlined above for wrappers such as bool_:

   if (boost::is_scalar<X>()) // invokes inherited operator bool()

   {

       // code here runs iff X is a scalar type

   }

4.1.3 Logical Operators
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Suppose for a moment that we didn't have such a smart add_reference at our disposal. If add_reference were just defined as shown below, 

we wouldn't be able to rely on it to avoid forming references to references:

   template <class T>

   struct add_reference { typedef T& type; };

In that case, we'd want to do something like this with param_type to avoid passing references to add_reference:

   template <class T>

   struct param_type

     : mpl::eval_if<

           mpl::bool_<

             boost::is_scalar<T>::value

             || boost::is_reference<T>::value
           >

         , mpl::identity<T>

         , add_reference<T const>

       >

   {};

Pretty ugly, right? Most of the syntactic cleanliness of our previous version has been lost. If we wanted to build a lambda expression for 

param_type on-the-fly instead of writing a new metafunction, we'd have even worse problems:

   typedef mpl::vector<int, long, std::string> argument_types;

   // build a list of parameter types for the argument types

   typedef mpl::transform<

       argument_types

     , mpl::if_<

           mpl::bool_<

             boost::is_scalar<_1>::value

             || boost::is_reference<_1>::value

           >

         , mpl::identity<_1>

         , add_reference<boost::add_const<_1> >

       >

   >::type param_types;

This one isn't just ugly, it actually fails to work properly. Because touching a template's nested ::value forces instantiation, the logical 

expression boost::is_scalar<_1>::value || is_reference<_1>::value is evaluated immediately. Since _1 is neither a scalar nor a reference, 

the result is false, and our lambda expression is equivalent to add_reference<boost:: add_const<_1> >. We can solve both of these 

problems by taking advantage of MPL's logical operator metafunctions. Using mpl::or_, we can recapture the syntactic cleanliness of our 

original param_type:

   #include <boost/mpl/or.hpp>

   template <class T>

   struct param_type

     : mpl::eval_if<

           mpl::or_<boost::is_scalar<T>, boost::is_reference<T> >
         , mpl::identity<T>

         , add_reference<T const>

       >
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   {};

Because mpl::or_<x,y> is derived from its result ::type (a specialization of bool_<n>), and is thus itself a valid MPL Boolean constant 

wrapper, we have been able to completely eliminate the explicit use of bool_ and access to a nested ::type. Despite the fact that we're not 

using operator notation, the code is actually more readable than before.

Similar benefits accrue when we apply the same change to our lambda expression, and it works properly, to boot:

   typedef mpl::transform<

       argument_types

     , mpl::if_<

           mpl::or_<boost::is_scalar<_1>, boost::is_reference<_1> >
         , mpl::identity<_1>

         , add_reference<boost::add_const<_1> >

       >

   >::type param_types;

What if we wanted to change param_type to pass all stateless class types, in addition to scalars, by value? We could simply nest another 

invocation of or_:

   # include <boost/type_traits/is_stateless.hpp>

   template <class T>

   struct param_type

     : mpl::eval_if<

           mpl::or_<

               boost::is_stateless<T>

             , mpl::or_<
                   boost::is_scalar<T>

                 , boost::is_reference<T>

               >

           >

         , mpl::identity<T>

         , add_reference<T const>

       >

   {};

While that works, we can do better. mpl::or_ accepts anywhere from two to five arguments, so we can just write:

   # include <boost/type_traits/is_stateless.hpp>

   template <class T>

   struct param_type

     : mpl::eval_if<

         mpl::or_<

               boost::is_scalar<T>

             , boost::is_stateless<T>

             , boost::is_reference<T>
           >

         , mpl::identity<T>

         , add_reference<T const>

       >

   {};

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



In fact, most of the MPL metafunctions that operate on integral arguments (e.g., mpl:: plus<...>) have the same property.

The library contains a similar and_ metafunction, and a unary not_ metafunction for inverting Boolean conditions.
[1]

 It's worth noting that, 

just like the built-in operators && and ||, mpl::and_ and mpl::or_ exhibit "short circuit" behavior. For example, in the example above, if T is a 

scalar, boost::is_stateless<T> and is_reference<T> will never be instantiated.

[1] These names all end in underscores because and, or, and not are C++ keywords that function as aliases for the 

better known operator tokens &&, ||, and !.
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4.2. Integer Wrappers and Operations

We've already used MPL's int_ wrapper in our dimensional analysis example (see section 3.1). Now we can examine it in more detail, 

starting with its definition:

   template< int N >

   struct int_

   {

       static const int value = N;

       typedef int_<N> type;

       typedef int value_type;

       typedef mpl::int_<N+1> next;

       typedef mpl::int_<N-1> prior;

       operator int() const { return N; }

   };

As you can see, int_ is very similar to bool_; in fact, the only major difference is the presence of its ::next and ::prior members. We'll explain 

their purpose later in this chapter. The library supplies similar numeric wrappers for long and std::size_t, known as long_ and size_t

respectively.

To represent values of any other integral type, the library provides a generic wrapper defined this way:

   template<class T, T N>

   struct integral_c

   {

       static const T value = N;

       typedef integral_c<T,N> type;

       typedef T value_type;

       typedef mpl::integral_c<T,N+1> next;

       typedef mpl::integral_c<T,N-1> prior;

       operator T() const { return N; }

   };

Integral sequence wrappers, like the vector_c template we used to implement dimensional analysis in Chapter 3 take an initial type 

parameter T, which is used to form their contained integral_c<T, ...> specializations.

If the existence of both int_<...> and integral_c<int,...> is causing you a raised eyebrow, we can hardly blame you. After all, two otherwise 

equivalent integer wrappers can be different types. If we try to compare two integer wrappers this way:

   boost::is_same<mpl::integral_c<int,3>, mpl::int_<3> >::value
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the result (false) may be a little bit surprising. It's perhaps a little less surprising that the following is also false:

   boost::is_same<mpl::long_<3>, mpl::int_<3> >::value

Whatever your reaction to these two examples may be, however, it should be clear by now that there's more to value equality of integral 

constant wrappers than simple type matching. The MPL metafunction for testing value equality is called equal_to, and is defined simply:

   template<class N1, class N2>

   struct equal_to

     : mpl::bool_<(N1::value == N2::value)>

   {};

It's important not to confuse equal_to with equal, which compares the elements of two sequences. The names of these two metafunctions 

were taken from those of similar components in the STL.

4.2.1 Integral Operators

MPL supplies a whole suite of metafunctions for operating on integral constant wrappers, of which you've already seen a few (e.g., plus

and minus). Before we get into the details, a word about naming conventions: When the metafunction corresponds to a built-in C++ 

operator for which the language has a textual alternative token name, like &&/and, the MPL metafunction is named for the alternative token 

followed by an underscore, thus mpl::and_. Otherwise, the MPL metafunction takes its name from the corresponding STL function object, 

thus mpl::equal_to.

The operators fall into four groups. In the tables below, n = 5 by default. See the Configuration Macros section of the MPL reference 

manual for information about how to change n.

4.2.1.1 Boolean-Valued Operators

The metafunctions in this group all have bool constant results. We've already covered the logical operators, but they're included here for 

completeness (see Table 4.1).

Table 4.1. Logical Operators

Metafunction Specialization ::value and ::type::value

not_<X> !X::value

and_<T1,T2,...Tn> T1::value && ... Tn ::value

or_<T1,T2,...Tn> T1::value || ... Tn ::value
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Table 4.2 lists value comparison operators.

Table 4.2. Value Comparison Operators

Metafunction Specialization ::value and ::type::value

equal_to<X,Y> X::value == Y::value

not_equal_to<X,Y> X::value != Y::value

greater<X,Y> X::value > Y::value

greater_equal<X,Y> X::value >= Y::value

less<X,Y> X::value < Y::value

less_equal<X,Y> X::value <= Y::value

4.2.1.2 Integral-Valued Operators

The operators section all have integral constant results whose type is the same as the type of the expression they evaluate (see Tables 4.3

and 4.4). In other words, since the type of 3+2L is long,

   mpl::plus<mpl::int_<3>, mpl::long_<2> >::type::value_type

is also long.

Table 4.3. Bitwise Operators

Metafunction Specialization ::value and ::type::value

bitand_<X,Y> X::value & Y::value

bitor_<X,Y> X::value | Y::value

bitxor_<X,Y> X::value ^ Y::value
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Table 4.4. Arithmetic Operators

Metafunction Specialization ::value and ::type::value

divides<T1,T2,...Tn> T1::value / ... Tn ::value

minus<T1,T2,...Tn> T1::value - ... Tn ::value

multiplies<T1,T2,...Tn> T1::value * ... Tn ::value

plus<T1,T2,...Tn> T1::value + ... Tn ::value

modulus<X,Y> X::value % Y::value

shift_left<X,Y> X::value << Y::value

shift_right<X,Y> X::value >> Y::value

next<X> X::next

prior<X> X::prior

The next and prior metafunctions are somewhat analogous to the C++ unary operators ++ and --. Since metadata is immutable, though, next

and prior can't modify their arguments. As a matter of fact, mpl::next and mpl::prior are precisely analogous to two runtime functions 

declared in namespace boost that simply return incremented and decremented versions of their arguments:

   namespace boost

   {

     template <class T>

     inline T next(T x) { return ++x; }

     template <class T>

     inline T prior(T x) { return --x; }

   }

You might find it curious that mpl::next<X> and mpl::prior<X> are not simply defined to return wrappers for X::value+1 and X::value-1, 

respectively, even though they function that way when used on integral constant wrappers. The reasons should become clear in the next 

chapter, when we discuss the use of next and prior for sequence iteration.

4.2.2 The _c Integral Shorthand

Occasionally we find ourselves in a situation where the need to explicitly build wrapper types becomes an inconvenience. It happened in 

our dimensional analysis code (Chapter 3), where the use of mpl::vector_c<int, ...> instead of mpl::vector<...> eliminated the need to write 

int_ specializations for each of seven powers of fundamental units.

We actually sidestepped another such circumstance while working on the param_type metafunction earlier in this chapter. Before mpl::or_

came along to save our bacon, we were stuck with this ugly definition:

   template <class T>

   struct param_type

     : mpl::eval_if<

           mpl::bool_<
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             boost::is_scalar<T>::value

             || boost::is_reference<T>::value
           >

         , mpl::identity<T>

         , add_reference<T const>

       >

   {};

With MPL's eval_if_c, also supplied by <boost/mpl/eval_if.hpp>, we might have written:

   template <class T>

   struct param_type

     : mpl::eval_if_c<

         boost::is_scalar<T>::value

         || boost::is_reference<T>::value
       , mpl::identity<T>

         , add_reference<T const>

       >

   {};

By now you've probably begun to notice some commonality in the use of _c: it always adorns templates that take raw integral constants, 

instead of wrappers, as parameters. The _c suffix can be thought of as an abbreviation for "constant" or "of integral constants."
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4.3. Exercises

4-0. Write tests for mpl::or_ and mpl::and_ metafunctions that use their short-circuit behavior.

4-1. Implement binary metafunctions called logical_or and logical_and that model the behavior of mpl::or_ and 

mpl::and_, correspondingly. Use tests from exercise 4-0 to verify your implementation.

4-2. Extend the implementation of logical_or and logical_and metafunctions from exercise 4-1 to accept up to five 

arguments.

4-3. Eliminate the unnecessary instantiations in the following code snippets:

1. template< typename N, typename Predicate >

   struct next_if

     : mpl::if_<

           typename mpl::apply<Predicate,N>::type

         , typename mpl::next<N>::type

         , N

       >

   {};

2. template< typename N1, typename N2 >

   struct formula

     : mpl::if_<

           mpl::not_equal_to<N1,N2>

         , typename mpl::if_<

               mpl::greater<N1,N2>

             , typename mpl::minus<N1,N2>::type

             , N1

           >::type

         , typename mpl::plus<

               N1

               , typename mpl::multiplies<N1,

                                       mpl::int_<2> >::type

        >::type

    >::type

{};

Write the tests to verify that the semantics of the transformed metafunctions remained unchanged.

4-4. Use integral operators and the type traits library facilities to implement the following composite traits:

is_data_member_pointer

is_pointer_to_function
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is_reference_to_function_pointer

is_reference_to_non_const

4-5. Consider the following function template, which is designed to provide a "container-based" (as opposed to 

iterator-based) interface to std::find:

template <class Container, class Value>

typename Container::iterator

container_find(Container& c, Value const& v)

{

    return std::find(c.begin(), c.end(), v);

}

As coded, container_find won't work for const containers; Container will be deduced as const X for some 

container type X, but when we try to convert the Container::const_iterator returned by std::find into a 

Container::iterator, compilation will fail. Fix the problem using a small metaprogram to compute container_find's 

return type.
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Chapter 5. Sequences and Iterators

If the STL can be described as a framework based on runtime algorithms, function objects, and iterators, we could say that the MPL is 

founded on compile-time algorithms, metafunctions, sequences, and iterators.
[1]

[1] Though indispensable in everyday programming, STL containers are not a fundamental part of that library's 

conceptual framework, and they don't interact directly with the other STL abstractions. By contrast, MPL's 

sequences play a direct role in its algorithm interfaces.

We used sequences and algorithms informally in Chapter 3 to implement our dimensional analysis logic. If you're familiar with the STL, you 

might have guessed that under the hood we were also using iterators. The library, however, has so far allowed us to remain happily 

ignorant of their role, by virtue of its sequence-based algorithm interfaces.

In this chapter you will gain a general familiarity with "compile-time STL," and then proceed to formalize sequences and iterators, study 

their interactions with algorithms, look at a number of specific implementations offered by the library, and learn how to implement new 

examples of each one.
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5.1. Concepts

First, we'll define an important term that originated in the world of runtime generic programming. A concept is a description of the 

requirements placed by a generic component on one or more of its arguments. We've already covered a few concepts in this book. For 

example, the apply1 metafunction that we wrote in Chapter 3 required a first argument that was a Metafunction Class.

A type or group of types that satisfies a concept's requirements is said to model the concept or to be a model of the concept. So plus_f, 

also from Chapter 3, is a model of Metafunction Class. A concept is said to refine another concept when its requirements are a superset of 

those of the other concept.

Concept requirements usually come from the following categories.

Valid expressions

C++ expressions that must compile successfully for the objects involved in the expression to be considered models of the concept. For 

example, an Iterator x is expected to support the expressions ++x and *x.

Associated types

Types that participate in one or more of the valid expressions and that can be computed from the type(s) modeling the concept. Typically, 

associated types can be accessed either through typedefs nested within a class definition for the modeling type or through a traits class. 

For example, as described in Chapter 2, an iterator's value type is associated with the iterator through std::iterator_traits.

Invariants

Runtime characteristics of a model's instances that must always be true; that is, all operations on an instance must preserve these 

characteristics. The invariants often take the form of pre-conditions and post-conditions. For instance, after a Forward Iterator is copied, 

the copy and the original must compare equal.

Complexity guarantees
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Maximum limits on how long the execution of one of the valid expressions will take, or how much of various resources its computation will 

use. Incrementing an Iterator, for example, is required to have constant complexity.

In this chapter we'll be introducing several new concepts and refinement relationships with associated types and complexity guarantees.
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5.2. Sequences and Algorithms

Most of the algorithms in the MPL operate on sequences. For example, searching for a type in a vector looks like this:

    typedef mpl::vector<char,short,int,long,float,double> types;

    // locate the position of long in types

    typedef mpl::find<types, long>::type long_pos;

Here, find accepts two parameters—a sequence to search (types) and the type to search for (long)—and returns an iterator indicating the

position of the first element in the sequence that is identical to long. Except for the fact that mpl::find takes a single sequence parameter 

instead of two iterators, this is precisely how you would search for a value in a std::list or std::vector:

    std::vector<int> x(10);

    std::vector<int>::iterator five_pos

         = std::find(x.begin(), x.end(), 5);

If no matching element exists, mpl::find returns the sequence's past-the-end iterator, which is quite naturally accessed with the mpl::end

metafunction:

    // assert that long was found in the sequence

    typedef mpl::end<types>::type finish;

    BOOST_STATIC_ASSERT((!boost::is_same<long_pos, finish>::value));

A similar begin metafunction returns an iterator to the beginning of the sequence.
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5.3. Iterators

As with STL iterators, the most fundamental service provided by MPL iterators is access to the sequence element to which they refer. To 

dereference a compile-time iterator, we can't simply apply the prefix * operator: runtime operator overloading is unavailable at compile 

time. Instead, the MPL provides us with an aptly named deref metafunction that takes an iterator and returns the referenced element.

    typedef mpl::vector<char,short,int,long,float,double> types;

    // locate the position of long in types

    typedef mpl::find<types,long>::type long_pos;

    // dereference the iterator

    typedef mpl::deref<long_pos>::type x;

    // check that we have the expected result

    BOOST_STATIC_ASSERT((boost::is_same<x,long>::value));

An iterator can also provide access to adjacent positions in a sequence, or traversal. In Chapter 4 we described the mpl::next and 

mpl::prior metafunctions, which produce an incremented or decremented copy of their integral argument. These primitives apply equally 

well to iterators:

    typedef mpl::next<long_pos>::type float_pos;

    BOOST_STATIC_ASSERT((

        boost::is_same<

            mpl::deref<float_pos>::type

          , float

        >::value

    ));
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5.4. Iterator Concepts

In this section we'll define the MPL iterator concepts. If you're familiar with STL iterators, you'll probably notice similarities between these 

and the STL categories of the same name. There are also a few differences, which are a direct consequence of the immutable nature of 

C++ metadata. For example, there are no separate categories for input iterators and output iterators in the MPL. We'll point out these 

similarities and differences as we encounter them, along with a few key properties of all iterators, which we'll introduce in bold text.

Just as the fundamental iterator operations of the STL are O(1) at runtime, all the fundamental MPL iterator operations detailed in this 

chapter are O(1) at compile time.
[2]

[2] In this book we measure compile-time complexity of an operation in terms of the number of template 

instantiations required. There are of course other factors that will determine the time it takes to compile any 

program. See Appendix C for more details.

5.4.1 Forward Iterators

Forward Iterator is the simplest MPL iterator category; it has only three operations: forward traversal, element access, and category 

detection. An MPL iterator can either be both incrementable and dereferenceable, or it can be past-the-end of its sequence. These two 

states are mutually exclusive: None of the Forward Iterator operations are allowed on a past-the-end iterator.

Since MPL iterators are immutable, we can't increment them "in place" the way we can with STL iterators. Instead, we pass them to 

mpl::next, which yields the next position in the sequence. The author of an incrementable iterator can either specialize mpl::next to support 

her iterator type, or she can simply leverage its default implementation, which reaches in to access the iterator's ::next member:

    namespace boost { namespace mpl {

       template <class It> struct next

       {

          typedef typename It::next type;

       };

    }}

A dereferenceable iterator supports element access through the mpl::deref metafunction, whose default implementation similarly accesses 

the iterator's nested ::type:

    namespace boost { namespace mpl {

       template <class It> struct deref

       {

          typedef typename It::type type;

       };

    }}
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To check for equivalence of iterators, use the boost::is_same metafunction from the Boost Type Traits library. Two iterators are equivalent 

only if they have the same type. Since is_same works on any type, this applies equally well to past-the-end iterators. An iterator j is said to 

be reachable from an iterator i if they are equivalent, or if there exists some sequence:

    typedef mpl::next<i>::type i1;

    typedef mpl::next<i1>::type i2;

    .

    .

    .

    typedef mpl::next<in-1>::type in;

such that in is equivalent to j. We'll use the "half-open range" notation [i,j) to denote a range of sequence elements starting with 

mpl::deref<i>::type and ending with mpl:: deref<in-1>::type.

Table 5.1 details the requirements for MPL forward iterators, where i is a model of Forward Iterator.

Table 5.1. Forward Iterator Requirements

Expression Result Precondition

mpl::next<i>::type A Forward Iterator. i is incrementable.

mpl::deref<i>::type Any type. i is dereferenceable.

i::category Convertible to mpl::

forward_iterator_tag.
 

5.4.2 Bidirectional Iterators

A Bidirectional Iterator is a Forward Iterator with the additional ability to traverse a sequence in reverse. A Bidirectional Iterator is either 

decrementable or it refers to the beginning of its sequence.

Given a decrementable iterator, the mpl::prior metafunction yields the previous position in the sequence. The author of an decrementable 

iterator can either specialize mpl::prior to support her iterator type, or she can simply leverage its default implementation, which reaches in 

to access the iterator's ::prior member:

    namespace boost { namespace mpl {

       template <class It> struct prior

       {

          typedef typename It::prior type;

       };

    }}

Table 5.2 details the additional requirements for MPL bidirectional iterators, where i is a model of Bidirectional Iterator.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.



Table 5.2. Additional Requirements for Bidirectional Iterators

Expression Result Assertion/Precondition

mpl::

next<i>::type
A Bidirectional Iterator. mpl::prior<

    mpl::next<i>::type

>::type

is equivalent to i.

Precondition:

i is incrementable.

mpl::

prior<i>::type
A Bidirectional Iterator. Precondition:

i is decrementable.

i::category Convertible to mpl:: bidirectional_iterator_tag.  

5.4.3 Random Access Iterators

A Random Access Iterator is a Bidirectional Iterator that also provides movement by an arbitrary number of positions forward or backward, 

and distance measurement between iterators in the same sequence, all in constant time.

Random access traversal is achieved using the mpl::advance metafunction, which, given a random access iterator i and an integral 

constant type n, returns an advanced iterator in the same sequence. Distance measurement is available through the mpl::distance

metafunction, which, given random access iterators i and j into the same sequence, returns the number of positions between i and j. Note 

that these two operations have an intimate relationship:

    mpl::advance<i, mpl::distance<i,j>::type>::type

is identical to j, and both operations have constant complexity.

As with the STL functions of the same names, advance and distance are in fact available for bidirectional and forward iterators as well, 

though only with linear complexity: The default implementations simply go through as many invocations of mpl::next or mpl::prior as 

necessary to get the job done. Consequently, the author of a random access iterator must specialize advance and distance for her iterator 

to work in constant time, or she won't have met the random access iterator requirements.

Table 5.3 details the additional requirements for MPL Random Access Iterators. The names i and j represent iterators into the same 

sequence, N represents an integral constant type, and n is N::value.

Table 5.3. Additional Requirements for Random Access Iterators

Expression Result Assertion/Precondition

mpl::next<i>::type A Random Access Iterator. Precondition: i is incrementable.

mpl::prior<i>::type A Random Access Iterator. Precondition: i is decrementable.
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Expression Result Assertion/Precondition

mpl::advance<

  i, N

>::type

If n>0 , equivalent to n applications of 

mpl::next to i. Otherwise, equivalent to -n

applications of mpl::prior to i.

Constant time.
mpl::advance<

    i

  , mpl::distance<

       i,j

    >::type

>::type

is equivalent to j.

mpl::distance<

  i, j

>::type

An integral constant wrapper. Constant time.

i::category Convertible to mpl::random_

access_iterator_tag.
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5.5. Sequence Concepts

The MPL has a taxonomy of sequence concepts similar to those in the STL. Each level of concept refinement introduces a new set of 

capabilities and interfaces. In this section we'll walk through each of the concepts in turn.

5.5.1 Sequence Traversal Concepts

For each of the three iterator traversal categories—forward, bidirectional, and random access—there is a corresponding sequence

concept. A sequence whose iterators are forward iterators is called a Forward Sequence, and so forth.

If the sequence traversal concepts detailed below seem a bit thin, it's because (apart from extensibility, which we'll get to in a moment), a 

sequence is not much more than a pair of iterators into its elements. Most of what's needed to make a sequence work is provided by its 

iterators.

5.5.1.1 Forward Sequences

Any MPL sequence (for example, mpl::list, which we'll cover later in this chapter) is a Forward Sequence.

In Table 5.4, S represents a Forward Sequence.

Table 5.4. Forward Sequence Requirements

Expression Result Assertion

mpl::begin<S>::type A Forward Iterator.  

mpl::end<S>::type A Forward Iterator. Reachable from

mpl::begin<S>::type.

Because we can access any sequence's begin iterator, we can trivially get its first element. Accordingly, every nonempty MPL sequence 

also supports the expression

    mpl::front<S>::type

which is equivalent to

    mpl::deref<

         mpl::begin<S>::type

    >::type
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5.5.1.2 Bidirectional Sequences

In Table 5.5, S is any Bidirectional Sequence.

Table 5.5. Additional Requirements for Bidirectional Sequences

Expression Result

mpl::begin<S>::type A Bidirectional Iterator.

mpl::end<S>::type A Bidirectional Iterator.

Because we can access any sequence's end iterator, we can trivially get to its last element if its iterators are bidirectional. Accordingly, 

every nonempty Bidirectional Sequence also supports the expression

    mpl::back<S>::type

which is equivalent to

    mpl::deref<

        mpl::prior<

            mpl::end<S>::type

        >::type

    >::type

5.5.1.3 Random Access Sequences

mpl::vector is an example of a Random Access Sequence. In Table 5.6, S is any Random Access Sequence.

Table 5.6. Additional Requirements for Random Access Sequences

Expression Result

mpl::begin<S>::type A Random Access Iterator.

mpl::end<S>::type A Random Access Iterator.
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Because a Random Access Sequence has random access iterators, we can trivially get to any element of the sequence in one step. 

Accordingly, every Random Access Sequence also supports the expression

    mpl::at<S,N>::type

which is equivalent to

    mpl::deref<

        mpl::advance<

           mpl::begin<S>::type

         , N

        >::type

    >::type

5.5.2 Extensibility

An Extensible Sequence is one that supports insert, erase, and clear operations. Naturally, since metadata is immutable, none of these 

operations can modify the original sequence. Instead, they all return a modified copy of the original sequence.

Given that S is an Extensible Sequence, pos is some iterator into S, finish is an iterator reachable from pos, and X is any type, the 

expressions in Table 5.7 return a new sequence that models the same sequence concept that S does:

Table 5.7. Extensible Sequence Requirements

Expression Elements of Result

mpl::insert<S,pos,X>::type [mpl::begin<S>::type, pos),

X,

[pos, mpl::end<S>::type)

mpl::erase<S,pos>::type [mpl::begin<S>::type, pos),

[mpl::next<pos>::type, mpl::end<S>::type)

mpl::erase<

    S, pos, finish

>::type

[mpl::begin<S>::type, pos),

[finish, mpl::end<S>::type)

mpl::clear<S>::type None.

Many of the MPL sequences are extensible, but with different complexity for the different operations. For example, insertion and erasure at 

the head of an mpl::list is O(1) (i.e., takes constant time and compiler resources), while making a list that differs only at the tail is O(N), 

meaning that the cost is proportional to the original list's length. Insertion and erasure at the back of an mpl::vector is O(1), though 

modifications at other positions are only guaranteed to be O(N).

MPL also supplies push_front and pop_front metafunctions, which insert and erase a single element at the head of a sequence 

respectively, and also push_back and pop_back, which do the same at the tail of a sequence. Each of these operations is only available for 

sequences that can support it with O(1) complexity.
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5.5.3 Associative Sequences

An Associative Sequence is a mapping whose set of unique key types is mapped to one or more of its value types. Each of the sequence's 

element types—those accessible through its iterators—is associated with a single (key, value) pair.
[3]

 In addition to supporting 

begin<S>::type and end<S>::type as required for any Forward Sequence, an Associative Sequence supports the following operations.

[3] For some concrete examples, see section 5.8, which covers mpl::map and mpl::set.

In Tables 5.8 and 5.9, k and k2 can be any type and pos1 and pos2 are iterators into S.

Table 5.8. Associative Sequences Requirements

Expression Result Precondition/Assertion

mpl::has_key<

  S, k

>::value

true if k is in S's set of keys; false otherwise.  

mpl::at<

  S, k

>::type

The value type associated with k. Precondition: k is in S's set of keys

mpl::order<

  S, k

>::type

An unsigned integral constant wrapper. If
   mpl::order<S,k>::type::value

   == mpl::order<S,k2>::type::value

then k is identical to k2.

Precondition: k is in S's set of keys.

mpl::key_type<

  S, t

>::type

The key type that S would use for an element 

type t.

If
   mpl::key_type<

     S, mpl::deref<pos1>::type

   >::type

is identical to
   mpl::key_type<

     S, mpl::deref<pos2>::type

   >::type

then pos1 is identical to pos2.

mpl::value_type<

  S, t

>::type

The value type that S would use for an 

element type t.
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Table 5.9. Extensible Associative Sequence

Expression Result Note

mpl::insert<

    S, pos1, t

>::type

mpl::insert<

  S, t

>::type

S' equivalent to S except that

mpl::at<

    S'

  , mpl::key_type<S,t>::type

>::type

is mpl::value_type<S,t>::type.

May incur an erasure penalty if
mpl::has_key<

    S,

    mpl::key_type<

      S, t

    >::type

>::value

is TRue.

mpl::erase<

    S, pos1

>::type

S' equivalent to S except that

mpl::has_key<

    S'

  , mpl::key_type<

        S

      , mpl::deref<pos1>::type

    >::type

>::value

is false.

 

mpl::erase_key<

  S, k

>::type

S' equivalent to S except that mpl::has_key<S' , 

k>::value is false.
 

mpl::clear<

    S

>::type

An empty sequence with the same properties as S.  

Note that there are no guarantees about the values returned by the order metafunction other than that each key will be associated with a 

unique value. In particular, order values are not required to have any relationship to iterator traversal order. Also note that unlike an STL 

associative container, which always has an associated ordering relation (it defaults to std::less<KeyType>), an associative meta-sequence 

has no such ordering relation: The order that elements will be traversed during iteration is entirely up to the sequence implementation.

5.5.4 Extensible Associative Sequences

Like an ordinary Extensible Sequence, an Extensible Associative Sequence supports insert, erase, and clear operations, each of which 

produces a new sequence as a result. Since the ordering of elements in an Associative Sequence is arbitrary, an inserted element won't 

necessarily end up in the position indicated by the iterator passed to the insert metafunction. In this respect, associative meta-sequences 

resemble STL associative containers such as std::map and std::set, but in some ways they are quite different. For example, while an STL 

sequence can use an iterator as a "hint" to improve the performance of insertion from O(log(N)) to O(1), an associative meta-sequence 

ignores the iterator argument to insert altogether: In fact, insertion is always O(1). While it is convenient—even crucial—for authors of

generic sequence algorithms to have a uniform insert metafunction that always takes an iterator argument, it is equally inconvenient to come 

up with an iterator every time you want to insert a new element in a set. Therefore, in addition to mpl::insert<S,pos,t>, an Extensible 

Associative Sequence must also support the equivalent mpl::insert<S,t> form.

Another difference from runtime associative containers is that erasures actually have an effect on the efficiency of iteration: A complete 

traversal of an associative meta-sequence has a worst-case complexity of O(N+E), where N is the number of elements in the sequence 

and E is the number of elements that have been erased. When an element is erased from an Associative Sequence, the library adds a 

special marker element that causes the erased element to be skipped during iteration. Note that applying clear to an Associative 
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Sequence does not come with a similar penalty: The result is a brand new sequence.

The following expressions have constant complexity and return a new sequence that models all the same MPL sequence concepts as S

does.

Because erasure anywhere in an Extensible Associative Sequence is O(1), pop_front and pop_back are both available. Since insertion is 

also O(1), mpl::push_front<S,t> and mpl::push_back<S,t> are also supported, but are both equivalent to mpl::insert<S,t> because the 

iterator argument in mpl::insert<S,pos,t> is ignored.
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5.6. Sequence Equality

It's important, particularly when handling computed results, not to fall into the trap of relying on sequence type identity. For example, you 

should not expect the following assertion to pass:

    BOOST_STATIC_ASSERT((      // error

      boost::is_same<

          mpl::pop_back<mpl::vector<int, short> >::type

        , mpl::vector<int>

      >::value

    ));

For most purposes, the two types being compared above will act the same, and most of the time you'll never notice a difference. That said, 

the result of using mpl::pop_back on a specialization of mpl::vector will not be another specialization of mpl::vector!

As you saw in our exploration of dimensional analysis in Chapter 3, a function template that can only be called with two identical types is 

likely not to work as expected if those types are sequences. The same goes for a class template partial specialization that matches only 

when two type arguments are identical.

The correct way to check for sequence equality is always to use the equal algorithm, as follows:

    BOOST_STATIC_ASSERT((        // OK

      mpl::equal<
          mpl::pop_back<mpl::vector<int, short> >::type

        , mpl::vector<int>

      >::value

    ));
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5.7. Intrinsic Sequence Operations

MPL supplies a catalog of sequence metafunctions whose STL counterparts are usually implemented as member functions. We've already 

discussed begin, end, front, back, push_front, push_back, pop_front, pop_back, insert, erase, and clear; the rest are summarized in Table 

5.10, where R is any sequence.

Table 5.10. InTRinsic Sequence Operations

Expression Result Worst-Case Complexity

mpl::empty<S>::type A bool constant wrapper; TRue iff the 

sequence is empty.

Constant.

mpl::insert_range<

    S, pos, R

>::type

Identical to S but with the elements of R

inserted at pos.

Linear in the length of the result.

mpl::size<S>::type An integral constant wrapper whose ::value is 

the number of elements in S.

Linear in the length of S.

All of these metafunctions are known as intrinsic sequence operations, to distinguish them from generic sequence algorithms, because 

they generally need to be implemented separately for each new kind of sequence. They're not implemented as nested metafunctions 

(corresponding to similar container member functions in the STL) for three good reasons.

Syntactic overhead. Member templates are a pain to use in most metaprogramming contexts because of the need to use the

extra template keyword:

    Sequence::template erase<pos>::type

as opposed to:

    mpl::erase<Sequence,pos>::type

As you know, reducing the burdens of C++ template syntax is a major design concern for MPL.

1.

Efficiency. Most sequences are templates that are instantiated in many different ways. The presence of template members,

even if they're unused, may have a cost for each instantiation.

2.

Convenience. Despite the fact that we call these operations "intrinsic," there are reasonable ways to supply default

implementations for many of them. For example, the default size measures the distance between the sequence's begin and end

iterators. If these operations were member templates, every sequence author would be required to write all of them.

3.
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5.8. Sequence Classes

In this section we'll describe the specific sequences provided by the MPL, and discuss how they fit the sequence concepts detailed above.

Before we begin, you should know that all of the MPL sequences have both an unnumbered and a numbered form. The unnumbered forms 

are the ones you're already familiar with, like mpl::vector<int, long, int>. The corresponding numbered forms include the sequence's length 

as part of its template name, for example, mpl::vector3<int, long, int>. The length of unnumbered forms is limited to 20 elements by 

default
[4]

 to reduce coupling in the library and to limit compilation times. To use the numbered form of a sequence with length N, you must 

include a corresponding "numbered header" file, named for the sequence whose length is N rounded up to the nearest multiple of ten. For 

example:

[4] See the Configuration Macros section of the MPL reference manual for details on how to change this limit.

    #include <boost/mpl/vector/vector30.hpp> // 28 rounded up

    // declare a sequence of 28 elements

    typedef boost::mpl::vector28<

         char, int, long ... 25 more types

    > s;

5.8.1 list

mpl::list is the simplest of the extensible MPL sequences, and it is structurally very similar to a runtime singly-linked list. Since it is a Forward 

Sequence, it supports begin and end, and, of course, access to the first element via front. It supports O(1) insertion and erasure at the head 

of the sequence, so it also supports push_front and pop_front.

5.8.2 vector

MPL's vector is almost an exact analogue to the STL vector: it is a Random Access Sequence, so naturally it has Random Access Iterators. 

Since every Random Access Iterator is a Bidirectional Iterator, and we have access to the vector's end iterator, back is supported in addition 

to front. Like an STL vector, MPL's vector also supports efficient push_back and pop_back operations.

In addition to the usual compile-time/runtime differences, this sequence may differ from those in the STL in one significant detail: It may 

have a maximum size that is limited not just by the usual compiler resources, such as memory or template instantiation depth, but also by 

the way the sequence was implemented. In that case, the sequence can normally be extended only as far as the maximum numbered 

sequence header included in the translation unit. For example:
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    #include <boost/mpl/vector/vector10.hpp>

    typedef boost::mpl::vector9<

         int[1], int[2], int[3], int[4]

       , int[5], int[6], int[7], int[8], int[9]

    > s9;

    typedef mpl::push_back<s9, int[10]>::type s10;  // OK

    typedef mpl::push_back<s10, int[11]>::type s11; // error

To make the code work, we'd have to replace the #include directive with:

    #include <boost/mpl/vector/vector20.hpp>

This limitation is not as serious as it may sound, for two reasons:

The library headers provide you with numbered vector forms allowing up to 50 elements by default, and that number can be 

adjusted just by defining some preprocessor symbols.
[5]

[5] See the Configuration Macros section of the MPL reference manual for details on how to change this 

limit.

1.

Since meta-code executes at compile time, exceeding the limit causes a compile-time error. Unless you're writing generic 

metafunction libraries to be used by other metaprogrammers, you can never ship code that will fail in the customer's hands 

because of this limitation, as long as your code compiles on your local machine.

2.

We wrote that it may differ in this respect because on compilers that support the typeof language extension, the maximum size limitation 

vanishes. Chapter 9 describes some of the basic techniques that make that possible.

Operations on mpl::vector tend to compile much more quickly than those on mpl::list, and, due to its random-access capability, mpl::vector is 

far more flexible. Taken together, these factors should make mpl::vector your first choice when selecting a general-purpose Extensible 

Sequence. However, if your clients will be using your code for compile-time computation that may require sequences of arbitrary length, it 

may be better to use mpl::list.

Guideline

Reach for mpl::vector first when choosing a general-purpose type sequence.

5.8.3 deque

MPL's deque is almost exactly like its vector in all respects, except that deque allows efficient operations at the head of the sequence with 

push_front and pop_front. Unlike the corresponding STL components, the efficiency of deque is very close to that of vector—so much so, in

fact, that on many C++ compilers, a vector really is a deque under-the-covers.
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5.8.4 range_c

range_c is a "lazy" random access sequence that contains consecutive integral constants. That is, mpl::range_c<long, N, M> is roughly 

equivalent to:

    mpl::vector<

        mpl::integral_c<long,N>

      , mpl::integral_c<long,N+1>

      , mpl::integral_c<long,N+2>

      ...

      , mpl::integral_c<long,M-3>

      , mpl::integral_c<long,M-2>

      , mpl::integral_c<long,M-1> // Note: M-1, not M

    >

By saying range_c is "lazy," we mean that its elements are not explicitly represented: It merely stores the endpoints and produces new 

integral constants from within the range on demand. When iterating over large sequences of integers, using range_c is not only 

convenient, but can result in a significant savings in compilation time over the use of a non-lazy alternative like the vector shown above.

The price of this economy is that range_c comes with a limitation not shared by vector and list: It is not extensible. If the library could 

support insertion of arbitrary elements into range_c, the elements would need to be explicitly represented. Though not extensible, range_c

supports pop_front and pop_back, because contracting a range is easy.

5.8.5 map

An MPL map is an Extensible Associative Sequence in which each element supports the interface of mpl::pair.

    template <class T1, class T2>

    struct pair

    {

        typedef pair type;

        typedef T1 first;

        typedef T2 second;

    };

An element's first and second types are treated as its key and value, respectively. To create a map, just list its elements in sequence as 

template parameters. The following example shows a mapping from built-in integral types to their next "larger" type:

    typedef mpl::map<

        mpl::pair<bool, unsigned char>

      , mpl::pair<unsigned char, unsigned short>

      , mpl::pair<unsigned short, unsigned int>

      , mpl::pair<unsigned int, unsigned long>

      , mpl::pair<signed char, signed short>

      , mpl::pair<signed short, signed int>

      , mpl::pair<signed int, signed long>

    >::type to_larger;
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Like mpl::vector, the mpl::map implementation has a bounded maximum size on C++ compilers that don't support the typeof language 

extension, and the appropriate numbered sequence headers must be included if you're going to grow a map beyond the next multiple of 

ten elements.

It's not all bad news for users whose compiler doesn't go beyond the standard requirements, though: When map has a bounded maximum 

size, iterating over all of its elements is O(N) instead of O(N+E), where N is the size of the map and E is the number of erasures that have 

been applied to it.

5.8.6 set

A set is like a map, except that each element is identical to its key type and value type. The fact that the key and value types are identical 

means that mpl::at<S,k>::type is a fairly uninteresting operation—it just returns k unchanged. The main use for an MPL set is efficient 

membership testing with mpl::has_key<S,k>::type. A set is never subject to a maximum size bound, and therefore operation is always 

O(N+E) for complete traversal.

5.8.7 iterator_range

An iterator_range is very similar to range_c in intent. Instead of representing its elements explicitly, an iterator_range stores two iterators 

that denote the sequence endpoints. Because MPL algorithms operate on sequences instead of iterators, iterator_range can be 

indispensable when you want to operate on just part of a sequence: Once you've found the sequence endpoints, you can form an 

iterator_range and pass that to the algorithm, rather than building a modified version of the original sequence.
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5.9. Integral Sequence Wrappers

We've already discussed the use of the vector_c class template as a shortcut for writing lists of integral constants. MPL also supplies list_c, 

deque_c, and set_c for representing the corresponding vectors, deques, and sets. Each of these sequences takes the form:

    sequence-type_c<T, n1, n2, ... nk>

The first argument to each of these sequence wrappers is the integer type T that it will store, and the following arguments are the values of 

T that it will store. You can think of these as being equivalent to:

    sequence-type<

        integral_c<T,n1>

      , integral_c<T,n2>

      , ...

      , integral_c<T,nk>

    >

That said, they are not precisely the same type, and, as we've suggested, you should not rely on type identity when comparing sequences.

Note that the MPL also provides _c-suffixed versions of the numbered sequence forms:

    #include <boost/mpl/vector/vector10_c.hpp>

    typedef boost::mpl::vector10_c<int,1,2,3,4,5,6,7,8,9,10> v10;
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5.10. Sequence Derivation

Typically, the unnumbered form of any sequence is derived from the corresponding numbered form, or else shares with it a common base 

class that provides the sequence's implementation. For example, mpl::vector might be defined this way:

    namespace boost { namespace mpl {

      struct void_; // "no argument" marker

      // primary template declaration

      template <class T0 = void_, class T1 = void_, etc....>

      struct vector;

      // specializations

      template<>

      struct vector<> : vector0<> {};

      template<class T0>

      struct vector<T0> : vector1<T0> {};

      template<class T0, class T1>

      struct vector<T0,T1> : vector2<T0,T1> {};

      template<class T0, class T1, class T2>

      struct vector<T0,T1,T2> : vector3<T0,T1,T2> {};

      etc.

    }}

The integral sequence wrappers are similarly derived from equivalent underlying type sequences.

All of the built-in MPL sequences are designed so that nearly any subclass functions as an equivalent type sequence. Derivation is a 

powerful way to provide a new interface, or just a new name, to an existing family of sequences. For example, the Boost Python library 

provides the following type sequence:

    namespace boost { namespace python {

      template <class T0=mpl::void_, ... class T4=mpl::void_>

      struct bases : mpl::vector<T0, T1, T2, T3, T4> {};

    }}

You can use the same technique to create a plain class that is an MPL type sequence:

    struct signed_integers
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      : mpl::vector<signed char, short, int, long> {};

On some compilers, using signed_integers instead of the underlying vector can dramatically improve metaprogram efficiency. See 

Appendix C for more details.
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5.11. Writing Your Own Sequence

In this section we'll show you how to write a simple sequence. You might be wondering at this point why you'd ever want to do that; after 

all, the built-in facilities provided by MPL are pretty complete. Usually it's a matter of efficiency. While the MPL sequences are 

well-optimized for general-purpose use, you may have a specialized application for which it's possible to do better. For example, it's 

possible to write a wrapper that presents the argument types of a function pointer as a sequence [Nas03]. If you happen to already have 

the function pointer type in hand for other reasons, iterating over the wrapper directly rather than assembling another sequence containing 

those types could save quite a few template instantiations.

For this example, we'll write a limited-capacity Random Access Sequence called tiny with up to three elements. This sequence will be very 

much like MPL's implementation of vector for compilers that are merely conforming but do not supply typeof.

5.11.1 Building Tiny Sequence

The first step is to choose a representation. Not much more is required of the representation than to encode the (up to three) types it can 

contain in the sequence type itself:

    struct none {}; // tag type to denote no element

    template <class T0 = none, class T1 = none, class T2 = none>

    struct tiny

    {

        typedef tiny type;

        typedef T0 t0;

        typedef T1 t1;

        typedef T2 t2;

        ...

    };

As you can see, we've jumped the gun and filled in some of the implementation: tiny's nested ::type refers back to the sequence itself, 

which makes tiny a sort of "self-returning metafunction." All of the MPL sequences do something similar, and it turns out to be terribly 

convenient. For example, to return sequence results from a metafunction, you can just derive the metafunction from the sequence you 

want to return. Also, when one branch of an eval_if needs to return a sequence, you don't have to wrap it in the identity metafunction 

described in Chapter 4. That is, given a tiny sequence S, the following two forms are equivalent:

    // pop the front element off S, unless it is empty

    typedef mpl::eval_if<

        mpl::empty<S>

      , mpl::identity<S>
      , mpl::pop_front<S>

    >::type r1;
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    // likewise

    typedef mpl::eval_if<

        mpl::empty<S>

      , S                 // when invoked, S returns S

      , mpl::pop_front<S>

    >::type r2;

The other three nested typedefs, t0, t1, and t2, make it easy for any metafunction to access a tiny sequence's elements:
[6]

[6] The alternative would be a cumbersome partial specialization:

    template <class Tiny>

    struct manipulate_tiny;

    template <class T0, class T1, class T2>

    struct manipulate_tiny<tiny<T0, T1, T2> >

    {

        // T0 is known

    };

Embedding the element types will save us a lot of code in the long run.

    template <class Tiny>

    struct manipulate_tiny

    {

        // what's T0?

        typedef typename Tiny::t0 t0;

    };

As long as we can all agree not to use none for any other purpose than to mark the beginning of tiny's empty elements, we now have a 

convenient interface for holding up to three elements. It's not an MPL sequence yet, though.

Looking back at the most basic sequence requirements, we find that every sequence has to return iterators from MPL's begin and end

metafunctions. Right away it's clear we'll need an iterator representation. Because Random Access Iterators can move in both directions, 

they must have access to all the elements of the sequence. The simplest way to handle that is to embed the entire sequence in the iterator 

representation. In fact, it's typical that MPL iterators embed all or part of the sequence they traverse (since list iterators only move forward, 

they only hold the part of the list that's accessible to them).

5.11.2 The Iterator Representation

Once our iterator has access to the sequence, we just need to represent the position somehow. An integral constant wrapper (Pos in the 

example below) will do:

    #include <boost/mpl/iterator_tag.hpp>

    template <class Tiny, class Pos>

    struct tiny_iterator
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    {

        typedef mpl::random_access_iterator_tag category;

    };

The most basic operations on any iterator are dereferencing, via mpl::deref, and forward traversal, via mpl::next. In this case, we can 

handle incremental traversal in either direction by building a new tiny_iterator with an incremented (or decremented) position:
[7]

[7] We could have also taken advantage of the default mpl::next and mpl::prior implementations and realized the 

requirements by simply supplying tiny_iterator with the corresponding nested typedefs (::next/::prior). The price for a

somewhat reduced amount of typing would be slower metaprograms—such an iterator would be a typical instance

of the "Blob" anti-pattern discussed in Chapter 2.

    namespace boost { namespace mpl {

       // forward iterator requirement

       template <class Tiny, class Pos>

       struct next<tiny_iterator<Tiny,Pos> >

       {

           typedef tiny_iterator<

               Tiny

             , typename mpl::next<Pos>::type

           > type;

       };

        // bidirectional iterator requirement

       template <class Tiny, class Pos>

       struct prior<tiny_iterator<Tiny,Pos> >

       {

           typedef tiny_iterator<

               Tiny

             , typename mpl::prior<Pos>::type

           > type;

       };

    }}

Dereferencing our tiny_iterator is a bit more involved: We need some way to index our tiny sequence with the iterator's position. If you're 

thinking, "Hang on, to do that you'd need to implement the at operation," you're right: It's time to leave our iterators alone for a while.

5.11.3 Implementing at for tiny

One reasonable way to implement at is to use partial specialization. First we'll write a template that selects an element of the sequence 

based on a numerical argument:

    template <class Tiny, int N> struct tiny_at;

    // partially specialized accessors for each index

    template <class Tiny>

    struct tiny_at<Tiny,0>

    {

        typedef typename Tiny::t0 type;
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    };

    template <class Tiny>

    struct tiny_at<Tiny,1>

    {

        typedef typename Tiny::t1 type;

    };

    template <class Tiny>

    struct tiny_at<Tiny,2>

    {

        typedef typename Tiny::t2 type;

    };

Note that if you try to access tiny_at's nested ::type when the second argument is a number outside the range 0...2, you'll get an error: The 

unspecialized (or "primary") template is not defined.

Next, we could simply partially specialize mpl::at for tiny instances:

    namespace boost { namespace mpl {

      template <class T0, class T1, class T2, class Pos>

      struct at<tiny<T0,T1,T2>, Pos>

        : tiny_at<tiny<T0,T1,T2>,Pos::value>

      {

      };

    }}

On the face of it, there's nothing wrong with using partial specialization, but let's see how we could get the unspecialized version of mpl::at

to work for tiny. This is what the at supplied by MPL looks like:

    template<class Sequence, class N>

    struct at

      : at_impl<typename Sequence::tag>

          ::template apply<Sequence,N>

    {

    };

By default, at forwards its implementation to at_impl<Sequence::tag>, a metafunction class that knows how to perform the at function for all 

sequences with that tag type. So we could add a ::tag to tiny (call it tiny_tag), and write an explicit (full) specialization of mpl::at_impl:

    struct tiny_tag {};

    template <class T0 = none, class T1 = none, class T2 = none>

    struct tiny

    {

        typedef tiny_tag tag;
        typedef tiny type;

        typedef T0 t0;

        typedef T1 t1;

        typedef T2 t2;

    };
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    namespace boost { namespace mpl {

       template <>

       struct at_impl<tiny_tag>
       {

           template <class Tiny, class N>

           struct apply : tiny_at<Tiny, N::value>

           {};

       };

    }}

This might not seem to be a big improvement over the results of partially specializing at for tiny sequences, but it is. In general, writing 

partial specializations that will match all the forms taken by a particular sequence family can be impractical. It's very common for equivalent 

sequence forms not to be instances of the same template, so normally at least one partial specialization for each form would be required: 

You can't write a partial template specialization that matches both mpl::vector<int> and mpl::vector1<int>, for example. For the same 

reasons, specializing at limits the ability of third parties to quickly build new members of the sequence family through derivation.

Recommendation

To implement an intrinsic sequence operation, always provide a sequence tag and a specialization of the operation's 

_impl template.

5.11.4 Finishing the tiny_iterator Implementation

With our implementation of at in hand, we're ready to implement our tiny_iterator's dereference operation:

    namespace boost { namespace mpl {

       template <class Tiny, class Pos>

       struct deref< tiny_iterator<Tiny,Pos> >

         : at<Tiny,Pos>

       {

       };

    }}

The only thing missing now are constant-time specializations of mpl::advance and mpl:: distance metafunctions:

   namespace boost { namespace mpl {

      // random access iterator requirements

      template <class Tiny, class Pos, class N>

      struct advance<tiny_iterator<Tiny,Pos>,N>

      {

          typedef tiny_iterator<
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               Tiny

             , typename mpl::plus<Pos,N>::type

          > type;

      };

      template <class Tiny, class Pos1, class Pos2>

      struct distance<

          tiny_iterator<Tiny,Pos1>

        , tiny_iterator<Tiny,Pos2>

      >

        : mpl::minus<Pos2,Pos1>

      {};

   }}

Note that we've left the job of checking for usage errors to you in exercise 5-0.

5.11.5 begin and end

Finally, we're ready to make tiny into a real sequence; all that remains is to supply begin and end. Like mpl::at, mpl::begin and mpl::end use 

traits to isolate the implementation for a particular family of sequences. Writing our begin, then, is straightforward:

   namespace boost { namespace mpl {

      template <>

      struct begin_impl<tiny_tag>

      {

          template <class Tiny>

          struct apply

          {

               typedef tiny_iterator<Tiny,int_<0> > type;

          };

      };

   }}

Writing end is a little more complicated than writing begin was, since we'll need to deduce the sequence length based on the number of 

none elements. One straightforward approach might be:

   namespace boost { namespace mpl {

      template <>

      struct end_impl<tiny_tag>

      {

          template <class Tiny>

          struct apply

            : eval_if<

                  is_same<none,typename Tiny::t0>

                , int_<0>

                , eval_if<

                      is_same<none,typename Tiny::t1>

                    , int_<1>

                    , eval_if<
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                          is_same<none,typename Tiny::t2>

                        , int_<2>

                        , int_<3>

                      >

                  >

              >

          {};

      };

   }}

Unfortunately, that code doesn't satisfy the O(1) complexity requirements of end: It costs O(N) template instantiations for a sequence of 

length N, since eval_if/is_same pairs will be instantiated until a none element is found. To find the size of the sequence in constant time, we 

need only write a few partial specializations:

    template <class T0, class T1, class T2>

    struct tiny_size

      : mpl::int_<3> {};

    template <class T0, class T1>

    struct tiny_size<T0,T1,none>

      : mpl::int_<2> {};

    template <class T0>

    struct tiny_size<T0,none,none>

      : mpl::int_<1> {};

    template <>

    struct tiny_size<none,none,none>

      : mpl::int_<0> {};

    namespace boost { namespace mpl {

       template <>

       struct end_impl<tiny_tag>

       {

           template <class Tiny>

           struct apply

           {

               typedef tiny_iterator<

                   Tiny

                 , typename tiny_size<
                       typename Tiny::t0

                     , typename Tiny::t1

                     , typename Tiny::t2

                   >::type
               >

               type;

           };

       };

    }}

Here, each successive specialization of tiny_size is "more specialized" than the previous one, and only the appropriate version will be 

instantiated for any given tiny sequence. The best-matching tiny_size specialization will always correspond directly to the length of the 

sequence.

If you're a little uncomfortable (or even peeved) at the amount of boilerplate code repetition here, we can't blame you. After all, didn't we 

promise that metaprogramming would help save us from all that? Well, yes we did. We have two answers for you. First, metaprogramming 
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libraries save their users from repeating themselves, but once you start writing new sequences you're now working at the level of a library 

designer.
[8]

 Your users will thank you for going to the trouble (even if they're just you!). Second, as we hinted earlier, there are other ways 

to automate code generation. You'll see how even the library designer can be spared the embarrassment of repeating herself in Appendix 

A.

[8] This need for repetition, at least at the metaprogramming library level, seems to be a peculiarity of C++. Most 

other languages that support metaprogramming don't suffer from the same limitation, probably because their 

metaprogramming capabilities are more than just a lucky accident.

It's so easy to do at this point, that we may as well implement a specialized mpl::size. It's entirely optional; MPL's default implementation of 

size just measures the distance between our begin and end iterators, but since we are going for efficiency, we can save a few more 

template instantiations by writing our own:

    namespace boost { namespace mpl {

       template <>

       struct size_impl<tiny_tag>

       {

           template <class Tiny>

           struct apply

             : tiny_size<

                  typename Tiny::t0

                , typename Tiny::t1

                , typename Tiny::t2

               >

           {};

       };

    }}

You've probably caught on by now that the same tag-dispatching technique keeps cropping up over and over. In fact, it's used for all of the 

MPL's intrinsic sequence operations, so you can always take advantage of it to customize any of them for your own sequence types.

5.11.6 Adding Extensibility

In this section we'll write some of the operations required for tiny to fulfill the Extensible Sequence requirements. We won't show you all of 

them because they are so similar in spirit. Besides, we need to leave something for the exercises at the end of the chapter!

First let's tackle clear and push_front. It's illegal to call push_front on a full tiny, because our tiny sequence has a fixed capacity. Therefore, 

any valid tiny<T0, T1, T2> passed as a first argument to push_front must always have length <= 2 and T2 = none, and it's okay to just drop 

T2 off the end of the sequence:
[9]

[9] Actually enforcing our assumption that the sequence is not full when push_front is invoked is left for you as an 

exercise.

   namespace boost { namespace mpl {

      template <>

      struct clear_impl<tiny_tag>

      {

          template <class Tiny>

          struct apply : tiny<>

          {};

      };
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      template <>

      struct push_front_impl<tiny_tag>

      {

          template <class Tiny, class T>

          struct apply

            : tiny<T, typename Tiny::t0, typename Tiny::t1>

          {};

      };

   }}

That was easy! Note that because every tiny sequence is a metafunction returning itself, we were able to take advantage of metafunction 

forwarding in the body of apply.

Recommendation

For maximum MPL interoperability, when writing a class template that isn't already a metafunction, consider making it 

one by adding a nested ::type that refers to the class itself. When writing a metafunction that will always return a class 

type, consider deriving it from that class and having the metafunction return itself.

Writing push_back isn't going to be such a cakewalk: The transformation we apply depends on the length of the input sequence. Not to 

worry; we've already written one operation whose implementation depended on the length of the input sequence: end. Since we have the 

length computation conveniently at hand, all we need is a tiny_push_back template, specialized for each sequence length:

   template <class Tiny, class T, int N>

   struct tiny_push_back;

   template <class Tiny, class T>

   struct tiny_push_back<Tiny,T,0>

     : tiny<T,none,none>

   {};

   template <class Tiny, class T>

   struct tiny_push_back<Tiny,T,1>

     : tiny<typename Tiny::t0,T,none>

   {};

   template <class Tiny, class T>

   struct tiny_push_back<Tiny,T,2>

     : tiny<typename Tiny::t0,typename Tiny::t1,T>

   {};

   namespace boost { namespace mpl {

      template <>

      struct push_back_impl<tiny_tag>

      {

          template <class Tiny, class T>

          struct apply

            : tiny_push_back<

                Tiny, T, size<Tiny>::value

              >
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          {};

      };

   }}

Note that what is missing here is just as important as what is present. By not defining a tiny_push_back specialization for sequences of 

length 3, we made it a compile-time error to push_back into a full sequence.
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5.12. Details

By now you should have a fairly clear understanding of what goes into an MPL sequence—and what comes out of it! In upcoming chapters

you can expect to get more exposure to type sequences and their practical applications, but for now we'll just review a few of this chapter's

core concepts.

Sequence concepts

MPL sequences fall into three traversal concept categories (forward, bidirectional, and random access) corresponding to the capabilities of 

their iterators. A sequence may also be front-extensible, meaning that it supports push_front and pop_front, or back-extensible, meaning 

that it supports push_back and pop_back. An Associative Sequence represents a mapping from type to type with O(1) lookup.

Iterator concepts

MPL iterators model one of three traversal concepts: Forward Iterator, Bidirectional Iterator, and Random Access Iterator. Each iterator 

concept refines the previous one, so that all bidirectional iterators are also forward iterators, and all random access iterators are also 

bidirectional iterators. A Forward Iterator x can be incrementable and dereferenceable, meaning that next<x>::type and deref<x>::type are 

well-defined, or it can be past-the-end of its sequence. A Bidirectional Iterator may be decrementable, or it may refer to the beginning of its 

sequence.

Sequence algorithms

The purely functional nature of C++ template metaprogramming really dictates that MPL algorithms operate on sequences rather than on 

iterator pairs. Otherwise, passing the result of one algorithm to another one would be unreasonably difficult. Some people feel that the 

same logic applies to STL algorithms, and several algorithm libraries for operating on whole runtime sequences have cropped up. Look for 

one in an upcoming Boost release.

Intrinsic sequence operations

Not all sequence operations can be written generically; some, such as begin and end, need to be written specifically to work with particular 

sequences. These MPL metafunctions all use a tag dispatching technique to allow for easy customization.
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5.13. Exercises

5-0. Write a test program that exercises the parts of tiny we've implemented. Try to arrange your program so that it 

will only compile if the tests succeed.

5-1. Write a metafunction double_first_half that takes a Random Access Sequence of integral constant wrappers of 

length N as an argument, and returns a copy with the first N/2 elements doubled in value, such that the 

following is TRue:

   mpl::equal<

       double_first_half< mpl::vector_c<int,1,2,3,4> >::type

     , mpl::vector_c<int,2,4,3,4>

   >::type::value

5-2. Note that push_back won't compile if its tiny argument already has three elements. How can we get the same 

guarantees for push_front?

5-3. Drawing on the example of our push_back implementation, implement insert for tiny sequences. Refactor the 

implementation of push_back so that it shares more code with insert.

5-4. How could we reduce the number of template instantiations required by our implementation of push_back? 

(Hint: Look at our implementation of end in section 5.11.5 again.) How does that interact with the refactoring in 

the previous exercise?

5-5. Implement the pop_front, pop_back, and erase algorithms for tiny.

5-6. Write a sequence adapter template called dimensions that, when instantiated on an array type, presents the 

array's dimensions as a forward, non-extensible sequence:

    typedef dimensions<char [10][5][2]> seq;

    BOOST_STATIC_ASSERT( mpl::size<seq>::value == 3 );

    BOOST_STATIC_ASSERT(( mpl::at_c<seq,0>::type::value == 2 ));

    BOOST_STATIC_ASSERT(( mpl::at_c<seq,1>::type::value == 5 ));

    BOOST_STATIC_ASSERT(( mpl::at_c<seq,2>::type::value == 10 ));

Consider using the type traits library facilities to simplify the implementation.

5-7. Modify the dimensions sequence adapter from exercise 5-6 to provide bidirectional iterators and push_back and 

pop_back operations.
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5-8. Write a fibonacci_series class that represents an infinite forward sequence of Fibonacci numbers:

   typedef mpl::lower_bound< fibonacci_series, int_<10> >::type n;

   BOOST_STATIC_ASSERT( n::value == 8 );

   typedef mpl::lower_bound< fibonacci_series, int_<50> >::type m;

   BOOST_STATIC_ASSERT( m::value == 34 );

Each element of the Fibonacci series is the sum of the previous two elements. The series begins 0, 1, 1, 2, 3, 

5, 8, 13....

5-9. Modify the fibonacci_series sequence from exercise 5-8 to be limited by a maximum number of elements in the 

series. Make the sequence's iterators bidirectional:

   typedef fibonacci_series<8> seq;

   BOOST_STATIC_ASSERT( mpl::size<seq>::value == 8 );

   BOOST_STATIC_ASSERT( mpl::back<seq>::type::value == 21 );

5-10*. Write a tree class template for composing compile-time binary tree data structures:

   typedef tree<                  //     double

         double                   //     /   \

       , tree<void*,int,long>     //   void* char

       , char                     //   /  \

       > tree_seq;                // int  long

Implement iterators for pre-order, in-order, and post-order traversal of the tree elements:

   BOOST_STATIC_ASSERT(( mpl::equal<

         preorder_view<tree_seq>

       , mpl::vector<double,void*,int,long,char>

       , boost::is_same<_1,_2>

       >::value ));

   BOOST_STATIC_ASSERT(( mpl::equal<

         inorder_view<tree_seq>

       , mpl::vector<int,void*,long,double,char>

       , boost::is_same<_1,_2>

       >::value ));

   BOOST_STATIC_ASSERT(( mpl::equal<

         postorder_view<tree_seq>

       , mpl::vector<int,long,void*,char,double>

       , boost::is_same<_1,_2>

       >::value ));
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Important

Extend the tests from exercise 5-0 to cover the algorithms you implemented in exercises 5-3, 5-4, and 5-5.
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Chapter 6. Algorithms

Alexander Stepanov, the father of the STL, has often stressed the central role of algorithms in his library. The MPL is no different, and now 

that you understand the sequences and iterators on which they operate, we are ready to give algorithms the in-depth treatment they 

deserve.

We'll start by discussing the relationship between algorithms and abstraction. Then we'll cover the similarities and differences between 

algorithms in the STL and MPL, in particular the design choices made in the MPL to deal with the fact that metadata is immutable. Then 

we'll describe the most useful algorithms in the MPL's three algorithm categories, and conclude with a brief section on implementing your 

own sequence algorithms.
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6.1. Algorithms, Idioms, Reuse, and Abstraction

Abstraction can be defined as generalization away from specific instances or implementations, and toward the "essence" of an object or 

process. Some abstractions, like that of an STL iterator, become so familiar that they can be called idiomatic. In software design, the idea

reuse achieved through idiomatic abstractions can be just as important as code reuse. The best libraries provide both reusable code 

components and reusable idioms.

Because most of them operate at the relatively low level of sequence traversal, it's easy to miss the fact that the STL algorithms represent

powerful abstractions. In fact, it's commonly argued—not entirely without cause—that for trivial tasks, the algorithms are inferior to

handwritten loops. For example:
[1]

[1] In all fairness to the STL algorithms, this example was deliberately chosen to make the case for writing loops by 

hand.

    // "abstraction"

    std::transform(

        v.begin(), v.end(), v.begin()

      , std::bind2nd(std::plus<int>(),42)

    );

    // handwritten loop

    typedef std::vector<int>::iterator v_iter;

    for (v_iter i = v.begin(), last = v.end(); i != last; ++i)

       *i += 42;

So, what's wrong with the use of TRansform above?

The user needs to handle iterators even if she wants to operate on the whole sequence.

The mechanism for creating function objects is cumbersome and ugly, and brings in at least as many low-level details as it 

hides.

Unless the person reading the code eats and breathes the STL components every day, the "abstraction" actually seems to 

obfuscate what's going on instead of clarifying it.

These weaknesses, however, can be overcome quite easily. For example, we can use the Boost Lambda library, which inspired MPL's 

compile time lambda expressions, to simplify and clarify the runtime function object:
[2]

[2] In these examples, _1 refers to a placeholder object from the Boost Lambda library (in namespace boost::lambda). 

MPL's placeholder types were inspired by the Lambda library's placeholder objects.

    std::transform(v.begin(), v.end(), v.begin(), _1 + 42);
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or even:

    std::for_each(v.begin(), v.end(), _1 += 42);

Both statements do exactly the same thing as the raw loop we saw earlier, yet once you are familiar with the idioms of the Lambda library, 

iterators, and for_each, the use of algorithms is far clearer.

We could raise the abstraction level a bit further by rewriting STL algorithms to operate on whole sequences (like the MPL algorithms do), 

but let's stop here for now. From the simplification above, you can already see that many of the problems with our example weren't the 

fault of the algorithm at all. The real culprit was the STL function object framework used to generate the algorithm's function argument. 

Setting aside those problems, we can see that these "trivial" algorithms abstract away several deceptively simple low-level details:

Creation of temporary iterators.

Correct declaration of the iterator type, even in generic code.

Avoiding known inefficiencies
[3]

[3] When efficiency counts, it's best to avoid post-incrementing most iterators (iter++), since the 

operator++ implementation must make a copy of the iterator before it is incremented, in order to return its 

original value. Standard library implementators know about this pitfall and go out of their way to use 

pre-increment (++iter) instead wherever possible.

Taking advantage of known optimizations (e.g., loop unrolling)

And correct generic loop termination: for_each uses pos != finish instead of pos < finish, which would lock it into random access 

iterators

These all seem easy enough to get right when you consider a single loop, but when that pattern is repeated throughout a large project the 

chance of errors grows rapidly. The optimizations mentioned above only tend to increase that risk, as they generally introduce even more 

low-level detail.

More importantly, the use of for_each achieves separation of concerns: the common pattern of traversing and modifying all the elements of 

a sequence is neatly captured in the name of the algorithm, leaving us only to specify the details of the modification. In the compile time 

world, this division of labor can be especially important, because as you can see from the binary template we covered in Chapter 1, coding 

even the simplest repeated processes is not so simple. It's a great advantage to be able to use the library's pre-written algorithms, adding 

only the details that pertain to the problem you're actually trying to solve.

When you consider the complexity hidden behind algorithms such as std::lower_bound, which implements a customized binary search, or 

std::stable_sort, which gracefully degrades performance under low memory conditions, it's much easier to see the value of reusing the STL 

algorithms. Even if we haven't convinced you to call std::for_each whenever you have to operate on all elements of a sequence, we hope 

you'll agree that even simple sequence algorithms provide a useful level of abstraction.
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6.2. Algorithms in the MPL

Like the STL algorithms, the MPL algorithms capture useful sequence operations and can be used as primitive building blocks for more 

complex abstractions. In the MPL algorithm set, you'll find just about everything you get from the standard <algorithm> header, similarly 

named.

That said, there are a few notable differences between the STL and MPL algorithms. You already know that metadata is immutable and 

therefore MPL algorithms must return new sequences rather than changing them in place, and that MPL algorithms operate directly on 

sequences rather than on iterator ranges. Aside from the fact that the choice to operate on sequences gives us a higher-level interface, it is 

also strongly related to the functional nature of template metaprogramming. When result sequences must be returned, it becomes natural 

to pass the result of one operation directly to another operation. For example:

    // Given a nonempty sequence Seq, returns the largest type in an

    // identical sequence where all instances of float have been

    // replaced by double.

    template <class Seq>

    struct biggest_float_as_double

      : mpl::deref<

            typename mpl::max_element<

               typename mpl::replace<

                   Seq

                 , float

                 , double

               >::type

             , mpl::less<mpl::sizeof_<_1>, mpl::sizeof_<_2> >

           >::type

      >

   {};

If max_element and replace operated on iterators instead of sequences, though, biggest_float_as_double would probably look something 

like this:

    template <class Seq>

    struct biggest_float_as_double

    {

        typedef typename mpl::replace<

          , typename mpl::begin<Seq>::type

          , typename mpl::end<Seq>::type

          , float

          , double

        >::type replaced;

        typedef typename mpl::max_element<

          , typename mpl::begin<replaced>::type

          , typename mpl::end<replaced>::type

          , mpl::less<mpl::sizeof_<_1>, mpl::sizeof_<_2> >

        >::type max_pos;
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        typedef typename mpl::deref<max_pos>::type type;

    };

The upshot of operating primarily on whole sequences is an increase in interoperability, because the results of one algorithm can be 

passed smoothly to the next.
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6.3. Inserters

There's another important difference between MPL and STL algorithms that is also a consequence of the functional nature of template 

metaprogramming. The family of "sequence-building" STL algorithms such as copy, TRansform, and replace_copy_if all accept an output

iterator into which a result sequence is written. The whole point of output iterators is to create a stateful change—for example, to modify an

existing sequence or extend a file—but there is no state in functional programming. How would you write into an MPL iterator? Where

would the result go? None of our examples have used anything that looks remotely like an output iterator—instead, they have simply

constructed a new sequence of the same type as some input sequence.

Each of the STL's mutating algorithms can write output into a sequence whose type differs from that of any input sequence or, when 

passed an appropriate output iterator, it can do something completely unrelated to sequences, like printing to the console. The MPL aims 

to make the same kind of thing possible at compile time, allowing us to arbitrarily customize the way algorithm results are handled, by 

using inserters.
[4]

[4] The name "inserter" is inspired by the STL's family of output-iterator-creating function adaptors that includes 

std::front_inserter and std::back_inserter.

An inserter is nothing more than a type with two type members:

::state, a representation of information being carried through the algorithm, and

::operation, a binary operation used to build a new ::state from an output sequence element and the existing ::state.

For example, an inserter that builds a new vector might look like:

    mpl::inserter<mpl::vector<>, mpl::push_back<_,_> >

where mpl::inserter is defined to be:

    template <class State, class Operation>

    struct inserter

    {

        typedef State state;

        typedef Operation operation;

    };

In fact, inserters built on push_back and push_front are so useful that they've been given familiar names: back_inserter and front_inserter. 

Here's another, more evocative way to spell the vector-building inserter:

    mpl::back_inserter<mpl::vector<> >
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When passed to an MPL algorithm such as copy, it functions similarly to std:: back_inserter in the following STL code:

    std::vector<any> v; // start with empty vector

    std::copy(start, finish, std::back_inserter(v));

Now let's see how an inserter actually works by using mpl::copy to copy the elements of a list into a vector. Naturally, mpl::copy takes an 

input sequence in place of std::copy's input iterator pair, and an inserter in place of std::copy's output iterator, so the invocation looks like 

this:

    typedef mpl::copy<

        mpl::list<A, B, C>

      , mpl::back_inserter<mpl::vector<> >

    >::type result_vec;

At each step of the algorithm, the inserter's binary operation is invoked with the result from the previous step (or, in the first step, the 

inserter's initial type) as its first argument, and the element that would normally be written into the output iterator as its second argument. 

The algorithm returns the result of the final step, so the above is equivalent to:

    typedef

      mpl::push_back<           // >----------------+

                                //                  |

          mpl::push_back<       // >--------------+ |

                                //                | |

              mpl::push_back<   // >------------+ | |

                  mpl::vector<> //              | | |

                , A             //              | | |

              >::type           // first step <-+ | |

            , B                 //                | |

          >::type               // second step <--+ |

        , C                     //                  |

      >::type                   // third step <-----+

    result_vec;

Because it's very common to want to build the same kind of sequence you're operating on, MPL supplies default inserters for all of its 

sequence-building algorithms. That's why we were able to use TRansform so effectively without specifying an inserter.

Note that an inserter need not do anything that looks like insertion. The following example uses an inserter to sum the initial elements of 

each element in a sequence of sequences:

    typedef mpl::vector<

        mpl::vector_c<int, 1, 2, 3>

      , mpl::vector_c<int, 4, 5, 6>

      , mpl::vector_c<int, 7, 8, 9>

    > S;

    typedef mpl::transform<

        S                   // input sequence

      , mpl::front<_>       // transformation selects front element

      , mpl::inserter<

            mpl::int_<0>    // result starts with 0

          , mpl::plus<_,_>  // and adds each output element
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        >

    >::type sum; // 0 + 1 + 4 + 7 == 12

Without the inserter, transform would build a vector consisting of the initial elements of each sequence in S; with the inserter, those initial 

elements are fed into mpl::plus<_,_>, starting with the initial value of mpl::int_<0>.
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6.4. Fundamental Sequence Algorithms

The pattern used by back_inserter of "folding" sequence elements into a result, is at the heart of the way sequences are processed in a 

functional environment. Users of Haskell and ML will immediately recognize it as the pattern used by the fold function (and hardcore STL 

users will recognize it as the pattern of std::accumulate). In pseudocode:

    fold(Seq, Prev, BinaryOp) :=

       if Seq is empty then:

           Prev

       else:        // combine the first element with Prev

           fold(    // and process the rest recursively

               tail(Seq)

             , BinaryOp(Prev, head(Seq))

             , BinaryOp

           )

From the caller's viewpoint, Prev should probably be called InitialType. We chose the name Prev because it makes understanding the 

algorithm's implementation easier. At each step of processing other than the first, Prev is the result from the previous step of processing.

You can build many other more complicated sequence traversal algorithms on top of fold. For example, we can reverse any 

front-extensible sequence with:

    template <class Seq>

    struct reverse

      : mpl::fold<

           Seq

         , typename mpl::clear<Seq>::type // initial type

         , mpl::push_front<_,_>           // binary operation

        >

    {};

It's worth noticing the curious property of fold that, when we use it with push_front, the result always comes out in reverse order. Since lists

can only be built with push_front and it's mighty inefficient to have to use reverse just to put things back in the right order every time we 

generate a list result, MPL also provides a reverse_fold metafunction that processes elements in reverse order. To do that efficiently with a 

sequence that can only be traversed in the forward direction may seem like quite a trick at first, but it's actually pretty simple. Instead of 

operating on the sequence's first element and folding the rest, we first fold the rest and then operate on the first element:

    reverse_fold(Seq, Prev, BinaryOp) :=

       if Seq is empty then:

           Prev

         else:          // process the rest of the sequence

           BinaryOp(    // and combine with the first element

               reverse_fold(tail(seq), Prev, BinaryOp)

             , head(seq)

           )

Instead of processing each sequence element "on the way in" to the traversal, we're processing it "on the way out."

If we can process elements either "going in" or "coming back out," why not both? MPL's reverse_fold is actually a little more general than 

what we've shown you. A fourth optional argument can be used to supply an "inward," or forward, operation. So the algorithm actually 
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looks more like this:

    reverse_fold(Seq, Prev, OutOp, InOp = _1) :=

       if Seq is empty then:

           Prev

         else:

           OutOp(

               reverse_fold(

                   tail(Seq)

                 , InOp(Prev,head(Seq)) // just Prev by default

                 , OutOp

                 , InOp)

             , head(Seq)

           )

This generalization allows us to take full advantage of the inherently bidirectional pattern of a recursive sequence traversal. Note that InOp

is, by default, just a function that returns its first argument. When we don't supply InOp, it's as though Prev were passed directly to the 

recursive call.

Before we finish with low-level iteration algorithms and move on to more exciting fare, there's just one more generalization in MPL's fold

algorithm family we need to cover: Instead of iterating over elements of the sequence, we can iterate over positions, that is, iterator values. 

That's useful, for example, if we want to process consecutive subranges of the input sequence. Since we can always retrieve the element 

referenced by an iterator, it's slightly more general to fold sequence iterators with iter_fold than to fold sequence elements with plain fold. In 

pseudocode, iter_fold is defined as follows:

    iter_fold(Seq, Prev, BinaryOp) :=

       if Seq is empty then:

           Prev

         else:           // combine the first position with Prev

           iter_fold(    // and process the rest recursively

               tail(Seq)

             , BinaryOp(Prev, begin(Seq))

             , BinaryOp

           )

The main difference between fold and iter_fold is that the second argument to BinaryOp is an iterator instead of an element. Naturally, the 

full generalization, reverse_iter_fold, is provided too:

    reverse_iter_fold(Seq, Prev, OutOp, InOp = _1) :=

       if Seq is empty then:

           Prev

         else:

           OutOp(

               reverse_iter_fold(

                   tail(Seq)

                 , InOp(Prev, begin(Seq))

                 , OutOp

                 , InOp)

             , begin(Seq)

           )
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6.5. Querying Algorithms

Table 6.1 describes the MPL's sequence querying algorithms. Most of these should be immediately familiar to STL users, with the possible 

exception of contains, which is so simple and useful that it probably should have been one of the STL algorithms to begin with. Similarly to 

the corresponding STL algorithms, compare predicates default to mpl::less<_,_> but, if supplied, must induce a strict weak ordering on their 

arguments.
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Table 6.1. Sequence Querying Algorithms

Metafunction Result ::type Complexity

mpl::find<seq, T> An iterator to the first occurrence of T in seq, or 

mpl::end<seq>::type if not found.

Linear.

mpl::find_if<seq, T, pred> An iterator to the first element of seq that satisfies 

predicate pred, or mpl::end<seq>::type if not found.

Linear.

mpl::contains<seq, T> True iff seq contains T. Linear.

mpl::count<seq, T> The number of occurrences of T in seq. Linear.

mpl::count_if<seq, pred> The number of elements in seq that satisfy predicate 

pred.

Linear.

mpl::equal<seq1, seq2> True iff seq1 and seq2 contain the same elements in 

the same order.

Linear.

mpl::lower_bound<

    seq, T

  , compare

>

The earliest order-preserving position at which T

could be inserted in a sequence seq sorted 

according to comparison compare.

Logarithmic in invocations to compare. 

Logarithmic traversal of Random 

Access Sequences; linear traversal 

otherwise.

mpl::upper_bound<

    seq, T

  , compare

>

The latest order-preserving position at which T could 

be inserted in a sequence seq sorted according to 

comparison compare.

Logarithmic in invocations to compare. 

Logarithmic traversal of Random 

Access Sequences; linear traversal 

otherwise.

mpl::max_element<

    seq

  , compare

>

The first position i in seq such that for all positions j:

mpl::apply<

    compare

  , mpl::deref<i>::type

  , mpl::deref<j>::type

>::type::value == false

Linear.

mpl::min_element<

    seq

  , compare

>

The first position i in seq such that for all positions j:

mpl::apply<

    compare

  , mpl::deref<j>::type

  , mpl::deref<i>::type

>::type::value == false

Linear.
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6.6. Sequence Building Algorithms

All of MPL's sequence building algorithms follow the same pattern. It's a little bit elaborate, but as a result the algorithms are extremely 

easy to use. The pattern is as follows, for any sequence building algorithm xxxx.

There is a corresponding algorithm, reverse_xxxx, which accepts the same arguments but operates on input sequence 

elements in reverse order. We call xxxx and reverse_xxxx counterpart algorithms.

The algorithm's last argument is an optional inserter.

If the inserter is not specified:

– If the first sequence argument Seq is back-extensible, the result is as if

    mpl::back_inserter<mpl::clear<Seq>::type>

had been passed as the inserter.

– Otherwise, the result is as if the counterpart algorithm had been invoked with

    mpl::front_inserter<mpl::clear<Seq>::type>

as the inserter.

Let's see how this plays out in practice. In the following examples, v123 indicates a type with "vector properties" equivalent to 

mpl::vector_c<int, 1,2,3>. Similarly, 1876 indicates a type equivalent to mpl::list_c<int, 8,7,6>.

    // starting sequences

    typedef mpl::vector_c<int, 1, 2, 3> v123;

    typedef mpl::list_c<int, 1, 2, 3>   l123;

    // transformation

    typedef mpl::plus<_1,mpl::int_<5> > add5;

    // using the default inserters

    typedef mpl::transform<v123, add5>::type          v678;

    typedef mpl::transform<l123, add5>::type          l678;

    typedef mpl::reverse_transform<v123, add5>::type  v876;

    typedef mpl::reverse_transform<l123, add5>::type  l876;

Thus, the simple no-inserter forms produce the expected result for both front-extensible and back-extensible sequences. In order to use 

the versions with inserters, though, we have to be aware of both the algorithm's traversal direction and the properties of the sequence 
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we're building:

    // this inserter is equivalent to the default

    typedef mpl::transform<

        v123, add5, mpl::back_inserter<mpl::vector<> >

    >::type                                            v678;

    // also equivalent to the default

    typedef mpl::reverse_transform<

        l123, add5, mpl::front_inserter<mpl::list<> >

    >::type                                            l678;

    // properties of input sequence don't affect the result

    typedef mpl::reverse_transform<

        v123, add5, mpl::front_inserter<mpl::list<> >

    >::type                                            l678;

The inserter used in building a new sequence should always be determined by the front- or back-extensibility of the result sequence. The 

library's default inserter selection follows the same rule; it just happens that the properties of the result sequence when there is no 

user-supplied inserter are the same as those of the input sequence.

Table 6.2 summarizes the sequence building algorithms. Note that neither the reverse_ forms nor those with the optional inserter 

arguments are listed, but it should be possible to deduce their existence and behavior from the description above. They are also covered in 

detail in the MPL reference manual. We should note that copy and reverse are exceptions to the naming rule: They are reversed versions 

of one another, and there is neither a reverse_copy nor a reverse_reverse algorithm in the library.

Table 6.2. Sequence Building Algorithms

Metafunction Result::type

mpl::copy<seq> The elements of seq.

mpl::copy_if<seq, pred> The elements of seq that satisfy predicate pred.

mpl::remove<seq, T> A sequence equivalent to seq, but without any elements identical 

to T.

mpl::remove_if<seq, pred> Equivalent to seq, but without any elements that satisfy predicate 

pred.

mpl::replace<seq, old, new> Equivalent to seq, but with all occurrences of old replaced by new.

mpl::replace_if<seq, pred, new> Equivalent to seq, but with all elements satisfying pred replaced by 

new.

mpl::reverse<seq> The elements of seq in reverse order.

mpl::transform<seq, unaryOp>

mpl::transform<seq1, seq2,

               binaryOp>

The results of invoking unaryOp with consecutive elements of seq, 

or of invoking binaryOp with consecutive pairs of elements from 

seq1 and seq2.

mpl::unique<seq>

mpl::unique<seq, equiv>
The sequence composed of the initial elements of every subrange 

of seq whose elements are all the same. If the equivalence relation 

equiv is supplied, it is used to determine sameness.
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The sequence building algorithms all have linear complexity, and all return a sequence of the same type as their first input sequence by 

default, but using an appropriate inserter you can produce any kind of result you like.

Functional Algorithms Under Aliases

Many of these sequence building algorithms, whose names are taken from similar STL algorithms, actually originated in 

the functional programming world. For example, the two-argument version of transform is known to functional 

programmers as "map," the three-argument transform is sometimes called "zip_with," and copy_if is also known as 

"filter."

Because we've left the reverse_ algorithms out of Table 6.2 it's only fair that we point out that the form of unique that accepts an 

equivalence relation is, well, unique among all of the sequence building algorithms. The reverse_ forms of most algorithms produce the 

same elements as the normal forms do (in reverse order), but the elements of sequences produced by unique and reverse_unique for the 

same arguments may differ. For example:

    typedef mpl::equal_to<

        mpl::shift_right<_1, mpl::int_<1> >

      , mpl::shift_right<_2, mpl::int_<1> >

    > same_except_last_bit;                    // predicate

    typedef mpl::vector_c<int, 0,1,2,3,4,5> v;

    typedef unique<

         v, same_except_last_bit

    >::type                      v024;          // 0, 2, 4

    typedef reverse_unique<

         v, same_except_last_bit

    >::type                      v531;          // 5, 3, 1
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6.7. Writing Your Own Algorithms

Our first piece of advice for anyone wishing to implement a metafunction that does low-level sequence traversal is, "Leave the traversal to 

us!" It's usually much more effective to simply reuse the MPL algorithms as primitives for building higher-level ones. You could say we took 

that approach in Chapter 3, when we implemented divide_dimensions in terms of TRansform. You'll save more than just coding effort: 

MPL's primitive iteration algorithms have been specially written to avoid deep template instantiations, which can drastically slow down 

compilation or even cause it to fail.
[5]

 Many of the MPL algorithms are ultimately implemented in terms of iter_fold for the same reasons.

[5] See Appendix C for more information.

Because the MPL provides such an extensive repertoire of linear traversal algorithms, if you find you must write a metafunction that does 

its own sequence traversal, it will probably be because you need some other traversal pattern. In that case your implementation will have 

to use the same basic recursive formulation that we introduced in Chapter 1 with the binary template, using a specialization to terminate the 

recursion. We recommend that you operate on iterators rather than on successive incremental modifications of the same sequence for two 

reasons. First, it's going to be efficient for a wider variety of sequences. Not all sequences support O(1) pop_front operations, and some 

that do may have a rather high constant factor, but all iterators support O(1) incrementation via next. Second, as we saw with iter_fold, 

operating on iterators is slightly more general than operating on sequence elements. That extra generality costs very little at 

implementation time, but pays great dividends in algorithm reusability.
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6.8. Details

Abstraction

An idea that emphasizes high-level concepts and de-emphasizes implementation details. Classes in runtime C++ are one kind of 

abstraction commonly used to package state with associated processes. Functions are one of the most fundamental kinds of abstraction 

and are obviously important in any functional programming context. The MPL algorithms are abstractions of repetitive processes and are 

implemented as metafunctions. The abstraction value of algorithms in MPL is often higher than that of corresponding STL algorithms 

simply because the alternative to using them is so much worse at compile time. While we can traverse an STL sequence with a for loop 

and a couple of iterators, a hand-rolled compile-time sequence traversal always requires at least one new class template and an explicit 

specialization.

Fold

A primitive functional abstraction that applies a binary function repeatedly to the elements of a sequence and an additional value, using the 

result of the function at each step as the additional value for the next step. The STL captures the same abstraction under the name 

accumulate. MPL generalizes fold in two ways: by operating on iterators instead of elements (iter_fold) and by supplying bidirectional 

traversal (reverse_[iter_] fold).

Querying algorithms

MPL supports a variety of algorithms that return iterators or simple values; these generally correspond exactly to STL algorithms of the 

same names.

Sequence building algorithms

The STL algorithms that require Output Iterators arguments correspond to pairs of forward and backward MPL "sequence building" 

algorithms that, by default, construct new sequences of the same kind as their first input sequence. They also accept an optional inserter

argument that gives greater control over the algorithm's result.
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Inserters

In the STL tradition, a function whose name ends with inserter creates an output iterator for adding elements to a sequence. MPL uses the 

term to denote a binary metafunction packaged with an additional value, which is used as an output processor for the result elements of an 

algorithm. The default inserters used by the algorithms are front_inserter<S> and back_inserter<S>; they fold the results into S using 

push_front or push_back. Using an inserter with an algorithm is equivalent to applying fold to the algorithm's default (no-inserter) result, the 

inserter's function, and its initial state. It follows that there's no reason an inserter (or a sequence building algorithm) needs to build new 

sequences; it can produce an arbitrary result depending on its function component.
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6.9. Exercises

6-0. Use mpl::copy with a hand-built inserter to write a smallest metafunction that finds the smallest of a sequence of 

types. That is:

    BOOST_STATIC_ASSERT((

        boost::is_same<

            smallest< mpl::vector<int[2], char, double&> >::type

          , char

        >::value

    ));

Now that you've done it, is it a good way to solve that problem? Why or why not?

6-1. Rewrite the binary template from section 1.4.1 using one of the MPL sequence iteration algorithms, and write a 

test program that will only compile if your binary template is working. Compare the amount of code you wrote 

with the version using handwritten recursion presented in Chapter 1. What characteristics of the problem 

caused that result?

6-2. Because std::for_each is the most basic algorithm in the standard library, you may be wondering why we didn't 

say anything about its compile time counterpart. The fact is that unlike, for example, TRansform, the algorithm 

does not have a pure compile time counterpart. Can you offer an explanation for that fact?

6-3. Write an inserter class template called binary_tree_inserter that employs the tree template from exercise 5-10

to incrementally build a binary search tree:

    typedef mpl::copy<

          mpl::vector_c<int,17,25,10,2,11>

        , binary_tree_inserter< tree<> >

        >::type bst;

    //       int_<17>

    //       /      \

    //    int_<10>  int_<25>

    //     /    \

    // int_<2> int_<11>

    BOOST_STATIC_ASSERT(( mpl::equal<

          inorder_view<bst>

        , mpl::vector_c<int,2,10,11,17,25>

        >::value ));
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6-4. Write an algorithm metafunction called binary_tree_search that performs binary search on trees built using 

binary_tree_inserter from exercise 6-3.

    typedef binary_tree_search<bst,int_<11> >::type pos1;

    typedef binary_tree_search<bst,int_<20> >::type pos2;

    typedef mpl::end<bst>::type                     end_pos;

    BOOST_STATIC_ASSERT((!boost::is_same< pos1,end_pos >::value));

    BOOST_STATIC_ASSERT((boost::is_same< pos2,end_pos >::value));

6-5*. List all algorithms in the standard library and compare their set to the set of algorithms provided by MPL. 

Analyze the differences. What algorithms are named differently? What algorithms have different semantics? 

What algorithms are missing? Why do you think they are missing?
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Chapter 7. Views and Iterator Adaptors

Algorithms like TRansform provide one way to operate on sequences. This chapter covers the use of sequence views, a powerful 

sequence processing idiom that is often superior to the use of algorithms.

First, an informal definition:

Sequence View

A sequence view—or view for short—is a lazy adaptor that delivers an altered presentation of one or more underlying sequences.

Views are lazy: Their elements are only computed on demand. We saw examples of lazy evaluation when we covered nullary 

metafunctions in Chapter 3 and eval_if in Chapter 4. As with other lazy constructs, views can help us avoid premature errors and 

inefficiencies from computations whose results will never be used. Also sequence views sometimes fit a particular problem better than 

other approaches, yielding simpler, more expressive, and more maintainable code.

In this chapter you will find out how views work and we will discuss how and when to use them. Then we'll explore the view classes that 

come with the MPL and you will learn how to write your own.
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7.1. A Few Examples

In the following sections we'll explore a few problems that are particularly well-suited to the use of views, which should give you a better 

feeling for what views are all about. We hope to show you that the idea of views is worth its conceptual overhead, and that these cases are 

either more efficient or more natural to code using views.

7.1.1 Comparing Values Computed from Sequence Elements

Let's start with a simple problem that will give you a taste of how views work:

Write a metafunction padded_size that, given an integer MinSize and a sequence Seq of types ordered by increasing size, returns the size 

of the first element e of Seq for which sizeof(e) >= MinSize.

7.1.1.1 A First Solution

Now let's try to solve the problem with the tools we've covered so far. The fact that we're searching in a sorted sequence is a clue we'll 

want to use one of the binary searching algorithms upper_bound or lower_bound at the core of our solution. The fact that we're looking for 

a property of the first element satisfying the property narrows the choice to lower_bound, and allows us to sketch an outline of the solution:

    template<class Seq, class MinSize>

    struct padded_size

      : mpl::sizeof_<                      // the size of

            typename mpl::deref<           // the element at

                typename mpl::lower_bound< // the first position

                    Seq

                  , MinSize

                  , comparison predicate   // satisfying...

                >::type

            >::type

        >

    {};

In English, this means "return the size of the result of the element at the first position satisfying some condition," where some condition is 

determined by the comparison predicate passed to lower_bound.

The condition we want to satisfy is sizeof(e) >=MinSize. If you look up lower_bound in the MPL reference manual you'll see that its simple 

description doesn't really apply to this situation:
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Returns the first position in the sorted Sequence [i.e. Seq] where T [i.e., MinSize] could be inserted without violating 

the ordering.

After all, Seq is ordered on element size, and we don't care about the size of the integral constant wrapper MinSize; we're not planning to 

insert it. The problem with this simple description of lower_bound is that it's geared towards homogeneous comparison predicates, where T 

is a potential sequence element. Now, if you read a bit further in the lower_bound reference you'll find this entry:

    typedef lower_bound< Sequence, T, Pred >::type i;

Return type: A model of Forward Iterator

Semantics: i is the furthermost iterator in Sequence such that, for every iterator j in

    [begin<Sequence>::type, i),

    apply<Pred, deref<j>::type, T >::type::value

is true.

In English, this means that the result of lower_bound will be the last position in Sequence such that the predicate, applied to any element at 

a prior position and T, yields true. This more precise description seems as though it may work for us: We want the last position such that, 

for all elements e at prior positions, sizeof(e) <MinSize::value. Therefore, the predicate will be:

    mpl::less<mpl::sizeof_<_1>, _2>

Inserting the predicate into our complete metafunction, we are left with:

    template<class Seq, class MinSize>

    struct padded_size

      : mpl::sizeof_<

            typename mpl::deref<

                typename mpl::lower_bound<

                    Seq

                  , MinSize

                  , mpl::less<mpl::sizeof_<_1>, _2>
                >::type

            >::type

        >

    {};

7.1.1.2 Analysis

Now let's take a step back and look at what we just did. If you're like us, your code-quality spider sense has started tingling.

First of all, writing such a simple metafunction probably shouldn't require us to spend so much time with the MPL reference manual. In 

general, if you had a tough time writing a piece of code, you can expect maintainers to have an even harder time trying to read it. After all, 

the code's author at least has the advantage of knowing her own intention. In this case, the way that lower_bound deals with 

heterogeneous comparisons and the order of arguments to its predicate demanded significant study, and it probably won't be easy to 
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remember; it seems unfair to ask those who come after us to pore through the manual so they can understand what we've written. After all, 

those who come after may be us!

Secondly, even if we set aside the need to consult the reference manual, there's something odd about the fact that we're computing the 

size of sequence elements within the lower_bound invocation, and then we're again asking for the size of the element at the position 

lower_bound returns to us. Having to repeat oneself is irksome, to say the least.

7.1.1.3 A Simplification

Fortunately, that repetition actually provides a clue as to how we might improve things. We're searching in a sequence of elements ordered 

by size, comparing the size of each one with a given value and returning the size of the element we found. Ultimately, we're not at all 

interested in the sequence elements themselves: we only care about their sizes. Furthermore, if we could do the search over a sequence 

of sizes, we could use a homogeneous comparison predicate:

    template<class Seq, class MinSize>

    struct padded_size

      : mpl::deref<

            typename mpl::lower_bound<

                typename mpl::transform<

                    Seq, mpl::sizeof_<_>

                 >::type
              , MinSize

              , mpl::less<_,_>
            >::type

        >

    {};

In fact, mpl::less<_,_> is already lower_bound's default predicate, so we can simplify the implementation even further:

    template<class Seq, class MinSize>

    struct padded_size

      : mpl::deref<

            typename mpl::lower_bound<

                typename mpl::transform<

                    Seq, mpl::sizeof_<_>

               >::type

              , MinSize

            >::type

     >

    {};

Naturally—since this chapter is building a case for views—there's a problem with this simplified implementation too: it's inefficient. While

our first implementation invoked mpl::sizeof_ only on the O(log N) elements visited by lower_bound during its binary search, this one uses 

transform to greedily compute the size of every type in the sequence.

7.1.1.4 Fast and Simple
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Fortunately, we can have the best of both worlds by turning the greedy size computation into a lazy one with transform_view:

    template<class Seq, class MinSize>

    struct first_size_larger_than

      : mpl::deref>

            typename mpl::lower_bound<

                mpl::transform_view<Seq, mpl::sizeof_<_> >
              , MinSize

            >::type

        >

    {};

transform_view<S,P> is a sequence whose elements are identical to the elements of transform<S,P>, but with two important differences:

Its elements are computed only "on demand"; in other words, it's a lazy sequence.1.

Through the ::base member of any of its iterators, we can get an iterator to the corresponding position in S.
[1]

[1] We'll explain base in section 7.3.

2.

If the approach we've taken seems a little unfamiliar, it's probably because people don't usually code this way in runtime C++. However, 

once exposed to the virtues of laziness, you quickly discover that there is a whole category of algorithmic problems similar to this one, and 

that solving them using views is only natural, even at runtime.
[2]

[2] See the History section at the end of this chapter for some references to runtime views libraries.

7.1.2 Combining Multiple Sequences

Only one compile-time sequence building algorithm, TRansform, has direct support for operating on pairs of elements from two input 

sequences. If not for its usefulness, this nonuniformity in the library design could almost be called an aesthetic wart: It's merely a 

concession to convenience and consistency with the STL. For other kinds of operations on multiple sequences, or to transform tHRee or 

more input sequences, we need a different strategy.

You could code any new multi-sequence algorithm variant "by hand," but as you can probably guess, we'd rather encourage you to reuse 

some MPL tools for that purpose. There's actually a component that lets you use your trusty single-sequence tools to solve any parallel 

N-sequence problem. MPL's zip_view transforms a sequence of N input sequences into a sequence of N-element sequences composed of 

elements selected from the input sequences. So, if S is [s1, s2, s3 ...], T is [t1, t2, t3 ...], and U is [u1, u2, u3 ...], then the elements of 

zip_view<vector<S,T,U> > are [[s1, t1, u1 ...], [s2, t2, u2 ...], [s3, t3, u3 ...] ...].

For example, the elementwise sum of three vectors might be written:

    mpl::transform_view<

        mpl::zip_view<mpl::vector<V1,V2,V3> >

      , mpl::plus<

            mpl::at<_, mpl::int_<0> >

          , mpl::at<_, mpl::int_<1> >

          , mpl::at<_, mpl::int_<2> >

        >

    >
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That isn't too bad, but we have to admit that unpacking vector elements with mpl::at is both cumbersome and ugly. We can clean the code 

up using MPL's unpack_args wrapper, which transforms an N-argument lambda expression like mpl::plus<_,_,_> into a unary lambda 

expression. When applied to a sequence of N elements,

    mpl::unpack_args<lambda-expression>

extracts each of the sequence's N elements and passes them as consecutive arguments to lambda-expression.

Whew! That description is a bit twisty, but fortunately a little code is usually worth 1,000 words. This equivalent rewrite of our elementwise 

sum uses unpack_args to achieve a significant improvement in readability:

    mpl::transform_view<

        mpl::zip_view<mpl::vector<V1,V2,V3> >

      , mpl::unpack_args<mpl::plus<_,_,_> >

    >

7.1.3 Avoiding Unnecessary Computation

Even if views don't appeal to you conceptually, you should still use them to solve problems that can benefit from their lazy nature. 

Real-world examples are numerous, so we'll just supply a few here:

    // does seq contain int, int&, int const&, int volatile&,

    // or int const volatile&?

    typedef mpl::contains<

        mpl::transform_view<

            seq

          , boost::remove_cv< boost::remove_reference<_> >

        >

      , int

    >::type found;

    // find the position of the least integer whose factorial is >= n

    typedef mpl::lower_bound<

        mpl::transform_view< mpl::range_c<int,0,13>, factorial<_1> >

      , n

    >::type::base number_iter;

    // return a sorted vector of all the elements from seq1 and seq2

    typedef mpl::sort<

        mpl::copy<

            mpl::joint_view<seq1,seq2>

          , mpl::back_inserter< mpl::vector<> >

        >::type

    >::type result;

The last example above uses joint_view, a sequence consisting of the elements of its arguments "laid end-to-end." In each of these cases, 

the use of lazy techniques (views) saves a significant number of template instantiations over the corresponding eager approach.
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7.1.4 Selective Element Processing

With filter_view, a lazy version of the filter algorithm, we can process a subset of a sequence's elements without building an intermediate 

sequence. When a filter_view's iterators are incremented, an underlying iterator into the sequence "being viewed" is advanced until the 

filter function is satisfied:

    // a sequence of the pointees of all pointer elements in Seq

    mpl::transform_view<

        mpl::filter_view< Seq, boost::is_pointer<_1> >

      , boost::remove_pointer<_1>

    >
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7.2. View Concept

By now you probably have a pretty good feeling for what views are all about, but let's try to firm the idea up a bit. To begin with, this 

subsection should probably be titled "View concept" with a lowercase c, since normally when we speak of "Concepts" in C++, we're 

referring to formal interface requirements as described in Chapter 5. Views are a little more casual than that. From an interface 

perspective, a view is nothing more than a sequence, and is only a view because of two implementation details. First, as we've repeated 

until you're surely tired of reading it, views are lazy: their elements are computed only on demand. Not all lazy sequences are views, 

though. For example, range_c<...> is a familiar example of a lazy sequence, but somehow that doesn't seem much like a view onto 

anything. The second detail required for "view-ness" is that the elements must be generated from one or more input sequences.

An emergent property is one that only arises because of some more fundamental characteristics. All views share two emergent

properties. First—and this really applies to all lazy sequences since their elements are computed—views are not extensible. If you need

extensibility, you need to use the copy algorithm to create an extensible sequence from the view. Second, since iterators arbitrate all 

element accesses, most of the logic involved in implementing a sequence view is contained in its iterators.
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7.3. Iterator Adaptors

The iterators of a sequence view are examples of iterator adaptors, an important concept (lowercase c) in its own right. Just as a view is a 

sequence built upon one or more underlying sequences, an iterator adaptor is an iterator that adapts the behavior of one or more 

underlying iterators.

Iterator adaptors are so useful in runtime C++ that there is an entire Boost library devoted to them. Even the STL contains several iterator 

adaptors, most notably std::reverse_iterator that traverses the same sequence of elements as its underlying iterator, but in the opposite 

order. The iterators of mpl::filter_view are another example of an iterator traversal adaptor. An iterator access adaptor accesses different 

element values from its underlying iterator, like the iterators of mpl::transform_view do.

Because you can access a std::reverse_iterator's underlying iterator by calling its base() member function, MPL adaptors provide access to 

their underlying iterators via a nested ::base type. In all other respects, an iterator adaptor is just like any other iterator. It can have any of

the three iterator categories—possibly different from its underlying iterator(s)—and all of the usual iterator requirements apply.
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7.4. Writing Your Own View

Since most of a sequence view's smarts are in its iterators, it stands to reason that most of the work of implementing a view involves 

implementing an iterator adaptor. Let's whip up an iterator for zip_view to see how it's done.

Since zip_view operates on a sequence of input sequences, it's natural that its iterator should operate on a sequence of iterators into those 

input sequences. Let's give our zip_iterator an iterator sequence parameter:

    template <class IteratorSeq>

    struct zip_iterator;

The MPL's zip_iterator models the least refined concept of any of its component iterators, but for the sake of simplicity our zip_iterator will 

always be a forward iterator. The only requirements we need to satisfy for a forward iterator are dereferencing with mpl::deref and 

incrementing with mpl::next. To dereference a zip iterator we need to dereference each of its component iterators and pack the results into 

a sequence. Taking advantage of the default definition of mpl::deref, which just invokes its argument as a metafunction, the body of 

zip_iterator is defined thus:

    template <class IteratorSeq>

    struct zip_iterator

    {

        typedef mpl::forward_iterator_tag category;

        typedef typename mpl::transform<

            IteratorSeq

          , mpl::deref<_1>

        >::type type;
    };

Similarly, to increment a zip iterator we need to increment each of its component iterators:

    namespace boost { namespace mpl

    {

      // specialize next<...> for zip_iterator

      template <class IteratorSeq>

      struct next<::zip_iterator<IteratorSeq> >

      {

          typedef ::zip_iterator<

              typename transform<

                  IteratorSeq

                , next<_1>

              >::type

          > type;

      };

    }}
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The one remaining element we might want to add to the body of zip_iterator, as a convenience, is a ::base member that accesses the 

iterators being adapted. In an iterator adaptor for a single iterator, ::base would just be that one iterator; in this case, though, it will be a 

sequence of underlying iterators:

    template <class IteratorSeq>

    struct zip_iterator

    {

        typedef IteratorSeq base;

        ...

    };

Now there's almost nothing left to do for zip_view; it's just a sequence that uses zip_iterator. In fact, we can build zip_view out of 

iterator_range:

    template <class Sequences>

    struct zip_view

      : mpl::iterator_range<

            zip_iterator<

                typename mpl::transform_view<

                    Sequences, mpl::begin<_1>

                >::type

            >

          , zip_iterator<

                typename mpl::transform_view<

                    Sequences, mpl::end<_1>

                >::type

            >

        >

    {};
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7.5. History

There is a long history of lazy evaluation and lazy sequences in programming, especially in the functional programming community. The 

first known C++ example of the "view" concept appeared in 1995, in a (runtime) library by Jon Seymour, called, aptly, Views [Sey96]. 

Interestingly, the approach of the views library was inspired more by database technology than by work in functional programming. A more 

complete treatment of the view concept appeared in the View Template Library (VTL), by Martin Wieser and Gary Powell, in 1999 [WP99, 

WP00]. By 2001, implementing and adapting C++ iterators were recognized as important tasks in their own right, and the Boost Iterator 

Adaptor Library was developed [AS01a].
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7.6. Exercises

7-0. Write a test program that exercises our zip_view implementation. Try to arrange your program so that it will 

only compile if the tests succeed.

7-1. Our implementation of zip_iterator uses TRansform to generate its nested ::type, but the one in MPL uses 

transform_view instead. What advantage does the MPL approach have?

7-2. Modify zip_iterator so that its ::iterator_category reflects the least-refined concept modeled by any of its 

underlying iterators. Extend the iterator implementation to satisfy all potential requirements of the computed 

category.

7-3. Use mpl::joint_view to implement a rotate_view sequence view, presenting a shifted and wrapped view onto the 

original sequence:

    typedef mpl::vector_c<int,5,6,7,8,9,0,1,2,3,4> v;

    typedef rotate_view<

        v

      , mpl::advance_c<mpl::begin<v>::type,5>::type

    > view;

    BOOST_STATIC_ASSERT(( mpl::equal<

        view

      , mpl::range_c<int,0,10>

    >::value ));

7-4. Design and implement an iterator adaptor that adapts any Random Access Iterator by presenting the elements 

it traverses in an order determined by a sequence of nonnegative integer indices. Make your 

permutation_iterator a forward iterator.

7-5. Change the permutation iterator from exercise 7-4 so its traversal category is determined by the category of the 

sequence of indices.

7-6. Implement a permutation_view using your permutation iterator adaptor, so that:

    permutation_view<

        mpl::list_c<int,2,1,3,0,2>     // indices

      , mpl::vector_c<int,11,22,33,44> // elements

    >

yields sequence [33,22,44,11,33]
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7-7. Design and implement a reverse iterator adaptor with semantics analogous to those of std::reverse_iterator. 

Make its category the same as the category of the underlying iterator. Use the resulting iterator to implement a 

reverse_view template.

7-8. Implement a crossproduct_view template that adapts two original sequences by presenting all possible pairs of 

their elements in a right cross product order.
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Chapter 8. Diagnostics

Because C++ metaprograms are executed during compilation, debugging presents special challenges. There's no debugger that allows us

to step through metaprogram execution, set breakpoints, examine data, and so on—that sort of debugging would require interactive

inspection of the compiler's internal state. All we can really do is wait for the process to fail and then decipher the error messages it dumps

on the screen. C++ template diagnostics are a common source of frustration because they often have no obvious relationship to the cause

of the error and present a great deal more information than is useful. In this chapter we'll discuss how to understand the sort of errors

metaprogrammers typically encounter, and even how to bend these diagnostics to our own nefarious purposes.

The C++ standard leaves the specifics of error reporting entirely up to the compiler implementor, so we'll be discussing the behaviors of 

several different compilers, often in critical terms. Because your compiler's error messages are all the help you're going to get, your choice 

of tools can have a huge impact on your ability to debug metaprograms. If you're building libraries, your clients' choice of tools will affect

their perception of your code—and the time you spend answering questions—when mistakes are made. Therefore, we suggest you pay

close attention even when we're discussing a compiler you don't normally use: You may discover that you'd like to have it in your kit, or that

you'll want to do something special to support clients who may use it. Likewise, if it seems as though we're attacking your favorite tool, we

hope you won't be offended!
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8.1. Debugging the Error Novel

The title of this section is actually taken from another book [VJ02], but it's so wonderfully apt that we had to use it ourselves. In fact, 

template error reports so often resemble War and Peace in approachability that many programmers ignore them and resort to random 

code tweaks in the hope of making the right change. In this section we'll give you the tools to skim these diagnostic tomes and find your 

way right to the problem.

Note

We'll be looking at examples of error messages, many of which would be too wide to fit on the page if presented without 

alteration. In order to make it possible to see these messages, we've broken each long line at the right margin, and 

where neccessary added a blank line afterwards to separate it from the line following.

8.1.1 Instantiation Backtraces

Let's start with a simple (erroneous) example. The following code defines a simplistic compile-time "linked list" type structure, and a 

metafunction designed to compute the total size of all the elements in a list:

    struct nil {};                     // the end of every list

    template <class H, class T = nil>  // a list node, e.g:

    struct node                        // node<X,node<Y,node<Z> > >

    {

        typedef H head; typedef T tail;

    };

    template <class S>

    struct total_size

    {

        typedef typename total_size<   // total size of S::tail

            typename S::tail

        >::type tail_size;             // line 17

        typedef boost::mpl::int_<      // add size of S::head

            sizeof(S::head)

            + tail_size::value         // line 22

        > type;
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    };

The bug above is that we've omitted the specialization needed to terminate the recursion of total_size. If we try to use it as follows:

    typedef total_size<

        node<long, node<int, node<char> > >

    >::type x;                          // line 27

we get an error message something like this one generated by version 3.2 of the GNU C++ compiler (GCC):

    foo.cpp: In instantiation of 'total_size<nil>':

    foo.cpp:17:   instantiated from 'total_size<node<char, nil> >'

    foo.cpp:17:   instantiated from 'total_size<node<int,

    node<char, nil > > >'

    foo.cpp:17:   instantiated from 'total_size<node<long int,

    node<int, node<char, nil> > > >'

    foo.cpp:27:   instantiated from here

    foo.cpp:17: no type named 'tail' in 'struct nil'

    continued...

The first step in getting comfortable with long template error messages is to recognize that the compiler is actually doing you a favor by 

dumping all that information. What you're looking at is called an instantiation backtrace, and it corresponds almost exactly to a runtime 

call stack backtrace. The first line of the error message shows the metafunction call where the error occurred, and each succeeding line 

that follows shows the metafunction call that invoked the call in the line that precedes it. Finally, the compiler shows us the low-level cause 

of the error: we're treating the nil sentinel as though it were a node<...> by trying to access its ::tail member.

In this example it's easy to understand the error simply by reading that last line, but as in runtime programming, a mistake in an outer call 

can often cause problems many levels further down. Having the entire instantiation backtrace at our disposal helps us analyze and 

pinpoint the source of the problem.

Of course, the result isn't perfect. Compilers typically try to "recover" after an error like this one and report more problems, but to do so 

they must make some assumptions about what you really meant. Unless the error is as simple as a missing semicolon, those assumptions 

tend to be wrong, and the remaining errors are less useful:

    ...continued from above

    foo.cpp:22: no type named 'tail' in 'struct nil'

    foo.cpp:22: 'head' is not a member of type 'nil'

    foo.cpp: In instantiation of 'total_size<node<char, nil> >':

    foo.cpp:17:   instantiated from 'total_size<node<int, node<char,

    nil> > >'

    foo.cpp:17:   instantiated from 'total_size<node<long int, node<

    int, node<char, nil> > > >'

    foo.cpp:27:   instantiated from here

    foo.cpp:17: no type named 'type' in 'struct total_size<nil>'

    foo.cpp:22: no type named 'type' in 'struct total_size<nil>'

    ...many lines omitted here...

    foo.cpp:27: syntax error before ';'token

In general, it's best to simply ignore any errors after the first one that results from compiling any source file.
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8.1.2 Error Formatting Quirks

While every compiler is different, there are some common themes in message formatting that you may learn to recognize. In this section 

we'll look at some of the advanced error-reporting features of modern compilers.

8.1.2.1 A More Realistic Error

Most variations in diagnostic formatting have been driven by the massive types that programmers suddenly had to confront in their error 

messages when they began using the STL. To get an overview, we'll examine the diagnostics produced by three different compilers for this 

ill-formed program:

    # include <map>

    # include <list>

    # include <iterator>

    # include <string>

    # include <algorithm>

    using namespace std;

    void copy_list_map(list<string> & l, map<string, string>& m)

    {

        std::copy(l.begin(), l.end(), std::back_inserter(m));

    }

Although the code is disarmingly simple, some compilers respond with terribly daunting error messages. If you're like us, you may find 

yourself fighting to stay awake when faced with the sort of unhelpful feedback that we're about to show you. If so, we urge you to grab 

another cup of coffee and stick it out: The point of this section is to become familiar enough with common diagnostic behaviors that you 

can quickly see through the mess and find the salient information in any error message. After we've gone through a few examples, we're 

sure you'll find the going easier.

With that, let's throw the code at Microsoft Visual C++ (VC++) 6 and see what happens.

    C:\PROGRA~1\MICROS~4\VC98\INCLUDE\xutility(19) : error C2679:

    binary '=' : no operator defined which takes a right-hand operand

    of type 'class std::basic_string<char,struct std::char_traits<

    char>,class std::allocator<char> >' (or there is no acceptable

    conversion)

          foo.cpp(9) : see reference to function template

          instantiation 'class std::back_insert_iterator<class std::

          map<class std::basic_string<char, struct std::char_traits<

          char>,class std::allocator<char> >,class std::basic_string<

          char,struct std::char_traits<char>,class std::allocator<char

          > >,struct std::less<class std::basic_string<char,struct std

          ::char_traits<char>,class std::allocator<char> > >,class std

          ::allocator<class std::basic_string<char,struct std::

          char_traits<char>,class std::allocator<char> > > > > __cdecl

          std::copy(class std::list<class std::basic_string<char,

          struct std::char_traits<char>,class std::allocator<char> >,

          class std::allocator<class std::basic_string<char,struct std

          ::char_traits<char>,class std::allocator<char> > > >::
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          iterator,class std::list<class std::basic_string<char,struct

          std::char_traits<char>,class std::allocator<char> >,class

          std::allocator<class std::basic_string<char,struct std::

          char_traits<char>,class std::allocator<char> > > >::iterator

          ,class std::back_insert_iterator<class std::map<class std::

          basic_string<char,struct std::char_traits<char>,class std::

          allocator<char> >,class std::basic_string<char,struct std::

          char_traits<char>,class std::allocator<char> >,struct std::

          less<class std::basic_string<char,struct std::char_traits<

          char>,class std::allocator<char> > >,class std::allocator<

          class std::basic_string<char,struct std::char_traits<char>,

          class std::allocator<char> > > > >)' being compiled

    message continues...

Whew! Something obviously has to be done about that. We've only shown the first two (really long) lines of the error, but that alone is 

almost unreadable. To get a handle on it, we could copy the message into an editor and lay it out with indentation and line breaks, but it 

would still be fairly unmanageable: Even with no real formatting it nearly fills a whole page!

8.1.2.2 typedef Substitution

If you look closely, you can see that the long type

    class std::basic_string<char, struct std::char_traits<char>,

                            class std::allocator<char> >

is repeated twelve times in just those first two lines. As it turns out, std::string happens to be a typedef (alias) for that type, so we could 

quickly simplify the message using an editor's search-and-replace feature:

    C:\PROGRA~1\MICROS~4\VC98\INCLUDE\xutility(19) : error C2679:

    binary '=' : no operator defined which takes a right-hand operand

    of type 'std::string' (or there is no acceptable conversion)

        foo.cpp(9) : see reference to function template instantiation

        'class std::back_insert_iterator<class std::map<std::string,

        std::string,struct std::less<std::string>,class

        std::allocator<std::string> > > __cdecl std::copy(class

        std::list<std::string,class std::allocator<std::string>

        >::iterator,class std::list<std::string,class std::allocator<

        std::string> >::iterator,class std::back_insert_iterator<

        class std::map<std::string,std::string,struct std::

        less<std::string>,class std::allocator<std::string> > >)'

        being compiled

That's a major improvement. Once we've made that change, the project of manually inserting line breaks and indentation so we can 

analyze the message starts to seem more tractable. Strings are such a common type that a compiler writer could get a lot of mileage out of 

making just this one substitution, but of course std::string is not the only typedef in the world. Recent versions of GCC generalize this 

transformation by remembering all namespace-scope typedefs for us so that they can be used to simplify diagnostics. For example, GCC 

3.2.2 says this about our test program:
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    ...continued messages

    /usr/include/c++/3.2/bits/stl_algobase.h:228: no match for '

       std::back_insert_iterator<std::map<std::string, std::string,

       std::less<std::string>, std::allocator<std::pair<const

       std::string, std::string> > > >& = std::basic_string<char,

       std::char_traits<char>, std::allocator<char> >&' operator

    messages continue...

It's interesting to note that GCC didn't make the substitution on the right hand side of the assignment operator. As we shall soon see, 

however, being conservative in typedef substitution might not be such a bad idea.

8.1.2.3 "With" Clauses

Take a look back at our revised VC++ 6 error message as it appears after the std::string substitution. You can almost see, if you squint at it 

just right, that there's an invocation of std::copy in the second line. To make that fact more apparent, many compilers separate actual 

template arguments from the name of the template specialization. For example, the final line of the GCC instantiation backtrace preceding 

the error cited above is:

    /usr/include/c++/3.2/bits/stl_algobase.h:349: instantiated from

    '_OutputIter std::copy(_InputIter, _InputIter, _OutputIter)

    [with _InputIter = std::_List_iterator<std::string, std::string&,

    std::string*>, _OutputIter = std::back_insert_iterator<std::map<

    std::string, std::string, std::less<std::string>, std::allocator<

    std::pair<const std::string, std::string> > > >]'
    messages continue...

Reserved Identifiers

The C++ standard reserves identifiers that begin with an underscore and a capital letter (like _InputIter) and identifiers 

containing double-underscores anywhere (e.g., __function__) for use by the language implementation. Because we're 

presenting diagnostics involving the C++ standard library, you'll see quite a few reserved identifiers in this chapter. Don't 

be misled into thinking it's a convention to emulate, though: The library is using these names to stay out of our way, but if 

we use them our program's behavior is undefined.

The "with" clause allows us to easily see that std::copy is involved. Also, seeing the formal template parameter names gives us a useful 

reminder of the concept requirements that the copy algorithm places on its parameters. Finally, because the same type is used for two 

different formal parameters, but is spelled out only once in the "with" clause, the overall size of the error message is reduced. Many of the 

compilers built on the Edison Design Group (EDG) front-end have been doing something similar for years.

Microsoft similarly improved the VC++ compiler's messages in version 7, and also added some helpful line breaks:

    foo.cpp(10) : see reference to function template instantiation

    '_OutIt std::copy(_InIt,std::list<_Ty,_Ax>::iterator,
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    std::back_insert_iterator<_Container>)' being compiled

    with

    [

        _OutIt=std::back_insert_iterator<std::map<std::string,std

        ::string,std::less<std::string>,std::allocator<std::pair<

        const std::string,std::string>>>>,

        _InIt=std::list<std::string,std::allocator<std::string>>::

        iterator,

        _Ty=std::string,

        _Ax=std::allocator<std::string>,

        _Container=std::map<std::string,std::string,std::less<std

        ::string>,std::allocator<std::pair<const std::string,std::

        string>>>

    ]

Unfortunately, we also begin to see some unhelpful behaviors in VC++ 7.0. Instead of listing _InIt and _OutIt twice in the function signature, 

the second and third parameter types are written out in full and repeated in the "with" clause. There's a bit of a ripple effect here, because 

as a result _Ty and _Ax, which would never have shown up had _InIt and _OutIt been used consistently in the signature, also appear in a 

"with" clause.

8.1.2.4 Eliminating Default Template Arguments

In version 7.1, Microsoft corrected that quirk, giving us back the ability to see that the first two arguments to std::copy have the same type. 

Now, though, they show the full name of the std::copy specialization, so we still have to confront more information than is likely to be useful:

    foo.cpp(10) : see reference to function template instantiation '

    _OutIt std::copy<std::list<_Ty>::iterator,std::

    back_insert_iterator<_Container> >(_InIt,_InIt,_OutIt)' being

    compiled

    with

    [

        _OutIt=std::back_insert_iterator<std::map<std::string,std::

        string>>,

        _Ty=std::string,

        _Container=std::map<std::string,std::string>,

        _InIt=std::list<std::string>::iterator

    ]

    messages continue...

Had the highlighted material above been replaced with std::copy<_InIt,_OutIt>,_Ty could also have been dropped from the "with" clause.

The good news is that an important simplification has been made: std::list's default allocator argument and std::map's default allocator and 

comparison arguments have been left out. As of this writing, VC++ 7.1 is the only compiler we know of that elides default template 

arguments.
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8.1.2.5 Deep typedef Substitution

Many modern compilers try to remember if and how each type was computed through any typedef (not just those at namespace scope), so 

the type can be represented that way in diagnostics. We call this strategy deep typedef substitution, because typedefs from deep within 

the instantiation stack show up in diagnostics. For instance, the following example:

    # include <map>

    # include <vector>

    # include <algorithm>

    int  main()

    {

        std::map<int,int> a;

        std::vector<int> v(20);

        std::copy(a.begin(), a.end(), v.begin());

        return 0;

    }

produces this output with Intel C++ 8.0:

    C:\Program Files\Microsoft Visual Studio .NET 2003\VC7\INCLUDE\

    xutility(1022): error: no suitable conversion function from "std::

    allocator<std::pair<const int, int>>::value_type" to "std::

    allocator <std::_Tree<std::_Tmap_traits<int, int, std::less<int>,

    std::allocator<std::pair<const int, int>>, false>>::key_type=

    {std::_Tmap_traits<int, int, std::less<int>, std::allocator<std::

    pair<const int, int>>, false>::key_type={int}}>::value_type=

    {std::_Allocator_base<std::_Tree<std::_Tmap_traits<int, int,

            std::less<int>, std::allocator<std::pair<const int, int>>,

            false>>::key_type={std::_Tmap_traits<int, int, std::less<

            int>, std::allocator<std::pair<const int, int>>, false>::

            key_type={int}}>::value_type={std::_Tree<std::_Tmap_traits

            <int, int, std::less<int>, std::allocator<std::pair<const

            int, int>>, false>>::key_type={std::_Tmap_traits<int, int,

            std::less<int>, std::allocator<std::pair<const int, int>>,

            false>::key_type={int}}}}" exists

          *_Dest = *_First;

                   ^

   ...

What do we need to know, here? Well, the problem is that you can't assign from a pair<int, int> (the map's element) into an int (the vector's 

element). That information is in fact buried in the message above, but it's presented badly. A literal translation of the message into 

something more like English might be:

No conversion exists from the value_type of an

    allocator<pair<int,int> >

to the value_type of an
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    _allocator<

          _Tree<...>::key_type... (which is some

    _Tmap_traits<...>::key_type, which is int)

    >.

Oh, that second value_type is the value_type of an

    _Allocator_base<

          _Tree<...>::key_type... (which is some

    _Tmap_traits<...>::key_type, which is int)

    >,

which is also the key_type of a _tree<...>, which is int.

Ugh. It would have been a lot more helpful to just tell us that you can't assign from pair<int, int> into int. Instead, we're presented with a lot of 

information about how those types were derived inside the standard library implementation.

Here's a report of the same error from VC++ 7.1:

    C:\Program Files \Microsoft Visual Studio .NET 2003\Vc7 \include\

    xutility(1022) : error C2440: '=' : cannot convert from 'std::

    allocator<_Ty>::value_type' to 'std::allocator<_Ty>::value_type'

            with

            [

                _Ty=std::pair<const int,int>

            ]

            and

            [

                _Ty=std::_Tree<std::_Tmap_traits<int,int,std::less<

                int>,std::allocator<std::pair<const int,int>>,

                false>>::key_type

            ]

    ...

This message is a lot shorter, but that may not be much consolation: It appears at first to claim that allocator<_Ty>::value_type can't be 

converted to itself! In fact, the two mentions of _Ty refer to types defined in consecutive bracketed clauses (introduced by "with" and 

"and"). Even once we've sorted that out, this diagnostic has the same problem as the previous one: The types involved are expressed in 

terms of typedefs in std::allocator. It's a good thing that it's easy to remember that std::allocator's value_type is the same as its template 

argument, or we'd have no clue what types were involved here.

Since allocator<_Ty>::value_type is essentially a metafunction invocation, this sort of deep typedef substitution really does a number on our 

ability to debug metaprograms. Take this simple example:

   # include <boost/mpl/transform.hpp>

   # include <boost/mpl/vector/vector10.hpp>

   namespace mpl = boost::mpl;

   using namespace mpl::placeholders;

   template <class T>

   struct returning_ptr
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   {

       typedef T* type();

   };

   typedef mpl::transform<

         mpl::vector5<int&,char,long[5],bool,double>

       , returning_ptr<_1>

    >::type functions;

The intention was to build a sequence of function types returning pointers to the types in an input sequence, but the author forgot to 

account for the fact that forming a pointer to a reference type (int&) is illegal in C++. Intel C++ 7.1 reports:

    foo.cpp(19): error: pointer to reference is not allowed

          typedef T* type();

                   ^

            detected during:

              instantiation of class "returning_ptr<T> [with T=boost::

              mpl::bind1<boost::mpl::quote1<returning_ptr>, boost::mpl

              ::lambda_impl<boost::mpl::_1, boost::mpl::false_>::type>

              ::apply<boost::mpl::vector_iterator<boost::mpl::vector5<

              int &, char, long [5], bool={bool}, double>::type, boost

              ::mpl::integral_c<long, 0L>>::type, boost::mpl::void_,

              boost::mpl::void_, boost::mpl::void_, boost::mpl::void_>

              ::t1]" at line 23 of "c:/boost/boost/mpl/aux_/has_type.

              hpp"

The general cause of the error is perfectly clear, but the offending type is far from it. We'd really like to know what T is, but it's expressed in 

terms of a nested typedef: mpl::bind1<...>::t1. Unless we're prepared to crawl through the definitions of mpl::bind1 and the other MPL 

templates mentioned in that line, we're stuck. Microsoft VC++ 7.1 is similarly unhelpful:
[1]

[1] Fortunately, Microsoft's compiler engineers have been listening to our complaints, and an evaluation version of 

their next compiler only injects typedefs defined at namespace scope into its diagnostics. With any luck, this change 

will survive all the way to the product they eventually release.

    foo.cpp(9) : error C2528: 'type' : pointer to reference is illegal

            c:\boost\boost\mpl\aux_\has_type.hpp(23) : see reference

            to class template instantiation 'returning_ptr<T>' being

            compiled

            with

            [

              T=boost::mpl::bind1<boost::mpl::quote1<returning_ptr>,

              boost::mpl::lambda_impl<boost::mpl::_1>::type>::apply<

              boost::mpl::vector_iterator<boost::mpl::vector5<int &,

              char,long [5],bool,double>::type,boost::mpl::integral_c<

              long,0>>::type >::t1

          ]

GCC 3.2, which only does "shallow" typedef substitution, reports:

    foo.cpp: In instantiation of 'returning_ptr<int&>':
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    ...many lines omitted...

    foo.cpp:19: forming pointer to reference type 'int&'

This message is much more sensible. We'll explain the omitted lines in a moment.

     

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



     

8.2. Using Tools for Diagnostic Analysis

Though their efforts sometimes backfire, compiler vendors are clearly going out of their way to address the problem of unreadable template 

error messages. That said, even the best error message formats can still leave a lot to be desired when a bug bites you from deep within a 

nested template instantiation. Fortunately, software tools can be an immense help, if you follow three suggestions.

8.2.1 Get a Second Opinion

Our first recommendation is to keep a few different compilers on hand, just for debugging purposes. If one compiler emits an inscutable

error message, another one will likely do better. When something goes wrong, a compiler may guess at what you meant in order to report

the mistake, and it often pays to have several different guesses. Also, many compilers have intrinsic deficiencies when it comes to error

reporting. For example, though it is an otherwise excellent compiler—and one of the very fastest in our timing tests—Metrowerks

CodeWarrior Pro 9 often fails to output filenames and line numbers for each "frame" of its instantiation backtrace, which can make the

offending source code hard to find. If you need to trace the source of the error, you may want to try a different toolset.

Tip

If you don't have the budget to invest in more tools, we suggest trying to find a recent version of GCC that runs on your 

platform. All versions of GCC are available for free; Windows users should get the MinGW (http://www.mingw.org) or 

Cygwin (http://www.cygwin.com) variants. If you can't bear to install another compiler on your machine, Comeau 

Computing will let you try an online version of their compiler at http://www.comeaucomputing.com/tryitout. Because 

Comeau C++ is based on the highly conformant EDG front-end, it provides an excellent way to get a quick read on 

whether your code is likely to comply with the C++ standard.

8.2.2 Use Navigational Aids

For traversing instantiation stack backtraces, it's crucial to have an environment that helps you to see the source line associated with an 

error message. If you're one of those people who usually compiles from a command shell, you may want to issue those commands from 

within some kind of integrated development environment (IDE), just to avoid having to manually open files in an editor and look up line 

numbers. Many IDEs allow a variety of toolsets to be plugged in, but for debugging metaprograms it's important that the IDE can 

conveniently step between messages in the various compilers' diagnostic formats. Emacs, for example, uses an extensible set of regular 

expressions to extract filenames and line numbers from error messages, so it can be tuned to work with any number of compilers.
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8.2.3 Clean Up the Landscape

Finally, we suggest the use of a post-processing filter such as TextFilt (http://textfilt.sourceforge.net) or STLFilt 

(http://www.bdsoft.com/tools/stlfilt.html). Both of these filters were originally designed to help programmers make sense of the types in their 

STL error messages. Their most basic features include the automatic elision of default arguments from specializations of known templates, 

and typedef substitution for std::string and std::wstring. For example, TextFilt transforms the following mess:

    example.cc:21: conversion from 'double' to non-scalar type

    'map<vector<basic_string<char, string_char_traits<char>,

    __default_alloc_template<true, 0> >,

    allocator<basic_string<char, string_char_traits<char>,

    __default_alloc_template<true, 0> > > >, set<basic_string<char,

    string_char_traits<char>, _ _default_alloc_template<true, 0> >,

    less<basic_string<char, string_char_traits<char>,

    __default_alloc_template<true, 0> > >,

    allocator<basic_string<char, string_char_traits<char>,

    __default_alloc_template<true, 0> > > >,

    less<vector<basic_string<char, string_char_traits<char>,

    __default_alloc_template<true, 0> >,

    allocator<basic_string<char, string_char_traits<char>,

    __default_alloc_template<true, 0> > > > >,

    allocator<set<basic_string<char, string_char_traits<char>,

    __default_alloc_template<true, 0> >, less<basic_string<char,

    string_char_traits<char>, _ _default_alloc_template<true, 0> > >,

    allocator<basic_string<char, string_char_traits<char>,

    __default_alloc_template<true, 0> > > > > >' requested

into the much more readable:

    example.cc:21: conversion from 'double' to non-scalar type

    'map<vector<string>,set<string>>' requested

TextFilt is interesting because it is easily customizable; you can add special handling for your own types by writing "rulesets," which are 

simple sets of regular expression-based transformations. STLFilt is not so easily customized (unless you enjoy hacking Perl), but it 

includes several command line options with which you can tune how much information you see. We find these two indispensable for 

template metaprogramming.

GCC error message reordering. Though GCC is by far our preferred compiler for metaprogram debugging, it's by no means 

perfect. Its biggest problem is that it prints the actual cause of an error following the entire instantiation backtrace. As a result, 

you often have to step through the whole backtrace before the problem becomes apparent, and the actual error is widely 

separated from the nearest instantiation frame. That's why the GCC error messages in this chapter are often shown with "many 

lines omitted...". STLFilt has two options for GCC message reordering:

-hdr:LD1:, which brings the actual error message to the top of the instantiation backtrace.

-hdr:LD2:, which is just like -hdr:LD1 but adds a copy of the final line of the backtrace (the non-template code that 

initiated the instantiation) just after the error message.

1.

Expression wrapping and indenting. No matter how much is done to filter irrelevant information from an error message, 

there's no getting around the fact that some C++ types and expressions are intrinsically complex. For example, if there were no 

default template arguments and typedefs to work with, getting a grip on the previous example would have required us to parse 

its nesting structure. STLFilt includes a -meta option that formats messages according to the conventions of this book. Even 

2.
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with default template argument elision and typedef substitution disabled, STLFilt can still help us see what's going on in the 

message:

example.cc:21: conversion from 'double' to non-scalar type

   'map<

        vector<

            basic_string<

                char, string_char_traits<char>

              , __default_alloc_template<true, 0>

            >, allocator<

                basic_string<

                    char, string_char_traits<char>

                  , __default_alloc_template<true, 0>

                >

            >

        >, set<

            basic_string<

                char, string_char_traits<char>

              , __default_alloc_template<true, 0>

            >, less<

                basic_string<

                    char, string_char_traits<char>

                  , __default_alloc_template<true, 0>

                >

            >, allocator<

                basic_string<

                    char, string_char_traits<char>

                  ' __default_alloc_template<true, 0>

                >

             >

         >, less<

             ...12 lines omitted...

         >, allocator<

             ...16 lines omitted...

         >

     >' requested

Although the message is still huge, it has become much more readable: By scanning its first few columns we can quickly 

surmise that the long type is a map from vector<string> to set<string>.

Any tool can obscure a diagnostic by applying too much filtering, and STLFilt is no exception, so we encourage you to review the 

command line options at http://www.bdsoft.com/tools/stlfilt-opts.html and choose carefully. Fortunately, since these are external tools, you 

can always fall back on direct inspection of raw diagnostics.
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8.3. Intentional Diagnostic Generation

Why would anyone want to generate a diagnostic on purpose? After spending most of this chapter picking through a morass of template 

error messages, it's tempting to wish them away. Compiler diagnostics have their place, though, even once our templates are in the hands 

of users who may be less well equipped to decipher them. Ultimately, it all comes down to one simple idea:

Guideline

Report every error at your first opportunity.

Even the ugliest compile-time error is better than silent misbehavior, a crash, or an assertion at runtime. Moreover, if there's going to be a 

compiler diagnostic anyway, it's always better to issue the message as soon as possible. The reason template error messages often 

provide no clue to the nature and location of an actual programming problem is that they occur far too late, when instantiation has reached 

deep into the implementation details of a library. Because the compiler itself has no knowledge of the library's domain, it is unable to detect 

usage errors at the library interface boundary and report them in terms of the library's abstractions. For example, we might try to compile:

   #include <algorithm>

   #include <list>

   int main()

   {

       std::list<int> x;

       std::sort(x.begin(), x.end());

   }

Ideally, we'd like the compiler to report the problem at the point of the actual programming error, and to tell us something about the

abstractions involved—iterators in this case:

   main.cpp(7) : std::sort requires random access iterators, but

   std::list<int>::iterator is only a bidirectional iterator

VC++ 7.1, however, reports:

   C:\Program Files \Microsoft Visual Studio .NET 2003\Vc7 \include\

   algorithm(1795) : error C2784:

   'reverse_iterator<_RanIt>::difference_type std::operator -(const

   std::reverse_iterator<_RanIt> &,const
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   std::reverse_iterator<_RanIt>  &)' : could not deduce template

   argument for 'const std::reverse_iterator<_RanIt> &' from

   'std::list<_Ty>::iterator'

           with

           [

              _Ty=int

           ]

   continued...

Notice that the error is reported inside some operator- implementation in the standard library's <algorithm> header, instead of in main()

where the mistake actually is. The cause of the problem is obscured by the appearance of std::reverse_iterator, which has no obvious 

relationship to the code we wrote. Even the use of operator-, which hints at the need for random access iterators, isn't directly related to 

what the programmer was trying to do. If the mismatch between std::list<int>::iterator and std::sort's requirement of random access had 

been detected earlier (ideally at the point std::sort was invoked), it would have been possible for the compiler to report the problem directly.

It's important to understand that blame for the poor error message above does not lie with the compiler. In fact, it's due to a limitation of the 

C++ language: While the signatures of ordinary functions clearly state the type requirements on their arguments, the same can't be said of 

generic functions.
[2]

 The library authors, on the other hand, could have done a few things to limit the damage. In this section we're going to 

cover a few techniques we can use in our own libraries to generate diagnostics earlier and with more control over the message contents.

[2] Several members of the C++ committee are currently working hard to overcome that limitation by making it 

possible to express concepts in C++ as first-class citizens of the type system. In the meantime, library solutions 

[SL00] will have to suffice.

8.3.1 Static Assertions

You've already seen one way to generate an error when your code is being detectably misused

   BOOST_STATIC_ASSERT(integral-constant-expression);

If the expression is false (or zero), a compiler error is issued. Assertions are best used as a kind of "sanity check" to make sure that the 

assumptions under which code was written actually hold. Let's use a classic factorial metafunction as an example:

   #include <boost/mpl/int.hpp>

   #include <boost/mpl/multiplies.hpp>

   #include <boost/mpl/equal.hpp>

   #include <boost/mpl/eval_if.hpp>

   #include <boost/mpl/prior.hpp>

   #include <boost/static_assert.hpp>

   namespace mpl = boost::mpl;

   template <class N>

   struct factorial

     : mpl::eval_if<

           mpl::equal_to<N,mpl::int_<0> >   // check N == 0

         , mpl::int_<1>                     // 0! == 1

         , mpl::multiplies<                 // N! == N * (N-1)!

               N

             , factorial<typename mpl::prior<N>::type>

           >
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        >

   {

        BOOST_STATIC_ASSERT(N::value >= 0); // for nonnegative N

   };

Computing N! only makes sense when N is nonnegative, and factorial was written under the assumption that its argument meets that 

constraint. The assertion is used to check that assumption, and if we violate it:

   int const fact = factorial<mpl::int_<-6> >::value;

we'll get this diagnostic from Intel C++ 8.1:

   foo.cpp(22): error: incomplete type is not allowed

         BOOST_STATIC_ASSERT(N::value >= 0);

         ^

             detected during instantiation of class "factorial<N>

         [with N=mpl_::int_<-6>]" at line 25

Note that when the condition is violated, we get an error message that refers to the line of source containing the assertion.

The implementation of BOOST_STATIC_ASSERT is selected by the library based on the quirks of whatever compiler you're using to

ensure that the macro can be used reliably at class, function, or namespace scope, and that the diagnostic will always refer to the line

where the assertion was triggered. When the assertion fails on Intel C++, it generates a diagnostic by misusing an incomplete type—thus

the message "incomplete type is not allowed"—though you can expect to see different kinds of errors generated on other compilers.

8.3.2 The MPL Static Assertions

The contents of the diagnostic above could hardly be more informative: not only is the source line displayed, but we can see the condition 

in question and the argument to factorial. In general, though, you can't rely on such helpful results from BOOST_STATIC_ASSERT. In this 

case we got them more by lucky accident than by design.

If the value being tested in the assertion (-6) weren't present in the type of the enclosing template, it wouldn't have been 

displayed.

1.

This compiler only displays one source line at the point of an error; had the macro invocation crossed multiple lines, the 

condition being tested would be at least partially hidden.

2.

Many compilers don't show any source lines in an error message. GCC 3.3.1, for example, reports:3.

     foo.cpp: In instantiation of 'factorial<mpl_::int_<-6> >':

     foo.cpp:25:   instantiated from here

     foo.cpp:22: error: invalid application of 'sizeof' to an

     incomplete type

Here, the failed condition is missing.

The MPL supplies a suite of static assertion macros that are actually designed to generate useful error messages. In this section we'll 

explore each of them by using it in our factorial metafunction.
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8.3.2.1 The Basics

The most straightforward of these assertions is used as follows:

   BOOST_MPL_ASSERT((bool-valued-nullary-metafunction))

Note that double parentheses are required even if no commas appear in the condition.

Here are the changes we might make to apply this macro in our factorial example:

   ...

   #include <boost/mpl/greater_equal.hpp>

   #include <boost/mpl/assert.hpp>

   template <class N>

   struct factorial

     ...

   {

       BOOST_MPL_ASSERT((mpl::greater_equal<N,mpl::int_<0> >));

   };

The advantage of BOOST_MPL_ASSERT is that it puts the name of its argument metafunction in the diagnostic. GCC now reports:

   foo.cpp: In instantiation of 'factorial<mpl_::int_<-6> >':

   foo.cpp:26:   instantiated from here

   foo.cpp:23: error: conversion from '

      mpl_::failed**********boost::mpl::greater_equal<mpl_::int_<-6>,

      mpl_::int_<0> >::***********' to non-scalar type '

      mpl_::assert<false>' requested

   foo.cpp:23: error: enumerator value for '

      mpl_assertion_in_line_23' not integer constant

Note that the violated condition is now displayed prominently, bracketed by sequences of asterisks, a feature you can count on across all 

supported compilers.

8.3.2.2 A More Likely Assertion

In truth, the diagnostic above still contains a great many characters we don't care about, but that's due more to the verbosity of using 

templates to express the failed condition -6 >= 0 than to anything else. BOOST_MPL_ASSERT is actually better suited to checking other 

sorts of conditions. For example, we might try to enforce N's conformance to the integral constant wrapper protocol as follows:

   BOOST_MPL_ASSERT((boost::is_integral<typename N::value_type>));
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To trigger this assertion, we could write:

   // attempt to make a "floating point constant wrapper"

   struct five : mpl::int_<5> { typedef double value_type; };

   int const fact = factorial<five>::value;

yielding the following diagnostic, with a much better signal-to-noise ratio than our nonnegative test:

   ...

   foo.cpp:24: error: conversion from

   'mpl_::failed************boost::is_integral<double>::************'

   to non-scalar type 'mpl_::assert<false>' requested

   ...

8.3.2.3 Negative Assertions

Negating a condition tested with BOOST_STATIC_ASSERT is as simple as preceding it with !, but to do the same thing with 

BOOST_MPL_ASSERT we'd need to wrap the predicate in mpl:: not_<...>. To simplify negative assertions, MPL provides 

BOOST_MPL_ASSERT_NOT, which does the wrapping for us. The following rephrases our earlier assertion that N is nonnegative:

   BOOST_MPL_ASSERT_NOT((mpl::less<N,mpl::int_<0> >));

As you can see, the resulting error message includes the mpl::not_<...> wrapper:

   foo.cpp:24: error: conversion from 'mpl_::failed

   ************boost::mpl::not_<boost::mpl::less<mpl_::int_<-5>,

   mpl_::int_<0> > >::************' to non-scalar type

   'mpl_::assert<false>' requested

8.3.2.4 Asserting Numerical Relationships

We suggested that BOOST_MPL_ASSERT was not very well suited for checking numerical conditions because not only the diagnostics, 

but the assertions themselves tend to incur a great deal of syntactic overhead. Writing mpl::greater_equal<x,y> in order to say x >= y is 

admittedly a bit roundabout. For this sort of numerical comparison, MPL provides a specialized macro:

   BOOST_MPL_ASSERT_RELATION(

     integral-constant, comparison-operator, integral-constant);

To apply it in our factorial metafunction, we simply write:

   BOOST_MPL_ASSERT_RELATION(N::value, >=, 0);
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In this case, the content of generated error messages varies slightly across compilers. GCC reports:

   ...

   foo.cpp:30: error: conversion from

   'mpl_::failed************mpl_::assert_relation<greater_equal, -5,

   0>::************' to non-scalar type 'mpl_::assert<false>'

   requested

   ...

while Intel says:

   foo.cpp(30): error: no instance of function template

   "mpl_::assertion_failed" matches the argument list

     argument types are: (mpl_::failed

     ************mpl_::assert_relation<  mpl_::operator>=, -5L, 0L
     >::************)

         BOOST_MPL_ASSERT_RELATION(N::value, >=, 0);

         ^

             detected during instantiation of class "factorial<N>

         [with N=mpl_::int_<-5>]" at line 33

These differences notwithstanding, the violated relation and the two integral constants concerned are clearly visible in both diagnostics.

8.3.2.5 Customized Assertion Messages

The assertion macros we've seen so far are great for a library's internal sanity checks, but they don't always generate messages in the 

most appropriate form for library users. The factorial metafunction probably doesn't illustrate that fact very well, because the predicate that 

triggers the error (N < 0) is such a straightforward function of the input. The prerequisite for computing N! is that N be nonnegative, and any 

user is likely to recognize a complaint that N >= 0 failed as a direct expression of that constraint.

Not all static assertions have that property, though: often an assertion reflects low-level details of the library implementation, rather than 

the abstractions that the user is dealing with. One example is found in the dimensional analysis code from Chapter 3, rewritten here with 

BOOST_MPL_ASSERT:

   template <class OtherDimensions>

   quantity(quantity<T,OtherDimensions> const& rhs)

     : m_value(rhs.value())

   {

       BOOST_MPL_ASSERT((mpl::equal<Dimensions,OtherDimensions>));

   }

What we'll see in the diagnostic, if this assertion fails, is that there's an inequality between two sequences containing integral constant 

wrappers. That, combined with the source line, begins to hint at the actual problem, but it's not very to-the-point. The first thing a user 

needs to know when this assertion fails is that there's a dimensional mismatch. Next, it would probably be helpful to know the identity of 

the first fundamental dimension that failed to match and the values of the exponents concerned. None of that information is immediately 

apparent from the diagnostic that's actually generated, though.
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With a little more control over the diagnostic, we could generate messages that are more appropriate for users. We'll leave the specific 

problem of generating errors for dimensional analysis as an exercise, and return to the factorial problem to explore a few techniques.

Customizing the Predicate

To display a customized message, we can take advantage of the fact that BOOST_MPL_ASSERT places the name of its predicate into the

diagnostic output. Just by writing an appropriately named predicate, we can make the compiler say anything we like—as long as it can be

expressed as the name of a class. For example:

   // specializations are nullary metafunctions that compute n>0

   template <int n>

   struct FACTORIAL_of_NEGATIVE_NUMBER

     : mpl::greater_equal<mpl::int_<n>, mpl::int_<0> >

   {};

   template <class N>

   struct factorial

     : mpl::eval_if<

           mpl::equal_to<N,mpl::int_<0> >

         , mpl::int_<1>

         , mpl::multiplies<

               N

             , factorial<typename mpl::prior<N>::type>

           >

       >

   {

       BOOST_MPL_ASSERT((FACTORIAL_of_NEGATIVE_NUMBER<N::value>));

   };

Now GCC reports:

   foo.cpp:30: error: conversion from 'mpl_::failed

   ************FACTORIAL_of_NEGATIVE_NUMBER<-5>::************' to

   non-scalar type 'mpl_::assert<false>' requested

One minor problem with this approach is that it requires interrupting the flow of our code to write a predicate at namespace scope, just for 

the purpose of displaying an error message. This strategy has a more serious downside, though: The code now appears to be asserting 

that N::value is negative, when in fact it does just the opposite. That's not only likely to confuse the code's maintainers, but also its users. 

Don't forget that some compilers (Intel C++ in this case) will display the line containing the assertion:

   foo.cpp(30): error: no instance of function template

   "mpl_::assertion_failed" matches the argument list

        argument types are: (mpl_::failed

        ************FACTORIAL_of_NEGATIVE_NUMBER<-5>::************)

         BOOST_MPL_ASSERT((FACTORIAL_of_NEGATIVE_NUMBER<N::value>));

         ^

If we choose the message text more carefully, we can eliminate this potential source of confusion:
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    template <int n>

    struct FACTORIAL_requires_NONNEGATIVE_argument

      : mpl::greater_equal<mpl::int_<n>, mpl::int_<0> >

    {};

    ...

        BOOST_MPL_ASSERT((

            FACTORIAL_requires_NONNEGATIVE_argument<N::value>));

Those kinds of linguistic contortions, however, can get a bit unwieldy and may not always be possible.

Inline Message Generation

MPL provides a macro for generating custom messages that doesn't depend on a separately written predicate class, and therefore doesn't 

demand quite as much attention to exact phrasing. The usage is as follows:

    BOOST_MPL_ASSERT_MSG(condition, message, types);

where condition is an integral constant expression, message is a legal C++ identifier, and types is a legal function parameter list. For 

example, to apply BOOST_MPL_ASSERT_MSG to factorial, we could write:

    BOOST_MPL_ASSERT_MSG(

        N::value >= 0, FACTORIAL_of_NEGATIVE_NUMBER, (N));

yielding this message from GCC:

    foo.cpp:31: error: conversion from 'mpl_::failed

    ****************(factorial<mpl_::int_<-5>

    >::FACTORIAL_of_NEGATIVE_NUMBER::****************)

    (mpl_::int_<-5>)' to non-scalar type 'mpl_::assert<false>'

    requested.

We've highlighted the message and the types arguments where they appear in the diagnostic above. In this case, types isn't very 

interesting, since it just repeats mpl_::int_<-5>, which appears elsewhere in the message. We could therefore replace (N) in the assertion 

with the empty function parameter list, (), to get:

    foo.cpp:31: error: conversion from 'mpl_::failed

    ****************(factorial<mpl_::int_<-5>

    >::FACTORIAL_of_NEGATIVE_NUMBER::****************)

    ()' to non-scalar type 'mpl_::assert<false>'

    requested.

In general, even using BOOST_MPL_ASSERT_MSG requires some care, because the types argument is used as a function parameter list, 

and some types we might like to display have special meaning in that context. For example, a void parameter will be omitted from most 

diagnostics, since int f(void) is the same as int f(). Furthermore, void can only be used once: int f(void, void) is illegal syntax. Also, array and 
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function types are interpreted as pointer and function pointer types respectively:

    int f(int x[2], char* (long))

is the same as

    int f(int *x, char* (*)(long))

In case you don't know enough about the types ahead of time to be sure that they'll be displayed correctly, you can use the following form, 

with up to four types:

    BOOST_MPL_ASSERT_MSG(condition, message, (types<types >));

For example, we could add the following assertion to factorial, based on the fact that all integral constant wrappers are classes:

    BOOST_MPL_ASSERT_MSG(

        boost::is_class<N>::value

      , NOT_an_INTEGRAL_CONSTANT_WRAPPER

      , (types<N>));

If we then attempt to instantiate factorial<void>, VC++ 7.1 reports:

    foo.cpp(34) : error C2664: 'mpl_::assertion_failed' : cannot

            convert parameter 1 from 'mpl_::failed

            ****************(__thiscall

            factorial<N>::NOT_an_INTEGRAL_CONSTANT_WRAPPER::*

            ***************               )(mpl_::assert_::types<T1>)

            ' to 'mpl_::assert<false>::type'

            with

            [

                N=void,

                T1=void
            ]

Since types can accept up to four arguments, the diagnostic is a little better here than on compilers that don't elide default template 

arguments. For example, the diagnostic from Intel C++ 8.0 is:

    foo.cpp(31): error: no instance of function template

    "mpl_::assertion_failed" matches the argument list

         argument types are: (mpl_::failed ****************

         (factorial<void>::NOT_an_INTEGRAL_CONSTANT_WRAPPER::

         ****************)(mpl_::assert_::types<void, mpl_::na,

         mpl_::na, mpl_::na>))

          BOOST_MPL_ASSERT_MSG(

          ^

              detected during instantiation of class "factorial<N>

              [with N=void]" at line 37
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It's also worth noticing that, while the customized predicate we wrote for use with BOOST_MPL_ASSERT was written at namespace 

scope, the message generated by BOOST_MPL_ASSERT_MSG appears as a qualified member of the scope where the assertion was 

issued (factorial<void> in this case). As a result, compilers that do deep typedef substitution have one more opportunity to insert unreadable 

type expansions in the diagnostic. For example, if we instantiate:

    mpl::transform<mpl::vector<void>, factorial<mpl::_> >

Intel C++ 8.0 generates the following:

    foo.cpp(34): error: no instance of function template

    "mpl_::assertion_failed" matches the argument list

        argument types are: (mpl_::failed

        ****************(factorial<boost::mpl::bind1<

        boost::mpl::quote1<factorial, boost::mpl::void_>,

        boost::mpl::lambda<mpl_::_,

        boost::mpl::void_>::result_>::apply<

        boost::mpl::bind1<factorial<mpl_::_>,

        mpl_::_2>::apply<boost::mpl::aux::fold_impl<1,

        boost::mpl::begin<boost::mpl::vector<void, mpl_::na,

        mpl_::na, mpl_::na, mpl_::na, mpl_::na, mpl_::na, mpl_::na,

        mpl_::na, mpl_::na, mpl_::na, mpl_::na, mpl_::na, mpl_::na,

        mpl_::na, mpl_::na, mpl_::na,

        ...four similar long lines omitted...

          mpl_::na>::t1>::NOT_an_INTEGRAL_CONSTANT_WRAPPER::
          ****************)(mpl_::assert_::types<boost::mpl::bind1<

          line continued...

          ...five similar lines omitted...

        BOOST_MPL_ASSERT_MSG(

        ^

The omission of nine long lines above actually contributes a great deal to the message's readability, so you can probably imagine what it's 

like to read the whole thing.

Selecting a Strategy

Both approaches to customized error generation we've covered here have strengths and weaknesses: BOOST_MPL_ASSERT_MSG is 

convenient, minimal, and highly expressive of its intent, but it can require some care if asked to display void, array, and function types, and 

it can have readability problems, especially in the presence of deep typedef substitution. Using custom predicates with 

BOOST_MPL_ASSERT offers a little more control over message formatting, though it takes more work, complicates code somewhat, and 

can be confusing unless the predicate name is carefully chosen. Clearly there's no perfect strategy for all needs, so consider the trade-offs 

carefully before selecting one.

8.3.3 Type Printing
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When a template metaprogram misbehaves, it can begin to seem like an impenetrable black box, especially if the problem doesn't 

manifest itself in a compilation error, or if the error shows up long after the actual problem has occurred. Sometimes it's useful to 

intentionally generate a diagnostic just, well, for diagnostic purposes. For most situations, this simple tool suffices:

    template <class T> struct incomplete;

If at any point we need to know what some type T is, all we have to do is to cause incomplete<T> to be instantiated, for example:

    template <class T>

    struct my_metafunction

    {

        incomplete<T> x; // temporary diagnostic

        typedef ... type;

     };

Most C++ compilers, indeed, all the compilers we've seen, will generate an error message that shows us what T is.
[3]

 This technique is 

subject to the usual caveats: Compilers that do deep typedef substitution may show us an arbitrarily complicated name for T, depending on 

how T was computed.

[3] Note that we did not write typedef incomplete<T> x; because that would not cause incomplete<T> to be 

instantiated, as described in Chapter 2.

One time-honored technique for debugging C/C++ programs is to "stick printfs in the code" and examine the resulting execution log. The 

incomplete<T> technique is more analagous to a runtime assertion, though: It shows us the program state in question and causes a hard 

error. Remember when we said that most C++ compilers don't recover well from errors? Even if your compiler forges ahead after 

instantiating incomplete<T>, the results are about as reliable as what you'd expect from a program that had reported runtime data corruption.

To generate a compile-time execution log, we'd need a way to generate a non-error diagnostic message—a warning. Because there's no

single construct that will cause all compilers to generate a warning (indeed, most compilers let you disable warnings altogether), MPL has a

print metafunction that is just like identity except that it is tuned to generate a warning on a variety of popular compilers with their "usual 

settings." For example, the following program:

    template <class T, class U>

    struct plus_dbg

    {

        typedef typename

          mpl::print< typename mpl::plus<T,U>::type >::type

        type;

    };

    typedef mpl::fold<

        mpl::range_c<int,1,6>

      , mpl::int_<0>

      , plus_dbg<_1,_2>

    >::type sum;

produces the following diagnostics (among others) with GCC:
[4]

[4] One peculiar quirk of GCC is that the use of metafunction forwarding interferes slightly with diagnostics. Had we 

instead written:
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          template <class T, class U>

          struct plus_dbg

            : mpl::print< typename mpl::plus<T,U>::type >

          {};

The diagnostics beginning with "In instantiation of..." would have had a filename label somewhere in MPL's 

implementation headers instead of in foo.cpp. While this problem is not enough to prevent us from recommending 

metafunction forwarding with GCC, it is worth being aware of.

    foo.cpp: In instantiation of

    'boost::mpl::print<boost::mpl::integral_c<int, 1> >':

    ...

    foo.cpp:72: warning: comparison between signed and unsigned

    integer expressions

    foo.cpp: In instantiation of

    'boost::mpl::print<boost::mpl::integral_c<int, 3> >':

    ...

    foo.cpp:72: warning: comparison between signed and unsigned

    integer expressions

    foo.cpp: In instantiation of

    'boost::mpl::print<boost::mpl::integral_c<int, 6> >':

    ...

    foo.cpp:72: warning: comparison between signed and unsigned

    integer expressions

    foo.cpp: In instantiation of

    'boost::mpl::print<boost::mpl::integral_c<int, 10> >':

    ...

    foo.cpp:72: warning: comparison between signed and unsigned

    integer expressions

    foo.cpp: In instantiation of

    'boost::mpl::print<boost::mpl::integral_c<int, 15> >':

    ...

    foo.cpp:72: warning: comparison between signed and unsigned

    integer expressions

Naturally, these messages are mixed into the compiler's instantiation backtraces. This is another area where diagnostic filtering tools can 

help: STLFilt has an option (/showback:N) that eliminates the backtrace material shown as the ellipsis (...) above, so that we're left with a 

simplified trace of compile time execution. Of course, if you have access to UNIX tools, piping the errors into "grep print" might do the job 

just as easily.
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8.4. History

There is a long history of intentional compile time error generation in C++. As mentioned in Chapter 1, the very first C++ template 

metaprogram was a novelty written by Erwin Unruh that printed a series of prime numbers in template error messages [Unruh94]!

We first heard of the idea of encoding readable error messages in the names of types and functions from Dietmar Kuehl in 1998. By 2000, 

BOOST_STATIC_ASSERT [Mad00] had appeared and there were at least two efforts applying Kuehl's technique to improve error 

messages generated by STL implementations: "Static Interfaces" by Brian McNamara and Yannis Smaragdakis [MS00a] and the "Boost 

Concept Checking Library" by Jeremy Siek [SL00].
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8.5. Details

Instantiation backtraces

Those long error messages you get when templates fail to compile are actually the compile time equivalent of the runtime call stack: They 

often contain valuable information that can help lead you to the source of a problem, if you can manage not to be overwhelmed by them. 

Compiler vendors have taken a number of steps, including the use of "with" clauses and eliminating default template parameters, to make 

them more readable.

typedef substitution

Many compilers, including Microsoft Visual C++ 7 and 7.1 and most EDG-based compilers, attempt to improve error messages by 

presenting types the way they were originally named in code. For example, they may show a typedef name instead of presenting the 

underlying type referred to by that typedef. We feel that substitution of class-template scoped typedefs actually hurts metaprogram 

debugging more than it helps, since metafunction results are always accessed through nested typedefs. We suggest you keep at least one 

compiler handy that doesn't do deep typedef substitution. GCC is one such a compiler, and it's free.

Additional tools

Because instantiation backtraces report errors at many lines of a program, we suggest you get an IDE of some kind that automatically 

displays the program text associated with line numbers in error messages, so you can quickly inspect the code at each level of an 

instantiation stack backtrace. We also suggest you try using a post-processing filter such as STLFilt to improve the readability of your 

template error messages.

Static assertions

BOOST_STATIC_ASSERT, BOOST_MPL_ASSERT_RELATION, and straightforward uses of BOOST_MPL_ASSERT are great tools for 

adding sanity checks to your metaprograms. They're also useful for writing metaprogram tests that are expected to compile only if the code 

is correct. For enforcing constraints on the way your metaprograms are used, we suggest something that produces more readable error 

messages.
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Customized errors

We only know of one reasonably portable way to generate a specific message when a template is instantiated: embed it in the name of a 

type or function that will show up in a real compiler diagnostic. We covered two approaches: BOOST_MPL_ASSERT with hand written 

predicate metafunctions and BOOST_MPL_ASSERT_MSG. Each has its strengths and weaknesses. Though workable, neither is really a 

clean solution. In the future, we hope direct language support for custom diagnostics will be available.

Type printing

The "customized error message" technique can be extended to warnings if you need to examine a type without disturbing metaprogram 

execution. The mpl::print<T> class template can be used to generate such a warning on a wide variety of compilers, depending on your 

choice of compilation options.
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8.6. Exercises

8-0. Write and test a metaprogram that prints a series of prime numbers using mpl::print. Compare your program to 

Erwin Unruh's original code at http://www.erwin-unruh.de/primorig.html.

8-1. Rewrite the assertions in the dimensional analysis code from Chapter 3 to optimize the diagnostics for library 

users. Analyze the resulting messages as generated by a few different compilers.

8-2. MPL contains special macros for asserting numeric relations. because, when applicable, they present a much 

more convenient interface and higher-quality error messages than plain Boolean assertions do. What other 

category of test might deserve/benefit from a similar approach? Design an interface for handling these cases, 

and describe the kind of output you'd like to see it generate.

8-3. Implement the interface you designed in exercise 8-2 using one of the two customized message generation 

techniques discussed in this chapter.

8-4. Fix the hand written error reporting in returning_ptr in section 8.3.3 so that the salient information appears in the 

first line of the diagnostic on GCC.
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Chapter 9. Crossing the Compile-Time/Runtime 

Boundary

Remember runtime execution? We realize it's been a while, having spent so long in the stratospheric world of compile-time programming, 

but we're going to ask you to join us back on solid ground now. Ultimately, any interesting program has to do something at runtime. This

chapter is about crossing the boundary between compile time and runtime C++—the "ozone layer," if you will—so that our metaprograms

can make a difference in the lives of real users. There are probably an infinite number of ways to make that journey in C++, but some have

proven themselves to be more useful than others; we'll cover a few of the most commonly used techniques next.
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9.1. for_each

The simplest STL algorithm ought to have an MPL analogue, and so it does. Just to review, std::for_each TRaverses a (runtime) sequence 

and invokes some (runtime) function object on each element. Similarly, mpl::for_each TRaverses a compile-time sequence and invokes 

some runtime function object on it. Although std::for_each operates only at runtime, mpl::for_each is a hybrid, straddling the compile-time 

and runtime worlds.

Why Runtime Function Objects?

If you're wondering why mpl::for_each takes a runtime function object instead of a metafunction, think of it this way: 

Normally, the function object used with std::for_each returns void, but even if it does have a result, that result is 

discarded. In other words, that function object, if it does anything at all, has to modify the program state somehow. Since 

functional programming is inherently stateless and template metaprograms are functional, there wouldn't be much point 

in invoking a metafunction on each element of the sequence unless we were going to do something with the result.

9.1.1 Type Printing

Have you been wondering how to get a look at the contents of your type sequences? Provided we're using a compiler that produces 

meaningful strings from std::type_info::name, we can print each element of a type sequence as follows:

    struct print_type

    {

        template <class T>

        void operator() (T) const

        {

            std::cout << typeid(T).name() << std::endl;

        }

    };

    typedef mpl::vector<int, long, char*> s;

    int main ()

    {

        mpl::for_each<s>(print_type());

    }
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There are a few things we'd like you to notice about this code. First of all, print_type's function-call operator is templatized, because it has 

to handle whatever types happen to appear in our sequence. Except when you want to process sequences whose elements are all 

convertible to one type, your mpl::for_each function objects will need a templated (or at the very least, overloaded) function call operator.

Next, note that for_each passes us each sequence element as a value-initialized object of the corresponding element type.
[1]

 This form is 

particularly convenient if you are iterating over a sequence of integral constant wrappers, which, if you remember, are implicitly convertible 

to their corresponding runtime constants. On the other hand, it requires some special care when iterating over an ordinary type sequence: 

If the element turns out to be a reference type, a class type with no default constructor, or simply void, the algorithm will fail to compile 

since none of those types can be value-initialized.

[1] The concept of value-initialization was added to the C++ standard in its first "technical corrigendum" (TC1). To 

value-initialize an object of type T means:

If T is a class type (clause 9) with a user-declared constructor (12.1), then the 

default constructor for T is called.

If T is a non-union class type without a user-declared constructor, then every 

nonstatic data member and base-class component of T is value-initialized.

If T is an array type, then each element is value-initialized.

Otherwise, the object is zero-initialized.

We can avoid this pitfall by transforming the sequence through a little wrapper template to smooth out its rough edges:

    template <class T>

    struct wrap {};

    // contains references

    typedef mpl::vector<int&, long&, char*&> s;

    mpl::for_each<

        mpl::transform<s, wrap<_1> >::type
    >(print_type());

We'll also need to adjust our function object's signature, to account for the change in the types of arguments that will be passed:

    struct print_type

    {

        template <class T>

        void operator()(wrap<T>) const   // deduce T

        {

            std::cout << typeid(T).name() << std::endl;

        }

    };

Because this is such a common idiom, MPL provides a second form of for_each that takes a transformation metafunction as an additional 

template argument. By using this second form, we can avoid building a whole new sequence of wrap specializations:

    mpl::for_each<s, wrap<_1> >(print_type());

For each element T of s, the print_type object will be invoked with a wrap<T> argument.
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9.1.2 Type Visitation

For a more general solution to the problem of smoothing out types at the function boundary, we can apply the Visitor pattern [GHJV95]:

    struct visit_type    // generalized visitation function object

    {

        template <class Visitor>

        void operator()(Visitor) const

        {

            Visitor::visit();
        }

    };

    template <class T>   // specific visitor for type printing

    struct print_visitor

    {

        static void visit()
        {

            std::cout << typeid(T).name() << std::endl;

        }

    };

    int main()

    {

        mpl::for_each<s, print_visitor<_1> >(visit_type());

    }

Here, the visit_type function object expects its argument type to have a static visit member function, and we can build new visitor objects for 

any purpose. This is a subtle change from our earlier examples with for_each, but note: print_visitor::visit is never passed a T object. 

Instead, for_each passes an instance of print_visitor<T>, for each T in our sequence, to visit_type. The information about the type of T is 

transmitted in print_visitor's template parameter.
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9.2. Implementation Selection

In this section we'll discuss a few different ways to choose different runtime behaviors or interfaces based on the result of some compile 

time computation.

9.2.1 if Statements

The most straightforward way to control the implementation of a runtime function template is to test a static condition in an if statement, as 

follows:

    template <class T>

    void f(T x)

    {

        if (boost::is_class<T>::value)

        {

            ...implementation 1...

        }

        else

        {

            ...implementation 2...

        }

    }

Since the condition can be completely determined at compile time, many compilers will optimize away the is_class test, and will only 

generate code for the branch of the if that is selected.

This approach is clear and simple, with little or no conceptual overhead—when it works. Unfortunately, the technique isn't universally

applicable. For example, consider what happens when the function above is implemented this way:

    template <class T>

    void f(T x)

    {

        if (boost::is_class<T>::value)

        {

            std::cout << x::value;   // handle integral wrappers

        }

        else

        {

            std::cout << x;          // handle non-wrappers

        }

    }
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The intention here was for f to be able to print the value of an integral type (e.g., int) or of an integral constant wrapper (e.g., long_<5>). If we 

invoke f(42), though, we'll get a compilation error. The problem is that the entire function body needs to typecheck, including both branches 

of the if statement, and we can't access the nonexistent ::value member of an int.

9.2.2 Class Template Specialization

We can address the previous problem by moving each branch of our if statement into a distinct function: a static member function of a class 

template. By specializing the class template, we can decide which function implementation gets used:

    template <bool> // handle integral constant wrappers

    struct f_impl

    {

        template <class T>

        static void print(T x) { std::cout << x::value; }
    };

    template <>     // specialization for non-wrappers

    struct f_impl<false>

    {

        template <class T>

        static void print(T x) { std::cout << x; }
    };

    template <class T>

    void f(T x)

    {

        f_impl<boost::is_class<T>::value>::print(x);

    };

This approach is similar to the one we used to implement iter_swap in Chapter 2, and the version using mpl::if_, introduced in Chapter 4, is 

a variation on the same theme. We'll see the same basic idea evolve further when we cover structure selection later in this chapter.

9.2.3 Tag Dispatching

We already got a taste of the tag dispatching concept from our work on the tiny sequence in Chapter 5, but the fundamental idea was 

actually borrowed from generic programming in the runtime domain. Runtime tag dispatching uses function overloading to generate 

executable code based on properties of a type.

A good example can be found in the advance algorithm of most C++ standard library implementations. Though conceptually

simple—advance moves an iterator i by n positions—actually writing the algorithm is fairly complex. Depending on the traversal capabilities

of the iterator, entirely distinct implementation strategies are required. For example, if i supports random access, then advance can be 

implemented with i += n and is very efficient: constant time. Other iterators must be advanced in steps, making the operation linear in n. If i is 

bidirectional, then it makes sense for n to be negative, so we must decide at runtime whether to increment or decrement the iterator. Any 

function that decrements an iterator, however, would fail to compile when passed an iterator supporting only forward traversal. So, 

advance requires at least three different implementations.
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To select among them, we must use the concept information contained in the following category tag types:

    namespace std

    {

      struct input_iterator_tag { };

      struct forward_iterator_tag

        : input_iterator_tag { };

      struct bidirectional_iterator_tag

        : forward_iterator_tag { };

      struct random_access_iterator_tag

        : bidirectional_iterator_tag { };

    }

A tag is simply an empty class whose only purpose is to convey some information at compile time, in this case the iterator concept 

modeled by a given iterator type. Every iterator type I has an associated category tag, which can be accessed as

    std::iterator_traits<I>::iterator_category

Note that in this case the tags belong to an inheritance hierarchy that mirrors the refinement hierarchy of the concepts they represent. For 

example, every bidirectional iterator is also a forward iterator, so bidirectional_iterator_tag is derived from forward_iterator_tag.

Once again, we'll separate the three implementations into distinct function bodies, but this time we'll use overloading to select the right one 

by passing an instance of the iterator's empty tag type as an argument.

    namespace std

    {

      template <class InputIterator, class Distance>

      void __advance_impl(

          InputIterator& i

        , Distance n

        , input_iterator_tag)

      {

          while (n--) ++i;

      }

      template <class BidirectionalIterator, class Distance>

      void __advance_impl(

          BidirectionalIterator& i

        , Distance n

        , bidirectional_iterator_tag)

      {

          if (n >= 0)

            while (n--) ++i;

          else

            while (n++) --i;

      }

      template <class RandomAccessIterator, class Distance>

      void __advance_impl(

          RandomAccessIterator& i

        , Distance n

        , random_access_iterator_tag)

      {

          i += n;
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      }

      template <class InputIterator, class Distance>

      void advance(InputIterator& i, Distance n)

      {

          typedef typename

            iterator_traits<InputIterator>::iterator_category
          category;

 

          __advance_impl(i, n, category());
      }

    }

The outer advance function calls the __advance_impl overload that best matches the tag; the other overloads, which may use operations 

not implemented by a given iterator, are never instantiated. Here the inheritance hierarchy used for iterator tags works to our advantage: 

There is no __advance_impl specifically written for iterators whose category is forward_iterator_tag, but since forward_iterator_tag is 

derived from input_iterator_tag, the compiler selects the input_iterator_tag version for input iterators and forward iterators. That would not 

have been possible had we used specialization on tag types to select implementations.

Note that mpl::true_ and mpl::false_ make fine dispatching tags. In the example below, desperate_cast<T>(x) is equivalent to 

static_cast<T>(x) unless x happens to be (a pointer to) an object of polymorphic class type, in which case desperate_cast<T>(x) is 

equivalent to dynamic_cast<T>(x).

    // implementation for polymorphic types

    template <class T, class U>

    T desperate_cast_impl2(U& x,  mpl::true_)

    {

        return dynamic_cast<T>(x); // legal iff U is polymorphic

    }

    // implementation for non-polymorphic types

    template <class T, class U>

    T desperate_cast_impl2(U& x,  mpl::false_)

    {

        return static_cast<T>(x);

    }

    // dispatcher

    template <class T, class U>

    T desperate_cast_impl(U& x)

    {

        return desperate_cast_impl2<T>(

            x

          , boost::is_polymorphic<
                typename boost::remove_pointer<U>::type

            >()
        );

    }

    // public interface

    template <class T, class U>

    T desperate_cast(U const& x) { return desperate_cast_impl<T>(x); }

    template <class T, class U>

    T desperate_cast(U& x) { return desperate_cast_impl<T>(x); }
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Because of the way the integral-valued type traits are derived from their result types, we only need to create an object of the whole 

metafunction specialization boost::is_polymorphic<...>() to produce a tag that will match mpl::true_ or mpl::false_.
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9.3. Object Generators

By this point in the book, you've probably grown somewhat comfortable with long nested template argument lists, but we're sure you 

haven't forgotten how unwieldy they can be. An object generator is a generic function used to deduce type information that might 

otherwise have to be written out the long way.

To see how that works, consider the following template, which composes two callable objects, f and g. The result is a new function object 

that, when invoked on an argument x, computes f(g(x)), yielding value of type R:

    template <class R, class F, class G>

    class compose_fg

    {

     public:

        compose_fg(F const& f, G const& g)

          : f(f), g(g)

        {}

        template <class T>

        R operator()(T const& x) const

        {

            return f(g(x));

        }

     private:

        F f;

        G g;

    };

The following example uses compose_fg to compute - sin
2
(x) for each element of a sequence.

    #include <functional>

    #include <algorithm>

    #include <cmath>

    float input[5] = {0.0, 0.1, 0.2, 0.3, 0.4};

    float output[5];

    float sin_squared(double x) { return std::sin(std::sin(x)); }

    float* ignored = std::transform(

        input, input+5, output,

      , compose_fg<float,std::negate<float>,float(*)(float)>(

           std::negate<float>(), &sin_squared

        )

    );

Whew, that compose_fg specialization certainly is an eyeful! It works, but it would probably have been easier to handcraft a 

neg_sin_squared function for this purpose than to use compose_fg. At least the result would have been more readable that way. 

Fortunately, we can avoid writing out most of the template parameters for compose_fg if we have an auxiliary object generator function:

    template <class R, class F, class G>

    compose_fg<R,F,G> compose(F const& f, G const& g)
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    {

        return compose_fg<R,F,G>(f,g);

    }

The entire purpose of compose is to serve as a vehicle for the function template argument deduction mechanism. Now the TRansform call 

can be written:

    float* ignored = std::transform(

        input, input+5, seq2

      , compose<float>(std::negate<float>(), &sin_squared)

    );

Because the compiler can deduce the type of the required compose_fg specialization from the types of the arguments to compose, there's 

no need to write the type out explicitly. Your C++ standard library's bind1st and bind2nd function templates are similar generators, yielding 

objects of type binder1st and binder2nd, respectively.
[2]

[2] The Boost Bind library—the basis for an entry in the first C++ standard technical report (TR1)—provides a much

better way to do the same thing.

When used to their full potential, object generators can allow users to generate some truly terrifying—but powerful—template types with a

minimum of syntactic fuss. We'll learn more about how that works when we discuss type erasure later in this chapter.
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9.4. Structure Selection

You already know how to use metafunctions to affect the types of individual class members:

    template <class T>

    struct X

    {

        static int m1 = metafunction1<T>::type::value;

        typedef typename metafunction2<T>::type m2;

        int m4(typename metafunction3<T>::type p);

        ...

    };

In this example, metaprograms are computing the value of m1, the type m2, and the parameter type of m4. Suppose, however, that we 

wanted to control whether m2 is present at all in a given specialization of X? The approach used above allows us to manage the details of a 

given class member, but fundamental structural changes to the class demand a more powerful technique.

Structure selection involves pushing the variable part of the class structure into public base classes or base class templates and using a 

metaprogram to choose among them. To see how it works, let's fix a problem in compose_fg, which is currently defined to be:

    template <class R, class F, class G>

    class compose_fg

    {

     public:

        compose_fg(F const& f, G const& g)

          : f(f), g(g)

        {}

        template <class T>

        R operator()(T const& x) const

        {

            return f(g(x));

        }

     private:

        F f;

        G g;

    };

You may be wondering what sort of problem there could possibly be: compose_fg is almost so simple that we can see its correctness at a 

glance. Furthermore, it works! The problem isn't one of correctness, but of efficiency. In our earlier example, we generated an object of 

type:

    compose_fg<float,std::negate<float>,float(*)(float)>

so F is std::negate<float>. In most implementations, std::negate's only member is its function-call operator:

    T operator()(const T& x) const { return -x; }
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In other words, it is an empty class. The C++ standard, though, says that every one of compose_fg's data members must occupy at least 

one byte. In a typical class layout scheme,
[3]

 its first byte will be devoted to f, even though specializations of negate have no data members. 

There will follow a few bytes of padding (say three), as required to reach the appropriate memory alignment for a function pointer, and the 

memory for g (say four bytes) would follow thereafter, yielding an object of eight bytes. If we could do away with the storage for f altogether, 

the size would drop to four bytes. If G also turned out to be an empty class, the total size of the compose_fg object could, theoretically, be 

as small as one byte. We can't do better than that; the rules say even an empty class must have nonzero size.

[3] The standard places almost no restriction on the way most classes are laid out, except that each distinct base or 

member subobject of a given type must have a distinct address, and members can't overlap one another. The only 

other exception occurs when the class is "plain old data" (POD), whose technical definition is given in section 2.5.4. 

In that case, class layout follows a more predictable set of rules.

One way to eliminate storage for empty classes might be to detect them (using the boost::is_empty type trait described in Chapter 2), and 

simply omit the corresponding data members. There are a few problems with that approach, however.

It's not transparent: Even empty classes can have nontrivial constructors and destructors, and if we don't store copies of f and g, 

the difference in compose_fg's behavior could be surprising.

1.

To implement operator() we still need F and G objects; if they weren't stored we'd need to construct them somehow, and they 

might not have default constructors.

2.

Fortunately, there's a better solution. Compilers may implement an Empty Base Optimization (EBO), which allows an empty base class 

to be placed at the same address as any other subobject, as long as no two distinct subobjects of the same type share an address. For 

example,

    compose_fg<float,std::negate<float>,float(*)(float)>

might have had ideal size if compose_fg had been written this way:

    template <class R, class F, class G>

    class compose_fg  : F   // if empty, F may overlap with g

    {

     public:

        typedef R result_type;

        compose_fg(F const& f, G const& g)

          : F(f), g(g)    // initialize base with f

        {}

        template <class T>

        R operator()(T const& x) const

        {

            F const& f = *this;   // retrieve F subobject

            return f(g(x));

        }

     private:

        G g;
    };

Naturally, we can't use that structure for all compose_fg specializations: If F were a function pointer, we'd get a compilation error because 

function pointers aren't legal base classes. Furthermore, we don't want to use that structure in all cases: When G is empty but F is not, we 

want to derive compose_fg<R,F,G> from G instead. The need for structural variation points to structure selection as the technique of choice.

The first step in applying structure selection is to delegate control over the variable part of the class structure. In this case, the way F and G
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are stored varies, so we can write:

    // base class template to be defined later

    template <class F, bool F_empty, class G, bool G_empty>

    class storage;

    template <class R, class F, class G>

    class compose_fg

      : storage<

        F,boost::is_empty<F>::value

      , G,boost::is_empty<G>::value
    >{

       typedef

         storage<

        F,boost::is_empty<F>::value

      , G,boost::is_empty<G>::value
       > base;

    public:

       compose_fg(F const& f, G const& g)

         : base(f, g)

       {}

       template <class T>

       R operator()(T const& x) const

       {

           F const& f = this->get_f();

           G const& g = this->get_g();
           return f(g(x));

        }

    };

Now we only need to write storage so that it has the right structure for each of four combinations of F_empty and G_empty, and exposes 

access to the stored F and G via get_f and get_g members:
[4]

[4] If you noticed some corner cases where this code doesn't quite work, don't worry; you get to work out the fixes as 

part of this chapter's exercises.

    template <class F, class G>

    class storage<F,false,G,false> // neither F nor G is empty

    {

     protected:

         storage(F const& f, G const& g)

           : f(f), g(g)

         {}

         F const& get_f() { return f; }

         G const& get_g() { return g; }

     private:

         F f;

         G g;

    };

    template <class F, class G>

    class storage<F,false,G,true> // G is empty

      : private G

    {

     protected:

         storage(F const& f, G const& g)
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           : G(g), f(f)

         {}

         F const& get_f() { return f; }

         G const& get_g() { return *this; }

     private:

         F f;

    };

    template <class F, class G>

    class storage<F,true,G,false> // F is empty

      : private F

    {

     protected:

         storage(F const& f, G const& g)

           : F(f), g(g)

         {}

         F const& get_f() { return *this; }

         G const& get_g() { return g; }

     private:

         G g;

    };

    template <class F, class G>

    class storage<F,true,G,true> // F and G are both empty

      : private F, private G

    {

     protected:

         storage(F const& f, G const& g)

           : F(f), G(g)

         {}

         F const& get_f() { return *this; }

         G const& get_g() { return *this; }

    };

Since the EBO is optional, there are no guarantees that any of this will make a difference. That said, by selecting among different bases, 

we've at least given the compiler the opportunity to optimize away the storage for empty subobjects, and most of them will take advantage 

of it (see the exercises for more information). You might also want to look at the Boost compressed_pair template [CDHM01], which 

implements a generalization of the EBO pattern we've used here.
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9.5. Class Composition

If we can use structure selection once to control the structure of a class, we can use it over and over to create class structures in 

fine-grained steps. For example, to generate a struct whose members have types given by a type sequence, we could apply the fold

algorithm:

    // fine-grained struct element; stores a T and inherits More

    template <class T, class More>

    struct store : More

    {

        T value;
    };

    typedef mpl::vector<short[2], long, char*,  int> member_types;

    struct empty {};

    mpl::fold<

        member_types, empty, store<_2,_1>

    >::type generated;

Yielding an object generated, of type

    store<int

      , store<char*

          , store<long

              , store<short[2], empty> > > >

Each specialization of store shown above represents a layer of inheritance containing a member of one of the types in member_types.

Actually using classes composed in this way can be tricky unless they are carefully structured. Although generated does indeed contain 

members of each of the types in member_types, they're hard to get at. The most obvious problem is that they're all called value: We can't 

access any other than the first one directly, because the rest are hidden by layers of inheritance. Unfortunately, there's nothing we can do 

about the repetition; it is a fact of life when applying class composition, because although we can easily generate member types, there's no 

way to generate member names using templates.
[5]

[5] Member name generation is possible using preprocessor metaprogramming. See Appendix A for more 

information.

Moreover, it's difficult to access the value member of a given type even by casting to an appropriate base class. To see why, consider 

what's involved in accessing the long value stored in generated. Because each store specialization is derived from its second argument, 

we'd have to write:
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    long& x = static_cast<

                store<long, store<short[2], empty> >&
              >(generated).value;

In other words, accessing any member of store requires knowing all the types following its type in the original sequence. We could let the 

compiler's function argument deduction mechanism do the work of figuring out the base class chain for us:

    template <class T, class U>

    store<T,U> const& get(store<T,U> const& e)

    {

        return e;

    }

    char* s = get<char*>(generated).value;

In the example above, get's first template argument is constrained to be char*, and the effective function parameter becomes 

store<char*,U> const&, which matches the base class of generated containing a char* member.

A slightly different pattern allows us to solve this problem a bit more neatly. As usual, the Fundamental Theorem of Software 

Engineering
[6]

 applies. We'll just add a layer of indirection:

[6] See Chapter 2 for the origin of this term.

    // fine-grained struct element; wraps a T

    template <class T>

    struct wrap

    {

        T value;

    };

    // one more level of indirection

    template <class U, class V>

    struct inherit : U, V

    {};

    typedef mpl::vector<short[2], long, char*, int> member_types;

    struct empty {};

    mpl::fold<

        member_types, empty, inherit<wrap<_2>,_1>

    >::type generated;

Now the type of generated is:

    inherit<wrap<int>

      , inherit<wrap<char*>

          , inherit<wrap<long>

              , inherit<wrap<short[2]>
                  , empty

                >

            >
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        >

    >

Since inherit<U,V> is derived from both U and V, the type above is (indirectly) derived from wrap<T> for each T in the sequence. We can 

now access a value member of type long with:

    long& x = static_cast<wrap<long> &>(generated).value;

Class generation along these lines is a common metaprogramming activity, so MPL provides ready-made tools for that purpose. In 

particular, we can replace empty and inherit with mpl::empty_base and mpl::inherit. The library also contains an appropriately named 

inherit_linearly metafunction that calls fold for us with a default initial type of mpl::empty_base:

    template <class Types, class Node, class Root = empty_base>

    struct inherit_linearly

      : fold<Types,Root,Node>

    {

    };

With these tools in hand, we can rewrite our last example more conveniently as:

    #include <boost/mpl/inherit.hpp>

    #include <boost/mpl/inherit_linearly.hpp>

    #include <boost/mpl/vector.hpp>

    // fine-grained struct element

    template <class T>

    struct wrap

    {

        T value;

    };

    typedef mpl::vector<short[2], long, char*, int> member_types;

    mpl::inherit_linearly<

        member_types, mpl::inherit<wrap<_2>,_1>

    >::type generated;

Practical applications of these class composition patterns have been extensively explored by Andrei Alexandrescu [Ale01]. For example, 

he uses class composition to generate visitor classes for a generic multiple dispatch framework.
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9.6. (Member) Function Pointers as Template Arguments

Integral constants are not the only kind of non-type template parameters. In fact, almost any kind of value that can be determined at 

compile time is allowed, including:

Pointers and references to specific functions

Pointers and references to statically stored data

Pointers to member functions

And pointers to data members

We can achieve dramatic efficiency gains by using these kinds of template parameters. When our earlier compose_fg class template is 

used on two function pointers, it is always at least as large as the pointers themselves: It needs to store the values. When a function 

pointer is passed as a parameter, however, no storage is needed at all.

To illustrate this technique, let's build a new composing function object template:

    template <class R, class F, F f, class G, G g>

    struct compose_fg2

    {

        typedef R result_type;

        template <class T>

        R operator()(T const& x) const

        {

            return f(g(x));

        }

    };

Note, in particular, that compose_fg2 has no data members. We can use it to compute sin
2
(log2(x)) for each element of a sequence:

       #include <functional>

       #include <algorithm>

       #include <cmath>

       float input[5] = {0.0, 0.1, 0.2, 0.3, 0.4};

       float output[5];

       inline float log2(float x) { return std::log(x)/std::log(2); }

       typedef float (*floatfun)(float);

       float* ignored = std::transform(

           input, input+5, output

         , compose_fg2<float, floatfun,sin_squared, floatfun,log2>()
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       );

Don't be fooled by the fact that there are function pointers involved here: on most compilers, you won't pay for an indirect function call. 

Because it knows the precise identity of the functions indicated by f and g, the compiler should optimize away the empty compose_fg2

object passed to std::transform and generate direct calls to log2 and sin_squared in the body of the instantiated transform algorithm.

For all its efficiency benefits, compose_fg2 comes with some notable limitations.

Because values of class type are not legal template parameters, compose_fg2 can't be used to compose arbitrary function 

objects (but see exercise 9-4).

There's no way to build an object generator function for compose_fg2. An object generator would have to accept the functions 

to be composed as function arguments and use those values as arguments to the compose_fg2 template:

    template <class R, class F, class G>

    compose_fg2<R,F,f,G,g> compose(F f, G g)

    {

        return compose_fg2<R,F,f,G,g>();   // error
    }

Unfortunately, any value passed to a function enters the runtime world irretrievably. At that point, there's no way to use it as an argument 

to a class template without causing a compiler error.
[7]

[7] Language extensions that would bypass this limitation are currently under discussion in the C++ standardization 

community, so watch for progress in the next few years.
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9.7. Type Erasure

While most of this book's examples have stressed the value of static type information, it's sometimes more appropriate to throw that 

information away. To see what we mean, consider the following two expressions:

compose<float>(std::negate<float>(), &sin_squared)

with type

compose_fg<float,std::negate<float>,float(*)(float)>

1.

std::bind2nd(std::multiplies<float>(), 3.14159)

with type

std::binder2nd<std::multiplies<float> >

2.

Even though the results of these expressions have different types, they have one essential thing in common: We can invoke either one 

with an argument of type float and get a float result back. The common interface that allows either expression to be substituted for the other 

in a generic function call is a classic example of static polymorphism:

    std::transform(

        input, input+5, output

      , compose<float>(std::negate<float>(), &sin_squared)
    );

    std::transform(

        input, input+5, output

      , std::bind2nd(std::multiplies<float>(), 3.14159)
    );

Function templates aren't always the best way to handle polymorphism, though.

Systems whose structure changes at runtime—graphical user interfaces, for example—often require runtime dispatching.

Function templates can't be compiled into object code and shipped in libraries.

Each instantiation of a function template typically results in new machine code. That can be a good thing when the function is in 

your program's critical path or is very small, because the code may be inlined and localized. If the call is not a significant 

bottleneck, though, your program may get bigger and sometimes even slower.

9.7.1 An Example
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Imagine that we've prototyped an algorithm for an astounding screensaver and that to keep users interested we're looking for ways to let 

them customize its behavior. The algorithm to generate the screens is pretty complicated, but it's easily tweaked: By replacing a simple 

numerical function that's called once per frame in the algorithm's core, we can make it generate distinctively different patterns. It would be 

wasteful to templatize the whole screensaver just to allow this parameterization, so instead we decide to use a pointer to a transformation 

function:

    typedef float (*floatfunc)(float);

    class screensaver

    {

     public:

        explicit screensaver(floatfunc get_seed)

          : get_seed(get_seed)

        {}

        pixel_map next_screen() // main algorithm

        {

            float center_pixel_brightness = ...;

            float seed = this->get_seed(center_pixel_brightness);
            complex computation using seed...

        }

     private:

        floatfunc get_seed;

        other members...

    };

We spend a few days coming up with a menu of interesting customization functions, and we set up a user interface to choose among them. 

Just as we're getting ready to ship it, though, we discover a new family of customizations that allows us to generate many new astounding 

patterns. These new customizations require us to maintain a state vector of 128 integer parameters that is modified on each call to 

next_screen().

9.7.2 Generalizing

We could integrate our discovery by adding a std::vector<int> member to screensaver, and changing next_screen to pass that as an 

additional argument to the customize function:

    class screensaver

    {

        pixel_map next_screen()

        {

            float center_pixel_brightness = ...;

            float seed = this->get_seed(center_pixel_brightness,

                                        state);
            ...

        }

     private:

        std::vector<int> state;

        float (*get_seed)(float, std::vector<int>& s);

        ...

    };
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If we did that, we'd be forced to rewrite our existing transformations to accept a state vector they don't need. Furthermore, it's beginning to 

look as though we'll keep discovering interesting new ways to customize the algorithm, so this hardcoded choice of customization interface 

looks rather unattractive. After all, our next customization might need a different type of state data altogether. If we replace the 

customization function pointer with a customization class, we can bundle the state with the class instance and eliminate the screensaver's 

dependency on a particular type of state:

    class screensaver

    {

     public:

        struct customization

        {

            virtual ~customization() {}

            virtual float operator()(float) const = 0;
        };

        explicit screensaver(std::auto_ptr<customization> c)

          : get_seed(c)

        {}

        pixel_map next_screen()

        {

            float center_pixel_brightness = ...;

            float seed = (*this->get_seed)(center_pixel_brightness);

            ...

        }

     private:

        std::auto_ptr<customization> get_seed;

        ...

    };

9.7.3 "Manual" Type Erasure

Now we can write a class that holds the extra state as a member, and implement our customization in its operator():

    struct hypnotic : screensaver::customization

    {

        float operator()(float) const

        {

            ...use this->state...

        }

        std::vector<int> state;

    };

To fit the customizations that don't need a state vector into this new framework, we need to wrap them in classes derived from 

screensaver::customization:

    struct funwrapper : screensaver::customization

    {

        funwrapper(floatfunc pf)

          : pf(pf) {}

        float operator()(float x) const
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        {

            return this->pf(x);

        }

        floatfunc pf; // stored function pointer

    };

Now we begin to see the first clues of type erasure at work. The runtime-polymorphic base class screensaver::customization is used to

"erase" the details of two derived classes—from the point-of-view of screensaver, hypnotic and funwrapper are invisible, as are the stored 

state vector and function pointer type.

If you're about to object that what we've shown you is just "good old object-oriented programming," you're right. The story isn't finished yet, 

though: There are plenty of other types whose instances can be called with a float argument, yielding another float. If we want to customize 

screensaver with a preexisting function that accepts a double argument, we'll need to make another wrapper. The same goes for any 

callable class, even if its function call operator matches the float (float) signature exactly.

9.7.4 Automatic Type Erasure

Wouldn't it be far better to automate wrapper building? By templatizing the derived customization and screensaver's constructor, we can do 

just that:

    class screensaver

    {

     private:

        struct customization

        {

            virtual ~customization() {}

            virtual float operator()(float) const = 0;

        };

        template <class F>                   // a wrapper for an F

        struct wrapper : customization
        {

            explicit wrapper(F f)

              : f(f) {}                      // store an F

            float operator()(float x) const

            {

                return this->f(x);           // delegate to stored F

            }

         private:

             F f;

        };

     public:

        template <class F>

        explicit screensaver(F const& f)

          : get_seed(new wrapper<F>(f))
       {}

       ...

     private:

        std::auto_ptr<customization> get_seed;

        ...

    };
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We can now pass any function pointer or function object to screensaver's constructor, as long as what we pass can be invoked with a float

argument and the result can be converted back into a float. The constructor "erases" the static type information contained in its argument

while preserving access to its essential functionality—the ability to call it with a float and get a float result back—through customization's

virtual function call operator. To make type erasure really compelling, though, we'll have to carry this one step further by separating it from 

screensaver altogether.

9.7.5 Preserving the Interface

In its fullest expression, type erasure is the process of turning a wide variety of types with a common interface into one type with that same 

interface. So far, we've been turning a variety of function pointer and object types into an auto_ptr<customization>, which we're then storing 

as a member of our screensaver. That auto_ptr isn't callable, though: only its "pointee" is. However, we're not far from having a generalized 

float-to-float function. In fact, we could almost get there by adding a function-call operator to screensaver itself. Instead, let's refactor the 

whole function-wrapping apparatus into a separate float_function class so we can use it in any project. Then we'll be able to boil our 

screensaver class down to:

    class screensaver

    {

     public:

        explicit screensaver(float_function f)

          : get_seed(f)

        {}

        pixel_map next_screen()

        {

            float center_pixel_brightness = ...;

            float seed = this->get_seed(center_pixel_brightness);

            ...

        }

     private:

        float_function get_seed;
        ...

    };

The refactoring is going to reveal another part of the common interface of all function objects that, so far, we've taken for granted: 

copyability. In order to make it possible to copy float_function objects and store them in the screensaver, we've gone through the same

"virtualization" process with the wrapped type's copy constructor that we used on its function call operator—which explains the presence of

the clone function in the next implementation.

    class float_function

    {

     private:

        struct impl

        {

            virtual ~impl() {}

            virtual impl* clone() const = 0;

            virtual float operator()(float) const = 0;

        };

        template <class F>
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        struct wrapper : impl

        {

            explicit wrapper(F const& f)

              : f(f) {}

            impl* clone() const

            {

                return new wrapper<F>(this->f); // delegate

            }

            float operator()(float x) const

            {

                return f(x);                    // delegate

            }

         private:

            F f;

        };

     public:

        // implicit conversion from F

        template <class F>

        float_function(F const& f)

          : pimpl(new wrapper<F>(f)) {}

        float_function(float_function const& rhs)

          : pimpl(rhs.pimpl->clone()) {}

        float_function& operator=(float_function const& rhs)

        {

            this->pimpl.reset(rhs.pimpl->clone());

            return *this;

        }

        float operator()(float x) const

        {

            return (*this->pimpl)(x);

        }

     private:

        std::auto_ptr<impl> pimpl;

    };

Now we have a class that can "capture" the functionality of any type that's callable with a float and whose return type can be converted to a 

float. This basic pattern is at the core of the Boost Function library—another library represented in TR1—where it is generalized to support

arbitrary arguments and return types. Our entire definition of float_function could, in fact, be replaced with this typedef:

    typedef boost::function<float (float x)> float_function;

The template argument to boost::function is a function type that specifies the argument and return types of the resulting function object.
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9.8. The Curiously Recurring Template Pattern

The pattern named in this section's title was first identified by James Coplien [Cop96] as "curiously recurring" because it seems to arise so 

often. Without further ado, here it is.

The Curiously Recurring Template Pattern (CRTP)

A class X has, as a base class, a template specialization taking X itself as an argument:

    class X

      : public base<X>

    {

       ...

    };

Because of the way X is derived from a class that "knows about" X itself, the pattern is sometimes also called "curiously recursive."

CRTP is powerful because of the way template instantiation works: Although declarations in the base class template are instantiated when 

the derived class is declared (or instantiated, if it too is templated), the bodies of member functions of the base class template are only 

instantiated after the entire declaration of the derived class is known to the compiler. As a result, these member functions can use details 

of the derived class.

9.8.1 Generating Functions

The following example shows how CRTP can be used to generate an operator> for any class that supports prefix operator<:

    #include <cassert>

    template <class T>

    struct ordered

    {

        bool operator>(T const& rhs) const

        {

            // locate full derived object

 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



            T const& self = static_cast<T const&>(*this);
            return rhs < self;

        }

    };

    class Int

      : public ordered<Int>
    {

     public:

        explicit Int(int x)

          : value(x) {}

        bool operator<(Int const& rhs) const

        {

            return this->value < rhs.value;

        }

        int value;

    };

    int main()

    {

        assert(Int(4) < Int(6));

        assert(Int(9) > Int(6));

    }

The technique of using a static_cast with CRTP to reach the derived object is sometimes called the "Barton and Nackman trick" because it 

first appeared in John Barton and Lee Nackman's Scientific and Engineering C++ [BN94]. Though written in 1994, Barton and Nackman's 

book pioneered generic programming and metaprogramming techniques that are still considered advanced today. We highly recommend 

this book.

CRTP and Type Safety

Generally speaking, casts open a type safety hole, but in this case it's not a very big one, because the static_cast will 

only compile if T is derived from ordered<T>. The only way to get into trouble is to derive two different classes from the 

same specialization of ordered:

    class Int : public ordered<Int> { ... };

    class bogus : public ordered<Int> {};

    bool crash = bogus() > Int();

In this case, because Int is already derived from ordered<Int>, the operator> compiles but the static_cast attempts to cast 

a pointer that refers to a bogus instance into a pointer to an Int, inducing undefined behavior.

Another variation of the trick can be used to define non-member friend functions in the namespace of the base class:

    namespace crtp

    {
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      template <class T>

      struct signed_number

      {

          friend T abs(T x)

          {

              return x < 0 ? -x : x;

          }
      };

    }

If signed_number<T> is used as a base class for any class supporting unary negation and comparison with 0, it automatically acquires a 

non-member abs function:

    class Float : crtp::signed_number<Float>

    {

     public:

        Float(float x)

          : value(x)

        {}

        Float operator-() const

        {

            return Float(-value);

        }

        bool operator<(float x) const

        {

            return value < x;

        }

        float value;

    };

    Float const minus_pi = -3.14159265;

    Float const pi = abs(minus_pi);

Here the abs function is found in namespace crtp by argument-dependent lookup (ADL). Only unqualified calls are subject to ADL, which 

searches the namespaces of function arguments and their bases for viable overloads.

It's a curious property of friend functions defined in the body of a class template that, unless also declared outside the body, they can only

be found via ADL. Explicit qualification doesn't work:

    Float const erroneous = crtp::abs(pi); // error

Keep that limitation in mind when generating free functions with CRTP.

9.8.2 Managing Overload Resolution

In its simplest form, CRTP is used to establish an inheritance relationship among otherwise unrelated classes for the purpose of overload 
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resolution, and to avoid overly general function template arguments. For example, if we are writing a generic function drive, which operates 

on Vehicles (where Vehicle is a Concept), we could write:

    template <class Vehicle>

    void drive(Vehicle const& v)

    { ... }

This definition is perfectly fine until someone writes a generic function called "drive" that operates on Screws:

    template <class Screw>

    void drive(Screw const& s)

    { ... }

The problem is that while the identifiers Vehicle and Screw have meaning to us, they are equivalent as far as the compiler is concerned. If 

the two drives are in the same namespace, both declarations refer to the same entity. If both function bodies are visible, we'll get a 

compilation error, but if only one body is visible, we'll have quietly violated the standard's "One Definition Rule," leading to undefined 

behavior.

Even if they're not in the same namespace, unqualified calls to drive may be ambiguous, or worse, may end up invoking the wrong 

function. Because of the way that ADL quietly adds distant functions to the overload set, and because unqualified function calls are so 

natural, writing completely general function templates with parameters that can match all types is extremely dangerous. Consider the 

following contrived example:

    #include <list>

    namespace utility

    {

      // fill the range with zeroes

      template <class Iterator>

      Iterator clear(Iterator const& start, Iterator const& finish);

      // perform some transformation on the sequence

      template <class Iterator>

      int munge(Iterator start, Iterator finish)

      {

          // ...

          start = clear(start, finish);

          // ...

      }

    }

    namespace paint

    {

      template <class Canvas, class Color> // generalized template

      void clear(Canvas&, Color const&);

      struct some_canvas { };

      struct black { };

      std::list<some_canvas> canvases(10);

      int x = utility::munge(canvases.begin(), canvases.end());

    }

In fact, the instantiation of munge usually won't compile, because the list iterators will be class templates parameterized on 

paint::some_canvas. Argument-dependent lookup sees that parameter and finds a definition of clear in namespace paint, which is added to 
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the overload set. Inside munge, paint::clear happens to be a slightly better match than utility::clear for the arguments passed. Fortunately for 

us, paint::clear returns void, so the assignment fails—but just imagine that clear returned a Canvas&. In that case, the code might have 

compiled "cleanly," but it would have silently done something completely unintended.

To solve this problem, we can use the curiously recurring template pattern to identify models of our Vehicle and Screw concepts. We only 

need to add the requirement that models of each concept be publicly derived from a corresponding CRTP base class:

    template <class Derived>

    struct vehicle

    {};

    template <class Derived>

    struct screw

    {};

Now our drive function templates can be rewritten to be more discriminating. The usual downcasts apply:

    template <class Vehicle>

    void drive(vehicle<Vehicle> const& v)

    {

        Vehicle const& v_= static_cast<Vehicle const&>(v);

        ...

    };

    template <class Screw>

    void drive(screw<Screw> const& s)

    {

        Screw const& s_= static_cast<Screw const&>(s);

        ...

    };
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9.9. Explicitly Managing the Overload Set

Sometimes, CRTP is inadequate for limiting the reach of generalized function template arguments. For example, we may want our function 

template to operate on built-in types (which cannot have base classes), or on existing third-party types that we don't want to modify. 

Fortunately, if we can determine the appropriateness of an argument type at compile time, Boost's enable_if family of templates will allow 

us to manage the overload set non-intrusively.

For example, the following function template applies only to iterators over arithmetic types. The examples in this section use 

boost::iterator_value, a metafunction that retrieves an iterator's value_type.

    #include <iterator>

    #include <boost/utility/enable_if.hpp>

    #include <boost/type_traits/is_arithmetic.hpp>

    #include <boost/iterator/iterator_traits.hpp>

    template <class Iterator>

    typename boost::enable_if<
        boost::is_arithmetic<               // enabling condition

           typename boost::iterator_value<Iterator>::type

        >

      , typename                            // return type

          boost::iterator_value<Iterator>::type

    >::type
    sum(Iterator start, Iterator end)

    {

        typename boost::iterator_value<Iterator>::type x(0);

        for (;start != end; ++start)

            x += *start;

        return x;

    }

If the ::value of the enabling condition C is TRue, enable_if<C,T>::type will be T, so sum just returns an object of Iterator's value_type. 

Otherwise, sum simply disappears from the overload resolution process! We'll explain why it disappears in a moment, but to get a feeling for 

what that means, consider this: If we try to call sum on iterators over non-arithmetic types, the compiler will report that no function matches 

the call. If we had simply written

    std::iterator_traits<Iterator>::value_type

in place of enable_if<...>:: type, calling sum on iterators whose value_type is std:: vector<int> would fail inside sum where it attempts to use 

operator+=. If the iterators' value_type were std::string, it would actually compile cleanly, but possibly with an undesired result.

This technique really becomes interesting when there are function overloads in play. Because sum has been restricted to appropriate 

arguments, we can now add an overload that will allow us to sum all the arithmetic elements of vector<vector<int> > and other nested 

containers of arithmetic types.
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    // given an Iterator that points to a container, get the

    // value_type of that container's iterators.

    template <class Iterator>

    struct inner_value

      : boost::iterator_value<

          typename boost::iterator_value<Iterator>::type::iterator

        >

    {};

    template <class Iterator>

    typename boost::lazy_disable_if<
        boost::is_arithmetic<               // disabling condition

           typename boost::iterator_value<Iterator>::type

        >

      , inner_value<Iterator>               // result metafunction

    >::type

    sum(Iterator start, Iterator end)

    {

        typename inner_value<Iterator>::type x(0);

        for (;start != end; ++start)

            x += sum(start->begin(), start->end());

        return x;

    }

The word "disable" in lazy_disable_if indicates that the function is removed from the over-load set when the condition is satisfied. The word 

"lazy" means that the function's result ::type is the result of calling the second argument as a nullary metafunction.
[8]

[8] For completeness, enable_if.hpp includes plain disable_if and lazy_enable_if templates, as well as _C-suffixed 

versions of all four templates that accept integral constants instead of wrappers as a first argument.

Note that inner_value<Iterator> can only be invoked if Iterator's value type is another iterator. Otherwise, there will be an error when it fails 

to find the inner (non-)iterator's value type. If we tried to compute the result type greedily, there would be error during overload resolution 

whenever Iterator's value type turned out to be an arithmetic type and not another iterator.

Now let's take a look at how the magic works. Here's the definition of enable_if:

    template <bool, class T = void>

    struct enable_if_c

    {

        typedef T type;

    };

    template <class T>

    struct enable_if_c<false, T>

    {};

    template <class Cond, class T = void>

    struct enable_if

      : enable_if_c<Cond::value, T>

    {};

Notice that when C is false, enable_if_c<C,T>::type doesn't exist! The C++ standard's overload resolution rules (section 14.8.3) say that 
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when a function template's argument deduction fails, it contributes nothing to the set of candidate functions considered for a given call, and 

it does not cause an error.
[9]

 This principle has been dubbed "Substitution Failure Is Not An Error" (SFINAE) by David Vandevoorde and 

Nicolai Josuttis [VJ02].

[9] You might be wondering why inner_value and lazy evaluation were needed, while enable_if itself doesn't cause an 

error. The template argument deduction rules include a clause (14.8.2, paragraph 2) that enumerates conditions 

under which an invalid deduced type in a function template signature will cause deduction to fail. It turns out that the 

form used by enable_if is in the list, but that errors during instantiation of other templates (such as iterator_value) 

during argument deduction are not.
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9.10. The "sizeof TRick"

Although values used as function arguments pass into the runtime world permanently, it is possible to get some information at compile time 

about the result type of a function call by using the sizeof operator. This technique has been the basis of numerous low-level template 

metafunctions, including many components of the Boost Type Traits library. For example, given:

    typedef char yes;      // sizeof(yes) == 1

    typedef char (&no)[2]; // sizeof(no)  == 2

we can write a trait separating classes and unions from other types, as follows:

    template <class T>

    struct is_class_or_union

    {

        // SFINAE eliminates this when the type of arg is invalid

        template <class U>

        static yes tester(int U::*arg);

        // overload resolution prefers anything at all over "..."

        template <class U>

        static no tester(...);

        // see which overload is chosen when U == T

        static bool const value

           = sizeof(tester<T>(0)) == sizeof(yes);

        typedef mpl::bool_<value> type;

    };

    struct X{};

    BOOST_STATIC_ASSERT(is_class_or_union<X>::value);

    BOOST_STATIC_ASSERT(!is_class_or_union<int>::value);

This particular combination of SFINAE with the sizeof trick was first discovered by Paul Mensonides in March 2002. It's a shame that in 

standard C++ we can only pull the size of an expression's type, but not the type itself, back from runtime. For example, it would be nice to 

be able to write:

    // generalized addition function object

    struct add

    {

        template <class T, class U>

        typeof(T+U) operator()(T const& t, U const& u)

        {

            return t+u;

        }
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    };

Though it's not in the standard, many compilers already include a typeof operator (sometimes with one of the reserved spellings "__typeof" 

or "__typeof__"), and the C++ committee is very seriously discussing how to add this capability to the standard language. The feature is so 

useful that over the years several library-only implementations of typeof have been developed, all of which ultimately rely on the more 

limited capabilities of sizeof [Dew02]. The library implementations aren't fully automatic: User-defined types must be manually associated 

with unique numbers, usually through specializations of some traits class. You can find code and tests for one such library by Arkadiy 

Vertleyb in the pre-release materials on this book's companion CD.
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9.11. Summary

The techniques presented in this chapter may seem to be a hodgepodge collection of programming tricks, but they all have one thing in 

common: They connect pure compile-time metaprograms to runtime constructs in powerful ways. There are certainly a few other such 

mechanisms lurking out there, but those we've covered here should give you enough tools to make your metaprograms' presence felt in 

the real world of runtime data.
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9.12. Exercises

9-0. Many compilers contain a "single-inheritance" EBO. That is, they will allocate an empty base at the same 

address as a data member, but they will never allocate two bases at the same address. On these compilers, 

our storage implementation is suboptimal for the case where F and G are both empty. Patch storage to avoid 

this pitfall when NO_MI_EBO is defined in the preprocessor.

9-1. What happens to our compose template when F and G are the same empty class? How would you fix the 

problem? Write a test that fails with identical empty F and G, then fix compose_fg so that the test passes.

9-2. We may not be able to compose arbitrary function objects with compose_fg2, but we can use it to compose 

statically initialized function objects. (Hint: Review the list at the beginning of section 9.6 of types that can be 

passed as template arguments). Compile a small program that does so and, if you can read your compiler's 

assembly-language output, analyze the efficiency of the resulting code.

9-3*. Write a generalized iterator template that uses type erasure to wrap an arbitrary iterator type and present it with 

a runtime-polymorphic interface. The template should accept the iterator's value_type as its first parameter and 

its iterator_category as the second parameter. (Hint 1: Use Boost's iterator_facade template to make writing the 

iterator easier. Hint 2: You can control whether a given member function is virtual by using structure selection.)

9-4. Change the sum overload example in section 9.9 so that it can add the arithmetic innermost elements of 

arbitrarily nested containers such as std::list<std::list<std:: vector<int> > >. Test your changes to show that they 

work.

9-5. Revisit the dimensional analysis code in Chapter 3. Instead of using BOOST_STATIC_ASSERT to detect 

dimension conflicts within operator+ and operator-, apply SFINAE to eliminate inappropriate combinations of 

parameters from the overload sets for those operators. Compare the error messages you get when misusing 

operator+ and operator- in both cases.
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Chapter 10. Domain-Specific Embedded Languages

If syntactic sugar didn't count, we'd all be programming in assembly language.

This chapter covers what we believe to be the most important application area for metaprogramming in general and C++ 

metaprogramming in particular: building domain-specific embedded languages (DSELs).

Most of the template metaprogramming techniques we use today were invented in the course of implementing a DSEL. C++ metaprograms

first began to be used for DSEL creation sometime in 1995, with impressive results. Interest in metaprogramming has grown steadily ever

since, but—maybe because a new way to exploit templates seems to be discovered every week—this excitement is often focused on

implementation techniques. As a result, we've tended to overlook the power and beauty of the design principles for which the techniques

were invented. In this chapter we'll explore those principles and paint the big picture behind the methodology.
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10.1. A Little Language ...

By now you may be wondering, "What is a domain-specific language, anyway?" Let's start with an example (we'll get to the "embedded" 

part later).

Consider searching some text for the first occurrence of any hyphenated word, such as "domain-specific." If you've ever used regular 

expressions,
[1]

 we're pretty sure you're not considering writing your own character-by-character search. In fact, we'd be a little surprised if 

you aren't thinking of using a regular expression like this one:

[1] For an introduction to regular expressions, you might want to take a half-hour break from this book and grab some

fine manual on the topic, for instance Mastering Regular Expressions, 2nd Edition, by Jeffrey E. F. Friedl. If you'd 

like a little theoretical grounding, you might look at The Theory of Computation, by Bernard Moret. It also covers 

finite state machines, which we're going to discuss in the next chapter.

    \w+(-\w+)+

If you're not familiar with regular expressions, the incantation above may look rather cryptic, but if you are, you probably find it concise and 

expressive. The breakdown is as follows:

\w means "any character that can be part of a word"

+ (positive closure) means "one or more repetitions"

- simply represents itself, the hyphen character

Parentheses group subexpressions as in arithmetic, so the final + modifies the whole subexpression -\w+

So the whole pattern matches any string of words separated by single hyphens.

The syntax of regular expressions was specifically designed to allow a short and effective representation of textual patterns. Once you've

learned it, you have in your arsenal a little tool—a language, in fact, with its own alphabet, rules, and semantics. Regular expressions are

so effective in their particular problem domain that learning to use them is well worth the effort, and we always think twice before

abandoning them for an ad hoc solution. It shouldn't be hard to figure out where we are going here—regular expressions are a classic

example of a domain-specific language, or DSL for short.

There are a couple of distinguishing properties here that allow us to characterize something as a DSL. First, of course, it has to be a

language. Perhaps surprisingly, though, that property is easy to satisfy—just about anything that has the following features constitutes a

formal language.

An alphabet (a set of symbols).1.

A well-defined set of rules saying how the alphabet may be used to build well-formed compositions.2.

A well-defined subset of all well-formed compositions that are assigned specific meanings.3.

Note that the alphabet doesn't even have to be textual. Morse code and UML are well-known languages that use graphical alphabets. Both 

are not only examples of somewhat unusual yet perfectly valid formal languages, but also happen to be lovely DSLs.

Now, the domain-specific part of the language characteristic is more interesting, and gives DSLs their second distinguishing property.

Perhaps the simplest way to interpret "domain-specific" would be "anything that isn't general-purpose." Although admittedly that would

make it easy to classify languages ("Is HMTL a general-purpose language? No? Then it's domain-specific!"), that interpretation fails to

capture the properties of these little languages that make them so compelling. For instance, it is obvious that the language of regular

expressions can't be called "general-purpose"—in fact, you might have been justifiably reluctant to call it a language at all, at least until we 
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presented our definition of the word. Still, regular expressions give us something beyond a lack of familiar programming constructs that 

makes them worthy of being called a DSL.

In particular, by using regular expressions, we trade general-purposeness for a significantly higher level of abstraction and expressiveness.

The specialized alphabet and notations allow us to express pattern-matching at a level of abstraction that matches our mental model. The

elements of regular expressions—characters, repetitions, optionals, subpatterns, and so on—all map directly onto concepts that we'd use if

asked to describe a pattern in words.

Making it possible to write code in terms close to the abstractions of the problem domain is the characteristic property of, and motivation 

behind, all DSLs. In the best-case scenario, the abstractions in code are identical to those in the mental model: You simply use the 

language's domain-specific notation to write down a statement of the problem itself, and the language's semantics take care of generating 

a solution.

That may sound unrealistic, but in practice it's not as rare as you might think. When the FORTRAN programming language was created, it 

seemed to some people to herald the end of programming. The original IBM memo [IBM54] about the language said:

Since FORTRAN should virtually eliminate coding and debugging, it should be possible to solve problems for less 

than half the cost that would be required without such a system.

By the standards of the day, that was true: FORTRAN did "virtually" eliminate coding and debugging. Since the major problems of most 

programmers at the time were at the level of how to write correct loops and subroutine calls, programming in FORTRAN may have seemed 

to be nothing more than writing down a description of the problem. Clearly, the emergence of high-level general-purpose languages has 

raised the bar on what we consider "coding."

The most successful DSLs are often declarative languages, providing us with notations to describe what rather than how. As you will see 

further on, this declarative nature plays a significant role in their attractiveness and power.
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10.2. ... Goes a Long Way

Jon Bentley, in his excellent article on DSLs, wrote that "programmers deal with microscopic languages every day" [Bent86]. Now that you 

are aware of their fundamental properties, it's easy to see that little languages are all around us.

In fact, the examples are so numerous that this book can't possibly discuss all of them—we estimate that thousands of DSLs are in

common use today—but we can survey a few to present you with some more perspective.

10.2.1 The Make Utility Language

Building software rapidly, reliably, and repeatably is crucial to the daily practice of software development. It also happens to be important to

the deployment of reusable software and—increasingly in the age of open-source software—end-user installation. A great many tools have

cropped up over the years to address this problem, but they are nearly all variations of a single, powerful, build-description language:

Make. As a C++ programmer, you're probably already at least a little familiar with Make, but we're going to go through a mini-review here

with a focus on its "DSL-ness" and with an eye toward the design of your own domain-specific languages.

The principal domain abstraction of Make is built around three concepts.

Targets

Usually files that need to be built or sources that are read as inputs to parts of the build process, but also "fake" targets naming states of 

the build process that might not be associated with a single file.

Dependencies

Relationships between targets that allow Make to determine when a target is not up-to-date and therefore needs to be rebuilt.

Commands

The actions taken in order to build or update a target, typically commands in the native system's shell language.

The central Make language construct is called a rule, and is described with the following syntax in a "Makefile":

    dependent-target : source-targets

            commands

So, for example, a Makefile to build a program from C++ sources might look like this:
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    my_program: a.cpp b.cpp c.cpp d.cpp

            c++ -o my_program a.cpp b.cpp c.cpp d.cpp

where c++ is the command that invokes the C++ compiler. These two lines demonstrate that Make allows a concise representation of its 

domain abstractions: targets (my_program and the .cpp files), their dependency relationships, and the command used to create 

dependent targets from their dependencies.

The designers of Make recognized that such rules include some boilerplate repetition of filenames, so they included support for variables

as a secondary capability. Using a variable, the above "program" might become:

    SOURCES = a.cpp b.cpp c.cpp d.cpp

    my_program: $(SOURCES)

            c++ -o my_program $(SOURCES)

Unfortunately, this is not a very realistic example for most C/C++ programs, which contain dependencies on header files. To ensure 

minimal and rapid rebuilds once headers enter the picture, it becomes important to build separate object files and represent their individual 

dependencies on headers. Here's an example based on one from the GNU Make manual:

    OBJECTS = main.o kbd.o command.o display.o \

              insert.o search.o files.o utils.o

    edit : $(OBJECTS)

            c++ -o edit $(OBJECTS)

    main.o : main.cpp defs.h

            c++ -c main.cpp

    kbd.o : kbd.cpp defs.h command.h

            c++ -c kbd.cpp

    command.o : command.cpp defs.h command.h

            c++ -c command.cpp

    display.o : display.cpp defs.h buffer.h

            c++ -c display.cpp

    insert.o : insert.cpp defs.h buffer.h

            c++ -c insert.cpp

    search.o : search.cpp defs.h buffer.h

            c++ -c search.cpp

    files.o : files.cpp defs.h buffer.h command.h

            c++ -c files.cpp

    utils.o : utils.cpp defs.h

            c++ -c utils.cpp

Once again you can see some repeated boilerplate in the commands used to build each object file. That can be addressed with "implicit 

pattern rules," which describe how to build one kind of target from another:

    %.o: %.cpp

            c++ -c $(CFLAGS) $< -o $@

This rule uses pattern-matching to describe how to construct a .o file from a .cpp file on which it depends, and the funny symbols $< and $@

represent the results of those matches. In fact, this particular rule is so commonly needed that it's probably built into your Make system, so 

the Makefile becomes:

    OBJECTS = main.o kbd.o command.o display.o \

              insert.o search.o files.o utils.o
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    edit : $(OBJECTS)

            c++ -o edit $(OBJECTS)

    main.o : main.cpp defs.h

    kbd.o : kbd.cpp defs.h command.h

    command.o : command.cpp defs.h command.h

    display.o : display.cpp defs.h buffer.h

    insert.o : insert.cpp defs.h buffer.h

    search.o : search.cpp defs.h buffer.h

    files.o : files.cpp defs.h buffer.h command.h

    utils.o : utils.cpp defs.h

Enough review! Exploring all the features of Make could easily fill an entire book. The purpose of this exercise is to show that Make begins

to approach the domain-specific language ideal of allowing a problem to be solved merely by describing it—in this case, by writing down

the names of files and their relationships.

In fact, most of the other features of various Make variants are aimed at getting still closer to the ideal. GNU Make, for example, can 

automatically discover eligible source files in the working directory, explore their header dependencies, and synthesize the rules to build 

intermediate targets and the final executable. In a classic example of creolization [Veld04], GNU Make has sprouted so many features that

it approaches the power of a general-purpose language—but such a clumsy one that for all practical purposes it is still domain-specific.

10.2.2 Backus Naur Form

After all this discussion of metaprogramming, we're going to introduce the idea of a metasyntax. That's exactly what Backus Naur Form 

(BNF) is: a little language for defining the syntax of formal languages.
[2]

 The principal domain abstraction of BNF is called a "context-free 

grammar," and it is built around two concepts.

[2] BNF was actually first developed to specify the syntax of the programming language Algol-60.

Symbols

Abstract elements of the syntax. Symbols in the grammar for C++ include identifier, unary-operator, string-literal, new-expression, 

statement, and declaration. The first three are never composed of other symbols in the grammar and are called terminal symbols or 

tokens. The rest can be built from zero or more symbols and are called nonterminals

Productions (or "rules")

The legal patterns for combining consecutive symbols to form nonterminal symbols. For example, in C++ a new-expression can be formed 

by combining the new keyword (a token) with a new-type-id (a nonterminal).

Productions are normally written according to the syntax:

    nonterminal -> symbols...
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where the nonterminal symbol to the left of the arrow can be matched by any input sequence matching the sequence of symbols on the 

right.

Here is a grammar for simple arithmetic expressions, written in BNF, with terminals shown in bold and nonterminals shown in italics:

    expression -> term

    expression -> expression + term

    expression -> expression - term

    term -> factor

    term -> term * factor

    term -> term / factor

    factor -> integer
    factor -> group

    group -> ( expression )

That is, an expression is matched by a term, or by an expression followed by the + token and a term, or by an expression followed by the -

token and a term. Similarly, a term is matched by a factor, or by a term followed by the * token and a factor, or by a term followed by the /

token and a factor ... and so on.

This grammar not only encodes the allowed syntax of an expression (ultimately just one or more integers separated by +, -, *, or /), but, by 

grouping syntactic elements according to the operators' usual associativity and precedence rules, it also represents some important 

semantic information. For example, the structure of

    1 + 2 * 3 + 4

when parsed according to the above grammar, can be represented as:

    [1 + [2 * 3]] + 4

In other words, the subexpression 2 * 3 will be grouped into a single term and then combined with 1 to form a new (sub-) expression. There 

is no way to parse the expression so as to generate an incorrect grouping such as

    [[1 + 2] * 3] + 4

Try it yourself; the grammar simply doesn't allow the expression 1 + 2 to be followed by *. BNF is very efficient for encoding both the syntax 

and the structure of formal languages.

A few linguistic refinements are possible: For example, it's customary to group all productions that yield a given nonterminal, so the |

symbol is sometimes used to separate the different right-hand-side alternatives without repeating the "nonterminal ->" boilerplate:

    expression -> term

                 | term + expression

                 | term - expression

Extended BNF (EBNF), another variant, adds the use of parentheses for grouping, and the Kleene star ("zero-or-more") and positive 
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closure ("one-or-more") operators that you may recognize from regular expressions for repetition. For example, all the rules for expression

can be combined into the following EBNF:

    expression -> ( term + | term - )* term

That is, "an expression is matched by a sequence of zero or more repetitions of [a term and a + token or a term and a - token], followed by a 

term."

All grammars written in EBNF can be transformed into standard BNF with a few simple steps, so the fundamental expressive power is the 

same no matter which notation is used. It's really a question of emphasis: EBNF tends to clarify the allowable inputs at the cost of making 

the parse structure somewhat less apparent.

10.2.3 YACC

As we mentioned in Chapter 1, YACC (Yet Another Compiler Compiler) is a tool for building parsers, interpreters, and compilers. YACC is a 

translator whose input language is a form of augmented BNF, and whose output is a C/C++ program that does the specified parsing and 

interpreting. Among computer language jocks, the process of interpreting some parsed input is known as semantic evaluation. YACC 

supports semantic evaluation by allowing us to associate some data (a semantic value) with each symbol and some C/C++ code (a 

semantic action) with the rule. The semantic action, enclosed in braces, computes the semantic value of the rule's left-hand-side 

nonterminal from those of its constituent symbols. A complete YACC program for parsing and evaluating arithmetic expressions follows:

    %{ // C++ code to be inserted in the generated source file

      #include <cstdio>

      typedef int YYSTYPE; // the type of all semantic values

      int yylex();                       // forward

      void yyerror(char const* msg);     // forward

    %}

    %token INTEGER     /* declare a symbolic multi-character token */

    %start lines       /* lines is the start symbol */

    %% /* grammar rules and actions */

    expression : term

               | expression '+' term { $$ = $1 + $3; }

               | expression '-' term { $$ = $1 - $3; }

               ;

    term : factor

         | term '*' factor { $$ = $1 * $3; }

         | term '/' factor { $$ = $1 / $3; }

         ;

   factor : INTEGER

          | group

          ;

   group : '(' expression ')'   { $$ = $2; }

         ;

   

   lines : lines expression

           {

             std::printf("= %d\n", $2);  // after every expression

             std::fflush(stdout);        // print its value

           }

           '\n'

         | /* empty */
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         ;

   %% /* C++ code to be inserted in the generated source file */

   #include <cctype>

   int yylex() // tokenizer function

   {

     int c;

     // skip whitespace

     do { c = std::getchar(); }

     while (c == ' ' || c == '\t' || c == '\r');

     if (c == EOF)

       return 0;

     if (std::isdigit (c))

     {

         std::ungetc(c, stdin);

         std::scanf("%d", &yylval); // store semantic value

         return INTEGER;

     }

     return c;

   }

   // standard error handler

   void yyerror(char const* msg) { std::fprintf(stderr,msg); }

   int main() { int yyparse(); return yyparse(); }

As you can see, some of the C++ program fragments in curly braces are not quite C++: they contain these funny $$ and $n symbols (where 

n is an integer). When YACC translates these program fragments to C++, it replaces $$ with a reference to the semantic value for the rule's 

left-hand-side nonterminal, and $n with the semantic value for the nth right-hand-side symbol. The semantic actions above come out looking 

like this in the generated C++:

    yym = yylen[yyn];

    yyval = yyvsp[1-yym];

    switch (yyn)

    {

    case 1:

    { std::printf("= %d \n", yyvsp[0]); std::fflush(stdout); }

    break;

    case 8:

    { yyval = yyvsp[-2] * yyvsp[0]; }

    break;

    case 9:

    { yyval = yyvsp[-2] / yyvsp[0]; }

    break;

    case 11:

    { yyval = yyvsp[-2] + yyvsp[0]; }

    break;

    case 12:

    { yyval = yyvsp[-2] - yyvsp[0]; }

    break;

    }

    yyssp -= yym;

    ...
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This code is just a fragment of a source file full of similar unreadable ugliness; in fact, the BNF part of the grammar is expressed in terms of 

large arrays of integers known as parse tables:

    const short yylhs[] = {

       -1,

        2,    0,    0,    3,    3,    4,    5,    5,    5,    1,

        1,    1,

    };

    const short yylen[] = {

        2,

        0,    4,    0,    1,    1,    3,    1,    3,    3,    1,

        3,    3,

    };

    const short yydefred[] = { ... };

    const short yydgoto[] = { ... };

    const short yysindex[] = { ... };

    const short yyrindex[] = { ... };

    const short yygindex[] = { ... };

You don't need to understand how to generated code works: It's the job of the DSL to protect us from all of those ugly details, allowing us 

to express the grammar in high-level terms.

10.2.4 DSL Summary

It should be clear at this point that DSLs can make code more concise and easy-to-write. The benefits of using little languages go well 

beyond rapid coding, though. Whereas expedient programming shortcuts can often make code harder to understand and maintain, a 

domain-specific language usually has the opposite effect due to its high-level abstractions. Just imagine trying to maintain the low-level 

parser program generated by YACC for our little expression parser: Unless we had the foresight to maintain a comment containing 

something very close to the YACC program itself, we'd have to reverse engineer the BNF from the parse tables and match it up to the 

semantic actions. The maintainability effect becomes more extreme the closer the language gets to the domain abstraction. As we 

approach the ideal language, it's often possible to tell at a glance whether a program solves the problem it was designed for.

Imagine, for a moment, that you're writing control software for the Acme Clean-Burning Nuclear Fusion Reactor. The following formula from 

a scientific paper describes how to combine voltage levels from three sensors into a temperature reading:

    T = ( a+3.1 )( b+4.63 )( c+2x108 )

You need to implement the computation as part of the reactor's failsafe mechanism. Naturally, using operator notation (C++'s 

domain-specific sublanguage for arithmetic) you'd write:

    T = ( a + 3.1 ) * ( b + 4.63 ) * ( c + 2E8 );

Now compare that to the code you'd have to write if C++ didn't include support for operators:

    T = mul(mul(add(a, 3.1), add(b, 4.63)), add(c, 2E8));

Which notation do you trust more to help prevent a meltdown? Which one is easier to match up with the formula from the paper? We think 
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the answer is obvious. A quick glance at the code using operator notation shows that it implements the formula correctly. What we have 

here is a true example of something many claim to have seen, or even to have produced themselves, but that in reality is seldom 

encountered in the wild: self-documenting code.

Arithmetic notation evolved into the standard we use today because it clearly expresses both the intent and the structure of calculations 

with a minimum of extra syntax. Because mathematics is so important to the foundation of programming, most computer languages have 

built-in support for standard mathematical notation for operations on their primitive types. Many have sprouted support for operator 

overloading, allowing users to express calculations on user-defined types like vectors and matrices in a language that is similarly close to 

the native domain abstraction.

Because the system knows the problem domain, it can generate error reports at the same conceptual level the programmer uses. For 

example, YACC detects and reports on grammatical ambiguities, describing them in terms of grammar productions rather than dumping 

the details of its parse tables. Having domain knowledge can even enable some pretty impressive optimizations, as you'll see when we 

discuss the Blitz++ library later in this chapter.

Before moving on, we'd like to make a last observation about DSLs: It's probably no coincidence that both Make and BNF have a "rule" 

concept. That's because DSLs tend to be declarative rather than imperative languages. Informally, declarative languages describe rather 

than prescribe. A purely declarative program mentions only entities (e.g., symbols, targets) and their relationships (e.g., parse rules, 

dependencies); the processing or algorithmic part of the program is entirely encoded in the program that interprets the language. One way 

to think of a declarative program is as an immutable data structure, to be used by the language's conceptual execution engine.
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10.3. DSLs, Inside Out

The original Make program contained a very weak programming language of its own, adequate only for the basic software construction 

jobs to which it was first applied. Since then, Make variants have extended that language, but they all remain somewhat crippled by their 

origins, and none approaches the expressivity of what we'd call a general-purpose language. Typical large-scale systems using Make 

dispatch some of the processing work to Perl scripts or other homebrew add-ons, resulting in a system that's often hard to understand and 

modify.

The designers of YACC, on the other hand, recognized that the challenge of providing a powerful language for expressing semantic 

actions was better left to other tools. In some sense, YACC's input language actually contains all the capability of whichever language you 

use to process its output. You're writing a compiler and you need a symbol table? Great, add #include <map> to your initial %{...%} block, 

and you can happily use the STL in your semantic actions. You're parsing XML and you want to send it to a SAX (Simple API for XML) 

interpreter on-the-fly? It's no problem, because the YACC input language embeds C/C++.

However, the YACC approach is not without its shortcomings. First of all, there is the cost of implementing and maintaining a new compiler:

in this case, the YACC program itself. Also, a C++ programmer who doesn't already know YACC has to learn the new language's rules. In

the case of YACC it mostly amounts to syntax, but in general there may be new rules for all sorts of things—variable binding, scoping, and

name lookup, to name a few. If you want to see how bad it can get, consider all the different kinds of rules in C++. Without an additional

investment in tools development, there are no pre-existing facilities for testing or debugging the programs written in the DSL at their own

level of abstraction, so problems often have to be investigated at the low level of the target language, in machine-generated code.

Lastly, traditional DSLs impose serious constraints on language interoperability. YACC, for example, has little or no access to the structure

of the C/C++ program fragments it processes. It simply finds nonquoted $ symbols (which are illegal in real C++) and replaces them with

the names of corresponding C++ objects—a textual substitution. This simple approach works fine for YACC, because it doesn't need the

ability to make deductions about such things as C++ types, values, or control flow. In a DSL where general-purpose language constructs

themselves are part of the domain abstraction, trivial text manipulations usually don't cut the mustard.

These interoperability problems also prevent DSLs from working together. Imagine that you're unhappy with Make's syntax and limited 

built-in language, and you want to write a new high-level software construction language. It seems natural to use YACC to express the new 

language's grammar. Make is still quite useful for expressing and interpreting the low-level build system concepts (targets, dependencies, 

and build commands), so it would be equally natural to express the language's semantics using Make. YACC actions, however, are written 

in C or C++. The best we can do is to write C++ program fragments that write Makefiles, adding yet another compilation phase to the 

process: First YACC code is compiled into C++, then the C++ is compiled and executed to generate a Makefile, and finally Make is invoked 

to interpret it. Whew! It begins to look as though you'll need our high-level software construction language just to integrate the various 

phases involved in building and using the language itself!

One way to address all of these weaknesses is to turn the YACC approach inside out: Instead of embedding the general-purpose 

language in the DSL, embed the domain-specific language in a general-purpose host language. The idea of doing that in C++ may seem a 

little strange to you, since you're probably aware that C++ doesn't allow us to add arbitrary syntax extensions. How can we embed another 

language inside C++? Sure, we could write an interpreter in C++ and interpret programs at runtime, but that wouldn't solve the 

interoperability problems we've been hinting at.

Well, it's not that mysterious, and we hope you'll forgive us for making it seem like it is. After all, every "traditional" library targeting a

particular well-defined domain—be it geometry, graphics, or matrix multiplication—can be thought of as a little language: its interface

defines the syntax, and its implementation, the semantics. There's a bit more to it, but that's the basic principle. We can already hear you

asking, "If this is just about libraries, why have we wasted the whole chapter discussing YACC and Make?" Well, it's not just about libraries. 

Consider the following quote from "Domain-Specific Languages for Software Engineering" by Ian Heering and Marjan Mernick [Heer02]:

In combination with an application library, any general purpose programming language can act as a DSL, so why were DSLs developed in 

the first place? Simply because they can offer domain-specificity in better ways:

Appropriate or established domain-specific notations are usually beyond the limited user-definable operator notation offered by 

general purpose languages. A DSL offers domain-specific notations from the start. Their importance cannot be overestimated 

as they are directly related to the suitability for end user programming and, more generally, the programmer productivity 

improvement associated with the use of DSLs.

Appropriate domain-specific constructs and abstractions cannot always be mapped in a straightforward way on functions or 

objects that can be put in a library. This means a general purpose language using an application library can only express these 
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constructs indirectly. Again, a DSL would incorporate domain-specific constructs from the start.

In short:

Definition

A true DSL incorporates domain-specific notation, constructs, and abstractions as fundamental design considerations. A 

domain-specific embedded language (DSEL) is simply a library that meets the same criteria.

This inside-out approach addresses many of the problems of translators like YACC and interpreters like Make. The job of designing, 

implementing, and maintaining the DSL itself is reduced to that of producing a library. However, implementation cost isn't the most 

important factor, since both DSLs and traditional library implementations are long-term investments that we hope will pay off over the many 

times the code is used. The real payoff lies in the complete elimination of the costs usually associated with crossing a language boundary.

The DSEL's core language rules are dictated by the host language, so the learning curve for an embedded language is considerably flatter 

than that of its standalone counterpart. All of the programmer's familiar tools for editing, testing, and debugging the host language can be 

applied to the DSEL. By definition, the host language compiler itself is also used, so extra translation phases are eliminated, dramatically 

reducing the complexity of software construction. Finally, while library interoperability presents occasional issues in any software system, 

when compared with the problems of composing ordinary DSLs, integrating multiple DSELs is almost effortless. A programmer can make 

seamless transitions between the general-purpose host language and any of several domain-specific embedded languages without giving 

it a second thought.
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10.4. C++ as the Host Language

Fortunately for us, C++ turns out to be a one-of-a-kind language for implementing DSELs. Its multiparadigm heritage has left C++ bristling 

with tools we can use to build libraries that combine syntactic expressivity with runtime efficiency. In particular, C++ provides

A static type system

The ability to achieve near-zero abstraction penalty
[3]

[3] With current compilers, avoiding abstraction penalties sometimes requires a great deal of attention 

from the programmer. Todd Veldhuizen has described a technique called "guaranteed optimization," in 

which various kinds of abstraction can be applied at will, with no chance of hurting performance [Veld04].

Powerful optimizers

A template system that can be used to

– generate new types and functions

– perform arbitrary computations at compile time

– dissect existing program components (e.g., using the type categorization metafunctions of the Boost

Type Traits library)

A macro preprocessor providing (textual) code generation capability orthogonal to that of templates (see Appendix A)

A rich set of built-in symbolic operators (48!)—many of which have several possible spellings—that can be overloaded with

practically no limitations on their semantics

Table 10.1 lists the syntactic constructs provided by operator overloading in C++. Table entries with several lines show some little-known 

alternative spellings for the same tokens.
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Table 10.1. C++ Overloadable Operator Syntaxes

+a -a a + b a - b

++a --a a++ a--

a * b a / b a % b a, b

a & b

a bitand b

a | b

a bitor b

a ^ b

a ??' b

a xor b

~a

??-a

compl a

a & & b

a and b

a | | b

a or b

a >> b a << b

a > b a < b a >= b a <= b

a == b a != b

a not_eq b

! a

not a

a = b

a += b a -= b a *= b a /= b

a %= b a &= b

a and_eq b

a |= b

a or_eq b

a ^= b

a xor_eq b

a >>= b a <<= b *a &a

a->name a->*name a [b]

a?? (b??)

a<:b:>

a (arguments)

new ctor-expr delete a   

The unique combination of these features in C++ has made possible a category of domain-specific libraries that are both efficient and 

syntactically close to languages one might build from scratch.
[4]

 Moreover, these libraries can be written in pure C++, giving them 

important advantages over standalone DSLs, which require special compilers, editors, and other tools. In the following sections we'll 

discuss some examples, in each case focusing on the DSL's design rather than its implementation.

[4] Haskell is another language that certainly deserves mention when considering platforms for building DSELs. 

Haskell's strengths for DSEL construction overlap considerably with those of C++, and go even further in some 

areas. For example, Haskell programmers can define new operators with which to extend the built-in language 

syntax. Haskell's compilation model, however, tends to limit peak performance.

Namespace Names

Until now, we've been fairly disciplined about always prefixing names from namespace boost with boost:: and names 

from boost::mpl with mpl:: to avoid confusion. In this chapter only, to emphasize the "sugary" aspects of DSL syntax, 

we're going to omit namespace names from library identifiers, and trust you to guess where the names come from.
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10.5. Blitz++ and Expression Templates

Blitz++ [Veld95a], a library for high-performance array math, pioneered so many of the techniques and ideas used in this book that it would 

be hard to overestimate its influence on the world of C++ metaprogramming. It was the first C++ library to use explicit 

metaprogramming,
[5]

 and the first to implement a domain-specific embedded language. We can't possibly touch on all aspects of Blitz++, 

so we're going to look at the central innovation: expression templates [Veld95b].

[5] By "explicit metaprogramming" we mean treating template instantiations as first-class compile-time programs. 

Explicit metaprogramming goes well beyond the sort of trivial type manipulations required for most generic 

programming, such as accessing the value_type of an iterator through std::iterator_traits. Although that could 

technically be seen as a metafunction invocation, most generic programmers don't think of it that way, and it's one's 

relationship to the code, as much as anything else, that defines metaprogramming.

10.5.1 The Problem

If we had to boil the problem solved by Blitz++ down to a single sentence, we'd say, "A naive implementation of array math is horribly 

inefficient for any interesting computation." To see what we mean, take the boring statement

    x = a + b + c;

where x, a, b, and c are all two-dimensional Arrays. The canonical implementation of Array's addition operator is:

    Array operator+(Array const& a, Array const& b)

    {

         std::size_t const n = a.size();

         Array result;

         for (std::size_t row = 0; row != n; ++row)

             for (std::size_t col = 0; col != n; ++col)

                 result[row][col] = a[row][col] + b[row][col];

         return result;

    }

To evaluate the expression a + b + c using that operator, we first compute a + b, resulting in a temporary Array (call it t), and then we 

evaluate t + c to produce the final result.

The problem is that temporary, t. The efficient way to perform this computation is to step through each position in all three input arrays at 

once, adding the three elements at that position and placing their sum in the result:

    for (std::size_t row = 0; row != n; ++row)

       for (std::size_t col = 0; col != n; ++col)

           result[row][col] = a[row][col] + b[row][col] + c[row][col];
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The temporary not only costs an extra dynamic memory allocation for its element storage, but causes the CPU to make two complete 

traversals of that storage: one to write the result of a + b, and another to read the input for t + c. As anyone who has done high-performance 

numerics knows, these two traversals are the real killer, because they destroy cache locality. If all four of the named arrays nearly fill the 

cache, introducing t effectively pushes one of them out.

The problem here is that the operator+ signature above is just too greedy: It tries to evaluate a + b just as soon as it can, rather than waiting 

until the whole expression, including the addition of c, is available.

10.5.2 Expression Templates

In the expression's parse tree, evaluation starts at the leaves and proceeds upwards to the root. What's needed here is some way of 

delaying evaluation until the library has all of the expression's parts: that is, until the assignment operator is executed. The stratagem taken 

by Blitz++ is to build a replica of the compiler's parse tree for the whole expression, allowing it to manage evaluation from the top down 

(see Figure 10.1).

Figure 10.1. Parse tree for x = a + b + c

This can't be any ordinary parse tree, though: Since array expressions may involve other operations like multiplication, which require their 

own evaluation strategies, and since expressions can be arbitrarily large and nested, a parse tree built with nodes and pointers would have 

to be traversed at runtime by the Blitz++ evaluation engine to discover its structure, thereby limiting performance. Furthermore, Blitz++ 

would have to use some kind of runtime dispatching to handle the different combinations of operation types, again limiting performance.

Instead, Blitz++ builds a compile-time parse tree out of expression templates. Here's how it works in a nutshell: Instead of returning a newly 

computed Array, operators just package up references to their arguments in an Expression instance, labeled with the operation:
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    // operation tags

    struct plus; struct minus;

    // expression tree node

    template <class L, class OpTag, class R>

    struct Expression

    {

        Expression(L const& l, R const& r)

          : l(l), r(r) {}

        float operator[](unsigned index) const;

        L const& l;

        R const& r;

    };

    // addition operator

    template <class L, class R>

    Expression<L,plus,R> operator+(L const& l, R const& r)

    {

        return Expression<L,plus,R>(l, r);

    }

Notice that when we write a + b, we still have all the information needed to do the computation—it's encoded in the type

Expression<Array,plus,Array>—and the data is accessible through the expression's stored references. When we write a + b + c, we get a 

result of type:

    Expression<Expression<Array,plus,Array>,plus,Array>

and the data is still accessible through the nested references. The interesting thing about the Expression class template is that, just like an 

Array, it supports indexing via operator[]. But wait! Didn't we just tell you that operator+ computes nothing, and Expression just stores 

references to its arguments? Yes, we did. If the result of the operation isn't stored in the Expression, it must be computed lazily by 

operator[].

To see how it works, check out this simplified implementation for one-dimensional Arrays of floats. First, to associate the elementwise 

arithmetic logic with the operation tags, we'll nest some static member functions:

    // operation tags implement elementwise arithmetic

    struct plus

    {

      static float apply(float a, float b)

        { return a + b; }
    };

    struct minus

    {

      static float apply(float a, float b)

        { return a - b; }
    };

Next, we'll give the Expression an indexing operator that calls its tag's apply function to compute the appropriate element value:

    // expression tree node
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    template <class L, class OpTag, class R>

    struct Expression

    {

        Expression(L const& l, R const& r)

          : l(l), r(r) {}

        float operator[](unsigned index) const

        {

          return OpTag::apply(l[index], r[index]);

        }

        L const& l;

        R const& r;

    };

This seems almost too simple, right? Amazingly, we now have fully lazy expression evaluation. To see it at work, let's walk through the 

evaluation of (a + b)[1]. Since the type of a + b is Expression<Array,plus,Array>, we have:

    (a + b)[1]

      == plus::apply(a[1], b[1])

      == a[1] + b[1]

Now consider what we'd go through to evaluate the same expression with a greedy strategy. That's right, we'd have to compute a 

temporary array, (a + b), only to throw out all but one element! The contrast in efficiency couldn't be more striking.

Naturally, (a + b + c)[1] is also computed without any temporary Arrays:

    (a + b + c)[1]

      == ((a + b) + c)[1]

      == plus::apply((a + b)[1], c[1])

      == plus::apply(plus::apply(a[1], b[1]), c[1])

      == plus::apply(a[1] + b[1], c[1])

      == (a[1] + b[1]) + c[1]

All that remains now is to implement Array's assignment operator. Since we can access any single element of the result Expression without 

ever creating a temporary Array, we can compute the whole result by accessing every element of the expression:

    template <class Expr>

    Array& Array::operator=(Expr const& x)

    {

        for (unsigned i = 0; i < this->size(); ++i)

           (*this)[i] = x[i];

        return *this;

    }

That's it! Naturally, there's a lot more to array math than addition and subtraction, and Blitz++ has to consider all kinds of things that are not 

handled by our simple example, from operations like multiplication to "tiling" large array operations so that they stay within the cache. The 

basic technique of delaying expression evaluation, however, is the tool that allows the library to do all these things with near-optimal 

efficiency.
[6]

[6] If it seems to you that we've just demonstrated a way to abuse C++ operator overloading, we plead guilty! In fact, 

we're going to spend much of this chapter looking at creative ways to "abuse" the operators. We hope that by the 
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end, you'll see these techniques as legitimate and well-founded programming paradigms.

As a DSL, this part of Blitz++ is deceptive in its smoothness: The syntax looks exactly as you'd expect it to in a naive implementation, but 

you can see that behind the syntax lives a highly specialized evaluation engine, tuned for the Blitz++ domain.

Intermediate Results

One drawback of expression templates is that they tend to encourage writing large, complicated expressions, because 

evaluation is only delayed until the assignment operator is invoked. If a programmer wants to reuse some intermediate 

result without evaluating it early, she may be forced to declare a complicated type like:

Expression<

    Expression<Array,plus,Array>

  , plus

  , Expression<Array,minus,Array>

> intermediate = a + b + (c - d);

(or worse). Notice how this type not only exactly and redundantly reflects the structure of the computation—and so would

need to be maintained as the formula changes—but also overwhelms it? This is a long-standing problem for C++ DSELs.

The usual workaround is to capture the expression using type erasure (see Chapter 9), but in that case one pays for 

dynamic dispatching.

There has been much discussion recently, spearheaded by Bjarne Stroustrup himself, about reusing the vestigial auto

keyword to get type deduction in variable declarations, so that the above could be rewritten as:

auto intermediate = a + b + (c - d);

This feature would be a huge advantage to C++ DSEL authors and users alike.

10.5.3 More Blitz++ Magic

Just in case you find it hard to see the domain-specific language in what we've already covered, here are just a couple more of Blitz++'s 

syntactic innovations that we think you'll find more striking.

10.5.3.1 Array Initialization

Because Blitz++ Arrays are not what the C++ standard calls an "aggregate" (see section 8.5.1 of the Standard), we can't use the 

convenient syntax of listing initializers within braces, as we can with ordinary built-in arrays. Instead, Blitz++ overloads the comma operator 

to make a similar syntax possible:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



    Array<float,2> A(3,3);

    A = 1, 2, 3,

        4, 5, 6,

        7, 8, 9;

10.5.3.2 SubArray Syntax

Blitz++ has a Range class that encapsulates a sequence of indices. When an Array is indexed using a Range, a lazy SubArray view is 

produced without copying any elements:
[7]

[7] Note that Blitz++, like most array packages, uses operator() instead of operator[] for indexing, because operator()

allows multiple arguments whereas operator[] does not.

    // add the first two rows and columns of A to B

    B += A(Range(0,2), Range(0,2))

The exciting thing about Blitz++'s Range objects is that you can also perform arithmetic on them directly, resulting in expressions that look 

remarkably like the body of a multiply-nested loop, using a technique pioneered by the Math.h++ library [KV89]. This example is taken from 

the online Blitz++ manual:

    // a three-dimensional stencil (used in solving PDEs)

    Range I(1,6), J(1,6), K(1,6);

    B = (A(I,J,K) + A(I+1,J,K) + A(I-1,J,K) + A(I,J+1,K)

     + A(I,J-1,K) + A(I,J+1,K) + A(I,J,K+1) + A(I,J,K-1)) / 7.0;

This sort of notational simplification has proven itself to be more than mere syntactic sugar. Similar techniques have been used to reduce 

the evaluation of complex tensor equations from unreadable and error-prone code resembling FORTRAN (called "C++tran" by Scott 

Haney) to one-liners resembling the equations in the original theory [Land01]. Projects that would be practically impossible to complete 

correctly using C++tran suddenly become tractable with a DSEL.
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10.6. General-Purpose DSELs

One of the nicest features of DSELs is that we can apply them in the domain of general-purpose programming idioms. In other words, a 

DSEL can function as a kind of extension to the general-purpose host language. Although it may seem contradictory to use the terms 

"general-purpose" and "domain-specific" when discussing the same library, it makes sense when you consider the domain to be the 

specific programming idiom enabled by the DSEL.

10.6.1 Named Parameters

Named parameters is a feature of many languages that allows arguments to be passed by name rather than by position. We'd love to see 

it supported directly in C++. For example, in an imaginary C++ that supports named parameters, given the declaration:

    void f(int score = 0, char const* name = "x", float slew = .1);

we might call f this way:

    f(slew = .799, name = "z");

Note that the role of each actual argument is now perfectly clear at the call site, and defaults can be used for any parameter without regard 

to its position or the other parameters being passed. A similar principle can of course be applied to template parameters. As you can 

imagine, named parameters really begin to pay off in interfaces that accept several independent arguments, each of which has a nontrivial 

default. Many such functions can be found in the algorithms of the Boost Graph library.

The Graph library's original named parameter DSL used a technique called "member function chaining" to aggregate parameter values into 

a single function argument, essentially forming a tuple of tagged values. The usage in our example would look something like:

    f(slew(.799).name("z"));

Here, the expression slew(.799) would build a instance of class named_params<slew_tag, float, nil_t> having the empty class nil_t as its 

only base class, and containing the value .799 as a single data member. Then, its name member function would be called with "z" to 

produce an instance of:

    named_params<

        name_tag, char const [2]      // .name("z")

      , named_params<

            slew_tag, double const    // slew(.799)

          , nil_t

        >

    >

having a copy of the instance just described as its only base, and containing a reference to "z" as its only data member. We could go into 

detail about how each tagged value can be extracted from such a structure, but at this point in the book we're sure your brain is already 

working that out for itself, so we leave it as an exercise. Instead, we'd like to focus on the chosen syntax of the DSL, and what's required to 

make it work.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



If you think for a moment about it, you'll see that not only do we need a top-level function for each parameter name (to generate the initial 

named_params instance in a chain), but named_params must also contain a member function for each of the parameter names we might 

want to follow it with. After all, we might just as well have written:

    f(slew(.799).score(55));

Since the named parameter interface pays off best when there are many optional parameters, and because there will probably be some 

overlap in the parameter names used by various functions in a given library, we're going to end up with a lot of coupling in the design. 

There will be a single, central named_params definition used for all functions in the library that use named parameter interfaces. Adding a 

new parameter name to a function declared in one header will mean going back and modifying the definition of named_params, which in 

turn will cause the recompilation of every translation unit that uses our named parameter interface.

While writing this book, we reconsidered the interface used for named function parameter support. With a little experimentation we 

discovered that it's possible to provide the ideal syntax by using keyword objects with overloaded assignment operators:

    f(slew = .799, name = "z");

Not only is this syntax nicer for users, but adding a new parameter name is easy for the writer of the library containing f, and it doesn't 

cause any coupling. We're not going to get into the implementation details of this named parameter library here; it's straightforward enough 

that we suggest you try implementing it yourself as an exercise.

Before moving on, we should also mention that it's possible to introduce similar support for named class template parameters [AS01a, 

AS01b], though we don't know of a way to create such nice syntax. The best usage we've been able to come up with looks like this:

    some_class_template<

        slew_type_is<float>       // slew_type = float

      , name_type_is<char const*> // slew_type = char const*

    >

Maybe you can discover some improvement we haven't considered.

10.6.2 Building Anonymous Functions

For another example of "library-based language extension," consider the problem of building function objects for STL algorithms. We 

looked briefly at runtime lambda expressions in Chapter 6. Many computer languages have incorporated features for generating function 

objects on-the-fly, the lack of which in C++ is often cited as a weakness. As of this writing, there have been no fewer than four major DSL 

efforts targeted at function object construction.

10.6.2.1 The Boost Bind Library

The simplest one of these, the Boost Bind library [Dimov02], is limited in scope to three features, a couple of which should be familiar to 

you from your experience with MPL's lambda expressions. To understand the analogy you'll need to know that, just as MPL has 

placeholder types that can be passed as template arguments, the Bind library has placeholder objects that can be passed as function 

arguments.
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The first feature of Boost.Bind is partial function (object) application, that is, binding argument values to a function (object), yielding a 

new function object with fewer parameters. For example, to produce a function object that prepends "hello, " to a string, we could write:

    bind(std::plus<std::string>(), "hello, ", _1)

The resulting function object can be called this way:

    std:: cout << bind(                     // prints "hello, world"

                      std::plus<std::string>()

                    , "hello, ", _1

                  )("world");

Note that it's not very realistic to see the outer function argument ("world") right next to the bind invocation. In real code we'll usually pass 

the result of calling bind to some algorithm that will proceed to invoke it multiple times.

The second feature of Boost.Bind is function composition. For example, the following expression produces a function object that 

computes y = x(x- 0.5):

    bind(

        std::multiplies<float>()

      , _1

      , bind(std::minus<float>(), _1, 0.5))

To us, it seems so natural that bind should operate this way that we have to think hard to imagine the alternative: If the inner bind expression 

were not given special treatment by the library, the function object it produces would be passed as the first argument to the 

std::multiplies<float> instance, causing an error.

Lastly, Boost.Bind allows us to invoke member functions with ordinary function call syntax. The basic idea—that member functions—can

be seen as free functions accepting an initial class argument is supported by languages such as Dylan, but once again, not by native C++.

This is more than an aesthetic concern, though: The different syntax for invoking free and member functions can be a serious problem for

generic code that may need to work with both.

Using the Bind library, we can transform a member function X::foo declared as

    struct X { float foo(float) const; } obj;

into a function object, and invoke it as follows:

    bind(&X::foo, _1, _2)(obj, pi)

One of the most popular ways to use bind is to partially apply a member function to a class instance. For example, the following calls 

v.visit(x) on each element x in [first, last):

    std::for_each(first, last, bind(&Visitor::visit, v, _1));

This limited use of partial application is so important in event-based software that Borland implemented a C++ language extension 

closures to support it directly in their compiler.
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Before moving on, let's briefly compare the syntax of the bind expressions used above with what we'd get using the STL binders and 

composers:
[8]

[8] compose1, compose2, and identity were included in the original STL design, but never made it into the C++ 

standard library. You can still find them implemented as extensions in the SGI STL, STLPort, and other standard 

library implementations.

    // partial application

    bind1st(std::plus<std::string>(), "hello, ")

    // function composition

    compose2(

        std::multiplies<float>()

      , bind2nd(std::minus<float>(), 1)

      , identity<float>())

    // invoking a member function with function call syntax

    mem_fun_ref(&X::foo)(obj, pi)

    std::for_each(

        first

      , last

      , bind1st(mem_fun_ref(&Visitor::visit), v));

We think there's a good argument that even the small amount of syntactic sugar provided by Boost.Bind begins to look like a 

domain-specific language by comparison.

10.6.2.2 The Boost Lambda Library

The Boost Lambda library, by Jaakko Järvi and Gary Powell, was the original inspiration for Boost.Bind, and for the design of MPL's

compile time lambda expressions. The Lambda Library extends the basic facilities of Boost Bind with syntax so sweet that some of the 

examples we've covered become almost transparent. For example:

    "hello, " + _1   // x -> "hello, " + x

    _1 * (_1 - 0.5)  // x -> x * (x - 0.5)

What's interesting about this code is that operator* doesn't multiply, and operator+ doesn't add or even concatenate! Instead, the operators 

construct function objects that can be called later. The result of "hello, " + _1 is a function object accepting one argument—call it x—and

returning the result of "hello, " + x. If this is beginning to sound familiar, that's good: Function objects built on-the-fly are just another 

example of the "expression templates" idiom first introduced by Blitz++.

The goals of the Lambda library are much more ambitious than those of Boost.Bind. Even if you found it hard to see the syntax of 

Boost.Bind as a DSL, we think it's clear that Boost.Lambda syntax is a little language unto itself. Its features go way beyond support for 

operators by implementing control structures and even exception handling! Here are just a few examples.

Halve each element of a two-dimensional array.

    float a[5][10];

    int i;

    std::for_each(a, a+5,

1.
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      for_loop(var(i)=0, var(i)<10, ++var(i),

         _1[var(i)] /= 2

      )

    );

Print a sequence, replacing odd elements with periods.

    std::for_each(a.begin(), a.end(),

        if_then_else(_1 % 2 != 0,

             std::cout << _1

           , std::cout << constant('.')
        )

    );

2.

Print "zero," "one" or "other: n" for each element n of v.

std::for_each(v.begin(), v.end(),

  (

    switch_statement(

      _1,

      case_statement<0>(std::cout << constant("zero")),

      case_statement<1>(std::cout << constant("one")),

      default_statement(std::cout << constant("other: ") << _1)

    ),

    std::cout << constant("\n")

  )

);

3.

In the examples above, var and constant each wraps its argument in a special class template that prevents it from being evaluated 

greedily. For example, if we had written std::cout << "\n" in the last example, it would have been evaluated once, outside the for_each

invocation. That's just how C++ works. The result of constant("\n"), however, is a nullary function object that returns "\n". The standard 

library doesn't provide a stream inserter (operator<<(ostream&, T)) for T, the type of that function object, but the Lambda library does

provide an overloaded operator<< that works on T. Rather than performing stream insertion, the Lambda library's operator<< just produces 

another nullary function object: This one evaluates std::cout << "\n" when it's called.

The need for var and constant, and the need to use such functions as for_loop in place of C++'s built-in for, are compromises forced on us 

by the limitations of the C++ language. Still, the expressivity of Boost Lambda, combined with the fact that the function objects it builds are 

typically about as efficient as hand-coded functions, is impressive.

10.6.2.3 The Phoenix Library

Never satisfied, C++ library designers continue to search for more expressive ways to program. Before moving on to other domains, we'd 

like to touch on some of the innovations of two other functional programming libraries. The first is Phoenix, which was developed as part of 

the Boost.Spirit parser framework [Guz04], discussed later in this chapter. Besides adding some valuable new functionality, the authors of 

Phoenix invented new syntax for some of the same control structures supported by Boost.Lambda. For example, in Phoenix, the 

if_then_else example above might be written as follows (note that in Phoenix placeholders are called "arg1," "arg2",...):

    for_each(a.begin(), a.end(),

             if_(arg1 % 2 != 0)

             [
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                std::cout << arg1

             ]

             .else_

             [
                std::cout << val('.')

             ]
    );

The authors of the Boost Lambda library found this syntax so attractive that they have incorporated it as an alternative to if_then_else. As 

you can see, there is a great deal of cross-pollination between these designs.

10.6.2.4 The FC++ Library

FC++ [MS00b]—short for "Functional C++"—enables C++ programmers to use the idioms of hardcore functional programming languages

like Haskell, including lazy sequences, partial function application, and higher-order polymorphic functions.
[9]

 These paradigms are so 

general-purpose, and so different from those most C++ programmers are used to, that using FC++ almost amounts to using a whole new 

programming language. We don't have space here to do justice to FC++, but we can present a few examples to give you a sense of it.

[9] We covered the meaning of the term "higher-order function" when we introduced metafunctions—it's just a fancy

term for functions that operate on other functions. In this context, "polymorphic" simply means that the function can

operate on different types of arguments, like a function template does.

First, a look at FC++ lambda expressions. As in most traditional functional programming languages, but unlike C++ lambda expressions 

you've seen so far, FC++ supports the use of named parameters to improve readability in lambda expressions. For example:
[10]

[10] FC++ uses square brackets for function calls inside lambda expressions to explicitly delay function evaluation.

    lambda_var<1> X;

    lambda_var<2> Fun;

    g = lambda(Fun,X)[ Fun[Fun[X]] ]  // g(fun,x) -> fun(fun(x))

Now, this is really mind-bending! The names Fun and X have both a meaning at the level of the C++ program, and a meaning in the 

program (function object) generated by the lambda expression. In fact, it's not very different from what Boost's Bind and Lambda libraries 

do with their placeholders. Placeholders implement a mapping from input argument positions to the position of arguments passed to the 

function being "bound." You could almost think of X as _1 and Fun as _2. All lambda(Fun,X)[ ... ] does is to add another layer of indirection 

that exchanges the positions represented by the placeholders.

FC++ doesn't stop with named lambda arguments, though. The next example shows a lambda expression with what are essentially named 

local constants:

    // f(x) -> 2*(x+3)

    lambda(X)[

        let[

            Fun == multiplies[2] // Fun = 2*_1

          , Y == X %plus% 3      // Y = X+3

        ].in[

           Fun[Y]                // fun(Y), i.e. 2*(X+3)

        ]
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    ]

The example above shows a few other features of the FC++ DSL. First, you can see partial application at work in the expression 

multiplies[2], which yields a unary function object that computes multiplies[2,x] for its argument x. Next, the % operator is overloaded to make 

the expression x %f% y equivalent to f[x,y], so any FC++ binary function object (e.g., plus) can act as a kind of "named infix operator."

The (domain-specific) language designers of FC++ made another interesting choice as well: They decided they didn't like the way that, in 

certain contexts, libraries like Boost.Lambda demand the use of constant(...) or variable(...) to prevent greedy evaluation of any expression 

that doesn't involve a placeholder. They reasoned that having to remember that only one of the two expressions below will work as 

expected is too error-prone:

    std::cout << _1 << "world"   // OK; builds a function object

    std::cout << "hello, " << _1 // wrong: immediate streaming

Instead, they chose a simple rule: Function invocations using round parentheses are evaluated immediately, and those using square 

brackets are evaluated lazily:

    plus(2,x) // immediate

    plus[2,X] // delayed

Likewise, FC++ has a separate syntax for immediate infix evaluation:

    2 ^plus^ x // immediate

    2 %plus% X // delayed

As a result, the syntax used to delay evaluation is at once terser than what the Lambda and Phoenix libraries use, and more explicit.

It may seem odd to see %plus% used to name the good old infix + operator. In fact, it has some clear drawbacks, as we can see by 

comparing these two roughly equivalent expressions:

    // Boost Lambda:

    -(3 * _1) + _2

    // FC++:

    lambda(X,Y)[ negate[ 3 %multiplies% X ] %plus% Y ]

The first one is shorter, simpler, and for anyone working in a problem domain that normally uses operator notation, clearer. Within the 

context of the FC++ language design, though, there are good reasons to use plus instead of +. To understand them, we have to consider 

the kind of C++ entity that plus refers to. What will allow us to write both plus[2,X] and plus(2,x)? Not a function, or a function pointer, or an 

array. Only a class instance can support that: plus must be a global class instance in the FC++ library.

Now, recalling that FC++ is all about higher order functional programming, it becomes clear that + isn't a name for addition that can be used 

in all contexts. How do you pass + to a function? If you mean the + operator that adds two ints, well, you can't even name it. If you try to 

pass the address of operator+, and it's overloaded, your C++ compiler will ask you which one you mean. If you mean a particular templated

operator+, once again, there's no way to pass a function template as a runtime function argument. Further recalling that FC++ supports 

higher-order polymorphic functions, it's easy to see that if we want to pass an entity that actually represents the abstract + operation, it has

to be a class instance, something like

[View full width]
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    struct plus

    {

       template <class T, class U>

       typename plus_result<T,U>::type[11]

       operator()(T t, U u) const

       {

           return t + u;

       }

    };

[11] The subject of how to implement plus_result is an interesting one that's been tackled in a different way by almost 

every C++ DSEL framework. In the current C++ language, you can't build that metafunction so that it always 

returns the right type. There's been much talk in the C++ committee about adding an operator that will 

make it a simple matter of writing decltype(t+u).

In fact, just about every special feature of FC++, from implicit partial application to explicit lazy notation, is only possible in C++ with 

function objects. To meet the goals of its designers, it was much more important for FC++ to use function objects than for mathematical 

expressions to use operator notation. The point of all this is not to say that one of these domain-specific languages is better than another, 

but to illustrate the wide range of syntactic and semantic choices available to you, the DSEL designer.
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10.7. The Boost Spirit Library

Like YACC, Spirit is a framework for defining parsers. The main difference is that rather than compiling to intermediate C/C++ code, Spirit 

uses an embedded domain-specific language. Here's the meat of the expression grammar we implemented with YACC, using 

Boost.Spirit's embedded DSL syntax:

    group       = '(' >> expression >> ')';

    factor      = integer | group;

    term        = factor >> *(('*' >> factor) | ('/' >> factor));

    expression  = term >> *(('+' >> term) | ('-' >> term));

You'll notice that there are some differences from traditional EBNF. The most obvious is probably that, because sequences of consecutive 

values like

    '(' expression ')'

don't fit into the C++ grammar, the author of Spirit had to choose some operator to join consecutive grammar symbols. Following the 

example of the standard stream extractors (which do, after all, perform a crude kind of parsing), he chose operator>>. The next difference 

worth noting is that the Kleene star (*) and positive closure (+) operators, which are normally written after the expressions they modify, must 

be written as prefix operators instead, again because of limitations of the C++ grammar. These minor concessions aside, the Spirit 

grammar syntax comes remarkably close to the usual notation of the domain.

Spirit is actually a great example of the power of DSELs to interoperate with one another, because it really consists of a collection of little 

embedded languages. For example, the following complete program brings the above grammar together with semantic actions written 

between [...] using the Phoenix functional programming DSEL, and another DSEL idiom Spirit calls closures:

    #include <boost/spirit/core.hpp>

    #include <boost/spirit/attribute.hpp>

    #include <iostream>

    #include <string>

    using namespace boost::spirit;

    using namespace phoenix;

    // provides one named variable of type int...

    struct vars : boost::spirit::closure<vars, int>   // CRTP

    {

        member1 value; // ...called "value" in lazy expressions

    };

    // calculator is a grammar with attached int called "value"

    struct calculator

      : public grammar<calculator, vars::context_t>   // CRTP

    {

        template <class Tokenizer>

        struct definition

        {
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          // all our rules have an attached int called "value," too...

            rule<Tokenizer, vars::context_t>
              expression, term, factor, group, integer;

          // ...except the top rule

            rule<Tokenizer> top;

          // build the grammar

            definition(calculator const& self)

            {

                top = expression[self.value = arg1];

                group = '(' >> expression[group.value = arg1] >> ')';

                factor = integer[factor.value = arg1]

                    | group[factor.value = arg1]

                    ;

                term = factor[term.value = arg1]

                       >> *(   ('*' >> factor[term.value *= arg1])

                             | ('/' >> factor[term.value /= arg1])

                           )

                    ;

                expression = term[expression.value = arg1]

                     >> *(   ('+' >> term[expression.value += arg1])

                           | ('-' >> term[expression.value -= arg1])

                         )

                     ;

                integer = int_p[integer.value = arg1];

            }

                     // tell Spirit to start parsing with "top"

                       rule<Tokenizer> const& start() const { return top; }

                   };

          };

          int main()

          {

              calculator calc;    // our grammar

              std::string str;

              while (std::getline(std::cin, str))

              {

                 int n = 0;

                 parse(str.c_str(), calc[var(n) = arg1], space_p);

                 std::cout << "result = " << n << std::endl;

              }

          }

10.7.1 Closures

We're going to describe closures at two levels: First we'll examine them from the point of view of the DSL user, asking you to put aside any 

consideration of how the magic works, and then we'll look at the implementation techniques.
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10.7.1.1 The Abstraction

To understand the use of closures, it's important to know that Spirit grammars and rules are all—you guessed it—function objects. When

invoked with an appropriate pair of iterators over the input, rules and grammars attempt to parse it. This leads to top down or recursive 

descent parsing. For example, in order to parse its first symbol, the expression rule in turn invokes the term rule.

Closures provide a set of variables associated with each rule invocation, accessed as members of the rule itself. The value of the first 

member of the closure (in our example there is only one: value) becomes the rule's "return value" and when the rule is used on the 

right-hand-side of another rule, may be accessed in semantic actions attached to the rule by using the Phoenix placeholder arg1. So, for 

example, in

    term = factor[term.value = arg1]

           >> *(   ('*' >> factor[term.value *= arg1])

                 | ('/' >> factor[term.value /= arg1])

               )

        ;

the value associated with the first factor invocation is first moved into the value associated with the current term invocation. Then, as each 

member of the Kleene star repetition is parsed, the value associated with the current term invocation is modified accordingly.

The really interesting thing about closures is the way they enable yet another programming paradigm: dynamic scoping. In C++, 

unqualified names (those without a "::" prefix) usually refer to the innermost enclosing scope in which they're defined:

    #include <iostream>

    namespace foo

    {

      int x = 76;

      int g()

      {

         return x + 1;                // refers to foo::x

      }

    }

    int main()

    {

       int x = 42;

       std::cout << foo::g();         // prints 77

    }

In dynamic scoping systems, though, names refer to the nearest scope on the call stack in which they're defined. Therefore, in the same 

code, foo::g would see the value of x that was established in main(), and the program would print 43.

The fully qualified names of closure variables (rulename.membername) are dynamically scoped. That means, for example, that any

semantic action in our grammar can refer to expression.value, and in doing so, can reach up the call stack to the value associated with the 

nearest invocation of the expression rule.

10.7.1.2 Implementation Details
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Take a look at the declaration of our closure:

    struct vars : closure<vars, int>

    {

        member1 value;

    };

The first thing you'll probably notice is that closure uses the "Curiously Recurring Template Pattern" (covered in Chapter 9), so that it has 

access to the type of vars. More interesting, though, is the use of the special type member1 for value.

Clearly, if the library lets you write rulename.closure-variable, rules must contain public data members with the same names as closure 

variables. Actually, the limitations of the C++ language give us a big hint as to what's going on here: The only way to automatically allow 

the closure data members to be addressed as rule data members of the same name is to make the closure a public base of the rule class 

itself. There's simply no other way to generate identically named public data members in the rule.

Just as clearly, if something like expression.value += 1 is to work as expected, expression.value can't be of type int: that would cause an 

integer addition immediately, as our grammar is defined, instead of later, when its rules are invoked. Sound like a familiar issue? In fact, it 

is solved in a familiar way, with expression templates. Instead of performing an addition, expression.value += 1 creates an object that, 

when suitably invoked by the parser, adds 1 to the int variable created for value in the stack frame of the nearest enclosing expression

invocation.

We're not going to go into the nitty-gritty details of how the dynamic scoping mechanism is implemented, as it's not directly related to the

"DSEL-ness" of closures—we suggest you look at the Spirit and Phoenix source code if you're curious. The important thing to recognize is

that, once again, expression templates and delayed evaluation have allowed us to use a programming paradigm not directly available in

native C++.

10.7.2 Subrules

If you look closely at our calculator grammar, you can see that there must be some type erasure at work.
[12]

 Since the expression on the 

right side of each rule assignment builds an efficient function object, we can expect the types of these function objects to represent the 

structure of the expression. For example, leaving out the effect of the semantic actions, which further complicate things, the type of the 

right-hand-side of the factor rule is something like:

[12] See Chapter 9 for more information on type erasure.

    alternative<

        rule<Tokenizer, vars::context_t> // for integer rule

      , rule<Tokenizer, vars::context_t> // for group rule

    >

and the right-hand-side of the group rule has a type something like this one:

    sequence<

        sequence<

            ch_p                             // for '(' parser

          , rule<Tokenizer, vars::context_t> // expression rule

        >

      , ch_p                                 // for ')' parser

    >
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The factor and group rules themselves, though, have the same type. Clearly the compile time polymorphism generated by the expression 

templates is being transformed into runtime polymorphism: Rule objects of the same type must contain some function pointer, or virtual 

function, or something that allows one of them to parse groups and another to parse factors. Of course, making that choice of behavior at 

runtime comes with an attendant loss of efficiency. In a simple grammar like this one, the cost of dynamically dispatching for every rule 

invocation can really add up.

Joel de Guzman, the primary author of Spirit, has written [Guz03]:

... the virtual function is a totally opaque wall that blocks all meta type information from passing through. We can 

never get any of the type information of the RHS or a rule, to, say, re-factor the expression template tree to 

something else (e.g., do automatic left factoring, static node-type-traversal, static first-follow analysis, etc.).

Those operations are all specialized issues related to parsers, but the point is still universal: Type erasure is a kind of "lossy compression," 

and valuable information may disappear forever.

The Spirit designers could tell us to simply write out the full type of each rule's right-hand-side, but that idea is basically a DSEL-killer. As 

you can imagine, writing down a complicated type for each rule, and rewriting those types each time the rules change, would quickly 

become unmanageable. More importantly, we'd have to fill our grammars with information about rule types, which from a DSEL 

perspective is just noise: It has nothing to do with the underlying domain abstraction.

It's worth noting that even the auto language extension described earlier in this chapter wouldn't completely solve this problem for Spirit, 

since the grammar rules all reference one another, so the types on the right-hand-side of the first auto initialization can never be known to 

the compiler.

Spirit resolves this tension between efficiency and expressivity in a familiar way: by putting off work until the last possible moment. Just as 

Blitz++ achieves efficiency by delaying matrix arithmetic until the entire expression is available, Spirit uses subrules to delay the erasure of 

static type information until the entire grammar is available. The following rewrite of calculator's definition uses subrules to achieve 

near-optimal parsing efficiency:

    template <class Tokenizer>

    struct definition

    {

        subrule<0, vars::context_t> expression;

        subrule<1, vars::context_t> group;

        subrule<2, vars::context_t> factor;

        subrule<3, vars::context_t> term;

        subrule<4, vars::context_t> integer;

        rule<Tokenizer> top;

        definition(calculator const& self)

        {

            top = (

                expression =

                    term[expression.value = arg1]

                    >> *(  ('+' >> term[expression.value += arg1])

                          |('-' >> term[expression.value -= arg1]) )

              , group =

                    '(' >> expression[group.value = arg1] >> ')'

              , factor =

                    integer[factor.value = arg1]

                  | group  [factor.value = arg1]

              , term =

                    factor[term.value = arg1]

                    >> *(  ('*' >> factor[term.value *= arg1])
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                          |('/' >> factor[term.value /= arg1]) )

              , integer =

                    int_p[integer.value = arg1]

            )[ self.value = arg1 ];

        }

        // tell Spirit to start parsing with "top"

        rule<Tokenizer> const& start() const { return top; }

    };

Two things are particularly worth noticing in this example. First, to achieve this delay without forcing users to write out messy types, the 

definition of all the subrules has to be done in a single expression. Type erasure doesn't occur until the assignment to top, the only full rule, 

occurs. At that point, a type even messier than that of any of the right-hand-sides, and containing the definition of all the subrules, is 

captured in a single virtual function. Once that single dynamic dispatch occurs, the parsing of an expression involves only normal static 

function calls, many of which can be inlined. The second item of note is that the transformation from dynamically dispatched rules to 

statically dispatched subrules hardly changed the grammar's representation at all. It is a particularly beautiful feature of Spirit that it offers 

us the ability to tune our position in the compile-time/runtime continuum so easily, and while staying so close to the fundamental EBNF 

domain language.
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10.8. Summary

We hope this chapter has brought you a new perspective on library design. The most effective libraries provide users with a new level of 

expressiveness, one that allows them to program in terms appropriate to their problem domain. Although historically the introduction of 

new idioms and syntax to any programming environment has been viewed with (sometimes justifiable) suspicion, the practice has also 

been shown to have immense power to simplify programs and speed their development.

Thinking in terms of domain-specific languages provides a foundation for library design choices, and helps us to judge which kinds of new 

programming idioms and syntax will be effective. By relying on those that are most evocative of existing domain abstractions and notation, 

we can write programs that seem to directly express our intentions.

A unique combination of features—among them flexible operator overloading syntax, a high level of abstraction with little or no

performance penalty, and the power of template metaprogramming—gives C++ programmers unmatched power to build efficient,

expressive DSELs. Moreover, because DSELs are libraries, users can freely combine DSEL capabilities in the same application without

ever leaving a familiar programming environment.

The purely compile-time MPL constructs that occupy most of this book and the techniques we covered in Chapter 9 for interfacing 

compile-time and runtime code are an effective toolbox for DSEL construction. In the next chapter, we'll go through an example to see just 

how that can be done.
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10.9. Exercises

10-0. Consider the possibility of using operators other than >> in Spirit to separate consecutive grammar symbols. 

Would any other operator be better? Why or why not? Hint: Consider C++ grammar rules in addition to 

readability.

10-1. Are you beginning to notice a common theme in which limitations of the host language drive many DSEL 

design decisions? Consider how you might design a language that allows open-ended DSEL syntax and do a 

cost/benefit analysis comparing the use of the hypothetical language to what you've seen in C++. You might 

look at the history and use of macros in LISP for inspiration.

10-2. Use any of the Boost DSEL libraries discussed in this chapter to solve a small problem. Evaluate the user 

experience: What worked about the library? What was cumbersome about it?

10-3. Build a small DSEL for handling named function parameters using a protocol similar to the one described in 

this chapter. Compare your design with that of the Boost named parameters library, by David Abrahams and 

Daniel Wallin, in the prerelease materials on this book's companion CD.
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Chapter 11. A DSEL Design Walkthrough

In this chapter we'll walk through the process of designing and implementing a domain-specific embedded language and a metaprogram 

that operates on it. First we'll explore a domain and identify its principal abstractions; using a specific example, we'll get a sense of what 

they mean in the real world. Then we'll design a DSEL to express those abstractions, with our example as a proof-of-concept. Finally, we'll 

apply the tools and techniques you've learned in this book to write a metaprogram that processes the language to generate useful and 

efficient runtime components.
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11.1. Finite State Machines

Every software engineer should be familiar with finite state machines (FSMs). The concept is so useful that you could expect to find it 

almost anywhere, from hardware device controllers to pattern-matching and parsing engines such as the one used by YACC. Developers 

of such diverse applications have embraced the use of FSMs because they make it possible to transform a tangled web of complex 

program logic into a comprehensible expression of well-understood formalism. We can credit this power to two things: the fundamental 

simplicity of the FSM abstraction and its declarative form.

Few general-purpose languages have built-in support for constructing FSMs, and C++ is no exception. If they aren't a regular part of every 

C++ programmer's vocabulary, maybe it's just for want of a tool that makes them as easy and fun to build as they should be. In this chapter 

we aim to design and build just such a tool: a finite state machine construction framework.

11.1.1 The Domain Abstraction

The domain abstraction of finite state machines consists of three simple elements.

States

An FSM must always be in one of several well-defined states. For example, the states of a simple CD player might be called Open, Empty, 

Stopped (with a CD in the drawer), Paused, and Playing. The only persistent data associated with a pure FSM is encoded in its state, 

though FSMs are seldom used alone in any system. For example, the parsers generated by YACC are built around a stack of state 

machines; the state of the whole system includes that of the stack and of each FSM in the stack.

Events

State changes are triggered by events. In our CD player example, most events would correspond to button presses on its front panel: play, 

stop, pause, and open/close (the button that opens and closes the drawer). Events aren't necessarily "pushed" into a state machine from 

the outside, though. For example, in YACC parsers, each event represents a different token, and is "pulled" from the input stream by the 

parsing process. In some systems, events contain associated data. For instance, an identifier token in a C++ parser might carry the text of 

the identifier, while an integer-literal token might carry the value of the integer.

Transitions

Each state can have any number of transitions to other states. Each transition is labeled with an event. To process an event, the FSM 

follows the transition that starts from the current state and is marked with that event. For example, a CD player has a transition from 

Playing to Stopped labeled with the stop event. Usually, transitions also have some associated action, such as stop playback in the case of 

our CD player. In the case of YACC, following transitions means manipulating the stack of FMSs and/or executing the user's semantic 

actions.
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11.1.2 Notations

There are several common ways to describe a state machine on paper, but perhaps the most user-friendly notation is a graphical one. 

Figure 11.1 represents the CD player we've been using as an example. In the picture, states are shown as circles and transitions are 

shown as arrows, labeled with the events that trigger them.

Figure 11.1. CD player FSM in graphical form

Note the transition from Empty to Stopped. Remember that we said not all events need to be "pushed" on the system from the outside? To 

model real CD players, the FSM will begin a CD detection process when the drawer is closed; when it detects a CD in the drawer, the 

system sends itself a cd-detected event. To make this work, the transition from Open to Empty must have an associated action that begins 

the CD detection process. When a new disc is detected, most CD players collect information about the number of tracks and the total 

playing time of each one; our cd-detected event should contain that information so that the transition's action can store it somewhere and 

show the number of tracks on the player's front panel.

The graphical representation shows everything that can happen in an FSM at a glance, with no wasted syntactic elements. One popular

strategy for FSM construction, in fact, is to draw the state machine using a graphical user interface with a code-generating back end. If

only C++ allowed pictures in its input syntax—they could be a perfect DSEL notation!

Since C++ can't parse pictures, we're going to use a different notation called a State Transition Table (STT), which is essentially just a 

vertical list of the FSM's transitions. Table 11.1 shows the STT for the CD player.
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Table 11.1. CD Player State Transition Table

Current State Event Next State Transition Action

Stopped play Playing start playback

Stopped open/close Open open drawer

Open open/close Empty close drawer; collect CD 

information

Empty open/close Open open drawer

Empty cd-detected Stopped store CD information

Playing stop Stopped stop playback

Playing pause Paused pause playback

Playing open/close Open stop playback; open drawer

Paused play Playing resume playback

Paused stop Stopped stop playback

Paused open/close Open stop playback; open drawer

Although the structure of the FSM is less apparent than it was in the graphical form, it's still fairly easy to follow. To process an event, the 

state machine finds a row that contains its current state in the first column and the event in the second column; the third and fourth 

columns of that row indicate the new state and the action to take upon making the transition. Note that while we left transition actions out of 

the FSM's graphical representation to minimize clutter, in the STT they cause little or no interference.
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11.2. Framework Design Goals

Okay, so what do we want from our state machine framework?

Interoperability. State machines are typically just an abstraction for describing the logic of a system targeted at some problem

domain(s) other than FSM construction. We'd like to be able to use libraries built for those domains in the implementation of our 

FSMs, so we want to be sure we can comfortably interoperate with other DSELs.

1.

Declarativeness. State machine authors should have the experience of describing the structure of FSMs rather than 

implementing their logic. Ideally, building a new state machine should involve little more than transcribing its STT into a C++ 

program. As framework providers, we should be able to seamlessly change the implementation of a state machine's logic 

without affecting the author's description.

2.

Expressiveness. It should be easy both to represent and to recognize the domain abstraction in a program. In our case, an

STT in code should look very much as it does when we design a state machine on paper.

3.

Efficiency. A simple FSM like our CD player should ideally compile down to extremely tight code that can be optimized into

something appropriate even for a tiny embedded system. Perhaps more importantly, concerns about the efficiency of our 

framework should never give programmers an excuse for using ad hoc logic where the sound abstraction of a finite state 

machine might otherwise apply.

4.

Static Type Safety. It's important to catch as many problems as possible at compile time. A typical weakness of many

traditional FSM designs [LaFre00] is that they do most of their checking at runtime. In particular, there should be no need for 

unsafe downcasts to access the different datatypes contained by various events.

5.

Maintainability. Simple changes to the state machine design should result in only simple changes to its implementation. This

may seem like an obvious goal, but it's nontrivial to attain—experts have tried and failed to achieve it. For example, when using

the State design pattern [Mart98], a single change such as adding a transition can lead to refactoring multiple classes.

6.

Scalability. FSMs can grow to be far more complex than our simple example above, incorporating such features as per-state

entry and exit actions, conditional transition guards, default and triggerless transitions and even sub-states. If the framework 

doesn't support these features today, it should be reasonably extensible to do so tomorrow.

7.
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11.3. Framework Interface Basics

We can make some easy choices right away. Because of goal 1 above—and, of course, because of the name of this chapter—we're going

to design an embedded DSL. That means taking the library approach rather than building a translator (like YACC) or an interpreter (like 

Make).

Though it may not be obvious from our CD player example, we might in general want to create multiple instances of any finite state 

machine, each with a separate state. Therefore, it makes sense to encapsulate FSM logic in a reusable package. Since C++'s unit of data 

encapsulation is a class, our framework is going to help us build FSM classes. Because the whole FSM will be represented as a class, it 

seems reasonable to represent transition actions like start playback as member functions of that class.

We'd like to be able to use readable names like Playing and open_close to indicate states and events. At this point we can't say much 

about what kind of C++ entity (type, integer value, function object, and so on) to use for state names like Playing. Events are a different story, 

though: In the CD player, only the cd-detected event contains data, but in general every distinct kind of event might need to transmit a 

different data type. Therefore, event names should denote types. To embed arbitrary data in an event, the FSM author can just declare an 

event class with corresponding data members.

Given that finite state machines will be classes, and that events will be implemented as types, we can imagine that a state machine built 

with our framework might be used as follows:

    int main()

    {

        player p;                      // an instance of the FSM

        p.process_event(open_close()); // user opens CD player

        p.process_event(open_close()); // inserts CD and closes

        p.process_event(               // CD is detected

            cd_detected(

                 "louie, louie"

               , std::vector<std::clock_t>( /* track lengths */ )

             )

        );

        p.process_event(play());       // etc.

        p.process_event(pause());

        p.process_event(play());

        p.process_event(stop());

        return 0;

    }
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11.4. Choosing a DSL

Our next challenge is to design a domain-specific language that allows a programmer to describe a finite state machine like the one 

implemented by player. Later, we'll write metaprogram code that processes the FSM description to generate a class like player. As hinted 

earlier, the state machine author is going to deliver the description in the form of a state transition table, so let's start looking at possible 

syntaxes for representing it.

11.4.1 The Transition Table

Deciding on a representation for transitions (the rows of our STT) is where things really start to get interesting. We have many options! 

Let's go through a few of the possible ways of writing just the first two rows of our table, and analyze each one to get a sense of the range 

of choices at our disposal. At this stage, we're not going to worry too much about how to use these syntaxes to build FSMs; the point is just 

to consider how STTs might map onto C++ syntax:

    // Current  Event        Next     Action

    //  State                State

     [ Stopped, play,       Playing, &fsm::start_playback ]

     [ Stopped, open_close, Open,    &fsm::open_drawer    ]

Our first attempt is sufficiently table-like to make the state machine's structure clear. What would it take to make this syntax work? To make 

the brackets legal, there would have to be a class, say transition_table, with an overloaded operator[]. Because the C++ compiler doesn't 

allow us to write bracketed expressions in isolation, users would have to precede the table with an instance of that class, something like:

    transition_table STT; // provided by the FSM framework

    ...

      // Current  Event        Next     Action

      //  State                State

    STT[ Stopped, play,       Playing, &fsm::start_playback ]

       [ Stopped, open_close, Open,    &fsm::open_drawer    ]

Next, because operator[] is only allowed to have one argument, there would have to be at least one overloaded comma operator to 

consolidate the items in between the brackets. Having noticed that, we can make the syntax even more table-like by replacing the comma 

operator with operator|:

      // Current    Event          Next          Action

      //  State                    State

    STT[ Stopped  | play        | Playing    | &fsm::start_playback ]

       [ Stopped  | open_close  | Open       | &fsm::open_drawer    ]
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Given that our event names will denote types, however, both of the syntaxes we've explored present a problem: We can't just use a type in 

a runtime expression as though it were an object. Instead, we have to pass an instance of that type, so our table might end up looking 

more like this:

    // Current    Event           Next        Action

    //  State                     State

  STT[ Stopped  | play()       | Playing  | &fsm::start_playback ]

     [ Stopped  | open_close() | Open     | &fsm::open_drawer    ]

A couple of parentheses per row don't compromise the syntax too badly, though we appear to be requiring that events can be 

default-constructed. Default-constructibility requirements are a red flag to any experienced library designer: In this case, events won't 

necessarily all be lightweight types, and constructing instances just so we can build the transition table might not be appropriate.

Applying the Fundamental Theorem of Software Engineering,
[1]

 we might get around that problem by asking users to transmit the event's 

type information to the framework indirectly, in a little wrapper template:

[1] "We can solve any problem by introducing an extra level of indirection." See section 2.1.2 for the origin of this idea.

    // provided by the FSM framework

    template <class Event>

    struct on

    {

        typedef Event type;

    };

    ...

      // Current    Event            Next      Action

      //  State                      State

    STT[ Stopped |on<play>()      | Playing |&fsm::start_playback ]

       [ Stopped |on<open_close>()| Open    |&fsm::open_drawer    ]

That works in principle, but the syntax is starting to get a little bit heavy, obscuring event names with syntactic "noise." We might recover 

some of the readability by writing:

    on<play>       play_;

    on<stop>       stop_;

    on<open_close> open_close_;

    ...

      // Current   Event          Next       Action

      //  State                   State

    STT[ Stopped | play_       | Playing | &fsm::start_playback ]

       [ Stopped | open_close_ | Open    | &fsm::open_drawer    ]

That's not bad at all. Unfortunately, there's one problem that is going to kill this lovely scheme. Remember our fourth design goal, 

"Efficiency?" The problem with all of the designs we've seen so far is that they are going to hurt the efficiency of our state machine in two 

ways:

We're passing pointers to the transition actions as arguments to some operator| function. That means we're going to have to 

store them in data members somewhere, and later call through the stored pointers when the FSM actually follows the 

transitions. As a result, even the simplest transition functions won't be inlined. These costs are not significant in all designs. For 

1.
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example, when Boost.Bind
[2]

 is used to build a comparison function object for use with std::sort, the cost of moving sequence 

elements during sorting will usually swamp the small overhead of repeatedly calling through a single function pointer. In the 

case of a finite state machine, however, the code executed to change states is often so trivial that an added indirection really 

does count.

[2] See Chapter 10 for more on the Boost Bind library.

We're also building the whole transition table at runtime. That's not an efficiency problem in itself: Construction of the table can 

probably be inlined, and, as we've seen from Blitz++, it's possible to build super-efficient computational engines at runtime 

using expression templates. Unfortunately, the number of operators used in building such an engine is directly proportional to 

the complexity of its type structure. After building up a type complicated enough to represent a fairly large STT, there's no way 

we can ask the user to write that type down. If we want to hold the state machine in a variable, the table either needs to be 

passed off immediately to a function template or we have to resort to some sort of type erasure,
[3]

 which always results in 

another level of function-pointer indirection.

[3] See Chapter 9 for more on type erasure.

2.

We can avoid the cost of indirection through a function pointer on transition actions by passing the action member pointers as template 

arguments, as described in Chapter 9:

    //          Current   Event          Next      Action

    //           State                   State

    transition< Stopped,  play,         Playing, &fsm::start_playback >,

    transition< Stopped,  open_close,   Open,    &fsm::open_drawer    >,

This syntax is not nearly so sweet, but we think it still looks sufficiently tabular. We can go a bit further in that direction just by moving the 

commas and adding comments:

    //    Current   Event         Next      Action

    //     State                  State

    //  +---------+------------+---------+-----------------------+

    row < Stopped , play       , Playing , &fsm::start_playback  >,

    row < Stopped , open_close , Open    , &fsm::open_drawer     >,

    //  +---------+------------+---------+-----------------------+

    row < Paused  , play       , Playing , &fsm::resume_playback >,

    row < Paused  , stop       , Stopped , &fsm::stop_playback   >,

    row < Paused  , open_close , Open    , &fsm::stop_and_open   >,

    //  +---------+------------+---------+-----------------------+

Although we had to replace transition with the less meaningful identifier row (so the example would fit on the page), the new format is more 

readable to our eye.

This approach has two important practical advantages over previous attempts, no matter what layout you choose. First, it can be 

implemented using only type expressions, so there's no loss of efficiency due to a premature crossing of the compile-time/runtime 

boundary. Since the action function pointer is a template parameter, it is known at compile time and can be completely inlined. Second, 

because each row<...> instantiation is a type, we can pass a comma-separated list of them as parameters to an MPL sequence, and all the 

MPL tools for manipulating type sequences will be at our disposal.

Now that we know the format we'd like to use for our transition table, we might as well choose the kind of C++ entity to which state names 

will refer. State machines are, well, stateful. In other words, they don't fit into the compile-time world of pure template metaprogramming 

very well. We need to be able to pass state names as template parameters to row<...>, but we also need to be able to store something 

representing any of the FSM's various states in a single data member. Integral constants meet both those constraints. Luckily, C++ gives 

us a convenient way to define collections of named integral constants with unique values:

    enum states {

       Stopped, Open, Empty, Playing, Paused
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     , initial_state = Empty

    };

As you can see, we've defined an additional constant initial_state. We're endowing that particular identifier with special meaning: The 

framework will use it to decide the initial state of default-constructed FSM instances.

11.4.2 Putting It All Together

Except for a couple of small details, we've now explored all the syntactic aspects of the DSEL and are ready to show a complete example 

of how it might be used to describe a FSM:

    // concrete FSM implementation

    class player : public state_machine<player>
    {

     private:

        // the list of FSM states

        enum states {

            Empty, Open, Stopped, Playing, Paused

          , initial_state = Empty

        };

        // transition actions

        void start_playback(play const&);

        void open_drawer(open_close const&);

        void close_drawer(open_ close const&);

        void store_cd_info(cd_detected const&);

        void stop_playback(stop const&);

        void pause_playback(pause const&);

        void resume_playback(play const&);

        void stop_and_open(open_close const&);

        friend class state_machine<player>;
        typedef player p; // makes transition table cleaner

        // transition table

        struct transition_table : mpl::vector11<

        //    Start     Event         Next      Action

        //  +---------+-------------+---------+---------------------+

        row < Stopped , play        , Playing , &p::start_playback  >,

        row < Stopped , open_close  , Open    , &p::open_drawer     >,

        //  +---------+-------------+---------+---------------------+

        row < Open    , open_close  , Empty   , &p::close_drawer    >,

        //  +---------+-------------+---------+---------------------+

        row < Empty   , open_close  , Open    , &p::open_drawer     >,

        row < Empty   , cd_detected , Stopped , &p::store_cd_info   >,

        //  +---------+-------------+---------+---------------------+

        row < Playing , stop        , Stopped , &p::stop_playback   >,

        row < Playing , pause       , Paused  , &p::pause_playback  >,

        row < Playing , open_close  , Open    , &p::stop_and_open   >,

        //  +---------+-------------+---------+---------------------+

        row < Paused  , play        , Playing , &p::resume_playback >,

        row < Paused  , stop        , Stopped , &p::stop_playback   >,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



        row < Paused  , open_close  , Open    , &p::stop_and_open   >

        //  +---------+-------------+---------+---------------------+

        > {};

    };

One new detail above is that player's base class is being granted friendship. Because all of player's nested definitions—its states, transition

table, and actions—are exclusively for use by the state machine framework, and not for public consumption, we've marked them private. 

Aside from its default constructor, the state machine's public interface consists solely of the process_event member function that will be 

supplied by its base class.

The other detail we ought to discuss is the use of the Curiously Recurring Template Pattern (CRTP), in which player is derived from 

state_machine<player>.
[4]

 Like many of our other DSEL design choices, this one is driven by C++ language constraints. Consider how row

might be declared so that it can accept a pointer-to-member-function of player as a template argument. It would have to be something like:

[4] See section 9.8 for more on CRTP.

   template <

       int CurrentState

     , class Event

     , int NextState

     , void (player::*) (Event const&)

  >

  struct row

  { ... };

In other words, row needs to know the type of player. We could ask the author of player to supply the FSM type herself, as an initial 

template parameter:

    template<

        class Fsm    // explicit FSM specification

      , int CurrentState

      , class Event

      , int NextState

      , void (Fsm::*action)(Event const&)

    >

    struct row

    { ... };

That approach would add an extra column to the transition table—a column full of nothing more than redundant copies of the same class

name. Since C++ already requires the state machine author to qualify all member function pointers with the FSM class name, we'd just be

adding insult to injury. With CRTP, however, the FSM author passes the class name once, to the base class template state_machine. 

Since state_machine has full access to the derived class name, it can supply a convenient nested row template for that particular Derived

state machine:

    template<class Derived>

    class state_machine

    {

         ...

      protected:

         template<

             int CurrentState

           , class Event

           , int NextState
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           , void (Derived::*action)(Event const&)

         >

         struct row

         {

             // for later use by our metaprogram

             static int const current_state = CurrentState;

             static int const next_state = NextState;

             typedef Event event;

             typedef Derived fsm_t;

             // do the transition action

             static void execute(Derived& fsm, Event const& e)

             {

                 (fsm.*action) (e);

             }

         };

     };

Notice that we've filled in the body of row above. The nested definitions serve only one purpose: They allow convenient access to the 

values of row's template parameters. It may seem a little strange that the action parameter is accessed through an execute function that 

calls it; unfortunately, in C++ a nested constant member pointer can never be a compile-time constant. Had action been assigned to a 

static const member like the other template parameters, calls through it would not be inlined.
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11.5. Implementation

Now that we've begun to touch on the details of state_machine's implementation, we may as well dive in head first. You're probably asking 

yourself, "How the heck are we going to make this thing work?" Mostly the answer comes down to implementing process_event, which 

after all is entirely responsible for the FSM's runtime behavior (aside from the transition actions, supplied by the derived FSM's author).

The process_event member function presents a classic "double dispatch" problem: Given a start state and an event, we need to select a 

target state and a transition action to perform. In general, implementing double dispatch can be quite challenging, but in our case we have 

a distinct advantage: We know the event type at compile time, which allows us to capitalize on the compiler's overload resolution 

capability. If we were going to write an FSM implementation by hand instead of letting the library generate it, we'd have a separate 

overloaded implementation of process_event for each event type, looking something like this:

    // "play" event processor

    void process_event(play const& e)

    {

      switch (this->state)

      {

       case Stopped:

          this->start_playback(e);

          this->state = Playing;

          break;

       case Paused:

          this->resume_playback(e);

          this->state = Playing;

          break;

       default:

          this->state = no_transition(this->state, e);

      }

    }

    // "stop" event processor

    void process_event(stop const& e)

    {

        ...

    }

    // etc...

Ideally, to do the same thing automatically, we'd just instantiate some templates parameterized on the current states, actions, and target 

states involved, and containing switch statements. Just looking at the play event processor, we can already see a problem. There may be 

an arbitrary number of cases in that switch statement, one for each transition on the event, and C++ doesn't give us a way to generate 

such an arbitrarily sized switch statement directly. To create one from the information in our transition table, which will be processed row by 

row, we need to build up the switch semantics from similar-looking bite-sized pieces. The smallest unit of code that we can generate with 

C++ templates is a function call, so these pieces will have to be functions. Breaking each case into a separate function yields something 

more like this for the play event processor:

    // "play" event processor

    void process_event(play const& e)
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    {

        this->state = case_Stopped(e);

    }

    int case_Stopped(play const& e)

    {

        if (this->state == Stopped)

        {

           this->start_playback(e);

           return Playing;

        }

        else return this->case_Paused(e);

    }

    int case_Paused(play const& e)

    {

        if (this->state == Paused)

        {

           this->resume_playback(e);

           return Playing;

        }

        else return this->case_default(e);

    }

    int case_default(play const& e)

    {

        return this->no_transition(this->state, e);

    }

Here, process_event(play const&) forwards its implementation to case_Stopped. case_Stopped first checks to see if the current state is 

Stopped, and if so, takes the corresponding transition action (start_playback) and returns Playing as the new state. Otherwise, case_Paused

checks to see if the state is Paused, and if so, resumes playback and again returns Playing. Otherwise, case_default calls no_transition to 

handle the states that have no outgoing transition on a play event.
[5]

[5] We don't expect this version of process_event to incur the cost of four function calls; we're relying on the 

compiler's inlining and optimization capabilities to make it efficient.

As you can see, these semantics are identical to those of the switch statement above. If we can generate a case_State function for each 

transition on a given event, we can build the right behavior incrementally, by traversing the rows of the transition table. Of course, we're not 

home free yet, because we can't generate case_State functions, the problem being the variable part of the name, represented by State. A 

template metaprogram simply can't generate new identifiers. We can, however, associate a separate function with each state as follows:

    template <int State>

    struct case_

    {

        static int dispatch(player& fsm, int state, play const& e)

        { ... }

    };

Provided that we could fill the braces appropriately, case_<Stopped>::dispatch would be equivalent to case_Stopped, and 

case<Paused>::dispatch would be equivalent to case_Paused. To generate bodies for these functions, we'll need State (to check against), a 

transition action (to execute), and a next state (to move to). We could pass each of these in a separate template parameter, but it's 

probably simpler to pass an entire row of the transition table, since the members of row provide access to all of that information and more. If 

case_ isn't taking a state value as its sole template argument, though, it seems badly named. Let's call it event_dispatcher instead:

    template<class Transition> // a row of the transition table
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    struct event_dispatcher

    {

        typedef typename Transition::fsm_t fsm_t;

        typedef typename Transition::event event;

        static int dispatch(

            fsm_t& fsm, int state, event const& e)

        {

            if (state == Transition::current_state)

            {

                Transition::execute(fsm, e);

                return Transition::next_state;

            }

            else { ... }

        }

     };

Conveniently, each row provides us with the identity of the state machine (::fsm_t) and of the event being dispatched (::event). That allows 

event_dispatcher to be more generic than case_, which was tied to a specific state machine and event.

To complete event_dispatcher we must fill in its else clause, which, in the usual case, just needs to call the next case's dispatch function. 

That's easy enough if the event_dispatcher for the next case is a template parameter:

    template<

        class Transition

      , class Next
    >

    struct event_dispatcher

    {

        typedef typename Transition::fsm_t fsm_t;

        typedef typename Transition::event event;

        static int dispatch(

            fsm_t& fsm, int state, event const& e)

        {

            if (state == Transition::current_state)

            {

                Transition::execute(fsm, e);

                return Transition::next_state;

            }

            else // move on to the next node in the chain.

            {

                return Next::dispatch(fsm, state, e);

            }

         }

     };

To handle the default case, we'll introduce a default_event_dispatcher with a dispatch function that invokes the FSM's no_transition handler. 

Because the derived FSM class is only granting friendship to state_machine<FSM> and not to default_event_dispatcher, the handler must 

be called indirectly through a member of state_machine:

    struct default_event_dispatcher

    {

        template<class FSM, class Event>

        static int dispatch(

            state_machine<FSM>& m, int state, Event const& e)
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        {

            return m.call_no_transition(state, e);

        }

    };

    template <class Derived>

    class state_machine

    {

         ...

         template <class Event>

         int call_no_transition(int state, Event const& e)

         {

             return static_cast<Derived*>(this)  // CRTP downcast

                        ->no_transition(state, e);

         }

         ...

     };

Now, to process the play event, we just have to assemble the following type and call its dispatch function:

    event_dispatcher<

        row<Stopped, play, Playing, &player::start_playback>

        , event_dispatcher<

            row<Paused, play, Playing, &player::resume_playback>

          , default_event_dispatcher

        >

     >

If you look carefully at the structure of that type, you can see that it mirrors the execution pattern of the fold algorithm, beginning with 

default_event_dispatcher and "folding" it into successive event_dispatcher specializations. To generate it, we just have to run fold over the 

rows of our table that contain the event we're dispatching:

    // get the Event associated with a transition

    template <class Transition>

    struct transition_event

    {

        typedef typename Transition::event type;

    };

    template<class Table, class Event>

    struct generate_dispatcher

      : mpl::fold<

            mpl::filter_view<   // select rows triggered by Event

                Table

              , boost::is_same<Event, transition_event<_1< >

            >

          , default_event_dispatcher

          , event_dispatcher<_2,_1>

        >

    {};

Finally, we're ready to write state_machine's process_event function! Rather than writing overloads for each event type, we'll use a 

member function templated on the event type, that merely generates the dispatcher and invokes its ::dispatch member:
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    template<class Event>

    int process_event(Event const& evt)

    {

        // generate the dispatcher type

        typedef typename generate_dispatcher<

            typename Derived::transition_table, Event

        >::type dispatcher;

        // dispatch the event

        this->state = dispatcher::dispatch(

            *static_cast<Derived*>(this)       // CRTP downcast

          , this->state

          , evt

        );

        // return the new state

        return this->state;

     }

Note that once again we are taking advantage of the Curiously Recurring Template Pattern to supply functionality that relies on knowing 

the full type of the derived class in the member functions of the base class. The static_cast above allows the dispatcher to apply the 

Derived member function pointers in the transition_table to *this.

There's very little else to state_machine. We need a state member, and a constructor to initialize it:

    ...

    protected:

       state_machine()

         : state(Derived::initial_state)

       {}

    private:

       int state;

   ...

It would be nice to supply a default no_transition handler; after all, a user who wants different behavior can always write a no_transition

function in her derived class:

    ...

     public:

        template <class Event>

        int no_transition(Event const& e)

        {

            assert(false);

            return state;

        }

     ...

In your Boost installation, libs/mpl/book/chapter10/player.cpp contains a complete implementation of what we've explored here.
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11.6. Analysis

By now you should have a good sense of the DSEL development process. The steps mirror the ones we used to analyze each of the 

domain-specific languages in Chapter 10.

Identify the domain abstractions.1.

Experiment with representing those abstractions in code.2.

Build a prototype.3.

Iterate.4.

So how well did it work out this time? Did we achieve our design goals?

Interoperability. Interoperability with other DSLs is achieved because we have created our DSL as a library, that is, a

domain-specific embedded language. We can embed types from other domain libraries in our events, invoke arbitrary functions 

in other domains from within the transition actions, or operate the FSM from code written in other DSELs.

1.

Declarativeness. Looking back at our player implementation, the bulk of the code written by its author is in the transition table 

itself, and almost everything in the declaration of player is essential to its meaning. It does appear to be a very direct translation 

of the domain language into C++. Furthermore, it is possible to completely replace the framework's implementation without 

altering the state machine declaration. In the examples directory of the code that accompanies this book, player2.cpp illustrates 

a state_machine that dispatches using O(1) lookup into a static table of function pointers.

2.

Expressiveness. The STT as declared in player does look very much like a table should be expected to, particularly with the 

formatting conventions we've used.

3.

Efficiency. The code generated for process_event avoids all runtime dispatch other than switching on the current state, and 

that doesn't require any memory accesses or table lookups, since event_dispatcher uses compile-time constants for 

comparison. The design is efficient because we ruthlessly kept everything in the compile-time world of metadata as long as 

possible.

The authors analyzed the assembly language output for this example by two different compilers, and the generated code 

appears to rival that of a hand-coded state machine. That said, if you were going to use this framework in a system where every 

cycle counts, you'd probably want to throw the example at your target compiler and inspect the results. You'd probably also 

want to expand the STT with more events and transitions to see whether the efficiency of the code scales well with the size of 

the state machine.

4.

Static Type Safety. The framework is fairly typesafe. There are only two static_casts in the whole system (in process_event

and call_no_transition), and the potential for damage is limited because they will only compile if Derived is indeed derived from 

the state_machine.

5.

Maintainability. New events can be added to the system by simply creating a new type. New states can be added similarly, by

extending the states enum. That enum could even be defined outside player, if we cared to do so. It wouldn't do much to reduce 

coupling, though, since the transition table must contain state names and must be visible from the FSM declaration. Transitions 

are easy to add by writing new rows in the transition_table.

One point that might be of some concern is the cost of maintaining the visual alignment of the table as the FSM evolves. That 

cost does appear to be inevitable if we want to closely match the domain abstraction. Although we have the flexibility to throw 

out strict alignment if the cost of maintenance grows too high, experiments appear to show that the table representation makes 

6.
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a big difference in its understandability, so we wouldn't want to take this step lightly.

Scalability. It's a bit harder to evaluate the framework's extensibility from what we've seen here. One thing we can say at this

point is that the design seems sufficiently modular to make adding new features reasonably easy. You'll get a chance to explore 

just how easy it actually is if you do some of this chapter's exercises. Due to the DSL's declarativeness, we can at least be fairly 

sure that features can be added without breaking existing user code.

7.
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11.7. Language Directions

Although as of today C++ is the most suitable language for building highly efficient DSELs, there is still a lot of room for improvement. As 

you've seen, the DSELs you can implement within the current language are amazing, but they also require an amount of work that 

becomes justifiable only if you are really planning to spend a lot of time working in the DSEL's problem domain. Moreover, despite the 

richness and flexibility of C++'s operator overloading rules, one often has to settle for less-than-perfect syntax. What seems to be liberal in 

the domain of general-purpose programming is often not quite liberal enough to conveniently express the syntax of an arbitrary domain.

Things don't have to be that way, of course. While C++ will probably never allow arbitrary syntax extensions, a few small changes to the 

language would improve DSEL writing a great deal. One problem we saw in this chapter is that although the language's runtime syntax is 

incredibly rich, once we cross the boundary into runtime by passing a constant (in our case, a member function pointer) to a function, it's 

impossible to get that constant back into the compile-time world as metadata. For example, if we could expand the language's ability to do 

"constant folding," it could be possible to leverage its rich runtime syntax in contexts that require pure metadata [n 1521].
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11.8. Exercises

11-0. It might be useful to be able to group transitions by their start state, so that each start state only has to be 

written once. Design such a grouped representation and modify the FSM framework design to support it. 

Evaluate the success of your changes in reducing redundancy and boilerplate.

11-1. We didn't really have to give up on expression template-based designs so quickly. How could the efficiency lost 

by passing function pointers be recaptured? (Hint: They must be passed as template arguments.) Rework your 

favorite expression template DSEL syntax to use this technique and evaluate its success as a DSEL.

11-2. Implement and test the expression-template-based FSM DSEL we explored but then discarded earlier in 

section 11.4.1. Evaluate its ease-of-use and efficiency tradeoffs.

11-3. Evaluate the possibility of implementing the following expression-template-based FSM DSEL:

    player()

    {

           Stopped[

               play        => Playing | &player::start_playback

             , open_close  => Open    | &player::open_drawer

             ]

         ,

           Open[

               open_close => Empty   | &player::close_drawer

             ]

         // ...

         ;

      }

Based on your evaluation, explain why this syntax is unachievable, or, if it is viable, implement a prototype that 

demonstrates it.

11-4. Extend the FSM implementation to support optional state entry and exit actions.
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11-5. Transition guards are additional predicates that you can assign to certain transitions to suppress/enable them 

depending on some condition. Although formally redundant,
[6]

 they help to reduce the FSM's size and 

complexity, sometimes significantly, and therefore are often desired. Design a notation and implement support 

for optional transition guards in this chapter's example.

[6] Any finite state machine that uses transition guards can be always transformed into 

an equivalent "pure" FSM that doesn't.

11-6. Extend the FSM implementation to support "catch-all" transitions, making any of the following possible:

    // whatever the current state is, allow "reset_event" to

    // trigger a transition to "initial_state"

    row< _, reset_event, initial_state, &self::do_reset >

    // any event received in "error" state triggers a transition

    // to "finished"

    row< error, _, finished, &self::do_finish >

    // any event received in any state triggers a transition

    // to "done"

    row< _, _, done, &self::do_nothing >

Choose and implement a deterministic scheme for handling transitions with overlapping conditions.

11-7*. Extend the FSM implementation to support nested (composite) states. A sketch of a possible design is 

provided below:

    class my_fsm

        : fsm::state_machine< my_fsm >

    {

        // ...

        struct ready_to_start_;

        typedef submachine<ready_to_start_> ready_to_start;

        struct transition_table : mpl::vector<

              row< ready_to_start, event1, running, &self::start >

            , row< running,        event2, Stopped, &self::stop >

            // ...

            > {};

    };

    // somewhere else in the translation unit

    template<>

    struct my_fsm::submachine<ready_to_start_>

      : state_machine< submachine<ready_to_start_> >

    {

        // states

        struct ready;

        struct closed;

        struct recently_closed;

        struct transition_table : mpl::vector<

              row< ready,  event3, closed,        &self::close >

            , row< closed, event4, recently_closed >
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            // ...

            > {};

    };

11-8. Our dispatching code searches linearly over the states with outgoing transitions on a given event. In the worst 

case, that takes O(S) time, where S is the total number of states in the FSM. In the examples directory of the 

code that accompanies this book, player2.cpp illustrates a state_machine that dispatches using O(1) lookup 

into a static table of function pointers. That, however, incurs runtime memory access and function pointer 

indirection overhead. Implement and test a third dispatching scheme that avoids all of these disadvantages by 

generating an O(log2S) binary search.
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Metaprogramming
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Section A.4.  Preprocessor Library Abstractions

Section A.5.  Exercise
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A.1. Motivation

Even with the full power of template metaprogramming and the Boost Metaprogramming Library at our disposal, some C++ coding jobs still 

require a great deal of boilerplate code repetition. We saw one example in Chapter 5, when we implemented tiny_size:

   template <class T0, class T1, class T2>

   struct tiny_size

     : mpl::int_<3> {};

Aside from the repeated pattern in the parameter list of the primary template above, there are three partial specializations below, which 

also follow a predictable pattern:

   template <class T0, class T1>

   struct tiny_size<T0,T1,none>

     : mpl::int_<2> {};

   template <class T0>

   struct tiny_size<T0,none,none>

     : mpl::int_<1> {};

   template <>

   struct tiny_size<none,none,none>

     : mpl::int_<0> {};

In this case there is only a small amount of code with such a "mechanical" flavor, but had we been implementing large instead of tiny, there 

might easily have been a great deal more. When the number of instances of a pattern grows beyond two or three, writing them by hand 

tends to become error-prone. Perhaps more importantly, the code gets hard to read, because the important abstraction in the code is really 

the pattern, not the individual instances.

A.1.1 Code Generation

Rather than being written out by hand, mechanical-looking code should really be generated mechanically. Having written a program to spit

out instances of the code pattern, a library author has two choices: She can either ship pre-generated source code files, or she can ship

the generator itself. Either approach has drawbacks. If clients only get the generated source, they are stuck with whatever the library

author generated—and experience shows that if they are happy with three instances of a pattern today, someone will need four tomorrow.

If clients get the generator program, on the other hand, they also need the resources to execute it (e.g., interpreters), and they must

integrate the generator into their build processes...
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A.1.2 Enter the Preprocessor

...unless the generator is a preprocessor metaprogram. Though not designed for that purpose, the C and C++ preprocessors can be made 

to execute sophisticated programs during the preprocessing phase of compilation. Users can control the code generation process with 

preprocessor #defines in code or -D options on the compiler's command line, making build integration trivial. For example, we might 

parameterize the primary tiny_size template above as follows:

   #include <boost/preprocessor/repetition/enum_params.hpp>

   #ifndef TINY_MAX_SIZE

   #  define TINY_MAX_SIZE 3  // default maximum size is 3

   #endif

   template <BOOST_PP_ENUM_PARAMS(TINY_MAX_SIZE, class T)>
   struct tiny_size

     : mpl::int_<TINY_MAX_SIZE>

   {};

To test the metaprogram, run your compiler in its "preprocessing" mode (usually the -E option), with the Boost root directory in your 

#include path. For instance:
[1]

[1] GCC's -P option inhibits the generation of source file and line number markers in preprocessed output.

   g++ -P -E -Ipath/to/boost_1_32_0 -I. test.cpp

Given the appropriate metaprograms, users would be able to adjust not only the number of parameters to tiny_size, but the maximum size 

of the entire tiny implementation just by #define-ing TINY_MAX_SIZE.

The Boost Preprocessor library [MK04] plays a role in preprocessor metaprogramming similar to the one played by the MPL in template 

metaprogramming: It supplies a framework of high-level components (like BOOST_PP_ENUM_PARAMS) that make otherwise-painful 

metaprogramming jobs approachable. In this appendix we won't attempt to cover nitty-gritty details of how the preprocessor works, nor 

principles of preprocessor metaprogramming in general, nor even many details of how the Preprocessor library works. We will show you 

enough at a high level that you'll be able to use the library productively and learn the rest on your own.
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A.2. Fundamental Abstractions of the Preprocessor

We began our discussion of template metaprogramming in Chapter 2 by describing its metadata (potential template arguments) and 

metafunctions (class templates). On the basis of those two fundamental abstractions, we built up the entire picture of compile-time 

computation covered in the rest of this book. In this section we'll lay a similar foundation for the preprocessor metaprogrammer. Some of 

what we cover here may be a review for you, but it's important to identify the basic concepts before going into detail.

A.2.1 Preprocessing Tokens

The fundamental unit of data in the preprocessor is the preprocessing token. Preprocessing tokens correspond roughly to the tokens 

you're used to working with in C++, such as identifiers, operator symbols, and literals. Technically, there are some differences between 

preprocessing tokens and regular tokens (see section 2 of the C++ standard for details), but they can be ignored for the purposes of this 

discussion. In fact, we'll be using the terms interchangeably here.

A.2.2 Macros

Preprocessor macros come in two flavors. Object-like macros can be defined this way:

#define identifier replacement-list

where the identifier names the macro being defined, and replacement-list is a sequence of zero or more tokens. Where the identifier appears 

in subsequent program text, it is expanded by the preprocessor into its replacement list.

Function-like macros, which act as the "metafunctions of the preprocessing phase," are defined as follows:

#define identifier(a1, a2, ... an) replacement-list

where each ai is an identifier naming a macro parameter. When the macro name appears in subsequent program text followed by a 

suitable argument list, it is expanded into its replacement-list, except that each argument is substituted for the corresponding parameter 

where it appears in the replacement-list.
[2]

[2] We have omitted many details of how macro expansion works. We encourage you to take a few minutes to study 

section 16.3 of the C++ standard, which describes that process in straightforward terms.
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A.2.3 Macro Arguments

Definition

A macro argument is a nonempty sequence of:

Preprocessing tokens other than commas or parentheses, and/or

Preprocessing tokens surrounded by matched pairs of parentheses.

This definition has consequences for preprocessor metaprogramming that must not be underestimated. Note, first of all, that the following 

tokens have special status:

   , ( )

As a result, a macro argument can never contain an unmatched parenthesis, or a comma that is not surrounded by matched parentheses. 

For example, both lines following the definition of FOO below are ill-formed:

   #define FOO(X) X // unary identity macro

   FOO(,)           // un-parenthesized comma or two empty arguments

   FOO())           // unmatched parenthesis or missing argument

Note also that the following tokens do not have special status; the preprocessor knows nothing about matched pairs of braces, brackets, or 

angle brackets:

   { } [ ] < >

As a result, these lines are also ill-formed:

   FOO(std::pair<int, long>)                 // two arguments

   FOO({ int x = 1, y = 2; return x+y; })    // two arguments

It is possible to pass either string of tokens above as part of a single macro argument, provided it is parenthesized:

   FOO((std::pair<int,int>))                 // one argument

   FOO(({ int x = 1, y = 2; return x+y; }))  // one argument

However, because of the special status of commas, it is impossible to strip parentheses from a macro argument without knowing the 
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number of comma-separated token sequences it contains.
[3]

 If you are writing a macro that needs to be able to accept an argument 

containing a variable number of commas, your users will either have to parenthesize that argument and pass you the number of 

comma-separated token sequences as an additional argument, or they will have to encode the same information in one of the 

preprocessor data structures covered later in this appendix.

[3] The C99 preprocessor, by virtue of its variadic macros, can do that and more. The C++ standardization 

committee is likely to adopt C99's preprocessor extensions for the next version of the C++ standard.
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A.3. Preprocessor Library Structure

Since in-depth coverage of the Boost Preprocessor library is beyond the scope of this book, we'll try to give you the tools to gain an 

in-depth understanding of the library here. To do that, you'll need to use the electronic Preprocessor library documentation, which begins 

with the index.html file in the libs/preprocessor/ subdirectory of your Boost installation.

On the left of your browser window you'll see an index, and if you follow the "Headers" link, it will reveal the structure of the 

boost/preprocessor/ directory. Most of the library's headers are grouped into subdirectories according to related functionality. The top-level 

directory contains only a few headers that provide general-purpose macros, along with a header for each subdirectory that simply 

#includes all the headers in that subdirectory. For example, boost/preprocessor/selection.hpp does nothing more than to #include the 

min.hpp and max.hpp headers that comprise the contents of boost/preprocessor/selection/. The headers whose names don't correspond to 

subdirectories generally declare a macro whose name is the same as the name of the header, without the extension, and with a 

BOOST_PP_ prefix. For example, boost/preprocessor/selection/max.hpp declares BOOST_PP_MAX.

You'll also notice that often a header will declare an additional macro with a _D, _R, or _Z suffix.
[4]

 For instance, 

boost/preprocessor/selection/max.hpp also declares BOOST_PP_MAX_D. For the purposes of this appendix, you should ignore those 

macros. Eventually you will want to understand the reason for their existence and how they can be used to optimize preprocessing speed; 

consult the Topics section of the library documentation under the subheading "reentrancy" for that information.

[4] Macros with _1ST, _2ND, or _3RD suffixes, if they appear, should be ignored for a different reason: They are 

deprecated and will be removed from the library soon.
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A.4. Preprocessor Library Abstractions

In this section we'll discuss the basic abstractions of the Preprocessor library and give some simple examples of each.

A.4.1 Repetition

The repeated generation of class T0, class T1,... class Tn that we achieved using BOOST_PP_ENUM_PARAMS was a specific case of the 

general concept of horizontal repetition. The library also has a concept of vertical repetition, which we'll get to in a moment. Horizontal 

repetition macros are all found in the library's repetition/ subdirectory.

A.4.1.1 Horizontal Repetition

To generate the tiny_size specializations using horizontal repetition, we might write the following:

   #include <boost/preprocessor/repetition.hpp>

   #include <boost/preprocessor/arithmetic/sub.hpp>

   #include <boost/preprocessor/punctuation/comma_if.hpp>

   #define TINY_print(z, n, data) data

   #define TINY_size(z, n, unused)                                \

     template <BOOST_PP_ENUM_PARAMS(n, class T)>                  \

     struct tiny_size<                                            \

         BOOST_PP_ENUM_PARAMS(n,T)                                \

         BOOST_PP_COMMA_IF(n)                                     \

         BOOST_PP_ENUM(                                           \

             BOOST_PP_SUB(TINY_MAX_SIZE,n), TINY_print, none)     \

     >                                                            \

       : mpl::int_<n> {};

   BOOST_PP_REPEAT(TINY_MAX_SIZE, TINY_size, ~)

   #undef TINY_size

   #undef TINY_print

The code generation process is kicked off by calling BOOST_PP_REPEAT, a higher-order macro that repeatedly invokes the macro 

named by its second argument (TINY_size). The first argument specifies the number of repeated invocations, and the third one can be any 

data; it is passed on unchanged to the macro being invoked. In this case, TINY_size doesn't use that data, so the choice to pass ~ was 

arbitrary.
[5]

[5] ~ is not an entirely arbitrary choice. Both @ and $ might have been good choices, except that they are technically 

not part of the basic character set that C++ implementations are required to support. An identifier like ignored might 

be subject to macro expansion, leading to unexpected results.

Each time the TINY_size macro is invoked by BOOST_PP_REPEAT, it generates a different specialization of tiny_size. The macro accepts 
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three parameters.

z is related to the _Z macro suffix we mentioned earlier. You'll never need to use it except for optimization purposes, and can 

safely ignore it for now.

n is the repetition index. In repeated invocations of TINY_size, n will be 0, then 1, then 2, and so on.

unused, in this case, will be ~ on each repetition. In general, the final argument to a macro invoked by BOOST_PP_REPEAT is 

always the same as its invoker's final argument.

Because its replacement-list covers several lines, all but the last line of TINY_size is continued with a trailing backslash. The first few of 

those lines just invoke BOOST_PP_ENUM_PARAMS (which we already used in the primary template) to generate comma-separated lists, 

so each invocation of TINY_size produces something equivalent to:
[6]

[6] Note that the line continuation characters and the newlines following them are removed by the preprocessor, so 

the resulting code actually appears on a single line in the preprocessed output.

   template <class T0, class T1, ... class Tn-1>

   struct tiny_size<

       T0, T1, ... Tn-1

       ...more...

   >

     : mpl::int_<n> {};

BOOST_PP_COMMA_IF generates a comma if its numeric argument is not 0. When n is 0, the list generated by the preceding line will be 

empty, and a leading comma directly following the < character would be ill-formed.

The next line uses BOOST_PP_ENUM to generate TINY_MAX_SIZE-n comma-separated copies of none. BOOST_PP_ENUM is just like 

BOOST_PP_REPEAT except that it generates commas between repetitions, so its second argument (TINY_print, here) must have the same 

signature as TINY_size. In this case, TINY_print ignores its repetition index n, and simply yields its third argument, none.

BOOST_PP_SUB implements token subtraction. It's crucial to understand that although the preprocessor itself can evaluate ordinary 

arithmetic expressions:

   #define X 3

   ...

   #if X - 1 > 0  // OK

     whatever

   #endif

preprocessor metaprograms can only operate on tokens. Normally, when a macro in the Preprocessor library expects a numeric argument, 

it must be passed as a single token. If we had written TINY_MAX_SIZE-n instead of BOOST_PP_SUB(TINY_MAX_SIZE,n) above, the first 

argument to BOOST_PP_ENUM would have contained three tokens at each invocation: first 3-0, then 3-1, and finally 3-2. BOOST_PP_SUB, 

though, generates single-token results: first 3, then 2, and finally 1, in successive repetitions.

Naming Conventions

Note that TINY_print and TINY_size are #undef'd immediately after they're used, with no intervening #includes. They can 
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therefore be thought of as "local" macro definitions. Because the preprocessor doesn't respect scope boundaries, it's 

important to choose names carefully to prevent clashes. We recommend PREFIXED_lower_case names for local 

macros and PREFIXED_UPPER_CASE names for global ones. The only exceptions are one-letter lowercase names, 

which are safe to use for local macros: No other header is likely to #define a global single-letter lowercase macro—that

would be very bad manners.

A.4.1.2 Vertical Repetition

If you send the previous example through your preprocessor, you'll see one long line containing something like this:

   template <> struct tiny_size< none , none , none > : mpl::int_<0>

    {}; template < class T0> struct tiny_size< T0 , none , none > :

   mpl::int_<1> {}; template < class T0 , class T1> struct tiny_size

   < T0 , T1 , none > : mpl::int_<2> {};

The distinguishing feature of horizontal repetition is that all instances of the repeated pattern are generated on the same line of 

preprocessed output. For some jobs, like generating the primary tiny_size template, that's perfectly appropriate. In this case, however, 

there are at least two disadvantages.

It's hard to verify that our metaprogram is doing the right thing without reformatting the resulting code by hand.1.

The efficiency of nested horizontal repetitions varies widely across preprocessors. Each specialization generated by means of 

horizontal repetition contains three other horizontal repetitions: two invocations of BOOST_PP_ENUM_PARAMS and one 

invocation of BOOST_PP_ENUM. When TINY_MAX_SIZE is 3, you'll probably never care, but on at least one preprocessor still 

in use today, compilation begins to slow noticeably when TINY_MAX_SIZE reaches 8.
[7]

[7] That said, other preprocessors can handle 256 * 256 nested repetitions without any speed problems 

whatsoever.

2.

The solution to these problems, naturally, is vertical repetition, which generates instances of a pattern across multiple lines. The 

Preprocessor library provides two means of vertical repetition: local iteration and file iteration.

Local Iteration

The most expedient way to demonstrate local iteration in our example is to replace the invocation of BOOST_PP_REPEAT with the 

following:

   #include <boost/preprocessor/iteration/local.hpp>

   #define BOOST_PP_LOCAL_MACRO(n)   TINY_size(~, n, ~)

   #define BOOST_PP_LOCAL_LIMITS     (0, TINY_MAX_SIZE - 1)

   #include BOOST_PP_LOCAL_ITERATE()

Local iteration repeatedly invokes the user-defined macro with the special name BOOST_PP_LOCAL_MACRO, whose argument will be 
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an iteration index. Since we already had TINY_size lying around, we've just defined BOOST_PP_LOCAL_MACRO to invoke it. The range 

of iteration indices are given by another user-defined macro, BOOST_PP_LOCAL_LIMITS, which must expand to a parenthesized pair of 

integer values representing the inclusive range of index values passed to BOOST_PP_LOCAL_MACRO. Note that this is one of the rare 

places where the library expects a numeric argument that can be an expression consisting of multiple tokens.

Finally, the repetition is initiated by #include-ing the result of invoking BOOST_PP_LOCAL_ITERATE, which will ultimately be a file in the 

Preprocessor library itself. You may find it surprising that many preprocessors can handle repeated file inclusion more quickly than nested 

horizontal repetition, but that is in fact the case.

If we throw the new example at our preprocessor, we'll see the following, on three separate lines in the output:

   template <> struct tiny_size< none , none , none > : mpl::int_<0>

    {};

   template < class T0> struct tiny_size< T0 , none , none > : mpl::

   int_<1> {};

   template < class T0 , class T1> struct tiny_size< T0 , T1 , none

   > : mpl::int_<2> {};

That represents a great improvement in verifiability, but it's still not ideal. As TINY_MAX_SIZE grows, it gets harder and harder to see that 

the pattern is generating what we'd like. If we could get some more line breaks into the output it would retain a more recognizable form.

Both repetition methods we've used so far have another drawback, though it doesn't show up in this example. Consider what would 

happen if tiny_size had a member function that we wanted to debug. If you've ever tried to use a debugger to step through a function 

generated by a preprocessor macro, you know that it's a frustrating experience at best: The debugger shows you the line from which the 

macro was ultimately invoked, which usually looks nothing at all like the code that was generated. Worse, as far as the debugger is 

concerned, every statement in that generated function occupies that same line.

File Iteration

Clearly, debuggability depends on preserving the association between generated code and the lines in the source file that describe the 

code pattern. File iteration generates pattern instances by repeatedly #include-ing the same source file. The effect of file iteration on 

debuggability is similar to that of templates: Although separate instances appear to occupy the same source lines in the debugger, we do 

have the experience of stepping through the function's source code.

To apply file iteration in our example, we can replace our earlier local iteration code and the definition of TINY_size, with:

   #include <boost/preprocessor/iteration/iterate.hpp>

   #define BOOST_PP_ITERATION_LIMITS (0, TINY_MAX_SIZE - 1)

   #define BOOST_PP_FILENAME_1       "tiny_size_spec.hpp"

   #include BOOST_PP_ITERATE()

BOOST_PP_ITERATION_LIMITS follows the same pattern as BOOST_PP_LOCAL_LIMITS did, allowing us to specify an inclusive range 

of iteration indices. BOOST_PP_FILENAME_1 specifies the name of the file to repeatedly #include (we'll show you that file in a moment). 

The trailing 1 indicates that this is the first nesting level of file iteration—should we need to invoke file iteration again from within

tiny_size_spec.hpp, we'd need to use BOOST_PP_FILENAME_2 instead.

The contents of tiny_size_spec.hpp should look familiar to you; most of it is the same as TINY_size's replacement-list, without the 

backslashes:

   #define n BOOST_PP_ITERATION()
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   template <BOOST_PP_ENUM_PARAMS(n, class T)>

   struct tiny_size<

       BOOST_PP_ENUM_PARAMS(n,T)

       BOOST_PP_COMMA_IF(n)

       BOOST_PP_ENUM(BOOST_PP_SUB(TINY_MAX_SIZE,n), TINY_print, none)

   >

     : mpl::int_<n> {};

   #undef n

The library transmits the iteration index to us in the result of BOOST_PP_ITERATION(); n is nothing more than a convenient local macro 

used to reduce syntactic noise. Note that we didn't use #include guards because we need tiny_size_spec.hpp to be processed multiple 

times.

The preprocessed result should now preserve the line structure of the pattern and be more verifiable for larger values of TINY_MAX_SIZE. 

For instance, when TINY_MAX_SIZE is 8, the following excerpt appears in the output of GCC's preprocessing phase:

   ...

   template < class T0 , class T1 , class T2 , class T3>

   struct tiny_size<

       T0 , T1 , T2 , T3

       ,

       none , none , none , none

   >

     : mpl::int_<4> {};

   template < class T0 , class T1 , class T2 , class T3 , class T4>

   struct tiny_size<

       T0 , T1 , T2 , T3 , T4

       ,

       none , none , none

   >

     : mpl::int_<5> {};

   ...etc.

Self-Iteration

Creating an entirely new file like tiny_size_spec.hpp each time we want to express a trivial code pattern for file repetition can be 

inconvenient. Fortunately, the library provides a macro that allows us to place the pattern right in the file that invokes the iteration. 

BOOST_PP_IS_ITERATING is defined to a nonzero value whenever we're inside an iteration. We can use that value to select between the 

part of a file that invokes the iteration and the part that provides the repeated pattern. Here's a complete tiny_size.hpp file that 

demonstrates self-iteration. Note in particular the placement and use of the #include guard TINY_SIZE_HPP_INCLUDED:

   #ifndef BOOST_PP_IS_ITERATING

   #  ifndef TINY_SIZE_HPP_INCLUDED

   #    define TINY_SIZE_HPP_INCLUDED

   #    include <boost/preprocessor/repetition.hpp>

   #    include <boost/preprocessor/arithmetic/sub.hpp>

   #    include <boost/preprocessor/punctuation/comma_if.hpp>

   #    include <boost/preprocessor/iteration/iterate.hpp>
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   #    ifndef TINY_MAX_SIZE

   #      define TINY_MAX_SIZE 3 // default maximum size is 3

   #    endif

   // primary template

   template <BOOST_PP_ENUM_PARAMS(TINY_MAX_SIZE, class T)>

   struct tiny_size

     : mpl::int_<TINY_MAX_SIZE>

   {};

   // generate specializations

   #    define BOOST_PP_ITERATION_LIMITS (0, TINY_MAX_SIZE - 1)

   #    define BOOST_PP_FILENAME_1    "tiny_size.hpp" // this file

   #    include BOOST_PP_ITERATE()

   #  endif // TINY_SIZE_HPP_INCLUDED

   #else // BOOST_PP_IS_ITERATING

   #  define n BOOST_PP_ITERATION()

   #  define TINY_print(z, n, data) data

   // specialization pattern

   template <BOOST_PP_ENUM_PARAMS(n, class T)>

   struct tiny_size<

       BOOST_PP_ENUM_PARAMS(n,T)

       BOOST_PP_COMMA_IF(n)

       BOOST_PP_ENUM(BOOST_PP_SUB(TINY_MAX_SIZE,n), TINY_print, none)

   >

     : mpl::int_<n> {};

   # undef TINY_print

   # undef n

   #endif // BOOST_PP_IS_ITERATING

More

There's a good deal more to file iteration than what we've been able to show you here. For more details, we encourage you to delve into 

the library's electronic documentation of BOOST_PP_ITERATE and friends. Also, it's important to note that no single technique for 

repetition is superior to any other: Your choice may depend on convenience, verifiability, debuggability, compilation speed, and your own 

sense of "logical coherence."

A.4.2 Arithmetic, Logical, and Comparison Operations

As we mentioned earlier, many of the Preprocessor library interfaces require single-token numeric arguments, and when those numbers 

need to be computed arithmetically, straightforward arithmetic expressions are inappropriate. We used BOOST_PP_SUB to subtract two 

numeric tokens in our tiny_size examples. The library contains a suite of operations for non-negative integral token arithmetic in its 

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



arithmetic/ subdirectory, as shown in Table A.1

Table A.1. Preprocessor Library Arithmetic Operations

Expression Value of Single Token Result

BOOST_PP_ADD(x,y) x + y

BOOST_PP_DEC(x) x - 1

BOOST_PP_DIV(x,y) x / y

BOOST_PP_INC(x) x + 1

BOOST_PP_MOD(x,y) x % y

BOOST_PP_MUL(x,y) x * y

BOOST_PP_SUB(x,y) x - y

The logical/ subdirectory contains the convenient Boolean token operations shown in Table A.2 and the more efficient operations shown in 

Table A.3, which require that their operands are either 0 or 1 (a single bit).

Table A.2. Preprocessor Library Integer Logical Operations

Expression Value of Single Token Result

BOOST_PP_AND(x,y) x && y

BOOST_PP_NOR(x,y) !(x || y)

BOOST_PP_OR(x,y) x || y

BOOST_PP_XOR(x,y) (bool)x != (bool)y ? 1 : 0

BOOST_PP_NOT(x) x ? 0 : 1

BOOST_PP_BOOL(x) x ? 1 : 0

Table A.3. Preprocessor Library Bit Logical Operations

Expression Value of Single Token Result

BOOST_PP_BITAND(x,y) x && y

BOOST_PP_BITNOR(x,y) !(x || y)

BOOST_PP_BITOR(x,y) x || y

BOOST_PP_BITXOR(x,y) (bool)x != (bool)y ? 1 : 0

BOOST_PP_COMPL(x) x ? 0 : 1
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Finally, the comparison/ subdirectory provides the token integral comparison operations shown in Table A.4.

Table A.4. Preprocessor Library Comparison Operations

Expression Value of Single Token Result

BOOST_PP_EQUAL(x,y) x == y ? 1 : 0

BOOST_PP_NOT_EQUAL(x,y) x != y ? 1 : 0

BOOST_PP_LESS(x,y) x < y ? 1 : 0

BOOST_PP_LESS_EQUAL(x,y) x <= y ? 1 : 0

BOOST_PP_GREATER(x,y) x > y ? 1 : 0

BOOST_PP_GREATER_EQUAL(x,y) x >= y ? 1 : 0

Because it's common to have a choice among several workable comparison operators, it may be useful to know that BOOST_PP_EQUAL

and BOOST_PP_NOT_EQUAL are likely to be O(1) while the other comparison operators are generally slower.

A.4.3 Control Structures

In its control/ directory, the Preprocessor library supplies a macro BOOST_PP_IF(c,t,f) that fulfills a similar role to the one filled by mpl::if_. 

To explore the "control" group, we'll generate code for a framework of generic function objects: the Boost Function library.
[8]

boost::function is partially specialized to match function type arguments of each arity up to the maximum supported by the library:

[8] We touched briefly on the design of Boost Function when we discussed type erasure in Chapter 9. See the 

Function library documentation at boost_1_32_0/libs/function/index.html on the CD that accompanies this book for 

more information.

   template <class Signature> struct function;   // primary template

   template <class R>                                   // arity = 0

   struct function<R()>

     definition not shown...

   template <class R, class A0>                         // arity = 1

   struct function<R(A0)>

     definition not shown...

   template <class R, class A0, class A1>               // arity = 2

   struct function<R(A0,A1)>

     definition not shown...

   template <class R, class A0, class A1, class A2>     // arity = 3

   struct function<R(A0,A1,A2)>

     definition not shown...
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   etc.

We've already covered a few strategies that can be used to generate the pattern above, so we won't belabor that part of the problem; the 

file iteration approach we used for tiny_size would be fine:

   #ifndef BOOST_PP_IS_ITERATING

   #  ifndef BOOST_FUNCTION_HPP_INCLUDED

   #    define BOOST_FUNCTION_HPP_INCLUDED

   #    include <boost/preprocessor/repetition.hpp>

   #    include <boost/preprocessor/iteration/iterate.hpp>

   #    ifndef FUNCTION_MAX_ARITY

   #      define FUNCTION_MAX_ARITY 15

   #    endif

   template <class Signature> struct function;    // primary template

   // generate specializations

   #    define BOOST_PP_ITERATION_LIMITS (0, FUNCTION_MAX_ARITY)

   #    define BOOST_PP_FILENAME_1  "boost/function.hpp" // this file

   #    include BOOST_PP_ITERATE()

   #  endif // BOOST_FUNCTION_HPP_INCLUDED

   #else // BOOST_PP_IS_ITERATING

   #  define n BOOST_PP_ITERATION()

   // specialization pattern

   template <class R BOOST_PP_ENUM_TRAILING_PARAMS(n, class A)>

   struct function<R ( BOOST_PP_ENUM_PARAMS(n,A) )>
     definition not shown...

   # undef n

   #endif // BOOST_PP_IS_ITERATING

BOOST_PP_ENUM_TRAILING_PARAMS, used above, is just like BOOST_PP_ENUM_PARAMS except that when its first argument is not 

0, it generates a leading comma.

A.4.3.1 Argument Selection

For the sake of interoperability with C++ standard library algorithms, it might be nice if functions of one or two arguments were derived from 

appropriate specializations of std::unary_function or std::binary_function, respectively.
[9]

 BOOST_PP_IF is a great tool for dealing with 

special cases:

[9] While derivation from std::unary_function or std::binary_function might be necessary for interoperability with some 

older library implementations, it may inhibit the Empty Base Optimization (EBO) from taking effect when two such 
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derived classes are part of the same object. For more information, see section 9.4. In general, it's better to expose 

first_argument_type, second_argument_type, and result_type typedefs directly.

   # include <boost/preprocessor/control/if.hpp>

   # include <boost/preprocessor/comparison/equal.hpp>

   // specialization pattern

   template <class R BOOST_PP_ENUM_TRAILING_PARAMS(n, class A)>

   struct function<R ( BOOST_PP_ENUM_PARAMS(n,A) )>

     BOOST_PP_IF(

         BOOST_PP_EQUAL(n,2), : std::binary_function<A0, A1, R>
       , BOOST_PP_IF(

             BOOST_PP_EQUAL(n,1), : std::unary_function<A0, R>
           , ...empty argument...

         )

     )

   { ...class body omitted... };

Well, our first attempt has run into several problems. First off, you're not allowed to pass an empty argument to the preprocessor (see 

footnote 3, page 285). Secondly, because angle brackets don't get special treatment, the commas in the std::unary_function and 

std::binary_function specializations above are treated as macro argument separators, and the preprocessor will complain that we've 

passed the wrong number of arguments to BOOST_PP_IF in two places.

Because it captures all of the issues, let's focus on the inner BOOST_PP_IF invocation for a moment. The strategy that mpl::eval_if uses, of 

selecting a nullary function to invoke, could work nicely here. The preprocessor doesn't have a direct analogue for mpl::eval_if, but it 

doesn't really need one: We can get the right effect by adding a second set of parentheses to BOOST_PP_IF.

   #define BOOST_FUNCTION_unary()    : std::unary_function<A0,R>

   #define BOOST_FUNCTION_empty()    // nothing

   ...

       , BOOST_PP_IF(

             BOOST_PP_EQUAL(n,1), BOOST_FUNCTION_unary

           , BOOST_FUNCTION_empty

         )()

   #undef BOOST_FUNCTION_empty

   #undef BOOST_FUNCTION_unary

A nullary macro that generates nothing is so commonly needed that the library's "facilities" group provides one: BOOST_PP_EMPTY. To 

complete the example we'll need to delay evaluation all the way to the outer BOOST_PP_IF invocation, because 

std::binary_function<A0,A1,R> also has a "comma problem":

   #  include <boost/preprocessor/facilities/empty.hpp>

   #  define BOOST_FUNCTION_binary() : std::binary_function<A0,A1,R>

   #  define BOOST_FUNCTION_unary() : std::unary_function<A0,R>

   // specialization pattern

   template <class R BOOST_PP_ENUM_TRAILING_PARAMS(n, class A)>

   struct function<R ( BOOST_PP_ENUM_PARAMS(n,A) )>

     BOOST_PP_IF(

         BOOST_PP_EQUAL(n,2), BOOST_FUNCTION_binary

       , BOOST_PP_IF(

             BOOST_PP_EQUAL(n,1), BOOST_FUNCTION_unary

           , BOOST_PP_EMPTY
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         )

     )()
   {

       ...class body omitted...

   };

   # undef BOOST_FUNCTION_unary

   # undef BOOST_FUNCTION_binary

   # undef n

Note that because we happened to be using file iteration, we could have also used #if on n's value directly:

  template <class R BOOST_PP_ENUM_TRAILING_PARAMS(n, class A)>

  struct function<R ( BOOST_PP_ENUM_PARAMS(n,A) )>

#if n == 2
    : std::binary_function<A0, A1, R>

#elif n == 1
    : std::unary_function<A0, R>

#endif

BOOST_PP_IF has the advantage of enabling us to encapsulate the logic in a reusable macro, parameterized on n, that is compatible with 

all repetition constructs:

   #define BOOST_FUNCTION_BASE(n)                                \

       BOOST_PP_IF(BOOST_PP_EQUAL(n,2), BOOST_FUNCTION_binary    \

         , BOOST_PP_IF(BOOST_PP_EQUAL(n,1), BOOST_FUNCTION_unary \

             , BOOST_PP_EMPTY                                    \

           )                                                     \

       )()

A.4.3.2 Other Selection Constructs

BOOST_PP_IDENTITY, also in the "facilities" group, is an interesting cousin of BOOST_PP_EMPTY:

   #define BOOST_PP_IDENTITY(tokens) tokens BOOST_PP_EMPTY

You can think of it as creating a nullary macro that returns tokens: When empty parentheses are appended, the trailing 

BOOST_PP_EMPTY is expanded leaving just tokens behind. If we had wanted inheritance from mpl::empty_base when function's arity is 

not one or two, we could have used BOOST_PP_IDENTITY:

   // specialization pattern

   template <class R BOOST_PP_ENUM_TRAILING_PARAMS(n, class A)>

   struct function<R ( BOOST_PP_ENUM_PARAMS(n,A) )>

     BOOST_PP_IF(

         BOOST_PP_EQUAL(n,2), BOOST_FUNCTION_binary

       , BOOST_PP_IF(

             BOOST_PP_EQUAL(n,1), BOOST_FUNCTION_unary

           , BOOST_PP_IDENTITY(: mpl::empty_base)
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         )

     )()
   {

       ...class body omitted...

   };

It's also worth knowing about BOOST_PP_EXPR_IF, which generates its second argument or nothing, depending on the Boolean value of 

its first:

   #define BOOST_PP_EXPR_IF(c,tokens)                           \

      BOOST_PP_IF(c,BOOST_PP_IDENTITY(tokens),BOOST_PP_EMPTY)()

So BOOST_PP_EXPR_IF(1,foo) expands to foo, while BOOST_PP_EXPR_IF(0,foo) expands to nothing.

A.4.4 Token Pasting

It would be nice if there were a generic way to access the return and parameter types of all function objects, rather than just the unary and 

binary ones. A metafunction returning the signature as an MPL sequence would do the trick. We could just specialize signature for each 

function arity:

   template <class F> struct signature; // primary template

   // partial specializations for boost::function

   template <class R>

   struct signature<function<R()> >

     : mpl::vector1<R> {};

   template <class R, class A0>

   struct signature<function<R(A0)> >

     : mpl::vector2<R,A0> {};

   template <class R, class A0, class A1>

   struct signature<function<R(A0,A1)> >

     : mpl::vector3<R,A0,A1> {};

   ...

To generate these specializations, we might add the following to our pattern:

   template <class R, BOOST_PP_ENUM_TRAILING_PARAMS(n, class A)>

   struct signature<function<R( BOOST_PP_ENUM_PARAMS(n,A) )> >

     : mpl::BOOST_PP_CAT(vector,n)<

         R, BOOST_PP_ENUM_TRAILING_PARAMS(n,A)

       > {};

BOOST_PP_CAT implements token pasting; its two arguments are "glued" together into a single token. Since this is a general-purpose 

macro, it sits in cat.hpp at the top level of the library's directory tree.
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Although the preprocessor has a built-in token-pasting operator, ##, it only works within a macro definition. If we'd used it here, it wouldn't 

have taken effect at all:

   template <class R>

   struct signature<function<R()> >

     : mpl::vector##1<R> {};

   template <class R, class A0>

   struct signature<function<R(A0)> >

     : mpl::vector##2<R,A0> {};

   template <class R, class A0, class A1>

   struct signature<function<R(A0,A1)> >

     : mpl::vector##3<R,A0,A1> {};

   ...

Also, ## often yields surprising results by taking effect before its arguments have been expanded:

   #define N         10

   #define VEC(i)    vector##i

   VEC(N)         // vectorN

By contrast, BOOST_PP_CAT delays concatenation until after its arguments have been fully evaluated:

   #define N         10

   #define VEC(i)    BOOST_PP_CAT(vector,i)

   VEC(N)         // vector10

A.4.5 Data Types

The Preprocessor library also provides data types, which you can think of as being analogous to MPL type sequences. Preprocessor data 

types store macro arguments instead of C++ types.

A.4.5.1 Sequences

A sequence (or seq for short) is any string of nonempty parenthesized macro arguments. For instance, here's a three-element sequence:

   #define MY_SEQ    (f(12))(a + 1)(foo)

Here's how we might use a sequence to generate specializations of the is_integral template from the Boost Type Traits library (see Chapter 
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2):

   # include <boost/preprocessor/seq.hpp>

   template <class T>

   struct is_integral : mpl::false_ {};

   // a seq of integral types with unsigned counterparts

   #define BOOST_TT_basic_ints            (char)(short)(int)(long)

   // generate a seq containing "signed t" and "unsigned t"

   #define BOOST_TT_int_pair(r,data,t)      (signed t)(unsigned t)

   // a seq of all the integral types

   #define BOOST_TT_ints                                           \

      (bool)(char)                                                 \

      BOOST_PP_SEQ_FOR_EACH(BOOST_TT_int_pair, ~, BOOST_TT_basic_ints)

   // generate an is_integral specialization for type t

   #define BOOST_TT_is_integral_spec(r,data,t) \

      template <>                              \

      struct is_integral<t> : mpl::true_ {};

   BOOST_PP_SEQ_FOR_EACH(BOOST_TT_is_integral_spec, ~, BOOST_TT_ints)

   #undef BOOST_TT_is_integral_spec

   #undef BOOST_TT_ints

   #undef BOOST_TT_int_pair

   #undef BOOST_TT_basic_ints

BOOST_PP_SEQ_FOR_EACH is a higher-order macro, similar to BOOST_PP_REPEAT, that invokes its first argument on each element of 

its third argument.

Sequences are the most efficient, most flexible, and easiest-to-use of the library's data structures, provided that you never need to make 

an empty one: An empty sequence would contain no tokens, and so couldn't be passed as a macro argument. The other data structures 

covered here all have an empty representation.

The facilities for manipulating sequences are all in the library's seq/ subdirectory. They are summarized in Table A.5 where t is the 

sequence (t0)(t1)...(tk). Where s, r, and d appear they have a similar purpose to the z parameters we discussed earlier (and suggested you 

ignore for now).
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Table A.5. Preprocessor Sequence Operations

Expression Result

BOOST_PP_SEQ_CAT(t) t0t1...tk

BOOST_PP_SEQ_ELEM(n,t) tn

BOOST_PP_SEQ_ENUM(t) t0,t1, ...tk

BOOST_PP_SEQ_FILTER(pred,data,t) t without the elements that don't satisfy

pred

BOOST_PP_SEQ_FIRST_N(n,t) (t0) (t1)...(tn-1)

BOOST_PP_SEQ_FOLD_LEFT(op, x, t) ...op(s,op(s,op(s,x,t0),t1),t2)...

BOOST_PP_SEQ_FOLD_RIGHT(op, x, t) ...op(s,op(s,op(s,x,tk),tk-1),tk–2)...

BOOST_PP_SEQ_FOR_EACH(f, x, t) f(r,x,t0)f(r,x,t1)...f(r,x,tk)

BOOST_PP_SEQ_FOR_EACH_I(g, x, t) g(r,x,0,t0)g(r,x,1,t1)...g(r,x,k,tk)

BOOST_PP_SEQ_FOR_EACH_PRODUCT(h, x, t) Cartesian product—see online docs

BOOST_PP_SEQ_INSERT(t,i,tokens) (t0)(t1)...(ti-1) (tokens)

(ti)(ti+1)...(tk)

BOOST_PP_SEQ_POP_BACK(t) (t0)(t1)...(tk-1)

BOOST_PP_SEQ_POP_FRONT(t) (t1)(t2)...(tk)

BOOST_PP_SEQ_PUSH_BACK(t,tokens) (t0)(t1)...(tk)(tokens)

BOOST_PP_SEQ_PUSH_FRONT(t,tokens) (tokens)(t0)(t1)...(tk)

BOOST_PP_SEQ_REMOVE(t,i) (t0)(t1)...(ti-1)(ti+1)...(tk)

BOOST_PP_SEQ_REPLACE(t,i,tokens) (t0)(t1)...(ti-1)(tokens)(ti+1)...(tk)

BOOST_PP_SEQ_REST_N(n,t) (tn)(tn+1)...(tk)

BOOST_PP_SEQ_REVERSE(t) (tk)(tk-1)...(t0)

BOOST_PP_SEQ_HEAD(t) t0

BOOST_PP_SEQ_TAIL(t) (t1)(t2)...(tk)

BOOST_PP_SEQ_SIZE(t) k+1

BOOST_PP_SEQ_SUBSEQ(t,i,m) (ti)(ti+1)...(ti+m-1)

BOOST_PP_SEQ_TO_ARRAY(t) (k+1,(t0,t1, ...tk))

BOOST_PP_SEQ_TO_TUPLE(t) (t0,t1, ...tk)

BOOST_PP_SEQ_TRANSFORM(f, x, t) (f(r,x,t0))

(f(r,x,t1))...(f(r,x,tk))

It's worth noting that while there is no upper limit on the length of a sequence, operations such as BOOST_PP_SEQ_ELEM that take 

numeric arguments will only work with values up to 256.
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A.4.5.2 Tuples

A tuple is a very simple data structure for which the library provides random access and a few other basic operations. A tuple takes the 

form of a parenthesized, comma-separated list of macro arguments. For example, this is a three-element tuple:

   #define TUPLE3    (f(12), a + 1, foo)

The operations in the library's tuple/ subdirectory can handle tuples of up to 25 elements. For example, a tuple's Nth element can be 

accessed via BOOST_PP_TUPLE_ELEM, as follows:

                    // length index tuple

   BOOST_PP_TUPLE_ELEM(   3 , 1 , TUPLE3)    // a + 1

Notice we had to pass the tuple's length as the second argument to BOOST_PP_TUPLE_ELEM; in fact, all tuple operations require explicit 

specification of the tuple's length. We're not going to summarize the other four operations in the "tuple" group here—you can consult the

Preprocessor library's electronic documentation for more details. We note, however, that sequences can be transformed into tuples with

BOOST_PP_SEQ_TO_TUPLE, and nonempty tuples can be transformed back into sequences with BOOST_PP_TUPLE_TO_SEQ.

The greatest strength of tuples is that they conveniently take the same representation as a macro argument list:

   #define FIRST_OF_THREE(a1,a2,a3)   a1

   #define SECOND_OF_THREE(a1,a2,a3)  a2

   #define THIRD_OF_THREE(a1,a2,a3)   a3

   // uses tuple as an argument list

   # define SELECT(selector, tuple)   selector tuple

   SELECT(THIRD_OF_THREE, TUPLE3)  // foo

A.4.5.3 Arrays

An array is just a tuple containing a non-negative integer and a tuple of that length:

   #define ARRAY3    ( 3, TUPLE3 )

Because an array carries its length around with it, the library's interface for operating on arrays is much more convenient than the one used 

for tuples:

   BOOST_PP_ARRAY_ELEM(1, ARRAY3)    // a + 1

The facilities for manipulating arrays of up to 25 elements are all in the library's array/ subdirectory. They are summarized in Table A.6, 

where a is the array (k, (a0,a1, ...ak-1)).
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Table A.6. Preprocessor Array Operations

Expression Result

BOOST_PP_ARRAY_DATA(a) (a0,a1, ... ak-1)

BOOST_PP_ARRAY_ELEM(i,a) ai

BOOST_PP_ARRAY_INSERT(a, i, tokens) (k+1,(a0,a1, ...ai-1,tokens,

ai,ai+1, ...ak-1))

BOOST_PP_ARRAY_POP_BACK(a) (k-1,(a0,a1, ...ak-2))

BOOST_PP_ARRAY_POP_FRONT(a) (k-1,(a1,a2, ...ak-1))

BOOST_PP_ARRAY_PUSH_BACK(a, tokens) (k+1,(a0,a1, ...ak-1,tokens))

BOOST_PP_ARRAY_PUSH_FRONT(a, tokens) (k+1,(tokens, a1,a2, ...ak-1))

BOOST_PP_ARRAY_REMOVE(a, i) (k-1,(a0,a1, ...ai-1,ai+1, ...ak-1))

BOOST_PP_ARRAY_REPLACE(a, i, tokens) (k,(a0,a1, ...ai-1, tokens,

            ai+1, ...ak-1))

BOOST_PP_ARRAY_REVERSE(a) (k,(ak-1,ak-2, ...a1,a0))

BOOST_PP_ARRAY_SIZE(a) k

A.4.5.4 Lists

A list is a two-element tuple whose first element is the first element of the list, and whose second element is a list of the remaining 

elements, or BOOST_PP_NIL if there are no remaining elements. Lists have access characteristics similar to those of a runtime linked list. 

Here is a three-element list:

   #define LIST3    (f(12), (a + 1, (foo, BOOST_PP_NIL)))

The facilities for manipulating lists are all in the library's list/ subdirectory. Because the operations are a subset of those provided for

sequences, we're not going to summarize them here—it should be easy to understand the list operations by reading the documentation on

the basis of our coverage of sequences.

Like sequences, lists have no fixed upper length bound. Unlike sequences, lists can also be empty. It's rare to need more than 25 elements 

in a preprocessor data structure, and lists tend to be slower to manipulate and harder to read than any of the other structures, so they 

should normally be used only as a last resort.
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A.5. Exercise

A-0. Fully preprocessor-ize the tiny type sequence implemented in Chapter 5 so that all boilerplate code is 

eliminated and the maximum size of a tiny sequence can be adjusted by changing TINY_MAX_SIZE.
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Appendix B. The typename and template Keywords

The template keyword is used to introduce template declarations and definitions:

   template <class T>

   class vector;

The typename keyword is often used in place of class to declare template type parameters:
[1]

[1] We'll discuss the reasons why this book uses class and not typename in a moment.

   template <typename T>

   class vector;

Both keywords also have a second role in the language. This appendix is about that role, why it is needed, and exactly how to apply 

typename and template to fill it. Because the rules are subtle, many people wait until the compiler complains before thinking about the use of 

typename or template, but it's worth learning these technical details because:

You'll spend less time fixing trivial syntax errors.

You'll understand what you did wrong when the compiler does complain.

Your code will be more portable—many compilers don't complain enough to be strictly standards-conforming, and won't tell you 

when you missed a typename or template.

Your code will be more likely to work as you intend—the compiler can't detect all misuses, and leaving one of these keywords

out can cause your program to misbehave silently.
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B.1. The Issue

Template compilation has two phases: The first occurs at the template's point of definition, and the second at each of its points of 

instantiation. According to the C++ standard, a template must be completely checked for syntactic correctness at its point of definition,
[2]

 so 

its author can know that it is well-formed long before it is instantiated:

[2] Not all compilers conform in this regard; many postpone some or all checking until the point of instantiation.

   template <class ForwardIterator1, class ForwardIterator2>

   void iter_swap(ForwardIterator1 i1, ForwardIterator2 i2)

   {

       T tmp = *i1;  // error: unknown identifier T

       *i1 = *i2;

       *i2 = tmp;

   }

B.1.1 Problem One

During standardization, the committee discovered several cases for which it was impossible to do a full syntactic check at a template's 

point of definition. For example, consider this translation unit containing a definition of iter_swap:

   double const pi = 3.14159265359;

   template <class T> struct iterator_traits; // declaration only

   template <class FwdIterator1, class FwdIterator2>

   void iter_swap(FwdIterator1 i, FwdIterator2 j)

   {

       iterator_traits<FwdIterator1>::value_type* pi = &*i;
       ...continued...

   }

The compiler has to check iter_swap for syntax errors, but it hasn't seen a definition of iterator_traits yet. Its ::value_type could be a type, in 

which case the highlighted line is a valid declaration. However, it could also turn out to be an enum value:

   template <class T>

   struct iterator_traits

   {

       enum { value_type = 0 };

   };

in which case the first line of iter_swap is nonsense. It's tempting to think that the compiler should deduce that value_type must be a type, 

because there's no way the first line of iter_swap could be valid otherwise. Consider this counterexample, though:

   class number
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   {

    public:

       template <class U>

       number& operator=(U const&);

       int& operator*() const;

   };

   number operator*(number, double);

   template <class T>

   struct iterator_traits

   {

       static number value_type;

   };

In this case, iter_swap might still be valid—its first line would multiply a number by pi, and then assign into it:

   (iterator_traits<FwdIterator1>::value_type * pi) = &*i;

but if so the syntactic structure of iter_swap would be completely different.

It's also tempting to think that the compiler could syntax-check iter_swap if it had already seen the definition of iterator_traits, but 

specializations scuttle that possibility: any given instance of iterator_traits could be defined differently:

   template <>

   struct iterator_traits<int*>
   {

       static void* value_type;
   };

The problem is that iterator_traits<FwdIterator1>::value_type is a dependent name. The syntactic role it plays depends on what 

FwdIterator1 turns out to be, and can never be known at iter_swap's point of definition.

B.1.2 Disambiguating Types

The typename keyword tells the compiler that a dependent name denotes a dependent type:

   template <class FwdIterator1, class FwdIterator2>

   void iter_swap(FwdIterator1 i, FwdIterator2 j)

   {

       typename iterator_traits<FwdIterator1>::value_type* pi = &*i;

       ...continued...

   }

Now the syntactic role of iterator_traits<FwdIterator1>::value_type is clear, and the compiler knows that pi denotes a pointer for the rest of 

the body of iter_swap. If we don't write typename, the compiler assumes that value_type denotes a non-type, and pi denotes a const double

in iter_swap.
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B.1.3 Using class Versus typename

As we mentioned earlier, the following two declarations are equivalent:

   template <class T>

   class vector;

   template <typename T>

   class vector;

The argument in favor of using typename is that it's conceptually accurate: class seems to indicate that the argument must be a class type, 

when in fact any type will do. There's certainly nothing wrong with vector<int>!

To understand the argument in favor of using class, consider the use of typename in the following declaration:

   template <typename T, typename T::value_type>

   struct sqrt_impl;

You may have missed this, but only the first use of typename is declaring a type parameter: The second typename is declaring that 

T::value_type is a type. Therefore, the second parameter to sqrt is a value of type T::value_type.

If that seems confusing, we can't blame you. Maybe this equivalent declaration will help clarify it:

   template <class T, typename T::value_type n>

   struct sqrt_impl;

If so, you understand the argument for using class to declare template type parameters: It's less confusing if typename is only used to 

mean one thing (syntax disambiguation) in template parameter lists.

We're not going to tell you which practice you should use; people of goodwill can disagree about whether conceptual accuracy is more 

important than avoiding confusion in the rare cases where typename is used in non-type parameter declarations. In fact, the authors of this 

book disagreed, which is why you'll see class here and typename in the MPL reference manual.

B.1.4 Problem Two

The same kind of issue arises with template members:

   double const pi = 3.14159265359;

   template <class T>

   int f(T& x)

   {

       return x.convert<3>(pi);
   }
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T::convert might be a member function template, in which case the highlighted code passes pi to a specialization of convert<3>. It could also 

turn out to be a data member, in which case f returns (x.convert < 3 ) > pi. That isn't a very useful calculation, but the compiler doesn't 

know it.

B.1.5 Disambiguating Templates

The template keyword tells the compiler that a dependent name is a member template:

   template <class T>

   int f(T& x)

   {

       return x.template convert<3>(pi);

   }

If we omit template, the compiler assumes that x.convert does not name a template, and the < that follows it is parsed as the less-than 

operator.
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B.2. The Rules

In this section we'll cover the standard's rules for the use of template and typename and walk through some illustrative examples.

B.2.1 typename

The relevant standard language comes from section 14.6 [temp.res], paragraph 5:

The keyword typename shall only be used in template declarations and definitions, including in the return type of a 

function template or member function template, in the return type for the definition of a member function of a class 

template or of a class nested within a class template, and in the type-specifier for the definition of a static member of 

a class template or of a class nested within a class template. The keyword typename shall only be applied to 

qualified names, but those names need not be dependent. The keyword typename is not permitted in a 

base-specifier or in a mem-initializer; in these contexts a qualified-name that depends on a template-parameter

(14.6.2) is implicitly assumed to be a type name.

B.2.1.1 typename Required

The typename keyword is required anywhere in templates on qualified dependent names that denote types.

Identifying Dependent Type Names

In the following example, the type C::value_type is dependent on the template parameter C.

   // member data declarations

   template <class C>

   struct something

   {

       typename C::value_type x;

   };

The property of being a dependent type is transitive. In the following example, C::value_type is dependent on C and value_type::is_const is 

dependent on value_type (and therefore also on C).

   // member type declarations

   template <class C>

   struct something
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   {

       typedef typename C::value_type value_type;

       typedef typename value_type::is_const is_const;

   };

In the following example, the ::type member of the add_const metafunction is dependent on the template parameter T.

   template <class T>

   struct input_iterator_part_impl

   {

       typedef typename boost::add_const<T>::type const_T;

   };

Contexts for Application

You've seen how typename is applied within class template bodies. It is also required within parameter lists, including in default argument 

expressions:

   template <

         class T

       , typename non_type_parameter<T>::type value

           = typename non_type_parameter<T>::type()

   >

   struct initialized

   {};

and in function templates, including their bodies:

   template <class Sequence>

   typename Sequence::iterator          // in return type

   find(

       Sequence seq

     , typename Sequence::value_type x  // in parameter types

   )

   {

       typename Sequence::iterator it   // inside function body

         = seq.begin();

       ...etc...

   }

Since the rule is "one typename per dependent name," there might be several typenames required within a single declaration.

   template <class Sequence>

   struct key_iterator_generator

   {

       typedef typename projection_iterator_gen<

           select1st<typename Sequence::value_type>

         , typename Sequence::const_iterator

       >::type type;

   };

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .



Subtleties

A type can be dependent for subtle reasons. In the following example, index<1>::type is dependent because one can specialize the index

member template for a given Iterator type.

   template <class Iterator>

   struct category_index

   {

       template <long N> struct index

       {

           typedef char(&type)[N];

       };

       static typename index<1>::type
       category(std::input_iterator_tag);

       static typename index<2>::type
       category(std::forward_iterator_tag);

   };

   template <>

   template <long N>

   struct category_index<int*>::index

   {

       typedef char(&type)[N + 1];

   };

In other words, for the purpose of syntax disambiguation, the primary category_index template is equivalent to:

   template <class Iterator, long N> struct index

   {

       typedef char(&type)[N];

   };

   template <class Iterator>

   struct category_index

   {

       static typename index<Iterator,1>::type
       category(std::input_iterator_tag);

       static typename index<Iterator,2>::type
       category(std::forward_iterator_tag);

   };

B.2.1.2 typename Allowed (But Not Required)

The typename keyword is optional on qualified non-dependent names inside a template. In the following example, 

std::unary_function<T,T*> is not dependent because it is always a class, no matter what T turns out to be.

   template <class T>

   struct something
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   {

       // OK

       std::unary_function<T,T*> f2;

       std::unary_function<int,int>::result_type x2;

       // also OK

       typename std::unary_function<T,T*> f1;

       typename std::unary_function<int,int>::result_type x1;

   };

B.2.1.3 typename Forbidden

typename cannot be used anywhere outside of templates:

   struct int_iterator

   {

       typedef typename int value_type; // error
   };

It is also forbidden on non-qualified names (those not preceded by ::), even if they are dependent.

   template <class T>

   struct vector

   {

       typedef typename int value_type;        // error

       typedef typename pair<int,T> pair_type; // error

       typedef typename T* pointer;            // error
   };

typename is forbidden on the name of a base class, even if it is dependent:

   template <class T> struct base_gen;

   template <class T>

   struct derived

     : typename base_gen<T>::type // error
   {};

but in the following, typename is required because T::value_type does not name a base class.

   template <class T>

   struct get_value

     : std::unary_function<T, typename T::value_type> // OK

   {};

Since an explicit (full) specialization is not a template declaration, the following is not currently allowed, though core language issue #183 
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argues in favor of allowing it in future revisions of the standard.
[3]

[3] See http://www.open-std.org/jtcl/sc22/wg21/docs/cwg_defects.html#183.

   template <class T> struct vector;

   template <class T> struct vector_iterator

     : mpl::identity<T> {};

   template <>

   struct vector<void*>

   {

       typedef typename                          // error
         vector_iterator<void*>::type iterator;

   };

B.2.1.4 Miscellaneous Notes

The C++ standard (section 14.6.1) allows us to use a class template's own name without arguments as a synonym for the 

specialization being instantiated, which means we can use a template's name to qualify members of dependent bases. For 

instance, instead of:

   template <class T> class base;

   template <class T>

   struct derived

     : base<typename whatever<T>::type> // repeated below

   {

       typedef base<typename whatever<T>::type> base_;

       typedef typename base_::value_type value_type;

   };

we can simply write:

   template <class T> struct base;

   template <class T>

   struct derived

     : base<typename whatever<T>::type> // not repeated

   {

       typedef typename derived::value_type value_type;

   };

with the acceptance of core language issue #11,
[4]

[4] See http://www.open-std.org/jtcl/sc22/wg21/docs/cwg_defects.html#11.
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   template class T> struct base;

   template <class T>

   struct derived

     : base<T>

   {

       using typename base<T>::value_type;
   };

is equivalent to

   template <class T> struct base;

   template <class T>

   struct derived

     : base<T>

   {

       typedef typename base<T>::value_type value_type;
   };

core language issue #180 clarifies that typename is not allowed in friend declarations,
[5]

 e.g.:

[5] See http://www.open-std.org/jtcl/sc22/wg21/docs/cwg_defects.html#180.

   template <class T>

   class X

   {

       friend class typename T::nested; // error
   };

B.2.2 template

The relevant standardese comes from section 14.2 [temp.names] of the C++ standard, in paragraph 4:

When the name of a member template specialization appears after . or -> in a postfix-expression, or after 

nested-name-specifier in a qualified-id, and the postfix-expression or qualified-id explicitly depends on a 

template-parameter (14.6.2), the member template name must be prefixed by the keyword template. Otherwise the 

name is assumed to name a nontemplate.

and paragraph 5:

If a name prefixed by the keyword template is not the name of a member template, the program is ill-formed. [Note: 

the keyword template may not be applied to nontemplate members of class templates.]

Core language issue #30 adds:
[6]
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[6] See http://www.open-std.org/jtcl/sc22/wg21/docs/cwg_defects.html#30.

Furthermore, names of member templates shall not be prefixed by the keyword template if the postfix-expression or 

qualified-id does not appear in the scope of a template. [Note: just as is the case with the typename prefix, the 

template prefix is allowed in cases where it is not strictly necessary; i.e., when the expression on the left of the -> or ., 

or the nested-name-specifier is not dependent on a template-parameter. ]

B.2.2.1 template Required

The template keyword is required before dependent names accessing member templates via ., ->, or :: qualification. In the following 

example, convert and base depend on T.

   template <class T> void f(T& x, T* y)

   {

       int n = x.template convert<int>();

       int m = y->template convert<int>();

   }

   template <class T> struct other;

   template <class T>

   struct derived

     : other <T>::template base<int>

   {};

Note that, unlike the typename keyword, template is required even on class template names that denote base classes.

B.2.2.2 template Allowed (But Not Required)

As long as it actually precedes a member template id, template is optional anywhere in a template. For instance:

   template <class T>

   struct other

   {

      template <class T> struct base;

   };

   template <class T>

   struct derived1

     : other<int>::base<T>               // OK

   {};

   template <class T>

   struct derived2

     : other <int>::template base<T>    // also OK

   {};
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B.2.2.3 template Forbidden

The template keyword is forbidden anywhere outside a template, including explicit (full) template specializations (as per core language 

issue #30 cited earlier):

   template <> struct derived<int>

     : other<int>::template base<int> // error
   {};

template is also forbidden in using-declarations:

   template <class T>

   struct derived

     : base<T>

   {

       using base<T>::template apply; // error
   };

This ban was clarified by core language issue #109 as Not a Defect (NAD).
[7]

[7] See http://www.open-std.org/jtcl/sc22/wg21/docs/cwg_closed.html#109.
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Appendix C. Compile-Time Performance

Interpretation of template metaprograms is inherently inefficient. When a class template is instantiated, a C++ compiler must meet all the 

standard's requirements, including matching against partial specializations, building an internal representation of the class, and recording 

the specialization in the template's namespace. It may also have to meet requirements imposed by its own design or that of the 

environment, such as generating mangled symbol names for the linker or recording information for the debugger. None of these activities 

are directly related to the metaprogram's intended computation.

This inefficiency manifests itself in the time it takes for a program to compile and in the resources used by the compiler. Extensive use of 

metaprogramming without understanding its costs will magnify these effects. Because your metaprograms will typically be used by other 

programmers who care more about a quick compile/edit/debug cycle than how your library is implemented, they're not likely to be 

understanding if compilation gets very slow or stops because resource limits have been exceeded.

Fortunately, problems are not inevitable, and can be avoided if you know how to keep the situation under control. Appendix C gives you 

the tools to analyze and manage metaprogram efficiency.
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C.1. The Computational Model

Can we really say anything useful about a program's compile time costs without examining the implementation of every compiler?

Using the standard techniques for analyzing runtime complexity, we can.
[1]

 When we describe the complexity of runtime programs, we 

count the number of primitive operations they execute on an abstract machine. An abstract machine is a model of the actual hardware 

that hides such issues as instruction cycle times, cache locality, and register usage. In the case of template metaprograms, the abstract 

machine is a model of the compiler implementation that hides such issues as its internal data structures, symbol table lookup efficiency, 

and the parsing algorithm.

[1] See http://en.wikipedia.org/wiki/Computational_complexity_theory.

We measure metaprogram complexity in terms of the number of template instantiations required. It's not an entirely arbitrary choice: 

Compilation times tend to be correlated with the number of template instantiations performed. It's also not a perfect choice, but only by 

sweeping aside factors that are sometimes relevant can we simplify the abstract machine enough to reason about its performance.

C.1.1 Memoization

Even if we ignore the other factors, thinking about complexity just in terms of template instantiations can be strange, since a particular 

template specialization is only instantiated once in a translation unit:

    typedef foo<char>::type t1; // foo<char> instantiated here

    ...

    typedef foo<char>::type t2; // foo<char> is just looked up

Unlike the way regular function calls work, when a metafunction is called again with the same arguments, the compiler doesn't have to go 

through the whole computation again. If you're familiar with the idea of "memoization," you can think of all metafunction results as being 

memoized. At the first invocation, the instantiated class is stored in a lookup table indexed by the template's arguments. For subsequent 

invocations with the same arguments, the compiler merely looks up the template instantiation in the table.

C.1.2 An Example

Consider the classic recursive Fibonacci function, with O(n
2
) complexity:

    unsigned fibonacci(unsigned n)

    {

        if (n < 2)
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            return n;

        else

            return fibonacci(n - 1) + fibonacci(n - 2);

    }

Invoking fibonacci(3) might cause the following series of calls:

    fibonacci(3)

      fibonacci(2)

        fibonacci(1)

        fibonacci(0)

      fibonacci(1)

    fibonacci(2)

      fibonacci(1)

      fibonacci(0)

Now let's do a direct translation into templates:

    template<unsigned n, bool done = (n < 2)>

    struct fibonacci

    {

        static unsigned const value

          = fibonacci<n-1>::value + fibonacci<n-2>::value;

    };

    template<unsigned n>

    struct fibonacci<n,true>

    {

        static unsigned const value = n;

    };

In this case, fibonacci<3>::value might cause the following sequence of instantiations and lookups, where instantiations are shown in bold:

    fibonacci<3>

      fibonacci<2>

        fibonacci<1>

        fibonacci<0>
      fibonacci<1>

    fibonacci<2>

The complexity of the compile time fibonacci function is not O(n
2
), but O(n). That's true even if you count lookups: there is at most one 

instantiation and one lookup per n.

C.1.3 What Are We Hiding?

What's being hidden by this way of describing the abstract machine? Without looking at the compiler's source code, we can't be sure. In 

the interest of "full disclosure," we'll discuss the things we know are being swept under the rug.
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As we mentioned earlier, we're hiding implementation details of the compiler. In a moment we'll discuss some ways in which those details 

can "leak" out of our abstraction and become observable. We're also glossing over a few details of metaprogram implementation. For 

example, some associative sequences use function overload resolution to implement their lookup strategies.
[2]

 Overload resolution can 

have a nontrivial cost in the compiler, but we're not considering it.

[2] There's no runtime execution involved; the function call is wrapped in sizeof or typeof as described in Chapter 9.
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C.2. Managing Compilation Time

The first and most important thing you can do to improve your metaprograms' execution (compilation) time is to reduce their computational 

complexity. Use an mpl::vector if you need access to arbitrary elements, because each such access will be O(1) instead of O(N), as it 

would be with an mpl::list. Don't search linearly for an element in a sequence when you could use mpl::lower_bound, and so forth. There is 

no substitute for picking the right algorithms and data structures.

Unfortunately, most compilers weren't designed with template metaprogramming in mind, and many use an inferior implementation 

strategy. For example, an ideal compiler would store all memoized template specializations in a hash table for O(1) lookups. However, as 

of this writing most implementations use one linked list to store all instantiations of a particular class template. Thus, lookups are 

technically linear in the number of instantiations of that template that have come before. Usually, this O(N) effect is swamped by the cost of 

instantiation, but as we shall see, it can be observed.

We happen to know this implementation detail of the compilers we've tested, but there are many more individual quirks of specific 

compilers that we don't know about. By using special-purpose test programs, we can get an idea of the real-world effects of our 

metaprogram design choices, and which compilers to use when metaprogram speed matters. In this appendix we'll discuss the empirical 

results of these black-box tests, and we'll reveal some techniques you can use to avoid the trouble spots we've found.

Note that complete details of the tests we describe here can be found on this book's companion CD.
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C.3. The Tests

C.3.1 Effectiveness of Memoization

Are template instantiations really being memoized? If they are, how much does memoization save? To find out, we can make some minor 

changes to the fibonacci template:
[3]

[3] The code shown here is a slight simplification of the actual code used to generate the graphs; refer to this book's 

companion CD for details.

    template<unsigned n, unsigned m = n, bool done = (n < 2)>

    struct fibonacci

    {

        static unsigned const v1

          = fibonacci<n-1,m-1>::value;

        static unsigned const value

          = v1 + fibonacci<n-2,m-STEP>::value;

    };

    template<unsigned n, unsigned m>

    struct fibonacci<n,m,true>

    {

        static unsigned const value = n;

    };

When STEP == 2, invoking fibonacci<N> causes the same number of template instantiations as ever. With STEP == 1, though, we ensure 

that the computation of fibonacci<N-2,...>::value never invokes fibonacci with an argument set that's been used before. The new 

parameter, m, provides an "additional dimension" for fibonacci specializations, which we exploit to escape memoization.

By subtracting the time it takes to compute fibonacci<N>::value with STEP == 2 from the time it takes with STEP == 1, we can see the 

savings provided by memoization for increasing values of N (see Figure C.1).

Figure C.1. Performance Savings Due to Memoization
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The difference in cost between the two computations rises as N
3
 for all compilers tested, so memoization is indeed a big win.

C.3.2 Cost of Memoized Lookups

What's the cost of looking up a previously mentioned template specialization? To measure that, we can use yet another variation on the 

Fibonacci test:

    template<unsigned n, bool done = (n < 2)>

    struct lookup

    {

        static unsigned const v1

          = lookup<n-1>::value;

        static unsigned const value = v1

    #ifndef BASELINE // do memoized lookup

          + lookup<((n%2) ? 0 : n-2)>::value

    #endif

          ;

    };

    template<unsigned n>

    struct lookup<n,true>

    {

        static unsigned const value = n;

    };
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The difference between the costs of computing lookup<N>::value with and without BASELINE defined shows the cost of a memoized 

lookup when N specializations of the template have already been mentioned. Note that this isn't a Fibonacci computation anymore, though 

it follows the same instantiation/lookup pattern. We're choosing lookup<0> instead of lookup<n-2> for the memoized lookup half the time, 

because specializations tend to be stored in linked lists.

A compiler that starts looking from the end where the most recently mentioned specializations are stored will always have an advantage 

with a strict Fibonacci computation. Figure C.2 shows the results.

Figure C.2. Cost of Lookups versus Specializations of a Given Template

The first thing to notice is that the numbers are relatively small for all compilers. The time is bounded by that of Microsoft Visual C++ 7.1, 

which goes as N
2
—just what you'd expect if all specializations of a given template were stored in a single linked list. We have no

explanation for the erratic performance of Metrowerks' lookups, but we can say that it is at least averaging somewhere near zero cost per

memoized lookup.

C.3.3 Mentioning a Specialization

Once a trivial class template specialization has been mentioned, instantiating it seems to have no cost. For instance:

    template <class T> struct trivial { typedef T type; };

    typedef mpl::vector<trivial<int> > v; // just a "mention"

    trivial<int>::type x;                 // cost-free instantiation
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This result may surprise you, considering that we are measuring efficiency in terms of template instantiations—it certainly surprised us at

first—but we think we now understand the reasons for it.

As you know, trivial<int> is a perfectly legitimate type even before it is instantiated. Compilers need some unique identifier for that type so 

that, for example, they can recognize that two occurrences of mpl::vector<trivial<int> > are also the same type. They could identify 

trivial<int> by its human-readable name, but as types get more complicated, matching long names becomes more costly. We believe that 

most C++ compilers allocate a "memoization record" at the first mention of a template specialization, and leave it in an "empty" state until 

the moment the specialization is instantiated. The address of a specialization's memoization record can then be used as a unique identifier. 

The simpler a class template's definition, the closer its memoization record's "empty" and "full" states are to one another, and the less time 

is taken by instantiation.

You may be asking yourself whether it really makes sense to measure metaprogram efficiency by counting template instantiations, if some

instantiations are effectively instantaneous. The answer is yes; it does. Because there is no looping, a metafunction's implementation can

only directly mention a constant number of template specializations. What you see is what you get—that is, until the metafunction

instantiates one of those templates it mentions. Thus, each metafunction invocation can only directly create a constant number of new

memoization records. The only way to "escape" this constant-factor limitation is for the metafunction to instantiate another template.

The graph in Figure C.3 shows the cost of simply mentioning, but not instantiating, N distinct specializations of the same template. As you 

can see, there's quite a spread. The complexity for Comeau and both GCCs is O(N
3
).

Figure C.3. Cost of Mentioning N Specializations of the Same Template

By eliminating the O(N
3
) curves from the graph, (see Figure C.4), we can see that the cost of mentioning N specializations of the same 

template on the other compilers is O(N
2
).
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Figure C.4. Cost of Mentioning N Specializations of the Same Template

C.3.4 Nested Template Instantiations

Nested template instantiations are the bread-and-butter of compile time programming. Even if you can avoid seeing the recursion by using 

MPL's algorithms, it's there under the covers. To test the effect of doing recursive template instantiations, we compiled this simple program 

for increasing values of N:

    template< int i, int test > struct deep

      : deep<i-1,test>

    {};

    template< int test> struct deep<0,test>

    {

        enum { value = 0 };

    };

template< int n > struct test

    {

        enum { value = deep<N,n>::value };

    };

    int main()

    {

        return test<0>::value + test<1>::value + test<2>::value

            + test<3>::value + test<4>::value + test<5>::value
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            + test<6>::value + test<7>::value + test<8>::value

            + test<9>::value;

    }

As you can see in Figure C.5, for low values of N, all the compilers behave similarly, but when N reaches 100 or so, the EDG-based 

compilers begin to spend seconds more, and somewhere around 200 their compilation times simply "explode."

Figure C.5. Time versus Nesting Depth

If we remove the EDG-based compilers from the graph (see Figure C.6), we can see the behavior of the others, all of which exhibit O(N
2
) 

complexity.

Figure C.6. Time versus Nesting Depth
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C.3.4.1 Nested Instantiations Without Forwarding

The following version of the deep template, which restates its ::value at each level rather than inheriting it, reveals that the explosion is 

triggered by deeply nested metafunction forwarding:

    template< int i, int test > struct deep

    {

        enum { value = deep<i-1,test>::value }; // no forwarding

    };

    template< int test> struct deep<0,test>

    {

        enum { value = 0 };

    };

As you can see in Figure C.7, EDG's pathological behavior is gone; its times are clustered with most of the other compilers. GNU C++ 

(GCC) 3.3 also improved its performance somewhat, but its big-O behavior didn't change. It is still O(N
2
) like the rest.

Figure C.7. Time versus Nesting Depth (Without Forwarding)
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Metafunction forwarding is so valuable for simplifying programs that we're reluctant to recommend against it, even for EDG users. As far as 

we know, we've never hit "the EDG wall" in real code;
[4]

 in fact, we only discovered it by writing test cases for this book. That said, if you 

find your metaprogram is slower to execute on EDG-based compilers than on others, you might want to review it for cases of deep 

forwarding.

[4] We have occasionally seen metaprograms which an EDG-based compiler was slow to compile, but we didn't know 

about the deep forwarding effect at the time, and the behavior didn't seem to be quite as drastic as our graphs 

indicate for deep forwarding.

C.3.4.2 Using Recursion Unrolling to Limit Nesting Depth

Even O(N
2
) behavior is really unattractive for what should be an O(N) operation. While we can't go in and fix the compiler implementation, 

we can reduce the depth of nested instantiations. Since the time goes as the square of the depth, a factor of two reduction in depth is worth 

a factor of four in time, and a factor of four reduction in depth will make a recursive metafunction sixteen times as fast, and so on. 

Furthermore, when a compiler has a pathological behavior like the "EDG wall," or simply a hardcoded depth limit (as some do), reducing 

the depth can make the difference between throwing in the towel and having a productive day at the office.

Consider this implementation of the guts of mpl::find:

    namespace boost { namespace mpl {

      template <class First, class Last, class T>

      struct find_impl;

      // find_impl on the tail of the sequence

      template <class First, class Last, class T>

      struct find_impl_tail

        : find_impl<

              typename next<First>::type

            , Last

            , T

          >

      {};

      // true if First points at T

      template <class First, class T>

      struct deref_is_same

        : is_same<typename deref<First>::type,T>
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      {};

      template <class First, class Last, class T>

      struct find_impl

        : eval_if<

              deref_is_same<First,T>  // found?

            , identity<First>

            , find_impl_tail<First,Last,T>  // search on the tail

          >

      {};

      // terminating case

      template <class Last, class T>

      struct find_impl<Last, Last, T>

      {

          typedef typename Last type;

      };

    }}

Right now, find_impl incurs one level of recursion for each element of the sequence it traverses. Now let's rewrite it using recursion 

unrolling:

    // a single step of the find algorithm

    template <

        class First, class Last, class T

      , class EvalIfUnmatched = next<First>

    >

    struct find_step

      : eval_if<

            or_<

                is_same<First,Last>             // sequence empty

              , deref_is_same<First,T>          // or T is found

            >

          , identity<First>

          , EvalIfUnmatched

        >

    {};

    template <class First, class Last, class T>

    struct find_impl

    {

        typedef typename find_step<First,Last,T>::type step1;

        typedef typename find_step<step1,Last,T>::type step2;

        typedef typename find_step<step2,Last,T>::type step3;

        typedef typename find_step<

            step3,Last,T, find_impl_tail<step3,Last,T>

        >::type type;

    };

Now each invocation of find_impl does up to four steps of the algorithm, reducing instantiation depth by a factor of four. When the 

sequence being searched supports random access, it's possible to make this idiom even more efficient by specializing the algorithm for 

lengths less than the unrolling factor, thereby avoiding iterator identity checks at each step. The MPL's algorithms use these techniques 

whenever appropriate to the target compiler.
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C.3.5 Number of Partial Specializations

The graph in Figure C.8 shows the effect of increasing numbers of partial specializations on the time it takes to instantiate a class template.

Figure C.8. Instantiation Time versus Number of Partial Specializations

Comeau C++ is omitted from this graph because it was pathologically slow, even at N == 0, for reasons seemingly unrelated to partial 

specialization. Most other compilers show some effect, but such a small one that you can safely ignore it.

C.3.6 Long Symbols

Symbol name length seems to have no effect on compilation time.
[5]

 For example, all other things being equal, instantiating either of these 

two templates incurs the same cost:

[5] It's worth noting that we didn't test the effects of long function names, which may have an entirely different impact, 

because the compiler usually has to mangle them for use by the linker.

    wee<int>

    a_ridiculously_loooooooooooooooooong_class_template_name<int>
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Also, passing long symbol names to templates has no measurable effect on compilation time, so these two are equally expensive to 

instantiate:

    mpl::vector<a_ridiculously_loooooooooooooooooong_class_name>

    mpl::vector<int>

C.3.7 Structural Complexity of Metafunction Arguments

We considered three ways of describing the complexity of template specializations that might be passed as metafunction arguments.

Its arity (number of template parameters)1.

Its number of "nodes"2.

Its nesting depth3.

For instance, mpl::vector30 has arity 30, and we're interested in the cost of passing templates with high arities to a metafunction. For 

another example, if you think of every unique template specialization as being a "node," the following "list" type has four nodes and a depth 

of four:

    node<int, node<long, node<char, node<void, void> > > >

while this "DAG" type has four nodes and a depth of three:

    // 1   2   3 <== Depths           Nodes

       node<                       // #1

           node<                   // #2

               node<void,void>     // #3

             , node<int,void>      // #4

           >

         , node<void, void>        // #3 again

       >

C.3.7.1 Structural Complexity Tests

We measured the cost of passing various kinds of complex structures through a chain of recursive metafunction invocations, over and 

above the cost of passing a simple type like int. As you can see in Figure C.9, there is no cost associated with argument arity except on 

GCC and Comeau, where the cost rises linearly with N.
[6]

[6] Microsoft Visual C++ 7.1 seems to have a hardcoded limit of 63 template parameters. Compilation fails thereafter 

with "fatal error C1111: too many template parameters."
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Figure C.9. Recursive Instantiation Time versus Argument Arity

We then passed a balanced binary tree of N unique nodes (and depth log2N). The results in Figure C.10 show quite a spread: Comeau 

takes O(N
2
) time, the GCCs are linear with the modern version doing much worse than 2.95.3, and the rest show no cost at all.

[7]

[7] In fact, GCC 2.95.3 may be exhibiting some O(N2) behavior here but the coefficient is so low that it's hard to be 

sure.

Figure C.10. Recursive Instantiation Time versus Number of Argument Tree Nodes
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Finally, passing a list of N unique nodes with depth N yielded the graph shown in Figure C.11.

Figure C.11. Recursive Instantiation Time versus Argument Nesting Depth

This change may have improved the results for GCC slightly, which we're at a loss to explain. The others, except for Comeau, didn't 

change at all. Comeau's results got noticeably worse, so clearly it responds not only to the number of nodes but also nesting depth. That 

said, there are no changes in big-O complexity here for any of the compilers.

C.3.7.2 Using Sequence Derivation to Limit Structural Complexity

Sequence derivation, as described in Chapter 5, is a powerful weapon in the fight against the effects of argument complexity on compilation 

time, especially for vector-like sequences. In large part this is due to the structure of their iterators. Recall the declaration of tiny_iterator:
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    template <class Tiny, class Pos>

    struct tiny_iterator;

A tiny_iterator specialization mentions the entire name of the sequence it traverses as a template argument. If we extrapolate to sequences 

with greater capacity, it's easy to see that:

    mpl::vector_iterator<my_vector, mpl::int_<3> >

may be faster to manipulate than:

    mpl::vector_iterator<mpl::vector30<int,..., Foo>, mpl::int_<3> >
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Appendix D. MPL Portability Summary

Most reasonably conforming compilers "just work" with the MPL. We haven't tested every compiler in existence, but Table D.1 lists a few 

that are known to work as described in the text without any special user intervention. Please keep in mind that this is not a complete list; 

you can refer to this book's companion CD for more detailed portability reports.

Table D.1. Some Compilers Requiring No User Workarounds

Name Version

Comeau 4.3.3

GCC 3.2.2

GCC 3.3.1

GCC 3.4

Intel C++ 7.1

Intel C++ 8.0

Metrowerks CodeWarrior 8.3

Metrowerks CodeWarrior 9.2

Microsoft Visual C++ 7.1

The compilers listed in Table D.2 have incomplete support for templates, and so require some help from users, as shown in the last 

column. See this book's companion CD for specific details of these workarounds.

Table D.2. Compilers That Require User Workarounds

Compiler Version Problematic Areas

Borland C++ 5.5.1 Lambda expressions, integral constant expressions

Borland C++ 5.6.4 Lambda expressions, integral constant expressions

GCC 2.95.3 Lambda expressions

Microsoft Visual C++ 6.0 sp5 Lambda expressions, ETI

Microsoft Visual C++ 7.0 Lambda expressions, ETI

Finally, the template machinery in a few compilers has so many problems that even with help from the user we're unable to make the MPL 

work at all (see Table D.3). The fact that one version of a compiler appears in this list does not mean that future versions are also

unworkable—some vendors are working hard to correct the problems... and, as of this writing, some are not.
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Table D.3. Compilers Known Not to Work with MPL

Name Version

HP aCC 03.55

Sun CC 5.6
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period of ninety days after purchase (when purchased new). If a defect is discovered in the CD during this warranty period, a replacement 

CD can be obtained at no charge by sending the defective CD, postage prepaid, with proof of purchase to:

Disc Exchange
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Pearson Technology Group
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Boston, MA 02116
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liable for direct, indirect, special, incidental, or consequential damages arising out of the use or inability to use the software. The exclusion 
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