

• Table of Contents

C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost and Beyond

By David Abrahams, Aleksey Gurtovoy

Publisher: Addison Wesley Professional

Pub Date: December 10, 2004

ISBN: 0-321-22725-5

Pages: 400

"If you're like me, you're excited by what people do with template metaprogramming (TMP) but are frustrated at the lack of clear guidance

and powerful tools. Well, this is the book we've been waiting for. With help from the excellent Boost Metaprogramming Library, David and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.informit.com/safari/author_bio.asp?ISBN=0321227255
http://www.informit.com/safari/author_bio.asp?ISBN=0321227255

Aleksey take TMP from the laboratory to the workplace with readable prose and practical examples, showing that "compile-time STL" is as

able as its runtime counterpart. Serving as a tutorial as well as a handbook for experts, this is the book on C++ template

metaprogramming."-Chuck Allison, Editor, The C++ Source

C++ Template Metaprogramming sheds light on the most powerful idioms of today's C++, at long last delivering practical

metaprogramming tools and techniques into the hands of the everyday programmer.

A metaprogram is a program that generates or manipulates program code. Ever since generic programming was introduced to C++,

programmers have discovered myriad "template tricks" for manipulating programs as they are compiled, effectively eliminating the barrier

between program and metaprogram. While excitement among C++ experts about these capabilities has reached the community at large,

their practical application remains out of reach for most programmers. This book explains what metaprogramming is and how it is best

used. It provides the foundation you'll need to use the template metaprogramming effectively in your own work.

This book is aimed at any programmer who is comfortable with idioms of the Standard Template Library (STL). C++ power-users will gain

a new insight into their existing work and a new fluency in the domain of metaprogramming. Intermediate-level programmers who have

learned a few advanced template techniques will see where these tricks fit in the big picture and will gain the conceptual foundation to use

them with discipline. Programmers who have caught the scent of metaprogramming, but for whom it is still mysterious, will finally gain a

clear understanding of how, when, and why it works. All readers will leave with a new tool of unprecedented power at their disposal-the

Boost Metaprogramming Library.

The companion CD-ROM contains all Boost C++ libraries, including the Boost Metaprogramming Library and its reference documentation,

along with all of the book's sample code and extensive supplementary material.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

• Table of Contents

C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost and Beyond

By David Abrahams, Aleksey Gurtovoy

Publisher: Addison Wesley Professional

Pub Date: December 10, 2004

ISBN: 0-321-22725-5

Pages: 400

 Copyright

 The C++ In-Depth Series

 Titles in the Series

 Preface

 Acknowledgments

 Dave's Acknowledgments

 Aleksey's Acknowledgments

 Making the Most of This Book

 Supplementary Material

 Trying It Out

 Chapter 1. Introduction

 Section 1.1. Getting Started

 Section 1.2. So What's a Metaprogram?

 Section 1.3. Metaprogramming in the Host Language

 Section 1.4. Metaprogramming in C++

 Section 1.5. Why Metaprogramming?

 Section 1.6. When Metaprogramming?

 Section 1.7. Why a Metaprogramming Library?

 Chapter 2. Traits and Type Manipulation

 Section 2.1. Type Associations

 Section 2.2. Metafunctions

 Section 2.3. Numerical Metafunctions

 Section 2.4. Making Choices at Compile Time

 Section 2.5. A Brief Tour of the Boost Type Traits Library

 Section 2.6. Nullary Metafunctions

 Section 2.7. Metafunction Definition

 Section 2.8. History

 Section 2.9. Details

 Section 2.10. Exercises

 Chapter 3. A Deeper Look at Metafunctions

 Section 3.1. Dimensional Analysis

 Section 3.2. Higher-Order Metafunctions

 Section 3.3. Handling Placeholders

 Section 3.4. More Lambda Capabilities

 Section 3.5. Lambda Details

 Section 3.6. Details

 Section 3.7. Exercises

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.informit.com/safari/author_bio.asp?ISBN=0321227255
http://www.informit.com/safari/author_bio.asp?ISBN=0321227255

 Chapter 4. Integral Type Wrappers and Operations

 Section 4.1. Boolean Wrappers and Operations

 Section 4.2. Integer Wrappers and Operations

 Section 4.3. Exercises

 Chapter 5. Sequences and Iterators

 Section 5.1. Concepts

 Section 5.2. Sequences and Algorithms

 Section 5.3. Iterators

 Section 5.4. Iterator Concepts

 Section 5.5. Sequence Concepts

 Section 5.6. Sequence Equality

 Section 5.7. Intrinsic Sequence Operations

 Section 5.8. Sequence Classes

 Section 5.9. Integral Sequence Wrappers

 Section 5.10. Sequence Derivation

 Section 5.11. Writing Your Own Sequence

 Section 5.12. Details

 Section 5.13. Exercises

 Chapter 6. Algorithms

 Section 6.1. Algorithms, Idioms, Reuse, and Abstraction

 Section 6.2. Algorithms in the MPL

 Section 6.3. Inserters

 Section 6.4. Fundamental Sequence Algorithms

 Section 6.5. Querying Algorithms

 Section 6.6. Sequence Building Algorithms

 Section 6.7. Writing Your Own Algorithms

 Section 6.8. Details

 Section 6.9. Exercises

 Chapter 7. Views and Iterator Adaptors

 Section 7.1. A Few Examples

 Section 7.2. View Concept

 Section 7.3. Iterator Adaptors

 Section 7.4. Writing Your Own View

 Section 7.5. History

 Section 7.6. Exercises

 Chapter 8. Diagnostics

 Section 8.1. Debugging the Error Novel

 Section 8.2. Using Tools for Diagnostic Analysis

 Section 8.3. Intentional Diagnostic Generation

 Section 8.4. History

 Section 8.5. Details

 Section 8.6. Exercises

 Chapter 9. Crossing the Compile-Time/Runtime Boundary

 Section 9.1. for_each

 Section 9.2. Implementation Selection

 Section 9.3. Object Generators

 Section 9.4. Structure Selection

 Section 9.5. Class Composition

 Section 9.6. (Member) Function Pointers as Template Arguments

 Section 9.7. Type Erasure

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 Section 9.8. The Curiously Recurring Template Pattern

 Section 9.9. Explicitly Managing the Overload Set

 Section 9.10. The "sizeof Trick"

 Section 9.11. Summary

 Section 9.12. Exercises

 Chapter 10. Domain-Specific Embedded Languages

 Section 10.1. A Little Language ...

 Section 10.2. ... Goes a Long Way

 Section 10.3. DSLs, Inside Out

 Section 10.4. C++ as the Host Language

 Section 10.5. Blitz++ and Expression Templates

 Section 10.6. General-Purpose DSELs

 Section 10.7. The Boost Spirit Library

 Section 10.8. Summary

 Section 10.9. Exercises

 Chapter 11. A DSEL Design Walkthrough

 Section 11.1. Finite State Machines

 Section 11.2. Framework Design Goals

 Section 11.3. Framework Interface Basics

 Section 11.4. Choosing a DSL

 Section 11.5. Implementation

 Section 11.6. Analysis

 Section 11.7. Language Directions

 Section 11.8. Exercises

 Appendix A. An Introduction to Preprocessor Metaprogramming

 Section A.1. Motivation

 Section A.2. Fundamental Abstractions of the Preprocessor

 Section A.3. Preprocessor Library Structure

 Section A.4. Preprocessor Library Abstractions

 Section A.5. Exercise

 Appendix B. The typename and template Keywords

 Section B.1. The Issue

 Section B.2. The Rules

 Appendix C. Compile-Time Performance

 Section C.1. The Computational Model

 Section C.2. Managing Compilation Time

 Section C.3. The Tests

 Appendix D. MPL Portability Summary

 CD-ROM Warranty

 Bibliography

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Copyright

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those

designations appear in this book, and Addison-Wesley was aware of a trademark claim, the designations have been printed with initial

capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and

assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or

arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special sales. For more information, please

contact:

 U.S. Corporate and Government Sales

 (800) 382-3419

 corpsales@pearsontechgroup.com

For sales outside the U.S., please contact:

 International Sales

 international@pearsoned.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Abrahams, David.

 C++ template metaprogramming : concepts, tools, and

 techniques from Boost and beyond / David Abrahams, Aleksey

 Gurtovoy.

 p. cm.

 ISBN 0-321-22725-5 (pbk.: alk.paper)

 1. C++ (Computer program language) 2. Computer

 programming. I. Gurtovoy, Aleksey. II. Title.

 QA 76.73.C153A325 2004

 005.13'3—dc22

 2004017580

Copyright ©2005 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher. Printed in the United

States of America. Published simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a written request to:

 Pearson Education, Inc.

 Rights and Contracts Department

 75 Arlington Street, Suite 300

 Boston, MA 02116

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://www.awprofessional.com

 Fax: (617) 848-7047

Text printed on recycled paper

1 2 3 4 5 6 7 8 9 10—CRS—0807060504

First printing, November 2004

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The C++ In-Depth Series

Bjarne Stroustrup, Editor

"I have made this letter longer than usual, because I lack the time to make it short."

—BLAISE PASCAL

The advent of the ISO/ANSI C++ standard marked the beginning of a new era for C++ programmers. The standard offers many new

facilities and opportunities, but how can a real-world programmer find the time to discover the key nuggets of wisdom within this mass of

information? The C++ In-Depth Series minimizes learning time and confusion by giving programmers concise, focused guides to specific

topics.

Each book in this series presents a single topic, at a technical level appropriate to that topic. The Series' practical approach is designed to

lift professionals to their next level of programming skills. Written by experts in the field, these short, in-depth monographs can be read and

referenced without the distraction of unrelated material. The books are cross-referenced within the Series, and also reference The C++

Programming Language by Bjarne Stroustrup.

As you develop your skills in C++, it becomes increasingly important to separate essential information from hype and glitz, and to find the

in-depth content you need in order to grow. The C++ In-Depth Series provides the tools, concepts, techniques, and new approaches to

C++ that will give you a critical edge.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Titles in the Series

Accelerated C++: Practical Programming by Example, Andrew Koenig and Barbara E. Moo

Applied C++: Practical Techniques for Building Better Software, Philip Romanik and Amy Muntz

The Boost Graph Library: User Guide and Reference Manual, Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine

C++ Coding Standards: 101 Rules, Guidelines, and Best Practices, Herb Sutter and Andrei Alexandrescu

C++ In-Depth Box Set, Bjarne Stroustrup, Andrei Alexandrescu, Andrew Koenig, Barbara E. Moo, Stanley B. Lippman, and Herb Sutter

C++ Network Programming, Volume 1: Mastering Complexity with ACE and Patterns, Douglas C. Schmidt and Stephen D. Huston

C++ Network Programming, Volume 2: Systematic Reuse with ACE and Frameworks, Douglas C. Schmidt and Stephen D. Huston

C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost and Beyond, David Abrahams and Aleksey Gurtovoy

Essential C++, Stanley B. Lippman

Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions, Herb Sutter

Exceptional C++ Style: 40 New Engineering Puzzles, Programming Problems, and Solutions, Herb Sutter

Modern C++ Design: Generic Programming and Design Patterns Applied, Andrei Alexandrescu

More Exceptional C++: 40 New Engineering Puzzles, Programming Problems, and Solutions, Herb Sutter

For more information, check out the series web site at www.awprofessional.com/series/indepth/

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.awprofessional.com/series/indepth/

Preface

In 1998 Dave had the privilege of attending a workshop in Generic Programming at Dagstuhl Castle in Germany. Near the end of the

workshop, a very enthusiastic Kristof Czarnecki and Ullrich Eisenecker (of Generative Programming fame) passed out a few pages of C++

source code that they billed as a complete Lisp implementation built out of C++ templates. At the time it appeared to Dave to be nothing

more than a curiosity, a charming but impractical hijacking of the template system to prove that you can write programs that execute at

compile time. He never suspected that one day he would see a role for metaprogramming in most of his day-to-day programming jobs. In

many ways, that collection of templates was the precursor to the Boost Metaprogramming Library (MPL): It may have been the first library

designed to turn compile-time C++ from an ad hoc collection of "template tricks" into an example of disciplined and readable software

engineering. With the availability of tools to write and understand metaprograms at a high level, we've since found that using these

techniques is not only practical, but easy, fun, and often astoundingly powerful.

Despite the existence of numerous real systems built with template metaprogramming and the MPL, many people still consider

metaprogramming to be other-worldly magic, and often as something to be avoided in day-to-day production code. If you've never done

any metaprogramming, it may not even have an obvious relationship to the work you do. With this book, we hope to lift the veil of mystery,

so that you get an understanding not only of how metaprogramming is done, but also why and when. The best part is that while much of

the mystery will have dissolved, we think you'll still find enough magic left in the subject to stay as inspired about it as we are.

—Dave and Aleksey

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Acknowledgments

We thank our reviewers, Douglas Gregor, Joel de Guzman, Maxim Khesin, Mat Marcus, Jeremy Siek, Jaap Suter, Tommy Svensson,

Daniel Wallin, and Leor Zolman, for keeping us honest. Special thanks go to Luann Abrahams, Brian McNamara, and Eric Niebler, who

read and commented on every page, often when the material was still very rough. We also thank Vesa Karvonen and Paul Mensonides for

reviewing Appendix A in detail. For their faith that we'd write something of value, we thank our editors, Peter Gordon and Bjarne

Stroustrup. David Goodger and Englebert Gruber built the ReStructuredText markup language in which this book was written. Finally, we

thank the Boost community for creating the environment that made our collaboration possible.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Dave's Acknowledgments

In February of 2004 I used an early version of this book to give a course for a brave group of engineers at Oerlikon Contraves, Inc. Thanks

to all my students for struggling through the tough parts and giving the material a good shakedown. Special thanks go to Rejean Senecal

for making that investment high-performance code with a long future, against the tide of a no-investment mentality.

Chuck Allison, Scott Meyers, and Herb Sutter have all encouraged me to get more of my work in print—thanks guys, I hope this is a good

start.

I am grateful to my colleagues on the C++ standards committee and at Boost for demonstrating that even with egos and reputations at

stake, technical people can accomplish great things in collaboration. It's hard to imagine where my career would be today without these

communities. I know this book would not have been possible without them.

Finally, for taking me to see the penguins, and for reminding me to think about them at least once per chapter, my fondest thanks go to

Luann.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Aleksey's Acknowledgments

My special thanks go to my teammates at Meta for being my "extended family" for the past five years, and for creating and maintaining the

most rewarding work environment ever. A fair amount of knowledge, concepts, and ideas reflected in this book were shaped during the

pair programming sessions, seminars, and casual insightful discussions that we held here.

I also would like to thank all the people who in one or another way contributed to the development of the Boost Metaprogramming

Library—the tool that in some sense this book is centered around. There are many of them, but in particular, John R. Bandela, Fernando

Cacciola, Peter Dimov, Hugo Duncan, Eric Friedman, Douglas Gregor, David B. Held, Vesa Karvonen, Mat Marcus, Paul Mensonides,

Jaap Suter, and Emily Winch all deserve a special thank you.

My friends and family provided me with continued encouragement and support, and it has made a big difference in this journey—thank you

all so much!

Last but not least, I thank Julia for being herself, for believing in me, and for everything she has done for me. Thank you for everything.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Making the Most of This Book

The first few chapters of this book lay the conceptual foundation you'll need for most everything else we cover, and chapters generally

build on material that has come before. That said, feel free to skip ahead for any reason—we've tried to make that possible by providing

cross-references when we use terms introduced earlier on.

Chapter 10, Domain-Specific Embedded Languages, is an exception to the rule that later chapters depend on earlier ones. It focuses

mostly on concepts, and only appears late in the book because at that point you'll have learned the tools and techniques to put

Domain-Specific Embedded Languages into play in real code. If you only remember one chapter by the time you're done, make it that one.

Near the end of many chapters, you'll find a Details section that summarizes key ideas. These sections usually add new material that

deepens the earlier discussion,
[1]

 so even if you are inclined to skim them the first time through, we suggest you refer back to them later.

[1] We borrowed this idea from Andrew Koenig and Barbara Moo's Accelerated C++: Practical Programming By

Example [KM00].

We conclude most chapters with exercises designed to help you develop both your programming and conceptual muscles. Those marked

with asterisks are expected to be more of a workout than the others. Not all exercises involve writing code—some could be considered

"essay questions"—and you don't have to complete them in order to move on to later chapters. We do suggest you look through them,

give a little thought to how you'd answer each one, and try your hand at one or two; it's a great way to gain confidence with what you've

just read.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Supplementary Material

This book comes with a companion CD that supplies the following items in electronic form

Sample code from the book.

A release of the Boost C++ libraries. Boost has become known for high-quality, peer-reviewed, portable, generic, and freely

reusable C++ libraries. We make extensive use of one Boost library throughout the book—the Boost Metaprogramming Library

(MPL)—and we discuss several others.

A complete MPL reference manual, in HTML and PDF form.

Boost libraries discussed in this book that are not yet part of an official release.

The index.html file at the top level of the CD will provide you with a convenient guide to all of its contents. Additional and updated material,

including the inevitable errata, will appear on the book's Web site: http://www.boost-consulting.com/mplbook. You'll also find a place there

to report any mistakes you might find.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.boost-consulting.com/mplbook

Trying It Out

To compile any of the examples, just put the CD's boost_1_32_0/ directory into your compiler's #include path.

The libraries we present in this book go to great lengths to hide the problems of less-than-perfect compilers, so it's unlikely that you'll have

trouble with the examples we present here. That said, we divide C++ compilers roughly into three categories.

Those with mostly conforming template implementations. On these compilers, the examples and libraries "just work." Almost

anything released since 2001, and a few compilers released before then, fall into this category.

A.

Those that can be made to work, but require some workarounds in user code.B.

Those that are too broken to use effectively for template metaprogramming.C.

Appendix D lists the compilers that are known to fall into each of these categories. For those in category B, Appendix D refers to a list of

portability idioms. These idioms have been applied to the copies of the book's examples that appear on the accompanying CD, but to avoid

distracting the majority of readers they don't appear in the main text.

The CD also contains a portability table with a detailed report of how various compilers are doing with our examples. GCC is available free

for most platforms, and recent versions have no problems handling the code we present here.

Even if you have a relatively modern compiler from category A, it might be a good idea to grab a copy of GCC with which to cross-check

your code. Often the easiest way to decipher an inscrutable error message is to see what some other compiler has to say about your

program. If you find yourself struggling with error messages as you try to do the exercises, you might want to skip ahead and read the first

two sections of Chapter 8, which discusses how to read and manage diagnostics.

And now, on to C++ Template Metaprogramming!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Chapter 1. Introduction

You can think of this chapter as a warm-up for the rest of the book. You'll get a chance to exercise your tools a little and go through a short

briefing on basic concepts and terminology. By the end you should have at least a vague picture of what the book is about, and (we hope)

you'll be eager to move on to bigger ideas.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

1.1. Getting Started

One of the nice things about template metaprograms is a property they share with good old traditional systems: Once a metaprogram is

written, it can be used without knowing what's under the hood—as long as it works, that is.

To build your confidence in that, let us begin by presenting a tiny C++ program that simply uses a facility implemented with template

metaprogramming:

 #include "libs/mpl/book/chapter1/binary.hpp"

 #include <iostream>

 int main()

 {

 std::cout << binary<101010>::value << std::endl;

 return 0;

 }

Even if you were always good at binary arithmetic and can tell what the output of the program will be without actually running it, we still

suggest that you go to the trouble of trying to compile and run the example. Besides contributing to building your confidence, it's a good

test of whether your compiler is able to handle the code we present in this book. The program should write the decimal value of the binary

number 101010:

 42

to the standard output.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

1.2. So What's a Metaprogram?

If you dissect the word metaprogram literally, it means "a program about a program."
[1]

 A little less poetically, a metaprogram is a program

that manipulates code. It may be an odd-sounding concept, but you're probably already familiar with several such beasts. Your C++

compiler is one example: it manipulates your C++ code to produce assembly language or machine code.

[1] In philosophy and, as it happens, programming, the prefix "meta" is used to mean "about" or "one level of

description higher," as derived from the original Greek meaning "beyond" or "behind."

Parser generators such as YACC [Joh79] are another kind of program-manipulating program. The input to YACC is a high-level parser

description written in terms of grammar rules and attached actions brace-enclosed. For instance, to parse and evaluate arithmetic

expressions with the usual precedence rules, we might feed YACC the following grammar description:

 expression : term

 | expression '+' term { $$ = $1 + $3; }

 | expression '-' term { $$ = $1 - $3; }

 ;

 term : factor

 | term '*' factor { $$ = $1 * $3; }

 | term '/' factor { $$ = $1 / $3; }

 ;

 factor : INTEGER

 | group

 ;

 group : '(' expression ')'

 ;

In response, YACC would generate a C/C++ source file containing (among other things), a yyparse function that we can call to parse text

against the grammar and execute the appropriate actions:
[2]

[2] This is provided that we also implemented an appropriate yylex function to tokenize the text. See Chapter 10 for a

complete example or, better yet, pick up a YACC manual.

 int main()

 {

 extern int yyparse();

 return yyparse();

 }

The user of YACC is operating mostly in the domain of parser design, so we'll call YACC's input language the domain language of this

system. Because the rest of the user's program typically requires a general-purpose programming system and must interact with the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

generated parser, YACC translates the domain language into the host language, C, which the user then compiles and links together with

her other code. The domain language thus undergoes two translation steps, and the user is always very conscious of the boundary

between it and the rest of her program.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

1.3. Metaprogramming in the Host Language

YACC is an example of a translator—a metaprogram whose domain language differs from its host language. A more interesting form of

metaprogramming is available in languages such as Scheme [SS75]. The Scheme metaprogrammer defines her domain language as a

subset of the legal programs in Scheme itself, and the metaprogram executes in the same translation step used to process the rest of the

user's program. Programmers move between ordinary programming, metaprogramming, and writing in the domain language, often without

being aware of the transition, and they are able to seamlessly combine multiple domains in the same system.

Amazingly, if you have a C++ compiler, this is precisely the kind of metaprogramming power you hold in your fingertips. The rest of this

book is about unlocking that power and showing how and when to use it.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

1.4. Metaprogramming in C++

In C++, it was discovered almost by accident [Unruh94], [Veld95b] that the template mechanism provides a rich facility for native language

metaprogramming. In this section we'll explore the basic mechanisms and some common idioms used for metaprogramming in C++.

1.4.1 Numeric Computations

The earliest C++ metaprograms performed integer computations at compile time. One of the very first metaprograms was shown at a C++

committee meeting by Erwin Unruh; it was actually an illegal code fragment whose error messages contained a sequence of computed

prime numbers!

Since illegal code is hard to use effectively in a larger system, let's examine a slightly more practical application. The following

metaprogram (which lies at the heart of our little compiler test above) transliterates unsigned decimal numerals into their binary

equivalents, allowing us to express binary constants in a recognizable form.

 template <unsigned long N>

 struct binary

 {

 static unsigned const value

 = binary<N/10>::value << 1 // prepend higher bits

 | N%10; // to lowest bit

 };

 template <> // specialization

 struct binary<0> // terminates recursion

 {

 static unsigned const value = 0;

 };

 unsigned const one = binary<1>::value;

 unsigned const three = binary<11>::value;

 unsigned const five = binary<101>::value;

 unsigned const seven = binary<111>::value;

 unsigned const nine = binary<1001>::value;

If you're wondering "Where's the program?" we ask you to consider what happens when we access the nested ::value member of

binary<N>. The binary template is instantiated again with a smaller N, until N reaches zero and the specialization is used as a termination

condition. That process should have the familiar flavor of a recursive function call—and what is a program, after all, but a function?

Essentially, the compiler is being used to interpret our little metaprogram.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Error Checking

There's nothing to prevent a user from passing binary a number such as 678, whose decimal representation is not also

valid binary. The result would make a strange sort of sense (it would be 6x2
2
 + 7x2

1
 + 8x2

0
), but nonetheless an input

like 678 probably indicates a bug in the user's logic. In Chapter 3 we'll show you how to ensure that binary<N>::value only

compiles when N's decimal representation is composed solely of 0s and 1s.

Because the C++ language imposes a distinction between the expression of compile-time and runtime computation, metaprograms look

different from their runtime counterparts. As in Scheme, the C++ metaprogrammer writes her code in the same language as the ordinary

program, but in C++ only the compile-time subset of the full language is available to her. Compare the previous example with this

straightforward runtime version of binary:

 unsigned binary(unsigned long N)

 {

 return N == 0 ? 0 : N%10 + 2 * binary(N/10);

 }

A key difference between the runtime and compile time versions is the way termination conditions are handled: our meta-binary uses

template specialization to describe what happens when N is zero. Terminating specializations are a common characteristic of nearly all

C++ metaprograms, though in some cases they will be hidden behind the interface of a metaprogramming library.

Another important difference between runtime and compile time C++ is highlighted by this version of binary, which uses a for loop in lieu of

recursion.

 unsigned binary(unsigned long N)

 {

 unsigned result = 0;

 for (unsigned bit = 0x1; N; N /= 10, bit <<= 1)

 {

 if (N%10)

 result += bit;

 }

 return result;

 }

Though more verbose than the recursive version, many C++ programmers will be more comfortable with this one, not least because at

runtime iteration is sometimes more efficient than recursion.

The compile-time part of C++ is often referred to as a "pure functional language" because of a property it shares with languages such as

Haskell: (meta)data is immutable and (meta)functions can have no side effects. As a result, compile-time C++ has nothing corresponding

to the non-const variables used in runtime C++. Since you can't write a (non-infinite) loop without examining some mutable state in its

termination condition, iteration is simply beyond reach at compile time. Therefore, recursion is idiomatic for C++ metaprograms.

1.4.2 Type Computations

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Much more important than its ability to do compile time numeric computations is C++'s ability to compute with types. As a matter of fact,

type computation will dominate the rest of this book, and we'll cover examples of it in the very first section of the next chapter. By the time

we're through, you'll probably think of template metaprogramming as "computing with types."

Although you may have to read Chapter 2 to understand the specifics of type computation, we'd like to give you a sense of its power.

Remember our YACC expression evaluator? It turns out we don't need to use a translator to get that kind of power and convenience. With

appropriate surrounding code from the Boost Spirit library, the following legal C++ code has equivalent functionality.

 expr =

 (term[expr.val = _1] >> '+' >> expr[expr.val += _1])

 | (term[expr.val = _1] >> '-' >> expr[expr.val -= _1])

 | term[expr.val = _1]

 ;

 term =

 (factor[term.val = _1] >> '*' >> term[term.val *= _1])

 | (factor[term.val = _1] >> '/' >> term[term.val /= _1])

 | factor[term.val = _1]

 ;

 factor =

 integer[factor.val = _1]

 | ('(' >> expr[factor.val = _1] >> ')')

 ;

Each assignment stores a function object that parses and evaluates the bit of grammar on its right hand side. The behavior of each stored

function object, when invoked, is determined entirely by the type of the expression used to construct it, and the type of each expression is

computed by a metaprogram associated with the various operators used.

Just like YACC, the Spirit library is a metaprogram that generates parsers from grammar specifications. Unlike YACC, Spirit defines its

domain language as a subset of C++ itself. If you don't see how that's possible at this point, don't worry. By the time you finish this book,

you will.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

1.5. Why Metaprogramming?

So, what are the benefits of metaprogramming? There are definitely simpler ways to address the same kinds of problems we've been

discussing here. Let's take a look at two other approaches and see how they stack up when applied to the interpretation of binary

numerals and parser construction.

1.5.1 Alternative 1: Runtime Computation

Most straightforwardly, we could do the computation at runtime instead of compile time. For example, we might use one of the binary

function implementations shown earlier, or a parsing system could be designed to interpret the input grammar at runtime the first time we

ask it to parse.

The most obvious reason to rely on a metaprogram is that by doing as much work as possible before the resulting program starts, we get

faster programs. When a grammar is compiled, YACC performs substantial parse table generation and optimization steps that, if done at

runtime, could noticeably degrade a program's overall performance. Similarly, because binary does its work at compile time, its ::value is

available as a compile-time constant, and the compiler can encode it directly in the object code, saving a memory lookup when it is used.

A subtler but perhaps more important argument for using a metaprogram is that the result of the computation can interact more deeply

with the target language. For example, the size of a C++ array can only be legally specified by a compile-time constant like

binary<N>::value—not by a runtime function's return value. The brace-enclosed actions in a YACC grammar can contain arbitrary C/C++

code to be executed as part of the generated parser. That's only possible because the actions are processed during grammar compilation

and passed on to the target C/C++ compiler.

1.5.2 Alternative 2: User Analysis

Instead of doing computation at runtime or compile time, we could just do it by hand. After all, it's common practice to translate binary

numbers to hexadecimal so that they can be used directly as C++ literals, and the translation steps performed by YACC and Boost.Spirit

to convert the grammar description into a parser are well-known.

If the alternative is writing a metaprogram that will only be used once, one could argue that user analysis is more convenient: It certainly is

easier to translate one binary number than to write a correct metaprogram to do so. It only takes a few such instances to tip the balance of

convenience in the opposite direction, though. Furthermore, once the metaprogram is written, its benefits of convenience can be spread

across a community of other programmers.

Regardless of how many times it's used, a metaprogram enables its user to write more expressive code, because she can specify the

result in a form that corresponds to her mental model. In a context where the values of individual bits are meaningful, it makes much more

sense to write binary<101010>::value than 42 or the traditional 0x2a. Similarly, the C source to a handwritten parser usually obscures the

logical relationships among its grammar elements.

Finally, because humans are fallible, and because the logic of a metaprogram only needs to be written once, the resulting program is more

likely to be correct and maintainable. Translating binary numbers is such a mundane task that it's easy to pay too little attention and get it

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

wrong. By contrast—as anyone who's done it can attest—writing parse tables by hand requires too much attention, and preventing

mistakes is reason enough to use a parser generator such as YACC.

1.5.3 Why C++ Metaprogramming?

In a language such as C++, where the domain language is just a subset of the language used in the rest of the program,

metaprogramming is even more powerful and convenient.

The user can enter the domain language directly, without learning a foreign syntax or interrupting the flow of her code.

Interfacing metaprograms with other code, especially other metaprograms, becomes much smoother.

No additional build step (like the one imposed by YACC) is required.

In traditional programming it is very common to find oneself trying to achieve the right balance of expressivity, correctness, and efficiency.

Metaprogramming often allows us to interrupt that classic tension by moving the computation required for expressivity and correctness

from runtime to compile time.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

1.6. When Metaprogramming?

You've just seen some examples of the why of template metaprogramming, and you've had a tiny glimpse of the how, but we haven't

discussed when metaprogramming is appropriate. However, we've touched on most of the relevant criteria for using template

metaprogramming already. As a guideline, if any three of the following conditions apply to you, a metaprogrammed solution may be

appropriate.

You want the code to be expressed in terms of the abstractions of the problem domain. For example, you might want a parser

to be expressed by something that looks like a formal grammar rather than as tables full of numbers or as a collection of

subroutines; you might want array math to be written using operator notation on matrix and vector objects rather than as loops

over sequences of numbers.

You would otherwise have to write a great deal of boilerplate implementation code.

You need to choose component implementations based on the properties of their type parameters.

You want to take advantage of valuable properties of generic programming in C++ such as static type checking and behavioral

customization, without loss of efficiency.

You want to do it all within the C++ language, without an external tool or custom source code generator.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

1.7. Why a Metaprogramming Library?

Rather than building up metaprograms from scratch, we'll be working with the high-level facilities of the Boost Metaprogramming Library

(MPL). Even if you didn't pick up this book to explore the MPL, we think you'll find your investment in learning it to be well worthwhile

because of the benefits the MPL can bring to your day-to-day work.

Quality. Most programmers who use template metaprogramming components see them—quite properly—as implementation

details to be applied toward some greater purpose. By contrast, the MPL authors saw the job of developing useful, high-quality

tools and idioms as their central mission. On average, the components in the Boost Metaprogramming Library are more flexible

and better implemented than what one would produce along the way to some other goal, and you can expect more

optimizations and improvements in the future as updates are released.

1.

Reuse. All libraries encapsulate code in reusable components. More importantly, a well-designed generic library establishes a

framework of concepts and idioms that provides a reusable mental model for approaching problems. Just as the C++ Standard

Template Library gave us iterators and a function object protocol, the Boost Metaprogramming Library provides type iterators

and a metafunction protocol. A well-considered framework of idioms focuses the metaprogrammer's design decisions and

enables her to concentrate on the task at hand.

2.

Portability. A good library can smooth over the ugly realities of platform differences. While in theory no C++ metaprogram

should be concerned with these issues, in practice support for templates remains inconsistent even six years after

standardization. No surprises here: C++ templates are the language's furthest-reaching and most complicated feature, a fact

that also accounts for the power of metaprogramming in C++.

3.

Fun. Repeating the same boilerplate code over and over is tedious. Quickly assembling high-level components into readable,

elegant designs is fun! The MPL reduces boredom by eliminating the need for the most commonly repeated metaprogramming

patterns. In particular, terminating specializations and explicit recursion are often easily and elegantly avoided.

4.

Productivity. Aside from personal gratification, the health of our projects depends on having fun programming. When we stop

having fun we get tired, slow, and sloppy—and buggy code is even more costly than slowly written code.

5.

As you can see, the Boost Metaprogramming Library is motivated by the same practical considerations that underlie the development of

any other library. We think its emergence is a sign that template metaprogramming is finally ready to leave the realm of the esoteric and

find a home in the everyday repertoire of working C++ programmers.

Finally, we'd like to emphasize the fourth item above: The MPL not only makes metaprogramming practical and easy, but it's also a great

pleasure to work with. We hope that you'll enjoy learning about it as much as we have enjoyed using and developing it.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Chapter 2. Traits and Type Manipulation

We hope the numerical bias of Chapter 1 didn't leave you with the impression that most metaprograms are arithmetic in nature. In fact,

numeric computation at compile time is comparatively rare. In this chapter you'll learn the basics of what is going to be a recurring theme:

metaprogramming as "type computation."

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

2.1. Type Associations

In C++, the entities that can be manipulated at compile time, called metadata, are divided roughly into two categories: types and non-types.

Not coincidentally, all the kinds of metadata can be used as template parameters. The constant integer values used in Chapter 1 are

among the non-types, a category that also includes values of nearly everything else that can be known at compile time: the other integral

types, enums, pointers and references to functions and "global" objects, and pointers to members.
[1]

[1] The standard also allows templates to be passed as template parameters. If that's not mind-bending enough for

you, these parameters are treated in the standard "as types for descriptive purposes." Templates aren't types,

though, and can't be passed to another template where a type is expected.

It's easy to imagine doing calculations on some kinds of non-type metadata, but it may surprise you to learn that there is also a way to do

calculations with types. To get a feeling for what that means—and why it matters—we're going to look at one of the simplest algorithms

from the C++ standard library: iter_swap. It is iter_swap's humble duty to take two iterators and exchange the values of the objects they

refer to. It looks something like this:

 template <class ForwardIterator1, class ForwardIterator2>

 void iter_swap(ForwardIterator1 i1, ForwardIterator2 i2)

 {

 T tmp = *i1;

 *i1 = *i2;

 *i2 = tmp;

 }

If at this point you're wondering where T came from, you've got a sharp eye. It hasn't been defined, and iter_swap can't compile if we write it

that way. Informally, of course, T is the type you get when the iterator is dereferenced, what's known in the C++ standard (section 24.1) as

the iterator's value type. Okay, but how do we name that type?

2.1.1 Using a Direct Approach

In case you already know the answer chosen by the authors of the standard library, we'll ask you to forget it for the time being; we have a

couple of deeper points to make. Instead, imagine we're implementing the standard library ourselves and choosing its method of handling

iterators. We're going to end up writing a lot of algorithms, and many of them will need to make an association between an iterator type

and its value type. We could require all iterator implementations to supply a nested type called value_type, which we'd access directly:

 template <class ForwardIterator1, class ForwardIterator2>

 void iter_swap(ForwardIterator1 i1, ForwardIterator2 i2)

 {

 typename // (see Language Note)

 ForwardIterator1::value_type tmp = *i1;

 *i1 = *i2;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 *i2 = tmp;

 }

C++ Language Note

The C++ standard requires the typename keyword when we use a dependent name as though it refers to a type.

ForwardIterator1::value_type may or may not name a type, depending on the particular ForwardIterator1 that is passed.

See Appendix B for more information about typename.

That's a perfectly good strategy for making type associations, but it's not very general. In particular, iterators in C++ are modeled on the

design of pointers, with the intention that plain pointers should themselves be valid iterators. Unfortunately, pointers can't have nested

types; that privilege is reserved for classes:

 void f(int* p1, int* p2)

 {

 iter_swap(p1,p2); // error: int* has no member 'value_type'

 }

2.1.2 Taking the Long Way Around

We can solve any problem by introducing an extra level of indirection.

—Butler Lampson

Lampson's idea is so universal in programming that Andrew Koenig
[2]

 is fond of calling it "the Fundamental Theorem of Software

Engineering" (FTSE). We may not be able to add a nested ::value_type to all iterators, but we can add it to a template that takes the

iterator type as a parameter. In the standard library this template, called iterator_traits, has a simple signature:

[2] Andrew Koenig is the co-author of Accelerated C++ and project editor for the C++ standard. For an

acknowledgment that does justice to his many contributions to C++ over the years, see almost any one of Bjarne

Stroustrup's C++ books.

 template <class Iterator> struct iterator_traits;

Here's how we put it to work in iter_swap:

 template <class ForwardIterator1, class ForwardIterator2>

 void iter_swap(ForwardIterator1 i1, ForwardIterator2 i2)

 {

 typename

 iterator_traits<ForwardIterator1>::value_type tmp = *i1;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 *i1 = *i2;

 *i2 = tmp;

 }

iterator_traits is so named because it describes properties (or traits) of its argument. In this case, the traits being described are the

iterator's five associated types: value_type, reference, pointer, difference_type, and iterator_category.

The most important feature of traits templates is that they give us a way to associate information with a type non-intrusively. In other words,

if your ornery coworker Hector gives you some iterator-like type called hands_off that refers to an int, you can assign it a value_type without

disturbing the harmony of your workgroup. All you have to do is add an explicit specialization of iterator_traits, and iter_swap will see the

type int when it asks about the value_type of Hector's iterator:
[3]

[3] For a brief review of template specialization and instantiation, see the Details section at the end of this chapter.

 namespace std

 {

 template <>

 struct iterator_traits<Hector::hands_off>
 {

 typedef int value_type;
 four more typedefs...

 };

 }

This non-intrusive aspect of traits is precisely what makes iterator_traits work for pointers: the standard library contains the following partial

specialization of iterator_traits, which describes the value_type of all pointers:

 template <class T>

 struct iterator_traits<T*> {

 typedef T value_type;
 ...four more typedefs

 };

Thanks to the indirection through iterator_traits, generic functions can now access an iterator's associated types uniformly, whether or not

it happens to be a pointer.

2.1.3 Finding a Shortcut

While specialization is a perfectly general mechanism, it's not nearly as convenient as adding nested types to classes. Specialization

comes with a lot of baggage: You may have to close the namespaces you're working in and open the namespace of the traits template,

and then you'll have to write the text of the traits specialization itself. That's not a very efficient use of keystrokes: its nested typedef is the

only information that really counts for anything.

Thoughtfully, the standard library provides a shortcut that allows the author of an iterator to control the types nested in its iterator_traits just

by writing member types in the iterator. The primary iterator_traits template
[4]

 reaches into the iterator to grab its member types:

[4] The C++ standard refers to ordinary template declarations and definitions—as opposed to partial or explicit (full)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

specializations—as primary templates.

 template <class Iterator>

 struct iterator_traits {

 typedef typename Iterator::value_type value_type;

 ...four more typedefs

 };

Here you can see the "extra level of indirection" at work: Instead of going directly to Iterator:: value_type, iter_swap gets there by asking

iterator_traits for the iterator's value_type. Unless some specialization overrides the primary iterator_traits template, iter_swap sees the

same value_type as it would have if it had directly accessed a nested type in the iterator.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

2.2. Metafunctions

If at this point you have begun to notice some similarity between traits templates and ordinary functions, that's good. The parameters and

nested types of a traits template play similar roles at compile time to those played by function parameters and return values at runtime.

The binary template from Chapter 1 is certainly function-like. If the "type computation" performed by iterator_traits seems a little too banal to

be compared to a function, though, we understand; rest assured that things will quickly get more interesting.

Apart from passing and returning types instead of values, traits templates exhibit two significant features that we don't see in ordinary

functions:

Specialization. We can non-intrusively alter the result of a traits template for particular "values" (types) of its parameters just

by adding a specialization. We can even alter the result for a whole range of "values" (e.g., all pointers) by using partial

specialization. Specialization would be really strange if you could apply it to regular functions. Imagine being able to add an

overload of std::abs that is called only when its argument is an odd number!

Multiple "return values." While ordinary functions map their arguments to just one value, traits often have more than one

result. For example, std::iterator_traits contains five nested types: value_type, reference, pointer, difference_type, and

iterator_category. It's not even uncommon to find traits templates that contain nested constants or static member functions.

std::char_traits is an example of just such a component in the standard library.

Still, class templates are enough like functions that we can get some serious mileage out of the analogy. To capture the idea of "class

templates-as-functions," we'll use the term metafunctions. Metafunctions are a central abstraction of the Boost Metaprogramming Library,

and formalizing them is an important key to its power. We'll be discussing metafunctions in depth in Chapter 3, but we're going to cover

one important difference between metafunctions and classic traits right here.

The traits templates in the standard library all follow the "multiple return values" model. We refer to this kind of traits template as a "blob,"

because it's as though a handful of separate and loosely related metafunctions were mashed together into a single unit. We will avoid this

idiom at all costs, because it creates major problems.

First of all, there's an efficiency issue: The first time we reach inside the iterator_traits for its ::value_type, the template will be instantiated.

That means a lot of things to the compiler, but to us the important thing is that at that point the compiler has to work out the meaning of

every declaration in the template body that happens to depend on a template parameter. In the case of iterator_traits, that means

computing not only the value_type, but the four other associated types as well—even if we're not going to use them. The cost of these

extra type computations can really add up as a program grows, slowing down the compilation cycle. Remember that we said type

computations would get much more interesting? "More interesting" also means more work for your compiler, and more time for you to drum

your fingers on the desk waiting to see your program work.

Second, and more importantly, "the blob" interferes with our ability to write metafunctions that take other metafunctions as arguments. To

wrap your mind around that, consider a trivial runtime function that accepts two function arguments:

 template <class X, class UnaryOp1, class UnaryOp2>

 X apply_fg(X x, UnaryOp1 f, UnaryOp2 g)

 {

 return f(g(x));

 }

That's not the only way we could design apply_fg, though. Suppose we collapsed f and g into a single argument called blob, as follows:

 template <class X, class Blob>

 X apply_fg(X x, Blob blob)

 {

 return blob.f(blob.g(x));

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The protocol used to call f and g here is analogous to the way you access a "traits blob": to get a result of the "function," you reach in and

access one of its members. The problem is that there's no single way to get at the result of invoking one of these blobs. Every function like

apply_fg will use its own set of member function names, and in order to pass f or g on to another such function we might need to repackage

it in a wrapper with new names.

"The blob" is an anti-pattern (an idiom to be avoided), because it decreases a program's overall interoperability, or the ability of its

components to work smoothly together. The original choice to write apply_fg so that it accepts function arguments is a good one, because

it increases interoperability.

When the callable arguments to apply_fg use a single protocol, we can easily exchange them:

 #include <functional>

 float log2(float);

 int a = apply_fg(5.Of, std::negate<float>(), log2);

 int b = apply_fg(3.14f, log2, std::negate<float>());

The property that allows different argument types to be used interchangeably is called polymorphism; literally, "the ability to take multiple

forms."

Polymorphism

In C++, there are two kinds of polymorphism. Dynamic polymorphism allows us to handle objects of multiple derived

types through a single base class pointer or reference. Static polymorphism, which we've been discussing in this

chapter, allows objects of different types to be manipulated in the same way merely by virtue of their support for a

common syntax. The words dynamic and static indicate that the actual type of the object is determined at runtime or

compile time, respectively. Dynamic polymorphism, along with "late-binding" or "runtime dispatch" (provided in C++ by

virtual functions), is a key feature of object-oriented programming. Static polymorphism (also known as parametric

polymorphism) is essential to generic programming.

To achieve polymorphism among metafunctions, we'll need a single way to invoke them. The convention used by the Boost libraries is as

follows:

 metafunction-name<type-arguments...>::type

From now on, when we use the term metafunction, we'll be referring to templates that can be "invoked" with this syntax.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

2.3. Numerical Metafunctions

You might find it astonishing that even metafunctions that yield numbers are invoked as shown above. No, we're not asking you to give the

name type to something that is really a number. The result ::type of a metafunction with a numerical result really is a type—a type known as

an integral constant wrapper, whose nested ::value member is an integral constant. We'll explore the details of integral constant

wrappers in Chapter 4, but in the meantime, the following example should give you a feeling for what we mean:

 struct five // integral constant wrapper for the value 5

 {

 static int const value = 5;
 typedef int value_type;

 ...more declarations...

 };

So, to get at the value of a numerical metafunction result, we can write:

 metafunction-name<type arguments...>::type::value

Likewise, integral constants are passed to metafunctions in similar wrappers. This extra level of indirection might seem inconvenient, but

by now you can probably guess the reason for it: Requiring all metafunctions to accept and return types makes them more uniform, more

polymorphic, and more interoperable. You'll see lots of examples of how this application of the FTSE pays off in the next few chapters.
[5]

[5] You may have noticed that the metafunction protocol seems to prevent us from achieving the very goal that was

our reason for making metafunctions polymorphic: we wanted to be able to write metafunctions that take other

metafunctions as arguments. Since metafunctions are templates, not types, we can't pass them where types are

expected. For now we'll just have to ask you to suspend your disbelief for the rest of this chapter; we promise to

deal with that issue in Chapter 3.

All those benefits aside, writing ::type::value whenever you want to compute an actual integral constant does grow somewhat tedious.

Purely as a convenience, a numerical metafunction author may decide to provide an identical nested ::value directly in the metafunction

itself. All of the numerical metafunctions from the Boost library we cover in this book do just that. Note that although it's okay to take

advantage of ::value when you know it's supplied by the metafunction you're calling, you can't count on a nested ::value in general, even

when you know the metafunction yields a numerical result.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

2.4. Making Choices at Compile Time

If at this point you still find yourself a little nonplussed at the idea of type computations, we can hardly blame you. Admittedly, using a

metafunction to find the value_type of an iterator is not much more than a kind of glorified table lookup. If this idea of "computation with

types" is going to have legs, there's got to be more to it than making type associations.

2.4.1 More iter_swap

To see how we can put metafunctions to use in real code, let's go back to playing "C++ standard library implementor." Sorry to say it, but

by now we'll have received a flood of bug reports from our performance-minded customers, complaining that the way we defined iter_swap

in section 2.1.3 is horribly inefficient for some iterators. Apparently one guy tried passing in the iterators of std::list<std::vector<std::string> >,

which iterate over vectors of strings, and his profiler told him that iter_swap was the performance bottleneck.

In hindsight, it's hard to be very surprised: The first statement in iter_swap makes a copy of the value referenced by one of the iterators.

Since copying a vector means copying all of its elements, and each string element copied or assigned is likely to require a dynamic

memory allocation and a bitwise copy of the string's characters, this starts to look pretty bad for performance.

Fortunately, there's a workaround. Because the standard library provides an efficient version of swap for vectors that just exchanges a few

internal pointers, we can tell our customer to simply dereference the iterators and call swap on the results:

 std::swap(*i1, *i2);

That response isn't very satisfying, though. Why shouldn't iter_swap be equally efficient? In a flash of inspiration, we remember the

fundamental theorem of software engineering: Can't we just add a level of indirection and delegate the responsibility for efficiency to swap?

 template <class ForwardIterator1, class ForwardIterator2>

 void iter_swap(ForwardIterator1 i1, ForwardIterator2 i2)

 {

 std::swap(*i1,*i2);

 }

That looks good, but running our test suite shows that calling swap doesn't always work. Did you notice that iter_swap will accept two

iterators of different types? It seems one of the tests tries to exchange the value pointed to by an int* with the one pointed to by a long*

using iter_swap. The swap function, however, only operates on two objects of the same type:

 template <class T> void swap(T& x, T& y);

The implementation of iter_swap above causes a compilation error when we try to use it on int* and long*, because no std::swap overload

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

matches the argument types (int, long).

We could try to solve this problem by leaving the slow implementation of iter_swap in place, and adding an overload:

 // Generalized (slow) version

 template <class ForwardIterator1, class ForwardIterator2>

 void iter_swap(ForwardIterator1 i1, ForwardIterator2 i2)

 {

 typename

 iterator_traits<ForwardIterator1>::value_type

 tmp = *i1;

 *i1 = *i2;

 *i2 = tmp;

 }

 // A better match when the two iterators are the same type

 template <class ForwardIterator>

 void iter_swap(ForwardIterator i1, ForwardIterator i2)

 {

 std::swap(*i1, *i2); // sometimes faster

 }

The C++ rules for partial ordering of function templates say that the new overload is a better match, when it matches. That handles the

problem for int* and long* and passes the test suite. We ship it!

2.4.2 A Fly in the Ointment

Pretty soon, though, someone will notice that we're still missing an important opportunity for optimization. Consider what happens when we

call iter_swap on the iterators of std::vector<std::string> and std::list<std::string>. The two iterators will have the same value_type—with its

own efficient swap—but since the iterators themselves are different types, the fast iter_swap overload that uses it won't be called. What's

needed here is a way to get iter_swap to work on two different iterator types that share a single value_type.

Since we're playing "standard library implementor," we can always try rewriting swap so it works on two different types:

 template <class T1, class T2>

 void swap(T1& a, T2& b)

 {

 T1 tmp = a;

 a = b;

 b = tmp;

 }

This simple fix will handle most of the cases our users encounter.

2.4.3 Another Fly!

Unfortunately, there's a category of iterators for which this still won't work: those whose operator* yields a proxy reference. A proxy

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

reference isn't, in fact, a reference at all, but a class that tries to emulate one: For an iterator that's both readable and writable, a proxy

reference is just a class that is both convertible to, and assignable from, the value_type.

The best-known example of such an iterator is that of vector<bool>,
[6]

 a container that stores each of its elements in a single bit. Since

there's no such thing as a real reference to a bit, a proxy is used so the vector behaves almost exactly like any other vector. The proxy's

operator=(bool) writes into the appropriate bit of the vector, and its operator bool() returns TRue if and only if that bit is set in the vector,

something like:

[6] The problem might easily have been missed by our regression tests; some people aren't even convinced

vector<bool>::iterator is a valid iterator. The subject of how vector<bool> and its iterators fit into the standard has

been the subject of much debate. Herb Sutter even wrote two papers for the C++ standards committee ([n1185],

[n1211]), and a Guru of the Week [GotW50] about the problems. Work has begun in the committee on a system of

new iterator concepts [n1550] that, we hope, will help to resolve the issues.

 struct proxy

 {

 proxy& operator=(bool x)

 {

 if (x)

 bytes[pos/8] |= (1u << (pos%8));

 else

 bytes[pos/8] &= ~(1u << (pos%8));

 return *this;

 }

 operator bool() const

 {

 return bytes[pos/8] & (1u << (pos%8));

 }

 unsigned char* bytes;

 size_t pos;

 };

 struct bit_iterator

 {

 typedef bool value_type;

 typedef proxy reference;

 more typedefs...

 proxy operator*() const;

 more operations...

 };

Now consider what happens when iter_swap dereferences a bit_iterator and tries to pass a couple of proxy references off to std::swap.

Recall that since swap modifies its arguments, they are passed by non-const reference. The problem is that the proxies returned by

operator* are temporaries, and the compiler will issue an error when we try to pass temporaries as non-const reference arguments. Most of

the time that's the right decision, because any changes we made to the temporaries would just disappear into the ether. The original

implementation of iter_swap, though, works fine on the iterators of vector<bool>.

2.4.4 The Flyswapper

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

What's needed, finally, is a way to pick the "fast" implementation of iter_swap only when the iterators have the same value_type and their

reference types are real references, not proxies. To make these choices, we need some way to ask (and answer!) the questions "Is T a real

reference?" and "Are these two value_types the same?"

Boost contains an entire library of metafunctions designed to query and manipulate fundamental traits like type identity and

"reference-ness." Given the appropriate type traits, we can decide whether to use swap or do the swapping ourselves:

 #include <boost/type_traits/is_reference.hpp>

 #include <boost/type_traits/is_same.hpp>

 #include <iterator> // for iterator_traits

 #include <utility> // for swap

 template <bool use_swap> struct iter_swap_impl; // see text

 namespace std {

 template <class ForwardIterator1, class ForwardIterator2>

 void iter_swap(ForwardIterator1 i1, ForwardIterator2 i2)

 {

 typedef iterator_traits<ForwardIterator1> traits1;

 typedef typename traits1::value_type v1;

 typedef typename traits1::reference r1;

 typedef iterator_traits<ForwardIterator2> traits2;

 typedef typename traits2::value_type v2;

 typedef typename traits2::reference r2;

 bool const use_swap = boost::is_same<v1,v2>::value

 && boost::is_reference<r1>::value

 && boost::is_reference<r2>::value;

We haven't closed the final brace on iter_swap, but at this point all we have to do is find a way to pick different behaviors based on the

value of use_swap. There are actually lots of ways to approach that problem, many of which we'll cover in Chapter 9. We've cleverly

anticipated the need for dispatching by forward-declaring iter_swap_impl.
[7]

 We can provide the two behaviors in specializations of

iter_swap_impl (outside the body of iter_swap):

[7] A little unnatural foresight is the authors' prerogative!

 template <>

 struct iter_swap_impl<true> // the "fast" one

 {

 template <class ForwardIterator1, class ForwardIterator2>

 static void do_it(ForwardIterator1 i1, ForwardIterator2 i2)

 {

 std::swap(*i1, *i2);

 }

 };

 template <>

 struct iter_swap_impl<false> // the one that always works

 {

 template <class ForwardIterator1, class ForwardIterator2>

 static void do_it(ForwardIterator1 i1, ForwardIterator2 i2)

 {

 typename

 iterator_traits<ForwardIterator1>::value_type

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 tmp = *i1;

 *i1 = *i2;

 *i2 = tmp;

 }

 };

Now iter_swap_impl <use_swap>::do_it provides an appropriate implementation of iter_swap for either possible value of use_swap.

Because do_it is a static member function, iter_swap can call it without constructing an instance of iter_swap_impl:

 iter_swap_impl<use_swap>::do_it(*i1,*i2);

Now we can close the brace and breathe a sigh of relief while our regression tests all pass. We ship! There is much rejoicing! Our

customers have an iter_swap that is both fast and correct.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

2.5. A Brief Tour of the Boost Type Traits Library

It turns out that almost every serious template metaprogram ends up needing facilities like those provided by the Boost. Type Traits. The

library has proven so useful that it has been accepted into the C++ standard committee's first "Technical Report" ([n1424], [n1519]), a

harbinger of things to come in the next official standard. For a complete reference, see the documentation in the libs/type_traits

subdirectory of your Boost distribution, or at http://www.boost.org/libs/type_traits.

2.5.1 General

There are a few things you need to know about the library as a whole: First, as you may have guessed from the iter_swap example, all of

the library's metafunctions are in namespace boost, and there's a simple convention for #include-ing the header that defines any of them:

 #include <boost/type_traits/ metafunction-name.hpp>

Second, as we implied earlier, all of Boost's numerical metafunctions, as a convenience, provide a nested ::value directly in the

metafunction. It may be a bit strange to think of bool-valued metafunctions like is_reference as "numerical," but C++ classifies bool as an

integral type and the same convention applies to all integral-valued metafunctions.

Third, there are a few type traits (e.g., has_trivial_destructor) that require non-standard compiler support in order to be fully functional. A

few compilers, notably Metrowerks CodeWarrior and SGI MipsPro, have actually implemented the necessary primitives. On other

compilers, these traits generally are correct for some types and degrade "gracefully and safely" for others. By "gracefully" we mean that

even when the traits don't have the correct result, their use will still compile.

To understand what we mean by "safely," you have to know that these traits are mostly used to decide whether certain optimizations are

possible. For example, the storage for a type with a trivial destructor may be reused without destroying the object it contains. If, however,

you can't determine that the type has a trivial destructor, you must destroy the object before reusing its storage. When

has_trivial_destructor<T> can't determine the correct result value, it returns false so that generic code will always take the safe route and

invoke T's destructor.

Last, be aware that type categorization metafunctions like is_enum<T>, which we describe next, generally ignore cv-qualification (const and

volatile), so that is_enum<T const> always has the same result as is_enum<T>.

Each of the following subsections describes a different group of traits.

2.5.2 Primary Type Categorization

These unary metafunctions determine which of the fundamental type categories described in the C++ standard applies to their argument.

For any given type T, one and only one of these metafunctions should yield a true result.

Nine traits cover the type categories that most people are familiar with. There's not much to say about is_void<T>, is_pointer<T>,

is_reference<T>, is_array<T>, and is_enum<T>; they do just what you'd expect. is_integral<T> identifies char, bool, and all the varieties of

signed and unsigned integer types. Similarly, is_float<T> identifies the floating-point types float, double, and long double. Unfortunately,

without compiler support, is_union<T> always returns false, thus is_class<T> is true for both classes and unions.
[8]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.boost.org/libs/type_traits

[8] Classes may be declared using the struct keyword, but they are still classes according to the C++ standard. In

fact, the following two declarations are interchangeable:

class X;

struct X; // declares the same X

struct is only distinguished from class in definitions, where struct causes bases and members to be public by default.

There are two more categories that most programmers encounter less often. Pointers to member functions, which have the form

R (C::*)(args...) cv

and pointers to data members, written as

D C::*

are identified by is_member_pointer<T>. Note that is_pointer doesn't identify these types, even though they're called pointers.

Lastly, is_function<T> identifies function types of the form

R (args...)

Many people never see an unadorned function type, because of the way function names, when not immediately invoked, automatically

become function pointers or references of the form

R (*) (args...) or R (&) (args...)

Table 2.1 lists the primary type traits.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 2.1. Primary Type Categorization

Primary Trait ::type::value and ::value

is_array<T> true iff T is an array type.

is_class<T> TRue iff T is a class type; without compiler support, may also report TRue for unions.

is_enum<T> true iff T is an enumeration type.

is_float<T> TRue iff T is a floating-point type.

is_function<T> true iff T is a function type.

is_integral<T> true iff T is an integral type.

is_member_pointer<T> TRue iff T is a pointer to function or data member.

is_pointer<T> TRue iff T is a pointer type (but not a pointer to member).

is_reference<T> true iff T is a reference type.

is_union<T> TRue iff T is a union; without compiler support, always reports false.

is_void<T> true iff T is of the form cv void.

2.5.3 Secondary Type Categorization

The traits in Table 2.2 represent useful groupings of, or distinctions within, the primary categories.

Table 2.2. Secondary Type Categorization

Secondary Trait ::type::value and ::value

is_arithmetic<T> is_integral<T>::value ||

is_float<T>::value

is_compound<T> !is_fundamental<T>::value

is_fundamental<T> is_arithmetic<T>::value ||

is_void<T>::value

is_member_function_pointer<T> true iff T is a pointer to member function.

is_object<T> !(is_function<T>::value ||

is_reference<T>::value ||

is_void<T>::value)

is_scalar<T> is_arithmetic<T>::value

|| is_enum<T>::value ||

is_pointer<T>::value ||

is_member_pointer<T>::value

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

2.5.4 Type Properties

The type traits library uses the term properties as a kind of catch-all term for traits other than those directly related to the standard type

categories. The simplest traits in this group are is_const and is_volatile, which detect their arguments' cv-qualification. The rest of the type

properties are summarized in Tables 2.3 and 2.4.

Table 2.3. Type Properties

Type Property ::type::value and ::value

alignment_of<T> A positive multiple of T's memory alignment requirements (the library tries to

minimize that multiple).

is_empty<T> true iff the compiler optimizes away space for empty base classes and T is an

empty class.

is_polymorphic<T> TRue iff T is a class with at least one virtual member function.

Table 2.4. More Type Properties

Type Property ::type::value and ::value

has_nothrow_assign<T> TRue only if T has a non-throwing assignment operator.

has_nothrow_constructor<T> TRue only if T has a non-throwing default constructor.

has_nothrow_copy<T> true only if T has a non-throwing copy constructor.

has_trivial_assign<T> TRue only if T has a trivial assignment operator.

has_trivial_constructor<T> TRue only if T has a trivial default constructor.

has_trivial_copy<T> true only if T has a trivial copy constructor.

is_pod<T>
true only if T is a POD type.

[9]

is_stateless<T> true only if T is empty and its constructors and destructors are

trivial.

[9] POD stands for "plain old data." Believe it or not, that's a technical term in the C++ standard. The standard gives

us license to make all kinds of special assumptions about POD types. For example, PODs always occupy

contiguous bytes of storage; other types might not. A POD type is defined to be either a scalar, an array of PODs, or

a struct or union that has no user-declared constructors, no user-declared copy assignment, no user-declared

destructor, no private or protected non-static data members, no base classes, no non-static data members of

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

non-POD, reference, or pointer to member type, or array of such types, and no virtual functions.

The traits in Table 2.4 are most useful for selecting optimizations. With compiler support they can be implemented more accurately,

allowing only if to be replaced by if and only if (iff) in the table.

2.5.5 Relationships Between Types

The library contains three important metafunctions that indicate relationships between types. We've already seen is_same<T,U>, whose

::value is true when T and U are identical types. is_convertible<T,U> yields true if and only if an object of type T can be implicitly converted

to type U. Finally, is_base_and_derived<B,D>::value is TRue if and only if B is a base class of D.

2.5.6 Type Transformations

The metafunctions listed in Table 2.5 perform fundamental type manipulations. Note that unlike other type traits metafunctions we've

discussed so far, members of this group yield type results rather than Boolean values. You can think of them as being operators in the

"arithmetic of types."

Table 2.5. Transformations Types

Transformation ::type

remove_const<T> T without any top-level const. For example, const int becomes int, but const int* remains

unchanged.

remove_volatile<T> T without any top-level volatile. For example, volatile int becomes int.

remove_cv<T> T without any top-level cv-qualifiers. For example, const volatile int becomes int.

remove_reference<T> T without any top-level reference. For example, int& becomes int but int* remains

unchanged.

remove_bounds<T> T without any top-level array brackets. For example, int[2][3] becomes int[3].

remove_pointer<T> T without any top-level pointer. For example, int* becomes int, but int& remains

unchanged.

add_reference<T> If T is a reference type, then T, otherwise T&.

add_pointer<T> remove_reference<T>::type*. For example, int and int& both become int*.

add_const<T> T const

add_volatile<T> T volatile

add_cv<T> T const volatile

At this point you might be wondering why we bothered with the last three transformations in the table. After all, add_const<T>::type is just a

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

more verbose way to write T const. It turns out that it's important to be able to express even the simplest transformations in metafunction

form so they can be passed on to other metafunctions (which, as promised, we'll show you how to do in the next chapter).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

2.6. Nullary Metafunctions

Probably the most important thing we've done in this chapter has been to describe the "metafunction" concept, but there's one question we

still haven't answered: What does a nullary (zero-argument) metafunction look like?

From the requirements standpoint, a nullary metafunction is any type, whether it's a plain class or a class template specialization, that

provides us with a nested ::type member. For instance, add_const<int> is a nullary metafunction that always returns the same result: int

const.

The easiest way to write a nullary metafunction is to go with a simple struct:

 struct always_int

 {

 typedef int type;

 };

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

2.7. Metafunction Definition

Finally, we have everything we need to write a complete, formal description of metafunctions.

Definition

A metafunction is either

a class template, all of whose parameters are types

or

a class

with a publicly accessible nested result type called type.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

2.8. History

The Boost Type Traits library was inspired by a component in SGI's STL implementation that looked something like this:

 struct true_type {}; struct false_type {};

 template <class T> struct type_traits // assume nothing

 {

 typedef false_type has_trivial_default_constructor;

 typedef false_type has_trivial_copy_constructor;

 typedef false_type has_trivial_assignment_operator;

 typedef false_type has_trivial_destructor;

 typedef false_type is_POD_type;

 };

 template<> struct type_traits<char> // specialization for char

 {

 typedef true_type has_trivial_default_constructor;

 typedef true_type has_trivial_copy_constructor;

 typedef true_type has_trivial_assignment_operator;

 typedef true_type has_trivial_destructor;

 typedef true_type is_POD_type;

 };

 more specializations follow...

It's interesting to note that although the SGI type traits yielded result types, it's still a "blob," which kills polymorphism. The SGI designers

must have had other reasons for using nested types instead of bool constants.
[10]

[10] For a clue as to one possible reason, see section 9.2.3.

Boost. Type Traits was the first C++ library that explicitly recognized the importance of using single-valued metafunctions. Boost rejected

the "blob" design primarily because it would reserve a very general name, type_traits, for a single template. The name seemed to demand

that any new traits be assimilated there—a Borg blob! Anyone who wanted to write a similar component would have felt compelled to go in

and modify this one template, potentially causing bugs. At the time, the positive impact this choice would have on efficiency and

interoperability wasn't well understood.

The designers established a convention that traits with a Boolean result would have a ::value and those with a type result would have a

::type, so users didn't have to guess at how to invoke a given trait. That choice indicates that they recognized the value of polymorphism,

even if they didn't reach the ultimate conclusion that all metafunctions should supply a ::type.

As a matter of fact, the type traits weren't seen as "metafunctions" until work on the Boost Metaprogramming Library (MPL) was begun. At

that point, the convention used in the Type Traits library became the basis for the uniform protocol used by MPL metafunctions, and Boost

Type Traits library was updated accordingly.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

2.9. Details

We've covered a lot of ground in this chapter; the journey from traits to metafunctions takes us from the ad hoc type associations used in

the simplest generic programs, to the fundamentals that allow metaprogramming to be viewed as a first-class coding activity. We also

dipped into the mechanics of C++ templates, got an overview of the type traits library, and saw some of its components in action. In such a

broad landscape, some important details are bound to be missed; we'll fill them in as we review the chapter's most important points.

Specialization

The meaning of specialization as applied to C++ templates can be tough to get a handle on, because it's used in two different ways. Its

first usage refers to a template with specific arguments filled in, as in iterator_traits<int*>. In other words, a template specialization names

the actual class (or function, in the case of function template specializations) that results from replacing its parameters with specific

arguments.

The second use of specialization shows up in "explicit specialization" and "partial specialization"; we showed both explicit and partial

specializations of iterator_traits in this chapter. The name "explicit" is probably not well-chosen, since partial specializations are just as

explicit; you can think of "explicit specialization" as meaning "full specialization" without any loss of understanding.

To remember the syntax rules for declaring class template specializations (the second meaning), keep this form in mind:

 template <variable part>

 struct template-name<fixed part>

In an explicit (or full) specialization, the variable part is empty and the fixed part consists of concrete template arguments. In a partial

specialization, the variable part contains a parameter list, and at least one argument in the fixed part depends on those parameters.

Primary template

The declaration of a template that is not a specialization (second meaning above) is called the primary template. We can think of the

primary template as covering the general case, while specializations cover various special cases.

Instantiation

The moment the compiler needs to know much more about a template than what its arguments are—the names of its members or the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

identity of its base classes, for example—the template will be instantiated. At that point, the compiler fills in the actual values of all the

template parameters, picks the best-matching explicit or partial specialization (if any), figures out all of the types and constants used in

declarations in the template body, and rechecks those declarations for errors. It does not, however, instantiate definitions (such as member

function bodies) until they are actually used. For example:

 template <class T, class U>

 struct X

 {

 int f(T* x) // declaration

 {

 U y[10]; // definition

 return 0;

 }

 };

 typedef X<int&, char> t1; // OK; no instantiation yet

 t1 x1; // error: pointer to int& illegal

 typedef X<int, char&> t2;

 t2 x2; // OK; declarations check out

 int a = x2.f(); // error: array of char& illegal

As you can see, template instantiation can affect not only compilation speed, but whether your program compiles at all!

The blob

A class with lots of members (including member functions) is known in the object-oriented programming literature as a "blob" [BMMM98].

The members of a class are all "coupled" to one another, because they must be declared together. To avoid coupling and increase

modularity, avoid this anti-pattern. Instead, define separate traits as independent metafunctions.

Metadata

A "value" that can be manipulated by the C++ compile-time machinery can be thought of as metadata. In template metaprogramming, the

two most common kinds of metadata are types and integer (including bool) constants. The compile-time part of C++ is often referred to as

a "pure functional language" because metadata is immutable and metafunctions can't have any side effects.

Polymorphism

Literally, "having many forms." In computer languages polymorphism has come to mean the ability to manipulate different types through a

common interface. Having a consistent interface is the best way to ensure that code is reusable and components interoperate naturally.

Because C++ templates do not inherently treat the different kinds of metadata polymorphically, MPL follows the convention of using type

wrappers around non-type metadata. In particular, numerical metadata is represented as a type with a nested numeric constant member

called ::value.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Metafunction

A "function" that operates on metadata and can be "invoked" at compile time. For the remainder of this book, a template or class will only

be called a metafunction if it has no non-type parameters and returns a type called type. The arguments to the class template are the

inputs to the compile time computation, and the ::type member is its result. Thus, expressions like:

 some_metafunction<Arg1, Arg2>::type

are analogous to runtime computations like:

 some_function(arg1, arg2)

Numerical metafunction

A metafunction that returns a wrapper type for a numerical value. As a convenience, many numerical metafunctions themselves provide a

nested ::value member, so that you can write:

 some_numerical_metafunction<Arg>::value

instead of the more general:

 some_numerical_metafunction<Arg>::type::value

if you want to access the numerical result directly.

Nullary metafunction

Any class with a publicly accessible ::type can be used as a metafunction that accepts no arguments. As a consequence of this definition,

any metafunction specialization (first meaning above), such as boost::remove_pointer<char*>, is a legal nullary metafunction.

Traits

A technique for establishing associations between pieces of metadata via class template specializations. A key feature of the traits idiom is

that it's non-intrusive: We can establish a new mapping without modifying the associated items themselves. MPL metafunctions can be

viewed as a special case of traits, where there is only one result value for any input.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Type traits

The Boost Type Traits library is a metafunction library. It contains a few metafunctions for low-level type manipulation. For example, the

result of add_reference is always a reference type:

 boost::add_reference<char>::type // char&

 boost::add_reference<int&>::type // int&

The Type Traits library is mainly comprised of Boolean-valued metafunctions that can be used to answer questions about the fundamental

properties of any type. For example:

 boost::is_reference<char>::value // false

 boost::is_reference<int&>::value // true

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

2.10. Exercises

2-0. Write a unary metafunction add_const_ref<T> that returns T if it is a reference type, and otherwise returns T

const&. Write a program to test your metafunction. Hint: you can use boost::is_same to test the results.

2-1. Write a ternary metafunction replace_type<c,x,y> that takes an arbitrary compound type c as its first parameter,

and replaces all occurrences of a type x within c with y:

 typedef replace_type< void*, void, int >::type t1; // int*

 typedef replace_type<

 int const*[10]

 , int const

 , long

 >::type t2; // long* [10]

 typedef replace_type<

 char& (*)(char&)

 , char&

 , long&

 >::type t3; // long& (*)(long&)

You can limit the function types you operate on to those with fewer than two arguments.

2-2.
The boost::polymorphic_downcast function template

[11]
 implements a checked version of static_cast intended

for downcasting pointers to polymorphic objects:

[11] See http://www.boost.org/libs/conversion/cast.htm.

 template <class Target, class Source>

 inline Target polymorphic_downcast(Source* x)

 {

 assert(dynamic_cast<Target>(x) == x);

 return static_cast<Target>(x);

 }

In released software, the assertion disappears and polymorphic_downcast can be as efficient as a simple

static_cast. Use the type traits facilities to write an implementation of the template that allows both pointer and

reference arguments:

 struct A {};

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.boost.org/libs/conversion/cast.htm

 struct B : A {};

 B b;

 A* a_ptr = &b;

 B* b_ptr = polymorphic_downcast<B*>(a_ptr);

 A& a_ref = b;

 B& b_ref = polymorphic_downcast<B&>(b_ref);

2-3. Use the type traits facilities to implement a type_descriptor class template, whose instances, when streamed,

print the type of their template parameters:
[12]

[12] We cannot use runtime type information (RTTI) to the same effect since, according

to 18.5.1 [lib.type.info] paragraph 7 of the standard, typeid(T). name() is not guaranteed

to return a meaningful result.

 // prints "int"

 std::cout << type_descriptor<int>();

 // prints "char*"

 std::cout << type_descriptor<char*>();

 // prints "long const*& volatile"

 std::cout << type_descriptor<long const*& volatile>();

You can assume that type_descriptor's template parameter is limited to compound types built from the

following four integral types: char, short int, int, and long int.

2-4. Write an alternative solution for exercise 2-3 that does not use the Type Traits library. Compare the solutions.

2-5. Change the type_descriptor template from exercise 2-3 to output a pseudo-English description of the type,

along the lines of the explain command of the cdecl program:
[13]

[13] http://linuxcommand.org/man_pages/cdecl1.html.

 // prints "array of pointer to function returning pointer to "

 // "char"

 std::cout << type_descriptor< char *(*[])() >();

2-6*. While at first sight the type algebra supplied by the Type Traits library might seem complete, it's not. There are

at least a few type categories, relationships, and transformations that are not covered by the library's facilities.

For example, they don't provide a way to get the corresponding unsigned counterpart of a signed integer type.

Try to identify as many of these missing parts as you can—there is at least one in each traits category, and we

can think of at least 11 in all. Design an interface and come up with a motivating use case for each of the

missing traits.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://linuxcommand.org/man_pages/cdecl1.html

2-7*. One of the nice things about touring the Type Traits library is that we also made a minitour of the C++ runtime

type system. Each of the primary type categories, plus the const and volatile qualifiers, is a fundamental

building block that can be used in constructing arbitrarily rich types.

All possible C++ types are possible "values" of type metadata, which leads to the question, "What does C++'s

compile-time type system look like?" Write a short description of the static type system of compile time C++.

Hint: a static type system restricts the values that can be passed to particular functions.

2-8*. Describe the effect of making all metadata polymorphic in terms of static and dynamic type checking.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Chapter 3. A Deeper Look at Metafunctions

With the foundation laid so far, we're ready to explore one of the most basic uses for template metaprogramming techniques: adding static

type checking to traditionally unchecked operations. We'll look at a practical example from science and engineering that can find

applications in almost any numerical code. Along the way you'll learn some important new concepts and get a taste of metaprogramming

at a high level using the MPL.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

3.1. Dimensional Analysis

The first rule of doing physical calculations on paper is that the numbers being manipulated don't stand alone: most quantities have

attached dimensions, to be ignored at our peril. As computations become more complex, keeping track of dimensions is what keeps us

from inadvertently assigning a mass to what should be a length or adding acceleration to velocity—it establishes a type system for

numbers.

Manual checking of types is tedious, and as a result, it's also error-prone. When human beings become bored, their attention wanders and

they tend to make mistakes. Doesn't type checking seem like the sort of job a computer might be good at, though? If we could establish a

framework of C++ types for dimensions and quantities, we might be able to catch errors in formulae before they cause serious problems in

the real world.

Preventing quantities with different dimensions from interoperating isn't hard; we could simply represent dimensions as classes that only

work with dimensions of the same type. What makes this problem interesting is that different dimensions can be combined, via

multiplication or division, to produce arbitrarily complex new dimensions. For example, take Newton's law, which relates force to mass and

acceleration:

Since mass and acceleration have different dimensions, the dimensions of force must somehow capture their combination. In fact, the

dimensions of acceleration are already just such a composite, a change in velocity over time:

Since velocity is just change in distance (l) over time (t), the fundamental dimensions of acceleration are:

And indeed, acceleration is commonly measured in "meters per second squared." It follows that the dimensions of force must be:

and force is commonly measured in kg(m/s
2
), or "kilogram-meters per second squared." When multiplying quantities of mass and

acceleration, we multiply their dimensions as well and carry the result along, which helps us to ensure that the result is meaningful. The

formal name for this bookkeeping is dimensional analysis, and our next task will be to implement its rules in the C++ type system. John

Barton and Lee Nackman were the first to show how to do this in their seminal book, Scientific and Engineering C++ [BN94]. We will recast

their approach here in metaprogramming terms.

3.1.1 Representing Dimensions

An international standard called Système International d'Unites breaks every quantity down into a combination of the dimensions mass,

length or position, time, charge, temperature, intensity, and angle. To be reasonably general, our system would have to be able to

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

represent seven or more fundamental dimensions. It also needs the ability to represent composite dimensions that, like force, are built

through multiplication or division of the fundamental ones.

In general, a composite dimension is the product of powers of fundamental dimensions.
[1]

 If we were going to represent these powers for

manipulation at runtime, we could use an array of seven ints, with each position in the array holding the power of a different fundamental

dimension:

[1] Divisors just contribute negative exponents, since 1/x = x-1.

 typedef int dimension[7]; // m l t ...

 dimension const mass = {1, 0, 0, 0, 0, 0, 0};

 dimension const length = {0, 1, 0, 0, 0, 0, 0};

 dimension const time = {0, 0, 1, 0, 0, 0, 0};

 ...

In that representation, force would be:

 dimension const force = {1, 1, -2, 0, 0, 0, 0};

that is, mlt
-2

. However, if we want to get dimensions into the type system, these arrays won't do the trick: they're all the same type!

Instead, we need types that themselves represent sequences of numbers, so that two masses have the same type and a mass is a

different type from a length.

Fortunately, the MPL provides us with a collection of type sequences. For example, we can build a sequence of the built-in signed integral

types this way:

 #include <boost/mpl/vector.hpp>

 typedef boost::mpl::vector<

 signed char, short, int, long> signed_types;

How can we use a type sequence to represent numbers? Just as numerical metafunctions pass and return wrapper types having a nested

::value, so numerical sequences are really sequences of wrapper types (another example of polymorphism). To make this sort of thing

easier, MPL supplies the int_<N> class template, which presents its integral argument as a nested ::value:

 #include <boost/mpl/int.hpp>

 namespace mpl = boost::mpl; // namespace alias

 static int const five = mpl::int_<5>::value;

Namespace Aliases

namespace alias = namespace-name;

declares alias to be a synonym for namespace-name. Many examples in this book will use mpl:: to indicate boost::mpl::,

but will omit the alias that makes it legal C++.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

In fact, the library contains a whole suite of integral constant wrappers such as long_ and bool_, each one wrapping a different type of

integral constant within a class template.

Now we can build our fundamental dimensions:

 typedef mpl::vector<

 mpl::int_<1>, mpl::int_<0>, mpl::int_<0>, mpl::int_<0>

 , mpl::int_<0>, mpl::int_<0>, mpl::int_<0>

 > mass;

 typedef mpl::vector<

 mpl::int_<0>, mpl::int_<1>, mpl::int_<0>, mpl::int_<0>

 , mpl::int_<0>, mpl::int_<0>, mpl::int_<0>

 > length;

 ...

Whew! That's going to get tiring pretty quickly. Worse, it's hard to read and verify: The essential information, the powers of each

fundamental dimension, is buried in repetitive syntactic "noise." Accordingly, MPL supplies integral sequence wrappers that allow us to

write:

 #include <boost/mpl/vector_c.hpp>

 typedef mpl::vector_c<int,1,0,0,0,0,0,0> mass;

 typedef mpl::vector_c<int,0,1,0,0,0,0,0> length; // or position

 typedef mpl::vector_c<int,0,0,1,0,0,0,0> time;

 typedef mpl::vector_c<int,0,0,0,1,0,0,0> charge;

 typedef mpl::vector_c<int,0,0,0,0,1,0,0> temperature;

 typedef mpl::vector_c<int,0,0,0,0,0,1,0> intensity;

 typedef mpl::vector_c<int,0,0,0,0,0,0,1> angle;

Even though they have different types, you can think of these mpl::vector_c specializations as being equivalent to the more verbose

versions above that use mpl::vector.

If we want, we can also define a few composite dimensions:

 // base dimension: m l t ...

 typedef mpl::vector_c<int,0,1,-1,0,0,0,0> velocity; // l/t

 typedef mpl::vector_c<int,0,1,-2,0,0,0,0> acceleration; // l/(t2)

 typedef mpl::vector_c<int,1,1,-1,0,0,0,0> momentum; // ml/t

 typedef mpl::vector_c<int,1,1,-2,0,0,0,0> force; // ml/(t2)

And, incidentally, the dimensions of scalars (like pi) can be described as:

 typedef mpl::vector_c<int,0,0,0,0,0,0,0> scalar;

3.1.2 Representing Quantities

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The types listed above are still pure metadata; to typecheck real computations we'll need to somehow bind them to our runtime data. A

simple numeric value wrapper, parameterized on the number type T and on its dimensions, fits the bill:

 template <class T, class Dimensions>

 struct quantity

 {

 explicit quantity(T x)

 : m_value(x)

 {}

 T value() const { return m_value; }

 private:

 T m_value;

 };

Now we have a way to represent numbers associated with dimensions. For instance, we can say:

 quantity<float,length> l(1.0f);

 quantity<float,mass> m(2.0f);

Note that Dimensions doesn't appear anywhere in the definition of quantity outside the template parameter list; its only role is to ensure that

l and m have different types. Because they do, we cannot make the mistake of assigning a length to a mass:

 m = l; // compile time type error

3.1.3 Implementing Addition and Subtraction

We can now easily write the rules for addition and subtraction, since the dimensions of the arguments must always match.

 template <class T, class D>

 quantity<T,D>

 operator+(quantity<T,D> x, quantity<T,D> y)

 {

 return quantity<T,D>(x.value() + y.value());

 }

 template <class T, class D>

 quantity<T,D>

 operator-(quantity<T,D> x, quantity<T,D> y)

 {

 return quantity<T,D>(x.value() - y.value());

 }

These operators enable us to write code like:

 quantity<float,length> len1(1.0f);

 quantity<float,length> len2(2.0f);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 len1 = len1 + len2; // OK

but prevent us from trying to add incompatible dimensions:

 len1 = len2 + quantity<float,mass>(3.7f); // error

3.1.4 Implementing Multiplication

Multiplication is a bit more complicated than addition and subtraction. So far, the dimensions of the arguments and results have all been

identical, but when multiplying, the result will usually have different dimensions from either of the arguments. For multiplication, the relation:

implies that the exponents of the result dimensions should be the sum of corresponding exponents from the argument dimensions. Division

is similar, except that the sum is replaced by a difference.

To combine corresponding elements from two sequences, we'll use MPL's transform algorithm. TRansform is a metafunction that iterates

through two input sequences in parallel, passing an element from each sequence to an arbitrary binary metafunction, and placing the result

in an output sequence.

 template <class Sequence1, class Sequence2, class BinaryOperation>

 struct transform; // returns a Sequence

The signature above should look familiar if you're acquainted with the STL TRansform algorithm that accepts two runtime sequences as

inputs:

 template <

 class InputIterator1, class InputIterator2

 , class OutputIterator, class BinaryOperation

 >

 void transform(

 InputIterator1 start1, InputIterator2 finish1

 , InputIterator2 start2

 , OutputIterator result, BinaryOperation func);

Now we just need to pass a BinaryOperation that adds or subtracts in order to multiply or divide dimensions with mpl::transform. If you look

through the MPL reference manual, you'll come across plus and minus metafunctions that do just what you'd expect:

 #include <boost/static_assert.hpp>

 #include <boost/mpl/plus.hpp>

 #include <boost/mpl/int.hpp>

 namespace mpl = boost::mpl;

 BOOST_STATIC_ASSERT((

 mpl::plus<

 mpl::int_<2>

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 , mpl::int_<3>

 >::type::value == 5

));

BOOST_STATIC_ASSERT

is a macro that causes a compilation error if its argument is false. The double parentheses are required because the C++

preprocessor can't parse templates: it would otherwise be fooled by the comma into treating the condition as two

separate macro arguments. Unlike its runtime analogue assert(...), BOOST_STATIC_ASSERT can also be used at class

scope, allowing us to put assertions in our metafunctions. See Chapter 8 for an in-depth discussion.

At this point it might seem as though we have a solution, but we're not quite there yet. A naive attempt to apply the transform algorithm in

the implementation of operator* yields a compiler error:

 #include <boost/mpl/transform.hpp>

 template <class T, class D1, class D2>

 quantity<

 T

 , typename mpl::transform<D1,D2,mpl::plus>::type

 >

 operator*(quantity<T,D1> x, quantity<T,D2> y) { ... }

It fails because the protocol says that metafunction arguments must be types, and plus is not a type, but a class template. Somehow we

need to make metafunctions like plus fit the metadata mold.

One natural way to introduce polymorphism between metafunctions and metadata is to employ the wrapper idiom that gave us

polymorphism between types and integral constants. Instead of a nested integral constant, we can use a class template nested within a

metafunction class:

 struct plus_f

 {

 template <class T1, class T2>

 struct apply

 {

 typedef typename mpl::plus<T1,T2>::type type;

 };

 };

Definition

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

A metafunction class is a class with a publicly accessible nested metafunction called apply.

Whereas a metafunction is a template but not a type, a metafunction class wraps that template within an ordinary non-templated class,

which is a type. Since metafunctions operate on and return types, a metafunction class can be passed as an argument to, or returned

from, another metafunction.

Finally, we have a BinaryOperation type that we can pass to transform without causing a compilation error:

 template <class T, class D1, class D2>

 quantity<

 T

 , typename mpl::transform<D1,D2,plus_f>::type // new dimensions

 >

 operator*(quantity<T,D1> x, quantity<T,D2> y)

 {

 typedef typename mpl::transform<D1,D2,plus_f>::type dim;

 return quantity<T,dim>(x.value() * y.value());

 }

Now, if we want to compute the force exerted by gravity on a five kilogram laptop computer, that's just the acceleration due to gravity (9.8

m/sec
2
) times the mass of the laptop:

 quantity<float,mass> m(5.0f);

 quantity<float,acceleration> a(9.8f);

 std::cout << "force = " << (m * a).value();

Our operator* multiplies the runtime values (resulting in 6.0f), and our metaprogram code uses TRansform to sum the meta-sequences of

fundamental dimension exponents, so that the result type contains a representation of a new list of exponents, something like:

 vector_c<int,1,1,-2,0,0,0,0>

However, if we try to write:

 quantity<float,force> f = m * a;

we'll run into a little problem. Although the result of m * a does indeed represent a force with exponents of mass, length, and time 1, 1, and

-2 respectively, the type returned by TRansform isn't a specialization of vector_c. Instead, transform works generically on the elements of its

inputs and builds a new sequence with the appropriate elements: a type with many of the same sequence properties as

vector_c<int,1,1,-2,0,0,0,0>, but with a different C++ type altogether. If you want to see the type's full name, you can try to compile the

example yourself and look at the error message, but the exact details aren't important. The point is that force names a different type, so the

assignment above will fail.

In order to resolve the problem, we can add an implicit conversion from the multiplication's result type to quantity<float,force>. Since we

can't predict the exact types of the dimensions involved in any computation, this conversion will have to be templated, something like:

 template <class T, class Dimensions>

 struct quantity

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 {

 // converting constructor

 template <class OtherDimensions>

 quantity(quantity<T,OtherDimensions> const& rhs)

 : m_value(rhs.value())

 {

 }

 ...

Unfortunately, such a general conversion undermines our whole purpose, allowing nonsense such as:

 // Should yield a force, not a mass!

 quantity<float,mass> bogus = m * a;

We can correct that problem using another MPL algorithm, equal, which tests that two sequences have the same elements:

 template <class OtherDimensions>

 quantity(quantity<T,OtherDimensions> const& rhs)

 : m_value(rhs.value())

 {

 BOOST_STATIC_ASSERT((

 mpl::equal<Dimensions,OtherDimensions>::type::value

));

 }

Now, if the dimensions of the two quantities fail to match, the assertion will cause a compilation error.

3.1.5 Implementing Division

Division is similar to multiplication, but instead of adding exponents, we must subtract them. Rather than writing out a near duplicate of

plus_f, we can use the following trick to make minus_f much simpler:

 struct minus_f

 {

 template <class T1, class T2>

 struct apply

 : mpl::minus<T1,T2> {};

 };

Here minus_f::apply uses inheritance to expose the nested type of its base class, mpl::minus, so we don't have to write:

 typedef typename ...::type type

We don't have to write typename here (in fact, it would be illegal), because the compiler knows that dependent names in apply's initializer

list must be base classes.
[2]

 This powerful simplification is known as metafunction forwarding; we'll apply it often as the book goes on.
[3]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

[2] In case you're wondering, the same approach could have been applied to plus_f, but since it's a little subtle, we

introduced the straightforward but verbose formulation first.

[3] Users of EDG-based compilers should consult Appendix C for a caveat about metafunction forwarding. You can

tell whether you have an EDG compiler by checking the preprocessor symbol __EDG_VERSION__, which is

defined by all EDG-based compilers.

Syntactic tricks notwithstanding, writing trivial classes to wrap existing metafunctions is going to get boring pretty quickly. Even though the

definition of minus_f was far less verbose than that of plus_f, it's still an awful lot to type. Fortunately, MPL gives us a much simpler way to

pass metafunctions around. Instead of building a whole metafunction class, we can invoke transform this way:

 typename mpl::transform<D1,D2, mpl::minus<_1,_2> >::type

Those funny looking arguments (_1 and _2) are known as placeholders, and they signify that when the TRansform's BinaryOperation is

invoked, its first and second arguments will be passed on to minus in the positions indicated by _1 and _2, respectively. The whole type

mpl::minus<_1,_2> is known as a placeholder expression.

Note

MPL's placeholders are in the mpl::placeholders namespace and defined in boost/mpl/placeholders.hpp. In this book we

will usually assume that you have written:

 #include<boost/mpl/placeholders.hpp>

 using namespace mpl::placeholders;

so that they can be accessed without qualification.

Here's our division operator written using placeholder expressions:

 template <class T, class D1, class D2>

 quantity<

 T

 , typename mpl::transform<D1,D2,mpl::minus<_1,_2> >::type

 >

 operator/(quantity<T,D1> x, quantity<T,D2> y)

 {

 typedef typename

 mpl::transform<D1,D2,mpl::minus<_1,_2> >::type dim;

 return quantity<T,dim>(x.value() / y.value());

 }

This code is considerably simpler. We can simplify it even further by factoring the code that calculates the new dimensions into its own

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

metafunction:

 template <class D1, class D2>

 struct divide_dimensions
 : mpl::transform<D1,D2,mpl::minus<_1,_2> > // forwarding again

 {};

 template <class T, class D1, class D2>

 quantity<T, typename divide_dimensions<D1,D2>::type>

 operator/(quantity<T,D1> x, quantity<T,D2> y)

 {

 return quantity<T, typename divide_dimensions<D1,D2>::type>(

 x.value() / y.value());

 }

Now we can verify our "force-on-a-laptop" computation by reversing it, as follows:

 quantity<float,mass> m2 = f/a;

 float rounding_error = std::abs((m2 - m).value());

If we got everything right, rounding_error should be very close to zero. These are boring calculations, but they're just the sort of thing that

could ruin a whole program (or worse) if you got them wrong. If we had written a/f instead of f/a, there would have been a compilation error,

preventing a mistake from propagating throughout our program.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

3.2. Higher-Order Metafunctions

In the previous section we used two different forms—metafunction classes and placeholder expressions—to pass and return

metafunctions just like any other metadata. Bundling metafunctions into "first class metadata" allows TRansform to perform an infinite

variety of different operations: in our case, multiplication and division of dimensions. Though the idea of using functions to manipulate other

functions may seem simple, its great power and flexibility [Hudak89] has earned it a fancy title: higher-order functional programming. A

function that operates on another function is known as a higher-order function. It follows that TRansform is a higher-order metafunction: a

metafunction that operates on another metafunction.

Now that we've seen the power of higher-order metafunctions at work, it would be good to be able to create new ones. In order to explore

the basic mechanisms, let's try a simple example. Our task is to write a metafunction called twice, which—given a unary metafunction f and

arbitrary metadata x—computes:

This might seem like a trivial example, and in fact it is. You won't find much use for twice in real code. We hope you'll bear with us anyway:

Because it doesn't do much more than accept and invoke a metafunction, twice captures all the essential elements of "higher-orderness"

without any distracting details.

If f is a metafunction class, the definition of twice is straightforward:

 template <class F, class X>

 struct twice

 {

 typedef typename F::template apply<X>::type once; // f(x)

 typedef typename F::template apply<once>::type type; // f(f(x))

 };

Or, applying metafunction forwarding:

 template <class F, class X>

 struct twice

 : F::template apply<

 typename F::template apply<X>::type

 >

 {};

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

C++ Language Note

The C++ standard requires the template keyword when we use a dependent name that refers to a member template.

F::apply may or may not name a template, depending on the particular F that is passed. See Appendix B for more

information about template.

Given the need to sprinkle our code with the template keyword, it would be nice to reduce the syntactic burden of invoking metafunction

classes. As usual, the solution is to factor the pattern into a metafunction:

 template <class UnaryMetaFunctionClass, class Arg>

 struct apply1

 : UnaryMetaFunctionClass::template apply<Arg>

 {};

Now twice is just:

 template <class F, class X>

 struct twice

 : apply1<F, typename apply1<F,X>::type>

 {};

To see twice at work, we can apply it to a little metafunction class built around the add_pointer metafunction:

 struct add_pointer_f

 {

 template <class T>

 struct apply : boost::add_pointer<T> {};

 };

Now we can use twice with add_pointer_f to build pointers-to-pointers:

 BOOST_STATIC_ASSERT((

 boost::is_same<

 twice<add_pointer_f, int>::type

 , int**

 >::value

));

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

3.3. Handling Placeholders

Our implementation of twice already works with metafunction classes. Ideally, we would like it to work with placeholder expressions, too,

much the same as mpl::transform allows us to pass either form. For example, we would like to be able to write:

 template <class X>

 struct two_pointers

 : twice<boost::add_pointer<_1>, X>

 {};

But when we look at the implementation of boost::add_pointer, it becomes clear that the current definition of twice can't work that way.

 template <class T>

 struct add_pointer

 {

 typedef T* type;

 };

To be invokable by twice, boost::add_pointer<_1> would have to be a metafunction class, along the lines of add_pointer_f. Instead, it's just a

nullary metafunction returning the almost senseless type _1*. Any attempt to use two_pointers will fail when apply1 reaches for a nested

::apply metafunction in boost::add_pointer<_1> and finds that it doesn't exist.

We've determined that we don't get the behavior we want automatically, so what next? Since mpl::transform can do this sort of thing, there

ought to be a way for us to do it too—and so there is.

3.3.1 The lambda Metafunction

We can generate a metafunction class from boost::add_pointer<_1>, using MPL's lambda metafunction:

 template <class X>

 struct two_pointers

 : twice<typename mpl::lambda<boost::add_pointer<_1> >::type, X>

 {};

 BOOST_STATIC_ASSERT((

 boost::is_same<

 typename two_pointers<int>::type

 , int**

 >::value

));

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

We'll refer to metafunction classes like add_pointer_f and placeholder expressions like boost::add_pointer<_1> as lambda expressions.

The term, meaning "unnamed function object," was introduced in the 1930s by the logician Alonzo Church as part of a fundamental theory

of computation he called the lambda-calculus.
[4]

 MPL uses the somewhat obscure word lambda because of its well-established precedent

in functional programming languages.

[4] See http://en.wikipedia.org/wiki/Lambda_calculus for an in-depth treatment, including a reference to Church's

paper proving that the equivalence of lambda expressions is in general not decidable.

Although its primary purpose is to turn placeholder expressions into metafunction classes, mpl::lambda can accept any lambda expression,

even if it's already a metafunction class. In that case, lambda returns its argument unchanged. MPL algorithms like transform call lambda

internally, before invoking the resulting metafunction class, so that they work equally well with either kind of lambda expression. We can

apply the same strategy to twice:

 template <class F, class X>

 struct twice

 : apply1<

 typename mpl::lambda<F>::type

 , typename apply1<

 typename mpl::lambda<F>::type

 , X

 >::type

 >

 {};

Now we can use twice with metafunction classes and placeholder expressions:

 int* x;

 twice<add_pointer_f, int>::type p = &x;

 twice<boost::add_pointer<_1>, int>::type q = &x;

3.3.2 The apply Metafunction

Invoking the result of lambda is such a common pattern that MPL provides an apply metafunction to do just that. Using mpl::apply, our

flexible version of twice becomes:

 #include <boost/mpl/apply.hpp>

 template <class F, class X>

 struct twice

 : mpl::apply<F, typename mpl::apply<F,X>::type>

 {};

You can think of mpl::apply as being just like the apply1 template that we wrote, with two additional features:

While apply1 operates only on metafunction classes, the first argument to mpl::apply can be any lambda expression (including 1.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://en.wikipedia.org/wiki/Lambda_calculus

those built with placeholders).

While apply1 accepts only one additional argument to which the metafunction class will be applied, mpl::apply can invoke its first

argument on any number from zero to five additional arguments.
[5]

 For example:

[5] See the Configuration Macros section of the MPL reference manual for a description of how to change

the maximum number of arguments handled by mpl::apply.

2.

 // binary lambda expression applied to 2 additional arguments

 mpl::apply<

 mpl::plus<_1,_2>

 , mpl::int_<6>

 , mpl::int_<7>
 >::type::value // == 13

Guideline

When writing a metafunction that invokes one of its arguments, use mpl::apply so that it works with lambda expressions.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

3.4. More Lambda Capabilities

Lambda expressions provide much more than just the ability to pass a metafunction as an argument. The two capabilities described next

combine to make lambda expressions an invaluable part of almost every metaprogramming task.

3.4.1 Partial Metafunction Application

Consider the lambda expression mpl::plus<_1,_1>. A single argument is directed to both of plus's parameters, thereby adding a number to

itself. Thus, a binary metafunction, plus, is used to build a unary lambda expression. In other words, we've created a whole new

computation! We're not done yet, though: By supplying a non-placeholder as one of the arguments, we can build a unary lambda

expression that adds a fixed value, say 42, to its argument:

 mpl::plus<_1, mpl::int_<42> >

The process of binding argument values to a subset of a function's parameters is known in the world of functional programming as partial

function application.

3.4.2 Metafunction Composition

Lambda expressions can also be used to assemble more interesting computations from simple metafunctions. For example, the following

expression, which multiplies the sum of two numbers by their difference, is a composition of the three metafunctions multiplies, plus, and

minus:

 mpl::multiplies<mpl::plus<_1,_2>, mpl::minus<_1,_2> >

When evaluating a lambda expression, MPL checks to see if any of its arguments are themselves lambda expressions, and evaluates

each one that it finds. The results of these inner evaluations are substituted into the outer expression before it is evaluated.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

3.5. Lambda Details

Now that you have an idea of the semantics of MPL's lambda facility, let's formalize our understanding and look at things a little more

deeply.

3.5.1 Placeholders

The definition of "placeholder" may surprise you:

Definition

A placeholder is a metafunction class of the form mpl::arg<X>.

3.5.1.1 Implementation

The convenient names _1, _2,... _5 are actually typedefs for specializations of mpl::arg that simply select the Nth argument for any N.
[6]

The implementation of placeholders looks something like this:

[6] MPL provides five placeholders by default. See the Configuration Macros section of the MPL reference manual

for a description of how to change the number of placeholders provided.

 namespace boost { namespace mpl { namespace placeholders {

 template <int N> struct arg; // forward declarations

 struct void_;

 template <>

 struct arg<1>

 {

 template <

 class A1, class A2 = void_, ... class Am = void_>

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 struct apply

 {

 typedef A1 type; // return the first argument

 };

 };

 typedef arg<1> _1;

 template <>

 struct arg<2>

 {

 template <

 class A1, class A2, class A3 = void_, ...class Am = void_

 >

 struct apply

 {

 typedef A2 type; // return the second argument

 };

 };

 typedef arg<2> _2;

 more specializations and typedefs...

 }}}

Remember that invoking a metafunction class is the same as invoking its nested apply metafunction. When a placeholder in a lambda

expression is evaluated, it is invoked on the expression's actual arguments, returning just one of them. The results are then substituted

back into the lambda expression and the evaluation process continues.

3.5.1.2 The Unnamed Placeholder

There's one special placeholder, known as the unnamed placeholder, that we haven't yet defined:

 namespace boost { namespace mpl { namespace placeholders {

 typedef arg<-1> _; // the unnamed placeholder

 }}}

The details of its implementation aren't important; all you really need to know about the unnamed placeholder is that it gets special

treatment. When a lambda expression is being transformed into a metafunction class by mpl::lambda,

the nth appearance of the unnamed placeholder in a given template specialization is replaced with _n.

So, for example, every row of Table 3.1 contains two equivalent lambda expressions.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 3.1. Unnamed Placeholder Semantics

mpl::plus<_,_> mpl::plus<_1,_2>

boost::is_same<

 _

 , boost::add_pointer<_>

>

boost::is_same<

 _1

 , boost::add_pointer<_1>

>

mpl::multiplies<

 mpl::plus<_,_>

 , mpl::minus<_,_>

>

mpl::multiplies<

 mpl::plus<_1,_2>

 , mpl::minus<_1,_2>

>

Especially when used in simple lambda expressions, the unnamed placeholder often eliminates just enough syntactic "noise" to

significantly improve readability.

3.5.2 Placeholder Expression Definition

Now that you know just what placeholder means, we can define placeholder expression:

Definition

A placeholder expression is either:

a placeholder

or

a template specialization with at least one argument that is a placeholder expression.

In other words, a placeholder expression always involves a placeholder.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

3.5.3 Lambda and Non-Metafunction Templates

There is just one detail of placeholder expressions that we haven't discussed yet. MPL uses a special rule to make it easier to integrate

ordinary templates into metaprograms: After all of the placeholders have been replaced with actual arguments, if the resulting template

specialization X doesn't have a nested ::type, the result of lambda is just X itself.

For example, mpl::apply<std::vector<_>, T> is always just std::vector<T>. If it weren't for this behavior, we would have to build trivial

metafunctions to create ordinary template specializations in lambda expressions:

 // trivial std::vector generator

 template<class U>

 struct make_vector { typedef std::vector<U> type; };

 typedef mpl::apply<make_vector<_>, T>::type vector_of_t;

Instead, we can simply write:

 typedef mpl::apply<std::vector<_>, T>::type vector_of_t;

3.5.4 The Importance of Being Lazy

Recall the definition of always_int from the previous chapter:

 struct always_int

 {

 typedef int type;

 };

Nullary metafunctions might not seem very important at first, since something like add_pointer<int> could be replaced by int* in any lambda

expression where it appears. Not all nullary metafunctions are that simple, though:

 struct add_pointer_f

 {

 template <class T>

 struct apply : boost::add_pointer<T> {};

 };

 typedef mpl::vector<int, char*, double&> seq;

 typedef mpl::transform<seq, boost::add_pointer<_> > calc_ptr_seq;

Note that calc_ptr_seq is a nullary metafunction, since it has TRansform's nested ::type. A C++ template is not instantiated until we actually

"look inside it," though. Just naming calc_ptr_seq does not cause it to be evaluated, since we haven't accessed its ::type yet.

Metafunctions can be invoked lazily, rather than immediately upon supplying all of their arguments. We can use lazy evaluation to improve

compilation time when a metafunction result is only going to be used conditionally. We can sometimes also avoid contorting program

structure by naming an invalid computation without actually performing it. That's what we've done with calc_ptr_seq above, since you can't

legally form double&*. Laziness and all of its virtues will be a recurring theme throughout this book.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

3.6. Details

By now you should have a fairly complete view of the fundamental concepts and language of both template metaprogramming in general

and of the Boost Metaprogramming Library. This section reviews the highlights.

Metafunction forwarding

The technique of using public derivation to supply the nested type of a metafunction by accessing the one provided by its base class.

Metafunction class

The most basic way to formulate a compile-time function so that it can be treated as polymorphic metadata; that is, as a type. A

metafunction class is a class with a nested metafunction called apply.

MPL

Most of this book's examples will use the Boost Metaprogramming Library. Like the Boost type traits headers, MPL headers follow a simple

convention:

 #include <boost/mpl/component-name.hpp>

If the component's name ends in an underscore, however, the corresponding MPL header name does not include the trailing underscore.

For example, mpl::bool_ can be found in <boost/mpl/bool.hpp>. Where the library deviates from this convention, we'll be sure to point it out

to you.

Higher-order function

A function that operates on or returns a function. Making metafunctions polymorphic with other metadata is a key ingredient in higher-order

metaprogramming.

Lambda expression

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Simply put, a lambda expression is callable metadata. Without some form of callable metadata, higher-order metafunctions would be

impossible. Lambda expressions have two basic forms: metafunction classes and placeholder expressions.

Placeholder expression

A kind of lambda expression that, through the use of placeholders, enables in-place partial metafunction application and metafunction

composition. As you will see throughout this book, these features give us the truly amazing ability to build up almost any kind of complex

type computation from more primitive metafunctions, right at its point of use:

 // find the position of a type x in some_sequence such that:

 // x is convertible to 'int'

 // && x is not 'char'

 // && x is not a floating type

 typedef mpl::find_if<

 some_sequence

 , mpl::and_<

 boost::is_convertible<_1,int>

 , mpl::not_<boost::is_same<_1,char> >

 , mpl::not_<boost::is_float<_1> >

 >

 >::type iter;

Placeholder expressions make good on the promise of algorithm reuse without forcing us to write new metafunction classes. The

corresponding capability is often sorely missed in the runtime world of the STL, since it is often much easier to write a loop by hand than it

is to use standard algorithms, despite their correctness and efficiency advantages.

The lambda metafunction

A metafunction that transforms a lambda expression into a corresponding metafunction class. For detailed information on lambda and the

lambda evaluation process, please see the MPL reference manual.

The apply metafunction

A metafunction that invokes its first argument, which must be a lambda expression, on its remaining arguments. In general, to invoke a

lambda expression, you should always pass it to mpl::apply along with the arguments you want to apply it to in lieu of using lambda and

invoking the result "manually."

Lazy evaluation

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

A strategy of delaying evaluation until a result is required, thereby avoiding any unnecessary computation and any associated unnecessary

errors. Metafunctions are only invoked when we access their nested ::types, so we can supply all of their arguments without performing

any computation and delay evaluation to the last possible moment.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

3.7. Exercises

3-0. Use BOOST_STATIC_ASSERT to add error checking to the binary template presented in section 1.4.1, so that

binary<N>::value causes a compilation error if N contains digits other than 0 or 1.

3-1. Turn vector_c<int,1,2,3> into a type sequence with elements (2,3,4) using TRansform.

3-2. Turn vector_c<int,1,2,3> into a type sequence with elements (1,4,9) using TRansform.

3-3. Turn T into T**** by using twice twice.

3-4. Turn T into T**** using twice on itself.

3-5. There's still a problem with the dimensional analysis code in section 3.1. Hint: What happens when you do:

 f = f + m * a;

Repair this example using techniques shown in this chapter.

3-6. Build a lambda expression that has functionality equivalent to twice. Hint: mpl::apply is a metafunction!

3-7*. What do you think would be the semantics of the following constructs:

 typedef mpl::lambda<mpl::lambda<_1> >::type t1;

 typedef mpl::apply<_1,mpl::plus<_1,_2> >::type t2;

 typedef mpl::apply<_1,std::vector<int> >::type t3;

 typedef mpl::apply<_1,std::vector<_1> >::type t4;

 typedef mpl::apply<mpl::lambda<_1>,std::vector<int> >::type t5;

 typedef mpl::apply<mpl::lambda<_1>,std::vector<_1> >::type t6;

 typedef mpl::apply<mpl::lambda<_1>,mpl::plus<_1,_2> >::type t7;

 typedef mpl::apply<_1,mpl::lambda< mpl::plus<_1,_2> > >::type t8;

Show the steps used to arrive at your answers and write tests verifying your assumptions. Did the library

behavior match your reasoning? If not, analyze the failed tests to discover the actual expression semantics.

Explain why your assumptions were different, what behavior you find more coherent, and why.

3-8*. Our dimensional analysis framework dealt with dimensions, but it entirely ignored the issue of units. A length

can be represented in inches, feet, or meters. A force can be represented in newtons or in kg m/sec
2
. Add the

ability to specify units and test your code. Try to make your interface as syntactically friendly as possible for the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

user.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Chapter 4. Integral Type Wrappers and Operations

As we hinted earlier, the MPL supplies a group of wrapper templates that, like int_, are used to make integer values into polymorphic

metadata. There's actually more to these wrappers than meets the eye, and in this chapter we'll uncover the details of their structure. We'll

also explore some of the metafunctions that operate on them, and discuss how best to write metafunctions returning integral constants.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

4.1. Boolean Wrappers and Operations

bool is not just the simplest integral type, but also one of the most useful. Most of the type traits are bool-valued, and as mentioned earlier,

play an important role in many metaprograms. The MPL type wrapper for bool values is defined this way:

 template< bool x > struct bool_

 {

 static bool const value = x; // 1

 typedef bool_<x> type; // 2

 typedef bool value_type; // 3

 operator bool() const { return x; } // 4

 };

Let's walk through the commented lines above one at a time:

By now this line should come as no surprise to you. As we've said earlier, every integral constant wrapper contains a ::value.1.

Every integral constant wrapper is a nullary metafunction that returns itself. The reasons for this design choice will become

clear in short order.

2.

The wrapper's ::value_type indicates the (cv-unqualified) type of its ::value.3.

Each bool_<x> specialization is quite naturally convertible to a bool of value x.4.

The library also supplies two convenient typedefs:

 typedef bool_<false> false_;

 typedef bool_<true> true_;

4.1.1 Type Selection

So far, we've only made decisions at compile time by embedding them in ad hoc class template specializations: the terminating conditions

of recursive algorithms (like the binary template we wrote in Chapter 1) say "if the argument is zero, calculate the result this way, otherwise,

do it the other (default) way." We also specialized iter_swap_impl to select one of two implementations inside iter_swap:

 iter_swap_impl<use_swap>::do_it(*i1,*i2);

Instead of hand-crafting a template specialized for each choice we make, we can take advantage of an MPL metafunction whose purpose

is to make choices: mpl::if_<C,T,F>::type is T if C::value is TRue, and F otherwise. Returning to our iter_swap example, we can now use

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

classes with mnemonic names in lieu of an iter_swap_impl template:

 #include <boost/mpl/if.hpp>

 struct fast_swap

 {

 template <class ForwardIterator1, class ForwardIterator2>

 static void do_it(ForwardIterator1 i1, ForwardIterator2 i2)

 {

 std::swap(*i1, *i2);

 }

 };

 struct reliable_swap

 {

 template <class ForwardIterator1, class ForwardIterator2>

 static void do_it(ForwardIterator1 i1, ForwardIterator2 i2)

 {

 typename

 std::iterator_traits<ForwardIterator1>::value_type

 tmp = *i1;

 *i1 = *i2;

 *i2 = tmp;

 }

 };

The line of iter_swap that invoked iter_swap_impl's do_it member can be rewritten as:

 mpl::if_<

 mpl::bool_<use_swap>

 , fast_swap

 , reliable_swap

 >::type::do_it(i1,i2);

That may not seem like much of an improvement: complexity has just been moved from the definition of iter_swap_impl into the body of

iter_swap. It does clarify the code, though, by keeping the logic for choosing an implementation of iter_swap inside its definition.

For another example, let's look at how we might optimize the passing of function parameters in generic code. In general, an argument

type's copy-constructor might be expensive, so a generic function ought to accept parameters by reference. That said, it's usually wasteful

to pass anything so trivial as a scalar type by reference: on some compilers, scalars are passed by value in registers, but when passed by

reference they are forced onto the stack. What's called for is a metafunction, param_type<T>, that returns T when it is a scalar, and T

const& otherwise.

We might use it as follows:

 template <class T>

 class holder

 {

 public:

 holder(typename param_type<T>::type x);

 ...

 private:

 T x;

 };

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The parameter to the constructor of holder<int> is of type int, while holder<std:: vector<int> >'s constructor takes a std::vector<int> const&.

To implement param_type, we might use mpl::if_ as follows:

 #include <boost/mpl/if.hpp>

 #include <boost/type_traits/is_scalar.hpp>

 template <class T>

 struct param_type

 : mpl::if_<

 typename boost::is_scalar<T>::type

 , T

 , T const&

 >

 {};

Unfortunately, that implementation would prevent us from putting reference types in a holder: since it's illegal to form a reference to a

reference, instantiating holder<int&> is an error. The Boost. Type Traits give us a workaround, since we can instantiate add_reference<T>

on a reference type—in that case it just returns its argument:

 #include <boost/mpl/if.hpp>

 #include <boost/type_traits/add_reference.hpp>

 template <class T>

 struct param_type

 : mpl::if_<

 typename boost::is_scalar<T>::type

 , T

 , typename boost::add_reference<T const>::type

 >

 {};

4.1.2 Lazy Type Selection

This approach isn't entirely satisfying, because it causes add_reference<T const> to be instantiated even if T is a scalar, wasting

compilation time. Delaying a computation until it's absolutely needed is called lazy evaluation. Some functional programming languages,

such as Haskell, do every computation lazily, with no special prompting. In C++, we have to do lazy evaluation explicitly. One way to delay

instantiation of add_reference until it's needed is to have mpl::if_ select one of two nullary metafunctions, and then invoke the one selected:

 #include <boost/mpl/if.hpp>

 #include <boost/mpl/identity.hpp>

 #include <boost/type_traits/add_reference.hpp>

 template <class T>

 struct param_type

 : mpl::if_< // forwarding to selected transformation

 typename boost::is_scalar<T>::type

 , mpl::identity<T>

 , boost::add_reference<T const>

 >::type

 {};

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Note our use of mpl::identity, a metafunction that simply returns its argument. Now param_type<T> returns the result of invoking either

mpl::identity<T> or boost:: add_reference<T const>, depending on whether T is a scalar.

This idiom is so common in metaprograms that MPL supplies a metafunction called eval_if, defined this way:

 template <class C, class TrueMetafunc, class FalseMetafunc>

 struct eval_if

 : mpl::if_<C,TrueMetafunc,FalseMetafunc>::type

 {};

Whereas if_ returns one of two arguments based on a condition, eval_if invokes one of two nullary metafunction arguments based on a

condition and returns the result. We can now simplify our definition of param_type slightly by forwarding directly to eval_if:

 #include <boost/mpl/eval_if.hpp>

 #include <boost/mpl/identity.hpp>

 #include <boost/type_traits/add_reference.hpp>

 template <class T>

 struct param_type

 : mpl::eval_if<

 typename boost::is_scalar<T>::type

 , mpl::identity<T>

 , boost::add_reference<T const>

 > // no ::type here

 {};

By taking advantage of the fact that Boost's integral metafunctions all supply a nested ::value, we can make yet another simplification to

param_type:

 template <class T>

 struct param_type

 : mpl::eval_if<

 boost::is_scalar<T>
 , mpl::identity<T>

 , boost::add_reference<T const>

 >

 {};

Specializations of Boost metafunctions that, like is_scalar, return integral constant wrappers, happen to be publicly derived from those very

same wrappers. As a result, the metafunction specializations are not just valid integral constant wrappers in their own right, but they inherit

all the useful properties outlined above for wrappers such as bool_:

 if (boost::is_scalar<X>()) // invokes inherited operator bool()

 {

 // code here runs iff X is a scalar type

 }

4.1.3 Logical Operators

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Suppose for a moment that we didn't have such a smart add_reference at our disposal. If add_reference were just defined as shown below,

we wouldn't be able to rely on it to avoid forming references to references:

 template <class T>

 struct add_reference { typedef T& type; };

In that case, we'd want to do something like this with param_type to avoid passing references to add_reference:

 template <class T>

 struct param_type

 : mpl::eval_if<

 mpl::bool_<

 boost::is_scalar<T>::value

 || boost::is_reference<T>::value
 >

 , mpl::identity<T>

 , add_reference<T const>

 >

 {};

Pretty ugly, right? Most of the syntactic cleanliness of our previous version has been lost. If we wanted to build a lambda expression for

param_type on-the-fly instead of writing a new metafunction, we'd have even worse problems:

 typedef mpl::vector<int, long, std::string> argument_types;

 // build a list of parameter types for the argument types

 typedef mpl::transform<

 argument_types

 , mpl::if_<

 mpl::bool_<

 boost::is_scalar<_1>::value

 || boost::is_reference<_1>::value

 >

 , mpl::identity<_1>

 , add_reference<boost::add_const<_1> >

 >

 >::type param_types;

This one isn't just ugly, it actually fails to work properly. Because touching a template's nested ::value forces instantiation, the logical

expression boost::is_scalar<_1>::value || is_reference<_1>::value is evaluated immediately. Since _1 is neither a scalar nor a reference,

the result is false, and our lambda expression is equivalent to add_reference<boost:: add_const<_1> >. We can solve both of these

problems by taking advantage of MPL's logical operator metafunctions. Using mpl::or_, we can recapture the syntactic cleanliness of our

original param_type:

 #include <boost/mpl/or.hpp>

 template <class T>

 struct param_type

 : mpl::eval_if<

 mpl::or_<boost::is_scalar<T>, boost::is_reference<T> >
 , mpl::identity<T>

 , add_reference<T const>

 >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 {};

Because mpl::or_<x,y> is derived from its result ::type (a specialization of bool_<n>), and is thus itself a valid MPL Boolean constant

wrapper, we have been able to completely eliminate the explicit use of bool_ and access to a nested ::type. Despite the fact that we're not

using operator notation, the code is actually more readable than before.

Similar benefits accrue when we apply the same change to our lambda expression, and it works properly, to boot:

 typedef mpl::transform<

 argument_types

 , mpl::if_<

 mpl::or_<boost::is_scalar<_1>, boost::is_reference<_1> >
 , mpl::identity<_1>

 , add_reference<boost::add_const<_1> >

 >

 >::type param_types;

What if we wanted to change param_type to pass all stateless class types, in addition to scalars, by value? We could simply nest another

invocation of or_:

 # include <boost/type_traits/is_stateless.hpp>

 template <class T>

 struct param_type

 : mpl::eval_if<

 mpl::or_<

 boost::is_stateless<T>

 , mpl::or_<
 boost::is_scalar<T>

 , boost::is_reference<T>

 >

 >

 , mpl::identity<T>

 , add_reference<T const>

 >

 {};

While that works, we can do better. mpl::or_ accepts anywhere from two to five arguments, so we can just write:

 # include <boost/type_traits/is_stateless.hpp>

 template <class T>

 struct param_type

 : mpl::eval_if<

 mpl::or_<

 boost::is_scalar<T>

 , boost::is_stateless<T>

 , boost::is_reference<T>
 >

 , mpl::identity<T>

 , add_reference<T const>

 >

 {};

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

In fact, most of the MPL metafunctions that operate on integral arguments (e.g., mpl:: plus<...>) have the same property.

The library contains a similar and_ metafunction, and a unary not_ metafunction for inverting Boolean conditions.
[1]

 It's worth noting that,

just like the built-in operators && and ||, mpl::and_ and mpl::or_ exhibit "short circuit" behavior. For example, in the example above, if T is a

scalar, boost::is_stateless<T> and is_reference<T> will never be instantiated.

[1] These names all end in underscores because and, or, and not are C++ keywords that function as aliases for the

better known operator tokens &&, ||, and !.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

4.2. Integer Wrappers and Operations

We've already used MPL's int_ wrapper in our dimensional analysis example (see section 3.1). Now we can examine it in more detail,

starting with its definition:

 template< int N >

 struct int_

 {

 static const int value = N;

 typedef int_<N> type;

 typedef int value_type;

 typedef mpl::int_<N+1> next;

 typedef mpl::int_<N-1> prior;

 operator int() const { return N; }

 };

As you can see, int_ is very similar to bool_; in fact, the only major difference is the presence of its ::next and ::prior members. We'll explain

their purpose later in this chapter. The library supplies similar numeric wrappers for long and std::size_t, known as long_ and size_t

respectively.

To represent values of any other integral type, the library provides a generic wrapper defined this way:

 template<class T, T N>

 struct integral_c

 {

 static const T value = N;

 typedef integral_c<T,N> type;

 typedef T value_type;

 typedef mpl::integral_c<T,N+1> next;

 typedef mpl::integral_c<T,N-1> prior;

 operator T() const { return N; }

 };

Integral sequence wrappers, like the vector_c template we used to implement dimensional analysis in Chapter 3 take an initial type

parameter T, which is used to form their contained integral_c<T, ...> specializations.

If the existence of both int_<...> and integral_c<int,...> is causing you a raised eyebrow, we can hardly blame you. After all, two otherwise

equivalent integer wrappers can be different types. If we try to compare two integer wrappers this way:

 boost::is_same<mpl::integral_c<int,3>, mpl::int_<3> >::value

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

the result (false) may be a little bit surprising. It's perhaps a little less surprising that the following is also false:

 boost::is_same<mpl::long_<3>, mpl::int_<3> >::value

Whatever your reaction to these two examples may be, however, it should be clear by now that there's more to value equality of integral

constant wrappers than simple type matching. The MPL metafunction for testing value equality is called equal_to, and is defined simply:

 template<class N1, class N2>

 struct equal_to

 : mpl::bool_<(N1::value == N2::value)>

 {};

It's important not to confuse equal_to with equal, which compares the elements of two sequences. The names of these two metafunctions

were taken from those of similar components in the STL.

4.2.1 Integral Operators

MPL supplies a whole suite of metafunctions for operating on integral constant wrappers, of which you've already seen a few (e.g., plus

and minus). Before we get into the details, a word about naming conventions: When the metafunction corresponds to a built-in C++

operator for which the language has a textual alternative token name, like &&/and, the MPL metafunction is named for the alternative token

followed by an underscore, thus mpl::and_. Otherwise, the MPL metafunction takes its name from the corresponding STL function object,

thus mpl::equal_to.

The operators fall into four groups. In the tables below, n = 5 by default. See the Configuration Macros section of the MPL reference

manual for information about how to change n.

4.2.1.1 Boolean-Valued Operators

The metafunctions in this group all have bool constant results. We've already covered the logical operators, but they're included here for

completeness (see Table 4.1).

Table 4.1. Logical Operators

Metafunction Specialization ::value and ::type::value

not_<X> !X::value

and_<T1,T2,...Tn> T1::value && ... Tn ::value

or_<T1,T2,...Tn> T1::value || ... Tn ::value

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 4.2 lists value comparison operators.

Table 4.2. Value Comparison Operators

Metafunction Specialization ::value and ::type::value

equal_to<X,Y> X::value == Y::value

not_equal_to<X,Y> X::value != Y::value

greater<X,Y> X::value > Y::value

greater_equal<X,Y> X::value >= Y::value

less<X,Y> X::value < Y::value

less_equal<X,Y> X::value <= Y::value

4.2.1.2 Integral-Valued Operators

The operators section all have integral constant results whose type is the same as the type of the expression they evaluate (see Tables 4.3

and 4.4). In other words, since the type of 3+2L is long,

 mpl::plus<mpl::int_<3>, mpl::long_<2> >::type::value_type

is also long.

Table 4.3. Bitwise Operators

Metafunction Specialization ::value and ::type::value

bitand_<X,Y> X::value & Y::value

bitor_<X,Y> X::value | Y::value

bitxor_<X,Y> X::value ^ Y::value

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 4.4. Arithmetic Operators

Metafunction Specialization ::value and ::type::value

divides<T1,T2,...Tn> T1::value / ... Tn ::value

minus<T1,T2,...Tn> T1::value - ... Tn ::value

multiplies<T1,T2,...Tn> T1::value * ... Tn ::value

plus<T1,T2,...Tn> T1::value + ... Tn ::value

modulus<X,Y> X::value % Y::value

shift_left<X,Y> X::value << Y::value

shift_right<X,Y> X::value >> Y::value

next<X> X::next

prior<X> X::prior

The next and prior metafunctions are somewhat analogous to the C++ unary operators ++ and --. Since metadata is immutable, though, next

and prior can't modify their arguments. As a matter of fact, mpl::next and mpl::prior are precisely analogous to two runtime functions

declared in namespace boost that simply return incremented and decremented versions of their arguments:

 namespace boost

 {

 template <class T>

 inline T next(T x) { return ++x; }

 template <class T>

 inline T prior(T x) { return --x; }

 }

You might find it curious that mpl::next<X> and mpl::prior<X> are not simply defined to return wrappers for X::value+1 and X::value-1,

respectively, even though they function that way when used on integral constant wrappers. The reasons should become clear in the next

chapter, when we discuss the use of next and prior for sequence iteration.

4.2.2 The _c Integral Shorthand

Occasionally we find ourselves in a situation where the need to explicitly build wrapper types becomes an inconvenience. It happened in

our dimensional analysis code (Chapter 3), where the use of mpl::vector_c<int, ...> instead of mpl::vector<...> eliminated the need to write

int_ specializations for each of seven powers of fundamental units.

We actually sidestepped another such circumstance while working on the param_type metafunction earlier in this chapter. Before mpl::or_

came along to save our bacon, we were stuck with this ugly definition:

 template <class T>

 struct param_type

 : mpl::eval_if<

 mpl::bool_<

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 boost::is_scalar<T>::value

 || boost::is_reference<T>::value
 >

 , mpl::identity<T>

 , add_reference<T const>

 >

 {};

With MPL's eval_if_c, also supplied by <boost/mpl/eval_if.hpp>, we might have written:

 template <class T>

 struct param_type

 : mpl::eval_if_c<

 boost::is_scalar<T>::value

 || boost::is_reference<T>::value
 , mpl::identity<T>

 , add_reference<T const>

 >

 {};

By now you've probably begun to notice some commonality in the use of _c: it always adorns templates that take raw integral constants,

instead of wrappers, as parameters. The _c suffix can be thought of as an abbreviation for "constant" or "of integral constants."

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

4.3. Exercises

4-0. Write tests for mpl::or_ and mpl::and_ metafunctions that use their short-circuit behavior.

4-1. Implement binary metafunctions called logical_or and logical_and that model the behavior of mpl::or_ and

mpl::and_, correspondingly. Use tests from exercise 4-0 to verify your implementation.

4-2. Extend the implementation of logical_or and logical_and metafunctions from exercise 4-1 to accept up to five

arguments.

4-3. Eliminate the unnecessary instantiations in the following code snippets:

1. template< typename N, typename Predicate >

 struct next_if

 : mpl::if_<

 typename mpl::apply<Predicate,N>::type

 , typename mpl::next<N>::type

 , N

 >

 {};

2. template< typename N1, typename N2 >

 struct formula

 : mpl::if_<

 mpl::not_equal_to<N1,N2>

 , typename mpl::if_<

 mpl::greater<N1,N2>

 , typename mpl::minus<N1,N2>::type

 , N1

 >::type

 , typename mpl::plus<

 N1

 , typename mpl::multiplies<N1,

 mpl::int_<2> >::type

 >::type

 >::type

{};

Write the tests to verify that the semantics of the transformed metafunctions remained unchanged.

4-4. Use integral operators and the type traits library facilities to implement the following composite traits:

is_data_member_pointer

is_pointer_to_function

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

is_reference_to_function_pointer

is_reference_to_non_const

4-5. Consider the following function template, which is designed to provide a "container-based" (as opposed to

iterator-based) interface to std::find:

template <class Container, class Value>

typename Container::iterator

container_find(Container& c, Value const& v)

{

 return std::find(c.begin(), c.end(), v);

}

As coded, container_find won't work for const containers; Container will be deduced as const X for some

container type X, but when we try to convert the Container::const_iterator returned by std::find into a

Container::iterator, compilation will fail. Fix the problem using a small metaprogram to compute container_find's

return type.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Chapter 5. Sequences and Iterators

If the STL can be described as a framework based on runtime algorithms, function objects, and iterators, we could say that the MPL is

founded on compile-time algorithms, metafunctions, sequences, and iterators.
[1]

[1] Though indispensable in everyday programming, STL containers are not a fundamental part of that library's

conceptual framework, and they don't interact directly with the other STL abstractions. By contrast, MPL's

sequences play a direct role in its algorithm interfaces.

We used sequences and algorithms informally in Chapter 3 to implement our dimensional analysis logic. If you're familiar with the STL, you

might have guessed that under the hood we were also using iterators. The library, however, has so far allowed us to remain happily

ignorant of their role, by virtue of its sequence-based algorithm interfaces.

In this chapter you will gain a general familiarity with "compile-time STL," and then proceed to formalize sequences and iterators, study

their interactions with algorithms, look at a number of specific implementations offered by the library, and learn how to implement new

examples of each one.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

5.1. Concepts

First, we'll define an important term that originated in the world of runtime generic programming. A concept is a description of the

requirements placed by a generic component on one or more of its arguments. We've already covered a few concepts in this book. For

example, the apply1 metafunction that we wrote in Chapter 3 required a first argument that was a Metafunction Class.

A type or group of types that satisfies a concept's requirements is said to model the concept or to be a model of the concept. So plus_f,

also from Chapter 3, is a model of Metafunction Class. A concept is said to refine another concept when its requirements are a superset of

those of the other concept.

Concept requirements usually come from the following categories.

Valid expressions

C++ expressions that must compile successfully for the objects involved in the expression to be considered models of the concept. For

example, an Iterator x is expected to support the expressions ++x and *x.

Associated types

Types that participate in one or more of the valid expressions and that can be computed from the type(s) modeling the concept. Typically,

associated types can be accessed either through typedefs nested within a class definition for the modeling type or through a traits class.

For example, as described in Chapter 2, an iterator's value type is associated with the iterator through std::iterator_traits.

Invariants

Runtime characteristics of a model's instances that must always be true; that is, all operations on an instance must preserve these

characteristics. The invariants often take the form of pre-conditions and post-conditions. For instance, after a Forward Iterator is copied,

the copy and the original must compare equal.

Complexity guarantees

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Maximum limits on how long the execution of one of the valid expressions will take, or how much of various resources its computation will

use. Incrementing an Iterator, for example, is required to have constant complexity.

In this chapter we'll be introducing several new concepts and refinement relationships with associated types and complexity guarantees.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

5.2. Sequences and Algorithms

Most of the algorithms in the MPL operate on sequences. For example, searching for a type in a vector looks like this:

 typedef mpl::vector<char,short,int,long,float,double> types;

 // locate the position of long in types

 typedef mpl::find<types, long>::type long_pos;

Here, find accepts two parameters—a sequence to search (types) and the type to search for (long)—and returns an iterator indicating the

position of the first element in the sequence that is identical to long. Except for the fact that mpl::find takes a single sequence parameter

instead of two iterators, this is precisely how you would search for a value in a std::list or std::vector:

 std::vector<int> x(10);

 std::vector<int>::iterator five_pos

 = std::find(x.begin(), x.end(), 5);

If no matching element exists, mpl::find returns the sequence's past-the-end iterator, which is quite naturally accessed with the mpl::end

metafunction:

 // assert that long was found in the sequence

 typedef mpl::end<types>::type finish;

 BOOST_STATIC_ASSERT((!boost::is_same<long_pos, finish>::value));

A similar begin metafunction returns an iterator to the beginning of the sequence.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

5.3. Iterators

As with STL iterators, the most fundamental service provided by MPL iterators is access to the sequence element to which they refer. To

dereference a compile-time iterator, we can't simply apply the prefix * operator: runtime operator overloading is unavailable at compile

time. Instead, the MPL provides us with an aptly named deref metafunction that takes an iterator and returns the referenced element.

 typedef mpl::vector<char,short,int,long,float,double> types;

 // locate the position of long in types

 typedef mpl::find<types,long>::type long_pos;

 // dereference the iterator

 typedef mpl::deref<long_pos>::type x;

 // check that we have the expected result

 BOOST_STATIC_ASSERT((boost::is_same<x,long>::value));

An iterator can also provide access to adjacent positions in a sequence, or traversal. In Chapter 4 we described the mpl::next and

mpl::prior metafunctions, which produce an incremented or decremented copy of their integral argument. These primitives apply equally

well to iterators:

 typedef mpl::next<long_pos>::type float_pos;

 BOOST_STATIC_ASSERT((

 boost::is_same<

 mpl::deref<float_pos>::type

 , float

 >::value

));

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

5.4. Iterator Concepts

In this section we'll define the MPL iterator concepts. If you're familiar with STL iterators, you'll probably notice similarities between these

and the STL categories of the same name. There are also a few differences, which are a direct consequence of the immutable nature of

C++ metadata. For example, there are no separate categories for input iterators and output iterators in the MPL. We'll point out these

similarities and differences as we encounter them, along with a few key properties of all iterators, which we'll introduce in bold text.

Just as the fundamental iterator operations of the STL are O(1) at runtime, all the fundamental MPL iterator operations detailed in this

chapter are O(1) at compile time.
[2]

[2] In this book we measure compile-time complexity of an operation in terms of the number of template

instantiations required. There are of course other factors that will determine the time it takes to compile any

program. See Appendix C for more details.

5.4.1 Forward Iterators

Forward Iterator is the simplest MPL iterator category; it has only three operations: forward traversal, element access, and category

detection. An MPL iterator can either be both incrementable and dereferenceable, or it can be past-the-end of its sequence. These two

states are mutually exclusive: None of the Forward Iterator operations are allowed on a past-the-end iterator.

Since MPL iterators are immutable, we can't increment them "in place" the way we can with STL iterators. Instead, we pass them to

mpl::next, which yields the next position in the sequence. The author of an incrementable iterator can either specialize mpl::next to support

her iterator type, or she can simply leverage its default implementation, which reaches in to access the iterator's ::next member:

 namespace boost { namespace mpl {

 template <class It> struct next

 {

 typedef typename It::next type;

 };

 }}

A dereferenceable iterator supports element access through the mpl::deref metafunction, whose default implementation similarly accesses

the iterator's nested ::type:

 namespace boost { namespace mpl {

 template <class It> struct deref

 {

 typedef typename It::type type;

 };

 }}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

To check for equivalence of iterators, use the boost::is_same metafunction from the Boost Type Traits library. Two iterators are equivalent

only if they have the same type. Since is_same works on any type, this applies equally well to past-the-end iterators. An iterator j is said to

be reachable from an iterator i if they are equivalent, or if there exists some sequence:

 typedef mpl::next<i>::type i1;

 typedef mpl::next<i1>::type i2;

 .

 .

 .

 typedef mpl::next<in-1>::type in;

such that in is equivalent to j. We'll use the "half-open range" notation [i,j) to denote a range of sequence elements starting with

mpl::deref<i>::type and ending with mpl:: deref<in-1>::type.

Table 5.1 details the requirements for MPL forward iterators, where i is a model of Forward Iterator.

Table 5.1. Forward Iterator Requirements

Expression Result Precondition

mpl::next<i>::type A Forward Iterator. i is incrementable.

mpl::deref<i>::type Any type. i is dereferenceable.

i::category Convertible to mpl::

forward_iterator_tag.

5.4.2 Bidirectional Iterators

A Bidirectional Iterator is a Forward Iterator with the additional ability to traverse a sequence in reverse. A Bidirectional Iterator is either

decrementable or it refers to the beginning of its sequence.

Given a decrementable iterator, the mpl::prior metafunction yields the previous position in the sequence. The author of an decrementable

iterator can either specialize mpl::prior to support her iterator type, or she can simply leverage its default implementation, which reaches in

to access the iterator's ::prior member:

 namespace boost { namespace mpl {

 template <class It> struct prior

 {

 typedef typename It::prior type;

 };

 }}

Table 5.2 details the additional requirements for MPL bidirectional iterators, where i is a model of Bidirectional Iterator.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 5.2. Additional Requirements for Bidirectional Iterators

Expression Result Assertion/Precondition

mpl::

next<i>::type
A Bidirectional Iterator. mpl::prior<

 mpl::next<i>::type

>::type

is equivalent to i.

Precondition:

i is incrementable.

mpl::

prior<i>::type
A Bidirectional Iterator. Precondition:

i is decrementable.

i::category Convertible to mpl:: bidirectional_iterator_tag.

5.4.3 Random Access Iterators

A Random Access Iterator is a Bidirectional Iterator that also provides movement by an arbitrary number of positions forward or backward,

and distance measurement between iterators in the same sequence, all in constant time.

Random access traversal is achieved using the mpl::advance metafunction, which, given a random access iterator i and an integral

constant type n, returns an advanced iterator in the same sequence. Distance measurement is available through the mpl::distance

metafunction, which, given random access iterators i and j into the same sequence, returns the number of positions between i and j. Note

that these two operations have an intimate relationship:

 mpl::advance<i, mpl::distance<i,j>::type>::type

is identical to j, and both operations have constant complexity.

As with the STL functions of the same names, advance and distance are in fact available for bidirectional and forward iterators as well,

though only with linear complexity: The default implementations simply go through as many invocations of mpl::next or mpl::prior as

necessary to get the job done. Consequently, the author of a random access iterator must specialize advance and distance for her iterator

to work in constant time, or she won't have met the random access iterator requirements.

Table 5.3 details the additional requirements for MPL Random Access Iterators. The names i and j represent iterators into the same

sequence, N represents an integral constant type, and n is N::value.

Table 5.3. Additional Requirements for Random Access Iterators

Expression Result Assertion/Precondition

mpl::next<i>::type A Random Access Iterator. Precondition: i is incrementable.

mpl::prior<i>::type A Random Access Iterator. Precondition: i is decrementable.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Expression Result Assertion/Precondition

mpl::advance<

 i, N

>::type

If n>0 , equivalent to n applications of

mpl::next to i. Otherwise, equivalent to -n

applications of mpl::prior to i.

Constant time.
mpl::advance<

 i

 , mpl::distance<

 i,j

 >::type

>::type

is equivalent to j.

mpl::distance<

 i, j

>::type

An integral constant wrapper. Constant time.

i::category Convertible to mpl::random_

access_iterator_tag.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

5.5. Sequence Concepts

The MPL has a taxonomy of sequence concepts similar to those in the STL. Each level of concept refinement introduces a new set of

capabilities and interfaces. In this section we'll walk through each of the concepts in turn.

5.5.1 Sequence Traversal Concepts

For each of the three iterator traversal categories—forward, bidirectional, and random access—there is a corresponding sequence

concept. A sequence whose iterators are forward iterators is called a Forward Sequence, and so forth.

If the sequence traversal concepts detailed below seem a bit thin, it's because (apart from extensibility, which we'll get to in a moment), a

sequence is not much more than a pair of iterators into its elements. Most of what's needed to make a sequence work is provided by its

iterators.

5.5.1.1 Forward Sequences

Any MPL sequence (for example, mpl::list, which we'll cover later in this chapter) is a Forward Sequence.

In Table 5.4, S represents a Forward Sequence.

Table 5.4. Forward Sequence Requirements

Expression Result Assertion

mpl::begin<S>::type A Forward Iterator.

mpl::end<S>::type A Forward Iterator. Reachable from

mpl::begin<S>::type.

Because we can access any sequence's begin iterator, we can trivially get its first element. Accordingly, every nonempty MPL sequence

also supports the expression

 mpl::front<S>::type

which is equivalent to

 mpl::deref<

 mpl::begin<S>::type

 >::type

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

5.5.1.2 Bidirectional Sequences

In Table 5.5, S is any Bidirectional Sequence.

Table 5.5. Additional Requirements for Bidirectional Sequences

Expression Result

mpl::begin<S>::type A Bidirectional Iterator.

mpl::end<S>::type A Bidirectional Iterator.

Because we can access any sequence's end iterator, we can trivially get to its last element if its iterators are bidirectional. Accordingly,

every nonempty Bidirectional Sequence also supports the expression

 mpl::back<S>::type

which is equivalent to

 mpl::deref<

 mpl::prior<

 mpl::end<S>::type

 >::type

 >::type

5.5.1.3 Random Access Sequences

mpl::vector is an example of a Random Access Sequence. In Table 5.6, S is any Random Access Sequence.

Table 5.6. Additional Requirements for Random Access Sequences

Expression Result

mpl::begin<S>::type A Random Access Iterator.

mpl::end<S>::type A Random Access Iterator.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Because a Random Access Sequence has random access iterators, we can trivially get to any element of the sequence in one step.

Accordingly, every Random Access Sequence also supports the expression

 mpl::at<S,N>::type

which is equivalent to

 mpl::deref<

 mpl::advance<

 mpl::begin<S>::type

 , N

 >::type

 >::type

5.5.2 Extensibility

An Extensible Sequence is one that supports insert, erase, and clear operations. Naturally, since metadata is immutable, none of these

operations can modify the original sequence. Instead, they all return a modified copy of the original sequence.

Given that S is an Extensible Sequence, pos is some iterator into S, finish is an iterator reachable from pos, and X is any type, the

expressions in Table 5.7 return a new sequence that models the same sequence concept that S does:

Table 5.7. Extensible Sequence Requirements

Expression Elements of Result

mpl::insert<S,pos,X>::type [mpl::begin<S>::type, pos),

X,

[pos, mpl::end<S>::type)

mpl::erase<S,pos>::type [mpl::begin<S>::type, pos),

[mpl::next<pos>::type, mpl::end<S>::type)

mpl::erase<

 S, pos, finish

>::type

[mpl::begin<S>::type, pos),

[finish, mpl::end<S>::type)

mpl::clear<S>::type None.

Many of the MPL sequences are extensible, but with different complexity for the different operations. For example, insertion and erasure at

the head of an mpl::list is O(1) (i.e., takes constant time and compiler resources), while making a list that differs only at the tail is O(N),

meaning that the cost is proportional to the original list's length. Insertion and erasure at the back of an mpl::vector is O(1), though

modifications at other positions are only guaranteed to be O(N).

MPL also supplies push_front and pop_front metafunctions, which insert and erase a single element at the head of a sequence

respectively, and also push_back and pop_back, which do the same at the tail of a sequence. Each of these operations is only available for

sequences that can support it with O(1) complexity.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

5.5.3 Associative Sequences

An Associative Sequence is a mapping whose set of unique key types is mapped to one or more of its value types. Each of the sequence's

element types—those accessible through its iterators—is associated with a single (key, value) pair.
[3]

 In addition to supporting

begin<S>::type and end<S>::type as required for any Forward Sequence, an Associative Sequence supports the following operations.

[3] For some concrete examples, see section 5.8, which covers mpl::map and mpl::set.

In Tables 5.8 and 5.9, k and k2 can be any type and pos1 and pos2 are iterators into S.

Table 5.8. Associative Sequences Requirements

Expression Result Precondition/Assertion

mpl::has_key<

 S, k

>::value

true if k is in S's set of keys; false otherwise.

mpl::at<

 S, k

>::type

The value type associated with k. Precondition: k is in S's set of keys

mpl::order<

 S, k

>::type

An unsigned integral constant wrapper. If
 mpl::order<S,k>::type::value

 == mpl::order<S,k2>::type::value

then k is identical to k2.

Precondition: k is in S's set of keys.

mpl::key_type<

 S, t

>::type

The key type that S would use for an element

type t.

If
 mpl::key_type<

 S, mpl::deref<pos1>::type

 >::type

is identical to
 mpl::key_type<

 S, mpl::deref<pos2>::type

 >::type

then pos1 is identical to pos2.

mpl::value_type<

 S, t

>::type

The value type that S would use for an

element type t.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 5.9. Extensible Associative Sequence

Expression Result Note

mpl::insert<

 S, pos1, t

>::type

mpl::insert<

 S, t

>::type

S' equivalent to S except that

mpl::at<

 S'

 , mpl::key_type<S,t>::type

>::type

is mpl::value_type<S,t>::type.

May incur an erasure penalty if
mpl::has_key<

 S,

 mpl::key_type<

 S, t

 >::type

>::value

is TRue.

mpl::erase<

 S, pos1

>::type

S' equivalent to S except that

mpl::has_key<

 S'

 , mpl::key_type<

 S

 , mpl::deref<pos1>::type

 >::type

>::value

is false.

mpl::erase_key<

 S, k

>::type

S' equivalent to S except that mpl::has_key<S' ,

k>::value is false.

mpl::clear<

 S

>::type

An empty sequence with the same properties as S.

Note that there are no guarantees about the values returned by the order metafunction other than that each key will be associated with a

unique value. In particular, order values are not required to have any relationship to iterator traversal order. Also note that unlike an STL

associative container, which always has an associated ordering relation (it defaults to std::less<KeyType>), an associative meta-sequence

has no such ordering relation: The order that elements will be traversed during iteration is entirely up to the sequence implementation.

5.5.4 Extensible Associative Sequences

Like an ordinary Extensible Sequence, an Extensible Associative Sequence supports insert, erase, and clear operations, each of which

produces a new sequence as a result. Since the ordering of elements in an Associative Sequence is arbitrary, an inserted element won't

necessarily end up in the position indicated by the iterator passed to the insert metafunction. In this respect, associative meta-sequences

resemble STL associative containers such as std::map and std::set, but in some ways they are quite different. For example, while an STL

sequence can use an iterator as a "hint" to improve the performance of insertion from O(log(N)) to O(1), an associative meta-sequence

ignores the iterator argument to insert altogether: In fact, insertion is always O(1). While it is convenient—even crucial—for authors of

generic sequence algorithms to have a uniform insert metafunction that always takes an iterator argument, it is equally inconvenient to come

up with an iterator every time you want to insert a new element in a set. Therefore, in addition to mpl::insert<S,pos,t>, an Extensible

Associative Sequence must also support the equivalent mpl::insert<S,t> form.

Another difference from runtime associative containers is that erasures actually have an effect on the efficiency of iteration: A complete

traversal of an associative meta-sequence has a worst-case complexity of O(N+E), where N is the number of elements in the sequence

and E is the number of elements that have been erased. When an element is erased from an Associative Sequence, the library adds a

special marker element that causes the erased element to be skipped during iteration. Note that applying clear to an Associative

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Sequence does not come with a similar penalty: The result is a brand new sequence.

The following expressions have constant complexity and return a new sequence that models all the same MPL sequence concepts as S

does.

Because erasure anywhere in an Extensible Associative Sequence is O(1), pop_front and pop_back are both available. Since insertion is

also O(1), mpl::push_front<S,t> and mpl::push_back<S,t> are also supported, but are both equivalent to mpl::insert<S,t> because the

iterator argument in mpl::insert<S,pos,t> is ignored.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

5.6. Sequence Equality

It's important, particularly when handling computed results, not to fall into the trap of relying on sequence type identity. For example, you

should not expect the following assertion to pass:

 BOOST_STATIC_ASSERT((// error

 boost::is_same<

 mpl::pop_back<mpl::vector<int, short> >::type

 , mpl::vector<int>

 >::value

));

For most purposes, the two types being compared above will act the same, and most of the time you'll never notice a difference. That said,

the result of using mpl::pop_back on a specialization of mpl::vector will not be another specialization of mpl::vector!

As you saw in our exploration of dimensional analysis in Chapter 3, a function template that can only be called with two identical types is

likely not to work as expected if those types are sequences. The same goes for a class template partial specialization that matches only

when two type arguments are identical.

The correct way to check for sequence equality is always to use the equal algorithm, as follows:

 BOOST_STATIC_ASSERT((// OK

 mpl::equal<
 mpl::pop_back<mpl::vector<int, short> >::type

 , mpl::vector<int>

 >::value

));

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

5.7. Intrinsic Sequence Operations

MPL supplies a catalog of sequence metafunctions whose STL counterparts are usually implemented as member functions. We've already

discussed begin, end, front, back, push_front, push_back, pop_front, pop_back, insert, erase, and clear; the rest are summarized in Table

5.10, where R is any sequence.

Table 5.10. InTRinsic Sequence Operations

Expression Result Worst-Case Complexity

mpl::empty<S>::type A bool constant wrapper; TRue iff the

sequence is empty.

Constant.

mpl::insert_range<

 S, pos, R

>::type

Identical to S but with the elements of R

inserted at pos.

Linear in the length of the result.

mpl::size<S>::type An integral constant wrapper whose ::value is

the number of elements in S.

Linear in the length of S.

All of these metafunctions are known as intrinsic sequence operations, to distinguish them from generic sequence algorithms, because

they generally need to be implemented separately for each new kind of sequence. They're not implemented as nested metafunctions

(corresponding to similar container member functions in the STL) for three good reasons.

Syntactic overhead. Member templates are a pain to use in most metaprogramming contexts because of the need to use the

extra template keyword:

 Sequence::template erase<pos>::type

as opposed to:

 mpl::erase<Sequence,pos>::type

As you know, reducing the burdens of C++ template syntax is a major design concern for MPL.

1.

Efficiency. Most sequences are templates that are instantiated in many different ways. The presence of template members,

even if they're unused, may have a cost for each instantiation.

2.

Convenience. Despite the fact that we call these operations "intrinsic," there are reasonable ways to supply default

implementations for many of them. For example, the default size measures the distance between the sequence's begin and end

iterators. If these operations were member templates, every sequence author would be required to write all of them.

3.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

5.8. Sequence Classes

In this section we'll describe the specific sequences provided by the MPL, and discuss how they fit the sequence concepts detailed above.

Before we begin, you should know that all of the MPL sequences have both an unnumbered and a numbered form. The unnumbered forms

are the ones you're already familiar with, like mpl::vector<int, long, int>. The corresponding numbered forms include the sequence's length

as part of its template name, for example, mpl::vector3<int, long, int>. The length of unnumbered forms is limited to 20 elements by

default
[4]

 to reduce coupling in the library and to limit compilation times. To use the numbered form of a sequence with length N, you must

include a corresponding "numbered header" file, named for the sequence whose length is N rounded up to the nearest multiple of ten. For

example:

[4] See the Configuration Macros section of the MPL reference manual for details on how to change this limit.

 #include <boost/mpl/vector/vector30.hpp> // 28 rounded up

 // declare a sequence of 28 elements

 typedef boost::mpl::vector28<

 char, int, long ... 25 more types

 > s;

5.8.1 list

mpl::list is the simplest of the extensible MPL sequences, and it is structurally very similar to a runtime singly-linked list. Since it is a Forward

Sequence, it supports begin and end, and, of course, access to the first element via front. It supports O(1) insertion and erasure at the head

of the sequence, so it also supports push_front and pop_front.

5.8.2 vector

MPL's vector is almost an exact analogue to the STL vector: it is a Random Access Sequence, so naturally it has Random Access Iterators.

Since every Random Access Iterator is a Bidirectional Iterator, and we have access to the vector's end iterator, back is supported in addition

to front. Like an STL vector, MPL's vector also supports efficient push_back and pop_back operations.

In addition to the usual compile-time/runtime differences, this sequence may differ from those in the STL in one significant detail: It may

have a maximum size that is limited not just by the usual compiler resources, such as memory or template instantiation depth, but also by

the way the sequence was implemented. In that case, the sequence can normally be extended only as far as the maximum numbered

sequence header included in the translation unit. For example:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 #include <boost/mpl/vector/vector10.hpp>

 typedef boost::mpl::vector9<

 int[1], int[2], int[3], int[4]

 , int[5], int[6], int[7], int[8], int[9]

 > s9;

 typedef mpl::push_back<s9, int[10]>::type s10; // OK

 typedef mpl::push_back<s10, int[11]>::type s11; // error

To make the code work, we'd have to replace the #include directive with:

 #include <boost/mpl/vector/vector20.hpp>

This limitation is not as serious as it may sound, for two reasons:

The library headers provide you with numbered vector forms allowing up to 50 elements by default, and that number can be

adjusted just by defining some preprocessor symbols.
[5]

[5] See the Configuration Macros section of the MPL reference manual for details on how to change this

limit.

1.

Since meta-code executes at compile time, exceeding the limit causes a compile-time error. Unless you're writing generic

metafunction libraries to be used by other metaprogrammers, you can never ship code that will fail in the customer's hands

because of this limitation, as long as your code compiles on your local machine.

2.

We wrote that it may differ in this respect because on compilers that support the typeof language extension, the maximum size limitation

vanishes. Chapter 9 describes some of the basic techniques that make that possible.

Operations on mpl::vector tend to compile much more quickly than those on mpl::list, and, due to its random-access capability, mpl::vector is

far more flexible. Taken together, these factors should make mpl::vector your first choice when selecting a general-purpose Extensible

Sequence. However, if your clients will be using your code for compile-time computation that may require sequences of arbitrary length, it

may be better to use mpl::list.

Guideline

Reach for mpl::vector first when choosing a general-purpose type sequence.

5.8.3 deque

MPL's deque is almost exactly like its vector in all respects, except that deque allows efficient operations at the head of the sequence with

push_front and pop_front. Unlike the corresponding STL components, the efficiency of deque is very close to that of vector—so much so, in

fact, that on many C++ compilers, a vector really is a deque under-the-covers.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

5.8.4 range_c

range_c is a "lazy" random access sequence that contains consecutive integral constants. That is, mpl::range_c<long, N, M> is roughly

equivalent to:

 mpl::vector<

 mpl::integral_c<long,N>

 , mpl::integral_c<long,N+1>

 , mpl::integral_c<long,N+2>

 ...

 , mpl::integral_c<long,M-3>

 , mpl::integral_c<long,M-2>

 , mpl::integral_c<long,M-1> // Note: M-1, not M

 >

By saying range_c is "lazy," we mean that its elements are not explicitly represented: It merely stores the endpoints and produces new

integral constants from within the range on demand. When iterating over large sequences of integers, using range_c is not only

convenient, but can result in a significant savings in compilation time over the use of a non-lazy alternative like the vector shown above.

The price of this economy is that range_c comes with a limitation not shared by vector and list: It is not extensible. If the library could

support insertion of arbitrary elements into range_c, the elements would need to be explicitly represented. Though not extensible, range_c

supports pop_front and pop_back, because contracting a range is easy.

5.8.5 map

An MPL map is an Extensible Associative Sequence in which each element supports the interface of mpl::pair.

 template <class T1, class T2>

 struct pair

 {

 typedef pair type;

 typedef T1 first;

 typedef T2 second;

 };

An element's first and second types are treated as its key and value, respectively. To create a map, just list its elements in sequence as

template parameters. The following example shows a mapping from built-in integral types to their next "larger" type:

 typedef mpl::map<

 mpl::pair<bool, unsigned char>

 , mpl::pair<unsigned char, unsigned short>

 , mpl::pair<unsigned short, unsigned int>

 , mpl::pair<unsigned int, unsigned long>

 , mpl::pair<signed char, signed short>

 , mpl::pair<signed short, signed int>

 , mpl::pair<signed int, signed long>

 >::type to_larger;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Like mpl::vector, the mpl::map implementation has a bounded maximum size on C++ compilers that don't support the typeof language

extension, and the appropriate numbered sequence headers must be included if you're going to grow a map beyond the next multiple of

ten elements.

It's not all bad news for users whose compiler doesn't go beyond the standard requirements, though: When map has a bounded maximum

size, iterating over all of its elements is O(N) instead of O(N+E), where N is the size of the map and E is the number of erasures that have

been applied to it.

5.8.6 set

A set is like a map, except that each element is identical to its key type and value type. The fact that the key and value types are identical

means that mpl::at<S,k>::type is a fairly uninteresting operation—it just returns k unchanged. The main use for an MPL set is efficient

membership testing with mpl::has_key<S,k>::type. A set is never subject to a maximum size bound, and therefore operation is always

O(N+E) for complete traversal.

5.8.7 iterator_range

An iterator_range is very similar to range_c in intent. Instead of representing its elements explicitly, an iterator_range stores two iterators

that denote the sequence endpoints. Because MPL algorithms operate on sequences instead of iterators, iterator_range can be

indispensable when you want to operate on just part of a sequence: Once you've found the sequence endpoints, you can form an

iterator_range and pass that to the algorithm, rather than building a modified version of the original sequence.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

5.9. Integral Sequence Wrappers

We've already discussed the use of the vector_c class template as a shortcut for writing lists of integral constants. MPL also supplies list_c,

deque_c, and set_c for representing the corresponding vectors, deques, and sets. Each of these sequences takes the form:

 sequence-type_c<T, n1, n2, ... nk>

The first argument to each of these sequence wrappers is the integer type T that it will store, and the following arguments are the values of

T that it will store. You can think of these as being equivalent to:

 sequence-type<

 integral_c<T,n1>

 , integral_c<T,n2>

 , ...

 , integral_c<T,nk>

 >

That said, they are not precisely the same type, and, as we've suggested, you should not rely on type identity when comparing sequences.

Note that the MPL also provides _c-suffixed versions of the numbered sequence forms:

 #include <boost/mpl/vector/vector10_c.hpp>

 typedef boost::mpl::vector10_c<int,1,2,3,4,5,6,7,8,9,10> v10;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

5.10. Sequence Derivation

Typically, the unnumbered form of any sequence is derived from the corresponding numbered form, or else shares with it a common base

class that provides the sequence's implementation. For example, mpl::vector might be defined this way:

 namespace boost { namespace mpl {

 struct void_; // "no argument" marker

 // primary template declaration

 template <class T0 = void_, class T1 = void_, etc....>

 struct vector;

 // specializations

 template<>

 struct vector<> : vector0<> {};

 template<class T0>

 struct vector<T0> : vector1<T0> {};

 template<class T0, class T1>

 struct vector<T0,T1> : vector2<T0,T1> {};

 template<class T0, class T1, class T2>

 struct vector<T0,T1,T2> : vector3<T0,T1,T2> {};

 etc.

 }}

The integral sequence wrappers are similarly derived from equivalent underlying type sequences.

All of the built-in MPL sequences are designed so that nearly any subclass functions as an equivalent type sequence. Derivation is a

powerful way to provide a new interface, or just a new name, to an existing family of sequences. For example, the Boost Python library

provides the following type sequence:

 namespace boost { namespace python {

 template <class T0=mpl::void_, ... class T4=mpl::void_>

 struct bases : mpl::vector<T0, T1, T2, T3, T4> {};

 }}

You can use the same technique to create a plain class that is an MPL type sequence:

 struct signed_integers

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 : mpl::vector<signed char, short, int, long> {};

On some compilers, using signed_integers instead of the underlying vector can dramatically improve metaprogram efficiency. See

Appendix C for more details.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

5.11. Writing Your Own Sequence

In this section we'll show you how to write a simple sequence. You might be wondering at this point why you'd ever want to do that; after

all, the built-in facilities provided by MPL are pretty complete. Usually it's a matter of efficiency. While the MPL sequences are

well-optimized for general-purpose use, you may have a specialized application for which it's possible to do better. For example, it's

possible to write a wrapper that presents the argument types of a function pointer as a sequence [Nas03]. If you happen to already have

the function pointer type in hand for other reasons, iterating over the wrapper directly rather than assembling another sequence containing

those types could save quite a few template instantiations.

For this example, we'll write a limited-capacity Random Access Sequence called tiny with up to three elements. This sequence will be very

much like MPL's implementation of vector for compilers that are merely conforming but do not supply typeof.

5.11.1 Building Tiny Sequence

The first step is to choose a representation. Not much more is required of the representation than to encode the (up to three) types it can

contain in the sequence type itself:

 struct none {}; // tag type to denote no element

 template <class T0 = none, class T1 = none, class T2 = none>

 struct tiny

 {

 typedef tiny type;

 typedef T0 t0;

 typedef T1 t1;

 typedef T2 t2;

 ...

 };

As you can see, we've jumped the gun and filled in some of the implementation: tiny's nested ::type refers back to the sequence itself,

which makes tiny a sort of "self-returning metafunction." All of the MPL sequences do something similar, and it turns out to be terribly

convenient. For example, to return sequence results from a metafunction, you can just derive the metafunction from the sequence you

want to return. Also, when one branch of an eval_if needs to return a sequence, you don't have to wrap it in the identity metafunction

described in Chapter 4. That is, given a tiny sequence S, the following two forms are equivalent:

 // pop the front element off S, unless it is empty

 typedef mpl::eval_if<

 mpl::empty<S>

 , mpl::identity<S>
 , mpl::pop_front<S>

 >::type r1;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // likewise

 typedef mpl::eval_if<

 mpl::empty<S>

 , S // when invoked, S returns S

 , mpl::pop_front<S>

 >::type r2;

The other three nested typedefs, t0, t1, and t2, make it easy for any metafunction to access a tiny sequence's elements:
[6]

[6] The alternative would be a cumbersome partial specialization:

 template <class Tiny>

 struct manipulate_tiny;

 template <class T0, class T1, class T2>

 struct manipulate_tiny<tiny<T0, T1, T2> >

 {

 // T0 is known

 };

Embedding the element types will save us a lot of code in the long run.

 template <class Tiny>

 struct manipulate_tiny

 {

 // what's T0?

 typedef typename Tiny::t0 t0;

 };

As long as we can all agree not to use none for any other purpose than to mark the beginning of tiny's empty elements, we now have a

convenient interface for holding up to three elements. It's not an MPL sequence yet, though.

Looking back at the most basic sequence requirements, we find that every sequence has to return iterators from MPL's begin and end

metafunctions. Right away it's clear we'll need an iterator representation. Because Random Access Iterators can move in both directions,

they must have access to all the elements of the sequence. The simplest way to handle that is to embed the entire sequence in the iterator

representation. In fact, it's typical that MPL iterators embed all or part of the sequence they traverse (since list iterators only move forward,

they only hold the part of the list that's accessible to them).

5.11.2 The Iterator Representation

Once our iterator has access to the sequence, we just need to represent the position somehow. An integral constant wrapper (Pos in the

example below) will do:

 #include <boost/mpl/iterator_tag.hpp>

 template <class Tiny, class Pos>

 struct tiny_iterator

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 {

 typedef mpl::random_access_iterator_tag category;

 };

The most basic operations on any iterator are dereferencing, via mpl::deref, and forward traversal, via mpl::next. In this case, we can

handle incremental traversal in either direction by building a new tiny_iterator with an incremented (or decremented) position:
[7]

[7] We could have also taken advantage of the default mpl::next and mpl::prior implementations and realized the

requirements by simply supplying tiny_iterator with the corresponding nested typedefs (::next/::prior). The price for a

somewhat reduced amount of typing would be slower metaprograms—such an iterator would be a typical instance

of the "Blob" anti-pattern discussed in Chapter 2.

 namespace boost { namespace mpl {

 // forward iterator requirement

 template <class Tiny, class Pos>

 struct next<tiny_iterator<Tiny,Pos> >

 {

 typedef tiny_iterator<

 Tiny

 , typename mpl::next<Pos>::type

 > type;

 };

 // bidirectional iterator requirement

 template <class Tiny, class Pos>

 struct prior<tiny_iterator<Tiny,Pos> >

 {

 typedef tiny_iterator<

 Tiny

 , typename mpl::prior<Pos>::type

 > type;

 };

 }}

Dereferencing our tiny_iterator is a bit more involved: We need some way to index our tiny sequence with the iterator's position. If you're

thinking, "Hang on, to do that you'd need to implement the at operation," you're right: It's time to leave our iterators alone for a while.

5.11.3 Implementing at for tiny

One reasonable way to implement at is to use partial specialization. First we'll write a template that selects an element of the sequence

based on a numerical argument:

 template <class Tiny, int N> struct tiny_at;

 // partially specialized accessors for each index

 template <class Tiny>

 struct tiny_at<Tiny,0>

 {

 typedef typename Tiny::t0 type;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 };

 template <class Tiny>

 struct tiny_at<Tiny,1>

 {

 typedef typename Tiny::t1 type;

 };

 template <class Tiny>

 struct tiny_at<Tiny,2>

 {

 typedef typename Tiny::t2 type;

 };

Note that if you try to access tiny_at's nested ::type when the second argument is a number outside the range 0...2, you'll get an error: The

unspecialized (or "primary") template is not defined.

Next, we could simply partially specialize mpl::at for tiny instances:

 namespace boost { namespace mpl {

 template <class T0, class T1, class T2, class Pos>

 struct at<tiny<T0,T1,T2>, Pos>

 : tiny_at<tiny<T0,T1,T2>,Pos::value>

 {

 };

 }}

On the face of it, there's nothing wrong with using partial specialization, but let's see how we could get the unspecialized version of mpl::at

to work for tiny. This is what the at supplied by MPL looks like:

 template<class Sequence, class N>

 struct at

 : at_impl<typename Sequence::tag>

 ::template apply<Sequence,N>

 {

 };

By default, at forwards its implementation to at_impl<Sequence::tag>, a metafunction class that knows how to perform the at function for all

sequences with that tag type. So we could add a ::tag to tiny (call it tiny_tag), and write an explicit (full) specialization of mpl::at_impl:

 struct tiny_tag {};

 template <class T0 = none, class T1 = none, class T2 = none>

 struct tiny

 {

 typedef tiny_tag tag;
 typedef tiny type;

 typedef T0 t0;

 typedef T1 t1;

 typedef T2 t2;

 };

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 namespace boost { namespace mpl {

 template <>

 struct at_impl<tiny_tag>
 {

 template <class Tiny, class N>

 struct apply : tiny_at<Tiny, N::value>

 {};

 };

 }}

This might not seem to be a big improvement over the results of partially specializing at for tiny sequences, but it is. In general, writing

partial specializations that will match all the forms taken by a particular sequence family can be impractical. It's very common for equivalent

sequence forms not to be instances of the same template, so normally at least one partial specialization for each form would be required:

You can't write a partial template specialization that matches both mpl::vector<int> and mpl::vector1<int>, for example. For the same

reasons, specializing at limits the ability of third parties to quickly build new members of the sequence family through derivation.

Recommendation

To implement an intrinsic sequence operation, always provide a sequence tag and a specialization of the operation's

_impl template.

5.11.4 Finishing the tiny_iterator Implementation

With our implementation of at in hand, we're ready to implement our tiny_iterator's dereference operation:

 namespace boost { namespace mpl {

 template <class Tiny, class Pos>

 struct deref< tiny_iterator<Tiny,Pos> >

 : at<Tiny,Pos>

 {

 };

 }}

The only thing missing now are constant-time specializations of mpl::advance and mpl:: distance metafunctions:

 namespace boost { namespace mpl {

 // random access iterator requirements

 template <class Tiny, class Pos, class N>

 struct advance<tiny_iterator<Tiny,Pos>,N>

 {

 typedef tiny_iterator<

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 Tiny

 , typename mpl::plus<Pos,N>::type

 > type;

 };

 template <class Tiny, class Pos1, class Pos2>

 struct distance<

 tiny_iterator<Tiny,Pos1>

 , tiny_iterator<Tiny,Pos2>

 >

 : mpl::minus<Pos2,Pos1>

 {};

 }}

Note that we've left the job of checking for usage errors to you in exercise 5-0.

5.11.5 begin and end

Finally, we're ready to make tiny into a real sequence; all that remains is to supply begin and end. Like mpl::at, mpl::begin and mpl::end use

traits to isolate the implementation for a particular family of sequences. Writing our begin, then, is straightforward:

 namespace boost { namespace mpl {

 template <>

 struct begin_impl<tiny_tag>

 {

 template <class Tiny>

 struct apply

 {

 typedef tiny_iterator<Tiny,int_<0> > type;

 };

 };

 }}

Writing end is a little more complicated than writing begin was, since we'll need to deduce the sequence length based on the number of

none elements. One straightforward approach might be:

 namespace boost { namespace mpl {

 template <>

 struct end_impl<tiny_tag>

 {

 template <class Tiny>

 struct apply

 : eval_if<

 is_same<none,typename Tiny::t0>

 , int_<0>

 , eval_if<

 is_same<none,typename Tiny::t1>

 , int_<1>

 , eval_if<

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 is_same<none,typename Tiny::t2>

 , int_<2>

 , int_<3>

 >

 >

 >

 {};

 };

 }}

Unfortunately, that code doesn't satisfy the O(1) complexity requirements of end: It costs O(N) template instantiations for a sequence of

length N, since eval_if/is_same pairs will be instantiated until a none element is found. To find the size of the sequence in constant time, we

need only write a few partial specializations:

 template <class T0, class T1, class T2>

 struct tiny_size

 : mpl::int_<3> {};

 template <class T0, class T1>

 struct tiny_size<T0,T1,none>

 : mpl::int_<2> {};

 template <class T0>

 struct tiny_size<T0,none,none>

 : mpl::int_<1> {};

 template <>

 struct tiny_size<none,none,none>

 : mpl::int_<0> {};

 namespace boost { namespace mpl {

 template <>

 struct end_impl<tiny_tag>

 {

 template <class Tiny>

 struct apply

 {

 typedef tiny_iterator<

 Tiny

 , typename tiny_size<
 typename Tiny::t0

 , typename Tiny::t1

 , typename Tiny::t2

 >::type
 >

 type;

 };

 };

 }}

Here, each successive specialization of tiny_size is "more specialized" than the previous one, and only the appropriate version will be

instantiated for any given tiny sequence. The best-matching tiny_size specialization will always correspond directly to the length of the

sequence.

If you're a little uncomfortable (or even peeved) at the amount of boilerplate code repetition here, we can't blame you. After all, didn't we

promise that metaprogramming would help save us from all that? Well, yes we did. We have two answers for you. First, metaprogramming

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

libraries save their users from repeating themselves, but once you start writing new sequences you're now working at the level of a library

designer.
[8]

 Your users will thank you for going to the trouble (even if they're just you!). Second, as we hinted earlier, there are other ways

to automate code generation. You'll see how even the library designer can be spared the embarrassment of repeating herself in Appendix

A.

[8] This need for repetition, at least at the metaprogramming library level, seems to be a peculiarity of C++. Most

other languages that support metaprogramming don't suffer from the same limitation, probably because their

metaprogramming capabilities are more than just a lucky accident.

It's so easy to do at this point, that we may as well implement a specialized mpl::size. It's entirely optional; MPL's default implementation of

size just measures the distance between our begin and end iterators, but since we are going for efficiency, we can save a few more

template instantiations by writing our own:

 namespace boost { namespace mpl {

 template <>

 struct size_impl<tiny_tag>

 {

 template <class Tiny>

 struct apply

 : tiny_size<

 typename Tiny::t0

 , typename Tiny::t1

 , typename Tiny::t2

 >

 {};

 };

 }}

You've probably caught on by now that the same tag-dispatching technique keeps cropping up over and over. In fact, it's used for all of the

MPL's intrinsic sequence operations, so you can always take advantage of it to customize any of them for your own sequence types.

5.11.6 Adding Extensibility

In this section we'll write some of the operations required for tiny to fulfill the Extensible Sequence requirements. We won't show you all of

them because they are so similar in spirit. Besides, we need to leave something for the exercises at the end of the chapter!

First let's tackle clear and push_front. It's illegal to call push_front on a full tiny, because our tiny sequence has a fixed capacity. Therefore,

any valid tiny<T0, T1, T2> passed as a first argument to push_front must always have length <= 2 and T2 = none, and it's okay to just drop

T2 off the end of the sequence:
[9]

[9] Actually enforcing our assumption that the sequence is not full when push_front is invoked is left for you as an

exercise.

 namespace boost { namespace mpl {

 template <>

 struct clear_impl<tiny_tag>

 {

 template <class Tiny>

 struct apply : tiny<>

 {};

 };

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 template <>

 struct push_front_impl<tiny_tag>

 {

 template <class Tiny, class T>

 struct apply

 : tiny<T, typename Tiny::t0, typename Tiny::t1>

 {};

 };

 }}

That was easy! Note that because every tiny sequence is a metafunction returning itself, we were able to take advantage of metafunction

forwarding in the body of apply.

Recommendation

For maximum MPL interoperability, when writing a class template that isn't already a metafunction, consider making it

one by adding a nested ::type that refers to the class itself. When writing a metafunction that will always return a class

type, consider deriving it from that class and having the metafunction return itself.

Writing push_back isn't going to be such a cakewalk: The transformation we apply depends on the length of the input sequence. Not to

worry; we've already written one operation whose implementation depended on the length of the input sequence: end. Since we have the

length computation conveniently at hand, all we need is a tiny_push_back template, specialized for each sequence length:

 template <class Tiny, class T, int N>

 struct tiny_push_back;

 template <class Tiny, class T>

 struct tiny_push_back<Tiny,T,0>

 : tiny<T,none,none>

 {};

 template <class Tiny, class T>

 struct tiny_push_back<Tiny,T,1>

 : tiny<typename Tiny::t0,T,none>

 {};

 template <class Tiny, class T>

 struct tiny_push_back<Tiny,T,2>

 : tiny<typename Tiny::t0,typename Tiny::t1,T>

 {};

 namespace boost { namespace mpl {

 template <>

 struct push_back_impl<tiny_tag>

 {

 template <class Tiny, class T>

 struct apply

 : tiny_push_back<

 Tiny, T, size<Tiny>::value

 >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 {};

 };

 }}

Note that what is missing here is just as important as what is present. By not defining a tiny_push_back specialization for sequences of

length 3, we made it a compile-time error to push_back into a full sequence.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

5.12. Details

By now you should have a fairly clear understanding of what goes into an MPL sequence—and what comes out of it! In upcoming chapters

you can expect to get more exposure to type sequences and their practical applications, but for now we'll just review a few of this chapter's

core concepts.

Sequence concepts

MPL sequences fall into three traversal concept categories (forward, bidirectional, and random access) corresponding to the capabilities of

their iterators. A sequence may also be front-extensible, meaning that it supports push_front and pop_front, or back-extensible, meaning

that it supports push_back and pop_back. An Associative Sequence represents a mapping from type to type with O(1) lookup.

Iterator concepts

MPL iterators model one of three traversal concepts: Forward Iterator, Bidirectional Iterator, and Random Access Iterator. Each iterator

concept refines the previous one, so that all bidirectional iterators are also forward iterators, and all random access iterators are also

bidirectional iterators. A Forward Iterator x can be incrementable and dereferenceable, meaning that next<x>::type and deref<x>::type are

well-defined, or it can be past-the-end of its sequence. A Bidirectional Iterator may be decrementable, or it may refer to the beginning of its

sequence.

Sequence algorithms

The purely functional nature of C++ template metaprogramming really dictates that MPL algorithms operate on sequences rather than on

iterator pairs. Otherwise, passing the result of one algorithm to another one would be unreasonably difficult. Some people feel that the

same logic applies to STL algorithms, and several algorithm libraries for operating on whole runtime sequences have cropped up. Look for

one in an upcoming Boost release.

Intrinsic sequence operations

Not all sequence operations can be written generically; some, such as begin and end, need to be written specifically to work with particular

sequences. These MPL metafunctions all use a tag dispatching technique to allow for easy customization.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

5.13. Exercises

5-0. Write a test program that exercises the parts of tiny we've implemented. Try to arrange your program so that it

will only compile if the tests succeed.

5-1. Write a metafunction double_first_half that takes a Random Access Sequence of integral constant wrappers of

length N as an argument, and returns a copy with the first N/2 elements doubled in value, such that the

following is TRue:

 mpl::equal<

 double_first_half< mpl::vector_c<int,1,2,3,4> >::type

 , mpl::vector_c<int,2,4,3,4>

 >::type::value

5-2. Note that push_back won't compile if its tiny argument already has three elements. How can we get the same

guarantees for push_front?

5-3. Drawing on the example of our push_back implementation, implement insert for tiny sequences. Refactor the

implementation of push_back so that it shares more code with insert.

5-4. How could we reduce the number of template instantiations required by our implementation of push_back?

(Hint: Look at our implementation of end in section 5.11.5 again.) How does that interact with the refactoring in

the previous exercise?

5-5. Implement the pop_front, pop_back, and erase algorithms for tiny.

5-6. Write a sequence adapter template called dimensions that, when instantiated on an array type, presents the

array's dimensions as a forward, non-extensible sequence:

 typedef dimensions<char [10][5][2]> seq;

 BOOST_STATIC_ASSERT(mpl::size<seq>::value == 3);

 BOOST_STATIC_ASSERT((mpl::at_c<seq,0>::type::value == 2));

 BOOST_STATIC_ASSERT((mpl::at_c<seq,1>::type::value == 5));

 BOOST_STATIC_ASSERT((mpl::at_c<seq,2>::type::value == 10));

Consider using the type traits library facilities to simplify the implementation.

5-7. Modify the dimensions sequence adapter from exercise 5-6 to provide bidirectional iterators and push_back and

pop_back operations.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

5-8. Write a fibonacci_series class that represents an infinite forward sequence of Fibonacci numbers:

 typedef mpl::lower_bound< fibonacci_series, int_<10> >::type n;

 BOOST_STATIC_ASSERT(n::value == 8);

 typedef mpl::lower_bound< fibonacci_series, int_<50> >::type m;

 BOOST_STATIC_ASSERT(m::value == 34);

Each element of the Fibonacci series is the sum of the previous two elements. The series begins 0, 1, 1, 2, 3,

5, 8, 13....

5-9. Modify the fibonacci_series sequence from exercise 5-8 to be limited by a maximum number of elements in the

series. Make the sequence's iterators bidirectional:

 typedef fibonacci_series<8> seq;

 BOOST_STATIC_ASSERT(mpl::size<seq>::value == 8);

 BOOST_STATIC_ASSERT(mpl::back<seq>::type::value == 21);

5-10*. Write a tree class template for composing compile-time binary tree data structures:

 typedef tree< // double

 double // / \

 , tree<void*,int,long> // void* char

 , char // / \

 > tree_seq; // int long

Implement iterators for pre-order, in-order, and post-order traversal of the tree elements:

 BOOST_STATIC_ASSERT((mpl::equal<

 preorder_view<tree_seq>

 , mpl::vector<double,void*,int,long,char>

 , boost::is_same<_1,_2>

 >::value));

 BOOST_STATIC_ASSERT((mpl::equal<

 inorder_view<tree_seq>

 , mpl::vector<int,void*,long,double,char>

 , boost::is_same<_1,_2>

 >::value));

 BOOST_STATIC_ASSERT((mpl::equal<

 postorder_view<tree_seq>

 , mpl::vector<int,long,void*,char,double>

 , boost::is_same<_1,_2>

 >::value));

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Important

Extend the tests from exercise 5-0 to cover the algorithms you implemented in exercises 5-3, 5-4, and 5-5.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Chapter 6. Algorithms

Alexander Stepanov, the father of the STL, has often stressed the central role of algorithms in his library. The MPL is no different, and now

that you understand the sequences and iterators on which they operate, we are ready to give algorithms the in-depth treatment they

deserve.

We'll start by discussing the relationship between algorithms and abstraction. Then we'll cover the similarities and differences between

algorithms in the STL and MPL, in particular the design choices made in the MPL to deal with the fact that metadata is immutable. Then

we'll describe the most useful algorithms in the MPL's three algorithm categories, and conclude with a brief section on implementing your

own sequence algorithms.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

6.1. Algorithms, Idioms, Reuse, and Abstraction

Abstraction can be defined as generalization away from specific instances or implementations, and toward the "essence" of an object or

process. Some abstractions, like that of an STL iterator, become so familiar that they can be called idiomatic. In software design, the idea

reuse achieved through idiomatic abstractions can be just as important as code reuse. The best libraries provide both reusable code

components and reusable idioms.

Because most of them operate at the relatively low level of sequence traversal, it's easy to miss the fact that the STL algorithms represent

powerful abstractions. In fact, it's commonly argued—not entirely without cause—that for trivial tasks, the algorithms are inferior to

handwritten loops. For example:
[1]

[1] In all fairness to the STL algorithms, this example was deliberately chosen to make the case for writing loops by

hand.

 // "abstraction"

 std::transform(

 v.begin(), v.end(), v.begin()

 , std::bind2nd(std::plus<int>(),42)

);

 // handwritten loop

 typedef std::vector<int>::iterator v_iter;

 for (v_iter i = v.begin(), last = v.end(); i != last; ++i)

 *i += 42;

So, what's wrong with the use of TRansform above?

The user needs to handle iterators even if she wants to operate on the whole sequence.

The mechanism for creating function objects is cumbersome and ugly, and brings in at least as many low-level details as it

hides.

Unless the person reading the code eats and breathes the STL components every day, the "abstraction" actually seems to

obfuscate what's going on instead of clarifying it.

These weaknesses, however, can be overcome quite easily. For example, we can use the Boost Lambda library, which inspired MPL's

compile time lambda expressions, to simplify and clarify the runtime function object:
[2]

[2] In these examples, _1 refers to a placeholder object from the Boost Lambda library (in namespace boost::lambda).

MPL's placeholder types were inspired by the Lambda library's placeholder objects.

 std::transform(v.begin(), v.end(), v.begin(), _1 + 42);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

or even:

 std::for_each(v.begin(), v.end(), _1 += 42);

Both statements do exactly the same thing as the raw loop we saw earlier, yet once you are familiar with the idioms of the Lambda library,

iterators, and for_each, the use of algorithms is far clearer.

We could raise the abstraction level a bit further by rewriting STL algorithms to operate on whole sequences (like the MPL algorithms do),

but let's stop here for now. From the simplification above, you can already see that many of the problems with our example weren't the

fault of the algorithm at all. The real culprit was the STL function object framework used to generate the algorithm's function argument.

Setting aside those problems, we can see that these "trivial" algorithms abstract away several deceptively simple low-level details:

Creation of temporary iterators.

Correct declaration of the iterator type, even in generic code.

Avoiding known inefficiencies
[3]

[3] When efficiency counts, it's best to avoid post-incrementing most iterators (iter++), since the

operator++ implementation must make a copy of the iterator before it is incremented, in order to return its

original value. Standard library implementators know about this pitfall and go out of their way to use

pre-increment (++iter) instead wherever possible.

Taking advantage of known optimizations (e.g., loop unrolling)

And correct generic loop termination: for_each uses pos != finish instead of pos < finish, which would lock it into random access

iterators

These all seem easy enough to get right when you consider a single loop, but when that pattern is repeated throughout a large project the

chance of errors grows rapidly. The optimizations mentioned above only tend to increase that risk, as they generally introduce even more

low-level detail.

More importantly, the use of for_each achieves separation of concerns: the common pattern of traversing and modifying all the elements of

a sequence is neatly captured in the name of the algorithm, leaving us only to specify the details of the modification. In the compile time

world, this division of labor can be especially important, because as you can see from the binary template we covered in Chapter 1, coding

even the simplest repeated processes is not so simple. It's a great advantage to be able to use the library's pre-written algorithms, adding

only the details that pertain to the problem you're actually trying to solve.

When you consider the complexity hidden behind algorithms such as std::lower_bound, which implements a customized binary search, or

std::stable_sort, which gracefully degrades performance under low memory conditions, it's much easier to see the value of reusing the STL

algorithms. Even if we haven't convinced you to call std::for_each whenever you have to operate on all elements of a sequence, we hope

you'll agree that even simple sequence algorithms provide a useful level of abstraction.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

6.2. Algorithms in the MPL

Like the STL algorithms, the MPL algorithms capture useful sequence operations and can be used as primitive building blocks for more

complex abstractions. In the MPL algorithm set, you'll find just about everything you get from the standard <algorithm> header, similarly

named.

That said, there are a few notable differences between the STL and MPL algorithms. You already know that metadata is immutable and

therefore MPL algorithms must return new sequences rather than changing them in place, and that MPL algorithms operate directly on

sequences rather than on iterator ranges. Aside from the fact that the choice to operate on sequences gives us a higher-level interface, it is

also strongly related to the functional nature of template metaprogramming. When result sequences must be returned, it becomes natural

to pass the result of one operation directly to another operation. For example:

 // Given a nonempty sequence Seq, returns the largest type in an

 // identical sequence where all instances of float have been

 // replaced by double.

 template <class Seq>

 struct biggest_float_as_double

 : mpl::deref<

 typename mpl::max_element<

 typename mpl::replace<

 Seq

 , float

 , double

 >::type

 , mpl::less<mpl::sizeof_<_1>, mpl::sizeof_<_2> >

 >::type

 >

 {};

If max_element and replace operated on iterators instead of sequences, though, biggest_float_as_double would probably look something

like this:

 template <class Seq>

 struct biggest_float_as_double

 {

 typedef typename mpl::replace<

 , typename mpl::begin<Seq>::type

 , typename mpl::end<Seq>::type

 , float

 , double

 >::type replaced;

 typedef typename mpl::max_element<

 , typename mpl::begin<replaced>::type

 , typename mpl::end<replaced>::type

 , mpl::less<mpl::sizeof_<_1>, mpl::sizeof_<_2> >

 >::type max_pos;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 typedef typename mpl::deref<max_pos>::type type;

 };

The upshot of operating primarily on whole sequences is an increase in interoperability, because the results of one algorithm can be

passed smoothly to the next.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

6.3. Inserters

There's another important difference between MPL and STL algorithms that is also a consequence of the functional nature of template

metaprogramming. The family of "sequence-building" STL algorithms such as copy, TRansform, and replace_copy_if all accept an output

iterator into which a result sequence is written. The whole point of output iterators is to create a stateful change—for example, to modify an

existing sequence or extend a file—but there is no state in functional programming. How would you write into an MPL iterator? Where

would the result go? None of our examples have used anything that looks remotely like an output iterator—instead, they have simply

constructed a new sequence of the same type as some input sequence.

Each of the STL's mutating algorithms can write output into a sequence whose type differs from that of any input sequence or, when

passed an appropriate output iterator, it can do something completely unrelated to sequences, like printing to the console. The MPL aims

to make the same kind of thing possible at compile time, allowing us to arbitrarily customize the way algorithm results are handled, by

using inserters.
[4]

[4] The name "inserter" is inspired by the STL's family of output-iterator-creating function adaptors that includes

std::front_inserter and std::back_inserter.

An inserter is nothing more than a type with two type members:

::state, a representation of information being carried through the algorithm, and

::operation, a binary operation used to build a new ::state from an output sequence element and the existing ::state.

For example, an inserter that builds a new vector might look like:

 mpl::inserter<mpl::vector<>, mpl::push_back<_,_> >

where mpl::inserter is defined to be:

 template <class State, class Operation>

 struct inserter

 {

 typedef State state;

 typedef Operation operation;

 };

In fact, inserters built on push_back and push_front are so useful that they've been given familiar names: back_inserter and front_inserter.

Here's another, more evocative way to spell the vector-building inserter:

 mpl::back_inserter<mpl::vector<> >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

When passed to an MPL algorithm such as copy, it functions similarly to std:: back_inserter in the following STL code:

 std::vector<any> v; // start with empty vector

 std::copy(start, finish, std::back_inserter(v));

Now let's see how an inserter actually works by using mpl::copy to copy the elements of a list into a vector. Naturally, mpl::copy takes an

input sequence in place of std::copy's input iterator pair, and an inserter in place of std::copy's output iterator, so the invocation looks like

this:

 typedef mpl::copy<

 mpl::list<A, B, C>

 , mpl::back_inserter<mpl::vector<> >

 >::type result_vec;

At each step of the algorithm, the inserter's binary operation is invoked with the result from the previous step (or, in the first step, the

inserter's initial type) as its first argument, and the element that would normally be written into the output iterator as its second argument.

The algorithm returns the result of the final step, so the above is equivalent to:

 typedef

 mpl::push_back< // >----------------+

 // |

 mpl::push_back< // >--------------+ |

 // | |

 mpl::push_back< // >------------+ | |

 mpl::vector<> // | | |

 , A // | | |

 >::type // first step <-+ | |

 , B // | |

 >::type // second step <--+ |

 , C // |

 >::type // third step <-----+

 result_vec;

Because it's very common to want to build the same kind of sequence you're operating on, MPL supplies default inserters for all of its

sequence-building algorithms. That's why we were able to use TRansform so effectively without specifying an inserter.

Note that an inserter need not do anything that looks like insertion. The following example uses an inserter to sum the initial elements of

each element in a sequence of sequences:

 typedef mpl::vector<

 mpl::vector_c<int, 1, 2, 3>

 , mpl::vector_c<int, 4, 5, 6>

 , mpl::vector_c<int, 7, 8, 9>

 > S;

 typedef mpl::transform<

 S // input sequence

 , mpl::front<_> // transformation selects front element

 , mpl::inserter<

 mpl::int_<0> // result starts with 0

 , mpl::plus<_,_> // and adds each output element

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 >

 >::type sum; // 0 + 1 + 4 + 7 == 12

Without the inserter, transform would build a vector consisting of the initial elements of each sequence in S; with the inserter, those initial

elements are fed into mpl::plus<_,_>, starting with the initial value of mpl::int_<0>.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

6.4. Fundamental Sequence Algorithms

The pattern used by back_inserter of "folding" sequence elements into a result, is at the heart of the way sequences are processed in a

functional environment. Users of Haskell and ML will immediately recognize it as the pattern used by the fold function (and hardcore STL

users will recognize it as the pattern of std::accumulate). In pseudocode:

 fold(Seq, Prev, BinaryOp) :=

 if Seq is empty then:

 Prev

 else: // combine the first element with Prev

 fold(// and process the rest recursively

 tail(Seq)

 , BinaryOp(Prev, head(Seq))

 , BinaryOp

)

From the caller's viewpoint, Prev should probably be called InitialType. We chose the name Prev because it makes understanding the

algorithm's implementation easier. At each step of processing other than the first, Prev is the result from the previous step of processing.

You can build many other more complicated sequence traversal algorithms on top of fold. For example, we can reverse any

front-extensible sequence with:

 template <class Seq>

 struct reverse

 : mpl::fold<

 Seq

 , typename mpl::clear<Seq>::type // initial type

 , mpl::push_front<_,_> // binary operation

 >

 {};

It's worth noticing the curious property of fold that, when we use it with push_front, the result always comes out in reverse order. Since lists

can only be built with push_front and it's mighty inefficient to have to use reverse just to put things back in the right order every time we

generate a list result, MPL also provides a reverse_fold metafunction that processes elements in reverse order. To do that efficiently with a

sequence that can only be traversed in the forward direction may seem like quite a trick at first, but it's actually pretty simple. Instead of

operating on the sequence's first element and folding the rest, we first fold the rest and then operate on the first element:

 reverse_fold(Seq, Prev, BinaryOp) :=

 if Seq is empty then:

 Prev

 else: // process the rest of the sequence

 BinaryOp(// and combine with the first element

 reverse_fold(tail(seq), Prev, BinaryOp)

 , head(seq)

)

Instead of processing each sequence element "on the way in" to the traversal, we're processing it "on the way out."

If we can process elements either "going in" or "coming back out," why not both? MPL's reverse_fold is actually a little more general than

what we've shown you. A fourth optional argument can be used to supply an "inward," or forward, operation. So the algorithm actually

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

looks more like this:

 reverse_fold(Seq, Prev, OutOp, InOp = _1) :=

 if Seq is empty then:

 Prev

 else:

 OutOp(

 reverse_fold(

 tail(Seq)

 , InOp(Prev,head(Seq)) // just Prev by default

 , OutOp

 , InOp)

 , head(Seq)

)

This generalization allows us to take full advantage of the inherently bidirectional pattern of a recursive sequence traversal. Note that InOp

is, by default, just a function that returns its first argument. When we don't supply InOp, it's as though Prev were passed directly to the

recursive call.

Before we finish with low-level iteration algorithms and move on to more exciting fare, there's just one more generalization in MPL's fold

algorithm family we need to cover: Instead of iterating over elements of the sequence, we can iterate over positions, that is, iterator values.

That's useful, for example, if we want to process consecutive subranges of the input sequence. Since we can always retrieve the element

referenced by an iterator, it's slightly more general to fold sequence iterators with iter_fold than to fold sequence elements with plain fold. In

pseudocode, iter_fold is defined as follows:

 iter_fold(Seq, Prev, BinaryOp) :=

 if Seq is empty then:

 Prev

 else: // combine the first position with Prev

 iter_fold(// and process the rest recursively

 tail(Seq)

 , BinaryOp(Prev, begin(Seq))

 , BinaryOp

)

The main difference between fold and iter_fold is that the second argument to BinaryOp is an iterator instead of an element. Naturally, the

full generalization, reverse_iter_fold, is provided too:

 reverse_iter_fold(Seq, Prev, OutOp, InOp = _1) :=

 if Seq is empty then:

 Prev

 else:

 OutOp(

 reverse_iter_fold(

 tail(Seq)

 , InOp(Prev, begin(Seq))

 , OutOp

 , InOp)

 , begin(Seq)

)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

6.5. Querying Algorithms

Table 6.1 describes the MPL's sequence querying algorithms. Most of these should be immediately familiar to STL users, with the possible

exception of contains, which is so simple and useful that it probably should have been one of the STL algorithms to begin with. Similarly to

the corresponding STL algorithms, compare predicates default to mpl::less<_,_> but, if supplied, must induce a strict weak ordering on their

arguments.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 6.1. Sequence Querying Algorithms

Metafunction Result ::type Complexity

mpl::find<seq, T> An iterator to the first occurrence of T in seq, or

mpl::end<seq>::type if not found.

Linear.

mpl::find_if<seq, T, pred> An iterator to the first element of seq that satisfies

predicate pred, or mpl::end<seq>::type if not found.

Linear.

mpl::contains<seq, T> True iff seq contains T. Linear.

mpl::count<seq, T> The number of occurrences of T in seq. Linear.

mpl::count_if<seq, pred> The number of elements in seq that satisfy predicate

pred.

Linear.

mpl::equal<seq1, seq2> True iff seq1 and seq2 contain the same elements in

the same order.

Linear.

mpl::lower_bound<

 seq, T

 , compare

>

The earliest order-preserving position at which T

could be inserted in a sequence seq sorted

according to comparison compare.

Logarithmic in invocations to compare.

Logarithmic traversal of Random

Access Sequences; linear traversal

otherwise.

mpl::upper_bound<

 seq, T

 , compare

>

The latest order-preserving position at which T could

be inserted in a sequence seq sorted according to

comparison compare.

Logarithmic in invocations to compare.

Logarithmic traversal of Random

Access Sequences; linear traversal

otherwise.

mpl::max_element<

 seq

 , compare

>

The first position i in seq such that for all positions j:

mpl::apply<

 compare

 , mpl::deref<i>::type

 , mpl::deref<j>::type

>::type::value == false

Linear.

mpl::min_element<

 seq

 , compare

>

The first position i in seq such that for all positions j:

mpl::apply<

 compare

 , mpl::deref<j>::type

 , mpl::deref<i>::type

>::type::value == false

Linear.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

6.6. Sequence Building Algorithms

All of MPL's sequence building algorithms follow the same pattern. It's a little bit elaborate, but as a result the algorithms are extremely

easy to use. The pattern is as follows, for any sequence building algorithm xxxx.

There is a corresponding algorithm, reverse_xxxx, which accepts the same arguments but operates on input sequence

elements in reverse order. We call xxxx and reverse_xxxx counterpart algorithms.

The algorithm's last argument is an optional inserter.

If the inserter is not specified:

– If the first sequence argument Seq is back-extensible, the result is as if

 mpl::back_inserter<mpl::clear<Seq>::type>

had been passed as the inserter.

– Otherwise, the result is as if the counterpart algorithm had been invoked with

 mpl::front_inserter<mpl::clear<Seq>::type>

as the inserter.

Let's see how this plays out in practice. In the following examples, v123 indicates a type with "vector properties" equivalent to

mpl::vector_c<int, 1,2,3>. Similarly, 1876 indicates a type equivalent to mpl::list_c<int, 8,7,6>.

 // starting sequences

 typedef mpl::vector_c<int, 1, 2, 3> v123;

 typedef mpl::list_c<int, 1, 2, 3> l123;

 // transformation

 typedef mpl::plus<_1,mpl::int_<5> > add5;

 // using the default inserters

 typedef mpl::transform<v123, add5>::type v678;

 typedef mpl::transform<l123, add5>::type l678;

 typedef mpl::reverse_transform<v123, add5>::type v876;

 typedef mpl::reverse_transform<l123, add5>::type l876;

Thus, the simple no-inserter forms produce the expected result for both front-extensible and back-extensible sequences. In order to use

the versions with inserters, though, we have to be aware of both the algorithm's traversal direction and the properties of the sequence

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

we're building:

 // this inserter is equivalent to the default

 typedef mpl::transform<

 v123, add5, mpl::back_inserter<mpl::vector<> >

 >::type v678;

 // also equivalent to the default

 typedef mpl::reverse_transform<

 l123, add5, mpl::front_inserter<mpl::list<> >

 >::type l678;

 // properties of input sequence don't affect the result

 typedef mpl::reverse_transform<

 v123, add5, mpl::front_inserter<mpl::list<> >

 >::type l678;

The inserter used in building a new sequence should always be determined by the front- or back-extensibility of the result sequence. The

library's default inserter selection follows the same rule; it just happens that the properties of the result sequence when there is no

user-supplied inserter are the same as those of the input sequence.

Table 6.2 summarizes the sequence building algorithms. Note that neither the reverse_ forms nor those with the optional inserter

arguments are listed, but it should be possible to deduce their existence and behavior from the description above. They are also covered in

detail in the MPL reference manual. We should note that copy and reverse are exceptions to the naming rule: They are reversed versions

of one another, and there is neither a reverse_copy nor a reverse_reverse algorithm in the library.

Table 6.2. Sequence Building Algorithms

Metafunction Result::type

mpl::copy<seq> The elements of seq.

mpl::copy_if<seq, pred> The elements of seq that satisfy predicate pred.

mpl::remove<seq, T> A sequence equivalent to seq, but without any elements identical

to T.

mpl::remove_if<seq, pred> Equivalent to seq, but without any elements that satisfy predicate

pred.

mpl::replace<seq, old, new> Equivalent to seq, but with all occurrences of old replaced by new.

mpl::replace_if<seq, pred, new> Equivalent to seq, but with all elements satisfying pred replaced by

new.

mpl::reverse<seq> The elements of seq in reverse order.

mpl::transform<seq, unaryOp>

mpl::transform<seq1, seq2,

 binaryOp>

The results of invoking unaryOp with consecutive elements of seq,

or of invoking binaryOp with consecutive pairs of elements from

seq1 and seq2.

mpl::unique<seq>

mpl::unique<seq, equiv>
The sequence composed of the initial elements of every subrange

of seq whose elements are all the same. If the equivalence relation

equiv is supplied, it is used to determine sameness.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The sequence building algorithms all have linear complexity, and all return a sequence of the same type as their first input sequence by

default, but using an appropriate inserter you can produce any kind of result you like.

Functional Algorithms Under Aliases

Many of these sequence building algorithms, whose names are taken from similar STL algorithms, actually originated in

the functional programming world. For example, the two-argument version of transform is known to functional

programmers as "map," the three-argument transform is sometimes called "zip_with," and copy_if is also known as

"filter."

Because we've left the reverse_ algorithms out of Table 6.2 it's only fair that we point out that the form of unique that accepts an

equivalence relation is, well, unique among all of the sequence building algorithms. The reverse_ forms of most algorithms produce the

same elements as the normal forms do (in reverse order), but the elements of sequences produced by unique and reverse_unique for the

same arguments may differ. For example:

 typedef mpl::equal_to<

 mpl::shift_right<_1, mpl::int_<1> >

 , mpl::shift_right<_2, mpl::int_<1> >

 > same_except_last_bit; // predicate

 typedef mpl::vector_c<int, 0,1,2,3,4,5> v;

 typedef unique<

 v, same_except_last_bit

 >::type v024; // 0, 2, 4

 typedef reverse_unique<

 v, same_except_last_bit

 >::type v531; // 5, 3, 1

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

6.7. Writing Your Own Algorithms

Our first piece of advice for anyone wishing to implement a metafunction that does low-level sequence traversal is, "Leave the traversal to

us!" It's usually much more effective to simply reuse the MPL algorithms as primitives for building higher-level ones. You could say we took

that approach in Chapter 3, when we implemented divide_dimensions in terms of TRansform. You'll save more than just coding effort:

MPL's primitive iteration algorithms have been specially written to avoid deep template instantiations, which can drastically slow down

compilation or even cause it to fail.
[5]

 Many of the MPL algorithms are ultimately implemented in terms of iter_fold for the same reasons.

[5] See Appendix C for more information.

Because the MPL provides such an extensive repertoire of linear traversal algorithms, if you find you must write a metafunction that does

its own sequence traversal, it will probably be because you need some other traversal pattern. In that case your implementation will have

to use the same basic recursive formulation that we introduced in Chapter 1 with the binary template, using a specialization to terminate the

recursion. We recommend that you operate on iterators rather than on successive incremental modifications of the same sequence for two

reasons. First, it's going to be efficient for a wider variety of sequences. Not all sequences support O(1) pop_front operations, and some

that do may have a rather high constant factor, but all iterators support O(1) incrementation via next. Second, as we saw with iter_fold,

operating on iterators is slightly more general than operating on sequence elements. That extra generality costs very little at

implementation time, but pays great dividends in algorithm reusability.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

6.8. Details

Abstraction

An idea that emphasizes high-level concepts and de-emphasizes implementation details. Classes in runtime C++ are one kind of

abstraction commonly used to package state with associated processes. Functions are one of the most fundamental kinds of abstraction

and are obviously important in any functional programming context. The MPL algorithms are abstractions of repetitive processes and are

implemented as metafunctions. The abstraction value of algorithms in MPL is often higher than that of corresponding STL algorithms

simply because the alternative to using them is so much worse at compile time. While we can traverse an STL sequence with a for loop

and a couple of iterators, a hand-rolled compile-time sequence traversal always requires at least one new class template and an explicit

specialization.

Fold

A primitive functional abstraction that applies a binary function repeatedly to the elements of a sequence and an additional value, using the

result of the function at each step as the additional value for the next step. The STL captures the same abstraction under the name

accumulate. MPL generalizes fold in two ways: by operating on iterators instead of elements (iter_fold) and by supplying bidirectional

traversal (reverse_[iter_] fold).

Querying algorithms

MPL supports a variety of algorithms that return iterators or simple values; these generally correspond exactly to STL algorithms of the

same names.

Sequence building algorithms

The STL algorithms that require Output Iterators arguments correspond to pairs of forward and backward MPL "sequence building"

algorithms that, by default, construct new sequences of the same kind as their first input sequence. They also accept an optional inserter

argument that gives greater control over the algorithm's result.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Inserters

In the STL tradition, a function whose name ends with inserter creates an output iterator for adding elements to a sequence. MPL uses the

term to denote a binary metafunction packaged with an additional value, which is used as an output processor for the result elements of an

algorithm. The default inserters used by the algorithms are front_inserter<S> and back_inserter<S>; they fold the results into S using

push_front or push_back. Using an inserter with an algorithm is equivalent to applying fold to the algorithm's default (no-inserter) result, the

inserter's function, and its initial state. It follows that there's no reason an inserter (or a sequence building algorithm) needs to build new

sequences; it can produce an arbitrary result depending on its function component.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

6.9. Exercises

6-0. Use mpl::copy with a hand-built inserter to write a smallest metafunction that finds the smallest of a sequence of

types. That is:

 BOOST_STATIC_ASSERT((

 boost::is_same<

 smallest< mpl::vector<int[2], char, double&> >::type

 , char

 >::value

));

Now that you've done it, is it a good way to solve that problem? Why or why not?

6-1. Rewrite the binary template from section 1.4.1 using one of the MPL sequence iteration algorithms, and write a

test program that will only compile if your binary template is working. Compare the amount of code you wrote

with the version using handwritten recursion presented in Chapter 1. What characteristics of the problem

caused that result?

6-2. Because std::for_each is the most basic algorithm in the standard library, you may be wondering why we didn't

say anything about its compile time counterpart. The fact is that unlike, for example, TRansform, the algorithm

does not have a pure compile time counterpart. Can you offer an explanation for that fact?

6-3. Write an inserter class template called binary_tree_inserter that employs the tree template from exercise 5-10

to incrementally build a binary search tree:

 typedef mpl::copy<

 mpl::vector_c<int,17,25,10,2,11>

 , binary_tree_inserter< tree<> >

 >::type bst;

 // int_<17>

 // / \

 // int_<10> int_<25>

 // / \

 // int_<2> int_<11>

 BOOST_STATIC_ASSERT((mpl::equal<

 inorder_view<bst>

 , mpl::vector_c<int,2,10,11,17,25>

 >::value));

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

6-4. Write an algorithm metafunction called binary_tree_search that performs binary search on trees built using

binary_tree_inserter from exercise 6-3.

 typedef binary_tree_search<bst,int_<11> >::type pos1;

 typedef binary_tree_search<bst,int_<20> >::type pos2;

 typedef mpl::end<bst>::type end_pos;

 BOOST_STATIC_ASSERT((!boost::is_same< pos1,end_pos >::value));

 BOOST_STATIC_ASSERT((boost::is_same< pos2,end_pos >::value));

6-5*. List all algorithms in the standard library and compare their set to the set of algorithms provided by MPL.

Analyze the differences. What algorithms are named differently? What algorithms have different semantics?

What algorithms are missing? Why do you think they are missing?

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Chapter 7. Views and Iterator Adaptors

Algorithms like TRansform provide one way to operate on sequences. This chapter covers the use of sequence views, a powerful

sequence processing idiom that is often superior to the use of algorithms.

First, an informal definition:

Sequence View

A sequence view—or view for short—is a lazy adaptor that delivers an altered presentation of one or more underlying sequences.

Views are lazy: Their elements are only computed on demand. We saw examples of lazy evaluation when we covered nullary

metafunctions in Chapter 3 and eval_if in Chapter 4. As with other lazy constructs, views can help us avoid premature errors and

inefficiencies from computations whose results will never be used. Also sequence views sometimes fit a particular problem better than

other approaches, yielding simpler, more expressive, and more maintainable code.

In this chapter you will find out how views work and we will discuss how and when to use them. Then we'll explore the view classes that

come with the MPL and you will learn how to write your own.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

7.1. A Few Examples

In the following sections we'll explore a few problems that are particularly well-suited to the use of views, which should give you a better

feeling for what views are all about. We hope to show you that the idea of views is worth its conceptual overhead, and that these cases are

either more efficient or more natural to code using views.

7.1.1 Comparing Values Computed from Sequence Elements

Let's start with a simple problem that will give you a taste of how views work:

Write a metafunction padded_size that, given an integer MinSize and a sequence Seq of types ordered by increasing size, returns the size

of the first element e of Seq for which sizeof(e) >= MinSize.

7.1.1.1 A First Solution

Now let's try to solve the problem with the tools we've covered so far. The fact that we're searching in a sorted sequence is a clue we'll

want to use one of the binary searching algorithms upper_bound or lower_bound at the core of our solution. The fact that we're looking for

a property of the first element satisfying the property narrows the choice to lower_bound, and allows us to sketch an outline of the solution:

 template<class Seq, class MinSize>

 struct padded_size

 : mpl::sizeof_< // the size of

 typename mpl::deref< // the element at

 typename mpl::lower_bound< // the first position

 Seq

 , MinSize

 , comparison predicate // satisfying...

 >::type

 >::type

 >

 {};

In English, this means "return the size of the result of the element at the first position satisfying some condition," where some condition is

determined by the comparison predicate passed to lower_bound.

The condition we want to satisfy is sizeof(e) >=MinSize. If you look up lower_bound in the MPL reference manual you'll see that its simple

description doesn't really apply to this situation:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Returns the first position in the sorted Sequence [i.e. Seq] where T [i.e., MinSize] could be inserted without violating

the ordering.

After all, Seq is ordered on element size, and we don't care about the size of the integral constant wrapper MinSize; we're not planning to

insert it. The problem with this simple description of lower_bound is that it's geared towards homogeneous comparison predicates, where T

is a potential sequence element. Now, if you read a bit further in the lower_bound reference you'll find this entry:

 typedef lower_bound< Sequence, T, Pred >::type i;

Return type: A model of Forward Iterator

Semantics: i is the furthermost iterator in Sequence such that, for every iterator j in

 [begin<Sequence>::type, i),

 apply<Pred, deref<j>::type, T >::type::value

is true.

In English, this means that the result of lower_bound will be the last position in Sequence such that the predicate, applied to any element at

a prior position and T, yields true. This more precise description seems as though it may work for us: We want the last position such that,

for all elements e at prior positions, sizeof(e) <MinSize::value. Therefore, the predicate will be:

 mpl::less<mpl::sizeof_<_1>, _2>

Inserting the predicate into our complete metafunction, we are left with:

 template<class Seq, class MinSize>

 struct padded_size

 : mpl::sizeof_<

 typename mpl::deref<

 typename mpl::lower_bound<

 Seq

 , MinSize

 , mpl::less<mpl::sizeof_<_1>, _2>
 >::type

 >::type

 >

 {};

7.1.1.2 Analysis

Now let's take a step back and look at what we just did. If you're like us, your code-quality spider sense has started tingling.

First of all, writing such a simple metafunction probably shouldn't require us to spend so much time with the MPL reference manual. In

general, if you had a tough time writing a piece of code, you can expect maintainers to have an even harder time trying to read it. After all,

the code's author at least has the advantage of knowing her own intention. In this case, the way that lower_bound deals with

heterogeneous comparisons and the order of arguments to its predicate demanded significant study, and it probably won't be easy to

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

remember; it seems unfair to ask those who come after us to pore through the manual so they can understand what we've written. After all,

those who come after may be us!

Secondly, even if we set aside the need to consult the reference manual, there's something odd about the fact that we're computing the

size of sequence elements within the lower_bound invocation, and then we're again asking for the size of the element at the position

lower_bound returns to us. Having to repeat oneself is irksome, to say the least.

7.1.1.3 A Simplification

Fortunately, that repetition actually provides a clue as to how we might improve things. We're searching in a sequence of elements ordered

by size, comparing the size of each one with a given value and returning the size of the element we found. Ultimately, we're not at all

interested in the sequence elements themselves: we only care about their sizes. Furthermore, if we could do the search over a sequence

of sizes, we could use a homogeneous comparison predicate:

 template<class Seq, class MinSize>

 struct padded_size

 : mpl::deref<

 typename mpl::lower_bound<

 typename mpl::transform<

 Seq, mpl::sizeof_<_>

 >::type
 , MinSize

 , mpl::less<_,_>
 >::type

 >

 {};

In fact, mpl::less<_,_> is already lower_bound's default predicate, so we can simplify the implementation even further:

 template<class Seq, class MinSize>

 struct padded_size

 : mpl::deref<

 typename mpl::lower_bound<

 typename mpl::transform<

 Seq, mpl::sizeof_<_>

 >::type

 , MinSize

 >::type

 >

 {};

Naturally—since this chapter is building a case for views—there's a problem with this simplified implementation too: it's inefficient. While

our first implementation invoked mpl::sizeof_ only on the O(log N) elements visited by lower_bound during its binary search, this one uses

transform to greedily compute the size of every type in the sequence.

7.1.1.4 Fast and Simple

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Fortunately, we can have the best of both worlds by turning the greedy size computation into a lazy one with transform_view:

 template<class Seq, class MinSize>

 struct first_size_larger_than

 : mpl::deref>

 typename mpl::lower_bound<

 mpl::transform_view<Seq, mpl::sizeof_<_> >
 , MinSize

 >::type

 >

 {};

transform_view<S,P> is a sequence whose elements are identical to the elements of transform<S,P>, but with two important differences:

Its elements are computed only "on demand"; in other words, it's a lazy sequence.1.

Through the ::base member of any of its iterators, we can get an iterator to the corresponding position in S.
[1]

[1] We'll explain base in section 7.3.

2.

If the approach we've taken seems a little unfamiliar, it's probably because people don't usually code this way in runtime C++. However,

once exposed to the virtues of laziness, you quickly discover that there is a whole category of algorithmic problems similar to this one, and

that solving them using views is only natural, even at runtime.
[2]

[2] See the History section at the end of this chapter for some references to runtime views libraries.

7.1.2 Combining Multiple Sequences

Only one compile-time sequence building algorithm, TRansform, has direct support for operating on pairs of elements from two input

sequences. If not for its usefulness, this nonuniformity in the library design could almost be called an aesthetic wart: It's merely a

concession to convenience and consistency with the STL. For other kinds of operations on multiple sequences, or to transform tHRee or

more input sequences, we need a different strategy.

You could code any new multi-sequence algorithm variant "by hand," but as you can probably guess, we'd rather encourage you to reuse

some MPL tools for that purpose. There's actually a component that lets you use your trusty single-sequence tools to solve any parallel

N-sequence problem. MPL's zip_view transforms a sequence of N input sequences into a sequence of N-element sequences composed of

elements selected from the input sequences. So, if S is [s1, s2, s3 ...], T is [t1, t2, t3 ...], and U is [u1, u2, u3 ...], then the elements of

zip_view<vector<S,T,U> > are [[s1, t1, u1 ...], [s2, t2, u2 ...], [s3, t3, u3 ...] ...].

For example, the elementwise sum of three vectors might be written:

 mpl::transform_view<

 mpl::zip_view<mpl::vector<V1,V2,V3> >

 , mpl::plus<

 mpl::at<_, mpl::int_<0> >

 , mpl::at<_, mpl::int_<1> >

 , mpl::at<_, mpl::int_<2> >

 >

 >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

That isn't too bad, but we have to admit that unpacking vector elements with mpl::at is both cumbersome and ugly. We can clean the code

up using MPL's unpack_args wrapper, which transforms an N-argument lambda expression like mpl::plus<_,_,_> into a unary lambda

expression. When applied to a sequence of N elements,

 mpl::unpack_args<lambda-expression>

extracts each of the sequence's N elements and passes them as consecutive arguments to lambda-expression.

Whew! That description is a bit twisty, but fortunately a little code is usually worth 1,000 words. This equivalent rewrite of our elementwise

sum uses unpack_args to achieve a significant improvement in readability:

 mpl::transform_view<

 mpl::zip_view<mpl::vector<V1,V2,V3> >

 , mpl::unpack_args<mpl::plus<_,_,_> >

 >

7.1.3 Avoiding Unnecessary Computation

Even if views don't appeal to you conceptually, you should still use them to solve problems that can benefit from their lazy nature.

Real-world examples are numerous, so we'll just supply a few here:

 // does seq contain int, int&, int const&, int volatile&,

 // or int const volatile&?

 typedef mpl::contains<

 mpl::transform_view<

 seq

 , boost::remove_cv< boost::remove_reference<_> >

 >

 , int

 >::type found;

 // find the position of the least integer whose factorial is >= n

 typedef mpl::lower_bound<

 mpl::transform_view< mpl::range_c<int,0,13>, factorial<_1> >

 , n

 >::type::base number_iter;

 // return a sorted vector of all the elements from seq1 and seq2

 typedef mpl::sort<

 mpl::copy<

 mpl::joint_view<seq1,seq2>

 , mpl::back_inserter< mpl::vector<> >

 >::type

 >::type result;

The last example above uses joint_view, a sequence consisting of the elements of its arguments "laid end-to-end." In each of these cases,

the use of lazy techniques (views) saves a significant number of template instantiations over the corresponding eager approach.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

7.1.4 Selective Element Processing

With filter_view, a lazy version of the filter algorithm, we can process a subset of a sequence's elements without building an intermediate

sequence. When a filter_view's iterators are incremented, an underlying iterator into the sequence "being viewed" is advanced until the

filter function is satisfied:

 // a sequence of the pointees of all pointer elements in Seq

 mpl::transform_view<

 mpl::filter_view< Seq, boost::is_pointer<_1> >

 , boost::remove_pointer<_1>

 >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

7.2. View Concept

By now you probably have a pretty good feeling for what views are all about, but let's try to firm the idea up a bit. To begin with, this

subsection should probably be titled "View concept" with a lowercase c, since normally when we speak of "Concepts" in C++, we're

referring to formal interface requirements as described in Chapter 5. Views are a little more casual than that. From an interface

perspective, a view is nothing more than a sequence, and is only a view because of two implementation details. First, as we've repeated

until you're surely tired of reading it, views are lazy: their elements are computed only on demand. Not all lazy sequences are views,

though. For example, range_c<...> is a familiar example of a lazy sequence, but somehow that doesn't seem much like a view onto

anything. The second detail required for "view-ness" is that the elements must be generated from one or more input sequences.

An emergent property is one that only arises because of some more fundamental characteristics. All views share two emergent

properties. First—and this really applies to all lazy sequences since their elements are computed—views are not extensible. If you need

extensibility, you need to use the copy algorithm to create an extensible sequence from the view. Second, since iterators arbitrate all

element accesses, most of the logic involved in implementing a sequence view is contained in its iterators.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

7.3. Iterator Adaptors

The iterators of a sequence view are examples of iterator adaptors, an important concept (lowercase c) in its own right. Just as a view is a

sequence built upon one or more underlying sequences, an iterator adaptor is an iterator that adapts the behavior of one or more

underlying iterators.

Iterator adaptors are so useful in runtime C++ that there is an entire Boost library devoted to them. Even the STL contains several iterator

adaptors, most notably std::reverse_iterator that traverses the same sequence of elements as its underlying iterator, but in the opposite

order. The iterators of mpl::filter_view are another example of an iterator traversal adaptor. An iterator access adaptor accesses different

element values from its underlying iterator, like the iterators of mpl::transform_view do.

Because you can access a std::reverse_iterator's underlying iterator by calling its base() member function, MPL adaptors provide access to

their underlying iterators via a nested ::base type. In all other respects, an iterator adaptor is just like any other iterator. It can have any of

the three iterator categories—possibly different from its underlying iterator(s)—and all of the usual iterator requirements apply.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

7.4. Writing Your Own View

Since most of a sequence view's smarts are in its iterators, it stands to reason that most of the work of implementing a view involves

implementing an iterator adaptor. Let's whip up an iterator for zip_view to see how it's done.

Since zip_view operates on a sequence of input sequences, it's natural that its iterator should operate on a sequence of iterators into those

input sequences. Let's give our zip_iterator an iterator sequence parameter:

 template <class IteratorSeq>

 struct zip_iterator;

The MPL's zip_iterator models the least refined concept of any of its component iterators, but for the sake of simplicity our zip_iterator will

always be a forward iterator. The only requirements we need to satisfy for a forward iterator are dereferencing with mpl::deref and

incrementing with mpl::next. To dereference a zip iterator we need to dereference each of its component iterators and pack the results into

a sequence. Taking advantage of the default definition of mpl::deref, which just invokes its argument as a metafunction, the body of

zip_iterator is defined thus:

 template <class IteratorSeq>

 struct zip_iterator

 {

 typedef mpl::forward_iterator_tag category;

 typedef typename mpl::transform<

 IteratorSeq

 , mpl::deref<_1>

 >::type type;
 };

Similarly, to increment a zip iterator we need to increment each of its component iterators:

 namespace boost { namespace mpl

 {

 // specialize next<...> for zip_iterator

 template <class IteratorSeq>

 struct next<::zip_iterator<IteratorSeq> >

 {

 typedef ::zip_iterator<

 typename transform<

 IteratorSeq

 , next<_1>

 >::type

 > type;

 };

 }}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The one remaining element we might want to add to the body of zip_iterator, as a convenience, is a ::base member that accesses the

iterators being adapted. In an iterator adaptor for a single iterator, ::base would just be that one iterator; in this case, though, it will be a

sequence of underlying iterators:

 template <class IteratorSeq>

 struct zip_iterator

 {

 typedef IteratorSeq base;

 ...

 };

Now there's almost nothing left to do for zip_view; it's just a sequence that uses zip_iterator. In fact, we can build zip_view out of

iterator_range:

 template <class Sequences>

 struct zip_view

 : mpl::iterator_range<

 zip_iterator<

 typename mpl::transform_view<

 Sequences, mpl::begin<_1>

 >::type

 >

 , zip_iterator<

 typename mpl::transform_view<

 Sequences, mpl::end<_1>

 >::type

 >

 >

 {};

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

7.5. History

There is a long history of lazy evaluation and lazy sequences in programming, especially in the functional programming community. The

first known C++ example of the "view" concept appeared in 1995, in a (runtime) library by Jon Seymour, called, aptly, Views [Sey96].

Interestingly, the approach of the views library was inspired more by database technology than by work in functional programming. A more

complete treatment of the view concept appeared in the View Template Library (VTL), by Martin Wieser and Gary Powell, in 1999 [WP99,

WP00]. By 2001, implementing and adapting C++ iterators were recognized as important tasks in their own right, and the Boost Iterator

Adaptor Library was developed [AS01a].

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

7.6. Exercises

7-0. Write a test program that exercises our zip_view implementation. Try to arrange your program so that it will

only compile if the tests succeed.

7-1. Our implementation of zip_iterator uses TRansform to generate its nested ::type, but the one in MPL uses

transform_view instead. What advantage does the MPL approach have?

7-2. Modify zip_iterator so that its ::iterator_category reflects the least-refined concept modeled by any of its

underlying iterators. Extend the iterator implementation to satisfy all potential requirements of the computed

category.

7-3. Use mpl::joint_view to implement a rotate_view sequence view, presenting a shifted and wrapped view onto the

original sequence:

 typedef mpl::vector_c<int,5,6,7,8,9,0,1,2,3,4> v;

 typedef rotate_view<

 v

 , mpl::advance_c<mpl::begin<v>::type,5>::type

 > view;

 BOOST_STATIC_ASSERT((mpl::equal<

 view

 , mpl::range_c<int,0,10>

 >::value));

7-4. Design and implement an iterator adaptor that adapts any Random Access Iterator by presenting the elements

it traverses in an order determined by a sequence of nonnegative integer indices. Make your

permutation_iterator a forward iterator.

7-5. Change the permutation iterator from exercise 7-4 so its traversal category is determined by the category of the

sequence of indices.

7-6. Implement a permutation_view using your permutation iterator adaptor, so that:

 permutation_view<

 mpl::list_c<int,2,1,3,0,2> // indices

 , mpl::vector_c<int,11,22,33,44> // elements

 >

yields sequence [33,22,44,11,33]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

7-7. Design and implement a reverse iterator adaptor with semantics analogous to those of std::reverse_iterator.

Make its category the same as the category of the underlying iterator. Use the resulting iterator to implement a

reverse_view template.

7-8. Implement a crossproduct_view template that adapts two original sequences by presenting all possible pairs of

their elements in a right cross product order.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Chapter 8. Diagnostics

Because C++ metaprograms are executed during compilation, debugging presents special challenges. There's no debugger that allows us

to step through metaprogram execution, set breakpoints, examine data, and so on—that sort of debugging would require interactive

inspection of the compiler's internal state. All we can really do is wait for the process to fail and then decipher the error messages it dumps

on the screen. C++ template diagnostics are a common source of frustration because they often have no obvious relationship to the cause

of the error and present a great deal more information than is useful. In this chapter we'll discuss how to understand the sort of errors

metaprogrammers typically encounter, and even how to bend these diagnostics to our own nefarious purposes.

The C++ standard leaves the specifics of error reporting entirely up to the compiler implementor, so we'll be discussing the behaviors of

several different compilers, often in critical terms. Because your compiler's error messages are all the help you're going to get, your choice

of tools can have a huge impact on your ability to debug metaprograms. If you're building libraries, your clients' choice of tools will affect

their perception of your code—and the time you spend answering questions—when mistakes are made. Therefore, we suggest you pay

close attention even when we're discussing a compiler you don't normally use: You may discover that you'd like to have it in your kit, or that

you'll want to do something special to support clients who may use it. Likewise, if it seems as though we're attacking your favorite tool, we

hope you won't be offended!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

8.1. Debugging the Error Novel

The title of this section is actually taken from another book [VJ02], but it's so wonderfully apt that we had to use it ourselves. In fact,

template error reports so often resemble War and Peace in approachability that many programmers ignore them and resort to random

code tweaks in the hope of making the right change. In this section we'll give you the tools to skim these diagnostic tomes and find your

way right to the problem.

Note

We'll be looking at examples of error messages, many of which would be too wide to fit on the page if presented without

alteration. In order to make it possible to see these messages, we've broken each long line at the right margin, and

where neccessary added a blank line afterwards to separate it from the line following.

8.1.1 Instantiation Backtraces

Let's start with a simple (erroneous) example. The following code defines a simplistic compile-time "linked list" type structure, and a

metafunction designed to compute the total size of all the elements in a list:

 struct nil {}; // the end of every list

 template <class H, class T = nil> // a list node, e.g:

 struct node // node<X,node<Y,node<Z> > >

 {

 typedef H head; typedef T tail;

 };

 template <class S>

 struct total_size

 {

 typedef typename total_size< // total size of S::tail

 typename S::tail

 >::type tail_size; // line 17

 typedef boost::mpl::int_< // add size of S::head

 sizeof(S::head)

 + tail_size::value // line 22

 > type;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 };

The bug above is that we've omitted the specialization needed to terminate the recursion of total_size. If we try to use it as follows:

 typedef total_size<

 node<long, node<int, node<char> > >

 >::type x; // line 27

we get an error message something like this one generated by version 3.2 of the GNU C++ compiler (GCC):

 foo.cpp: In instantiation of 'total_size<nil>':

 foo.cpp:17: instantiated from 'total_size<node<char, nil> >'

 foo.cpp:17: instantiated from 'total_size<node<int,

 node<char, nil > > >'

 foo.cpp:17: instantiated from 'total_size<node<long int,

 node<int, node<char, nil> > > >'

 foo.cpp:27: instantiated from here

 foo.cpp:17: no type named 'tail' in 'struct nil'

 continued...

The first step in getting comfortable with long template error messages is to recognize that the compiler is actually doing you a favor by

dumping all that information. What you're looking at is called an instantiation backtrace, and it corresponds almost exactly to a runtime

call stack backtrace. The first line of the error message shows the metafunction call where the error occurred, and each succeeding line

that follows shows the metafunction call that invoked the call in the line that precedes it. Finally, the compiler shows us the low-level cause

of the error: we're treating the nil sentinel as though it were a node<...> by trying to access its ::tail member.

In this example it's easy to understand the error simply by reading that last line, but as in runtime programming, a mistake in an outer call

can often cause problems many levels further down. Having the entire instantiation backtrace at our disposal helps us analyze and

pinpoint the source of the problem.

Of course, the result isn't perfect. Compilers typically try to "recover" after an error like this one and report more problems, but to do so

they must make some assumptions about what you really meant. Unless the error is as simple as a missing semicolon, those assumptions

tend to be wrong, and the remaining errors are less useful:

 ...continued from above

 foo.cpp:22: no type named 'tail' in 'struct nil'

 foo.cpp:22: 'head' is not a member of type 'nil'

 foo.cpp: In instantiation of 'total_size<node<char, nil> >':

 foo.cpp:17: instantiated from 'total_size<node<int, node<char,

 nil> > >'

 foo.cpp:17: instantiated from 'total_size<node<long int, node<

 int, node<char, nil> > > >'

 foo.cpp:27: instantiated from here

 foo.cpp:17: no type named 'type' in 'struct total_size<nil>'

 foo.cpp:22: no type named 'type' in 'struct total_size<nil>'

 ...many lines omitted here...

 foo.cpp:27: syntax error before ';'token

In general, it's best to simply ignore any errors after the first one that results from compiling any source file.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

8.1.2 Error Formatting Quirks

While every compiler is different, there are some common themes in message formatting that you may learn to recognize. In this section

we'll look at some of the advanced error-reporting features of modern compilers.

8.1.2.1 A More Realistic Error

Most variations in diagnostic formatting have been driven by the massive types that programmers suddenly had to confront in their error

messages when they began using the STL. To get an overview, we'll examine the diagnostics produced by three different compilers for this

ill-formed program:

 # include <map>

 # include <list>

 # include <iterator>

 # include <string>

 # include <algorithm>

 using namespace std;

 void copy_list_map(list<string> & l, map<string, string>& m)

 {

 std::copy(l.begin(), l.end(), std::back_inserter(m));

 }

Although the code is disarmingly simple, some compilers respond with terribly daunting error messages. If you're like us, you may find

yourself fighting to stay awake when faced with the sort of unhelpful feedback that we're about to show you. If so, we urge you to grab

another cup of coffee and stick it out: The point of this section is to become familiar enough with common diagnostic behaviors that you

can quickly see through the mess and find the salient information in any error message. After we've gone through a few examples, we're

sure you'll find the going easier.

With that, let's throw the code at Microsoft Visual C++ (VC++) 6 and see what happens.

 C:\PROGRA~1\MICROS~4\VC98\INCLUDE\xutility(19) : error C2679:

 binary '=' : no operator defined which takes a right-hand operand

 of type 'class std::basic_string<char,struct std::char_traits<

 char>,class std::allocator<char> >' (or there is no acceptable

 conversion)

 foo.cpp(9) : see reference to function template

 instantiation 'class std::back_insert_iterator<class std::

 map<class std::basic_string<char, struct std::char_traits<

 char>,class std::allocator<char> >,class std::basic_string<

 char,struct std::char_traits<char>,class std::allocator<char

 > >,struct std::less<class std::basic_string<char,struct std

 ::char_traits<char>,class std::allocator<char> > >,class std

 ::allocator<class std::basic_string<char,struct std::

 char_traits<char>,class std::allocator<char> > > > > __cdecl

 std::copy(class std::list<class std::basic_string<char,

 struct std::char_traits<char>,class std::allocator<char> >,

 class std::allocator<class std::basic_string<char,struct std

 ::char_traits<char>,class std::allocator<char> > > >::

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 iterator,class std::list<class std::basic_string<char,struct

 std::char_traits<char>,class std::allocator<char> >,class

 std::allocator<class std::basic_string<char,struct std::

 char_traits<char>,class std::allocator<char> > > >::iterator

 ,class std::back_insert_iterator<class std::map<class std::

 basic_string<char,struct std::char_traits<char>,class std::

 allocator<char> >,class std::basic_string<char,struct std::

 char_traits<char>,class std::allocator<char> >,struct std::

 less<class std::basic_string<char,struct std::char_traits<

 char>,class std::allocator<char> > >,class std::allocator<

 class std::basic_string<char,struct std::char_traits<char>,

 class std::allocator<char> > > > >)' being compiled

 message continues...

Whew! Something obviously has to be done about that. We've only shown the first two (really long) lines of the error, but that alone is

almost unreadable. To get a handle on it, we could copy the message into an editor and lay it out with indentation and line breaks, but it

would still be fairly unmanageable: Even with no real formatting it nearly fills a whole page!

8.1.2.2 typedef Substitution

If you look closely, you can see that the long type

 class std::basic_string<char, struct std::char_traits<char>,

 class std::allocator<char> >

is repeated twelve times in just those first two lines. As it turns out, std::string happens to be a typedef (alias) for that type, so we could

quickly simplify the message using an editor's search-and-replace feature:

 C:\PROGRA~1\MICROS~4\VC98\INCLUDE\xutility(19) : error C2679:

 binary '=' : no operator defined which takes a right-hand operand

 of type 'std::string' (or there is no acceptable conversion)

 foo.cpp(9) : see reference to function template instantiation

 'class std::back_insert_iterator<class std::map<std::string,

 std::string,struct std::less<std::string>,class

 std::allocator<std::string> > > __cdecl std::copy(class

 std::list<std::string,class std::allocator<std::string>

 >::iterator,class std::list<std::string,class std::allocator<

 std::string> >::iterator,class std::back_insert_iterator<

 class std::map<std::string,std::string,struct std::

 less<std::string>,class std::allocator<std::string> > >)'

 being compiled

That's a major improvement. Once we've made that change, the project of manually inserting line breaks and indentation so we can

analyze the message starts to seem more tractable. Strings are such a common type that a compiler writer could get a lot of mileage out of

making just this one substitution, but of course std::string is not the only typedef in the world. Recent versions of GCC generalize this

transformation by remembering all namespace-scope typedefs for us so that they can be used to simplify diagnostics. For example, GCC

3.2.2 says this about our test program:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 ...continued messages

 /usr/include/c++/3.2/bits/stl_algobase.h:228: no match for '

 std::back_insert_iterator<std::map<std::string, std::string,

 std::less<std::string>, std::allocator<std::pair<const

 std::string, std::string> > > >& = std::basic_string<char,

 std::char_traits<char>, std::allocator<char> >&' operator

 messages continue...

It's interesting to note that GCC didn't make the substitution on the right hand side of the assignment operator. As we shall soon see,

however, being conservative in typedef substitution might not be such a bad idea.

8.1.2.3 "With" Clauses

Take a look back at our revised VC++ 6 error message as it appears after the std::string substitution. You can almost see, if you squint at it

just right, that there's an invocation of std::copy in the second line. To make that fact more apparent, many compilers separate actual

template arguments from the name of the template specialization. For example, the final line of the GCC instantiation backtrace preceding

the error cited above is:

 /usr/include/c++/3.2/bits/stl_algobase.h:349: instantiated from

 '_OutputIter std::copy(_InputIter, _InputIter, _OutputIter)

 [with _InputIter = std::_List_iterator<std::string, std::string&,

 std::string*>, _OutputIter = std::back_insert_iterator<std::map<

 std::string, std::string, std::less<std::string>, std::allocator<

 std::pair<const std::string, std::string> > > >]'
 messages continue...

Reserved Identifiers

The C++ standard reserves identifiers that begin with an underscore and a capital letter (like _InputIter) and identifiers

containing double-underscores anywhere (e.g., __function__) for use by the language implementation. Because we're

presenting diagnostics involving the C++ standard library, you'll see quite a few reserved identifiers in this chapter. Don't

be misled into thinking it's a convention to emulate, though: The library is using these names to stay out of our way, but if

we use them our program's behavior is undefined.

The "with" clause allows us to easily see that std::copy is involved. Also, seeing the formal template parameter names gives us a useful

reminder of the concept requirements that the copy algorithm places on its parameters. Finally, because the same type is used for two

different formal parameters, but is spelled out only once in the "with" clause, the overall size of the error message is reduced. Many of the

compilers built on the Edison Design Group (EDG) front-end have been doing something similar for years.

Microsoft similarly improved the VC++ compiler's messages in version 7, and also added some helpful line breaks:

 foo.cpp(10) : see reference to function template instantiation

 '_OutIt std::copy(_InIt,std::list<_Ty,_Ax>::iterator,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 std::back_insert_iterator<_Container>)' being compiled

 with

 [

 _OutIt=std::back_insert_iterator<std::map<std::string,std

 ::string,std::less<std::string>,std::allocator<std::pair<

 const std::string,std::string>>>>,

 _InIt=std::list<std::string,std::allocator<std::string>>::

 iterator,

 _Ty=std::string,

 _Ax=std::allocator<std::string>,

 _Container=std::map<std::string,std::string,std::less<std

 ::string>,std::allocator<std::pair<const std::string,std::

 string>>>

]

Unfortunately, we also begin to see some unhelpful behaviors in VC++ 7.0. Instead of listing _InIt and _OutIt twice in the function signature,

the second and third parameter types are written out in full and repeated in the "with" clause. There's a bit of a ripple effect here, because

as a result _Ty and _Ax, which would never have shown up had _InIt and _OutIt been used consistently in the signature, also appear in a

"with" clause.

8.1.2.4 Eliminating Default Template Arguments

In version 7.1, Microsoft corrected that quirk, giving us back the ability to see that the first two arguments to std::copy have the same type.

Now, though, they show the full name of the std::copy specialization, so we still have to confront more information than is likely to be useful:

 foo.cpp(10) : see reference to function template instantiation '

 _OutIt std::copy<std::list<_Ty>::iterator,std::

 back_insert_iterator<_Container> >(_InIt,_InIt,_OutIt)' being

 compiled

 with

 [

 _OutIt=std::back_insert_iterator<std::map<std::string,std::

 string>>,

 _Ty=std::string,

 _Container=std::map<std::string,std::string>,

 _InIt=std::list<std::string>::iterator

]

 messages continue...

Had the highlighted material above been replaced with std::copy<_InIt,_OutIt>,_Ty could also have been dropped from the "with" clause.

The good news is that an important simplification has been made: std::list's default allocator argument and std::map's default allocator and

comparison arguments have been left out. As of this writing, VC++ 7.1 is the only compiler we know of that elides default template

arguments.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

8.1.2.5 Deep typedef Substitution

Many modern compilers try to remember if and how each type was computed through any typedef (not just those at namespace scope), so

the type can be represented that way in diagnostics. We call this strategy deep typedef substitution, because typedefs from deep within

the instantiation stack show up in diagnostics. For instance, the following example:

 # include <map>

 # include <vector>

 # include <algorithm>

 int main()

 {

 std::map<int,int> a;

 std::vector<int> v(20);

 std::copy(a.begin(), a.end(), v.begin());

 return 0;

 }

produces this output with Intel C++ 8.0:

 C:\Program Files\Microsoft Visual Studio .NET 2003\VC7\INCLUDE\

 xutility(1022): error: no suitable conversion function from "std::

 allocator<std::pair<const int, int>>::value_type" to "std::

 allocator <std::_Tree<std::_Tmap_traits<int, int, std::less<int>,

 std::allocator<std::pair<const int, int>>, false>>::key_type=

 {std::_Tmap_traits<int, int, std::less<int>, std::allocator<std::

 pair<const int, int>>, false>::key_type={int}}>::value_type=

 {std::_Allocator_base<std::_Tree<std::_Tmap_traits<int, int,

 std::less<int>, std::allocator<std::pair<const int, int>>,

 false>>::key_type={std::_Tmap_traits<int, int, std::less<

 int>, std::allocator<std::pair<const int, int>>, false>::

 key_type={int}}>::value_type={std::_Tree<std::_Tmap_traits

 <int, int, std::less<int>, std::allocator<std::pair<const

 int, int>>, false>>::key_type={std::_Tmap_traits<int, int,

 std::less<int>, std::allocator<std::pair<const int, int>>,

 false>::key_type={int}}}}" exists

 *_Dest = *_First;

 ^

 ...

What do we need to know, here? Well, the problem is that you can't assign from a pair<int, int> (the map's element) into an int (the vector's

element). That information is in fact buried in the message above, but it's presented badly. A literal translation of the message into

something more like English might be:

No conversion exists from the value_type of an

 allocator<pair<int,int> >

to the value_type of an

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 _allocator<

 _Tree<...>::key_type... (which is some

 _Tmap_traits<...>::key_type, which is int)

 >.

Oh, that second value_type is the value_type of an

 _Allocator_base<

 _Tree<...>::key_type... (which is some

 _Tmap_traits<...>::key_type, which is int)

 >,

which is also the key_type of a _tree<...>, which is int.

Ugh. It would have been a lot more helpful to just tell us that you can't assign from pair<int, int> into int. Instead, we're presented with a lot of

information about how those types were derived inside the standard library implementation.

Here's a report of the same error from VC++ 7.1:

 C:\Program Files \Microsoft Visual Studio .NET 2003\Vc7 \include\

 xutility(1022) : error C2440: '=' : cannot convert from 'std::

 allocator<_Ty>::value_type' to 'std::allocator<_Ty>::value_type'

 with

 [

 _Ty=std::pair<const int,int>

]

 and

 [

 _Ty=std::_Tree<std::_Tmap_traits<int,int,std::less<

 int>,std::allocator<std::pair<const int,int>>,

 false>>::key_type

]

 ...

This message is a lot shorter, but that may not be much consolation: It appears at first to claim that allocator<_Ty>::value_type can't be

converted to itself! In fact, the two mentions of _Ty refer to types defined in consecutive bracketed clauses (introduced by "with" and

"and"). Even once we've sorted that out, this diagnostic has the same problem as the previous one: The types involved are expressed in

terms of typedefs in std::allocator. It's a good thing that it's easy to remember that std::allocator's value_type is the same as its template

argument, or we'd have no clue what types were involved here.

Since allocator<_Ty>::value_type is essentially a metafunction invocation, this sort of deep typedef substitution really does a number on our

ability to debug metaprograms. Take this simple example:

 # include <boost/mpl/transform.hpp>

 # include <boost/mpl/vector/vector10.hpp>

 namespace mpl = boost::mpl;

 using namespace mpl::placeholders;

 template <class T>

 struct returning_ptr

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 {

 typedef T* type();

 };

 typedef mpl::transform<

 mpl::vector5<int&,char,long[5],bool,double>

 , returning_ptr<_1>

 >::type functions;

The intention was to build a sequence of function types returning pointers to the types in an input sequence, but the author forgot to

account for the fact that forming a pointer to a reference type (int&) is illegal in C++. Intel C++ 7.1 reports:

 foo.cpp(19): error: pointer to reference is not allowed

 typedef T* type();

 ^

 detected during:

 instantiation of class "returning_ptr<T> [with T=boost::

 mpl::bind1<boost::mpl::quote1<returning_ptr>, boost::mpl

 ::lambda_impl<boost::mpl::_1, boost::mpl::false_>::type>

 ::apply<boost::mpl::vector_iterator<boost::mpl::vector5<

 int &, char, long [5], bool={bool}, double>::type, boost

 ::mpl::integral_c<long, 0L>>::type, boost::mpl::void_,

 boost::mpl::void_, boost::mpl::void_, boost::mpl::void_>

 ::t1]" at line 23 of "c:/boost/boost/mpl/aux_/has_type.

 hpp"

The general cause of the error is perfectly clear, but the offending type is far from it. We'd really like to know what T is, but it's expressed in

terms of a nested typedef: mpl::bind1<...>::t1. Unless we're prepared to crawl through the definitions of mpl::bind1 and the other MPL

templates mentioned in that line, we're stuck. Microsoft VC++ 7.1 is similarly unhelpful:
[1]

[1] Fortunately, Microsoft's compiler engineers have been listening to our complaints, and an evaluation version of

their next compiler only injects typedefs defined at namespace scope into its diagnostics. With any luck, this change

will survive all the way to the product they eventually release.

 foo.cpp(9) : error C2528: 'type' : pointer to reference is illegal

 c:\boost\boost\mpl\aux_\has_type.hpp(23) : see reference

 to class template instantiation 'returning_ptr<T>' being

 compiled

 with

 [

 T=boost::mpl::bind1<boost::mpl::quote1<returning_ptr>,

 boost::mpl::lambda_impl<boost::mpl::_1>::type>::apply<

 boost::mpl::vector_iterator<boost::mpl::vector5<int &,

 char,long [5],bool,double>::type,boost::mpl::integral_c<

 long,0>>::type >::t1

]

GCC 3.2, which only does "shallow" typedef substitution, reports:

 foo.cpp: In instantiation of 'returning_ptr<int&>':

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 ...many lines omitted...

 foo.cpp:19: forming pointer to reference type 'int&'

This message is much more sensible. We'll explain the omitted lines in a moment.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

8.2. Using Tools for Diagnostic Analysis

Though their efforts sometimes backfire, compiler vendors are clearly going out of their way to address the problem of unreadable template

error messages. That said, even the best error message formats can still leave a lot to be desired when a bug bites you from deep within a

nested template instantiation. Fortunately, software tools can be an immense help, if you follow three suggestions.

8.2.1 Get a Second Opinion

Our first recommendation is to keep a few different compilers on hand, just for debugging purposes. If one compiler emits an inscutable

error message, another one will likely do better. When something goes wrong, a compiler may guess at what you meant in order to report

the mistake, and it often pays to have several different guesses. Also, many compilers have intrinsic deficiencies when it comes to error

reporting. For example, though it is an otherwise excellent compiler—and one of the very fastest in our timing tests—Metrowerks

CodeWarrior Pro 9 often fails to output filenames and line numbers for each "frame" of its instantiation backtrace, which can make the

offending source code hard to find. If you need to trace the source of the error, you may want to try a different toolset.

Tip

If you don't have the budget to invest in more tools, we suggest trying to find a recent version of GCC that runs on your

platform. All versions of GCC are available for free; Windows users should get the MinGW (http://www.mingw.org) or

Cygwin (http://www.cygwin.com) variants. If you can't bear to install another compiler on your machine, Comeau

Computing will let you try an online version of their compiler at http://www.comeaucomputing.com/tryitout. Because

Comeau C++ is based on the highly conformant EDG front-end, it provides an excellent way to get a quick read on

whether your code is likely to comply with the C++ standard.

8.2.2 Use Navigational Aids

For traversing instantiation stack backtraces, it's crucial to have an environment that helps you to see the source line associated with an

error message. If you're one of those people who usually compiles from a command shell, you may want to issue those commands from

within some kind of integrated development environment (IDE), just to avoid having to manually open files in an editor and look up line

numbers. Many IDEs allow a variety of toolsets to be plugged in, but for debugging metaprograms it's important that the IDE can

conveniently step between messages in the various compilers' diagnostic formats. Emacs, for example, uses an extensible set of regular

expressions to extract filenames and line numbers from error messages, so it can be tuned to work with any number of compilers.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.mingw.org
http://www.cygwin.com
http://www.comeaucomputing.com/tryitout

8.2.3 Clean Up the Landscape

Finally, we suggest the use of a post-processing filter such as TextFilt (http://textfilt.sourceforge.net) or STLFilt

(http://www.bdsoft.com/tools/stlfilt.html). Both of these filters were originally designed to help programmers make sense of the types in their

STL error messages. Their most basic features include the automatic elision of default arguments from specializations of known templates,

and typedef substitution for std::string and std::wstring. For example, TextFilt transforms the following mess:

 example.cc:21: conversion from 'double' to non-scalar type

 'map<vector<basic_string<char, string_char_traits<char>,

 __default_alloc_template<true, 0> >,

 allocator<basic_string<char, string_char_traits<char>,

 __default_alloc_template<true, 0> > > >, set<basic_string<char,

 string_char_traits<char>, _ _default_alloc_template<true, 0> >,

 less<basic_string<char, string_char_traits<char>,

 __default_alloc_template<true, 0> > >,

 allocator<basic_string<char, string_char_traits<char>,

 __default_alloc_template<true, 0> > > >,

 less<vector<basic_string<char, string_char_traits<char>,

 __default_alloc_template<true, 0> >,

 allocator<basic_string<char, string_char_traits<char>,

 __default_alloc_template<true, 0> > > > >,

 allocator<set<basic_string<char, string_char_traits<char>,

 __default_alloc_template<true, 0> >, less<basic_string<char,

 string_char_traits<char>, _ _default_alloc_template<true, 0> > >,

 allocator<basic_string<char, string_char_traits<char>,

 __default_alloc_template<true, 0> > > > > >' requested

into the much more readable:

 example.cc:21: conversion from 'double' to non-scalar type

 'map<vector<string>,set<string>>' requested

TextFilt is interesting because it is easily customizable; you can add special handling for your own types by writing "rulesets," which are

simple sets of regular expression-based transformations. STLFilt is not so easily customized (unless you enjoy hacking Perl), but it

includes several command line options with which you can tune how much information you see. We find these two indispensable for

template metaprogramming.

GCC error message reordering. Though GCC is by far our preferred compiler for metaprogram debugging, it's by no means

perfect. Its biggest problem is that it prints the actual cause of an error following the entire instantiation backtrace. As a result,

you often have to step through the whole backtrace before the problem becomes apparent, and the actual error is widely

separated from the nearest instantiation frame. That's why the GCC error messages in this chapter are often shown with "many

lines omitted...". STLFilt has two options for GCC message reordering:

-hdr:LD1:, which brings the actual error message to the top of the instantiation backtrace.

-hdr:LD2:, which is just like -hdr:LD1 but adds a copy of the final line of the backtrace (the non-template code that

initiated the instantiation) just after the error message.

1.

Expression wrapping and indenting. No matter how much is done to filter irrelevant information from an error message,

there's no getting around the fact that some C++ types and expressions are intrinsically complex. For example, if there were no

default template arguments and typedefs to work with, getting a grip on the previous example would have required us to parse

its nesting structure. STLFilt includes a -meta option that formats messages according to the conventions of this book. Even

2.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://textfilt.sourceforge.net
http://www.bdsoft.com/tools/stlfilt.html

with default template argument elision and typedef substitution disabled, STLFilt can still help us see what's going on in the

message:

example.cc:21: conversion from 'double' to non-scalar type

 'map<

 vector<

 basic_string<

 char, string_char_traits<char>

 , __default_alloc_template<true, 0>

 >, allocator<

 basic_string<

 char, string_char_traits<char>

 , __default_alloc_template<true, 0>

 >

 >

 >, set<

 basic_string<

 char, string_char_traits<char>

 , __default_alloc_template<true, 0>

 >, less<

 basic_string<

 char, string_char_traits<char>

 , __default_alloc_template<true, 0>

 >

 >, allocator<

 basic_string<

 char, string_char_traits<char>

 ' __default_alloc_template<true, 0>

 >

 >

 >, less<

 ...12 lines omitted...

 >, allocator<

 ...16 lines omitted...

 >

 >' requested

Although the message is still huge, it has become much more readable: By scanning its first few columns we can quickly

surmise that the long type is a map from vector<string> to set<string>.

Any tool can obscure a diagnostic by applying too much filtering, and STLFilt is no exception, so we encourage you to review the

command line options at http://www.bdsoft.com/tools/stlfilt-opts.html and choose carefully. Fortunately, since these are external tools, you

can always fall back on direct inspection of raw diagnostics.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.bdsoft.com/tools/stlfilt-opts.html

8.3. Intentional Diagnostic Generation

Why would anyone want to generate a diagnostic on purpose? After spending most of this chapter picking through a morass of template

error messages, it's tempting to wish them away. Compiler diagnostics have their place, though, even once our templates are in the hands

of users who may be less well equipped to decipher them. Ultimately, it all comes down to one simple idea:

Guideline

Report every error at your first opportunity.

Even the ugliest compile-time error is better than silent misbehavior, a crash, or an assertion at runtime. Moreover, if there's going to be a

compiler diagnostic anyway, it's always better to issue the message as soon as possible. The reason template error messages often

provide no clue to the nature and location of an actual programming problem is that they occur far too late, when instantiation has reached

deep into the implementation details of a library. Because the compiler itself has no knowledge of the library's domain, it is unable to detect

usage errors at the library interface boundary and report them in terms of the library's abstractions. For example, we might try to compile:

 #include <algorithm>

 #include <list>

 int main()

 {

 std::list<int> x;

 std::sort(x.begin(), x.end());

 }

Ideally, we'd like the compiler to report the problem at the point of the actual programming error, and to tell us something about the

abstractions involved—iterators in this case:

 main.cpp(7) : std::sort requires random access iterators, but

 std::list<int>::iterator is only a bidirectional iterator

VC++ 7.1, however, reports:

 C:\Program Files \Microsoft Visual Studio .NET 2003\Vc7 \include\

 algorithm(1795) : error C2784:

 'reverse_iterator<_RanIt>::difference_type std::operator -(const

 std::reverse_iterator<_RanIt> &,const

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 std::reverse_iterator<_RanIt> &)' : could not deduce template

 argument for 'const std::reverse_iterator<_RanIt> &' from

 'std::list<_Ty>::iterator'

 with

 [

 _Ty=int

]

 continued...

Notice that the error is reported inside some operator- implementation in the standard library's <algorithm> header, instead of in main()

where the mistake actually is. The cause of the problem is obscured by the appearance of std::reverse_iterator, which has no obvious

relationship to the code we wrote. Even the use of operator-, which hints at the need for random access iterators, isn't directly related to

what the programmer was trying to do. If the mismatch between std::list<int>::iterator and std::sort's requirement of random access had

been detected earlier (ideally at the point std::sort was invoked), it would have been possible for the compiler to report the problem directly.

It's important to understand that blame for the poor error message above does not lie with the compiler. In fact, it's due to a limitation of the

C++ language: While the signatures of ordinary functions clearly state the type requirements on their arguments, the same can't be said of

generic functions.
[2]

 The library authors, on the other hand, could have done a few things to limit the damage. In this section we're going to

cover a few techniques we can use in our own libraries to generate diagnostics earlier and with more control over the message contents.

[2] Several members of the C++ committee are currently working hard to overcome that limitation by making it

possible to express concepts in C++ as first-class citizens of the type system. In the meantime, library solutions

[SL00] will have to suffice.

8.3.1 Static Assertions

You've already seen one way to generate an error when your code is being detectably misused

 BOOST_STATIC_ASSERT(integral-constant-expression);

If the expression is false (or zero), a compiler error is issued. Assertions are best used as a kind of "sanity check" to make sure that the

assumptions under which code was written actually hold. Let's use a classic factorial metafunction as an example:

 #include <boost/mpl/int.hpp>

 #include <boost/mpl/multiplies.hpp>

 #include <boost/mpl/equal.hpp>

 #include <boost/mpl/eval_if.hpp>

 #include <boost/mpl/prior.hpp>

 #include <boost/static_assert.hpp>

 namespace mpl = boost::mpl;

 template <class N>

 struct factorial

 : mpl::eval_if<

 mpl::equal_to<N,mpl::int_<0> > // check N == 0

 , mpl::int_<1> // 0! == 1

 , mpl::multiplies< // N! == N * (N-1)!

 N

 , factorial<typename mpl::prior<N>::type>

 >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 >

 {

 BOOST_STATIC_ASSERT(N::value >= 0); // for nonnegative N

 };

Computing N! only makes sense when N is nonnegative, and factorial was written under the assumption that its argument meets that

constraint. The assertion is used to check that assumption, and if we violate it:

 int const fact = factorial<mpl::int_<-6> >::value;

we'll get this diagnostic from Intel C++ 8.1:

 foo.cpp(22): error: incomplete type is not allowed

 BOOST_STATIC_ASSERT(N::value >= 0);

 ^

 detected during instantiation of class "factorial<N>

 [with N=mpl_::int_<-6>]" at line 25

Note that when the condition is violated, we get an error message that refers to the line of source containing the assertion.

The implementation of BOOST_STATIC_ASSERT is selected by the library based on the quirks of whatever compiler you're using to

ensure that the macro can be used reliably at class, function, or namespace scope, and that the diagnostic will always refer to the line

where the assertion was triggered. When the assertion fails on Intel C++, it generates a diagnostic by misusing an incomplete type—thus

the message "incomplete type is not allowed"—though you can expect to see different kinds of errors generated on other compilers.

8.3.2 The MPL Static Assertions

The contents of the diagnostic above could hardly be more informative: not only is the source line displayed, but we can see the condition

in question and the argument to factorial. In general, though, you can't rely on such helpful results from BOOST_STATIC_ASSERT. In this

case we got them more by lucky accident than by design.

If the value being tested in the assertion (-6) weren't present in the type of the enclosing template, it wouldn't have been

displayed.

1.

This compiler only displays one source line at the point of an error; had the macro invocation crossed multiple lines, the

condition being tested would be at least partially hidden.

2.

Many compilers don't show any source lines in an error message. GCC 3.3.1, for example, reports:3.

 foo.cpp: In instantiation of 'factorial<mpl_::int_<-6> >':

 foo.cpp:25: instantiated from here

 foo.cpp:22: error: invalid application of 'sizeof' to an

 incomplete type

Here, the failed condition is missing.

The MPL supplies a suite of static assertion macros that are actually designed to generate useful error messages. In this section we'll

explore each of them by using it in our factorial metafunction.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

8.3.2.1 The Basics

The most straightforward of these assertions is used as follows:

 BOOST_MPL_ASSERT((bool-valued-nullary-metafunction))

Note that double parentheses are required even if no commas appear in the condition.

Here are the changes we might make to apply this macro in our factorial example:

 ...

 #include <boost/mpl/greater_equal.hpp>

 #include <boost/mpl/assert.hpp>

 template <class N>

 struct factorial

 ...

 {

 BOOST_MPL_ASSERT((mpl::greater_equal<N,mpl::int_<0> >));

 };

The advantage of BOOST_MPL_ASSERT is that it puts the name of its argument metafunction in the diagnostic. GCC now reports:

 foo.cpp: In instantiation of 'factorial<mpl_::int_<-6> >':

 foo.cpp:26: instantiated from here

 foo.cpp:23: error: conversion from '

 mpl_::failed**********boost::mpl::greater_equal<mpl_::int_<-6>,

 mpl_::int_<0> >::***********' to non-scalar type '

 mpl_::assert<false>' requested

 foo.cpp:23: error: enumerator value for '

 mpl_assertion_in_line_23' not integer constant

Note that the violated condition is now displayed prominently, bracketed by sequences of asterisks, a feature you can count on across all

supported compilers.

8.3.2.2 A More Likely Assertion

In truth, the diagnostic above still contains a great many characters we don't care about, but that's due more to the verbosity of using

templates to express the failed condition -6 >= 0 than to anything else. BOOST_MPL_ASSERT is actually better suited to checking other

sorts of conditions. For example, we might try to enforce N's conformance to the integral constant wrapper protocol as follows:

 BOOST_MPL_ASSERT((boost::is_integral<typename N::value_type>));

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

To trigger this assertion, we could write:

 // attempt to make a "floating point constant wrapper"

 struct five : mpl::int_<5> { typedef double value_type; };

 int const fact = factorial<five>::value;

yielding the following diagnostic, with a much better signal-to-noise ratio than our nonnegative test:

 ...

 foo.cpp:24: error: conversion from

 'mpl_::failed************boost::is_integral<double>::************'

 to non-scalar type 'mpl_::assert<false>' requested

 ...

8.3.2.3 Negative Assertions

Negating a condition tested with BOOST_STATIC_ASSERT is as simple as preceding it with !, but to do the same thing with

BOOST_MPL_ASSERT we'd need to wrap the predicate in mpl:: not_<...>. To simplify negative assertions, MPL provides

BOOST_MPL_ASSERT_NOT, which does the wrapping for us. The following rephrases our earlier assertion that N is nonnegative:

 BOOST_MPL_ASSERT_NOT((mpl::less<N,mpl::int_<0> >));

As you can see, the resulting error message includes the mpl::not_<...> wrapper:

 foo.cpp:24: error: conversion from 'mpl_::failed

 ************boost::mpl::not_<boost::mpl::less<mpl_::int_<-5>,

 mpl_::int_<0> > >::************' to non-scalar type

 'mpl_::assert<false>' requested

8.3.2.4 Asserting Numerical Relationships

We suggested that BOOST_MPL_ASSERT was not very well suited for checking numerical conditions because not only the diagnostics,

but the assertions themselves tend to incur a great deal of syntactic overhead. Writing mpl::greater_equal<x,y> in order to say x >= y is

admittedly a bit roundabout. For this sort of numerical comparison, MPL provides a specialized macro:

 BOOST_MPL_ASSERT_RELATION(

 integral-constant, comparison-operator, integral-constant);

To apply it in our factorial metafunction, we simply write:

 BOOST_MPL_ASSERT_RELATION(N::value, >=, 0);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

In this case, the content of generated error messages varies slightly across compilers. GCC reports:

 ...

 foo.cpp:30: error: conversion from

 'mpl_::failed************mpl_::assert_relation<greater_equal, -5,

 0>::************' to non-scalar type 'mpl_::assert<false>'

 requested

 ...

while Intel says:

 foo.cpp(30): error: no instance of function template

 "mpl_::assertion_failed" matches the argument list

 argument types are: (mpl_::failed

 ************mpl_::assert_relation< mpl_::operator>=, -5L, 0L
 >::************)

 BOOST_MPL_ASSERT_RELATION(N::value, >=, 0);

 ^

 detected during instantiation of class "factorial<N>

 [with N=mpl_::int_<-5>]" at line 33

These differences notwithstanding, the violated relation and the two integral constants concerned are clearly visible in both diagnostics.

8.3.2.5 Customized Assertion Messages

The assertion macros we've seen so far are great for a library's internal sanity checks, but they don't always generate messages in the

most appropriate form for library users. The factorial metafunction probably doesn't illustrate that fact very well, because the predicate that

triggers the error (N < 0) is such a straightforward function of the input. The prerequisite for computing N! is that N be nonnegative, and any

user is likely to recognize a complaint that N >= 0 failed as a direct expression of that constraint.

Not all static assertions have that property, though: often an assertion reflects low-level details of the library implementation, rather than

the abstractions that the user is dealing with. One example is found in the dimensional analysis code from Chapter 3, rewritten here with

BOOST_MPL_ASSERT:

 template <class OtherDimensions>

 quantity(quantity<T,OtherDimensions> const& rhs)

 : m_value(rhs.value())

 {

 BOOST_MPL_ASSERT((mpl::equal<Dimensions,OtherDimensions>));

 }

What we'll see in the diagnostic, if this assertion fails, is that there's an inequality between two sequences containing integral constant

wrappers. That, combined with the source line, begins to hint at the actual problem, but it's not very to-the-point. The first thing a user

needs to know when this assertion fails is that there's a dimensional mismatch. Next, it would probably be helpful to know the identity of

the first fundamental dimension that failed to match and the values of the exponents concerned. None of that information is immediately

apparent from the diagnostic that's actually generated, though.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

With a little more control over the diagnostic, we could generate messages that are more appropriate for users. We'll leave the specific

problem of generating errors for dimensional analysis as an exercise, and return to the factorial problem to explore a few techniques.

Customizing the Predicate

To display a customized message, we can take advantage of the fact that BOOST_MPL_ASSERT places the name of its predicate into the

diagnostic output. Just by writing an appropriately named predicate, we can make the compiler say anything we like—as long as it can be

expressed as the name of a class. For example:

 // specializations are nullary metafunctions that compute n>0

 template <int n>

 struct FACTORIAL_of_NEGATIVE_NUMBER

 : mpl::greater_equal<mpl::int_<n>, mpl::int_<0> >

 {};

 template <class N>

 struct factorial

 : mpl::eval_if<

 mpl::equal_to<N,mpl::int_<0> >

 , mpl::int_<1>

 , mpl::multiplies<

 N

 , factorial<typename mpl::prior<N>::type>

 >

 >

 {

 BOOST_MPL_ASSERT((FACTORIAL_of_NEGATIVE_NUMBER<N::value>));

 };

Now GCC reports:

 foo.cpp:30: error: conversion from 'mpl_::failed

 ************FACTORIAL_of_NEGATIVE_NUMBER<-5>::************' to

 non-scalar type 'mpl_::assert<false>' requested

One minor problem with this approach is that it requires interrupting the flow of our code to write a predicate at namespace scope, just for

the purpose of displaying an error message. This strategy has a more serious downside, though: The code now appears to be asserting

that N::value is negative, when in fact it does just the opposite. That's not only likely to confuse the code's maintainers, but also its users.

Don't forget that some compilers (Intel C++ in this case) will display the line containing the assertion:

 foo.cpp(30): error: no instance of function template

 "mpl_::assertion_failed" matches the argument list

 argument types are: (mpl_::failed

 ************FACTORIAL_of_NEGATIVE_NUMBER<-5>::************)

 BOOST_MPL_ASSERT((FACTORIAL_of_NEGATIVE_NUMBER<N::value>));

 ^

If we choose the message text more carefully, we can eliminate this potential source of confusion:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 template <int n>

 struct FACTORIAL_requires_NONNEGATIVE_argument

 : mpl::greater_equal<mpl::int_<n>, mpl::int_<0> >

 {};

 ...

 BOOST_MPL_ASSERT((

 FACTORIAL_requires_NONNEGATIVE_argument<N::value>));

Those kinds of linguistic contortions, however, can get a bit unwieldy and may not always be possible.

Inline Message Generation

MPL provides a macro for generating custom messages that doesn't depend on a separately written predicate class, and therefore doesn't

demand quite as much attention to exact phrasing. The usage is as follows:

 BOOST_MPL_ASSERT_MSG(condition, message, types);

where condition is an integral constant expression, message is a legal C++ identifier, and types is a legal function parameter list. For

example, to apply BOOST_MPL_ASSERT_MSG to factorial, we could write:

 BOOST_MPL_ASSERT_MSG(

 N::value >= 0, FACTORIAL_of_NEGATIVE_NUMBER, (N));

yielding this message from GCC:

 foo.cpp:31: error: conversion from 'mpl_::failed

 ****************(factorial<mpl_::int_<-5>

 >::FACTORIAL_of_NEGATIVE_NUMBER::****************)

 (mpl_::int_<-5>)' to non-scalar type 'mpl_::assert<false>'

 requested.

We've highlighted the message and the types arguments where they appear in the diagnostic above. In this case, types isn't very

interesting, since it just repeats mpl_::int_<-5>, which appears elsewhere in the message. We could therefore replace (N) in the assertion

with the empty function parameter list, (), to get:

 foo.cpp:31: error: conversion from 'mpl_::failed

 ****************(factorial<mpl_::int_<-5>

 >::FACTORIAL_of_NEGATIVE_NUMBER::****************)

 ()' to non-scalar type 'mpl_::assert<false>'

 requested.

In general, even using BOOST_MPL_ASSERT_MSG requires some care, because the types argument is used as a function parameter list,

and some types we might like to display have special meaning in that context. For example, a void parameter will be omitted from most

diagnostics, since int f(void) is the same as int f(). Furthermore, void can only be used once: int f(void, void) is illegal syntax. Also, array and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

function types are interpreted as pointer and function pointer types respectively:

 int f(int x[2], char* (long))

is the same as

 int f(int *x, char* (*)(long))

In case you don't know enough about the types ahead of time to be sure that they'll be displayed correctly, you can use the following form,

with up to four types:

 BOOST_MPL_ASSERT_MSG(condition, message, (types<types >));

For example, we could add the following assertion to factorial, based on the fact that all integral constant wrappers are classes:

 BOOST_MPL_ASSERT_MSG(

 boost::is_class<N>::value

 , NOT_an_INTEGRAL_CONSTANT_WRAPPER

 , (types<N>));

If we then attempt to instantiate factorial<void>, VC++ 7.1 reports:

 foo.cpp(34) : error C2664: 'mpl_::assertion_failed' : cannot

 convert parameter 1 from 'mpl_::failed

 ****************(__thiscall

 factorial<N>::NOT_an_INTEGRAL_CONSTANT_WRAPPER::*

 ***************)(mpl_::assert_::types<T1>)

 ' to 'mpl_::assert<false>::type'

 with

 [

 N=void,

 T1=void
]

Since types can accept up to four arguments, the diagnostic is a little better here than on compilers that don't elide default template

arguments. For example, the diagnostic from Intel C++ 8.0 is:

 foo.cpp(31): error: no instance of function template

 "mpl_::assertion_failed" matches the argument list

 argument types are: (mpl_::failed ****************

 (factorial<void>::NOT_an_INTEGRAL_CONSTANT_WRAPPER::

 ****************)(mpl_::assert_::types<void, mpl_::na,

 mpl_::na, mpl_::na>))

 BOOST_MPL_ASSERT_MSG(

 ^

 detected during instantiation of class "factorial<N>

 [with N=void]" at line 37

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

It's also worth noticing that, while the customized predicate we wrote for use with BOOST_MPL_ASSERT was written at namespace

scope, the message generated by BOOST_MPL_ASSERT_MSG appears as a qualified member of the scope where the assertion was

issued (factorial<void> in this case). As a result, compilers that do deep typedef substitution have one more opportunity to insert unreadable

type expansions in the diagnostic. For example, if we instantiate:

 mpl::transform<mpl::vector<void>, factorial<mpl::_> >

Intel C++ 8.0 generates the following:

 foo.cpp(34): error: no instance of function template

 "mpl_::assertion_failed" matches the argument list

 argument types are: (mpl_::failed

 ****************(factorial<boost::mpl::bind1<

 boost::mpl::quote1<factorial, boost::mpl::void_>,

 boost::mpl::lambda<mpl_::_,

 boost::mpl::void_>::result_>::apply<

 boost::mpl::bind1<factorial<mpl_::_>,

 mpl_::_2>::apply<boost::mpl::aux::fold_impl<1,

 boost::mpl::begin<boost::mpl::vector<void, mpl_::na,

 mpl_::na, mpl_::na, mpl_::na, mpl_::na, mpl_::na, mpl_::na,

 mpl_::na, mpl_::na, mpl_::na, mpl_::na, mpl_::na, mpl_::na,

 mpl_::na, mpl_::na, mpl_::na,

 ...four similar long lines omitted...

 mpl_::na>::t1>::NOT_an_INTEGRAL_CONSTANT_WRAPPER::
 ****************)(mpl_::assert_::types<boost::mpl::bind1<

 line continued...

 ...five similar lines omitted...

 BOOST_MPL_ASSERT_MSG(

 ^

The omission of nine long lines above actually contributes a great deal to the message's readability, so you can probably imagine what it's

like to read the whole thing.

Selecting a Strategy

Both approaches to customized error generation we've covered here have strengths and weaknesses: BOOST_MPL_ASSERT_MSG is

convenient, minimal, and highly expressive of its intent, but it can require some care if asked to display void, array, and function types, and

it can have readability problems, especially in the presence of deep typedef substitution. Using custom predicates with

BOOST_MPL_ASSERT offers a little more control over message formatting, though it takes more work, complicates code somewhat, and

can be confusing unless the predicate name is carefully chosen. Clearly there's no perfect strategy for all needs, so consider the trade-offs

carefully before selecting one.

8.3.3 Type Printing

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

When a template metaprogram misbehaves, it can begin to seem like an impenetrable black box, especially if the problem doesn't

manifest itself in a compilation error, or if the error shows up long after the actual problem has occurred. Sometimes it's useful to

intentionally generate a diagnostic just, well, for diagnostic purposes. For most situations, this simple tool suffices:

 template <class T> struct incomplete;

If at any point we need to know what some type T is, all we have to do is to cause incomplete<T> to be instantiated, for example:

 template <class T>

 struct my_metafunction

 {

 incomplete<T> x; // temporary diagnostic

 typedef ... type;

 };

Most C++ compilers, indeed, all the compilers we've seen, will generate an error message that shows us what T is.
[3]

 This technique is

subject to the usual caveats: Compilers that do deep typedef substitution may show us an arbitrarily complicated name for T, depending on

how T was computed.

[3] Note that we did not write typedef incomplete<T> x; because that would not cause incomplete<T> to be

instantiated, as described in Chapter 2.

One time-honored technique for debugging C/C++ programs is to "stick printfs in the code" and examine the resulting execution log. The

incomplete<T> technique is more analagous to a runtime assertion, though: It shows us the program state in question and causes a hard

error. Remember when we said that most C++ compilers don't recover well from errors? Even if your compiler forges ahead after

instantiating incomplete<T>, the results are about as reliable as what you'd expect from a program that had reported runtime data corruption.

To generate a compile-time execution log, we'd need a way to generate a non-error diagnostic message—a warning. Because there's no

single construct that will cause all compilers to generate a warning (indeed, most compilers let you disable warnings altogether), MPL has a

print metafunction that is just like identity except that it is tuned to generate a warning on a variety of popular compilers with their "usual

settings." For example, the following program:

 template <class T, class U>

 struct plus_dbg

 {

 typedef typename

 mpl::print< typename mpl::plus<T,U>::type >::type

 type;

 };

 typedef mpl::fold<

 mpl::range_c<int,1,6>

 , mpl::int_<0>

 , plus_dbg<_1,_2>

 >::type sum;

produces the following diagnostics (among others) with GCC:
[4]

[4] One peculiar quirk of GCC is that the use of metafunction forwarding interferes slightly with diagnostics. Had we

instead written:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 template <class T, class U>

 struct plus_dbg

 : mpl::print< typename mpl::plus<T,U>::type >

 {};

The diagnostics beginning with "In instantiation of..." would have had a filename label somewhere in MPL's

implementation headers instead of in foo.cpp. While this problem is not enough to prevent us from recommending

metafunction forwarding with GCC, it is worth being aware of.

 foo.cpp: In instantiation of

 'boost::mpl::print<boost::mpl::integral_c<int, 1> >':

 ...

 foo.cpp:72: warning: comparison between signed and unsigned

 integer expressions

 foo.cpp: In instantiation of

 'boost::mpl::print<boost::mpl::integral_c<int, 3> >':

 ...

 foo.cpp:72: warning: comparison between signed and unsigned

 integer expressions

 foo.cpp: In instantiation of

 'boost::mpl::print<boost::mpl::integral_c<int, 6> >':

 ...

 foo.cpp:72: warning: comparison between signed and unsigned

 integer expressions

 foo.cpp: In instantiation of

 'boost::mpl::print<boost::mpl::integral_c<int, 10> >':

 ...

 foo.cpp:72: warning: comparison between signed and unsigned

 integer expressions

 foo.cpp: In instantiation of

 'boost::mpl::print<boost::mpl::integral_c<int, 15> >':

 ...

 foo.cpp:72: warning: comparison between signed and unsigned

 integer expressions

Naturally, these messages are mixed into the compiler's instantiation backtraces. This is another area where diagnostic filtering tools can

help: STLFilt has an option (/showback:N) that eliminates the backtrace material shown as the ellipsis (...) above, so that we're left with a

simplified trace of compile time execution. Of course, if you have access to UNIX tools, piping the errors into "grep print" might do the job

just as easily.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

8.4. History

There is a long history of intentional compile time error generation in C++. As mentioned in Chapter 1, the very first C++ template

metaprogram was a novelty written by Erwin Unruh that printed a series of prime numbers in template error messages [Unruh94]!

We first heard of the idea of encoding readable error messages in the names of types and functions from Dietmar Kuehl in 1998. By 2000,

BOOST_STATIC_ASSERT [Mad00] had appeared and there were at least two efforts applying Kuehl's technique to improve error

messages generated by STL implementations: "Static Interfaces" by Brian McNamara and Yannis Smaragdakis [MS00a] and the "Boost

Concept Checking Library" by Jeremy Siek [SL00].

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

8.5. Details

Instantiation backtraces

Those long error messages you get when templates fail to compile are actually the compile time equivalent of the runtime call stack: They

often contain valuable information that can help lead you to the source of a problem, if you can manage not to be overwhelmed by them.

Compiler vendors have taken a number of steps, including the use of "with" clauses and eliminating default template parameters, to make

them more readable.

typedef substitution

Many compilers, including Microsoft Visual C++ 7 and 7.1 and most EDG-based compilers, attempt to improve error messages by

presenting types the way they were originally named in code. For example, they may show a typedef name instead of presenting the

underlying type referred to by that typedef. We feel that substitution of class-template scoped typedefs actually hurts metaprogram

debugging more than it helps, since metafunction results are always accessed through nested typedefs. We suggest you keep at least one

compiler handy that doesn't do deep typedef substitution. GCC is one such a compiler, and it's free.

Additional tools

Because instantiation backtraces report errors at many lines of a program, we suggest you get an IDE of some kind that automatically

displays the program text associated with line numbers in error messages, so you can quickly inspect the code at each level of an

instantiation stack backtrace. We also suggest you try using a post-processing filter such as STLFilt to improve the readability of your

template error messages.

Static assertions

BOOST_STATIC_ASSERT, BOOST_MPL_ASSERT_RELATION, and straightforward uses of BOOST_MPL_ASSERT are great tools for

adding sanity checks to your metaprograms. They're also useful for writing metaprogram tests that are expected to compile only if the code

is correct. For enforcing constraints on the way your metaprograms are used, we suggest something that produces more readable error

messages.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Customized errors

We only know of one reasonably portable way to generate a specific message when a template is instantiated: embed it in the name of a

type or function that will show up in a real compiler diagnostic. We covered two approaches: BOOST_MPL_ASSERT with hand written

predicate metafunctions and BOOST_MPL_ASSERT_MSG. Each has its strengths and weaknesses. Though workable, neither is really a

clean solution. In the future, we hope direct language support for custom diagnostics will be available.

Type printing

The "customized error message" technique can be extended to warnings if you need to examine a type without disturbing metaprogram

execution. The mpl::print<T> class template can be used to generate such a warning on a wide variety of compilers, depending on your

choice of compilation options.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

8.6. Exercises

8-0. Write and test a metaprogram that prints a series of prime numbers using mpl::print. Compare your program to

Erwin Unruh's original code at http://www.erwin-unruh.de/primorig.html.

8-1. Rewrite the assertions in the dimensional analysis code from Chapter 3 to optimize the diagnostics for library

users. Analyze the resulting messages as generated by a few different compilers.

8-2. MPL contains special macros for asserting numeric relations. because, when applicable, they present a much

more convenient interface and higher-quality error messages than plain Boolean assertions do. What other

category of test might deserve/benefit from a similar approach? Design an interface for handling these cases,

and describe the kind of output you'd like to see it generate.

8-3. Implement the interface you designed in exercise 8-2 using one of the two customized message generation

techniques discussed in this chapter.

8-4. Fix the hand written error reporting in returning_ptr in section 8.3.3 so that the salient information appears in the

first line of the diagnostic on GCC.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.erwin-unruh.de/primorig.html

Chapter 9. Crossing the Compile-Time/Runtime

Boundary

Remember runtime execution? We realize it's been a while, having spent so long in the stratospheric world of compile-time programming,

but we're going to ask you to join us back on solid ground now. Ultimately, any interesting program has to do something at runtime. This

chapter is about crossing the boundary between compile time and runtime C++—the "ozone layer," if you will—so that our metaprograms

can make a difference in the lives of real users. There are probably an infinite number of ways to make that journey in C++, but some have

proven themselves to be more useful than others; we'll cover a few of the most commonly used techniques next.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

9.1. for_each

The simplest STL algorithm ought to have an MPL analogue, and so it does. Just to review, std::for_each TRaverses a (runtime) sequence

and invokes some (runtime) function object on each element. Similarly, mpl::for_each TRaverses a compile-time sequence and invokes

some runtime function object on it. Although std::for_each operates only at runtime, mpl::for_each is a hybrid, straddling the compile-time

and runtime worlds.

Why Runtime Function Objects?

If you're wondering why mpl::for_each takes a runtime function object instead of a metafunction, think of it this way:

Normally, the function object used with std::for_each returns void, but even if it does have a result, that result is

discarded. In other words, that function object, if it does anything at all, has to modify the program state somehow. Since

functional programming is inherently stateless and template metaprograms are functional, there wouldn't be much point

in invoking a metafunction on each element of the sequence unless we were going to do something with the result.

9.1.1 Type Printing

Have you been wondering how to get a look at the contents of your type sequences? Provided we're using a compiler that produces

meaningful strings from std::type_info::name, we can print each element of a type sequence as follows:

 struct print_type

 {

 template <class T>

 void operator() (T) const

 {

 std::cout << typeid(T).name() << std::endl;

 }

 };

 typedef mpl::vector<int, long, char*> s;

 int main ()

 {

 mpl::for_each<s>(print_type());

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

There are a few things we'd like you to notice about this code. First of all, print_type's function-call operator is templatized, because it has

to handle whatever types happen to appear in our sequence. Except when you want to process sequences whose elements are all

convertible to one type, your mpl::for_each function objects will need a templated (or at the very least, overloaded) function call operator.

Next, note that for_each passes us each sequence element as a value-initialized object of the corresponding element type.
[1]

 This form is

particularly convenient if you are iterating over a sequence of integral constant wrappers, which, if you remember, are implicitly convertible

to their corresponding runtime constants. On the other hand, it requires some special care when iterating over an ordinary type sequence:

If the element turns out to be a reference type, a class type with no default constructor, or simply void, the algorithm will fail to compile

since none of those types can be value-initialized.

[1] The concept of value-initialization was added to the C++ standard in its first "technical corrigendum" (TC1). To

value-initialize an object of type T means:

If T is a class type (clause 9) with a user-declared constructor (12.1), then the

default constructor for T is called.

If T is a non-union class type without a user-declared constructor, then every

nonstatic data member and base-class component of T is value-initialized.

If T is an array type, then each element is value-initialized.

Otherwise, the object is zero-initialized.

We can avoid this pitfall by transforming the sequence through a little wrapper template to smooth out its rough edges:

 template <class T>

 struct wrap {};

 // contains references

 typedef mpl::vector<int&, long&, char*&> s;

 mpl::for_each<

 mpl::transform<s, wrap<_1> >::type
 >(print_type());

We'll also need to adjust our function object's signature, to account for the change in the types of arguments that will be passed:

 struct print_type

 {

 template <class T>

 void operator()(wrap<T>) const // deduce T

 {

 std::cout << typeid(T).name() << std::endl;

 }

 };

Because this is such a common idiom, MPL provides a second form of for_each that takes a transformation metafunction as an additional

template argument. By using this second form, we can avoid building a whole new sequence of wrap specializations:

 mpl::for_each<s, wrap<_1> >(print_type());

For each element T of s, the print_type object will be invoked with a wrap<T> argument.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

9.1.2 Type Visitation

For a more general solution to the problem of smoothing out types at the function boundary, we can apply the Visitor pattern [GHJV95]:

 struct visit_type // generalized visitation function object

 {

 template <class Visitor>

 void operator()(Visitor) const

 {

 Visitor::visit();
 }

 };

 template <class T> // specific visitor for type printing

 struct print_visitor

 {

 static void visit()
 {

 std::cout << typeid(T).name() << std::endl;

 }

 };

 int main()

 {

 mpl::for_each<s, print_visitor<_1> >(visit_type());

 }

Here, the visit_type function object expects its argument type to have a static visit member function, and we can build new visitor objects for

any purpose. This is a subtle change from our earlier examples with for_each, but note: print_visitor::visit is never passed a T object.

Instead, for_each passes an instance of print_visitor<T>, for each T in our sequence, to visit_type. The information about the type of T is

transmitted in print_visitor's template parameter.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

9.2. Implementation Selection

In this section we'll discuss a few different ways to choose different runtime behaviors or interfaces based on the result of some compile

time computation.

9.2.1 if Statements

The most straightforward way to control the implementation of a runtime function template is to test a static condition in an if statement, as

follows:

 template <class T>

 void f(T x)

 {

 if (boost::is_class<T>::value)

 {

 ...implementation 1...

 }

 else

 {

 ...implementation 2...

 }

 }

Since the condition can be completely determined at compile time, many compilers will optimize away the is_class test, and will only

generate code for the branch of the if that is selected.

This approach is clear and simple, with little or no conceptual overhead—when it works. Unfortunately, the technique isn't universally

applicable. For example, consider what happens when the function above is implemented this way:

 template <class T>

 void f(T x)

 {

 if (boost::is_class<T>::value)

 {

 std::cout << x::value; // handle integral wrappers

 }

 else

 {

 std::cout << x; // handle non-wrappers

 }

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The intention here was for f to be able to print the value of an integral type (e.g., int) or of an integral constant wrapper (e.g., long_<5>). If we

invoke f(42), though, we'll get a compilation error. The problem is that the entire function body needs to typecheck, including both branches

of the if statement, and we can't access the nonexistent ::value member of an int.

9.2.2 Class Template Specialization

We can address the previous problem by moving each branch of our if statement into a distinct function: a static member function of a class

template. By specializing the class template, we can decide which function implementation gets used:

 template <bool> // handle integral constant wrappers

 struct f_impl

 {

 template <class T>

 static void print(T x) { std::cout << x::value; }
 };

 template <> // specialization for non-wrappers

 struct f_impl<false>

 {

 template <class T>

 static void print(T x) { std::cout << x; }
 };

 template <class T>

 void f(T x)

 {

 f_impl<boost::is_class<T>::value>::print(x);

 };

This approach is similar to the one we used to implement iter_swap in Chapter 2, and the version using mpl::if_, introduced in Chapter 4, is

a variation on the same theme. We'll see the same basic idea evolve further when we cover structure selection later in this chapter.

9.2.3 Tag Dispatching

We already got a taste of the tag dispatching concept from our work on the tiny sequence in Chapter 5, but the fundamental idea was

actually borrowed from generic programming in the runtime domain. Runtime tag dispatching uses function overloading to generate

executable code based on properties of a type.

A good example can be found in the advance algorithm of most C++ standard library implementations. Though conceptually

simple—advance moves an iterator i by n positions—actually writing the algorithm is fairly complex. Depending on the traversal capabilities

of the iterator, entirely distinct implementation strategies are required. For example, if i supports random access, then advance can be

implemented with i += n and is very efficient: constant time. Other iterators must be advanced in steps, making the operation linear in n. If i is

bidirectional, then it makes sense for n to be negative, so we must decide at runtime whether to increment or decrement the iterator. Any

function that decrements an iterator, however, would fail to compile when passed an iterator supporting only forward traversal. So,

advance requires at least three different implementations.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

To select among them, we must use the concept information contained in the following category tag types:

 namespace std

 {

 struct input_iterator_tag { };

 struct forward_iterator_tag

 : input_iterator_tag { };

 struct bidirectional_iterator_tag

 : forward_iterator_tag { };

 struct random_access_iterator_tag

 : bidirectional_iterator_tag { };

 }

A tag is simply an empty class whose only purpose is to convey some information at compile time, in this case the iterator concept

modeled by a given iterator type. Every iterator type I has an associated category tag, which can be accessed as

 std::iterator_traits<I>::iterator_category

Note that in this case the tags belong to an inheritance hierarchy that mirrors the refinement hierarchy of the concepts they represent. For

example, every bidirectional iterator is also a forward iterator, so bidirectional_iterator_tag is derived from forward_iterator_tag.

Once again, we'll separate the three implementations into distinct function bodies, but this time we'll use overloading to select the right one

by passing an instance of the iterator's empty tag type as an argument.

 namespace std

 {

 template <class InputIterator, class Distance>

 void __advance_impl(

 InputIterator& i

 , Distance n

 , input_iterator_tag)

 {

 while (n--) ++i;

 }

 template <class BidirectionalIterator, class Distance>

 void __advance_impl(

 BidirectionalIterator& i

 , Distance n

 , bidirectional_iterator_tag)

 {

 if (n >= 0)

 while (n--) ++i;

 else

 while (n++) --i;

 }

 template <class RandomAccessIterator, class Distance>

 void __advance_impl(

 RandomAccessIterator& i

 , Distance n

 , random_access_iterator_tag)

 {

 i += n;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 }

 template <class InputIterator, class Distance>

 void advance(InputIterator& i, Distance n)

 {

 typedef typename

 iterator_traits<InputIterator>::iterator_category
 category;

 __advance_impl(i, n, category());
 }

 }

The outer advance function calls the __advance_impl overload that best matches the tag; the other overloads, which may use operations

not implemented by a given iterator, are never instantiated. Here the inheritance hierarchy used for iterator tags works to our advantage:

There is no __advance_impl specifically written for iterators whose category is forward_iterator_tag, but since forward_iterator_tag is

derived from input_iterator_tag, the compiler selects the input_iterator_tag version for input iterators and forward iterators. That would not

have been possible had we used specialization on tag types to select implementations.

Note that mpl::true_ and mpl::false_ make fine dispatching tags. In the example below, desperate_cast<T>(x) is equivalent to

static_cast<T>(x) unless x happens to be (a pointer to) an object of polymorphic class type, in which case desperate_cast<T>(x) is

equivalent to dynamic_cast<T>(x).

 // implementation for polymorphic types

 template <class T, class U>

 T desperate_cast_impl2(U& x, mpl::true_)

 {

 return dynamic_cast<T>(x); // legal iff U is polymorphic

 }

 // implementation for non-polymorphic types

 template <class T, class U>

 T desperate_cast_impl2(U& x, mpl::false_)

 {

 return static_cast<T>(x);

 }

 // dispatcher

 template <class T, class U>

 T desperate_cast_impl(U& x)

 {

 return desperate_cast_impl2<T>(

 x

 , boost::is_polymorphic<
 typename boost::remove_pointer<U>::type

 >()
);

 }

 // public interface

 template <class T, class U>

 T desperate_cast(U const& x) { return desperate_cast_impl<T>(x); }

 template <class T, class U>

 T desperate_cast(U& x) { return desperate_cast_impl<T>(x); }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Because of the way the integral-valued type traits are derived from their result types, we only need to create an object of the whole

metafunction specialization boost::is_polymorphic<...>() to produce a tag that will match mpl::true_ or mpl::false_.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

9.3. Object Generators

By this point in the book, you've probably grown somewhat comfortable with long nested template argument lists, but we're sure you

haven't forgotten how unwieldy they can be. An object generator is a generic function used to deduce type information that might

otherwise have to be written out the long way.

To see how that works, consider the following template, which composes two callable objects, f and g. The result is a new function object

that, when invoked on an argument x, computes f(g(x)), yielding value of type R:

 template <class R, class F, class G>

 class compose_fg

 {

 public:

 compose_fg(F const& f, G const& g)

 : f(f), g(g)

 {}

 template <class T>

 R operator()(T const& x) const

 {

 return f(g(x));

 }

 private:

 F f;

 G g;

 };

The following example uses compose_fg to compute - sin
2
(x) for each element of a sequence.

 #include <functional>

 #include <algorithm>

 #include <cmath>

 float input[5] = {0.0, 0.1, 0.2, 0.3, 0.4};

 float output[5];

 float sin_squared(double x) { return std::sin(std::sin(x)); }

 float* ignored = std::transform(

 input, input+5, output,

 , compose_fg<float,std::negate<float>,float(*)(float)>(

 std::negate<float>(), &sin_squared

)

);

Whew, that compose_fg specialization certainly is an eyeful! It works, but it would probably have been easier to handcraft a

neg_sin_squared function for this purpose than to use compose_fg. At least the result would have been more readable that way.

Fortunately, we can avoid writing out most of the template parameters for compose_fg if we have an auxiliary object generator function:

 template <class R, class F, class G>

 compose_fg<R,F,G> compose(F const& f, G const& g)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 {

 return compose_fg<R,F,G>(f,g);

 }

The entire purpose of compose is to serve as a vehicle for the function template argument deduction mechanism. Now the TRansform call

can be written:

 float* ignored = std::transform(

 input, input+5, seq2

 , compose<float>(std::negate<float>(), &sin_squared)

);

Because the compiler can deduce the type of the required compose_fg specialization from the types of the arguments to compose, there's

no need to write the type out explicitly. Your C++ standard library's bind1st and bind2nd function templates are similar generators, yielding

objects of type binder1st and binder2nd, respectively.
[2]

[2] The Boost Bind library—the basis for an entry in the first C++ standard technical report (TR1)—provides a much

better way to do the same thing.

When used to their full potential, object generators can allow users to generate some truly terrifying—but powerful—template types with a

minimum of syntactic fuss. We'll learn more about how that works when we discuss type erasure later in this chapter.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

9.4. Structure Selection

You already know how to use metafunctions to affect the types of individual class members:

 template <class T>

 struct X

 {

 static int m1 = metafunction1<T>::type::value;

 typedef typename metafunction2<T>::type m2;

 int m4(typename metafunction3<T>::type p);

 ...

 };

In this example, metaprograms are computing the value of m1, the type m2, and the parameter type of m4. Suppose, however, that we

wanted to control whether m2 is present at all in a given specialization of X? The approach used above allows us to manage the details of a

given class member, but fundamental structural changes to the class demand a more powerful technique.

Structure selection involves pushing the variable part of the class structure into public base classes or base class templates and using a

metaprogram to choose among them. To see how it works, let's fix a problem in compose_fg, which is currently defined to be:

 template <class R, class F, class G>

 class compose_fg

 {

 public:

 compose_fg(F const& f, G const& g)

 : f(f), g(g)

 {}

 template <class T>

 R operator()(T const& x) const

 {

 return f(g(x));

 }

 private:

 F f;

 G g;

 };

You may be wondering what sort of problem there could possibly be: compose_fg is almost so simple that we can see its correctness at a

glance. Furthermore, it works! The problem isn't one of correctness, but of efficiency. In our earlier example, we generated an object of

type:

 compose_fg<float,std::negate<float>,float(*)(float)>

so F is std::negate<float>. In most implementations, std::negate's only member is its function-call operator:

 T operator()(const T& x) const { return -x; }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

In other words, it is an empty class. The C++ standard, though, says that every one of compose_fg's data members must occupy at least

one byte. In a typical class layout scheme,
[3]

 its first byte will be devoted to f, even though specializations of negate have no data members.

There will follow a few bytes of padding (say three), as required to reach the appropriate memory alignment for a function pointer, and the

memory for g (say four bytes) would follow thereafter, yielding an object of eight bytes. If we could do away with the storage for f altogether,

the size would drop to four bytes. If G also turned out to be an empty class, the total size of the compose_fg object could, theoretically, be

as small as one byte. We can't do better than that; the rules say even an empty class must have nonzero size.

[3] The standard places almost no restriction on the way most classes are laid out, except that each distinct base or

member subobject of a given type must have a distinct address, and members can't overlap one another. The only

other exception occurs when the class is "plain old data" (POD), whose technical definition is given in section 2.5.4.

In that case, class layout follows a more predictable set of rules.

One way to eliminate storage for empty classes might be to detect them (using the boost::is_empty type trait described in Chapter 2), and

simply omit the corresponding data members. There are a few problems with that approach, however.

It's not transparent: Even empty classes can have nontrivial constructors and destructors, and if we don't store copies of f and g,

the difference in compose_fg's behavior could be surprising.

1.

To implement operator() we still need F and G objects; if they weren't stored we'd need to construct them somehow, and they

might not have default constructors.

2.

Fortunately, there's a better solution. Compilers may implement an Empty Base Optimization (EBO), which allows an empty base class

to be placed at the same address as any other subobject, as long as no two distinct subobjects of the same type share an address. For

example,

 compose_fg<float,std::negate<float>,float(*)(float)>

might have had ideal size if compose_fg had been written this way:

 template <class R, class F, class G>

 class compose_fg : F // if empty, F may overlap with g

 {

 public:

 typedef R result_type;

 compose_fg(F const& f, G const& g)

 : F(f), g(g) // initialize base with f

 {}

 template <class T>

 R operator()(T const& x) const

 {

 F const& f = *this; // retrieve F subobject

 return f(g(x));

 }

 private:

 G g;
 };

Naturally, we can't use that structure for all compose_fg specializations: If F were a function pointer, we'd get a compilation error because

function pointers aren't legal base classes. Furthermore, we don't want to use that structure in all cases: When G is empty but F is not, we

want to derive compose_fg<R,F,G> from G instead. The need for structural variation points to structure selection as the technique of choice.

The first step in applying structure selection is to delegate control over the variable part of the class structure. In this case, the way F and G

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

are stored varies, so we can write:

 // base class template to be defined later

 template <class F, bool F_empty, class G, bool G_empty>

 class storage;

 template <class R, class F, class G>

 class compose_fg

 : storage<

 F,boost::is_empty<F>::value

 , G,boost::is_empty<G>::value
 >{

 typedef

 storage<

 F,boost::is_empty<F>::value

 , G,boost::is_empty<G>::value
 > base;

 public:

 compose_fg(F const& f, G const& g)

 : base(f, g)

 {}

 template <class T>

 R operator()(T const& x) const

 {

 F const& f = this->get_f();

 G const& g = this->get_g();
 return f(g(x));

 }

 };

Now we only need to write storage so that it has the right structure for each of four combinations of F_empty and G_empty, and exposes

access to the stored F and G via get_f and get_g members:
[4]

[4] If you noticed some corner cases where this code doesn't quite work, don't worry; you get to work out the fixes as

part of this chapter's exercises.

 template <class F, class G>

 class storage<F,false,G,false> // neither F nor G is empty

 {

 protected:

 storage(F const& f, G const& g)

 : f(f), g(g)

 {}

 F const& get_f() { return f; }

 G const& get_g() { return g; }

 private:

 F f;

 G g;

 };

 template <class F, class G>

 class storage<F,false,G,true> // G is empty

 : private G

 {

 protected:

 storage(F const& f, G const& g)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 : G(g), f(f)

 {}

 F const& get_f() { return f; }

 G const& get_g() { return *this; }

 private:

 F f;

 };

 template <class F, class G>

 class storage<F,true,G,false> // F is empty

 : private F

 {

 protected:

 storage(F const& f, G const& g)

 : F(f), g(g)

 {}

 F const& get_f() { return *this; }

 G const& get_g() { return g; }

 private:

 G g;

 };

 template <class F, class G>

 class storage<F,true,G,true> // F and G are both empty

 : private F, private G

 {

 protected:

 storage(F const& f, G const& g)

 : F(f), G(g)

 {}

 F const& get_f() { return *this; }

 G const& get_g() { return *this; }

 };

Since the EBO is optional, there are no guarantees that any of this will make a difference. That said, by selecting among different bases,

we've at least given the compiler the opportunity to optimize away the storage for empty subobjects, and most of them will take advantage

of it (see the exercises for more information). You might also want to look at the Boost compressed_pair template [CDHM01], which

implements a generalization of the EBO pattern we've used here.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

9.5. Class Composition

If we can use structure selection once to control the structure of a class, we can use it over and over to create class structures in

fine-grained steps. For example, to generate a struct whose members have types given by a type sequence, we could apply the fold

algorithm:

 // fine-grained struct element; stores a T and inherits More

 template <class T, class More>

 struct store : More

 {

 T value;
 };

 typedef mpl::vector<short[2], long, char*, int> member_types;

 struct empty {};

 mpl::fold<

 member_types, empty, store<_2,_1>

 >::type generated;

Yielding an object generated, of type

 store<int

 , store<char*

 , store<long

 , store<short[2], empty> > > >

Each specialization of store shown above represents a layer of inheritance containing a member of one of the types in member_types.

Actually using classes composed in this way can be tricky unless they are carefully structured. Although generated does indeed contain

members of each of the types in member_types, they're hard to get at. The most obvious problem is that they're all called value: We can't

access any other than the first one directly, because the rest are hidden by layers of inheritance. Unfortunately, there's nothing we can do

about the repetition; it is a fact of life when applying class composition, because although we can easily generate member types, there's no

way to generate member names using templates.
[5]

[5] Member name generation is possible using preprocessor metaprogramming. See Appendix A for more

information.

Moreover, it's difficult to access the value member of a given type even by casting to an appropriate base class. To see why, consider

what's involved in accessing the long value stored in generated. Because each store specialization is derived from its second argument,

we'd have to write:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 long& x = static_cast<

 store<long, store<short[2], empty> >&
 >(generated).value;

In other words, accessing any member of store requires knowing all the types following its type in the original sequence. We could let the

compiler's function argument deduction mechanism do the work of figuring out the base class chain for us:

 template <class T, class U>

 store<T,U> const& get(store<T,U> const& e)

 {

 return e;

 }

 char* s = get<char*>(generated).value;

In the example above, get's first template argument is constrained to be char*, and the effective function parameter becomes

store<char*,U> const&, which matches the base class of generated containing a char* member.

A slightly different pattern allows us to solve this problem a bit more neatly. As usual, the Fundamental Theorem of Software

Engineering
[6]

 applies. We'll just add a layer of indirection:

[6] See Chapter 2 for the origin of this term.

 // fine-grained struct element; wraps a T

 template <class T>

 struct wrap

 {

 T value;

 };

 // one more level of indirection

 template <class U, class V>

 struct inherit : U, V

 {};

 typedef mpl::vector<short[2], long, char*, int> member_types;

 struct empty {};

 mpl::fold<

 member_types, empty, inherit<wrap<_2>,_1>

 >::type generated;

Now the type of generated is:

 inherit<wrap<int>

 , inherit<wrap<char*>

 , inherit<wrap<long>

 , inherit<wrap<short[2]>
 , empty

 >

 >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 >

 >

Since inherit<U,V> is derived from both U and V, the type above is (indirectly) derived from wrap<T> for each T in the sequence. We can

now access a value member of type long with:

 long& x = static_cast<wrap<long> &>(generated).value;

Class generation along these lines is a common metaprogramming activity, so MPL provides ready-made tools for that purpose. In

particular, we can replace empty and inherit with mpl::empty_base and mpl::inherit. The library also contains an appropriately named

inherit_linearly metafunction that calls fold for us with a default initial type of mpl::empty_base:

 template <class Types, class Node, class Root = empty_base>

 struct inherit_linearly

 : fold<Types,Root,Node>

 {

 };

With these tools in hand, we can rewrite our last example more conveniently as:

 #include <boost/mpl/inherit.hpp>

 #include <boost/mpl/inherit_linearly.hpp>

 #include <boost/mpl/vector.hpp>

 // fine-grained struct element

 template <class T>

 struct wrap

 {

 T value;

 };

 typedef mpl::vector<short[2], long, char*, int> member_types;

 mpl::inherit_linearly<

 member_types, mpl::inherit<wrap<_2>,_1>

 >::type generated;

Practical applications of these class composition patterns have been extensively explored by Andrei Alexandrescu [Ale01]. For example,

he uses class composition to generate visitor classes for a generic multiple dispatch framework.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

9.6. (Member) Function Pointers as Template Arguments

Integral constants are not the only kind of non-type template parameters. In fact, almost any kind of value that can be determined at

compile time is allowed, including:

Pointers and references to specific functions

Pointers and references to statically stored data

Pointers to member functions

And pointers to data members

We can achieve dramatic efficiency gains by using these kinds of template parameters. When our earlier compose_fg class template is

used on two function pointers, it is always at least as large as the pointers themselves: It needs to store the values. When a function

pointer is passed as a parameter, however, no storage is needed at all.

To illustrate this technique, let's build a new composing function object template:

 template <class R, class F, F f, class G, G g>

 struct compose_fg2

 {

 typedef R result_type;

 template <class T>

 R operator()(T const& x) const

 {

 return f(g(x));

 }

 };

Note, in particular, that compose_fg2 has no data members. We can use it to compute sin
2
(log2(x)) for each element of a sequence:

 #include <functional>

 #include <algorithm>

 #include <cmath>

 float input[5] = {0.0, 0.1, 0.2, 0.3, 0.4};

 float output[5];

 inline float log2(float x) { return std::log(x)/std::log(2); }

 typedef float (*floatfun)(float);

 float* ignored = std::transform(

 input, input+5, output

 , compose_fg2<float, floatfun,sin_squared, floatfun,log2>()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

);

Don't be fooled by the fact that there are function pointers involved here: on most compilers, you won't pay for an indirect function call.

Because it knows the precise identity of the functions indicated by f and g, the compiler should optimize away the empty compose_fg2

object passed to std::transform and generate direct calls to log2 and sin_squared in the body of the instantiated transform algorithm.

For all its efficiency benefits, compose_fg2 comes with some notable limitations.

Because values of class type are not legal template parameters, compose_fg2 can't be used to compose arbitrary function

objects (but see exercise 9-4).

There's no way to build an object generator function for compose_fg2. An object generator would have to accept the functions

to be composed as function arguments and use those values as arguments to the compose_fg2 template:

 template <class R, class F, class G>

 compose_fg2<R,F,f,G,g> compose(F f, G g)

 {

 return compose_fg2<R,F,f,G,g>(); // error
 }

Unfortunately, any value passed to a function enters the runtime world irretrievably. At that point, there's no way to use it as an argument

to a class template without causing a compiler error.
[7]

[7] Language extensions that would bypass this limitation are currently under discussion in the C++ standardization

community, so watch for progress in the next few years.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

9.7. Type Erasure

While most of this book's examples have stressed the value of static type information, it's sometimes more appropriate to throw that

information away. To see what we mean, consider the following two expressions:

compose<float>(std::negate<float>(), &sin_squared)

with type

compose_fg<float,std::negate<float>,float(*)(float)>

1.

std::bind2nd(std::multiplies<float>(), 3.14159)

with type

std::binder2nd<std::multiplies<float> >

2.

Even though the results of these expressions have different types, they have one essential thing in common: We can invoke either one

with an argument of type float and get a float result back. The common interface that allows either expression to be substituted for the other

in a generic function call is a classic example of static polymorphism:

 std::transform(

 input, input+5, output

 , compose<float>(std::negate<float>(), &sin_squared)
);

 std::transform(

 input, input+5, output

 , std::bind2nd(std::multiplies<float>(), 3.14159)
);

Function templates aren't always the best way to handle polymorphism, though.

Systems whose structure changes at runtime—graphical user interfaces, for example—often require runtime dispatching.

Function templates can't be compiled into object code and shipped in libraries.

Each instantiation of a function template typically results in new machine code. That can be a good thing when the function is in

your program's critical path or is very small, because the code may be inlined and localized. If the call is not a significant

bottleneck, though, your program may get bigger and sometimes even slower.

9.7.1 An Example

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Imagine that we've prototyped an algorithm for an astounding screensaver and that to keep users interested we're looking for ways to let

them customize its behavior. The algorithm to generate the screens is pretty complicated, but it's easily tweaked: By replacing a simple

numerical function that's called once per frame in the algorithm's core, we can make it generate distinctively different patterns. It would be

wasteful to templatize the whole screensaver just to allow this parameterization, so instead we decide to use a pointer to a transformation

function:

 typedef float (*floatfunc)(float);

 class screensaver

 {

 public:

 explicit screensaver(floatfunc get_seed)

 : get_seed(get_seed)

 {}

 pixel_map next_screen() // main algorithm

 {

 float center_pixel_brightness = ...;

 float seed = this->get_seed(center_pixel_brightness);
 complex computation using seed...

 }

 private:

 floatfunc get_seed;

 other members...

 };

We spend a few days coming up with a menu of interesting customization functions, and we set up a user interface to choose among them.

Just as we're getting ready to ship it, though, we discover a new family of customizations that allows us to generate many new astounding

patterns. These new customizations require us to maintain a state vector of 128 integer parameters that is modified on each call to

next_screen().

9.7.2 Generalizing

We could integrate our discovery by adding a std::vector<int> member to screensaver, and changing next_screen to pass that as an

additional argument to the customize function:

 class screensaver

 {

 pixel_map next_screen()

 {

 float center_pixel_brightness = ...;

 float seed = this->get_seed(center_pixel_brightness,

 state);
 ...

 }

 private:

 std::vector<int> state;

 float (*get_seed)(float, std::vector<int>& s);

 ...

 };

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

If we did that, we'd be forced to rewrite our existing transformations to accept a state vector they don't need. Furthermore, it's beginning to

look as though we'll keep discovering interesting new ways to customize the algorithm, so this hardcoded choice of customization interface

looks rather unattractive. After all, our next customization might need a different type of state data altogether. If we replace the

customization function pointer with a customization class, we can bundle the state with the class instance and eliminate the screensaver's

dependency on a particular type of state:

 class screensaver

 {

 public:

 struct customization

 {

 virtual ~customization() {}

 virtual float operator()(float) const = 0;
 };

 explicit screensaver(std::auto_ptr<customization> c)

 : get_seed(c)

 {}

 pixel_map next_screen()

 {

 float center_pixel_brightness = ...;

 float seed = (*this->get_seed)(center_pixel_brightness);

 ...

 }

 private:

 std::auto_ptr<customization> get_seed;

 ...

 };

9.7.3 "Manual" Type Erasure

Now we can write a class that holds the extra state as a member, and implement our customization in its operator():

 struct hypnotic : screensaver::customization

 {

 float operator()(float) const

 {

 ...use this->state...

 }

 std::vector<int> state;

 };

To fit the customizations that don't need a state vector into this new framework, we need to wrap them in classes derived from

screensaver::customization:

 struct funwrapper : screensaver::customization

 {

 funwrapper(floatfunc pf)

 : pf(pf) {}

 float operator()(float x) const

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 {

 return this->pf(x);

 }

 floatfunc pf; // stored function pointer

 };

Now we begin to see the first clues of type erasure at work. The runtime-polymorphic base class screensaver::customization is used to

"erase" the details of two derived classes—from the point-of-view of screensaver, hypnotic and funwrapper are invisible, as are the stored

state vector and function pointer type.

If you're about to object that what we've shown you is just "good old object-oriented programming," you're right. The story isn't finished yet,

though: There are plenty of other types whose instances can be called with a float argument, yielding another float. If we want to customize

screensaver with a preexisting function that accepts a double argument, we'll need to make another wrapper. The same goes for any

callable class, even if its function call operator matches the float (float) signature exactly.

9.7.4 Automatic Type Erasure

Wouldn't it be far better to automate wrapper building? By templatizing the derived customization and screensaver's constructor, we can do

just that:

 class screensaver

 {

 private:

 struct customization

 {

 virtual ~customization() {}

 virtual float operator()(float) const = 0;

 };

 template <class F> // a wrapper for an F

 struct wrapper : customization
 {

 explicit wrapper(F f)

 : f(f) {} // store an F

 float operator()(float x) const

 {

 return this->f(x); // delegate to stored F

 }

 private:

 F f;

 };

 public:

 template <class F>

 explicit screensaver(F const& f)

 : get_seed(new wrapper<F>(f))
 {}

 ...

 private:

 std::auto_ptr<customization> get_seed;

 ...

 };

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

We can now pass any function pointer or function object to screensaver's constructor, as long as what we pass can be invoked with a float

argument and the result can be converted back into a float. The constructor "erases" the static type information contained in its argument

while preserving access to its essential functionality—the ability to call it with a float and get a float result back—through customization's

virtual function call operator. To make type erasure really compelling, though, we'll have to carry this one step further by separating it from

screensaver altogether.

9.7.5 Preserving the Interface

In its fullest expression, type erasure is the process of turning a wide variety of types with a common interface into one type with that same

interface. So far, we've been turning a variety of function pointer and object types into an auto_ptr<customization>, which we're then storing

as a member of our screensaver. That auto_ptr isn't callable, though: only its "pointee" is. However, we're not far from having a generalized

float-to-float function. In fact, we could almost get there by adding a function-call operator to screensaver itself. Instead, let's refactor the

whole function-wrapping apparatus into a separate float_function class so we can use it in any project. Then we'll be able to boil our

screensaver class down to:

 class screensaver

 {

 public:

 explicit screensaver(float_function f)

 : get_seed(f)

 {}

 pixel_map next_screen()

 {

 float center_pixel_brightness = ...;

 float seed = this->get_seed(center_pixel_brightness);

 ...

 }

 private:

 float_function get_seed;
 ...

 };

The refactoring is going to reveal another part of the common interface of all function objects that, so far, we've taken for granted:

copyability. In order to make it possible to copy float_function objects and store them in the screensaver, we've gone through the same

"virtualization" process with the wrapped type's copy constructor that we used on its function call operator—which explains the presence of

the clone function in the next implementation.

 class float_function

 {

 private:

 struct impl

 {

 virtual ~impl() {}

 virtual impl* clone() const = 0;

 virtual float operator()(float) const = 0;

 };

 template <class F>

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 struct wrapper : impl

 {

 explicit wrapper(F const& f)

 : f(f) {}

 impl* clone() const

 {

 return new wrapper<F>(this->f); // delegate

 }

 float operator()(float x) const

 {

 return f(x); // delegate

 }

 private:

 F f;

 };

 public:

 // implicit conversion from F

 template <class F>

 float_function(F const& f)

 : pimpl(new wrapper<F>(f)) {}

 float_function(float_function const& rhs)

 : pimpl(rhs.pimpl->clone()) {}

 float_function& operator=(float_function const& rhs)

 {

 this->pimpl.reset(rhs.pimpl->clone());

 return *this;

 }

 float operator()(float x) const

 {

 return (*this->pimpl)(x);

 }

 private:

 std::auto_ptr<impl> pimpl;

 };

Now we have a class that can "capture" the functionality of any type that's callable with a float and whose return type can be converted to a

float. This basic pattern is at the core of the Boost Function library—another library represented in TR1—where it is generalized to support

arbitrary arguments and return types. Our entire definition of float_function could, in fact, be replaced with this typedef:

 typedef boost::function<float (float x)> float_function;

The template argument to boost::function is a function type that specifies the argument and return types of the resulting function object.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

9.8. The Curiously Recurring Template Pattern

The pattern named in this section's title was first identified by James Coplien [Cop96] as "curiously recurring" because it seems to arise so

often. Without further ado, here it is.

The Curiously Recurring Template Pattern (CRTP)

A class X has, as a base class, a template specialization taking X itself as an argument:

 class X

 : public base<X>

 {

 ...

 };

Because of the way X is derived from a class that "knows about" X itself, the pattern is sometimes also called "curiously recursive."

CRTP is powerful because of the way template instantiation works: Although declarations in the base class template are instantiated when

the derived class is declared (or instantiated, if it too is templated), the bodies of member functions of the base class template are only

instantiated after the entire declaration of the derived class is known to the compiler. As a result, these member functions can use details

of the derived class.

9.8.1 Generating Functions

The following example shows how CRTP can be used to generate an operator> for any class that supports prefix operator<:

 #include <cassert>

 template <class T>

 struct ordered

 {

 bool operator>(T const& rhs) const

 {

 // locate full derived object

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 T const& self = static_cast<T const&>(*this);
 return rhs < self;

 }

 };

 class Int

 : public ordered<Int>
 {

 public:

 explicit Int(int x)

 : value(x) {}

 bool operator<(Int const& rhs) const

 {

 return this->value < rhs.value;

 }

 int value;

 };

 int main()

 {

 assert(Int(4) < Int(6));

 assert(Int(9) > Int(6));

 }

The technique of using a static_cast with CRTP to reach the derived object is sometimes called the "Barton and Nackman trick" because it

first appeared in John Barton and Lee Nackman's Scientific and Engineering C++ [BN94]. Though written in 1994, Barton and Nackman's

book pioneered generic programming and metaprogramming techniques that are still considered advanced today. We highly recommend

this book.

CRTP and Type Safety

Generally speaking, casts open a type safety hole, but in this case it's not a very big one, because the static_cast will

only compile if T is derived from ordered<T>. The only way to get into trouble is to derive two different classes from the

same specialization of ordered:

 class Int : public ordered<Int> { ... };

 class bogus : public ordered<Int> {};

 bool crash = bogus() > Int();

In this case, because Int is already derived from ordered<Int>, the operator> compiles but the static_cast attempts to cast

a pointer that refers to a bogus instance into a pointer to an Int, inducing undefined behavior.

Another variation of the trick can be used to define non-member friend functions in the namespace of the base class:

 namespace crtp

 {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 template <class T>

 struct signed_number

 {

 friend T abs(T x)

 {

 return x < 0 ? -x : x;

 }
 };

 }

If signed_number<T> is used as a base class for any class supporting unary negation and comparison with 0, it automatically acquires a

non-member abs function:

 class Float : crtp::signed_number<Float>

 {

 public:

 Float(float x)

 : value(x)

 {}

 Float operator-() const

 {

 return Float(-value);

 }

 bool operator<(float x) const

 {

 return value < x;

 }

 float value;

 };

 Float const minus_pi = -3.14159265;

 Float const pi = abs(minus_pi);

Here the abs function is found in namespace crtp by argument-dependent lookup (ADL). Only unqualified calls are subject to ADL, which

searches the namespaces of function arguments and their bases for viable overloads.

It's a curious property of friend functions defined in the body of a class template that, unless also declared outside the body, they can only

be found via ADL. Explicit qualification doesn't work:

 Float const erroneous = crtp::abs(pi); // error

Keep that limitation in mind when generating free functions with CRTP.

9.8.2 Managing Overload Resolution

In its simplest form, CRTP is used to establish an inheritance relationship among otherwise unrelated classes for the purpose of overload

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

resolution, and to avoid overly general function template arguments. For example, if we are writing a generic function drive, which operates

on Vehicles (where Vehicle is a Concept), we could write:

 template <class Vehicle>

 void drive(Vehicle const& v)

 { ... }

This definition is perfectly fine until someone writes a generic function called "drive" that operates on Screws:

 template <class Screw>

 void drive(Screw const& s)

 { ... }

The problem is that while the identifiers Vehicle and Screw have meaning to us, they are equivalent as far as the compiler is concerned. If

the two drives are in the same namespace, both declarations refer to the same entity. If both function bodies are visible, we'll get a

compilation error, but if only one body is visible, we'll have quietly violated the standard's "One Definition Rule," leading to undefined

behavior.

Even if they're not in the same namespace, unqualified calls to drive may be ambiguous, or worse, may end up invoking the wrong

function. Because of the way that ADL quietly adds distant functions to the overload set, and because unqualified function calls are so

natural, writing completely general function templates with parameters that can match all types is extremely dangerous. Consider the

following contrived example:

 #include <list>

 namespace utility

 {

 // fill the range with zeroes

 template <class Iterator>

 Iterator clear(Iterator const& start, Iterator const& finish);

 // perform some transformation on the sequence

 template <class Iterator>

 int munge(Iterator start, Iterator finish)

 {

 // ...

 start = clear(start, finish);

 // ...

 }

 }

 namespace paint

 {

 template <class Canvas, class Color> // generalized template

 void clear(Canvas&, Color const&);

 struct some_canvas { };

 struct black { };

 std::list<some_canvas> canvases(10);

 int x = utility::munge(canvases.begin(), canvases.end());

 }

In fact, the instantiation of munge usually won't compile, because the list iterators will be class templates parameterized on

paint::some_canvas. Argument-dependent lookup sees that parameter and finds a definition of clear in namespace paint, which is added to

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

the overload set. Inside munge, paint::clear happens to be a slightly better match than utility::clear for the arguments passed. Fortunately for

us, paint::clear returns void, so the assignment fails—but just imagine that clear returned a Canvas&. In that case, the code might have

compiled "cleanly," but it would have silently done something completely unintended.

To solve this problem, we can use the curiously recurring template pattern to identify models of our Vehicle and Screw concepts. We only

need to add the requirement that models of each concept be publicly derived from a corresponding CRTP base class:

 template <class Derived>

 struct vehicle

 {};

 template <class Derived>

 struct screw

 {};

Now our drive function templates can be rewritten to be more discriminating. The usual downcasts apply:

 template <class Vehicle>

 void drive(vehicle<Vehicle> const& v)

 {

 Vehicle const& v_= static_cast<Vehicle const&>(v);

 ...

 };

 template <class Screw>

 void drive(screw<Screw> const& s)

 {

 Screw const& s_= static_cast<Screw const&>(s);

 ...

 };

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

9.9. Explicitly Managing the Overload Set

Sometimes, CRTP is inadequate for limiting the reach of generalized function template arguments. For example, we may want our function

template to operate on built-in types (which cannot have base classes), or on existing third-party types that we don't want to modify.

Fortunately, if we can determine the appropriateness of an argument type at compile time, Boost's enable_if family of templates will allow

us to manage the overload set non-intrusively.

For example, the following function template applies only to iterators over arithmetic types. The examples in this section use

boost::iterator_value, a metafunction that retrieves an iterator's value_type.

 #include <iterator>

 #include <boost/utility/enable_if.hpp>

 #include <boost/type_traits/is_arithmetic.hpp>

 #include <boost/iterator/iterator_traits.hpp>

 template <class Iterator>

 typename boost::enable_if<
 boost::is_arithmetic< // enabling condition

 typename boost::iterator_value<Iterator>::type

 >

 , typename // return type

 boost::iterator_value<Iterator>::type

 >::type
 sum(Iterator start, Iterator end)

 {

 typename boost::iterator_value<Iterator>::type x(0);

 for (;start != end; ++start)

 x += *start;

 return x;

 }

If the ::value of the enabling condition C is TRue, enable_if<C,T>::type will be T, so sum just returns an object of Iterator's value_type.

Otherwise, sum simply disappears from the overload resolution process! We'll explain why it disappears in a moment, but to get a feeling for

what that means, consider this: If we try to call sum on iterators over non-arithmetic types, the compiler will report that no function matches

the call. If we had simply written

 std::iterator_traits<Iterator>::value_type

in place of enable_if<...>:: type, calling sum on iterators whose value_type is std:: vector<int> would fail inside sum where it attempts to use

operator+=. If the iterators' value_type were std::string, it would actually compile cleanly, but possibly with an undesired result.

This technique really becomes interesting when there are function overloads in play. Because sum has been restricted to appropriate

arguments, we can now add an overload that will allow us to sum all the arithmetic elements of vector<vector<int> > and other nested

containers of arithmetic types.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 // given an Iterator that points to a container, get the

 // value_type of that container's iterators.

 template <class Iterator>

 struct inner_value

 : boost::iterator_value<

 typename boost::iterator_value<Iterator>::type::iterator

 >

 {};

 template <class Iterator>

 typename boost::lazy_disable_if<
 boost::is_arithmetic< // disabling condition

 typename boost::iterator_value<Iterator>::type

 >

 , inner_value<Iterator> // result metafunction

 >::type

 sum(Iterator start, Iterator end)

 {

 typename inner_value<Iterator>::type x(0);

 for (;start != end; ++start)

 x += sum(start->begin(), start->end());

 return x;

 }

The word "disable" in lazy_disable_if indicates that the function is removed from the over-load set when the condition is satisfied. The word

"lazy" means that the function's result ::type is the result of calling the second argument as a nullary metafunction.
[8]

[8] For completeness, enable_if.hpp includes plain disable_if and lazy_enable_if templates, as well as _C-suffixed

versions of all four templates that accept integral constants instead of wrappers as a first argument.

Note that inner_value<Iterator> can only be invoked if Iterator's value type is another iterator. Otherwise, there will be an error when it fails

to find the inner (non-)iterator's value type. If we tried to compute the result type greedily, there would be error during overload resolution

whenever Iterator's value type turned out to be an arithmetic type and not another iterator.

Now let's take a look at how the magic works. Here's the definition of enable_if:

 template <bool, class T = void>

 struct enable_if_c

 {

 typedef T type;

 };

 template <class T>

 struct enable_if_c<false, T>

 {};

 template <class Cond, class T = void>

 struct enable_if

 : enable_if_c<Cond::value, T>

 {};

Notice that when C is false, enable_if_c<C,T>::type doesn't exist! The C++ standard's overload resolution rules (section 14.8.3) say that

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

when a function template's argument deduction fails, it contributes nothing to the set of candidate functions considered for a given call, and

it does not cause an error.
[9]

 This principle has been dubbed "Substitution Failure Is Not An Error" (SFINAE) by David Vandevoorde and

Nicolai Josuttis [VJ02].

[9] You might be wondering why inner_value and lazy evaluation were needed, while enable_if itself doesn't cause an

error. The template argument deduction rules include a clause (14.8.2, paragraph 2) that enumerates conditions

under which an invalid deduced type in a function template signature will cause deduction to fail. It turns out that the

form used by enable_if is in the list, but that errors during instantiation of other templates (such as iterator_value)

during argument deduction are not.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

9.10. The "sizeof TRick"

Although values used as function arguments pass into the runtime world permanently, it is possible to get some information at compile time

about the result type of a function call by using the sizeof operator. This technique has been the basis of numerous low-level template

metafunctions, including many components of the Boost Type Traits library. For example, given:

 typedef char yes; // sizeof(yes) == 1

 typedef char (&no)[2]; // sizeof(no) == 2

we can write a trait separating classes and unions from other types, as follows:

 template <class T>

 struct is_class_or_union

 {

 // SFINAE eliminates this when the type of arg is invalid

 template <class U>

 static yes tester(int U::*arg);

 // overload resolution prefers anything at all over "..."

 template <class U>

 static no tester(...);

 // see which overload is chosen when U == T

 static bool const value

 = sizeof(tester<T>(0)) == sizeof(yes);

 typedef mpl::bool_<value> type;

 };

 struct X{};

 BOOST_STATIC_ASSERT(is_class_or_union<X>::value);

 BOOST_STATIC_ASSERT(!is_class_or_union<int>::value);

This particular combination of SFINAE with the sizeof trick was first discovered by Paul Mensonides in March 2002. It's a shame that in

standard C++ we can only pull the size of an expression's type, but not the type itself, back from runtime. For example, it would be nice to

be able to write:

 // generalized addition function object

 struct add

 {

 template <class T, class U>

 typeof(T+U) operator()(T const& t, U const& u)

 {

 return t+u;

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 };

Though it's not in the standard, many compilers already include a typeof operator (sometimes with one of the reserved spellings "__typeof"

or "__typeof__"), and the C++ committee is very seriously discussing how to add this capability to the standard language. The feature is so

useful that over the years several library-only implementations of typeof have been developed, all of which ultimately rely on the more

limited capabilities of sizeof [Dew02]. The library implementations aren't fully automatic: User-defined types must be manually associated

with unique numbers, usually through specializations of some traits class. You can find code and tests for one such library by Arkadiy

Vertleyb in the pre-release materials on this book's companion CD.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

9.11. Summary

The techniques presented in this chapter may seem to be a hodgepodge collection of programming tricks, but they all have one thing in

common: They connect pure compile-time metaprograms to runtime constructs in powerful ways. There are certainly a few other such

mechanisms lurking out there, but those we've covered here should give you enough tools to make your metaprograms' presence felt in

the real world of runtime data.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

9.12. Exercises

9-0. Many compilers contain a "single-inheritance" EBO. That is, they will allocate an empty base at the same

address as a data member, but they will never allocate two bases at the same address. On these compilers,

our storage implementation is suboptimal for the case where F and G are both empty. Patch storage to avoid

this pitfall when NO_MI_EBO is defined in the preprocessor.

9-1. What happens to our compose template when F and G are the same empty class? How would you fix the

problem? Write a test that fails with identical empty F and G, then fix compose_fg so that the test passes.

9-2. We may not be able to compose arbitrary function objects with compose_fg2, but we can use it to compose

statically initialized function objects. (Hint: Review the list at the beginning of section 9.6 of types that can be

passed as template arguments). Compile a small program that does so and, if you can read your compiler's

assembly-language output, analyze the efficiency of the resulting code.

9-3*. Write a generalized iterator template that uses type erasure to wrap an arbitrary iterator type and present it with

a runtime-polymorphic interface. The template should accept the iterator's value_type as its first parameter and

its iterator_category as the second parameter. (Hint 1: Use Boost's iterator_facade template to make writing the

iterator easier. Hint 2: You can control whether a given member function is virtual by using structure selection.)

9-4. Change the sum overload example in section 9.9 so that it can add the arithmetic innermost elements of

arbitrarily nested containers such as std::list<std::list<std:: vector<int> > >. Test your changes to show that they

work.

9-5. Revisit the dimensional analysis code in Chapter 3. Instead of using BOOST_STATIC_ASSERT to detect

dimension conflicts within operator+ and operator-, apply SFINAE to eliminate inappropriate combinations of

parameters from the overload sets for those operators. Compare the error messages you get when misusing

operator+ and operator- in both cases.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Chapter 10. Domain-Specific Embedded Languages

If syntactic sugar didn't count, we'd all be programming in assembly language.

This chapter covers what we believe to be the most important application area for metaprogramming in general and C++

metaprogramming in particular: building domain-specific embedded languages (DSELs).

Most of the template metaprogramming techniques we use today were invented in the course of implementing a DSEL. C++ metaprograms

first began to be used for DSEL creation sometime in 1995, with impressive results. Interest in metaprogramming has grown steadily ever

since, but—maybe because a new way to exploit templates seems to be discovered every week—this excitement is often focused on

implementation techniques. As a result, we've tended to overlook the power and beauty of the design principles for which the techniques

were invented. In this chapter we'll explore those principles and paint the big picture behind the methodology.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

10.1. A Little Language ...

By now you may be wondering, "What is a domain-specific language, anyway?" Let's start with an example (we'll get to the "embedded"

part later).

Consider searching some text for the first occurrence of any hyphenated word, such as "domain-specific." If you've ever used regular

expressions,
[1]

 we're pretty sure you're not considering writing your own character-by-character search. In fact, we'd be a little surprised if

you aren't thinking of using a regular expression like this one:

[1] For an introduction to regular expressions, you might want to take a half-hour break from this book and grab some

fine manual on the topic, for instance Mastering Regular Expressions, 2nd Edition, by Jeffrey E. F. Friedl. If you'd

like a little theoretical grounding, you might look at The Theory of Computation, by Bernard Moret. It also covers

finite state machines, which we're going to discuss in the next chapter.

 \w+(-\w+)+

If you're not familiar with regular expressions, the incantation above may look rather cryptic, but if you are, you probably find it concise and

expressive. The breakdown is as follows:

\w means "any character that can be part of a word"

+ (positive closure) means "one or more repetitions"

- simply represents itself, the hyphen character

Parentheses group subexpressions as in arithmetic, so the final + modifies the whole subexpression -\w+

So the whole pattern matches any string of words separated by single hyphens.

The syntax of regular expressions was specifically designed to allow a short and effective representation of textual patterns. Once you've

learned it, you have in your arsenal a little tool—a language, in fact, with its own alphabet, rules, and semantics. Regular expressions are

so effective in their particular problem domain that learning to use them is well worth the effort, and we always think twice before

abandoning them for an ad hoc solution. It shouldn't be hard to figure out where we are going here—regular expressions are a classic

example of a domain-specific language, or DSL for short.

There are a couple of distinguishing properties here that allow us to characterize something as a DSL. First, of course, it has to be a

language. Perhaps surprisingly, though, that property is easy to satisfy—just about anything that has the following features constitutes a

formal language.

An alphabet (a set of symbols).1.

A well-defined set of rules saying how the alphabet may be used to build well-formed compositions.2.

A well-defined subset of all well-formed compositions that are assigned specific meanings.3.

Note that the alphabet doesn't even have to be textual. Morse code and UML are well-known languages that use graphical alphabets. Both

are not only examples of somewhat unusual yet perfectly valid formal languages, but also happen to be lovely DSLs.

Now, the domain-specific part of the language characteristic is more interesting, and gives DSLs their second distinguishing property.

Perhaps the simplest way to interpret "domain-specific" would be "anything that isn't general-purpose." Although admittedly that would

make it easy to classify languages ("Is HMTL a general-purpose language? No? Then it's domain-specific!"), that interpretation fails to

capture the properties of these little languages that make them so compelling. For instance, it is obvious that the language of regular

expressions can't be called "general-purpose"—in fact, you might have been justifiably reluctant to call it a language at all, at least until we

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

presented our definition of the word. Still, regular expressions give us something beyond a lack of familiar programming constructs that

makes them worthy of being called a DSL.

In particular, by using regular expressions, we trade general-purposeness for a significantly higher level of abstraction and expressiveness.

The specialized alphabet and notations allow us to express pattern-matching at a level of abstraction that matches our mental model. The

elements of regular expressions—characters, repetitions, optionals, subpatterns, and so on—all map directly onto concepts that we'd use if

asked to describe a pattern in words.

Making it possible to write code in terms close to the abstractions of the problem domain is the characteristic property of, and motivation

behind, all DSLs. In the best-case scenario, the abstractions in code are identical to those in the mental model: You simply use the

language's domain-specific notation to write down a statement of the problem itself, and the language's semantics take care of generating

a solution.

That may sound unrealistic, but in practice it's not as rare as you might think. When the FORTRAN programming language was created, it

seemed to some people to herald the end of programming. The original IBM memo [IBM54] about the language said:

Since FORTRAN should virtually eliminate coding and debugging, it should be possible to solve problems for less

than half the cost that would be required without such a system.

By the standards of the day, that was true: FORTRAN did "virtually" eliminate coding and debugging. Since the major problems of most

programmers at the time were at the level of how to write correct loops and subroutine calls, programming in FORTRAN may have seemed

to be nothing more than writing down a description of the problem. Clearly, the emergence of high-level general-purpose languages has

raised the bar on what we consider "coding."

The most successful DSLs are often declarative languages, providing us with notations to describe what rather than how. As you will see

further on, this declarative nature plays a significant role in their attractiveness and power.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

10.2. ... Goes a Long Way

Jon Bentley, in his excellent article on DSLs, wrote that "programmers deal with microscopic languages every day" [Bent86]. Now that you

are aware of their fundamental properties, it's easy to see that little languages are all around us.

In fact, the examples are so numerous that this book can't possibly discuss all of them—we estimate that thousands of DSLs are in

common use today—but we can survey a few to present you with some more perspective.

10.2.1 The Make Utility Language

Building software rapidly, reliably, and repeatably is crucial to the daily practice of software development. It also happens to be important to

the deployment of reusable software and—increasingly in the age of open-source software—end-user installation. A great many tools have

cropped up over the years to address this problem, but they are nearly all variations of a single, powerful, build-description language:

Make. As a C++ programmer, you're probably already at least a little familiar with Make, but we're going to go through a mini-review here

with a focus on its "DSL-ness" and with an eye toward the design of your own domain-specific languages.

The principal domain abstraction of Make is built around three concepts.

Targets

Usually files that need to be built or sources that are read as inputs to parts of the build process, but also "fake" targets naming states of

the build process that might not be associated with a single file.

Dependencies

Relationships between targets that allow Make to determine when a target is not up-to-date and therefore needs to be rebuilt.

Commands

The actions taken in order to build or update a target, typically commands in the native system's shell language.

The central Make language construct is called a rule, and is described with the following syntax in a "Makefile":

 dependent-target : source-targets

 commands

So, for example, a Makefile to build a program from C++ sources might look like this:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 my_program: a.cpp b.cpp c.cpp d.cpp

 c++ -o my_program a.cpp b.cpp c.cpp d.cpp

where c++ is the command that invokes the C++ compiler. These two lines demonstrate that Make allows a concise representation of its

domain abstractions: targets (my_program and the .cpp files), their dependency relationships, and the command used to create

dependent targets from their dependencies.

The designers of Make recognized that such rules include some boilerplate repetition of filenames, so they included support for variables

as a secondary capability. Using a variable, the above "program" might become:

 SOURCES = a.cpp b.cpp c.cpp d.cpp

 my_program: $(SOURCES)

 c++ -o my_program $(SOURCES)

Unfortunately, this is not a very realistic example for most C/C++ programs, which contain dependencies on header files. To ensure

minimal and rapid rebuilds once headers enter the picture, it becomes important to build separate object files and represent their individual

dependencies on headers. Here's an example based on one from the GNU Make manual:

 OBJECTS = main.o kbd.o command.o display.o \

 insert.o search.o files.o utils.o

 edit : $(OBJECTS)

 c++ -o edit $(OBJECTS)

 main.o : main.cpp defs.h

 c++ -c main.cpp

 kbd.o : kbd.cpp defs.h command.h

 c++ -c kbd.cpp

 command.o : command.cpp defs.h command.h

 c++ -c command.cpp

 display.o : display.cpp defs.h buffer.h

 c++ -c display.cpp

 insert.o : insert.cpp defs.h buffer.h

 c++ -c insert.cpp

 search.o : search.cpp defs.h buffer.h

 c++ -c search.cpp

 files.o : files.cpp defs.h buffer.h command.h

 c++ -c files.cpp

 utils.o : utils.cpp defs.h

 c++ -c utils.cpp

Once again you can see some repeated boilerplate in the commands used to build each object file. That can be addressed with "implicit

pattern rules," which describe how to build one kind of target from another:

 %.o: %.cpp

 c++ -c $(CFLAGS) $< -o $@

This rule uses pattern-matching to describe how to construct a .o file from a .cpp file on which it depends, and the funny symbols $< and $@

represent the results of those matches. In fact, this particular rule is so commonly needed that it's probably built into your Make system, so

the Makefile becomes:

 OBJECTS = main.o kbd.o command.o display.o \

 insert.o search.o files.o utils.o

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 edit : $(OBJECTS)

 c++ -o edit $(OBJECTS)

 main.o : main.cpp defs.h

 kbd.o : kbd.cpp defs.h command.h

 command.o : command.cpp defs.h command.h

 display.o : display.cpp defs.h buffer.h

 insert.o : insert.cpp defs.h buffer.h

 search.o : search.cpp defs.h buffer.h

 files.o : files.cpp defs.h buffer.h command.h

 utils.o : utils.cpp defs.h

Enough review! Exploring all the features of Make could easily fill an entire book. The purpose of this exercise is to show that Make begins

to approach the domain-specific language ideal of allowing a problem to be solved merely by describing it—in this case, by writing down

the names of files and their relationships.

In fact, most of the other features of various Make variants are aimed at getting still closer to the ideal. GNU Make, for example, can

automatically discover eligible source files in the working directory, explore their header dependencies, and synthesize the rules to build

intermediate targets and the final executable. In a classic example of creolization [Veld04], GNU Make has sprouted so many features that

it approaches the power of a general-purpose language—but such a clumsy one that for all practical purposes it is still domain-specific.

10.2.2 Backus Naur Form

After all this discussion of metaprogramming, we're going to introduce the idea of a metasyntax. That's exactly what Backus Naur Form

(BNF) is: a little language for defining the syntax of formal languages.
[2]

 The principal domain abstraction of BNF is called a "context-free

grammar," and it is built around two concepts.

[2] BNF was actually first developed to specify the syntax of the programming language Algol-60.

Symbols

Abstract elements of the syntax. Symbols in the grammar for C++ include identifier, unary-operator, string-literal, new-expression,

statement, and declaration. The first three are never composed of other symbols in the grammar and are called terminal symbols or

tokens. The rest can be built from zero or more symbols and are called nonterminals

Productions (or "rules")

The legal patterns for combining consecutive symbols to form nonterminal symbols. For example, in C++ a new-expression can be formed

by combining the new keyword (a token) with a new-type-id (a nonterminal).

Productions are normally written according to the syntax:

 nonterminal -> symbols...

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

where the nonterminal symbol to the left of the arrow can be matched by any input sequence matching the sequence of symbols on the

right.

Here is a grammar for simple arithmetic expressions, written in BNF, with terminals shown in bold and nonterminals shown in italics:

 expression -> term

 expression -> expression + term

 expression -> expression - term

 term -> factor

 term -> term * factor

 term -> term / factor

 factor -> integer
 factor -> group

 group -> (expression)

That is, an expression is matched by a term, or by an expression followed by the + token and a term, or by an expression followed by the -

token and a term. Similarly, a term is matched by a factor, or by a term followed by the * token and a factor, or by a term followed by the /

token and a factor ... and so on.

This grammar not only encodes the allowed syntax of an expression (ultimately just one or more integers separated by +, -, *, or /), but, by

grouping syntactic elements according to the operators' usual associativity and precedence rules, it also represents some important

semantic information. For example, the structure of

 1 + 2 * 3 + 4

when parsed according to the above grammar, can be represented as:

 [1 + [2 * 3]] + 4

In other words, the subexpression 2 * 3 will be grouped into a single term and then combined with 1 to form a new (sub-) expression. There

is no way to parse the expression so as to generate an incorrect grouping such as

 [[1 + 2] * 3] + 4

Try it yourself; the grammar simply doesn't allow the expression 1 + 2 to be followed by *. BNF is very efficient for encoding both the syntax

and the structure of formal languages.

A few linguistic refinements are possible: For example, it's customary to group all productions that yield a given nonterminal, so the |

symbol is sometimes used to separate the different right-hand-side alternatives without repeating the "nonterminal ->" boilerplate:

 expression -> term

 | term + expression

 | term - expression

Extended BNF (EBNF), another variant, adds the use of parentheses for grouping, and the Kleene star ("zero-or-more") and positive

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

closure ("one-or-more") operators that you may recognize from regular expressions for repetition. For example, all the rules for expression

can be combined into the following EBNF:

 expression -> (term + | term -)* term

That is, "an expression is matched by a sequence of zero or more repetitions of [a term and a + token or a term and a - token], followed by a

term."

All grammars written in EBNF can be transformed into standard BNF with a few simple steps, so the fundamental expressive power is the

same no matter which notation is used. It's really a question of emphasis: EBNF tends to clarify the allowable inputs at the cost of making

the parse structure somewhat less apparent.

10.2.3 YACC

As we mentioned in Chapter 1, YACC (Yet Another Compiler Compiler) is a tool for building parsers, interpreters, and compilers. YACC is a

translator whose input language is a form of augmented BNF, and whose output is a C/C++ program that does the specified parsing and

interpreting. Among computer language jocks, the process of interpreting some parsed input is known as semantic evaluation. YACC

supports semantic evaluation by allowing us to associate some data (a semantic value) with each symbol and some C/C++ code (a

semantic action) with the rule. The semantic action, enclosed in braces, computes the semantic value of the rule's left-hand-side

nonterminal from those of its constituent symbols. A complete YACC program for parsing and evaluating arithmetic expressions follows:

 %{ // C++ code to be inserted in the generated source file

 #include <cstdio>

 typedef int YYSTYPE; // the type of all semantic values

 int yylex(); // forward

 void yyerror(char const* msg); // forward

 %}

 %token INTEGER /* declare a symbolic multi-character token */

 %start lines /* lines is the start symbol */

 %% /* grammar rules and actions */

 expression : term

 | expression '+' term { $$ = $1 + $3; }

 | expression '-' term { $$ = $1 - $3; }

 ;

 term : factor

 | term '*' factor { $$ = $1 * $3; }

 | term '/' factor { $$ = $1 / $3; }

 ;

 factor : INTEGER

 | group

 ;

 group : '(' expression ')' { $$ = $2; }

 ;

 lines : lines expression

 {

 std::printf("= %d\n", $2); // after every expression

 std::fflush(stdout); // print its value

 }

 '\n'

 | /* empty */

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 ;

 %% /* C++ code to be inserted in the generated source file */

 #include <cctype>

 int yylex() // tokenizer function

 {

 int c;

 // skip whitespace

 do { c = std::getchar(); }

 while (c == ' ' || c == '\t' || c == '\r');

 if (c == EOF)

 return 0;

 if (std::isdigit (c))

 {

 std::ungetc(c, stdin);

 std::scanf("%d", &yylval); // store semantic value

 return INTEGER;

 }

 return c;

 }

 // standard error handler

 void yyerror(char const* msg) { std::fprintf(stderr,msg); }

 int main() { int yyparse(); return yyparse(); }

As you can see, some of the C++ program fragments in curly braces are not quite C++: they contain these funny $$ and $n symbols (where

n is an integer). When YACC translates these program fragments to C++, it replaces $$ with a reference to the semantic value for the rule's

left-hand-side nonterminal, and $n with the semantic value for the nth right-hand-side symbol. The semantic actions above come out looking

like this in the generated C++:

 yym = yylen[yyn];

 yyval = yyvsp[1-yym];

 switch (yyn)

 {

 case 1:

 { std::printf("= %d \n", yyvsp[0]); std::fflush(stdout); }

 break;

 case 8:

 { yyval = yyvsp[-2] * yyvsp[0]; }

 break;

 case 9:

 { yyval = yyvsp[-2] / yyvsp[0]; }

 break;

 case 11:

 { yyval = yyvsp[-2] + yyvsp[0]; }

 break;

 case 12:

 { yyval = yyvsp[-2] - yyvsp[0]; }

 break;

 }

 yyssp -= yym;

 ...

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This code is just a fragment of a source file full of similar unreadable ugliness; in fact, the BNF part of the grammar is expressed in terms of

large arrays of integers known as parse tables:

 const short yylhs[] = {

 -1,

 2, 0, 0, 3, 3, 4, 5, 5, 5, 1,

 1, 1,

 };

 const short yylen[] = {

 2,

 0, 4, 0, 1, 1, 3, 1, 3, 3, 1,

 3, 3,

 };

 const short yydefred[] = { ... };

 const short yydgoto[] = { ... };

 const short yysindex[] = { ... };

 const short yyrindex[] = { ... };

 const short yygindex[] = { ... };

You don't need to understand how to generated code works: It's the job of the DSL to protect us from all of those ugly details, allowing us

to express the grammar in high-level terms.

10.2.4 DSL Summary

It should be clear at this point that DSLs can make code more concise and easy-to-write. The benefits of using little languages go well

beyond rapid coding, though. Whereas expedient programming shortcuts can often make code harder to understand and maintain, a

domain-specific language usually has the opposite effect due to its high-level abstractions. Just imagine trying to maintain the low-level

parser program generated by YACC for our little expression parser: Unless we had the foresight to maintain a comment containing

something very close to the YACC program itself, we'd have to reverse engineer the BNF from the parse tables and match it up to the

semantic actions. The maintainability effect becomes more extreme the closer the language gets to the domain abstraction. As we

approach the ideal language, it's often possible to tell at a glance whether a program solves the problem it was designed for.

Imagine, for a moment, that you're writing control software for the Acme Clean-Burning Nuclear Fusion Reactor. The following formula from

a scientific paper describes how to combine voltage levels from three sensors into a temperature reading:

 T = (a+3.1)(b+4.63)(c+2x108)

You need to implement the computation as part of the reactor's failsafe mechanism. Naturally, using operator notation (C++'s

domain-specific sublanguage for arithmetic) you'd write:

 T = (a + 3.1) * (b + 4.63) * (c + 2E8);

Now compare that to the code you'd have to write if C++ didn't include support for operators:

 T = mul(mul(add(a, 3.1), add(b, 4.63)), add(c, 2E8));

Which notation do you trust more to help prevent a meltdown? Which one is easier to match up with the formula from the paper? We think

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

the answer is obvious. A quick glance at the code using operator notation shows that it implements the formula correctly. What we have

here is a true example of something many claim to have seen, or even to have produced themselves, but that in reality is seldom

encountered in the wild: self-documenting code.

Arithmetic notation evolved into the standard we use today because it clearly expresses both the intent and the structure of calculations

with a minimum of extra syntax. Because mathematics is so important to the foundation of programming, most computer languages have

built-in support for standard mathematical notation for operations on their primitive types. Many have sprouted support for operator

overloading, allowing users to express calculations on user-defined types like vectors and matrices in a language that is similarly close to

the native domain abstraction.

Because the system knows the problem domain, it can generate error reports at the same conceptual level the programmer uses. For

example, YACC detects and reports on grammatical ambiguities, describing them in terms of grammar productions rather than dumping

the details of its parse tables. Having domain knowledge can even enable some pretty impressive optimizations, as you'll see when we

discuss the Blitz++ library later in this chapter.

Before moving on, we'd like to make a last observation about DSLs: It's probably no coincidence that both Make and BNF have a "rule"

concept. That's because DSLs tend to be declarative rather than imperative languages. Informally, declarative languages describe rather

than prescribe. A purely declarative program mentions only entities (e.g., symbols, targets) and their relationships (e.g., parse rules,

dependencies); the processing or algorithmic part of the program is entirely encoded in the program that interprets the language. One way

to think of a declarative program is as an immutable data structure, to be used by the language's conceptual execution engine.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

10.3. DSLs, Inside Out

The original Make program contained a very weak programming language of its own, adequate only for the basic software construction

jobs to which it was first applied. Since then, Make variants have extended that language, but they all remain somewhat crippled by their

origins, and none approaches the expressivity of what we'd call a general-purpose language. Typical large-scale systems using Make

dispatch some of the processing work to Perl scripts or other homebrew add-ons, resulting in a system that's often hard to understand and

modify.

The designers of YACC, on the other hand, recognized that the challenge of providing a powerful language for expressing semantic

actions was better left to other tools. In some sense, YACC's input language actually contains all the capability of whichever language you

use to process its output. You're writing a compiler and you need a symbol table? Great, add #include <map> to your initial %{...%} block,

and you can happily use the STL in your semantic actions. You're parsing XML and you want to send it to a SAX (Simple API for XML)

interpreter on-the-fly? It's no problem, because the YACC input language embeds C/C++.

However, the YACC approach is not without its shortcomings. First of all, there is the cost of implementing and maintaining a new compiler:

in this case, the YACC program itself. Also, a C++ programmer who doesn't already know YACC has to learn the new language's rules. In

the case of YACC it mostly amounts to syntax, but in general there may be new rules for all sorts of things—variable binding, scoping, and

name lookup, to name a few. If you want to see how bad it can get, consider all the different kinds of rules in C++. Without an additional

investment in tools development, there are no pre-existing facilities for testing or debugging the programs written in the DSL at their own

level of abstraction, so problems often have to be investigated at the low level of the target language, in machine-generated code.

Lastly, traditional DSLs impose serious constraints on language interoperability. YACC, for example, has little or no access to the structure

of the C/C++ program fragments it processes. It simply finds nonquoted $ symbols (which are illegal in real C++) and replaces them with

the names of corresponding C++ objects—a textual substitution. This simple approach works fine for YACC, because it doesn't need the

ability to make deductions about such things as C++ types, values, or control flow. In a DSL where general-purpose language constructs

themselves are part of the domain abstraction, trivial text manipulations usually don't cut the mustard.

These interoperability problems also prevent DSLs from working together. Imagine that you're unhappy with Make's syntax and limited

built-in language, and you want to write a new high-level software construction language. It seems natural to use YACC to express the new

language's grammar. Make is still quite useful for expressing and interpreting the low-level build system concepts (targets, dependencies,

and build commands), so it would be equally natural to express the language's semantics using Make. YACC actions, however, are written

in C or C++. The best we can do is to write C++ program fragments that write Makefiles, adding yet another compilation phase to the

process: First YACC code is compiled into C++, then the C++ is compiled and executed to generate a Makefile, and finally Make is invoked

to interpret it. Whew! It begins to look as though you'll need our high-level software construction language just to integrate the various

phases involved in building and using the language itself!

One way to address all of these weaknesses is to turn the YACC approach inside out: Instead of embedding the general-purpose

language in the DSL, embed the domain-specific language in a general-purpose host language. The idea of doing that in C++ may seem a

little strange to you, since you're probably aware that C++ doesn't allow us to add arbitrary syntax extensions. How can we embed another

language inside C++? Sure, we could write an interpreter in C++ and interpret programs at runtime, but that wouldn't solve the

interoperability problems we've been hinting at.

Well, it's not that mysterious, and we hope you'll forgive us for making it seem like it is. After all, every "traditional" library targeting a

particular well-defined domain—be it geometry, graphics, or matrix multiplication—can be thought of as a little language: its interface

defines the syntax, and its implementation, the semantics. There's a bit more to it, but that's the basic principle. We can already hear you

asking, "If this is just about libraries, why have we wasted the whole chapter discussing YACC and Make?" Well, it's not just about libraries.

Consider the following quote from "Domain-Specific Languages for Software Engineering" by Ian Heering and Marjan Mernick [Heer02]:

In combination with an application library, any general purpose programming language can act as a DSL, so why were DSLs developed in

the first place? Simply because they can offer domain-specificity in better ways:

Appropriate or established domain-specific notations are usually beyond the limited user-definable operator notation offered by

general purpose languages. A DSL offers domain-specific notations from the start. Their importance cannot be overestimated

as they are directly related to the suitability for end user programming and, more generally, the programmer productivity

improvement associated with the use of DSLs.

Appropriate domain-specific constructs and abstractions cannot always be mapped in a straightforward way on functions or

objects that can be put in a library. This means a general purpose language using an application library can only express these

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

constructs indirectly. Again, a DSL would incorporate domain-specific constructs from the start.

In short:

Definition

A true DSL incorporates domain-specific notation, constructs, and abstractions as fundamental design considerations. A

domain-specific embedded language (DSEL) is simply a library that meets the same criteria.

This inside-out approach addresses many of the problems of translators like YACC and interpreters like Make. The job of designing,

implementing, and maintaining the DSL itself is reduced to that of producing a library. However, implementation cost isn't the most

important factor, since both DSLs and traditional library implementations are long-term investments that we hope will pay off over the many

times the code is used. The real payoff lies in the complete elimination of the costs usually associated with crossing a language boundary.

The DSEL's core language rules are dictated by the host language, so the learning curve for an embedded language is considerably flatter

than that of its standalone counterpart. All of the programmer's familiar tools for editing, testing, and debugging the host language can be

applied to the DSEL. By definition, the host language compiler itself is also used, so extra translation phases are eliminated, dramatically

reducing the complexity of software construction. Finally, while library interoperability presents occasional issues in any software system,

when compared with the problems of composing ordinary DSLs, integrating multiple DSELs is almost effortless. A programmer can make

seamless transitions between the general-purpose host language and any of several domain-specific embedded languages without giving

it a second thought.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

10.4. C++ as the Host Language

Fortunately for us, C++ turns out to be a one-of-a-kind language for implementing DSELs. Its multiparadigm heritage has left C++ bristling

with tools we can use to build libraries that combine syntactic expressivity with runtime efficiency. In particular, C++ provides

A static type system

The ability to achieve near-zero abstraction penalty
[3]

[3] With current compilers, avoiding abstraction penalties sometimes requires a great deal of attention

from the programmer. Todd Veldhuizen has described a technique called "guaranteed optimization," in

which various kinds of abstraction can be applied at will, with no chance of hurting performance [Veld04].

Powerful optimizers

A template system that can be used to

– generate new types and functions

– perform arbitrary computations at compile time

– dissect existing program components (e.g., using the type categorization metafunctions of the Boost

Type Traits library)

A macro preprocessor providing (textual) code generation capability orthogonal to that of templates (see Appendix A)

A rich set of built-in symbolic operators (48!)—many of which have several possible spellings—that can be overloaded with

practically no limitations on their semantics

Table 10.1 lists the syntactic constructs provided by operator overloading in C++. Table entries with several lines show some little-known

alternative spellings for the same tokens.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 10.1. C++ Overloadable Operator Syntaxes

+a -a a + b a - b

++a --a a++ a--

a * b a / b a % b a, b

a & b

a bitand b

a | b

a bitor b

a ^ b

a ??' b

a xor b

~a

??-a

compl a

a & & b

a and b

a | | b

a or b

a >> b a << b

a > b a < b a >= b a <= b

a == b a != b

a not_eq b

! a

not a

a = b

a += b a -= b a *= b a /= b

a %= b a &= b

a and_eq b

a |= b

a or_eq b

a ^= b

a xor_eq b

a >>= b a <<= b *a &a

a->name a->*name a [b]

a?? (b??)

a<:b:>

a (arguments)

new ctor-expr delete a

The unique combination of these features in C++ has made possible a category of domain-specific libraries that are both efficient and

syntactically close to languages one might build from scratch.
[4]

 Moreover, these libraries can be written in pure C++, giving them

important advantages over standalone DSLs, which require special compilers, editors, and other tools. In the following sections we'll

discuss some examples, in each case focusing on the DSL's design rather than its implementation.

[4] Haskell is another language that certainly deserves mention when considering platforms for building DSELs.

Haskell's strengths for DSEL construction overlap considerably with those of C++, and go even further in some

areas. For example, Haskell programmers can define new operators with which to extend the built-in language

syntax. Haskell's compilation model, however, tends to limit peak performance.

Namespace Names

Until now, we've been fairly disciplined about always prefixing names from namespace boost with boost:: and names

from boost::mpl with mpl:: to avoid confusion. In this chapter only, to emphasize the "sugary" aspects of DSL syntax,

we're going to omit namespace names from library identifiers, and trust you to guess where the names come from.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

10.5. Blitz++ and Expression Templates

Blitz++ [Veld95a], a library for high-performance array math, pioneered so many of the techniques and ideas used in this book that it would

be hard to overestimate its influence on the world of C++ metaprogramming. It was the first C++ library to use explicit

metaprogramming,
[5]

 and the first to implement a domain-specific embedded language. We can't possibly touch on all aspects of Blitz++,

so we're going to look at the central innovation: expression templates [Veld95b].

[5] By "explicit metaprogramming" we mean treating template instantiations as first-class compile-time programs.

Explicit metaprogramming goes well beyond the sort of trivial type manipulations required for most generic

programming, such as accessing the value_type of an iterator through std::iterator_traits. Although that could

technically be seen as a metafunction invocation, most generic programmers don't think of it that way, and it's one's

relationship to the code, as much as anything else, that defines metaprogramming.

10.5.1 The Problem

If we had to boil the problem solved by Blitz++ down to a single sentence, we'd say, "A naive implementation of array math is horribly

inefficient for any interesting computation." To see what we mean, take the boring statement

 x = a + b + c;

where x, a, b, and c are all two-dimensional Arrays. The canonical implementation of Array's addition operator is:

 Array operator+(Array const& a, Array const& b)

 {

 std::size_t const n = a.size();

 Array result;

 for (std::size_t row = 0; row != n; ++row)

 for (std::size_t col = 0; col != n; ++col)

 result[row][col] = a[row][col] + b[row][col];

 return result;

 }

To evaluate the expression a + b + c using that operator, we first compute a + b, resulting in a temporary Array (call it t), and then we

evaluate t + c to produce the final result.

The problem is that temporary, t. The efficient way to perform this computation is to step through each position in all three input arrays at

once, adding the three elements at that position and placing their sum in the result:

 for (std::size_t row = 0; row != n; ++row)

 for (std::size_t col = 0; col != n; ++col)

 result[row][col] = a[row][col] + b[row][col] + c[row][col];

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The temporary not only costs an extra dynamic memory allocation for its element storage, but causes the CPU to make two complete

traversals of that storage: one to write the result of a + b, and another to read the input for t + c. As anyone who has done high-performance

numerics knows, these two traversals are the real killer, because they destroy cache locality. If all four of the named arrays nearly fill the

cache, introducing t effectively pushes one of them out.

The problem here is that the operator+ signature above is just too greedy: It tries to evaluate a + b just as soon as it can, rather than waiting

until the whole expression, including the addition of c, is available.

10.5.2 Expression Templates

In the expression's parse tree, evaluation starts at the leaves and proceeds upwards to the root. What's needed here is some way of

delaying evaluation until the library has all of the expression's parts: that is, until the assignment operator is executed. The stratagem taken

by Blitz++ is to build a replica of the compiler's parse tree for the whole expression, allowing it to manage evaluation from the top down

(see Figure 10.1).

Figure 10.1. Parse tree for x = a + b + c

This can't be any ordinary parse tree, though: Since array expressions may involve other operations like multiplication, which require their

own evaluation strategies, and since expressions can be arbitrarily large and nested, a parse tree built with nodes and pointers would have

to be traversed at runtime by the Blitz++ evaluation engine to discover its structure, thereby limiting performance. Furthermore, Blitz++

would have to use some kind of runtime dispatching to handle the different combinations of operation types, again limiting performance.

Instead, Blitz++ builds a compile-time parse tree out of expression templates. Here's how it works in a nutshell: Instead of returning a newly

computed Array, operators just package up references to their arguments in an Expression instance, labeled with the operation:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 // operation tags

 struct plus; struct minus;

 // expression tree node

 template <class L, class OpTag, class R>

 struct Expression

 {

 Expression(L const& l, R const& r)

 : l(l), r(r) {}

 float operator[](unsigned index) const;

 L const& l;

 R const& r;

 };

 // addition operator

 template <class L, class R>

 Expression<L,plus,R> operator+(L const& l, R const& r)

 {

 return Expression<L,plus,R>(l, r);

 }

Notice that when we write a + b, we still have all the information needed to do the computation—it's encoded in the type

Expression<Array,plus,Array>—and the data is accessible through the expression's stored references. When we write a + b + c, we get a

result of type:

 Expression<Expression<Array,plus,Array>,plus,Array>

and the data is still accessible through the nested references. The interesting thing about the Expression class template is that, just like an

Array, it supports indexing via operator[]. But wait! Didn't we just tell you that operator+ computes nothing, and Expression just stores

references to its arguments? Yes, we did. If the result of the operation isn't stored in the Expression, it must be computed lazily by

operator[].

To see how it works, check out this simplified implementation for one-dimensional Arrays of floats. First, to associate the elementwise

arithmetic logic with the operation tags, we'll nest some static member functions:

 // operation tags implement elementwise arithmetic

 struct plus

 {

 static float apply(float a, float b)

 { return a + b; }
 };

 struct minus

 {

 static float apply(float a, float b)

 { return a - b; }
 };

Next, we'll give the Expression an indexing operator that calls its tag's apply function to compute the appropriate element value:

 // expression tree node

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 template <class L, class OpTag, class R>

 struct Expression

 {

 Expression(L const& l, R const& r)

 : l(l), r(r) {}

 float operator[](unsigned index) const

 {

 return OpTag::apply(l[index], r[index]);

 }

 L const& l;

 R const& r;

 };

This seems almost too simple, right? Amazingly, we now have fully lazy expression evaluation. To see it at work, let's walk through the

evaluation of (a + b)[1]. Since the type of a + b is Expression<Array,plus,Array>, we have:

 (a + b)[1]

 == plus::apply(a[1], b[1])

 == a[1] + b[1]

Now consider what we'd go through to evaluate the same expression with a greedy strategy. That's right, we'd have to compute a

temporary array, (a + b), only to throw out all but one element! The contrast in efficiency couldn't be more striking.

Naturally, (a + b + c)[1] is also computed without any temporary Arrays:

 (a + b + c)[1]

 == ((a + b) + c)[1]

 == plus::apply((a + b)[1], c[1])

 == plus::apply(plus::apply(a[1], b[1]), c[1])

 == plus::apply(a[1] + b[1], c[1])

 == (a[1] + b[1]) + c[1]

All that remains now is to implement Array's assignment operator. Since we can access any single element of the result Expression without

ever creating a temporary Array, we can compute the whole result by accessing every element of the expression:

 template <class Expr>

 Array& Array::operator=(Expr const& x)

 {

 for (unsigned i = 0; i < this->size(); ++i)

 (*this)[i] = x[i];

 return *this;

 }

That's it! Naturally, there's a lot more to array math than addition and subtraction, and Blitz++ has to consider all kinds of things that are not

handled by our simple example, from operations like multiplication to "tiling" large array operations so that they stay within the cache. The

basic technique of delaying expression evaluation, however, is the tool that allows the library to do all these things with near-optimal

efficiency.
[6]

[6] If it seems to you that we've just demonstrated a way to abuse C++ operator overloading, we plead guilty! In fact,

we're going to spend much of this chapter looking at creative ways to "abuse" the operators. We hope that by the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

end, you'll see these techniques as legitimate and well-founded programming paradigms.

As a DSL, this part of Blitz++ is deceptive in its smoothness: The syntax looks exactly as you'd expect it to in a naive implementation, but

you can see that behind the syntax lives a highly specialized evaluation engine, tuned for the Blitz++ domain.

Intermediate Results

One drawback of expression templates is that they tend to encourage writing large, complicated expressions, because

evaluation is only delayed until the assignment operator is invoked. If a programmer wants to reuse some intermediate

result without evaluating it early, she may be forced to declare a complicated type like:

Expression<

 Expression<Array,plus,Array>

 , plus

 , Expression<Array,minus,Array>

> intermediate = a + b + (c - d);

(or worse). Notice how this type not only exactly and redundantly reflects the structure of the computation—and so would

need to be maintained as the formula changes—but also overwhelms it? This is a long-standing problem for C++ DSELs.

The usual workaround is to capture the expression using type erasure (see Chapter 9), but in that case one pays for

dynamic dispatching.

There has been much discussion recently, spearheaded by Bjarne Stroustrup himself, about reusing the vestigial auto

keyword to get type deduction in variable declarations, so that the above could be rewritten as:

auto intermediate = a + b + (c - d);

This feature would be a huge advantage to C++ DSEL authors and users alike.

10.5.3 More Blitz++ Magic

Just in case you find it hard to see the domain-specific language in what we've already covered, here are just a couple more of Blitz++'s

syntactic innovations that we think you'll find more striking.

10.5.3.1 Array Initialization

Because Blitz++ Arrays are not what the C++ standard calls an "aggregate" (see section 8.5.1 of the Standard), we can't use the

convenient syntax of listing initializers within braces, as we can with ordinary built-in arrays. Instead, Blitz++ overloads the comma operator

to make a similar syntax possible:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 Array<float,2> A(3,3);

 A = 1, 2, 3,

 4, 5, 6,

 7, 8, 9;

10.5.3.2 SubArray Syntax

Blitz++ has a Range class that encapsulates a sequence of indices. When an Array is indexed using a Range, a lazy SubArray view is

produced without copying any elements:
[7]

[7] Note that Blitz++, like most array packages, uses operator() instead of operator[] for indexing, because operator()

allows multiple arguments whereas operator[] does not.

 // add the first two rows and columns of A to B

 B += A(Range(0,2), Range(0,2))

The exciting thing about Blitz++'s Range objects is that you can also perform arithmetic on them directly, resulting in expressions that look

remarkably like the body of a multiply-nested loop, using a technique pioneered by the Math.h++ library [KV89]. This example is taken from

the online Blitz++ manual:

 // a three-dimensional stencil (used in solving PDEs)

 Range I(1,6), J(1,6), K(1,6);

 B = (A(I,J,K) + A(I+1,J,K) + A(I-1,J,K) + A(I,J+1,K)

 + A(I,J-1,K) + A(I,J+1,K) + A(I,J,K+1) + A(I,J,K-1)) / 7.0;

This sort of notational simplification has proven itself to be more than mere syntactic sugar. Similar techniques have been used to reduce

the evaluation of complex tensor equations from unreadable and error-prone code resembling FORTRAN (called "C++tran" by Scott

Haney) to one-liners resembling the equations in the original theory [Land01]. Projects that would be practically impossible to complete

correctly using C++tran suddenly become tractable with a DSEL.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

10.6. General-Purpose DSELs

One of the nicest features of DSELs is that we can apply them in the domain of general-purpose programming idioms. In other words, a

DSEL can function as a kind of extension to the general-purpose host language. Although it may seem contradictory to use the terms

"general-purpose" and "domain-specific" when discussing the same library, it makes sense when you consider the domain to be the

specific programming idiom enabled by the DSEL.

10.6.1 Named Parameters

Named parameters is a feature of many languages that allows arguments to be passed by name rather than by position. We'd love to see

it supported directly in C++. For example, in an imaginary C++ that supports named parameters, given the declaration:

 void f(int score = 0, char const* name = "x", float slew = .1);

we might call f this way:

 f(slew = .799, name = "z");

Note that the role of each actual argument is now perfectly clear at the call site, and defaults can be used for any parameter without regard

to its position or the other parameters being passed. A similar principle can of course be applied to template parameters. As you can

imagine, named parameters really begin to pay off in interfaces that accept several independent arguments, each of which has a nontrivial

default. Many such functions can be found in the algorithms of the Boost Graph library.

The Graph library's original named parameter DSL used a technique called "member function chaining" to aggregate parameter values into

a single function argument, essentially forming a tuple of tagged values. The usage in our example would look something like:

 f(slew(.799).name("z"));

Here, the expression slew(.799) would build a instance of class named_params<slew_tag, float, nil_t> having the empty class nil_t as its

only base class, and containing the value .799 as a single data member. Then, its name member function would be called with "z" to

produce an instance of:

 named_params<

 name_tag, char const [2] // .name("z")

 , named_params<

 slew_tag, double const // slew(.799)

 , nil_t

 >

 >

having a copy of the instance just described as its only base, and containing a reference to "z" as its only data member. We could go into

detail about how each tagged value can be extracted from such a structure, but at this point in the book we're sure your brain is already

working that out for itself, so we leave it as an exercise. Instead, we'd like to focus on the chosen syntax of the DSL, and what's required to

make it work.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

If you think for a moment about it, you'll see that not only do we need a top-level function for each parameter name (to generate the initial

named_params instance in a chain), but named_params must also contain a member function for each of the parameter names we might

want to follow it with. After all, we might just as well have written:

 f(slew(.799).score(55));

Since the named parameter interface pays off best when there are many optional parameters, and because there will probably be some

overlap in the parameter names used by various functions in a given library, we're going to end up with a lot of coupling in the design.

There will be a single, central named_params definition used for all functions in the library that use named parameter interfaces. Adding a

new parameter name to a function declared in one header will mean going back and modifying the definition of named_params, which in

turn will cause the recompilation of every translation unit that uses our named parameter interface.

While writing this book, we reconsidered the interface used for named function parameter support. With a little experimentation we

discovered that it's possible to provide the ideal syntax by using keyword objects with overloaded assignment operators:

 f(slew = .799, name = "z");

Not only is this syntax nicer for users, but adding a new parameter name is easy for the writer of the library containing f, and it doesn't

cause any coupling. We're not going to get into the implementation details of this named parameter library here; it's straightforward enough

that we suggest you try implementing it yourself as an exercise.

Before moving on, we should also mention that it's possible to introduce similar support for named class template parameters [AS01a,

AS01b], though we don't know of a way to create such nice syntax. The best usage we've been able to come up with looks like this:

 some_class_template<

 slew_type_is<float> // slew_type = float

 , name_type_is<char const*> // slew_type = char const*

 >

Maybe you can discover some improvement we haven't considered.

10.6.2 Building Anonymous Functions

For another example of "library-based language extension," consider the problem of building function objects for STL algorithms. We

looked briefly at runtime lambda expressions in Chapter 6. Many computer languages have incorporated features for generating function

objects on-the-fly, the lack of which in C++ is often cited as a weakness. As of this writing, there have been no fewer than four major DSL

efforts targeted at function object construction.

10.6.2.1 The Boost Bind Library

The simplest one of these, the Boost Bind library [Dimov02], is limited in scope to three features, a couple of which should be familiar to

you from your experience with MPL's lambda expressions. To understand the analogy you'll need to know that, just as MPL has

placeholder types that can be passed as template arguments, the Bind library has placeholder objects that can be passed as function

arguments.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The first feature of Boost.Bind is partial function (object) application, that is, binding argument values to a function (object), yielding a

new function object with fewer parameters. For example, to produce a function object that prepends "hello, " to a string, we could write:

 bind(std::plus<std::string>(), "hello, ", _1)

The resulting function object can be called this way:

 std:: cout << bind(// prints "hello, world"

 std::plus<std::string>()

 , "hello, ", _1

)("world");

Note that it's not very realistic to see the outer function argument ("world") right next to the bind invocation. In real code we'll usually pass

the result of calling bind to some algorithm that will proceed to invoke it multiple times.

The second feature of Boost.Bind is function composition. For example, the following expression produces a function object that

computes y = x(x- 0.5):

 bind(

 std::multiplies<float>()

 , _1

 , bind(std::minus<float>(), _1, 0.5))

To us, it seems so natural that bind should operate this way that we have to think hard to imagine the alternative: If the inner bind expression

were not given special treatment by the library, the function object it produces would be passed as the first argument to the

std::multiplies<float> instance, causing an error.

Lastly, Boost.Bind allows us to invoke member functions with ordinary function call syntax. The basic idea—that member functions—can

be seen as free functions accepting an initial class argument is supported by languages such as Dylan, but once again, not by native C++.

This is more than an aesthetic concern, though: The different syntax for invoking free and member functions can be a serious problem for

generic code that may need to work with both.

Using the Bind library, we can transform a member function X::foo declared as

 struct X { float foo(float) const; } obj;

into a function object, and invoke it as follows:

 bind(&X::foo, _1, _2)(obj, pi)

One of the most popular ways to use bind is to partially apply a member function to a class instance. For example, the following calls

v.visit(x) on each element x in [first, last):

 std::for_each(first, last, bind(&Visitor::visit, v, _1));

This limited use of partial application is so important in event-based software that Borland implemented a C++ language extension

closures to support it directly in their compiler.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Before moving on, let's briefly compare the syntax of the bind expressions used above with what we'd get using the STL binders and

composers:
[8]

[8] compose1, compose2, and identity were included in the original STL design, but never made it into the C++

standard library. You can still find them implemented as extensions in the SGI STL, STLPort, and other standard

library implementations.

 // partial application

 bind1st(std::plus<std::string>(), "hello, ")

 // function composition

 compose2(

 std::multiplies<float>()

 , bind2nd(std::minus<float>(), 1)

 , identity<float>())

 // invoking a member function with function call syntax

 mem_fun_ref(&X::foo)(obj, pi)

 std::for_each(

 first

 , last

 , bind1st(mem_fun_ref(&Visitor::visit), v));

We think there's a good argument that even the small amount of syntactic sugar provided by Boost.Bind begins to look like a

domain-specific language by comparison.

10.6.2.2 The Boost Lambda Library

The Boost Lambda library, by Jaakko Järvi and Gary Powell, was the original inspiration for Boost.Bind, and for the design of MPL's

compile time lambda expressions. The Lambda Library extends the basic facilities of Boost Bind with syntax so sweet that some of the

examples we've covered become almost transparent. For example:

 "hello, " + _1 // x -> "hello, " + x

 _1 * (_1 - 0.5) // x -> x * (x - 0.5)

What's interesting about this code is that operator* doesn't multiply, and operator+ doesn't add or even concatenate! Instead, the operators

construct function objects that can be called later. The result of "hello, " + _1 is a function object accepting one argument—call it x—and

returning the result of "hello, " + x. If this is beginning to sound familiar, that's good: Function objects built on-the-fly are just another

example of the "expression templates" idiom first introduced by Blitz++.

The goals of the Lambda library are much more ambitious than those of Boost.Bind. Even if you found it hard to see the syntax of

Boost.Bind as a DSL, we think it's clear that Boost.Lambda syntax is a little language unto itself. Its features go way beyond support for

operators by implementing control structures and even exception handling! Here are just a few examples.

Halve each element of a two-dimensional array.

 float a[5][10];

 int i;

 std::for_each(a, a+5,

1.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 for_loop(var(i)=0, var(i)<10, ++var(i),

 _1[var(i)] /= 2

)

);

Print a sequence, replacing odd elements with periods.

 std::for_each(a.begin(), a.end(),

 if_then_else(_1 % 2 != 0,

 std::cout << _1

 , std::cout << constant('.')
)

);

2.

Print "zero," "one" or "other: n" for each element n of v.

std::for_each(v.begin(), v.end(),

 (

 switch_statement(

 _1,

 case_statement<0>(std::cout << constant("zero")),

 case_statement<1>(std::cout << constant("one")),

 default_statement(std::cout << constant("other: ") << _1)

),

 std::cout << constant("\n")

)

);

3.

In the examples above, var and constant each wraps its argument in a special class template that prevents it from being evaluated

greedily. For example, if we had written std::cout << "\n" in the last example, it would have been evaluated once, outside the for_each

invocation. That's just how C++ works. The result of constant("\n"), however, is a nullary function object that returns "\n". The standard

library doesn't provide a stream inserter (operator<<(ostream&, T)) for T, the type of that function object, but the Lambda library does

provide an overloaded operator<< that works on T. Rather than performing stream insertion, the Lambda library's operator<< just produces

another nullary function object: This one evaluates std::cout << "\n" when it's called.

The need for var and constant, and the need to use such functions as for_loop in place of C++'s built-in for, are compromises forced on us

by the limitations of the C++ language. Still, the expressivity of Boost Lambda, combined with the fact that the function objects it builds are

typically about as efficient as hand-coded functions, is impressive.

10.6.2.3 The Phoenix Library

Never satisfied, C++ library designers continue to search for more expressive ways to program. Before moving on to other domains, we'd

like to touch on some of the innovations of two other functional programming libraries. The first is Phoenix, which was developed as part of

the Boost.Spirit parser framework [Guz04], discussed later in this chapter. Besides adding some valuable new functionality, the authors of

Phoenix invented new syntax for some of the same control structures supported by Boost.Lambda. For example, in Phoenix, the

if_then_else example above might be written as follows (note that in Phoenix placeholders are called "arg1," "arg2",...):

 for_each(a.begin(), a.end(),

 if_(arg1 % 2 != 0)

 [

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 std::cout << arg1

]

 .else_

 [
 std::cout << val('.')

]
);

The authors of the Boost Lambda library found this syntax so attractive that they have incorporated it as an alternative to if_then_else. As

you can see, there is a great deal of cross-pollination between these designs.

10.6.2.4 The FC++ Library

FC++ [MS00b]—short for "Functional C++"—enables C++ programmers to use the idioms of hardcore functional programming languages

like Haskell, including lazy sequences, partial function application, and higher-order polymorphic functions.
[9]

 These paradigms are so

general-purpose, and so different from those most C++ programmers are used to, that using FC++ almost amounts to using a whole new

programming language. We don't have space here to do justice to FC++, but we can present a few examples to give you a sense of it.

[9] We covered the meaning of the term "higher-order function" when we introduced metafunctions—it's just a fancy

term for functions that operate on other functions. In this context, "polymorphic" simply means that the function can

operate on different types of arguments, like a function template does.

First, a look at FC++ lambda expressions. As in most traditional functional programming languages, but unlike C++ lambda expressions

you've seen so far, FC++ supports the use of named parameters to improve readability in lambda expressions. For example:
[10]

[10] FC++ uses square brackets for function calls inside lambda expressions to explicitly delay function evaluation.

 lambda_var<1> X;

 lambda_var<2> Fun;

 g = lambda(Fun,X)[Fun[Fun[X]]] // g(fun,x) -> fun(fun(x))

Now, this is really mind-bending! The names Fun and X have both a meaning at the level of the C++ program, and a meaning in the

program (function object) generated by the lambda expression. In fact, it's not very different from what Boost's Bind and Lambda libraries

do with their placeholders. Placeholders implement a mapping from input argument positions to the position of arguments passed to the

function being "bound." You could almost think of X as _1 and Fun as _2. All lambda(Fun,X)[...] does is to add another layer of indirection

that exchanges the positions represented by the placeholders.

FC++ doesn't stop with named lambda arguments, though. The next example shows a lambda expression with what are essentially named

local constants:

 // f(x) -> 2*(x+3)

 lambda(X)[

 let[

 Fun == multiplies[2] // Fun = 2*_1

 , Y == X %plus% 3 // Y = X+3

].in[

 Fun[Y] // fun(Y), i.e. 2*(X+3)

]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

]

The example above shows a few other features of the FC++ DSL. First, you can see partial application at work in the expression

multiplies[2], which yields a unary function object that computes multiplies[2,x] for its argument x. Next, the % operator is overloaded to make

the expression x %f% y equivalent to f[x,y], so any FC++ binary function object (e.g., plus) can act as a kind of "named infix operator."

The (domain-specific) language designers of FC++ made another interesting choice as well: They decided they didn't like the way that, in

certain contexts, libraries like Boost.Lambda demand the use of constant(...) or variable(...) to prevent greedy evaluation of any expression

that doesn't involve a placeholder. They reasoned that having to remember that only one of the two expressions below will work as

expected is too error-prone:

 std::cout << _1 << "world" // OK; builds a function object

 std::cout << "hello, " << _1 // wrong: immediate streaming

Instead, they chose a simple rule: Function invocations using round parentheses are evaluated immediately, and those using square

brackets are evaluated lazily:

 plus(2,x) // immediate

 plus[2,X] // delayed

Likewise, FC++ has a separate syntax for immediate infix evaluation:

 2 ^plus^ x // immediate

 2 %plus% X // delayed

As a result, the syntax used to delay evaluation is at once terser than what the Lambda and Phoenix libraries use, and more explicit.

It may seem odd to see %plus% used to name the good old infix + operator. In fact, it has some clear drawbacks, as we can see by

comparing these two roughly equivalent expressions:

 // Boost Lambda:

 -(3 * _1) + _2

 // FC++:

 lambda(X,Y)[negate[3 %multiplies% X] %plus% Y]

The first one is shorter, simpler, and for anyone working in a problem domain that normally uses operator notation, clearer. Within the

context of the FC++ language design, though, there are good reasons to use plus instead of +. To understand them, we have to consider

the kind of C++ entity that plus refers to. What will allow us to write both plus[2,X] and plus(2,x)? Not a function, or a function pointer, or an

array. Only a class instance can support that: plus must be a global class instance in the FC++ library.

Now, recalling that FC++ is all about higher order functional programming, it becomes clear that + isn't a name for addition that can be used

in all contexts. How do you pass + to a function? If you mean the + operator that adds two ints, well, you can't even name it. If you try to

pass the address of operator+, and it's overloaded, your C++ compiler will ask you which one you mean. If you mean a particular templated

operator+, once again, there's no way to pass a function template as a runtime function argument. Further recalling that FC++ supports

higher-order polymorphic functions, it's easy to see that if we want to pass an entity that actually represents the abstract + operation, it has

to be a class instance, something like

[View full width]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///D:/Profiles/YZHUANG/LOCALS~1/Temp/Addison.Wesley.C++.Template.Metaprogramming.Concepts.Tools.and.Techniques.from.Boost.and.Beyond.chm/&r=noccc&xmlid=0321227255/ch10lev1sec6#PLID25
file:///D:/Profiles/YZHUANG/LOCALS~1/Temp/Addison.Wesley.C++.Template.Metaprogramming.Concepts.Tools.and.Techniques.from.Boost.and.Beyond.chm/&r=noccc&xmlid=0321227255/ch10lev1sec6#PLID25

 struct plus

 {

 template <class T, class U>

 typename plus_result<T,U>::type[11]

 operator()(T t, U u) const

 {

 return t + u;

 }

 };

[11] The subject of how to implement plus_result is an interesting one that's been tackled in a different way by almost

every C++ DSEL framework. In the current C++ language, you can't build that metafunction so that it always

returns the right type. There's been much talk in the C++ committee about adding an operator that will

make it a simple matter of writing decltype(t+u).

In fact, just about every special feature of FC++, from implicit partial application to explicit lazy notation, is only possible in C++ with

function objects. To meet the goals of its designers, it was much more important for FC++ to use function objects than for mathematical

expressions to use operator notation. The point of all this is not to say that one of these domain-specific languages is better than another,

but to illustrate the wide range of syntactic and semantic choices available to you, the DSEL designer.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

10.7. The Boost Spirit Library

Like YACC, Spirit is a framework for defining parsers. The main difference is that rather than compiling to intermediate C/C++ code, Spirit

uses an embedded domain-specific language. Here's the meat of the expression grammar we implemented with YACC, using

Boost.Spirit's embedded DSL syntax:

 group = '(' >> expression >> ')';

 factor = integer | group;

 term = factor >> *(('*' >> factor) | ('/' >> factor));

 expression = term >> *(('+' >> term) | ('-' >> term));

You'll notice that there are some differences from traditional EBNF. The most obvious is probably that, because sequences of consecutive

values like

 '(' expression ')'

don't fit into the C++ grammar, the author of Spirit had to choose some operator to join consecutive grammar symbols. Following the

example of the standard stream extractors (which do, after all, perform a crude kind of parsing), he chose operator>>. The next difference

worth noting is that the Kleene star (*) and positive closure (+) operators, which are normally written after the expressions they modify, must

be written as prefix operators instead, again because of limitations of the C++ grammar. These minor concessions aside, the Spirit

grammar syntax comes remarkably close to the usual notation of the domain.

Spirit is actually a great example of the power of DSELs to interoperate with one another, because it really consists of a collection of little

embedded languages. For example, the following complete program brings the above grammar together with semantic actions written

between [...] using the Phoenix functional programming DSEL, and another DSEL idiom Spirit calls closures:

 #include <boost/spirit/core.hpp>

 #include <boost/spirit/attribute.hpp>

 #include <iostream>

 #include <string>

 using namespace boost::spirit;

 using namespace phoenix;

 // provides one named variable of type int...

 struct vars : boost::spirit::closure<vars, int> // CRTP

 {

 member1 value; // ...called "value" in lazy expressions

 };

 // calculator is a grammar with attached int called "value"

 struct calculator

 : public grammar<calculator, vars::context_t> // CRTP

 {

 template <class Tokenizer>

 struct definition

 {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 // all our rules have an attached int called "value," too...

 rule<Tokenizer, vars::context_t>
 expression, term, factor, group, integer;

 // ...except the top rule

 rule<Tokenizer> top;

 // build the grammar

 definition(calculator const& self)

 {

 top = expression[self.value = arg1];

 group = '(' >> expression[group.value = arg1] >> ')';

 factor = integer[factor.value = arg1]

 | group[factor.value = arg1]

 ;

 term = factor[term.value = arg1]

 >> *(('*' >> factor[term.value *= arg1])

 | ('/' >> factor[term.value /= arg1])

)

 ;

 expression = term[expression.value = arg1]

 >> *(('+' >> term[expression.value += arg1])

 | ('-' >> term[expression.value -= arg1])

)

 ;

 integer = int_p[integer.value = arg1];

 }

 // tell Spirit to start parsing with "top"

 rule<Tokenizer> const& start() const { return top; }

 };

 };

 int main()

 {

 calculator calc; // our grammar

 std::string str;

 while (std::getline(std::cin, str))

 {

 int n = 0;

 parse(str.c_str(), calc[var(n) = arg1], space_p);

 std::cout << "result = " << n << std::endl;

 }

 }

10.7.1 Closures

We're going to describe closures at two levels: First we'll examine them from the point of view of the DSL user, asking you to put aside any

consideration of how the magic works, and then we'll look at the implementation techniques.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

10.7.1.1 The Abstraction

To understand the use of closures, it's important to know that Spirit grammars and rules are all—you guessed it—function objects. When

invoked with an appropriate pair of iterators over the input, rules and grammars attempt to parse it. This leads to top down or recursive

descent parsing. For example, in order to parse its first symbol, the expression rule in turn invokes the term rule.

Closures provide a set of variables associated with each rule invocation, accessed as members of the rule itself. The value of the first

member of the closure (in our example there is only one: value) becomes the rule's "return value" and when the rule is used on the

right-hand-side of another rule, may be accessed in semantic actions attached to the rule by using the Phoenix placeholder arg1. So, for

example, in

 term = factor[term.value = arg1]

 >> *(('*' >> factor[term.value *= arg1])

 | ('/' >> factor[term.value /= arg1])

)

 ;

the value associated with the first factor invocation is first moved into the value associated with the current term invocation. Then, as each

member of the Kleene star repetition is parsed, the value associated with the current term invocation is modified accordingly.

The really interesting thing about closures is the way they enable yet another programming paradigm: dynamic scoping. In C++,

unqualified names (those without a "::" prefix) usually refer to the innermost enclosing scope in which they're defined:

 #include <iostream>

 namespace foo

 {

 int x = 76;

 int g()

 {

 return x + 1; // refers to foo::x

 }

 }

 int main()

 {

 int x = 42;

 std::cout << foo::g(); // prints 77

 }

In dynamic scoping systems, though, names refer to the nearest scope on the call stack in which they're defined. Therefore, in the same

code, foo::g would see the value of x that was established in main(), and the program would print 43.

The fully qualified names of closure variables (rulename.membername) are dynamically scoped. That means, for example, that any

semantic action in our grammar can refer to expression.value, and in doing so, can reach up the call stack to the value associated with the

nearest invocation of the expression rule.

10.7.1.2 Implementation Details

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Take a look at the declaration of our closure:

 struct vars : closure<vars, int>

 {

 member1 value;

 };

The first thing you'll probably notice is that closure uses the "Curiously Recurring Template Pattern" (covered in Chapter 9), so that it has

access to the type of vars. More interesting, though, is the use of the special type member1 for value.

Clearly, if the library lets you write rulename.closure-variable, rules must contain public data members with the same names as closure

variables. Actually, the limitations of the C++ language give us a big hint as to what's going on here: The only way to automatically allow

the closure data members to be addressed as rule data members of the same name is to make the closure a public base of the rule class

itself. There's simply no other way to generate identically named public data members in the rule.

Just as clearly, if something like expression.value += 1 is to work as expected, expression.value can't be of type int: that would cause an

integer addition immediately, as our grammar is defined, instead of later, when its rules are invoked. Sound like a familiar issue? In fact, it

is solved in a familiar way, with expression templates. Instead of performing an addition, expression.value += 1 creates an object that,

when suitably invoked by the parser, adds 1 to the int variable created for value in the stack frame of the nearest enclosing expression

invocation.

We're not going to go into the nitty-gritty details of how the dynamic scoping mechanism is implemented, as it's not directly related to the

"DSEL-ness" of closures—we suggest you look at the Spirit and Phoenix source code if you're curious. The important thing to recognize is

that, once again, expression templates and delayed evaluation have allowed us to use a programming paradigm not directly available in

native C++.

10.7.2 Subrules

If you look closely at our calculator grammar, you can see that there must be some type erasure at work.
[12]

 Since the expression on the

right side of each rule assignment builds an efficient function object, we can expect the types of these function objects to represent the

structure of the expression. For example, leaving out the effect of the semantic actions, which further complicate things, the type of the

right-hand-side of the factor rule is something like:

[12] See Chapter 9 for more information on type erasure.

 alternative<

 rule<Tokenizer, vars::context_t> // for integer rule

 , rule<Tokenizer, vars::context_t> // for group rule

 >

and the right-hand-side of the group rule has a type something like this one:

 sequence<

 sequence<

 ch_p // for '(' parser

 , rule<Tokenizer, vars::context_t> // expression rule

 >

 , ch_p // for ')' parser

 >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The factor and group rules themselves, though, have the same type. Clearly the compile time polymorphism generated by the expression

templates is being transformed into runtime polymorphism: Rule objects of the same type must contain some function pointer, or virtual

function, or something that allows one of them to parse groups and another to parse factors. Of course, making that choice of behavior at

runtime comes with an attendant loss of efficiency. In a simple grammar like this one, the cost of dynamically dispatching for every rule

invocation can really add up.

Joel de Guzman, the primary author of Spirit, has written [Guz03]:

... the virtual function is a totally opaque wall that blocks all meta type information from passing through. We can

never get any of the type information of the RHS or a rule, to, say, re-factor the expression template tree to

something else (e.g., do automatic left factoring, static node-type-traversal, static first-follow analysis, etc.).

Those operations are all specialized issues related to parsers, but the point is still universal: Type erasure is a kind of "lossy compression,"

and valuable information may disappear forever.

The Spirit designers could tell us to simply write out the full type of each rule's right-hand-side, but that idea is basically a DSEL-killer. As

you can imagine, writing down a complicated type for each rule, and rewriting those types each time the rules change, would quickly

become unmanageable. More importantly, we'd have to fill our grammars with information about rule types, which from a DSEL

perspective is just noise: It has nothing to do with the underlying domain abstraction.

It's worth noting that even the auto language extension described earlier in this chapter wouldn't completely solve this problem for Spirit,

since the grammar rules all reference one another, so the types on the right-hand-side of the first auto initialization can never be known to

the compiler.

Spirit resolves this tension between efficiency and expressivity in a familiar way: by putting off work until the last possible moment. Just as

Blitz++ achieves efficiency by delaying matrix arithmetic until the entire expression is available, Spirit uses subrules to delay the erasure of

static type information until the entire grammar is available. The following rewrite of calculator's definition uses subrules to achieve

near-optimal parsing efficiency:

 template <class Tokenizer>

 struct definition

 {

 subrule<0, vars::context_t> expression;

 subrule<1, vars::context_t> group;

 subrule<2, vars::context_t> factor;

 subrule<3, vars::context_t> term;

 subrule<4, vars::context_t> integer;

 rule<Tokenizer> top;

 definition(calculator const& self)

 {

 top = (

 expression =

 term[expression.value = arg1]

 >> *(('+' >> term[expression.value += arg1])

 |('-' >> term[expression.value -= arg1]))

 , group =

 '(' >> expression[group.value = arg1] >> ')'

 , factor =

 integer[factor.value = arg1]

 | group [factor.value = arg1]

 , term =

 factor[term.value = arg1]

 >> *(('*' >> factor[term.value *= arg1])

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 |('/' >> factor[term.value /= arg1]))

 , integer =

 int_p[integer.value = arg1]

)[self.value = arg1];

 }

 // tell Spirit to start parsing with "top"

 rule<Tokenizer> const& start() const { return top; }

 };

Two things are particularly worth noticing in this example. First, to achieve this delay without forcing users to write out messy types, the

definition of all the subrules has to be done in a single expression. Type erasure doesn't occur until the assignment to top, the only full rule,

occurs. At that point, a type even messier than that of any of the right-hand-sides, and containing the definition of all the subrules, is

captured in a single virtual function. Once that single dynamic dispatch occurs, the parsing of an expression involves only normal static

function calls, many of which can be inlined. The second item of note is that the transformation from dynamically dispatched rules to

statically dispatched subrules hardly changed the grammar's representation at all. It is a particularly beautiful feature of Spirit that it offers

us the ability to tune our position in the compile-time/runtime continuum so easily, and while staying so close to the fundamental EBNF

domain language.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

10.8. Summary

We hope this chapter has brought you a new perspective on library design. The most effective libraries provide users with a new level of

expressiveness, one that allows them to program in terms appropriate to their problem domain. Although historically the introduction of

new idioms and syntax to any programming environment has been viewed with (sometimes justifiable) suspicion, the practice has also

been shown to have immense power to simplify programs and speed their development.

Thinking in terms of domain-specific languages provides a foundation for library design choices, and helps us to judge which kinds of new

programming idioms and syntax will be effective. By relying on those that are most evocative of existing domain abstractions and notation,

we can write programs that seem to directly express our intentions.

A unique combination of features—among them flexible operator overloading syntax, a high level of abstraction with little or no

performance penalty, and the power of template metaprogramming—gives C++ programmers unmatched power to build efficient,

expressive DSELs. Moreover, because DSELs are libraries, users can freely combine DSEL capabilities in the same application without

ever leaving a familiar programming environment.

The purely compile-time MPL constructs that occupy most of this book and the techniques we covered in Chapter 9 for interfacing

compile-time and runtime code are an effective toolbox for DSEL construction. In the next chapter, we'll go through an example to see just

how that can be done.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

10.9. Exercises

10-0. Consider the possibility of using operators other than >> in Spirit to separate consecutive grammar symbols.

Would any other operator be better? Why or why not? Hint: Consider C++ grammar rules in addition to

readability.

10-1. Are you beginning to notice a common theme in which limitations of the host language drive many DSEL

design decisions? Consider how you might design a language that allows open-ended DSEL syntax and do a

cost/benefit analysis comparing the use of the hypothetical language to what you've seen in C++. You might

look at the history and use of macros in LISP for inspiration.

10-2. Use any of the Boost DSEL libraries discussed in this chapter to solve a small problem. Evaluate the user

experience: What worked about the library? What was cumbersome about it?

10-3. Build a small DSEL for handling named function parameters using a protocol similar to the one described in

this chapter. Compare your design with that of the Boost named parameters library, by David Abrahams and

Daniel Wallin, in the prerelease materials on this book's companion CD.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Chapter 11. A DSEL Design Walkthrough

In this chapter we'll walk through the process of designing and implementing a domain-specific embedded language and a metaprogram

that operates on it. First we'll explore a domain and identify its principal abstractions; using a specific example, we'll get a sense of what

they mean in the real world. Then we'll design a DSEL to express those abstractions, with our example as a proof-of-concept. Finally, we'll

apply the tools and techniques you've learned in this book to write a metaprogram that processes the language to generate useful and

efficient runtime components.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

11.1. Finite State Machines

Every software engineer should be familiar with finite state machines (FSMs). The concept is so useful that you could expect to find it

almost anywhere, from hardware device controllers to pattern-matching and parsing engines such as the one used by YACC. Developers

of such diverse applications have embraced the use of FSMs because they make it possible to transform a tangled web of complex

program logic into a comprehensible expression of well-understood formalism. We can credit this power to two things: the fundamental

simplicity of the FSM abstraction and its declarative form.

Few general-purpose languages have built-in support for constructing FSMs, and C++ is no exception. If they aren't a regular part of every

C++ programmer's vocabulary, maybe it's just for want of a tool that makes them as easy and fun to build as they should be. In this chapter

we aim to design and build just such a tool: a finite state machine construction framework.

11.1.1 The Domain Abstraction

The domain abstraction of finite state machines consists of three simple elements.

States

An FSM must always be in one of several well-defined states. For example, the states of a simple CD player might be called Open, Empty,

Stopped (with a CD in the drawer), Paused, and Playing. The only persistent data associated with a pure FSM is encoded in its state,

though FSMs are seldom used alone in any system. For example, the parsers generated by YACC are built around a stack of state

machines; the state of the whole system includes that of the stack and of each FSM in the stack.

Events

State changes are triggered by events. In our CD player example, most events would correspond to button presses on its front panel: play,

stop, pause, and open/close (the button that opens and closes the drawer). Events aren't necessarily "pushed" into a state machine from

the outside, though. For example, in YACC parsers, each event represents a different token, and is "pulled" from the input stream by the

parsing process. In some systems, events contain associated data. For instance, an identifier token in a C++ parser might carry the text of

the identifier, while an integer-literal token might carry the value of the integer.

Transitions

Each state can have any number of transitions to other states. Each transition is labeled with an event. To process an event, the FSM

follows the transition that starts from the current state and is marked with that event. For example, a CD player has a transition from

Playing to Stopped labeled with the stop event. Usually, transitions also have some associated action, such as stop playback in the case of

our CD player. In the case of YACC, following transitions means manipulating the stack of FMSs and/or executing the user's semantic

actions.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

11.1.2 Notations

There are several common ways to describe a state machine on paper, but perhaps the most user-friendly notation is a graphical one.

Figure 11.1 represents the CD player we've been using as an example. In the picture, states are shown as circles and transitions are

shown as arrows, labeled with the events that trigger them.

Figure 11.1. CD player FSM in graphical form

Note the transition from Empty to Stopped. Remember that we said not all events need to be "pushed" on the system from the outside? To

model real CD players, the FSM will begin a CD detection process when the drawer is closed; when it detects a CD in the drawer, the

system sends itself a cd-detected event. To make this work, the transition from Open to Empty must have an associated action that begins

the CD detection process. When a new disc is detected, most CD players collect information about the number of tracks and the total

playing time of each one; our cd-detected event should contain that information so that the transition's action can store it somewhere and

show the number of tracks on the player's front panel.

The graphical representation shows everything that can happen in an FSM at a glance, with no wasted syntactic elements. One popular

strategy for FSM construction, in fact, is to draw the state machine using a graphical user interface with a code-generating back end. If

only C++ allowed pictures in its input syntax—they could be a perfect DSEL notation!

Since C++ can't parse pictures, we're going to use a different notation called a State Transition Table (STT), which is essentially just a

vertical list of the FSM's transitions. Table 11.1 shows the STT for the CD player.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table 11.1. CD Player State Transition Table

Current State Event Next State Transition Action

Stopped play Playing start playback

Stopped open/close Open open drawer

Open open/close Empty close drawer; collect CD

information

Empty open/close Open open drawer

Empty cd-detected Stopped store CD information

Playing stop Stopped stop playback

Playing pause Paused pause playback

Playing open/close Open stop playback; open drawer

Paused play Playing resume playback

Paused stop Stopped stop playback

Paused open/close Open stop playback; open drawer

Although the structure of the FSM is less apparent than it was in the graphical form, it's still fairly easy to follow. To process an event, the

state machine finds a row that contains its current state in the first column and the event in the second column; the third and fourth

columns of that row indicate the new state and the action to take upon making the transition. Note that while we left transition actions out of

the FSM's graphical representation to minimize clutter, in the STT they cause little or no interference.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

11.2. Framework Design Goals

Okay, so what do we want from our state machine framework?

Interoperability. State machines are typically just an abstraction for describing the logic of a system targeted at some problem

domain(s) other than FSM construction. We'd like to be able to use libraries built for those domains in the implementation of our

FSMs, so we want to be sure we can comfortably interoperate with other DSELs.

1.

Declarativeness. State machine authors should have the experience of describing the structure of FSMs rather than

implementing their logic. Ideally, building a new state machine should involve little more than transcribing its STT into a C++

program. As framework providers, we should be able to seamlessly change the implementation of a state machine's logic

without affecting the author's description.

2.

Expressiveness. It should be easy both to represent and to recognize the domain abstraction in a program. In our case, an

STT in code should look very much as it does when we design a state machine on paper.

3.

Efficiency. A simple FSM like our CD player should ideally compile down to extremely tight code that can be optimized into

something appropriate even for a tiny embedded system. Perhaps more importantly, concerns about the efficiency of our

framework should never give programmers an excuse for using ad hoc logic where the sound abstraction of a finite state

machine might otherwise apply.

4.

Static Type Safety. It's important to catch as many problems as possible at compile time. A typical weakness of many

traditional FSM designs [LaFre00] is that they do most of their checking at runtime. In particular, there should be no need for

unsafe downcasts to access the different datatypes contained by various events.

5.

Maintainability. Simple changes to the state machine design should result in only simple changes to its implementation. This

may seem like an obvious goal, but it's nontrivial to attain—experts have tried and failed to achieve it. For example, when using

the State design pattern [Mart98], a single change such as adding a transition can lead to refactoring multiple classes.

6.

Scalability. FSMs can grow to be far more complex than our simple example above, incorporating such features as per-state

entry and exit actions, conditional transition guards, default and triggerless transitions and even sub-states. If the framework

doesn't support these features today, it should be reasonably extensible to do so tomorrow.

7.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

11.3. Framework Interface Basics

We can make some easy choices right away. Because of goal 1 above—and, of course, because of the name of this chapter—we're going

to design an embedded DSL. That means taking the library approach rather than building a translator (like YACC) or an interpreter (like

Make).

Though it may not be obvious from our CD player example, we might in general want to create multiple instances of any finite state

machine, each with a separate state. Therefore, it makes sense to encapsulate FSM logic in a reusable package. Since C++'s unit of data

encapsulation is a class, our framework is going to help us build FSM classes. Because the whole FSM will be represented as a class, it

seems reasonable to represent transition actions like start playback as member functions of that class.

We'd like to be able to use readable names like Playing and open_close to indicate states and events. At this point we can't say much

about what kind of C++ entity (type, integer value, function object, and so on) to use for state names like Playing. Events are a different story,

though: In the CD player, only the cd-detected event contains data, but in general every distinct kind of event might need to transmit a

different data type. Therefore, event names should denote types. To embed arbitrary data in an event, the FSM author can just declare an

event class with corresponding data members.

Given that finite state machines will be classes, and that events will be implemented as types, we can imagine that a state machine built

with our framework might be used as follows:

 int main()

 {

 player p; // an instance of the FSM

 p.process_event(open_close()); // user opens CD player

 p.process_event(open_close()); // inserts CD and closes

 p.process_event(// CD is detected

 cd_detected(

 "louie, louie"

 , std::vector<std::clock_t>(/* track lengths */)

)

);

 p.process_event(play()); // etc.

 p.process_event(pause());

 p.process_event(play());

 p.process_event(stop());

 return 0;

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

11.4. Choosing a DSL

Our next challenge is to design a domain-specific language that allows a programmer to describe a finite state machine like the one

implemented by player. Later, we'll write metaprogram code that processes the FSM description to generate a class like player. As hinted

earlier, the state machine author is going to deliver the description in the form of a state transition table, so let's start looking at possible

syntaxes for representing it.

11.4.1 The Transition Table

Deciding on a representation for transitions (the rows of our STT) is where things really start to get interesting. We have many options!

Let's go through a few of the possible ways of writing just the first two rows of our table, and analyze each one to get a sense of the range

of choices at our disposal. At this stage, we're not going to worry too much about how to use these syntaxes to build FSMs; the point is just

to consider how STTs might map onto C++ syntax:

 // Current Event Next Action

 // State State

 [Stopped, play, Playing, &fsm::start_playback]

 [Stopped, open_close, Open, &fsm::open_drawer]

Our first attempt is sufficiently table-like to make the state machine's structure clear. What would it take to make this syntax work? To make

the brackets legal, there would have to be a class, say transition_table, with an overloaded operator[]. Because the C++ compiler doesn't

allow us to write bracketed expressions in isolation, users would have to precede the table with an instance of that class, something like:

 transition_table STT; // provided by the FSM framework

 ...

 // Current Event Next Action

 // State State

 STT[Stopped, play, Playing, &fsm::start_playback]

 [Stopped, open_close, Open, &fsm::open_drawer]

Next, because operator[] is only allowed to have one argument, there would have to be at least one overloaded comma operator to

consolidate the items in between the brackets. Having noticed that, we can make the syntax even more table-like by replacing the comma

operator with operator|:

 // Current Event Next Action

 // State State

 STT[Stopped | play | Playing | &fsm::start_playback]

 [Stopped | open_close | Open | &fsm::open_drawer]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Given that our event names will denote types, however, both of the syntaxes we've explored present a problem: We can't just use a type in

a runtime expression as though it were an object. Instead, we have to pass an instance of that type, so our table might end up looking

more like this:

 // Current Event Next Action

 // State State

 STT[Stopped | play() | Playing | &fsm::start_playback]

 [Stopped | open_close() | Open | &fsm::open_drawer]

A couple of parentheses per row don't compromise the syntax too badly, though we appear to be requiring that events can be

default-constructed. Default-constructibility requirements are a red flag to any experienced library designer: In this case, events won't

necessarily all be lightweight types, and constructing instances just so we can build the transition table might not be appropriate.

Applying the Fundamental Theorem of Software Engineering,
[1]

 we might get around that problem by asking users to transmit the event's

type information to the framework indirectly, in a little wrapper template:

[1] "We can solve any problem by introducing an extra level of indirection." See section 2.1.2 for the origin of this idea.

 // provided by the FSM framework

 template <class Event>

 struct on

 {

 typedef Event type;

 };

 ...

 // Current Event Next Action

 // State State

 STT[Stopped |on<play>() | Playing |&fsm::start_playback]

 [Stopped |on<open_close>()| Open |&fsm::open_drawer]

That works in principle, but the syntax is starting to get a little bit heavy, obscuring event names with syntactic "noise." We might recover

some of the readability by writing:

 on<play> play_;

 on<stop> stop_;

 on<open_close> open_close_;

 ...

 // Current Event Next Action

 // State State

 STT[Stopped | play_ | Playing | &fsm::start_playback]

 [Stopped | open_close_ | Open | &fsm::open_drawer]

That's not bad at all. Unfortunately, there's one problem that is going to kill this lovely scheme. Remember our fourth design goal,

"Efficiency?" The problem with all of the designs we've seen so far is that they are going to hurt the efficiency of our state machine in two

ways:

We're passing pointers to the transition actions as arguments to some operator| function. That means we're going to have to

store them in data members somewhere, and later call through the stored pointers when the FSM actually follows the

transitions. As a result, even the simplest transition functions won't be inlined. These costs are not significant in all designs. For

1.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

example, when Boost.Bind
[2]

 is used to build a comparison function object for use with std::sort, the cost of moving sequence

elements during sorting will usually swamp the small overhead of repeatedly calling through a single function pointer. In the

case of a finite state machine, however, the code executed to change states is often so trivial that an added indirection really

does count.

[2] See Chapter 10 for more on the Boost Bind library.

We're also building the whole transition table at runtime. That's not an efficiency problem in itself: Construction of the table can

probably be inlined, and, as we've seen from Blitz++, it's possible to build super-efficient computational engines at runtime

using expression templates. Unfortunately, the number of operators used in building such an engine is directly proportional to

the complexity of its type structure. After building up a type complicated enough to represent a fairly large STT, there's no way

we can ask the user to write that type down. If we want to hold the state machine in a variable, the table either needs to be

passed off immediately to a function template or we have to resort to some sort of type erasure,
[3]

 which always results in

another level of function-pointer indirection.

[3] See Chapter 9 for more on type erasure.

2.

We can avoid the cost of indirection through a function pointer on transition actions by passing the action member pointers as template

arguments, as described in Chapter 9:

 // Current Event Next Action

 // State State

 transition< Stopped, play, Playing, &fsm::start_playback >,

 transition< Stopped, open_close, Open, &fsm::open_drawer >,

This syntax is not nearly so sweet, but we think it still looks sufficiently tabular. We can go a bit further in that direction just by moving the

commas and adding comments:

 // Current Event Next Action

 // State State

 // +---------+------------+---------+-----------------------+

 row < Stopped , play , Playing , &fsm::start_playback >,

 row < Stopped , open_close , Open , &fsm::open_drawer >,

 // +---------+------------+---------+-----------------------+

 row < Paused , play , Playing , &fsm::resume_playback >,

 row < Paused , stop , Stopped , &fsm::stop_playback >,

 row < Paused , open_close , Open , &fsm::stop_and_open >,

 // +---------+------------+---------+-----------------------+

Although we had to replace transition with the less meaningful identifier row (so the example would fit on the page), the new format is more

readable to our eye.

This approach has two important practical advantages over previous attempts, no matter what layout you choose. First, it can be

implemented using only type expressions, so there's no loss of efficiency due to a premature crossing of the compile-time/runtime

boundary. Since the action function pointer is a template parameter, it is known at compile time and can be completely inlined. Second,

because each row<...> instantiation is a type, we can pass a comma-separated list of them as parameters to an MPL sequence, and all the

MPL tools for manipulating type sequences will be at our disposal.

Now that we know the format we'd like to use for our transition table, we might as well choose the kind of C++ entity to which state names

will refer. State machines are, well, stateful. In other words, they don't fit into the compile-time world of pure template metaprogramming

very well. We need to be able to pass state names as template parameters to row<...>, but we also need to be able to store something

representing any of the FSM's various states in a single data member. Integral constants meet both those constraints. Luckily, C++ gives

us a convenient way to define collections of named integral constants with unique values:

 enum states {

 Stopped, Open, Empty, Playing, Paused

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 , initial_state = Empty

 };

As you can see, we've defined an additional constant initial_state. We're endowing that particular identifier with special meaning: The

framework will use it to decide the initial state of default-constructed FSM instances.

11.4.2 Putting It All Together

Except for a couple of small details, we've now explored all the syntactic aspects of the DSEL and are ready to show a complete example

of how it might be used to describe a FSM:

 // concrete FSM implementation

 class player : public state_machine<player>
 {

 private:

 // the list of FSM states

 enum states {

 Empty, Open, Stopped, Playing, Paused

 , initial_state = Empty

 };

 // transition actions

 void start_playback(play const&);

 void open_drawer(open_close const&);

 void close_drawer(open_ close const&);

 void store_cd_info(cd_detected const&);

 void stop_playback(stop const&);

 void pause_playback(pause const&);

 void resume_playback(play const&);

 void stop_and_open(open_close const&);

 friend class state_machine<player>;
 typedef player p; // makes transition table cleaner

 // transition table

 struct transition_table : mpl::vector11<

 // Start Event Next Action

 // +---------+-------------+---------+---------------------+

 row < Stopped , play , Playing , &p::start_playback >,

 row < Stopped , open_close , Open , &p::open_drawer >,

 // +---------+-------------+---------+---------------------+

 row < Open , open_close , Empty , &p::close_drawer >,

 // +---------+-------------+---------+---------------------+

 row < Empty , open_close , Open , &p::open_drawer >,

 row < Empty , cd_detected , Stopped , &p::store_cd_info >,

 // +---------+-------------+---------+---------------------+

 row < Playing , stop , Stopped , &p::stop_playback >,

 row < Playing , pause , Paused , &p::pause_playback >,

 row < Playing , open_close , Open , &p::stop_and_open >,

 // +---------+-------------+---------+---------------------+

 row < Paused , play , Playing , &p::resume_playback >,

 row < Paused , stop , Stopped , &p::stop_playback >,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 row < Paused , open_close , Open , &p::stop_and_open >

 // +---------+-------------+---------+---------------------+

 > {};

 };

One new detail above is that player's base class is being granted friendship. Because all of player's nested definitions—its states, transition

table, and actions—are exclusively for use by the state machine framework, and not for public consumption, we've marked them private.

Aside from its default constructor, the state machine's public interface consists solely of the process_event member function that will be

supplied by its base class.

The other detail we ought to discuss is the use of the Curiously Recurring Template Pattern (CRTP), in which player is derived from

state_machine<player>.
[4]

 Like many of our other DSEL design choices, this one is driven by C++ language constraints. Consider how row

might be declared so that it can accept a pointer-to-member-function of player as a template argument. It would have to be something like:

[4] See section 9.8 for more on CRTP.

 template <

 int CurrentState

 , class Event

 , int NextState

 , void (player::*) (Event const&)

 >

 struct row

 { ... };

In other words, row needs to know the type of player. We could ask the author of player to supply the FSM type herself, as an initial

template parameter:

 template<

 class Fsm // explicit FSM specification

 , int CurrentState

 , class Event

 , int NextState

 , void (Fsm::*action)(Event const&)

 >

 struct row

 { ... };

That approach would add an extra column to the transition table—a column full of nothing more than redundant copies of the same class

name. Since C++ already requires the state machine author to qualify all member function pointers with the FSM class name, we'd just be

adding insult to injury. With CRTP, however, the FSM author passes the class name once, to the base class template state_machine.

Since state_machine has full access to the derived class name, it can supply a convenient nested row template for that particular Derived

state machine:

 template<class Derived>

 class state_machine

 {

 ...

 protected:

 template<

 int CurrentState

 , class Event

 , int NextState

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 , void (Derived::*action)(Event const&)

 >

 struct row

 {

 // for later use by our metaprogram

 static int const current_state = CurrentState;

 static int const next_state = NextState;

 typedef Event event;

 typedef Derived fsm_t;

 // do the transition action

 static void execute(Derived& fsm, Event const& e)

 {

 (fsm.*action) (e);

 }

 };

 };

Notice that we've filled in the body of row above. The nested definitions serve only one purpose: They allow convenient access to the

values of row's template parameters. It may seem a little strange that the action parameter is accessed through an execute function that

calls it; unfortunately, in C++ a nested constant member pointer can never be a compile-time constant. Had action been assigned to a

static const member like the other template parameters, calls through it would not be inlined.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

11.5. Implementation

Now that we've begun to touch on the details of state_machine's implementation, we may as well dive in head first. You're probably asking

yourself, "How the heck are we going to make this thing work?" Mostly the answer comes down to implementing process_event, which

after all is entirely responsible for the FSM's runtime behavior (aside from the transition actions, supplied by the derived FSM's author).

The process_event member function presents a classic "double dispatch" problem: Given a start state and an event, we need to select a

target state and a transition action to perform. In general, implementing double dispatch can be quite challenging, but in our case we have

a distinct advantage: We know the event type at compile time, which allows us to capitalize on the compiler's overload resolution

capability. If we were going to write an FSM implementation by hand instead of letting the library generate it, we'd have a separate

overloaded implementation of process_event for each event type, looking something like this:

 // "play" event processor

 void process_event(play const& e)

 {

 switch (this->state)

 {

 case Stopped:

 this->start_playback(e);

 this->state = Playing;

 break;

 case Paused:

 this->resume_playback(e);

 this->state = Playing;

 break;

 default:

 this->state = no_transition(this->state, e);

 }

 }

 // "stop" event processor

 void process_event(stop const& e)

 {

 ...

 }

 // etc...

Ideally, to do the same thing automatically, we'd just instantiate some templates parameterized on the current states, actions, and target

states involved, and containing switch statements. Just looking at the play event processor, we can already see a problem. There may be

an arbitrary number of cases in that switch statement, one for each transition on the event, and C++ doesn't give us a way to generate

such an arbitrarily sized switch statement directly. To create one from the information in our transition table, which will be processed row by

row, we need to build up the switch semantics from similar-looking bite-sized pieces. The smallest unit of code that we can generate with

C++ templates is a function call, so these pieces will have to be functions. Breaking each case into a separate function yields something

more like this for the play event processor:

 // "play" event processor

 void process_event(play const& e)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 {

 this->state = case_Stopped(e);

 }

 int case_Stopped(play const& e)

 {

 if (this->state == Stopped)

 {

 this->start_playback(e);

 return Playing;

 }

 else return this->case_Paused(e);

 }

 int case_Paused(play const& e)

 {

 if (this->state == Paused)

 {

 this->resume_playback(e);

 return Playing;

 }

 else return this->case_default(e);

 }

 int case_default(play const& e)

 {

 return this->no_transition(this->state, e);

 }

Here, process_event(play const&) forwards its implementation to case_Stopped. case_Stopped first checks to see if the current state is

Stopped, and if so, takes the corresponding transition action (start_playback) and returns Playing as the new state. Otherwise, case_Paused

checks to see if the state is Paused, and if so, resumes playback and again returns Playing. Otherwise, case_default calls no_transition to

handle the states that have no outgoing transition on a play event.
[5]

[5] We don't expect this version of process_event to incur the cost of four function calls; we're relying on the

compiler's inlining and optimization capabilities to make it efficient.

As you can see, these semantics are identical to those of the switch statement above. If we can generate a case_State function for each

transition on a given event, we can build the right behavior incrementally, by traversing the rows of the transition table. Of course, we're not

home free yet, because we can't generate case_State functions, the problem being the variable part of the name, represented by State. A

template metaprogram simply can't generate new identifiers. We can, however, associate a separate function with each state as follows:

 template <int State>

 struct case_

 {

 static int dispatch(player& fsm, int state, play const& e)

 { ... }

 };

Provided that we could fill the braces appropriately, case_<Stopped>::dispatch would be equivalent to case_Stopped, and

case<Paused>::dispatch would be equivalent to case_Paused. To generate bodies for these functions, we'll need State (to check against), a

transition action (to execute), and a next state (to move to). We could pass each of these in a separate template parameter, but it's

probably simpler to pass an entire row of the transition table, since the members of row provide access to all of that information and more. If

case_ isn't taking a state value as its sole template argument, though, it seems badly named. Let's call it event_dispatcher instead:

 template<class Transition> // a row of the transition table

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 struct event_dispatcher

 {

 typedef typename Transition::fsm_t fsm_t;

 typedef typename Transition::event event;

 static int dispatch(

 fsm_t& fsm, int state, event const& e)

 {

 if (state == Transition::current_state)

 {

 Transition::execute(fsm, e);

 return Transition::next_state;

 }

 else { ... }

 }

 };

Conveniently, each row provides us with the identity of the state machine (::fsm_t) and of the event being dispatched (::event). That allows

event_dispatcher to be more generic than case_, which was tied to a specific state machine and event.

To complete event_dispatcher we must fill in its else clause, which, in the usual case, just needs to call the next case's dispatch function.

That's easy enough if the event_dispatcher for the next case is a template parameter:

 template<

 class Transition

 , class Next
 >

 struct event_dispatcher

 {

 typedef typename Transition::fsm_t fsm_t;

 typedef typename Transition::event event;

 static int dispatch(

 fsm_t& fsm, int state, event const& e)

 {

 if (state == Transition::current_state)

 {

 Transition::execute(fsm, e);

 return Transition::next_state;

 }

 else // move on to the next node in the chain.

 {

 return Next::dispatch(fsm, state, e);

 }

 }

 };

To handle the default case, we'll introduce a default_event_dispatcher with a dispatch function that invokes the FSM's no_transition handler.

Because the derived FSM class is only granting friendship to state_machine<FSM> and not to default_event_dispatcher, the handler must

be called indirectly through a member of state_machine:

 struct default_event_dispatcher

 {

 template<class FSM, class Event>

 static int dispatch(

 state_machine<FSM>& m, int state, Event const& e)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 {

 return m.call_no_transition(state, e);

 }

 };

 template <class Derived>

 class state_machine

 {

 ...

 template <class Event>

 int call_no_transition(int state, Event const& e)

 {

 return static_cast<Derived*>(this) // CRTP downcast

 ->no_transition(state, e);

 }

 ...

 };

Now, to process the play event, we just have to assemble the following type and call its dispatch function:

 event_dispatcher<

 row<Stopped, play, Playing, &player::start_playback>

 , event_dispatcher<

 row<Paused, play, Playing, &player::resume_playback>

 , default_event_dispatcher

 >

 >

If you look carefully at the structure of that type, you can see that it mirrors the execution pattern of the fold algorithm, beginning with

default_event_dispatcher and "folding" it into successive event_dispatcher specializations. To generate it, we just have to run fold over the

rows of our table that contain the event we're dispatching:

 // get the Event associated with a transition

 template <class Transition>

 struct transition_event

 {

 typedef typename Transition::event type;

 };

 template<class Table, class Event>

 struct generate_dispatcher

 : mpl::fold<

 mpl::filter_view< // select rows triggered by Event

 Table

 , boost::is_same<Event, transition_event<_1< >

 >

 , default_event_dispatcher

 , event_dispatcher<_2,_1>

 >

 {};

Finally, we're ready to write state_machine's process_event function! Rather than writing overloads for each event type, we'll use a

member function templated on the event type, that merely generates the dispatcher and invokes its ::dispatch member:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 template<class Event>

 int process_event(Event const& evt)

 {

 // generate the dispatcher type

 typedef typename generate_dispatcher<

 typename Derived::transition_table, Event

 >::type dispatcher;

 // dispatch the event

 this->state = dispatcher::dispatch(

 static_cast<Derived>(this) // CRTP downcast

 , this->state

 , evt

);

 // return the new state

 return this->state;

 }

Note that once again we are taking advantage of the Curiously Recurring Template Pattern to supply functionality that relies on knowing

the full type of the derived class in the member functions of the base class. The static_cast above allows the dispatcher to apply the

Derived member function pointers in the transition_table to *this.

There's very little else to state_machine. We need a state member, and a constructor to initialize it:

 ...

 protected:

 state_machine()

 : state(Derived::initial_state)

 {}

 private:

 int state;

 ...

It would be nice to supply a default no_transition handler; after all, a user who wants different behavior can always write a no_transition

function in her derived class:

 ...

 public:

 template <class Event>

 int no_transition(Event const& e)

 {

 assert(false);

 return state;

 }

 ...

In your Boost installation, libs/mpl/book/chapter10/player.cpp contains a complete implementation of what we've explored here.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

11.6. Analysis

By now you should have a good sense of the DSEL development process. The steps mirror the ones we used to analyze each of the

domain-specific languages in Chapter 10.

Identify the domain abstractions.1.

Experiment with representing those abstractions in code.2.

Build a prototype.3.

Iterate.4.

So how well did it work out this time? Did we achieve our design goals?

Interoperability. Interoperability with other DSLs is achieved because we have created our DSL as a library, that is, a

domain-specific embedded language. We can embed types from other domain libraries in our events, invoke arbitrary functions

in other domains from within the transition actions, or operate the FSM from code written in other DSELs.

1.

Declarativeness. Looking back at our player implementation, the bulk of the code written by its author is in the transition table

itself, and almost everything in the declaration of player is essential to its meaning. It does appear to be a very direct translation

of the domain language into C++. Furthermore, it is possible to completely replace the framework's implementation without

altering the state machine declaration. In the examples directory of the code that accompanies this book, player2.cpp illustrates

a state_machine that dispatches using O(1) lookup into a static table of function pointers.

2.

Expressiveness. The STT as declared in player does look very much like a table should be expected to, particularly with the

formatting conventions we've used.

3.

Efficiency. The code generated for process_event avoids all runtime dispatch other than switching on the current state, and

that doesn't require any memory accesses or table lookups, since event_dispatcher uses compile-time constants for

comparison. The design is efficient because we ruthlessly kept everything in the compile-time world of metadata as long as

possible.

The authors analyzed the assembly language output for this example by two different compilers, and the generated code

appears to rival that of a hand-coded state machine. That said, if you were going to use this framework in a system where every

cycle counts, you'd probably want to throw the example at your target compiler and inspect the results. You'd probably also

want to expand the STT with more events and transitions to see whether the efficiency of the code scales well with the size of

the state machine.

4.

Static Type Safety. The framework is fairly typesafe. There are only two static_casts in the whole system (in process_event

and call_no_transition), and the potential for damage is limited because they will only compile if Derived is indeed derived from

the state_machine.

5.

Maintainability. New events can be added to the system by simply creating a new type. New states can be added similarly, by

extending the states enum. That enum could even be defined outside player, if we cared to do so. It wouldn't do much to reduce

coupling, though, since the transition table must contain state names and must be visible from the FSM declaration. Transitions

are easy to add by writing new rows in the transition_table.

One point that might be of some concern is the cost of maintaining the visual alignment of the table as the FSM evolves. That

cost does appear to be inevitable if we want to closely match the domain abstraction. Although we have the flexibility to throw

out strict alignment if the cost of maintenance grows too high, experiments appear to show that the table representation makes

6.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

a big difference in its understandability, so we wouldn't want to take this step lightly.

Scalability. It's a bit harder to evaluate the framework's extensibility from what we've seen here. One thing we can say at this

point is that the design seems sufficiently modular to make adding new features reasonably easy. You'll get a chance to explore

just how easy it actually is if you do some of this chapter's exercises. Due to the DSL's declarativeness, we can at least be fairly

sure that features can be added without breaking existing user code.

7.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

11.7. Language Directions

Although as of today C++ is the most suitable language for building highly efficient DSELs, there is still a lot of room for improvement. As

you've seen, the DSELs you can implement within the current language are amazing, but they also require an amount of work that

becomes justifiable only if you are really planning to spend a lot of time working in the DSEL's problem domain. Moreover, despite the

richness and flexibility of C++'s operator overloading rules, one often has to settle for less-than-perfect syntax. What seems to be liberal in

the domain of general-purpose programming is often not quite liberal enough to conveniently express the syntax of an arbitrary domain.

Things don't have to be that way, of course. While C++ will probably never allow arbitrary syntax extensions, a few small changes to the

language would improve DSEL writing a great deal. One problem we saw in this chapter is that although the language's runtime syntax is

incredibly rich, once we cross the boundary into runtime by passing a constant (in our case, a member function pointer) to a function, it's

impossible to get that constant back into the compile-time world as metadata. For example, if we could expand the language's ability to do

"constant folding," it could be possible to leverage its rich runtime syntax in contexts that require pure metadata [n 1521].

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

11.8. Exercises

11-0. It might be useful to be able to group transitions by their start state, so that each start state only has to be

written once. Design such a grouped representation and modify the FSM framework design to support it.

Evaluate the success of your changes in reducing redundancy and boilerplate.

11-1. We didn't really have to give up on expression template-based designs so quickly. How could the efficiency lost

by passing function pointers be recaptured? (Hint: They must be passed as template arguments.) Rework your

favorite expression template DSEL syntax to use this technique and evaluate its success as a DSEL.

11-2. Implement and test the expression-template-based FSM DSEL we explored but then discarded earlier in

section 11.4.1. Evaluate its ease-of-use and efficiency tradeoffs.

11-3. Evaluate the possibility of implementing the following expression-template-based FSM DSEL:

 player()

 {

 Stopped[

 play => Playing | &player::start_playback

 , open_close => Open | &player::open_drawer

]

 ,

 Open[

 open_close => Empty | &player::close_drawer

]

 // ...

 ;

 }

Based on your evaluation, explain why this syntax is unachievable, or, if it is viable, implement a prototype that

demonstrates it.

11-4. Extend the FSM implementation to support optional state entry and exit actions.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

11-5. Transition guards are additional predicates that you can assign to certain transitions to suppress/enable them

depending on some condition. Although formally redundant,
[6]

 they help to reduce the FSM's size and

complexity, sometimes significantly, and therefore are often desired. Design a notation and implement support

for optional transition guards in this chapter's example.

[6] Any finite state machine that uses transition guards can be always transformed into

an equivalent "pure" FSM that doesn't.

11-6. Extend the FSM implementation to support "catch-all" transitions, making any of the following possible:

 // whatever the current state is, allow "reset_event" to

 // trigger a transition to "initial_state"

 row< _, reset_event, initial_state, &self::do_reset >

 // any event received in "error" state triggers a transition

 // to "finished"

 row< error, _, finished, &self::do_finish >

 // any event received in any state triggers a transition

 // to "done"

 row< _, _, done, &self::do_nothing >

Choose and implement a deterministic scheme for handling transitions with overlapping conditions.

11-7*. Extend the FSM implementation to support nested (composite) states. A sketch of a possible design is

provided below:

 class my_fsm

 : fsm::state_machine< my_fsm >

 {

 // ...

 struct ready_to_start_;

 typedef submachine<ready_to_start_> ready_to_start;

 struct transition_table : mpl::vector<

 row< ready_to_start, event1, running, &self::start >

 , row< running, event2, Stopped, &self::stop >

 // ...

 > {};

 };

 // somewhere else in the translation unit

 template<>

 struct my_fsm::submachine<ready_to_start_>

 : state_machine< submachine<ready_to_start_> >

 {

 // states

 struct ready;

 struct closed;

 struct recently_closed;

 struct transition_table : mpl::vector<

 row< ready, event3, closed, &self::close >

 , row< closed, event4, recently_closed >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 // ...

 > {};

 };

11-8. Our dispatching code searches linearly over the states with outgoing transitions on a given event. In the worst

case, that takes O(S) time, where S is the total number of states in the FSM. In the examples directory of the

code that accompanies this book, player2.cpp illustrates a state_machine that dispatches using O(1) lookup

into a static table of function pointers. That, however, incurs runtime memory access and function pointer

indirection overhead. Implement and test a third dispatching scheme that avoids all of these disadvantages by

generating an O(log2S) binary search.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Appendix A. An Introduction to Preprocessor

Metaprogramming

Section A.1. Motivation

Section A.2. Fundamental Abstractions of the Preprocessor

Section A.3. Preprocessor Library Structure

Section A.4. Preprocessor Library Abstractions

Section A.5. Exercise

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

A.1. Motivation

Even with the full power of template metaprogramming and the Boost Metaprogramming Library at our disposal, some C++ coding jobs still

require a great deal of boilerplate code repetition. We saw one example in Chapter 5, when we implemented tiny_size:

 template <class T0, class T1, class T2>

 struct tiny_size

 : mpl::int_<3> {};

Aside from the repeated pattern in the parameter list of the primary template above, there are three partial specializations below, which

also follow a predictable pattern:

 template <class T0, class T1>

 struct tiny_size<T0,T1,none>

 : mpl::int_<2> {};

 template <class T0>

 struct tiny_size<T0,none,none>

 : mpl::int_<1> {};

 template <>

 struct tiny_size<none,none,none>

 : mpl::int_<0> {};

In this case there is only a small amount of code with such a "mechanical" flavor, but had we been implementing large instead of tiny, there

might easily have been a great deal more. When the number of instances of a pattern grows beyond two or three, writing them by hand

tends to become error-prone. Perhaps more importantly, the code gets hard to read, because the important abstraction in the code is really

the pattern, not the individual instances.

A.1.1 Code Generation

Rather than being written out by hand, mechanical-looking code should really be generated mechanically. Having written a program to spit

out instances of the code pattern, a library author has two choices: She can either ship pre-generated source code files, or she can ship

the generator itself. Either approach has drawbacks. If clients only get the generated source, they are stuck with whatever the library

author generated—and experience shows that if they are happy with three instances of a pattern today, someone will need four tomorrow.

If clients get the generator program, on the other hand, they also need the resources to execute it (e.g., interpreters), and they must

integrate the generator into their build processes...

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

A.1.2 Enter the Preprocessor

...unless the generator is a preprocessor metaprogram. Though not designed for that purpose, the C and C++ preprocessors can be made

to execute sophisticated programs during the preprocessing phase of compilation. Users can control the code generation process with

preprocessor #defines in code or -D options on the compiler's command line, making build integration trivial. For example, we might

parameterize the primary tiny_size template above as follows:

 #include <boost/preprocessor/repetition/enum_params.hpp>

 #ifndef TINY_MAX_SIZE

 # define TINY_MAX_SIZE 3 // default maximum size is 3

 #endif

 template <BOOST_PP_ENUM_PARAMS(TINY_MAX_SIZE, class T)>
 struct tiny_size

 : mpl::int_<TINY_MAX_SIZE>

 {};

To test the metaprogram, run your compiler in its "preprocessing" mode (usually the -E option), with the Boost root directory in your

#include path. For instance:
[1]

[1] GCC's -P option inhibits the generation of source file and line number markers in preprocessed output.

 g++ -P -E -Ipath/to/boost_1_32_0 -I. test.cpp

Given the appropriate metaprograms, users would be able to adjust not only the number of parameters to tiny_size, but the maximum size

of the entire tiny implementation just by #define-ing TINY_MAX_SIZE.

The Boost Preprocessor library [MK04] plays a role in preprocessor metaprogramming similar to the one played by the MPL in template

metaprogramming: It supplies a framework of high-level components (like BOOST_PP_ENUM_PARAMS) that make otherwise-painful

metaprogramming jobs approachable. In this appendix we won't attempt to cover nitty-gritty details of how the preprocessor works, nor

principles of preprocessor metaprogramming in general, nor even many details of how the Preprocessor library works. We will show you

enough at a high level that you'll be able to use the library productively and learn the rest on your own.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

A.2. Fundamental Abstractions of the Preprocessor

We began our discussion of template metaprogramming in Chapter 2 by describing its metadata (potential template arguments) and

metafunctions (class templates). On the basis of those two fundamental abstractions, we built up the entire picture of compile-time

computation covered in the rest of this book. In this section we'll lay a similar foundation for the preprocessor metaprogrammer. Some of

what we cover here may be a review for you, but it's important to identify the basic concepts before going into detail.

A.2.1 Preprocessing Tokens

The fundamental unit of data in the preprocessor is the preprocessing token. Preprocessing tokens correspond roughly to the tokens

you're used to working with in C++, such as identifiers, operator symbols, and literals. Technically, there are some differences between

preprocessing tokens and regular tokens (see section 2 of the C++ standard for details), but they can be ignored for the purposes of this

discussion. In fact, we'll be using the terms interchangeably here.

A.2.2 Macros

Preprocessor macros come in two flavors. Object-like macros can be defined this way:

#define identifier replacement-list

where the identifier names the macro being defined, and replacement-list is a sequence of zero or more tokens. Where the identifier appears

in subsequent program text, it is expanded by the preprocessor into its replacement list.

Function-like macros, which act as the "metafunctions of the preprocessing phase," are defined as follows:

#define identifier(a1, a2, ... an) replacement-list

where each ai is an identifier naming a macro parameter. When the macro name appears in subsequent program text followed by a

suitable argument list, it is expanded into its replacement-list, except that each argument is substituted for the corresponding parameter

where it appears in the replacement-list.
[2]

[2] We have omitted many details of how macro expansion works. We encourage you to take a few minutes to study

section 16.3 of the C++ standard, which describes that process in straightforward terms.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

A.2.3 Macro Arguments

Definition

A macro argument is a nonempty sequence of:

Preprocessing tokens other than commas or parentheses, and/or

Preprocessing tokens surrounded by matched pairs of parentheses.

This definition has consequences for preprocessor metaprogramming that must not be underestimated. Note, first of all, that the following

tokens have special status:

 , ()

As a result, a macro argument can never contain an unmatched parenthesis, or a comma that is not surrounded by matched parentheses.

For example, both lines following the definition of FOO below are ill-formed:

 #define FOO(X) X // unary identity macro

 FOO(,) // un-parenthesized comma or two empty arguments

 FOO()) // unmatched parenthesis or missing argument

Note also that the following tokens do not have special status; the preprocessor knows nothing about matched pairs of braces, brackets, or

angle brackets:

 { } [] < >

As a result, these lines are also ill-formed:

 FOO(std::pair<int, long>) // two arguments

 FOO({ int x = 1, y = 2; return x+y; }) // two arguments

It is possible to pass either string of tokens above as part of a single macro argument, provided it is parenthesized:

 FOO((std::pair<int,int>)) // one argument

 FOO(({ int x = 1, y = 2; return x+y; })) // one argument

However, because of the special status of commas, it is impossible to strip parentheses from a macro argument without knowing the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

number of comma-separated token sequences it contains.
[3]

 If you are writing a macro that needs to be able to accept an argument

containing a variable number of commas, your users will either have to parenthesize that argument and pass you the number of

comma-separated token sequences as an additional argument, or they will have to encode the same information in one of the

preprocessor data structures covered later in this appendix.

[3] The C99 preprocessor, by virtue of its variadic macros, can do that and more. The C++ standardization

committee is likely to adopt C99's preprocessor extensions for the next version of the C++ standard.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

A.3. Preprocessor Library Structure

Since in-depth coverage of the Boost Preprocessor library is beyond the scope of this book, we'll try to give you the tools to gain an

in-depth understanding of the library here. To do that, you'll need to use the electronic Preprocessor library documentation, which begins

with the index.html file in the libs/preprocessor/ subdirectory of your Boost installation.

On the left of your browser window you'll see an index, and if you follow the "Headers" link, it will reveal the structure of the

boost/preprocessor/ directory. Most of the library's headers are grouped into subdirectories according to related functionality. The top-level

directory contains only a few headers that provide general-purpose macros, along with a header for each subdirectory that simply

#includes all the headers in that subdirectory. For example, boost/preprocessor/selection.hpp does nothing more than to #include the

min.hpp and max.hpp headers that comprise the contents of boost/preprocessor/selection/. The headers whose names don't correspond to

subdirectories generally declare a macro whose name is the same as the name of the header, without the extension, and with a

BOOST_PP_ prefix. For example, boost/preprocessor/selection/max.hpp declares BOOST_PP_MAX.

You'll also notice that often a header will declare an additional macro with a _D, _R, or _Z suffix.
[4]

 For instance,

boost/preprocessor/selection/max.hpp also declares BOOST_PP_MAX_D. For the purposes of this appendix, you should ignore those

macros. Eventually you will want to understand the reason for their existence and how they can be used to optimize preprocessing speed;

consult the Topics section of the library documentation under the subheading "reentrancy" for that information.

[4] Macros with _1ST, _2ND, or _3RD suffixes, if they appear, should be ignored for a different reason: They are

deprecated and will be removed from the library soon.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

A.4. Preprocessor Library Abstractions

In this section we'll discuss the basic abstractions of the Preprocessor library and give some simple examples of each.

A.4.1 Repetition

The repeated generation of class T0, class T1,... class Tn that we achieved using BOOST_PP_ENUM_PARAMS was a specific case of the

general concept of horizontal repetition. The library also has a concept of vertical repetition, which we'll get to in a moment. Horizontal

repetition macros are all found in the library's repetition/ subdirectory.

A.4.1.1 Horizontal Repetition

To generate the tiny_size specializations using horizontal repetition, we might write the following:

 #include <boost/preprocessor/repetition.hpp>

 #include <boost/preprocessor/arithmetic/sub.hpp>

 #include <boost/preprocessor/punctuation/comma_if.hpp>

 #define TINY_print(z, n, data) data

 #define TINY_size(z, n, unused) \

 template <BOOST_PP_ENUM_PARAMS(n, class T)> \

 struct tiny_size< \

 BOOST_PP_ENUM_PARAMS(n,T) \

 BOOST_PP_COMMA_IF(n) \

 BOOST_PP_ENUM(\

 BOOST_PP_SUB(TINY_MAX_SIZE,n), TINY_print, none) \

 > \

 : mpl::int_<n> {};

 BOOST_PP_REPEAT(TINY_MAX_SIZE, TINY_size, ~)

 #undef TINY_size

 #undef TINY_print

The code generation process is kicked off by calling BOOST_PP_REPEAT, a higher-order macro that repeatedly invokes the macro

named by its second argument (TINY_size). The first argument specifies the number of repeated invocations, and the third one can be any

data; it is passed on unchanged to the macro being invoked. In this case, TINY_size doesn't use that data, so the choice to pass ~ was

arbitrary.
[5]

[5] ~ is not an entirely arbitrary choice. Both @ and $ might have been good choices, except that they are technically

not part of the basic character set that C++ implementations are required to support. An identifier like ignored might

be subject to macro expansion, leading to unexpected results.

Each time the TINY_size macro is invoked by BOOST_PP_REPEAT, it generates a different specialization of tiny_size. The macro accepts

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

three parameters.

z is related to the _Z macro suffix we mentioned earlier. You'll never need to use it except for optimization purposes, and can

safely ignore it for now.

n is the repetition index. In repeated invocations of TINY_size, n will be 0, then 1, then 2, and so on.

unused, in this case, will be ~ on each repetition. In general, the final argument to a macro invoked by BOOST_PP_REPEAT is

always the same as its invoker's final argument.

Because its replacement-list covers several lines, all but the last line of TINY_size is continued with a trailing backslash. The first few of

those lines just invoke BOOST_PP_ENUM_PARAMS (which we already used in the primary template) to generate comma-separated lists,

so each invocation of TINY_size produces something equivalent to:
[6]

[6] Note that the line continuation characters and the newlines following them are removed by the preprocessor, so

the resulting code actually appears on a single line in the preprocessed output.

 template <class T0, class T1, ... class Tn-1>

 struct tiny_size<

 T0, T1, ... Tn-1

 ...more...

 >

 : mpl::int_<n> {};

BOOST_PP_COMMA_IF generates a comma if its numeric argument is not 0. When n is 0, the list generated by the preceding line will be

empty, and a leading comma directly following the < character would be ill-formed.

The next line uses BOOST_PP_ENUM to generate TINY_MAX_SIZE-n comma-separated copies of none. BOOST_PP_ENUM is just like

BOOST_PP_REPEAT except that it generates commas between repetitions, so its second argument (TINY_print, here) must have the same

signature as TINY_size. In this case, TINY_print ignores its repetition index n, and simply yields its third argument, none.

BOOST_PP_SUB implements token subtraction. It's crucial to understand that although the preprocessor itself can evaluate ordinary

arithmetic expressions:

 #define X 3

 ...

 #if X - 1 > 0 // OK

 whatever

 #endif

preprocessor metaprograms can only operate on tokens. Normally, when a macro in the Preprocessor library expects a numeric argument,

it must be passed as a single token. If we had written TINY_MAX_SIZE-n instead of BOOST_PP_SUB(TINY_MAX_SIZE,n) above, the first

argument to BOOST_PP_ENUM would have contained three tokens at each invocation: first 3-0, then 3-1, and finally 3-2. BOOST_PP_SUB,

though, generates single-token results: first 3, then 2, and finally 1, in successive repetitions.

Naming Conventions

Note that TINY_print and TINY_size are #undef'd immediately after they're used, with no intervening #includes. They can

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

therefore be thought of as "local" macro definitions. Because the preprocessor doesn't respect scope boundaries, it's

important to choose names carefully to prevent clashes. We recommend PREFIXED_lower_case names for local

macros and PREFIXED_UPPER_CASE names for global ones. The only exceptions are one-letter lowercase names,

which are safe to use for local macros: No other header is likely to #define a global single-letter lowercase macro—that

would be very bad manners.

A.4.1.2 Vertical Repetition

If you send the previous example through your preprocessor, you'll see one long line containing something like this:

 template <> struct tiny_size< none , none , none > : mpl::int_<0>

 {}; template < class T0> struct tiny_size< T0 , none , none > :

 mpl::int_<1> {}; template < class T0 , class T1> struct tiny_size

 < T0 , T1 , none > : mpl::int_<2> {};

The distinguishing feature of horizontal repetition is that all instances of the repeated pattern are generated on the same line of

preprocessed output. For some jobs, like generating the primary tiny_size template, that's perfectly appropriate. In this case, however,

there are at least two disadvantages.

It's hard to verify that our metaprogram is doing the right thing without reformatting the resulting code by hand.1.

The efficiency of nested horizontal repetitions varies widely across preprocessors. Each specialization generated by means of

horizontal repetition contains three other horizontal repetitions: two invocations of BOOST_PP_ENUM_PARAMS and one

invocation of BOOST_PP_ENUM. When TINY_MAX_SIZE is 3, you'll probably never care, but on at least one preprocessor still

in use today, compilation begins to slow noticeably when TINY_MAX_SIZE reaches 8.
[7]

[7] That said, other preprocessors can handle 256 * 256 nested repetitions without any speed problems

whatsoever.

2.

The solution to these problems, naturally, is vertical repetition, which generates instances of a pattern across multiple lines. The

Preprocessor library provides two means of vertical repetition: local iteration and file iteration.

Local Iteration

The most expedient way to demonstrate local iteration in our example is to replace the invocation of BOOST_PP_REPEAT with the

following:

 #include <boost/preprocessor/iteration/local.hpp>

 #define BOOST_PP_LOCAL_MACRO(n) TINY_size(~, n, ~)

 #define BOOST_PP_LOCAL_LIMITS (0, TINY_MAX_SIZE - 1)

 #include BOOST_PP_LOCAL_ITERATE()

Local iteration repeatedly invokes the user-defined macro with the special name BOOST_PP_LOCAL_MACRO, whose argument will be

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

an iteration index. Since we already had TINY_size lying around, we've just defined BOOST_PP_LOCAL_MACRO to invoke it. The range

of iteration indices are given by another user-defined macro, BOOST_PP_LOCAL_LIMITS, which must expand to a parenthesized pair of

integer values representing the inclusive range of index values passed to BOOST_PP_LOCAL_MACRO. Note that this is one of the rare

places where the library expects a numeric argument that can be an expression consisting of multiple tokens.

Finally, the repetition is initiated by #include-ing the result of invoking BOOST_PP_LOCAL_ITERATE, which will ultimately be a file in the

Preprocessor library itself. You may find it surprising that many preprocessors can handle repeated file inclusion more quickly than nested

horizontal repetition, but that is in fact the case.

If we throw the new example at our preprocessor, we'll see the following, on three separate lines in the output:

 template <> struct tiny_size< none , none , none > : mpl::int_<0>

 {};

 template < class T0> struct tiny_size< T0 , none , none > : mpl::

 int_<1> {};

 template < class T0 , class T1> struct tiny_size< T0 , T1 , none

 > : mpl::int_<2> {};

That represents a great improvement in verifiability, but it's still not ideal. As TINY_MAX_SIZE grows, it gets harder and harder to see that

the pattern is generating what we'd like. If we could get some more line breaks into the output it would retain a more recognizable form.

Both repetition methods we've used so far have another drawback, though it doesn't show up in this example. Consider what would

happen if tiny_size had a member function that we wanted to debug. If you've ever tried to use a debugger to step through a function

generated by a preprocessor macro, you know that it's a frustrating experience at best: The debugger shows you the line from which the

macro was ultimately invoked, which usually looks nothing at all like the code that was generated. Worse, as far as the debugger is

concerned, every statement in that generated function occupies that same line.

File Iteration

Clearly, debuggability depends on preserving the association between generated code and the lines in the source file that describe the

code pattern. File iteration generates pattern instances by repeatedly #include-ing the same source file. The effect of file iteration on

debuggability is similar to that of templates: Although separate instances appear to occupy the same source lines in the debugger, we do

have the experience of stepping through the function's source code.

To apply file iteration in our example, we can replace our earlier local iteration code and the definition of TINY_size, with:

 #include <boost/preprocessor/iteration/iterate.hpp>

 #define BOOST_PP_ITERATION_LIMITS (0, TINY_MAX_SIZE - 1)

 #define BOOST_PP_FILENAME_1 "tiny_size_spec.hpp"

 #include BOOST_PP_ITERATE()

BOOST_PP_ITERATION_LIMITS follows the same pattern as BOOST_PP_LOCAL_LIMITS did, allowing us to specify an inclusive range

of iteration indices. BOOST_PP_FILENAME_1 specifies the name of the file to repeatedly #include (we'll show you that file in a moment).

The trailing 1 indicates that this is the first nesting level of file iteration—should we need to invoke file iteration again from within

tiny_size_spec.hpp, we'd need to use BOOST_PP_FILENAME_2 instead.

The contents of tiny_size_spec.hpp should look familiar to you; most of it is the same as TINY_size's replacement-list, without the

backslashes:

 #define n BOOST_PP_ITERATION()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 template <BOOST_PP_ENUM_PARAMS(n, class T)>

 struct tiny_size<

 BOOST_PP_ENUM_PARAMS(n,T)

 BOOST_PP_COMMA_IF(n)

 BOOST_PP_ENUM(BOOST_PP_SUB(TINY_MAX_SIZE,n), TINY_print, none)

 >

 : mpl::int_<n> {};

 #undef n

The library transmits the iteration index to us in the result of BOOST_PP_ITERATION(); n is nothing more than a convenient local macro

used to reduce syntactic noise. Note that we didn't use #include guards because we need tiny_size_spec.hpp to be processed multiple

times.

The preprocessed result should now preserve the line structure of the pattern and be more verifiable for larger values of TINY_MAX_SIZE.

For instance, when TINY_MAX_SIZE is 8, the following excerpt appears in the output of GCC's preprocessing phase:

 ...

 template < class T0 , class T1 , class T2 , class T3>

 struct tiny_size<

 T0 , T1 , T2 , T3

 ,

 none , none , none , none

 >

 : mpl::int_<4> {};

 template < class T0 , class T1 , class T2 , class T3 , class T4>

 struct tiny_size<

 T0 , T1 , T2 , T3 , T4

 ,

 none , none , none

 >

 : mpl::int_<5> {};

 ...etc.

Self-Iteration

Creating an entirely new file like tiny_size_spec.hpp each time we want to express a trivial code pattern for file repetition can be

inconvenient. Fortunately, the library provides a macro that allows us to place the pattern right in the file that invokes the iteration.

BOOST_PP_IS_ITERATING is defined to a nonzero value whenever we're inside an iteration. We can use that value to select between the

part of a file that invokes the iteration and the part that provides the repeated pattern. Here's a complete tiny_size.hpp file that

demonstrates self-iteration. Note in particular the placement and use of the #include guard TINY_SIZE_HPP_INCLUDED:

 #ifndef BOOST_PP_IS_ITERATING

 # ifndef TINY_SIZE_HPP_INCLUDED

 # define TINY_SIZE_HPP_INCLUDED

 # include <boost/preprocessor/repetition.hpp>

 # include <boost/preprocessor/arithmetic/sub.hpp>

 # include <boost/preprocessor/punctuation/comma_if.hpp>

 # include <boost/preprocessor/iteration/iterate.hpp>

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 # ifndef TINY_MAX_SIZE

 # define TINY_MAX_SIZE 3 // default maximum size is 3

 # endif

 // primary template

 template <BOOST_PP_ENUM_PARAMS(TINY_MAX_SIZE, class T)>

 struct tiny_size

 : mpl::int_<TINY_MAX_SIZE>

 {};

 // generate specializations

 # define BOOST_PP_ITERATION_LIMITS (0, TINY_MAX_SIZE - 1)

 # define BOOST_PP_FILENAME_1 "tiny_size.hpp" // this file

 # include BOOST_PP_ITERATE()

 # endif // TINY_SIZE_HPP_INCLUDED

 #else // BOOST_PP_IS_ITERATING

 # define n BOOST_PP_ITERATION()

 # define TINY_print(z, n, data) data

 // specialization pattern

 template <BOOST_PP_ENUM_PARAMS(n, class T)>

 struct tiny_size<

 BOOST_PP_ENUM_PARAMS(n,T)

 BOOST_PP_COMMA_IF(n)

 BOOST_PP_ENUM(BOOST_PP_SUB(TINY_MAX_SIZE,n), TINY_print, none)

 >

 : mpl::int_<n> {};

 # undef TINY_print

 # undef n

 #endif // BOOST_PP_IS_ITERATING

More

There's a good deal more to file iteration than what we've been able to show you here. For more details, we encourage you to delve into

the library's electronic documentation of BOOST_PP_ITERATE and friends. Also, it's important to note that no single technique for

repetition is superior to any other: Your choice may depend on convenience, verifiability, debuggability, compilation speed, and your own

sense of "logical coherence."

A.4.2 Arithmetic, Logical, and Comparison Operations

As we mentioned earlier, many of the Preprocessor library interfaces require single-token numeric arguments, and when those numbers

need to be computed arithmetically, straightforward arithmetic expressions are inappropriate. We used BOOST_PP_SUB to subtract two

numeric tokens in our tiny_size examples. The library contains a suite of operations for non-negative integral token arithmetic in its

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

arithmetic/ subdirectory, as shown in Table A.1

Table A.1. Preprocessor Library Arithmetic Operations

Expression Value of Single Token Result

BOOST_PP_ADD(x,y) x + y

BOOST_PP_DEC(x) x - 1

BOOST_PP_DIV(x,y) x / y

BOOST_PP_INC(x) x + 1

BOOST_PP_MOD(x,y) x % y

BOOST_PP_MUL(x,y) x * y

BOOST_PP_SUB(x,y) x - y

The logical/ subdirectory contains the convenient Boolean token operations shown in Table A.2 and the more efficient operations shown in

Table A.3, which require that their operands are either 0 or 1 (a single bit).

Table A.2. Preprocessor Library Integer Logical Operations

Expression Value of Single Token Result

BOOST_PP_AND(x,y) x && y

BOOST_PP_NOR(x,y) !(x || y)

BOOST_PP_OR(x,y) x || y

BOOST_PP_XOR(x,y) (bool)x != (bool)y ? 1 : 0

BOOST_PP_NOT(x) x ? 0 : 1

BOOST_PP_BOOL(x) x ? 1 : 0

Table A.3. Preprocessor Library Bit Logical Operations

Expression Value of Single Token Result

BOOST_PP_BITAND(x,y) x && y

BOOST_PP_BITNOR(x,y) !(x || y)

BOOST_PP_BITOR(x,y) x || y

BOOST_PP_BITXOR(x,y) (bool)x != (bool)y ? 1 : 0

BOOST_PP_COMPL(x) x ? 0 : 1

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Finally, the comparison/ subdirectory provides the token integral comparison operations shown in Table A.4.

Table A.4. Preprocessor Library Comparison Operations

Expression Value of Single Token Result

BOOST_PP_EQUAL(x,y) x == y ? 1 : 0

BOOST_PP_NOT_EQUAL(x,y) x != y ? 1 : 0

BOOST_PP_LESS(x,y) x < y ? 1 : 0

BOOST_PP_LESS_EQUAL(x,y) x <= y ? 1 : 0

BOOST_PP_GREATER(x,y) x > y ? 1 : 0

BOOST_PP_GREATER_EQUAL(x,y) x >= y ? 1 : 0

Because it's common to have a choice among several workable comparison operators, it may be useful to know that BOOST_PP_EQUAL

and BOOST_PP_NOT_EQUAL are likely to be O(1) while the other comparison operators are generally slower.

A.4.3 Control Structures

In its control/ directory, the Preprocessor library supplies a macro BOOST_PP_IF(c,t,f) that fulfills a similar role to the one filled by mpl::if_.

To explore the "control" group, we'll generate code for a framework of generic function objects: the Boost Function library.
[8]

boost::function is partially specialized to match function type arguments of each arity up to the maximum supported by the library:

[8] We touched briefly on the design of Boost Function when we discussed type erasure in Chapter 9. See the

Function library documentation at boost_1_32_0/libs/function/index.html on the CD that accompanies this book for

more information.

 template <class Signature> struct function; // primary template

 template <class R> // arity = 0

 struct function<R()>

 definition not shown...

 template <class R, class A0> // arity = 1

 struct function<R(A0)>

 definition not shown...

 template <class R, class A0, class A1> // arity = 2

 struct function<R(A0,A1)>

 definition not shown...

 template <class R, class A0, class A1, class A2> // arity = 3

 struct function<R(A0,A1,A2)>

 definition not shown...

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 etc.

We've already covered a few strategies that can be used to generate the pattern above, so we won't belabor that part of the problem; the

file iteration approach we used for tiny_size would be fine:

 #ifndef BOOST_PP_IS_ITERATING

 # ifndef BOOST_FUNCTION_HPP_INCLUDED

 # define BOOST_FUNCTION_HPP_INCLUDED

 # include <boost/preprocessor/repetition.hpp>

 # include <boost/preprocessor/iteration/iterate.hpp>

 # ifndef FUNCTION_MAX_ARITY

 # define FUNCTION_MAX_ARITY 15

 # endif

 template <class Signature> struct function; // primary template

 // generate specializations

 # define BOOST_PP_ITERATION_LIMITS (0, FUNCTION_MAX_ARITY)

 # define BOOST_PP_FILENAME_1 "boost/function.hpp" // this file

 # include BOOST_PP_ITERATE()

 # endif // BOOST_FUNCTION_HPP_INCLUDED

 #else // BOOST_PP_IS_ITERATING

 # define n BOOST_PP_ITERATION()

 // specialization pattern

 template <class R BOOST_PP_ENUM_TRAILING_PARAMS(n, class A)>

 struct function<R (BOOST_PP_ENUM_PARAMS(n,A))>
 definition not shown...

 # undef n

 #endif // BOOST_PP_IS_ITERATING

BOOST_PP_ENUM_TRAILING_PARAMS, used above, is just like BOOST_PP_ENUM_PARAMS except that when its first argument is not

0, it generates a leading comma.

A.4.3.1 Argument Selection

For the sake of interoperability with C++ standard library algorithms, it might be nice if functions of one or two arguments were derived from

appropriate specializations of std::unary_function or std::binary_function, respectively.
[9]

 BOOST_PP_IF is a great tool for dealing with

special cases:

[9] While derivation from std::unary_function or std::binary_function might be necessary for interoperability with some

older library implementations, it may inhibit the Empty Base Optimization (EBO) from taking effect when two such

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

derived classes are part of the same object. For more information, see section 9.4. In general, it's better to expose

first_argument_type, second_argument_type, and result_type typedefs directly.

 # include <boost/preprocessor/control/if.hpp>

 # include <boost/preprocessor/comparison/equal.hpp>

 // specialization pattern

 template <class R BOOST_PP_ENUM_TRAILING_PARAMS(n, class A)>

 struct function<R (BOOST_PP_ENUM_PARAMS(n,A))>

 BOOST_PP_IF(

 BOOST_PP_EQUAL(n,2), : std::binary_function<A0, A1, R>
 , BOOST_PP_IF(

 BOOST_PP_EQUAL(n,1), : std::unary_function<A0, R>
 , ...empty argument...

)

)

 { ...class body omitted... };

Well, our first attempt has run into several problems. First off, you're not allowed to pass an empty argument to the preprocessor (see

footnote 3, page 285). Secondly, because angle brackets don't get special treatment, the commas in the std::unary_function and

std::binary_function specializations above are treated as macro argument separators, and the preprocessor will complain that we've

passed the wrong number of arguments to BOOST_PP_IF in two places.

Because it captures all of the issues, let's focus on the inner BOOST_PP_IF invocation for a moment. The strategy that mpl::eval_if uses, of

selecting a nullary function to invoke, could work nicely here. The preprocessor doesn't have a direct analogue for mpl::eval_if, but it

doesn't really need one: We can get the right effect by adding a second set of parentheses to BOOST_PP_IF.

 #define BOOST_FUNCTION_unary() : std::unary_function<A0,R>

 #define BOOST_FUNCTION_empty() // nothing

 ...

 , BOOST_PP_IF(

 BOOST_PP_EQUAL(n,1), BOOST_FUNCTION_unary

 , BOOST_FUNCTION_empty

)()

 #undef BOOST_FUNCTION_empty

 #undef BOOST_FUNCTION_unary

A nullary macro that generates nothing is so commonly needed that the library's "facilities" group provides one: BOOST_PP_EMPTY. To

complete the example we'll need to delay evaluation all the way to the outer BOOST_PP_IF invocation, because

std::binary_function<A0,A1,R> also has a "comma problem":

 # include <boost/preprocessor/facilities/empty.hpp>

 # define BOOST_FUNCTION_binary() : std::binary_function<A0,A1,R>

 # define BOOST_FUNCTION_unary() : std::unary_function<A0,R>

 // specialization pattern

 template <class R BOOST_PP_ENUM_TRAILING_PARAMS(n, class A)>

 struct function<R (BOOST_PP_ENUM_PARAMS(n,A))>

 BOOST_PP_IF(

 BOOST_PP_EQUAL(n,2), BOOST_FUNCTION_binary

 , BOOST_PP_IF(

 BOOST_PP_EQUAL(n,1), BOOST_FUNCTION_unary

 , BOOST_PP_EMPTY

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

)

)()
 {

 ...class body omitted...

 };

 # undef BOOST_FUNCTION_unary

 # undef BOOST_FUNCTION_binary

 # undef n

Note that because we happened to be using file iteration, we could have also used #if on n's value directly:

 template <class R BOOST_PP_ENUM_TRAILING_PARAMS(n, class A)>

 struct function<R (BOOST_PP_ENUM_PARAMS(n,A))>

#if n == 2
 : std::binary_function<A0, A1, R>

#elif n == 1
 : std::unary_function<A0, R>

#endif

BOOST_PP_IF has the advantage of enabling us to encapsulate the logic in a reusable macro, parameterized on n, that is compatible with

all repetition constructs:

 #define BOOST_FUNCTION_BASE(n) \

 BOOST_PP_IF(BOOST_PP_EQUAL(n,2), BOOST_FUNCTION_binary \

 , BOOST_PP_IF(BOOST_PP_EQUAL(n,1), BOOST_FUNCTION_unary \

 , BOOST_PP_EMPTY \

) \

)()

A.4.3.2 Other Selection Constructs

BOOST_PP_IDENTITY, also in the "facilities" group, is an interesting cousin of BOOST_PP_EMPTY:

 #define BOOST_PP_IDENTITY(tokens) tokens BOOST_PP_EMPTY

You can think of it as creating a nullary macro that returns tokens: When empty parentheses are appended, the trailing

BOOST_PP_EMPTY is expanded leaving just tokens behind. If we had wanted inheritance from mpl::empty_base when function's arity is

not one or two, we could have used BOOST_PP_IDENTITY:

 // specialization pattern

 template <class R BOOST_PP_ENUM_TRAILING_PARAMS(n, class A)>

 struct function<R (BOOST_PP_ENUM_PARAMS(n,A))>

 BOOST_PP_IF(

 BOOST_PP_EQUAL(n,2), BOOST_FUNCTION_binary

 , BOOST_PP_IF(

 BOOST_PP_EQUAL(n,1), BOOST_FUNCTION_unary

 , BOOST_PP_IDENTITY(: mpl::empty_base)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

)

)()
 {

 ...class body omitted...

 };

It's also worth knowing about BOOST_PP_EXPR_IF, which generates its second argument or nothing, depending on the Boolean value of

its first:

 #define BOOST_PP_EXPR_IF(c,tokens) \

 BOOST_PP_IF(c,BOOST_PP_IDENTITY(tokens),BOOST_PP_EMPTY)()

So BOOST_PP_EXPR_IF(1,foo) expands to foo, while BOOST_PP_EXPR_IF(0,foo) expands to nothing.

A.4.4 Token Pasting

It would be nice if there were a generic way to access the return and parameter types of all function objects, rather than just the unary and

binary ones. A metafunction returning the signature as an MPL sequence would do the trick. We could just specialize signature for each

function arity:

 template <class F> struct signature; // primary template

 // partial specializations for boost::function

 template <class R>

 struct signature<function<R()> >

 : mpl::vector1<R> {};

 template <class R, class A0>

 struct signature<function<R(A0)> >

 : mpl::vector2<R,A0> {};

 template <class R, class A0, class A1>

 struct signature<function<R(A0,A1)> >

 : mpl::vector3<R,A0,A1> {};

 ...

To generate these specializations, we might add the following to our pattern:

 template <class R, BOOST_PP_ENUM_TRAILING_PARAMS(n, class A)>

 struct signature<function<R(BOOST_PP_ENUM_PARAMS(n,A))> >

 : mpl::BOOST_PP_CAT(vector,n)<

 R, BOOST_PP_ENUM_TRAILING_PARAMS(n,A)

 > {};

BOOST_PP_CAT implements token pasting; its two arguments are "glued" together into a single token. Since this is a general-purpose

macro, it sits in cat.hpp at the top level of the library's directory tree.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Although the preprocessor has a built-in token-pasting operator, ##, it only works within a macro definition. If we'd used it here, it wouldn't

have taken effect at all:

 template <class R>

 struct signature<function<R()> >

 : mpl::vector##1<R> {};

 template <class R, class A0>

 struct signature<function<R(A0)> >

 : mpl::vector##2<R,A0> {};

 template <class R, class A0, class A1>

 struct signature<function<R(A0,A1)> >

 : mpl::vector##3<R,A0,A1> {};

 ...

Also, ## often yields surprising results by taking effect before its arguments have been expanded:

 #define N 10

 #define VEC(i) vector##i

 VEC(N) // vectorN

By contrast, BOOST_PP_CAT delays concatenation until after its arguments have been fully evaluated:

 #define N 10

 #define VEC(i) BOOST_PP_CAT(vector,i)

 VEC(N) // vector10

A.4.5 Data Types

The Preprocessor library also provides data types, which you can think of as being analogous to MPL type sequences. Preprocessor data

types store macro arguments instead of C++ types.

A.4.5.1 Sequences

A sequence (or seq for short) is any string of nonempty parenthesized macro arguments. For instance, here's a three-element sequence:

 #define MY_SEQ (f(12))(a + 1)(foo)

Here's how we might use a sequence to generate specializations of the is_integral template from the Boost Type Traits library (see Chapter

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

2):

 # include <boost/preprocessor/seq.hpp>

 template <class T>

 struct is_integral : mpl::false_ {};

 // a seq of integral types with unsigned counterparts

 #define BOOST_TT_basic_ints (char)(short)(int)(long)

 // generate a seq containing "signed t" and "unsigned t"

 #define BOOST_TT_int_pair(r,data,t) (signed t)(unsigned t)

 // a seq of all the integral types

 #define BOOST_TT_ints \

 (bool)(char) \

 BOOST_PP_SEQ_FOR_EACH(BOOST_TT_int_pair, ~, BOOST_TT_basic_ints)

 // generate an is_integral specialization for type t

 #define BOOST_TT_is_integral_spec(r,data,t) \

 template <> \

 struct is_integral<t> : mpl::true_ {};

 BOOST_PP_SEQ_FOR_EACH(BOOST_TT_is_integral_spec, ~, BOOST_TT_ints)

 #undef BOOST_TT_is_integral_spec

 #undef BOOST_TT_ints

 #undef BOOST_TT_int_pair

 #undef BOOST_TT_basic_ints

BOOST_PP_SEQ_FOR_EACH is a higher-order macro, similar to BOOST_PP_REPEAT, that invokes its first argument on each element of

its third argument.

Sequences are the most efficient, most flexible, and easiest-to-use of the library's data structures, provided that you never need to make

an empty one: An empty sequence would contain no tokens, and so couldn't be passed as a macro argument. The other data structures

covered here all have an empty representation.

The facilities for manipulating sequences are all in the library's seq/ subdirectory. They are summarized in Table A.5 where t is the

sequence (t0)(t1)...(tk). Where s, r, and d appear they have a similar purpose to the z parameters we discussed earlier (and suggested you

ignore for now).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table A.5. Preprocessor Sequence Operations

Expression Result

BOOST_PP_SEQ_CAT(t) t0t1...tk

BOOST_PP_SEQ_ELEM(n,t) tn

BOOST_PP_SEQ_ENUM(t) t0,t1, ...tk

BOOST_PP_SEQ_FILTER(pred,data,t) t without the elements that don't satisfy

pred

BOOST_PP_SEQ_FIRST_N(n,t) (t0) (t1)...(tn-1)

BOOST_PP_SEQ_FOLD_LEFT(op, x, t) ...op(s,op(s,op(s,x,t0),t1),t2)...

BOOST_PP_SEQ_FOLD_RIGHT(op, x, t) ...op(s,op(s,op(s,x,tk),tk-1),tk–2)...

BOOST_PP_SEQ_FOR_EACH(f, x, t) f(r,x,t0)f(r,x,t1)...f(r,x,tk)

BOOST_PP_SEQ_FOR_EACH_I(g, x, t) g(r,x,0,t0)g(r,x,1,t1)...g(r,x,k,tk)

BOOST_PP_SEQ_FOR_EACH_PRODUCT(h, x, t) Cartesian product—see online docs

BOOST_PP_SEQ_INSERT(t,i,tokens) (t0)(t1)...(ti-1) (tokens)

(ti)(ti+1)...(tk)

BOOST_PP_SEQ_POP_BACK(t) (t0)(t1)...(tk-1)

BOOST_PP_SEQ_POP_FRONT(t) (t1)(t2)...(tk)

BOOST_PP_SEQ_PUSH_BACK(t,tokens) (t0)(t1)...(tk)(tokens)

BOOST_PP_SEQ_PUSH_FRONT(t,tokens) (tokens)(t0)(t1)...(tk)

BOOST_PP_SEQ_REMOVE(t,i) (t0)(t1)...(ti-1)(ti+1)...(tk)

BOOST_PP_SEQ_REPLACE(t,i,tokens) (t0)(t1)...(ti-1)(tokens)(ti+1)...(tk)

BOOST_PP_SEQ_REST_N(n,t) (tn)(tn+1)...(tk)

BOOST_PP_SEQ_REVERSE(t) (tk)(tk-1)...(t0)

BOOST_PP_SEQ_HEAD(t) t0

BOOST_PP_SEQ_TAIL(t) (t1)(t2)...(tk)

BOOST_PP_SEQ_SIZE(t) k+1

BOOST_PP_SEQ_SUBSEQ(t,i,m) (ti)(ti+1)...(ti+m-1)

BOOST_PP_SEQ_TO_ARRAY(t) (k+1,(t0,t1, ...tk))

BOOST_PP_SEQ_TO_TUPLE(t) (t0,t1, ...tk)

BOOST_PP_SEQ_TRANSFORM(f, x, t) (f(r,x,t0))

(f(r,x,t1))...(f(r,x,tk))

It's worth noting that while there is no upper limit on the length of a sequence, operations such as BOOST_PP_SEQ_ELEM that take

numeric arguments will only work with values up to 256.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

A.4.5.2 Tuples

A tuple is a very simple data structure for which the library provides random access and a few other basic operations. A tuple takes the

form of a parenthesized, comma-separated list of macro arguments. For example, this is a three-element tuple:

 #define TUPLE3 (f(12), a + 1, foo)

The operations in the library's tuple/ subdirectory can handle tuples of up to 25 elements. For example, a tuple's Nth element can be

accessed via BOOST_PP_TUPLE_ELEM, as follows:

 // length index tuple

 BOOST_PP_TUPLE_ELEM(3 , 1 , TUPLE3) // a + 1

Notice we had to pass the tuple's length as the second argument to BOOST_PP_TUPLE_ELEM; in fact, all tuple operations require explicit

specification of the tuple's length. We're not going to summarize the other four operations in the "tuple" group here—you can consult the

Preprocessor library's electronic documentation for more details. We note, however, that sequences can be transformed into tuples with

BOOST_PP_SEQ_TO_TUPLE, and nonempty tuples can be transformed back into sequences with BOOST_PP_TUPLE_TO_SEQ.

The greatest strength of tuples is that they conveniently take the same representation as a macro argument list:

 #define FIRST_OF_THREE(a1,a2,a3) a1

 #define SECOND_OF_THREE(a1,a2,a3) a2

 #define THIRD_OF_THREE(a1,a2,a3) a3

 // uses tuple as an argument list

 # define SELECT(selector, tuple) selector tuple

 SELECT(THIRD_OF_THREE, TUPLE3) // foo

A.4.5.3 Arrays

An array is just a tuple containing a non-negative integer and a tuple of that length:

 #define ARRAY3 (3, TUPLE3)

Because an array carries its length around with it, the library's interface for operating on arrays is much more convenient than the one used

for tuples:

 BOOST_PP_ARRAY_ELEM(1, ARRAY3) // a + 1

The facilities for manipulating arrays of up to 25 elements are all in the library's array/ subdirectory. They are summarized in Table A.6,

where a is the array (k, (a0,a1, ...ak-1)).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table A.6. Preprocessor Array Operations

Expression Result

BOOST_PP_ARRAY_DATA(a) (a0,a1, ... ak-1)

BOOST_PP_ARRAY_ELEM(i,a) ai

BOOST_PP_ARRAY_INSERT(a, i, tokens) (k+1,(a0,a1, ...ai-1,tokens,

ai,ai+1, ...ak-1))

BOOST_PP_ARRAY_POP_BACK(a) (k-1,(a0,a1, ...ak-2))

BOOST_PP_ARRAY_POP_FRONT(a) (k-1,(a1,a2, ...ak-1))

BOOST_PP_ARRAY_PUSH_BACK(a, tokens) (k+1,(a0,a1, ...ak-1,tokens))

BOOST_PP_ARRAY_PUSH_FRONT(a, tokens) (k+1,(tokens, a1,a2, ...ak-1))

BOOST_PP_ARRAY_REMOVE(a, i) (k-1,(a0,a1, ...ai-1,ai+1, ...ak-1))

BOOST_PP_ARRAY_REPLACE(a, i, tokens) (k,(a0,a1, ...ai-1, tokens,

 ai+1, ...ak-1))

BOOST_PP_ARRAY_REVERSE(a) (k,(ak-1,ak-2, ...a1,a0))

BOOST_PP_ARRAY_SIZE(a) k

A.4.5.4 Lists

A list is a two-element tuple whose first element is the first element of the list, and whose second element is a list of the remaining

elements, or BOOST_PP_NIL if there are no remaining elements. Lists have access characteristics similar to those of a runtime linked list.

Here is a three-element list:

 #define LIST3 (f(12), (a + 1, (foo, BOOST_PP_NIL)))

The facilities for manipulating lists are all in the library's list/ subdirectory. Because the operations are a subset of those provided for

sequences, we're not going to summarize them here—it should be easy to understand the list operations by reading the documentation on

the basis of our coverage of sequences.

Like sequences, lists have no fixed upper length bound. Unlike sequences, lists can also be empty. It's rare to need more than 25 elements

in a preprocessor data structure, and lists tend to be slower to manipulate and harder to read than any of the other structures, so they

should normally be used only as a last resort.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

A.5. Exercise

A-0. Fully preprocessor-ize the tiny type sequence implemented in Chapter 5 so that all boilerplate code is

eliminated and the maximum size of a tiny sequence can be adjusted by changing TINY_MAX_SIZE.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Appendix B. The typename and template Keywords

The template keyword is used to introduce template declarations and definitions:

 template <class T>

 class vector;

The typename keyword is often used in place of class to declare template type parameters:
[1]

[1] We'll discuss the reasons why this book uses class and not typename in a moment.

 template <typename T>

 class vector;

Both keywords also have a second role in the language. This appendix is about that role, why it is needed, and exactly how to apply

typename and template to fill it. Because the rules are subtle, many people wait until the compiler complains before thinking about the use of

typename or template, but it's worth learning these technical details because:

You'll spend less time fixing trivial syntax errors.

You'll understand what you did wrong when the compiler does complain.

Your code will be more portable—many compilers don't complain enough to be strictly standards-conforming, and won't tell you

when you missed a typename or template.

Your code will be more likely to work as you intend—the compiler can't detect all misuses, and leaving one of these keywords

out can cause your program to misbehave silently.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

B.1. The Issue

Template compilation has two phases: The first occurs at the template's point of definition, and the second at each of its points of

instantiation. According to the C++ standard, a template must be completely checked for syntactic correctness at its point of definition,
[2]

 so

its author can know that it is well-formed long before it is instantiated:

[2] Not all compilers conform in this regard; many postpone some or all checking until the point of instantiation.

 template <class ForwardIterator1, class ForwardIterator2>

 void iter_swap(ForwardIterator1 i1, ForwardIterator2 i2)

 {

 T tmp = *i1; // error: unknown identifier T

 *i1 = *i2;

 *i2 = tmp;

 }

B.1.1 Problem One

During standardization, the committee discovered several cases for which it was impossible to do a full syntactic check at a template's

point of definition. For example, consider this translation unit containing a definition of iter_swap:

 double const pi = 3.14159265359;

 template <class T> struct iterator_traits; // declaration only

 template <class FwdIterator1, class FwdIterator2>

 void iter_swap(FwdIterator1 i, FwdIterator2 j)

 {

 iterator_traits<FwdIterator1>::value_type* pi = &*i;
 ...continued...

 }

The compiler has to check iter_swap for syntax errors, but it hasn't seen a definition of iterator_traits yet. Its ::value_type could be a type, in

which case the highlighted line is a valid declaration. However, it could also turn out to be an enum value:

 template <class T>

 struct iterator_traits

 {

 enum { value_type = 0 };

 };

in which case the first line of iter_swap is nonsense. It's tempting to think that the compiler should deduce that value_type must be a type,

because there's no way the first line of iter_swap could be valid otherwise. Consider this counterexample, though:

 class number

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 {

 public:

 template <class U>

 number& operator=(U const&);

 int& operator*() const;

 };

 number operator*(number, double);

 template <class T>

 struct iterator_traits

 {

 static number value_type;

 };

In this case, iter_swap might still be valid—its first line would multiply a number by pi, and then assign into it:

 (iterator_traits<FwdIterator1>::value_type * pi) = &*i;

but if so the syntactic structure of iter_swap would be completely different.

It's also tempting to think that the compiler could syntax-check iter_swap if it had already seen the definition of iterator_traits, but

specializations scuttle that possibility: any given instance of iterator_traits could be defined differently:

 template <>

 struct iterator_traits<int*>
 {

 static void* value_type;
 };

The problem is that iterator_traits<FwdIterator1>::value_type is a dependent name. The syntactic role it plays depends on what

FwdIterator1 turns out to be, and can never be known at iter_swap's point of definition.

B.1.2 Disambiguating Types

The typename keyword tells the compiler that a dependent name denotes a dependent type:

 template <class FwdIterator1, class FwdIterator2>

 void iter_swap(FwdIterator1 i, FwdIterator2 j)

 {

 typename iterator_traits<FwdIterator1>::value_type* pi = &*i;

 ...continued...

 }

Now the syntactic role of iterator_traits<FwdIterator1>::value_type is clear, and the compiler knows that pi denotes a pointer for the rest of

the body of iter_swap. If we don't write typename, the compiler assumes that value_type denotes a non-type, and pi denotes a const double

in iter_swap.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

B.1.3 Using class Versus typename

As we mentioned earlier, the following two declarations are equivalent:

 template <class T>

 class vector;

 template <typename T>

 class vector;

The argument in favor of using typename is that it's conceptually accurate: class seems to indicate that the argument must be a class type,

when in fact any type will do. There's certainly nothing wrong with vector<int>!

To understand the argument in favor of using class, consider the use of typename in the following declaration:

 template <typename T, typename T::value_type>

 struct sqrt_impl;

You may have missed this, but only the first use of typename is declaring a type parameter: The second typename is declaring that

T::value_type is a type. Therefore, the second parameter to sqrt is a value of type T::value_type.

If that seems confusing, we can't blame you. Maybe this equivalent declaration will help clarify it:

 template <class T, typename T::value_type n>

 struct sqrt_impl;

If so, you understand the argument for using class to declare template type parameters: It's less confusing if typename is only used to

mean one thing (syntax disambiguation) in template parameter lists.

We're not going to tell you which practice you should use; people of goodwill can disagree about whether conceptual accuracy is more

important than avoiding confusion in the rare cases where typename is used in non-type parameter declarations. In fact, the authors of this

book disagreed, which is why you'll see class here and typename in the MPL reference manual.

B.1.4 Problem Two

The same kind of issue arises with template members:

 double const pi = 3.14159265359;

 template <class T>

 int f(T& x)

 {

 return x.convert<3>(pi);
 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

T::convert might be a member function template, in which case the highlighted code passes pi to a specialization of convert<3>. It could also

turn out to be a data member, in which case f returns (x.convert < 3) > pi. That isn't a very useful calculation, but the compiler doesn't

know it.

B.1.5 Disambiguating Templates

The template keyword tells the compiler that a dependent name is a member template:

 template <class T>

 int f(T& x)

 {

 return x.template convert<3>(pi);

 }

If we omit template, the compiler assumes that x.convert does not name a template, and the < that follows it is parsed as the less-than

operator.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

B.2. The Rules

In this section we'll cover the standard's rules for the use of template and typename and walk through some illustrative examples.

B.2.1 typename

The relevant standard language comes from section 14.6 [temp.res], paragraph 5:

The keyword typename shall only be used in template declarations and definitions, including in the return type of a

function template or member function template, in the return type for the definition of a member function of a class

template or of a class nested within a class template, and in the type-specifier for the definition of a static member of

a class template or of a class nested within a class template. The keyword typename shall only be applied to

qualified names, but those names need not be dependent. The keyword typename is not permitted in a

base-specifier or in a mem-initializer; in these contexts a qualified-name that depends on a template-parameter

(14.6.2) is implicitly assumed to be a type name.

B.2.1.1 typename Required

The typename keyword is required anywhere in templates on qualified dependent names that denote types.

Identifying Dependent Type Names

In the following example, the type C::value_type is dependent on the template parameter C.

 // member data declarations

 template <class C>

 struct something

 {

 typename C::value_type x;

 };

The property of being a dependent type is transitive. In the following example, C::value_type is dependent on C and value_type::is_const is

dependent on value_type (and therefore also on C).

 // member type declarations

 template <class C>

 struct something

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 {

 typedef typename C::value_type value_type;

 typedef typename value_type::is_const is_const;

 };

In the following example, the ::type member of the add_const metafunction is dependent on the template parameter T.

 template <class T>

 struct input_iterator_part_impl

 {

 typedef typename boost::add_const<T>::type const_T;

 };

Contexts for Application

You've seen how typename is applied within class template bodies. It is also required within parameter lists, including in default argument

expressions:

 template <

 class T

 , typename non_type_parameter<T>::type value

 = typename non_type_parameter<T>::type()

 >

 struct initialized

 {};

and in function templates, including their bodies:

 template <class Sequence>

 typename Sequence::iterator // in return type

 find(

 Sequence seq

 , typename Sequence::value_type x // in parameter types

)

 {

 typename Sequence::iterator it // inside function body

 = seq.begin();

 ...etc...

 }

Since the rule is "one typename per dependent name," there might be several typenames required within a single declaration.

 template <class Sequence>

 struct key_iterator_generator

 {

 typedef typename projection_iterator_gen<

 select1st<typename Sequence::value_type>

 , typename Sequence::const_iterator

 >::type type;

 };

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Subtleties

A type can be dependent for subtle reasons. In the following example, index<1>::type is dependent because one can specialize the index

member template for a given Iterator type.

 template <class Iterator>

 struct category_index

 {

 template <long N> struct index

 {

 typedef char(&type)[N];

 };

 static typename index<1>::type
 category(std::input_iterator_tag);

 static typename index<2>::type
 category(std::forward_iterator_tag);

 };

 template <>

 template <long N>

 struct category_index<int*>::index

 {

 typedef char(&type)[N + 1];

 };

In other words, for the purpose of syntax disambiguation, the primary category_index template is equivalent to:

 template <class Iterator, long N> struct index

 {

 typedef char(&type)[N];

 };

 template <class Iterator>

 struct category_index

 {

 static typename index<Iterator,1>::type
 category(std::input_iterator_tag);

 static typename index<Iterator,2>::type
 category(std::forward_iterator_tag);

 };

B.2.1.2 typename Allowed (But Not Required)

The typename keyword is optional on qualified non-dependent names inside a template. In the following example,

std::unary_function<T,T*> is not dependent because it is always a class, no matter what T turns out to be.

 template <class T>

 struct something

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 {

 // OK

 std::unary_function<T,T*> f2;

 std::unary_function<int,int>::result_type x2;

 // also OK

 typename std::unary_function<T,T*> f1;

 typename std::unary_function<int,int>::result_type x1;

 };

B.2.1.3 typename Forbidden

typename cannot be used anywhere outside of templates:

 struct int_iterator

 {

 typedef typename int value_type; // error
 };

It is also forbidden on non-qualified names (those not preceded by ::), even if they are dependent.

 template <class T>

 struct vector

 {

 typedef typename int value_type; // error

 typedef typename pair<int,T> pair_type; // error

 typedef typename T* pointer; // error
 };

typename is forbidden on the name of a base class, even if it is dependent:

 template <class T> struct base_gen;

 template <class T>

 struct derived

 : typename base_gen<T>::type // error
 {};

but in the following, typename is required because T::value_type does not name a base class.

 template <class T>

 struct get_value

 : std::unary_function<T, typename T::value_type> // OK

 {};

Since an explicit (full) specialization is not a template declaration, the following is not currently allowed, though core language issue #183

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

argues in favor of allowing it in future revisions of the standard.
[3]

[3] See http://www.open-std.org/jtcl/sc22/wg21/docs/cwg_defects.html#183.

 template <class T> struct vector;

 template <class T> struct vector_iterator

 : mpl::identity<T> {};

 template <>

 struct vector<void*>

 {

 typedef typename // error
 vector_iterator<void*>::type iterator;

 };

B.2.1.4 Miscellaneous Notes

The C++ standard (section 14.6.1) allows us to use a class template's own name without arguments as a synonym for the

specialization being instantiated, which means we can use a template's name to qualify members of dependent bases. For

instance, instead of:

 template <class T> class base;

 template <class T>

 struct derived

 : base<typename whatever<T>::type> // repeated below

 {

 typedef base<typename whatever<T>::type> base_;

 typedef typename base_::value_type value_type;

 };

we can simply write:

 template <class T> struct base;

 template <class T>

 struct derived

 : base<typename whatever<T>::type> // not repeated

 {

 typedef typename derived::value_type value_type;

 };

with the acceptance of core language issue #11,
[4]

[4] See http://www.open-std.org/jtcl/sc22/wg21/docs/cwg_defects.html#11.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.open-std.org/jtcl/sc22/wg21/docs/cwg_defects.html#183
http://www.open-std.org/jtcl/sc22/wg21/docs/cwg_defects.html#11

 template class T> struct base;

 template <class T>

 struct derived

 : base<T>

 {

 using typename base<T>::value_type;
 };

is equivalent to

 template <class T> struct base;

 template <class T>

 struct derived

 : base<T>

 {

 typedef typename base<T>::value_type value_type;
 };

core language issue #180 clarifies that typename is not allowed in friend declarations,
[5]

 e.g.:

[5] See http://www.open-std.org/jtcl/sc22/wg21/docs/cwg_defects.html#180.

 template <class T>

 class X

 {

 friend class typename T::nested; // error
 };

B.2.2 template

The relevant standardese comes from section 14.2 [temp.names] of the C++ standard, in paragraph 4:

When the name of a member template specialization appears after . or -> in a postfix-expression, or after

nested-name-specifier in a qualified-id, and the postfix-expression or qualified-id explicitly depends on a

template-parameter (14.6.2), the member template name must be prefixed by the keyword template. Otherwise the

name is assumed to name a nontemplate.

and paragraph 5:

If a name prefixed by the keyword template is not the name of a member template, the program is ill-formed. [Note:

the keyword template may not be applied to nontemplate members of class templates.]

Core language issue #30 adds:
[6]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.open-std.org/jtcl/sc22/wg21/docs/cwg_defects.html#180

[6] See http://www.open-std.org/jtcl/sc22/wg21/docs/cwg_defects.html#30.

Furthermore, names of member templates shall not be prefixed by the keyword template if the postfix-expression or

qualified-id does not appear in the scope of a template. [Note: just as is the case with the typename prefix, the

template prefix is allowed in cases where it is not strictly necessary; i.e., when the expression on the left of the -> or .,

or the nested-name-specifier is not dependent on a template-parameter.]

B.2.2.1 template Required

The template keyword is required before dependent names accessing member templates via ., ->, or :: qualification. In the following

example, convert and base depend on T.

 template <class T> void f(T& x, T* y)

 {

 int n = x.template convert<int>();

 int m = y->template convert<int>();

 }

 template <class T> struct other;

 template <class T>

 struct derived

 : other <T>::template base<int>

 {};

Note that, unlike the typename keyword, template is required even on class template names that denote base classes.

B.2.2.2 template Allowed (But Not Required)

As long as it actually precedes a member template id, template is optional anywhere in a template. For instance:

 template <class T>

 struct other

 {

 template <class T> struct base;

 };

 template <class T>

 struct derived1

 : other<int>::base<T> // OK

 {};

 template <class T>

 struct derived2

 : other <int>::template base<T> // also OK

 {};

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.open-std.org/jtcl/sc22/wg21/docs/cwg_defects.html#30

B.2.2.3 template Forbidden

The template keyword is forbidden anywhere outside a template, including explicit (full) template specializations (as per core language

issue #30 cited earlier):

 template <> struct derived<int>

 : other<int>::template base<int> // error
 {};

template is also forbidden in using-declarations:

 template <class T>

 struct derived

 : base<T>

 {

 using base<T>::template apply; // error
 };

This ban was clarified by core language issue #109 as Not a Defect (NAD).
[7]

[7] See http://www.open-std.org/jtcl/sc22/wg21/docs/cwg_closed.html#109.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.open-std.org/jtcl/sc22/wg21/docs/cwg_closed.html#109

Appendix C. Compile-Time Performance

Interpretation of template metaprograms is inherently inefficient. When a class template is instantiated, a C++ compiler must meet all the

standard's requirements, including matching against partial specializations, building an internal representation of the class, and recording

the specialization in the template's namespace. It may also have to meet requirements imposed by its own design or that of the

environment, such as generating mangled symbol names for the linker or recording information for the debugger. None of these activities

are directly related to the metaprogram's intended computation.

This inefficiency manifests itself in the time it takes for a program to compile and in the resources used by the compiler. Extensive use of

metaprogramming without understanding its costs will magnify these effects. Because your metaprograms will typically be used by other

programmers who care more about a quick compile/edit/debug cycle than how your library is implemented, they're not likely to be

understanding if compilation gets very slow or stops because resource limits have been exceeded.

Fortunately, problems are not inevitable, and can be avoided if you know how to keep the situation under control. Appendix C gives you

the tools to analyze and manage metaprogram efficiency.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

C.1. The Computational Model

Can we really say anything useful about a program's compile time costs without examining the implementation of every compiler?

Using the standard techniques for analyzing runtime complexity, we can.
[1]

 When we describe the complexity of runtime programs, we

count the number of primitive operations they execute on an abstract machine. An abstract machine is a model of the actual hardware

that hides such issues as instruction cycle times, cache locality, and register usage. In the case of template metaprograms, the abstract

machine is a model of the compiler implementation that hides such issues as its internal data structures, symbol table lookup efficiency,

and the parsing algorithm.

[1] See http://en.wikipedia.org/wiki/Computational_complexity_theory.

We measure metaprogram complexity in terms of the number of template instantiations required. It's not an entirely arbitrary choice:

Compilation times tend to be correlated with the number of template instantiations performed. It's also not a perfect choice, but only by

sweeping aside factors that are sometimes relevant can we simplify the abstract machine enough to reason about its performance.

C.1.1 Memoization

Even if we ignore the other factors, thinking about complexity just in terms of template instantiations can be strange, since a particular

template specialization is only instantiated once in a translation unit:

 typedef foo<char>::type t1; // foo<char> instantiated here

 ...

 typedef foo<char>::type t2; // foo<char> is just looked up

Unlike the way regular function calls work, when a metafunction is called again with the same arguments, the compiler doesn't have to go

through the whole computation again. If you're familiar with the idea of "memoization," you can think of all metafunction results as being

memoized. At the first invocation, the instantiated class is stored in a lookup table indexed by the template's arguments. For subsequent

invocations with the same arguments, the compiler merely looks up the template instantiation in the table.

C.1.2 An Example

Consider the classic recursive Fibonacci function, with O(n
2
) complexity:

 unsigned fibonacci(unsigned n)

 {

 if (n < 2)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://en.wikipedia.org/wiki/Computational_complexity_theory

 return n;

 else

 return fibonacci(n - 1) + fibonacci(n - 2);

 }

Invoking fibonacci(3) might cause the following series of calls:

 fibonacci(3)

 fibonacci(2)

 fibonacci(1)

 fibonacci(0)

 fibonacci(1)

 fibonacci(2)

 fibonacci(1)

 fibonacci(0)

Now let's do a direct translation into templates:

 template<unsigned n, bool done = (n < 2)>

 struct fibonacci

 {

 static unsigned const value

 = fibonacci<n-1>::value + fibonacci<n-2>::value;

 };

 template<unsigned n>

 struct fibonacci<n,true>

 {

 static unsigned const value = n;

 };

In this case, fibonacci<3>::value might cause the following sequence of instantiations and lookups, where instantiations are shown in bold:

 fibonacci<3>

 fibonacci<2>

 fibonacci<1>

 fibonacci<0>
 fibonacci<1>

 fibonacci<2>

The complexity of the compile time fibonacci function is not O(n
2
), but O(n). That's true even if you count lookups: there is at most one

instantiation and one lookup per n.

C.1.3 What Are We Hiding?

What's being hidden by this way of describing the abstract machine? Without looking at the compiler's source code, we can't be sure. In

the interest of "full disclosure," we'll discuss the things we know are being swept under the rug.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

As we mentioned earlier, we're hiding implementation details of the compiler. In a moment we'll discuss some ways in which those details

can "leak" out of our abstraction and become observable. We're also glossing over a few details of metaprogram implementation. For

example, some associative sequences use function overload resolution to implement their lookup strategies.
[2]

 Overload resolution can

have a nontrivial cost in the compiler, but we're not considering it.

[2] There's no runtime execution involved; the function call is wrapped in sizeof or typeof as described in Chapter 9.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

C.2. Managing Compilation Time

The first and most important thing you can do to improve your metaprograms' execution (compilation) time is to reduce their computational

complexity. Use an mpl::vector if you need access to arbitrary elements, because each such access will be O(1) instead of O(N), as it

would be with an mpl::list. Don't search linearly for an element in a sequence when you could use mpl::lower_bound, and so forth. There is

no substitute for picking the right algorithms and data structures.

Unfortunately, most compilers weren't designed with template metaprogramming in mind, and many use an inferior implementation

strategy. For example, an ideal compiler would store all memoized template specializations in a hash table for O(1) lookups. However, as

of this writing most implementations use one linked list to store all instantiations of a particular class template. Thus, lookups are

technically linear in the number of instantiations of that template that have come before. Usually, this O(N) effect is swamped by the cost of

instantiation, but as we shall see, it can be observed.

We happen to know this implementation detail of the compilers we've tested, but there are many more individual quirks of specific

compilers that we don't know about. By using special-purpose test programs, we can get an idea of the real-world effects of our

metaprogram design choices, and which compilers to use when metaprogram speed matters. In this appendix we'll discuss the empirical

results of these black-box tests, and we'll reveal some techniques you can use to avoid the trouble spots we've found.

Note that complete details of the tests we describe here can be found on this book's companion CD.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

C.3. The Tests

C.3.1 Effectiveness of Memoization

Are template instantiations really being memoized? If they are, how much does memoization save? To find out, we can make some minor

changes to the fibonacci template:
[3]

[3] The code shown here is a slight simplification of the actual code used to generate the graphs; refer to this book's

companion CD for details.

 template<unsigned n, unsigned m = n, bool done = (n < 2)>

 struct fibonacci

 {

 static unsigned const v1

 = fibonacci<n-1,m-1>::value;

 static unsigned const value

 = v1 + fibonacci<n-2,m-STEP>::value;

 };

 template<unsigned n, unsigned m>

 struct fibonacci<n,m,true>

 {

 static unsigned const value = n;

 };

When STEP == 2, invoking fibonacci<N> causes the same number of template instantiations as ever. With STEP == 1, though, we ensure

that the computation of fibonacci<N-2,...>::value never invokes fibonacci with an argument set that's been used before. The new

parameter, m, provides an "additional dimension" for fibonacci specializations, which we exploit to escape memoization.

By subtracting the time it takes to compute fibonacci<N>::value with STEP == 2 from the time it takes with STEP == 1, we can see the

savings provided by memoization for increasing values of N (see Figure C.1).

Figure C.1. Performance Savings Due to Memoization

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The difference in cost between the two computations rises as N
3
 for all compilers tested, so memoization is indeed a big win.

C.3.2 Cost of Memoized Lookups

What's the cost of looking up a previously mentioned template specialization? To measure that, we can use yet another variation on the

Fibonacci test:

 template<unsigned n, bool done = (n < 2)>

 struct lookup

 {

 static unsigned const v1

 = lookup<n-1>::value;

 static unsigned const value = v1

 #ifndef BASELINE // do memoized lookup

 + lookup<((n%2) ? 0 : n-2)>::value

 #endif

 ;

 };

 template<unsigned n>

 struct lookup<n,true>

 {

 static unsigned const value = n;

 };

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The difference between the costs of computing lookup<N>::value with and without BASELINE defined shows the cost of a memoized

lookup when N specializations of the template have already been mentioned. Note that this isn't a Fibonacci computation anymore, though

it follows the same instantiation/lookup pattern. We're choosing lookup<0> instead of lookup<n-2> for the memoized lookup half the time,

because specializations tend to be stored in linked lists.

A compiler that starts looking from the end where the most recently mentioned specializations are stored will always have an advantage

with a strict Fibonacci computation. Figure C.2 shows the results.

Figure C.2. Cost of Lookups versus Specializations of a Given Template

The first thing to notice is that the numbers are relatively small for all compilers. The time is bounded by that of Microsoft Visual C++ 7.1,

which goes as N
2
—just what you'd expect if all specializations of a given template were stored in a single linked list. We have no

explanation for the erratic performance of Metrowerks' lookups, but we can say that it is at least averaging somewhere near zero cost per

memoized lookup.

C.3.3 Mentioning a Specialization

Once a trivial class template specialization has been mentioned, instantiating it seems to have no cost. For instance:

 template <class T> struct trivial { typedef T type; };

 typedef mpl::vector<trivial<int> > v; // just a "mention"

 trivial<int>::type x; // cost-free instantiation

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This result may surprise you, considering that we are measuring efficiency in terms of template instantiations—it certainly surprised us at

first—but we think we now understand the reasons for it.

As you know, trivial<int> is a perfectly legitimate type even before it is instantiated. Compilers need some unique identifier for that type so

that, for example, they can recognize that two occurrences of mpl::vector<trivial<int> > are also the same type. They could identify

trivial<int> by its human-readable name, but as types get more complicated, matching long names becomes more costly. We believe that

most C++ compilers allocate a "memoization record" at the first mention of a template specialization, and leave it in an "empty" state until

the moment the specialization is instantiated. The address of a specialization's memoization record can then be used as a unique identifier.

The simpler a class template's definition, the closer its memoization record's "empty" and "full" states are to one another, and the less time

is taken by instantiation.

You may be asking yourself whether it really makes sense to measure metaprogram efficiency by counting template instantiations, if some

instantiations are effectively instantaneous. The answer is yes; it does. Because there is no looping, a metafunction's implementation can

only directly mention a constant number of template specializations. What you see is what you get—that is, until the metafunction

instantiates one of those templates it mentions. Thus, each metafunction invocation can only directly create a constant number of new

memoization records. The only way to "escape" this constant-factor limitation is for the metafunction to instantiate another template.

The graph in Figure C.3 shows the cost of simply mentioning, but not instantiating, N distinct specializations of the same template. As you

can see, there's quite a spread. The complexity for Comeau and both GCCs is O(N
3
).

Figure C.3. Cost of Mentioning N Specializations of the Same Template

By eliminating the O(N
3
) curves from the graph, (see Figure C.4), we can see that the cost of mentioning N specializations of the same

template on the other compilers is O(N
2
).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure C.4. Cost of Mentioning N Specializations of the Same Template

C.3.4 Nested Template Instantiations

Nested template instantiations are the bread-and-butter of compile time programming. Even if you can avoid seeing the recursion by using

MPL's algorithms, it's there under the covers. To test the effect of doing recursive template instantiations, we compiled this simple program

for increasing values of N:

 template< int i, int test > struct deep

 : deep<i-1,test>

 {};

 template< int test> struct deep<0,test>

 {

 enum { value = 0 };

 };

template< int n > struct test

 {

 enum { value = deep<N,n>::value };

 };

 int main()

 {

 return test<0>::value + test<1>::value + test<2>::value

 + test<3>::value + test<4>::value + test<5>::value

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 + test<6>::value + test<7>::value + test<8>::value

 + test<9>::value;

 }

As you can see in Figure C.5, for low values of N, all the compilers behave similarly, but when N reaches 100 or so, the EDG-based

compilers begin to spend seconds more, and somewhere around 200 their compilation times simply "explode."

Figure C.5. Time versus Nesting Depth

If we remove the EDG-based compilers from the graph (see Figure C.6), we can see the behavior of the others, all of which exhibit O(N
2
)

complexity.

Figure C.6. Time versus Nesting Depth

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

C.3.4.1 Nested Instantiations Without Forwarding

The following version of the deep template, which restates its ::value at each level rather than inheriting it, reveals that the explosion is

triggered by deeply nested metafunction forwarding:

 template< int i, int test > struct deep

 {

 enum { value = deep<i-1,test>::value }; // no forwarding

 };

 template< int test> struct deep<0,test>

 {

 enum { value = 0 };

 };

As you can see in Figure C.7, EDG's pathological behavior is gone; its times are clustered with most of the other compilers. GNU C++

(GCC) 3.3 also improved its performance somewhat, but its big-O behavior didn't change. It is still O(N
2
) like the rest.

Figure C.7. Time versus Nesting Depth (Without Forwarding)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Metafunction forwarding is so valuable for simplifying programs that we're reluctant to recommend against it, even for EDG users. As far as

we know, we've never hit "the EDG wall" in real code;
[4]

 in fact, we only discovered it by writing test cases for this book. That said, if you

find your metaprogram is slower to execute on EDG-based compilers than on others, you might want to review it for cases of deep

forwarding.

[4] We have occasionally seen metaprograms which an EDG-based compiler was slow to compile, but we didn't know

about the deep forwarding effect at the time, and the behavior didn't seem to be quite as drastic as our graphs

indicate for deep forwarding.

C.3.4.2 Using Recursion Unrolling to Limit Nesting Depth

Even O(N
2
) behavior is really unattractive for what should be an O(N) operation. While we can't go in and fix the compiler implementation,

we can reduce the depth of nested instantiations. Since the time goes as the square of the depth, a factor of two reduction in depth is worth

a factor of four in time, and a factor of four reduction in depth will make a recursive metafunction sixteen times as fast, and so on.

Furthermore, when a compiler has a pathological behavior like the "EDG wall," or simply a hardcoded depth limit (as some do), reducing

the depth can make the difference between throwing in the towel and having a productive day at the office.

Consider this implementation of the guts of mpl::find:

 namespace boost { namespace mpl {

 template <class First, class Last, class T>

 struct find_impl;

 // find_impl on the tail of the sequence

 template <class First, class Last, class T>

 struct find_impl_tail

 : find_impl<

 typename next<First>::type

 , Last

 , T

 >

 {};

 // true if First points at T

 template <class First, class T>

 struct deref_is_same

 : is_same<typename deref<First>::type,T>

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 {};

 template <class First, class Last, class T>

 struct find_impl

 : eval_if<

 deref_is_same<First,T> // found?

 , identity<First>

 , find_impl_tail<First,Last,T> // search on the tail

 >

 {};

 // terminating case

 template <class Last, class T>

 struct find_impl<Last, Last, T>

 {

 typedef typename Last type;

 };

 }}

Right now, find_impl incurs one level of recursion for each element of the sequence it traverses. Now let's rewrite it using recursion

unrolling:

 // a single step of the find algorithm

 template <

 class First, class Last, class T

 , class EvalIfUnmatched = next<First>

 >

 struct find_step

 : eval_if<

 or_<

 is_same<First,Last> // sequence empty

 , deref_is_same<First,T> // or T is found

 >

 , identity<First>

 , EvalIfUnmatched

 >

 {};

 template <class First, class Last, class T>

 struct find_impl

 {

 typedef typename find_step<First,Last,T>::type step1;

 typedef typename find_step<step1,Last,T>::type step2;

 typedef typename find_step<step2,Last,T>::type step3;

 typedef typename find_step<

 step3,Last,T, find_impl_tail<step3,Last,T>

 >::type type;

 };

Now each invocation of find_impl does up to four steps of the algorithm, reducing instantiation depth by a factor of four. When the

sequence being searched supports random access, it's possible to make this idiom even more efficient by specializing the algorithm for

lengths less than the unrolling factor, thereby avoiding iterator identity checks at each step. The MPL's algorithms use these techniques

whenever appropriate to the target compiler.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

C.3.5 Number of Partial Specializations

The graph in Figure C.8 shows the effect of increasing numbers of partial specializations on the time it takes to instantiate a class template.

Figure C.8. Instantiation Time versus Number of Partial Specializations

Comeau C++ is omitted from this graph because it was pathologically slow, even at N == 0, for reasons seemingly unrelated to partial

specialization. Most other compilers show some effect, but such a small one that you can safely ignore it.

C.3.6 Long Symbols

Symbol name length seems to have no effect on compilation time.
[5]

 For example, all other things being equal, instantiating either of these

two templates incurs the same cost:

[5] It's worth noting that we didn't test the effects of long function names, which may have an entirely different impact,

because the compiler usually has to mangle them for use by the linker.

 wee<int>

 a_ridiculously_loooooooooooooooooong_class_template_name<int>

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Also, passing long symbol names to templates has no measurable effect on compilation time, so these two are equally expensive to

instantiate:

 mpl::vector<a_ridiculously_loooooooooooooooooong_class_name>

 mpl::vector<int>

C.3.7 Structural Complexity of Metafunction Arguments

We considered three ways of describing the complexity of template specializations that might be passed as metafunction arguments.

Its arity (number of template parameters)1.

Its number of "nodes"2.

Its nesting depth3.

For instance, mpl::vector30 has arity 30, and we're interested in the cost of passing templates with high arities to a metafunction. For

another example, if you think of every unique template specialization as being a "node," the following "list" type has four nodes and a depth

of four:

 node<int, node<long, node<char, node<void, void> > > >

while this "DAG" type has four nodes and a depth of three:

 // 1 2 3 <== Depths Nodes

 node< // #1

 node< // #2

 node<void,void> // #3

 , node<int,void> // #4

 >

 , node<void, void> // #3 again

 >

C.3.7.1 Structural Complexity Tests

We measured the cost of passing various kinds of complex structures through a chain of recursive metafunction invocations, over and

above the cost of passing a simple type like int. As you can see in Figure C.9, there is no cost associated with argument arity except on

GCC and Comeau, where the cost rises linearly with N.
[6]

[6] Microsoft Visual C++ 7.1 seems to have a hardcoded limit of 63 template parameters. Compilation fails thereafter

with "fatal error C1111: too many template parameters."

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Figure C.9. Recursive Instantiation Time versus Argument Arity

We then passed a balanced binary tree of N unique nodes (and depth log2N). The results in Figure C.10 show quite a spread: Comeau

takes O(N
2
) time, the GCCs are linear with the modern version doing much worse than 2.95.3, and the rest show no cost at all.

[7]

[7] In fact, GCC 2.95.3 may be exhibiting some O(N2) behavior here but the coefficient is so low that it's hard to be

sure.

Figure C.10. Recursive Instantiation Time versus Number of Argument Tree Nodes

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Finally, passing a list of N unique nodes with depth N yielded the graph shown in Figure C.11.

Figure C.11. Recursive Instantiation Time versus Argument Nesting Depth

This change may have improved the results for GCC slightly, which we're at a loss to explain. The others, except for Comeau, didn't

change at all. Comeau's results got noticeably worse, so clearly it responds not only to the number of nodes but also nesting depth. That

said, there are no changes in big-O complexity here for any of the compilers.

C.3.7.2 Using Sequence Derivation to Limit Structural Complexity

Sequence derivation, as described in Chapter 5, is a powerful weapon in the fight against the effects of argument complexity on compilation

time, especially for vector-like sequences. In large part this is due to the structure of their iterators. Recall the declaration of tiny_iterator:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 template <class Tiny, class Pos>

 struct tiny_iterator;

A tiny_iterator specialization mentions the entire name of the sequence it traverses as a template argument. If we extrapolate to sequences

with greater capacity, it's easy to see that:

 mpl::vector_iterator<my_vector, mpl::int_<3> >

may be faster to manipulate than:

 mpl::vector_iterator<mpl::vector30<int,..., Foo>, mpl::int_<3> >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Appendix D. MPL Portability Summary

Most reasonably conforming compilers "just work" with the MPL. We haven't tested every compiler in existence, but Table D.1 lists a few

that are known to work as described in the text without any special user intervention. Please keep in mind that this is not a complete list;

you can refer to this book's companion CD for more detailed portability reports.

Table D.1. Some Compilers Requiring No User Workarounds

Name Version

Comeau 4.3.3

GCC 3.2.2

GCC 3.3.1

GCC 3.4

Intel C++ 7.1

Intel C++ 8.0

Metrowerks CodeWarrior 8.3

Metrowerks CodeWarrior 9.2

Microsoft Visual C++ 7.1

The compilers listed in Table D.2 have incomplete support for templates, and so require some help from users, as shown in the last

column. See this book's companion CD for specific details of these workarounds.

Table D.2. Compilers That Require User Workarounds

Compiler Version Problematic Areas

Borland C++ 5.5.1 Lambda expressions, integral constant expressions

Borland C++ 5.6.4 Lambda expressions, integral constant expressions

GCC 2.95.3 Lambda expressions

Microsoft Visual C++ 6.0 sp5 Lambda expressions, ETI

Microsoft Visual C++ 7.0 Lambda expressions, ETI

Finally, the template machinery in a few compilers has so many problems that even with help from the user we're unable to make the MPL

work at all (see Table D.3). The fact that one version of a compiler appears in this list does not mean that future versions are also

unworkable—some vendors are working hard to correct the problems... and, as of this writing, some are not.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Table D.3. Compilers Known Not to Work with MPL

Name Version

HP aCC 03.55

Sun CC 5.6

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

CD-ROM Warranty

Pearson Technology Group warrants the enclosed CD to be free of defects in materials and faulty workmanship under normal use for a

period of ninety days after purchase (when purchased new). If a defect is discovered in the CD during this warranty period, a replacement

CD can be obtained at no charge by sending the defective CD, postage prepaid, with proof of purchase to:

Disc Exchange

Addison-Wesley Professional/Prentice Hall PTR

Pearson Technology Group

75 Arlington Street, Suite 300

Boston, MA 02116

Email:AWPro@aw.com

Pearson Technology Group makes no warranty or representation, either expressed or implied, with respect to this software, its quality,

performance, merchantability, or fitness for a particular purpose. In no event will Pearson Technology Group, its distributors, or dealers be

liable for direct, indirect, special, incidental, or consequential damages arising out of the use or inability to use the software. The exclusion

of implied warranties is not permitted in some states. Therefore, the above exclusion may not apply to you. This warranty provides you with

specific legal rights. There may be other rights that you may have that vary from state to state. The contents of this CD are intended for

personal use only.

More information and updates are available at:

www.awprofessional.com/

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mailto:AWPro@aw.com
http://www.awprofessional.com/

Bibliography

[Ale01] Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns Applied. ISBN: 0201704315, Boston, MA:

Addison-Wesley, 2001.

[AS01a] David Abrahams and Jeremy Seik. "Policy Adaptors and the Boost Iterator Adaptor Library," Second Workshop on C++ Template

Programming. October 2001. http://www.boost-consulting.com/writing/iterator_adaptos0.pdf.

[AS01b] David Abrahams and Jeremy Seik. "Boost Iterator Adaptor Library." November 2001.

http://www.boost-consulting.com/writing/iterator_adaptos0.pdf.

[Bent86] J.L. Bentley. "Programming pearls: Little languages." Communications of the ACM, 29(8):711-721, August 1986.

http://doi.acm.org/10.1145/6424.315691.

[BMMM98] William J. Brown, Raphael C. Malveau, Hays W. "Skip" McCormick, and Thomas J. Mowbray. AntiPatterns: Refactoring

Software, Architectures, and Projects in Crisis. ISBN: 0471197130, New York: Wiley, 1998.

[BN94] John J. Barton and Lee R. Nackman. Scientific and Engineering C++: An Introduction with Advanced Techniques and Examples.

ISBN: 0201533936, Reading, MA: Addison-Wesley, 1994.

[CDHM01] Steve Cleary, Beman Dawes, Howard Hinnant, and John Maddock. "Compressed Pair."

http://www.boost.org/libs/utility/compressed_pair.htm.

[Cop96] James O. Coplien. "A Curiosly Recurring Template Pattern." In Stanley B. Lippman, editor, C++ Gems, pp. 135–144, New York:

Cambridge University Press, 1996.

[Dew02] Steve Dewhurst, "A Bit-Wise Typeof Operator, Part 1," Computer User's Journal 20(8), August 2002.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.boost-consulting.com/writing/iterator_adaptos0.pdf
http://www.boost-consulting.com/writing/iterator_adaptos0.pdf
http://doi.acm.org/10.1145/6424.315691
http://www.boost.org/libs/utility/compressed_pair.htm

[Dew02] Steve Dewhurst, "A Bit-Wise Typeof Operator, Part 2," Computer User's Journal 20(10), October 2002.

[Dew02] Steve Dewhurst, "A Bit-Wise Typeof Operator, Part 3," Computer User's Journal 20(12), December 2002.

[Dimov02] Peter Dimov. "Boost: bind.hpp documentation." http://www.boost.org/libs/bind.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. ISBN: 0201633612, Reading, MA: Addison-Wesley, 1999.

[GotW50] Herb Sutter. "Guru of the Week #50: Using Standard Containers." http://www.gotw.ca/gotw/050.htm.

[Guz03] Joel de Guzman. "MAJOR BREAK-THROUGH !!! Yabadabadoo... Must Read :-)."

http://sf.net/mailarchive/forum.php?thread_id=529112&forum_id=1595.

[Guz04] Joel de Guzman, Hartmut Kaizer, et. al. "The Spirit Parser Framework." http://spirit.sf.net.

[Heer02] Jan Heering and Marjan Mernik. "Domain-Specific Languages for Software Engineering." Proceedings of the 35th Hawaii

International Conference on System Sciences–2002. http://www.computer.org/proceedings/hicss/1435/volume9/14350279.pdf.

[Hudak89] Paul Hudak. "Conception, evolution, and application of functional programming languages." ISSN:0360-0300, pp. 359–411,

ACM Computing Surveys 21, no. 3, New York: ACM Press, 1989. http://doi.acm.org/10.1145/72551.72554.

[IBM54] "Preliminary Report: Specifications for the IBM Mathematical FORmula TRANslation System FORTRAN." Programming Research

Group, Applied Science Division, IBM Corporation, November 10, 1954.

[ISO98] ANSI/ISO C++ Committee. Programming Languages — C++++. ISO/IEC 14882:1998(E). American National Standards Institute,

New York, 1998. http://webstore.ansi.org/ansidocstore/find.asp?find_spec=14882

[Joh79] Stephen C. Johnson. Yacc: Yet Another Compiler Compiler. UNIX Programmer's Manual, Vol. 2b, pp. 353–387, Holt, Reinhart, and

Winston, 1979.

[KM00] Andrew Koenig and Barbara E. Moo. Accelerated C++: Practical Programming by Example. ISBN: 020170353X, Boston, MA:

Addison-Wesley, 2000.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.boost.org/libs/bind
http://www.gotw.ca/gotw/050.htm
http://sf.net/mailarchive/forum.php?thread_id=529112&forum_id=1595
http://spirit.sf.net
http://www.computer.org/proceedings/hicss/1435/volume9/14350279.pdf
http://doi.acm.org/10.1145/72551.72554
http://webstore.ansi.org/ansidocstore/find.asp?find_spec=14882

[KV89] Thomas Keffer and Allan Vermeulen. Math.h++ Introduction and Reference Manual. Corvallis, Oregon: Rogue Wave Software,

1989.

[LaFre00] David Lafreniere. "State Machine Design in C++." C++ Report, May 2000.

http://www.cuj.com/documents/s=8039/cuj0005lafrenie/.

[Land01] Walter Landry. "Implementing a High Performance Tensor Library." Second Workshop on C++ Template Programming, 2001.

http://citeseer.nj.nec.com/landry01implementing.html.

[Mad00] John Maddock. "Static Assertions." http://www.boost.org/libs/static_assert.

[Mart98] Robert Martin. "UML Tutorial: Finite State Machines." C++ Report, June 1998.

http://www.objectmentor.com/resources/articles/umlfsm.pdf.

[MK04] Paul Mensonides and Vesa Karvonen. "The Boost Preprocessor Library." http://www.boost.org/libs/preprocessor.

[MS00a] Brian McNamara and Yannis Smaragdakis. "Static Intefaces in C++." First Workshop on C++ Template Programming, Erfurt,

Germany, October 10, 2000. http://oonumerics.org/tmpw00/.

[MS00b] Brian McNamara and Yannis Smaragdakis. "FC++." 2000–2003. http://www.cc.gatech.edu/~yannis/fc++.

[n1185] Herb Sutter. "vector<bool> Is Nonconforming, and Forces Optimization Choice." http://www.gotw.ca/publications/N1185.pdf.

[n1211] Herb Sutter. "vector<bool>: More Problems, Better Solutions." http://www.gotw.ca/publications/N1211.pdf.

[n1424] John Maddock. "A Proposal to Add Type Traits to the Standard Library."

http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1424.htm.

[n1519] John Maddock. "Type Traits Issue List." http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1519.htm.

[n1521] Gabriel dos Reis. "Generalized Constant Expressions." document number N1521-03-0104.

http://www.openstd.org/jctl/wg21/docs/papers/2003/nl1521.pdf.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.cuj.com/documents/s=8039/cuj0005lafrenie/
http://citeseer.nj.nec.com/landry01implementing.html
http://www.boost.org/libs/static_assert
http://www.objectmentor.com/resources/articles/umlfsm.pdf
http://www.boost.org/libs/preprocessor
http://oonumerics.org/tmpw00/
http://www.cc.gatech.edu/~yannis/fc++
http://www.gotw.ca/publications/N1185.pdf
http://www.gotw.ca/publications/N1211.pdf
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1424.htm
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1519.htm
http://www.openstd.org/jctl/wg21/docs/papers/2003/nl1521.pdf

[n1550] David Abrahams, Jeremy Siek, and Thomas Witt. "New Iterator Concepts."

http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1550.htm.

[Nas03] Alexander Nasonov. "Re: boost::tuple to MPL sequence." http://lists.boost.org/MailArchives/boost/msg46771.php.

[Sey96] John Seymour, Views—A C++ Standard Template Library Extension. http://www.zeta.org/au/~jon/STLviews/doc/views.html.

[SL00] Jeremy Siek and Andrew Lumsdaine. "Concept Checking: Binding Parametric Polymorphism in C++." First Workshop on C++

Template Programming, Erfurt, Germany, October 10, 2000. http://oonumerics.org/tmpw00/.

[SS75] Gerald Sussman and Guy L. Steele Jr. "Scheme: An interpreter for extended lambda calculus." MIT AI Memo 349, Massachusetts

Institute of Technology, May 1975.

[Strou03] Bjarne Stroustrup. The C++ Standard: Incorporating Technical Corrigendum No. 1. BS ISO/IEC 14882:2003. ISBN: 0470846747,

New York: Wiley, 2003.

[Unruh94] Erwin Unruh. "Prime number computation." ANSI X3J16-94-0075/ISO WG21-462. 1994.

[Veld95a] Todd Veldhuizen. "Blitz++." http://www.oonumerics.org/blitz/.

[Veld95b] Todd Veldhuizen. "Using C++ Template Metaprograms." C++ Report, SIGS Publications Inc., ISSN 1040-6042, Vol. 7, No. 4, pp.

36–43, May 1995.

[Veld04] Todd Veldhuizen. Active Libraries and Universal Languages. Doctoral Dissertation, Indiana University, Computer Science, 17

May 2004. http://www.cs.chalmers.se/~tvedhui/papers/2004/dissertation.pdf.

[VJ02] David Vandervoode and Nicolai M. Josuttis. C++ Templates: The Complete Guide. ISBN: 0201734842, Boston, MA:

Addison-Wesley, 2002.

[WP99] Martin Weiser and Gary Powell, The View Template Library. http://www.zib.de/weiser/vtl.

[WP00] Martin Weiser and Gary Powell, The View Template Library. First Workshop on C++ Template Programming, Erfurt, Germany,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1550.htm
http://lists.boost.org/MailArchives/boost/msg46771.php
http://www.zeta.org/au/~jon/STLviews/doc/views.html
http://oonumerics.org/tmpw00/
http://www.oonumerics.org/blitz/
http://www.cs.chalmers.se/~tvedhui/papers/2004/dissertation.pdf
http://www.zib.de/weiser/vtl

October 10, 2000.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Download more eBooks here: http://avaxhome.ws/blogs/ChrisRedfield

	C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost and Beyond
	Table of Contents
	Copyright
	The C++ In-Depth Series
	Titles in the Series

	Preface
	Acknowledgments
	Dave's Acknowledgments
	Aleksey's Acknowledgments

	Making the Most of This Book
	Supplementary Material
	Trying It Out

	Chapter 1. Introduction
	Section 1.1. Getting Started
	Section 1.2. So What's a Metaprogram?
	Section 1.3. Metaprogramming in the Host Language
	Section 1.4. Metaprogramming in C++
	Section 1.5. Why Metaprogramming?
	Section 1.6. When Metaprogramming?
	Section 1.7. Why a Metaprogramming Library?

	Chapter 2. Traits and Type Manipulation
	Section 2.1. Type Associations
	Section 2.2. Metafunctions
	Section 2.3. Numerical Metafunctions
	Section 2.4. Making Choices at Compile Time
	Section 2.5. A Brief Tour of the Boost Type Traits Library
	Section 2.6. Nullary Metafunctions
	Section 2.7. Metafunction Definition
	Section 2.8. History
	Section 2.9. Details
	Section 2.10. Exercises

	Chapter 3. A Deeper Look at Metafunctions
	Section 3.1. Dimensional Analysis
	Section 3.2. Higher-Order Metafunctions
	Section 3.3. Handling Placeholders
	Section 3.4. More Lambda Capabilities
	Section 3.5. Lambda Details
	Section 3.6. Details
	Section 3.7. Exercises

	Chapter 4. Integral Type Wrappers and Operations
	Section 4.1. Boolean Wrappers and Operations
	Section 4.2. Integer Wrappers and Operations
	Section 4.3. Exercises

	Chapter 5. Sequences and Iterators
	Section 5.1. Concepts
	Section 5.2. Sequences and Algorithms
	Section 5.3. Iterators
	Section 5.4. Iterator Concepts
	Section 5.5. Sequence Concepts
	Section 5.6. Sequence Equality
	Section 5.7. Intrinsic Sequence Operations
	Section 5.8. Sequence Classes
	Section 5.9. Integral Sequence Wrappers
	Section 5.10. Sequence Derivation
	Section 5.11. Writing Your Own Sequence
	Section 5.12. Details
	Section 5.13. Exercises

	Chapter 6. Algorithms
	Section 6.1. Algorithms, Idioms, Reuse, and Abstraction
	Section 6.2. Algorithms in the MPL
	Section 6.3. Inserters
	Section 6.4. Fundamental Sequence Algorithms
	Section 6.5. Querying Algorithms
	Section 6.6. Sequence Building Algorithms
	Section 6.7. Writing Your Own Algorithms
	Section 6.8. Details
	Section 6.9. Exercises

	Chapter 7. Views and Iterator Adaptors
	Section 7.1. A Few Examples
	Section 7.2. View Concept
	Section 7.3. Iterator Adaptors
	Section 7.4. Writing Your Own View
	Section 7.5. History
	Section 7.6. Exercises

	Chapter 8. Diagnostics
	Section 8.1. Debugging the Error Novel
	Section 8.2. Using Tools for Diagnostic Analysis
	Section 8.3. Intentional Diagnostic Generation
	Section 8.4. History
	Section 8.5. Details
	Section 8.6. Exercises

	Chapter 9. Crossing the Compile-Time/Runtime Boundary
	Section 9.1. for_each
	Section 9.2. Implementation Selection
	Section 9.3. Object Generators
	Section 9.4. Structure Selection
	Section 9.5. Class Composition
	Section 9.6. (Member) Function Pointers as Template Arguments
	Section 9.7. Type Erasure
	Section 9.8. The Curiously Recurring Template Pattern
	Section 9.9. Explicitly Managing the Overload Set
	Section 9.10. The
	Section 9.11. Summary
	Section 9.12. Exercises

	Chapter 10. Domain-Specific Embedded Languages
	Section 10.1. A Little Language ...
	Section 10.2. ... Goes a Long Way
	Section 10.3. DSLs, Inside Out
	Section 10.4. C++ as the Host Language
	Section 10.5. Blitz++ and Expression Templates
	Section 10.6. General-Purpose DSELs
	Section 10.7. The Boost Spirit Library
	Section 10.8. Summary
	Section 10.9. Exercises

	Chapter 11. A DSEL Design Walkthrough
	Section 11.1. Finite State Machines
	Section 11.2. Framework Design Goals
	Section 11.3. Framework Interface Basics
	Section 11.4. Choosing a DSL
	Section 11.5. Implementation
	Section 11.6. Analysis
	Section 11.7. Language Directions
	Section 11.8. Exercises

	Appendix A. An Introduction to Preprocessor Metaprogramming
	Section A.1. Motivation
	Section A.2. Fundamental Abstractions of the Preprocessor
	Section A.3. Preprocessor Library Structure
	Section A.4. Preprocessor Library Abstractions
	Section A.5. Exercise

	Appendix B. The typename and template Keywords
	Section B.1. The Issue
	Section B.2. The Rules

	Appendix C. Compile-Time Performance
	Section C.1. The Computational Model
	Section C.2. Managing Compilation Time
	Section C.3. The Tests

	Appendix D. MPL Portability Summary
	CD-ROM Warranty
	Bibliography

