
Buildroot

Buildroot

free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Latest update: August 2, 2016.

Document updates and sources:
http://free-electrons.com/doc/training/buildroot

Corrections, suggestions, contributions and translations are welcome!
Send them to feedback@free-electrons.com

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 1/332

http://free-electrons.com/doc/training/buildroot
mailto:feedback@free-electrons.com

Rights to copy

© Copyright 2004-2016, Free Electrons
License: Creative Commons Attribution - Share Alike 3.0
http://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free:

▶ to copy, distribute, display, and perform the work
▶ to make derivative works
▶ to make commercial use of the work

Under the following conditions:
▶ Attribution. You must give the original author credit.
▶ Share Alike. If you alter, transform, or build upon this work, you may distribute

the resulting work only under a license identical to this one.
▶ For any reuse or distribution, you must make clear to others the license terms of

this work.
▶ Any of these conditions can be waived if you get permission from the copyright

holder.

Your fair use and other rights are in no way affected by the above.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 2/332

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Hyperlinks in the document

There are many hyperlinks in the document
▶ Regular hyperlinks:

http://kernel.org/

▶ Kernel documentation links:
Documentation/kmemcheck.txt

▶ Links to kernel source files and directories:
drivers/input
include/linux/fb.h

▶ Links to the declarations, definitions and instances of kernel
symbols (functions, types, data, structures):
platform_get_irq()
GFP_KERNEL
struct file_operations

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 3/332

http://kernel.org/
http://free-electrons.com/kerneldoc/latest/kmemcheck.txt
http://lxr.free-electrons.com/source/drivers/input
http://lxr.free-electrons.com/source/include/linux/fb.h
http://lxr.free-electrons.com/ident?i=platform_get_irq
http://lxr.free-electrons.com/ident?i=GFP_KERNEL
http://lxr.free-electrons.com/ident?i=file_operations

Free Electrons at a glance

▶ Engineering company created in 2004
(not a training company!)

▶ Locations: Orange, Toulouse, Lyon (France)
▶ Serving customers all around the world
▶ Head count: 12

Only Free Software enthusiasts!
▶ Focus: Embedded Linux, Linux kernel, Android Free Software

/ Open Source for embedded and real-time systems.
▶ Activities: development, training, consulting, technical

support.
▶ Added value: get the best of the user and development

community and the resources it offers.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 4/332

Free Electrons on-line resources

▶ All our training materials:
http://free-electrons.com/docs/

▶ Technical blog:
http://free-electrons.com/blog/

▶ Quarterly newsletter:
http://lists.free-
electrons.com/mailman/listinfo/newsletter

▶ News and discussions (Google +):
https://plus.google.com/+FreeElectronsDevelopers

▶ News and discussions (LinkedIn):
http://linkedin.com/groups/Free-Electrons-4501089

▶ Quick news (Twitter):
http://twitter.com/free_electrons

▶ Linux Cross Reference - browse Linux kernel sources on-line:
http://lxr.free-electrons.com

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 5/332

http://free-electrons.com/docs/
http://free-electrons.com/blog/
http://lists.free-electrons.com/mailman/listinfo/newsletter
http://lists.free-electrons.com/mailman/listinfo/newsletter
https://plus.google.com/+FreeElectronsDevelopers
http://linkedin.com/groups/Free-Electrons-4501089
http://twitter.com/free_electrons
http://lxr.free-electrons.com

Generic course information

Generic course
information
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 6/332

Hardware used in this training session

BeagleBone Black, from CircuitCo
▶ Texas Instruments AM335x (ARM Cortex-A8)
▶ Powerful CPU, with 3D acceleration,

additional processors (PRUs) and lots of
peripherals.

▶ 512 MB of RAM
▶ 2 GB of on-board eMMC storage

(4 GB in Rev C)
▶ USB host and USB device ports
▶ microSD slot
▶ HDMI port
▶ 2 x 46 pins headers, with access to many

expansion buses (I2C, SPI, UART and more)
▶ A huge number of expansion boards, called

capes. See http://beagleboardtoys.com/.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 7/332

http://beagleboardtoys.com/

Do not damage your BeagleBone Black!

▶ Do not remove power abruptly:
▶ Boards components have been damaged by removing the

power or USB cable in an abrupt way, not leaving the PMIC
the time to switch off the components in a clean way. See
http://bit.ly/1FWHNZi

▶ Reboot (reboot) or shutdown (halt) the board in software
when Linux is running.

▶ You can also press the RESET button to reset and reboot.
▶ When there is no software way, you can also switch off the

board by pressing the POWER button for 8 seconds.
▶ Do not leave your board powered on a metallic surface (like a

laptop with a metal finish).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 8/332

http://bit.ly/1FWHNZi

Participate!

During the lectures...
▶ Don't hesitate to ask questions. Other people in the audience

may have similar questions too.
▶ This helps the trainer to detect any explanation that wasn't

clear or detailed enough.
▶ Don't hesitate to share your experience, for example to

compare Linux / Android with other operating systems used
in your company.

▶ Your point of view is most valuable, because it can be similar
to your colleagues' and different from the trainer's.

▶ Your participation can make our session more interactive and
make the topics easier to learn.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 9/332

Practical lab guidelines

During practical labs...
▶ We cannot support more than 8 workstations at once (each

with its board and equipment). Having more would make the
whole class progress slower, compromising the coverage of the
whole training agenda (exception for public sessions: up to 10
people).

▶ So, if you are more than 8 participants, please form up to 8
working groups.

▶ Open the electronic copy of your lecture materials, and use it
throughout the practical labs to find the slides you need again.

▶ Don't hesitate to copy and paste commands from the PDF
slides and labs.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 10/332

Advise: write down your commands!

During practical labs, write down all your commands in a text file.
▶ You can save a lot of time re-using

commands in later labs.
▶ This helps to replay your work if

you make significant mistakes.
▶ You build a reference to remember

commands in the long run.
▶ That's particular useful to keep

kernel command line settings that
you used earlier.

▶ Also useful to get help from the
instructor, showing the commands
that you run.

gedit ~/lab-history.txt

Booting kernel through tftp:
setenv bootargs console=ttyS0 root=/dev/nfs
setenv bootcmd tftp 0x21000000 zImage; tftp
0x22000000 dtb; bootz 0x21000000 - 0x2200...

Lab commands

Cross-compiling kernel:
export ARCH=arm
export CROSS_COMPILE=arm-linux-
make sama5_defconfig

Making ubifs images:
mkfs.ubifs -d rootfs -o root.ubifs -e 124KiB
-m 2048 -c 1024

Encountered issues:
Restart NFS server after editing /etc/exports!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 11/332

Cooperate!

As in the Free Software and Open Source community, cooperation
during practical labs is valuable in this training session:

▶ If you complete your labs before other people, don't hesitate
to help other people and investigate the issues they face. The
faster we progress as a group, the more time we have to
explore extra topics.

▶ Explain what you understood to other participants when
needed. It also helps to consolidate your knowledge.

▶ Don't hesitate to report potential bugs to your instructor.
▶ Don't hesitate to look for solutions on the Internet as well.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 12/332

Command memento sheet

▶ This memento sheet gives
command examples for the most
typical needs (looking for files,
extracting a tar archive...)

▶ It saves us 1 day of UNIX / Linux
command line training.

▶ Our best tip: in the command line
shell, always hit the Tab key to
complete command names and file
paths. This avoids 95% of typing
mistakes.

▶ Get an electronic copy on
http://free-electrons.com/
doc/training/embedded-
linux/command_memento.pdf

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 13/332

http://free-electrons.com/doc/training/embedded-linux/command_memento.pdf
http://free-electrons.com/doc/training/embedded-linux/command_memento.pdf
http://free-electrons.com/doc/training/embedded-linux/command_memento.pdf

vi basic commands

▶ The vi editor is very useful to
make quick changes to files in an
embedded target.

▶ Though not very user friendly at
first, vi is very powerful and its
main 15 commands are easy to
learn and are sufficient for 99% of
everyone's needs!

▶ Get an electronic copy on
http://free-electrons.com/
doc/training/embedded-
linux/vi_memento.pdf

▶ You can also take the quick tutorial
by running vimtutor. This is a
worthy investment!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 14/332

http://free-electrons.com/doc/training/embedded-linux/vi_memento.pdf
http://free-electrons.com/doc/training/embedded-linux/vi_memento.pdf
http://free-electrons.com/doc/training/embedded-linux/vi_memento.pdf

Practical lab - Training Setup

Prepare your lab environment
▶ Download and extract the lab

archive

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 15/332

Introduction to Embedded Linux

Introduction to
Embedded Linux
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 16/332

Simplified Linux system architecture

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 17/332

Overall Linux boot sequence

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 18/332

Embedded Linux work

▶ BSP work: porting the bootloader and Linux kernel,
developing Linux device drivers.

▶ system integration work: assembling all the user space
components needed for the system, configure them, develop
the upgrade and recovery mechanisms, etc.

▶ application development: write the company-specific
applications and libraries.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 19/332

Complexity of user space integration

ALL

toolchain busybox libgtk3 xapp_xkbcomp

xfont_font-aliasxfont_font-cursor-misc xfont_font-misc-misc

xserver_xorg-server

rootfs-tar

toolchain-buildroot

host-gcc-final

glibc

host-gawkhost-gcc-initiallinux-headers

host-automake

host-gettext

host-autoconf

host-libtool

host-m4

host-binutils

host-mpc

host-mpfr

host-gmp

atk

gdk-pixbuf

host-libgtk3 pango

xlib_libXcursor xlib_libXdamage xlib_libXi xlib_libXineramaxlib_libXrandr xlib_libxkbfile

libglib2

host-libglib2

libffi zlibhost-libffi

host-pkgconf

host-zlib

libpng

xlib_libX11

host-xproto_xproto

libxcb xlib_xtransxproto_inputproto xproto_kbprotoxproto_xextprotoxproto_xf86bigfontproto

host-libxslthost-xcb-protolibpthread-stubs xcb-proto xlib_libXauxlib_libXdmcp

host-libxml2host-python

host-expat

xproto_xproto xutil_util-macros

host-gdk-pixbuf

host-libpng

harfbuzz

xlib_libXftcairo

fontconfig

pixman

xlib_libXextxlib_libXrender

expat

freetype

xproto_renderproto

xlib_libXfixes

xproto_fixesproto

xproto_damageproto xproto_xineramaprotoxproto_randrproto

host-xapp_bdftopcfhost-xapp_mkfontdir host-xfont_font-util xfont_font-util

host-xlib_libXfont

host-xfont_encodingshost-xlib_xtrans host-xproto_fontsproto

host-xapp_mkfontscale

host-xutil_util-macros

host-freetype host-xlib_libfontenc

libsha1

mcookie xdata_xbitmaps xkeyboard-config

xlib_libXfont

xlib_libXres xlib_libXxf86vm xproto_bigreqsproto xproto_compositeproto xproto_glproto

xproto_presentproto

xproto_videoprotoxproto_xcmiscproto xproto_xf86dgaproto

host-intltool

host-xapp_xkbcomp

host-libxml-parser-perl

host-xlib_libxkbfile

host-xlib_libX11

host-libxcb host-xproto_inputproto host-xproto_kbproto host-xproto_xextprotohost-xproto_xf86bigfontproto

host-libpthread-stubs

host-xlib_libXau host-xlib_libXdmcp

xfont_encodings

xlib_libfontenc

xproto_fontsproto

xproto_resourceproto xproto_xf86vidmodeproto

host-fakeroot host-makedevs

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 20/332

System integration: several possibilities

Pros Cons
Building everything manually Full flexibility

Learning experience
Dependency hell
Need to understand a lot of details
Version compatibility
Lack of reproducibility

Binary distribution
Debian, Ubuntu, Fedora, etc.

Easy to create and extend Hard to customize
Hard to optimize (boot time, size)
Hard to rebuild the full system
from source
Large system
Uses native compilation (slow)
No well-defined mechanism to gen-
erate an image
Lots of mandatory dependencies
Not available for all architectures

Build systems
Buildroot, Yocto, PTXdist, etc.

Nearly full flexibility
Built from source: customization
and optimization are easy
Fully reproducible
Uses cross-compilation
Have embedded specific packages
not necessarily in desktop distros
Make more features optional

Not as easy as a binary distribution
Build time

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 21/332

Embedded Linux build system: principle

▶ Building from source → lot of flexibility
▶ Cross-compilation → leveraging fast build machines
▶ Recipes for building components → easy

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 22/332

Embedded Linux build system: tools

▶ A wide range of solutions: Yocto/OpenEmbedded, PTXdist,
Buildroot, LTIB, OpenBricks, OpenWRT, and more.

▶ Today, two solutions are emerging as the most popular ones
▶ Yocto/OpenEmbedded

Builds a complete Linux distribution with binary packages.
Powerful, but somewhat complex, and quite steep learning
curve.

▶ Buildroot
Builds a root filesystem image, no binary packages. Much
simpler to use, understand and modify.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 23/332

Introduction to Buildroot

Introduction to
Buildroot
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 24/332

Buildroot at a glance

▶ Can build a toolchain, a rootfs, a kernel, a bootloader
▶ Easy to configure: menuconfig, xconfig, etc.
▶ Fast: builds a simple root filesystem in a few minutes
▶ Easy to understand: written in make, extensive documentation
▶ Small root filesystem, starting at 2 MB
▶ 1800+ packages for user space libraries/apps available
▶ Many architectures supported
▶ Well-known technologies: make and kconfig
▶ Vendor neutral
▶ Active community, regular releases

▶ The present slides cover Buildroot 2016.05. There may be
some differences if you use older or newer Buildroot versions.

▶ http://buildroot.org

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 25/332

http://buildroot.org

Buildroot design goals

▶ Buildroot is designed with a few key goals:
▶ Simple to use
▶ Simple to customize
▶ Reproducible builds
▶ Small root filesystem
▶ Relatively fast boot
▶ Easy to understand

▶ Some of these goals require to not necessarily support all
possible features

▶ They are some more complicated and featureful build systems
available (Yocto Project, OpenEmbedded)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 26/332

Who's using Buildroot?

▶ System makers
▶ Google
▶ Barco
▶ Rockwell Collins

▶ Processor vendors
▶ Imagination Technologies
▶ Marvell
▶ Atmel
▶ Analog Devices

▶ Many companies when doing R&D
on products

▶ Many, many hobbyists on
development boards: Raspberry Pi,
BeagleBone Black, etc.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 27/332

Getting Buildroot

▶ Stable Buildroot releases are published every three months.
▶ Tarballs are available for each stable release

▶ http://buildroot.org/downloads/

▶ However, it is generally more convenient to clone the Git
repository

▶ Allows to clearly identify the changes you make to the
Buildroot source code

▶ Simplifies the upstreaming of the Buildroot changes
▶ git clone git://git.busybox.net/buildroot
▶ Git tags available for every stable release.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 28/332

http://buildroot.org/downloads/

Using Buildroot

▶ Implemented in make
▶ With a few helper shell scripts

▶ All interaction happens by calling make in the main Buildroot
sources directory.

.

.
$ cd buildroot/
$ make help

▶ No need to run as root, Buildroot is designed to be executed
with normal user privileges.

▶ Running as root is even strongly discouraged!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 29/332

Configuring Buildroot

▶ Like the Linux kernel, uses Kconfig
▶ A choice of configuration interfaces:

▶ make menuconfig
▶ make nconfig
▶ make xconfig
▶ make gconfig

▶ Make sure to install the relevant libraries in your system
(ncurses for menuconfig/nconfig, Qt for xconfig, Gtk for
gconfig)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 30/332

Main menuconfig menu

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 31/332

Running the build

▶ As simple as:
.
.$ make

▶ Often useful to keep a log of the build output, for analysis or
investigation:

.

.$ make 2>&1 | tee build.log

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 32/332

Build results

▶ The build results are located in output/images
▶ Depending on the configuration, this directory will contain:

▶ One or several root filesystem images, in various formats
▶ One kernel image, possibly one or several Device Tree blobs
▶ One or several bootloader images

▶ There is no standard way to install the images on any given
device

▶ Those steps are very device specific
▶ Buildroot provides some tools to generate SD card / USB key

images (genimage) or directly to flash or boot specific
platforms: SAM-BA for Atmel, imx-usb-loader for i.MX6,
OpenOCD, etc.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 33/332

Practical lab - Basic Buildroot usage

▶ Get Buildroot
▶ Configure a minimal system with

Buildroot for the BeagleBone Black
▶ Do the build
▶ Prepare the BeagleBone Black for

usage
▶ Flash and test the generated

system

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 34/332

Managing the build and the configuration

Managing the
build and the
configuration
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 35/332

Default build organization

▶ All the build output goes into a directory called output/
within the top-level Buildroot source directory.

▶ O = output

▶ The configuration file is stored as .config in the top-level
Buildroot source directory.

▶ CONFIG_DIR = $(TOPDIR)
▶ TOPDIR = $(shell pwd)

▶ buildroot/
▶ .config
▶ arch/
▶ package/
▶ output/
▶ fs/
▶ ...

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 36/332

Out of tree build: introduction

▶ Out of tree build allows to use an output directory different
than output/

▶ Useful to build different Buildroot configurations from the
same source tree.

▶ Customization of the output directory done by passing
O=/path/to/directory on the command line.

▶ Configuration file stored inside the $(O) directory, as opposed
to inside the Buildroot sources for the in-tree build case.

▶ project/
▶ buildroot/, Buildroot sources
▶ foo-output/, output of a first project

▶ .config

▶ bar-output/, output of a second project
▶ .config

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 37/332

Out of tree build: using

▶ To start an out of tree build, two solutions:
▶ From the Buildroot source tree, simplify specify a O= variable:

.

.make O=../foo-output/ menuconfig

▶ From an empty output directory, specify O= and the path to
the Buildroot source tree:

.

.make -C ../buildroot/ O=$(pwd) menuconfig

▶ Once one out of tree operation has been done (menuconfig,
loading a defconfig, etc.), Buildroot creates a small wrapper
Makefile in the output directory.

▶ This wrapper Makefile then avoids the need to pass O= and
the path to the Buildroot source tree.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 38/332

Out of tree build: example

1. You are in your Buildroot source tree:
.

.
$ ls
arch board boot ... Makefile ... package ...

2. Create a new output directory, and move to it:
.

.
$ mkdir ../foobar-output
$ cd ../foobar-output

3. Start a new Buildroot configuration:
.
.$ make -C ../buildroot O=$(pwd) menuconfig

4. Start the build (passing O= and -C no longer needed thanks to the
wrapper):

.

.$ make

5. Adjust the configuration again, restart the build, clean the build:
.

.

$ make menuconfig
$ make
$ make clean

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 39/332

Full config file vs. defconfig

▶ The .config file is a full config file: it contains the value for
all options (except those having unmet dependencies)

▶ The default .config, without any customization, has 3112
lines (as of Buildroot 2016.05)

▶ Not very practical for reading and modifying by humans.
▶ A defconfig stores only the values for options for which the

non-default value is chosen.
▶ Much easier to read
▶ Can be modified by humans
▶ Can be used for automated construction of configurations

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 40/332

defconfig: example

▶ For the default Buildroot configuration, the defconfig is
empty: everything is the default.

▶ If you change the architecture to be ARM, the defconfig is
just one line:

.

.BR2_arm=y
▶ If then you also enable the stress package, the defconfig will

be just two lines:
.

.
BR2_arm=y
BR2_PACKAGE_STRESS=y

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 41/332

Using and creating a defconfig

▶ To use a defconfig, copying it to .config is not sufficient as
all the missing (default) options need to be expanded.

▶ Buildroot allows to load defconfig stored in the configs/
directory, by doing: make <foo>_defconfig

▶ It overwrites the current .config, if any
▶ To create a defconfig, run:

make savedefconfig
▶ Saved in the file pointed by the BR2_DEFCONFIG configuration

option
▶ By default, points to defconfig in the current directory if the

configuration was started from scratch, or points to the original
defconfig if the configuration was loaded from a defconfig.

▶ Move it to configs/ to make it easily loadable with
make <foo>_defconfig.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 42/332

Existing defconfigs

▶ Buildroot comes with a number of existing defconfigs for
various publicly available hardware platforms:

▶ RaspberryPi, BeagleBone Black, CubieBoard, Atmel evaluation
boards, Minnowboard, various i.MX6 boards

▶ QEMU emulated platforms
▶ List them using make list-defconfigs

▶ Minimal defconfigs: only build a toolchain, bootloader, kernel
and minimal root filesystem.

.

.
$ make qemu_arm_vexpress_defconfig
$ make

▶ Additional instructions often available in board/<boardname>,
e.g.: board/qemu/arm-vexpess/readme.txt.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 43/332

Assembling a defconfig (1/2)

▶ defconfigs are trivial text files, one can use simple
concatenation to assemble them from fragments.

.platform1.frag..

.

BR2_arm=y
BR2_TOOLCHAIN_BUILDROOT_WCHAR=y
BR2_GCC_VERSION_4_9_X=y

.platform2.frag..

.

BR2_mipsel=y
BR2_TOOLCHAIN_EXTERNAL=y
BR2_TOOLCHAIN_EXTERNAL_CODESOURCERY_MIPS=y

.packages.frag..

.

BR2_PACKAGE_STRESS=y
BR2_PACKAGE_MTD=y
BR2_PACKAGE_LIBCONFIG=y

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 44/332

Assembling a defconfig (2/2)
.debug.frag..
.
BR2_ENABLE_DEBUG=y
BR2_PACKAGE_STRACE=y

.Build a release system for platform1..

.

$./support/kconfig/merge_config.sh platform1.frag packages.frag > \
.config

$ make olddefconfig
$ make

.Build a debug system for platform2..

.

$./support/kconfig/merge_config.sh platform2.frag packages.frag \
debug.frag > .config

$ make olddefconfig
$ make

▶ olddefconfig expands a minimal defconfig to a full .config
▶ Saving fragments is not possible; it must be done manually

from an existing defconfig
free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 45/332

Other building tips

▶ Cleaning targets
▶ Cleaning all the build output, but keeping the configuration

file:
.
.$ make clean

▶ Cleaning everything, including the configuration file, and
downloaded file if at the default location:

.

.$ make distclean

▶ Verbose build
▶ By default, Buildroot hides a number of commands it runs

during the build, only showing the most important ones.
▶ To get a fully verbose build, pass V=1:

.

.$ make V=1

▶ Passing V=1 also applies to packages, like the Linux kernel,
busybox...

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 46/332

Buildroot source and build trees

Buildroot source
and build trees
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 47/332

Buildroot source and build trees

Source tree

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 48/332

Source tree (1/5)

▶ Makefile
▶ top-level Makefile, handles the configuration and general

orchestration of the build
▶ Config.in

▶ top-level Config.in, main/general options. Includes many
other Config.in files

▶ arch/
▶ Config.in.* files defining the architecture variants (processor

type, ABI, floating point, etc.)
▶ Config.in, Config.in.arm, Config.in.x86,

Config.in.microblaze, etc.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 49/332

Source tree (2/5)

▶ toolchain/
▶ packages for generating or using toolchains
▶ toolchain/ virtual package that depends on either

toolchain-buildroot or toolchain-external
▶ toolchain-buildroot/ virtual package to build the internal

toolchain
▶ toolchain-external/ package to handle external toolchains

▶ system/
▶ skeleton/ the rootfs skeleton
▶ Config.in, options for system-wide features like init system,

/dev handling, etc.
▶ linux/

▶ linux.mk, the Linux kernel package

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 50/332

Source tree (3/5)

▶ package/
▶ all the user space packages (1800+)
▶ busybox/, gcc/, qt5/, etc.
▶ pkg-generic.mk, core package infrastructure
▶ pkg-cmake.mk, pkg-autotools.mk, pkg-perl.mk, etc.

Specialized package infrastructures
▶ fs/

▶ logic to generate filesystem images in various formats
▶ common.mk, common logic
▶ cpio/, ext2/, squashfs/, tar/, ubifs/, etc.

▶ boot/
▶ bootloader packages
▶ at91bootstrap3/, barebox/, grub/, syslinux/, uboot/, etc.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 51/332

Source tree (4/5)

▶ configs/
▶ default configuration files for various platforms
▶ similar to kernel defconfigs
▶ atmel_xplained_defconfig, beaglebone_defconfig,

raspberrypi_defconfig, etc.
▶ board/

▶ board-specific files (kernel configuration files, kernel patches,
image flashing scripts, etc.)

▶ typically go together with a defconfig in configs/

▶ support/
▶ misc utilities (kconfig code, libtool patches, download helpers,

and more.)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 52/332

Source tree (5/5)

▶ docs/
▶ Buildroot documentation
▶ Written in AsciiDoc, can generate HTML, PDF, TXT versions:

make manual
▶ 90 pages PDF document
▶ Also available pre-generated online.
▶ http://buildroot.org/downloads/manual/manual.html

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 53/332

http://buildroot.org/downloads/manual/manual.html

Buildroot source and build trees

Build tree

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 54/332

Build tree: $(O)

▶ output/

▶ Global output directory
▶ Can be customized for out-of-tree build by passing O=<dir>

▶ Variable: O (as passed on the command line)
▶ Variable: BASE_DIR (as an absolute path)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 55/332

Build tree: $(O)/build

▶ output/
▶ build/

▶ buildroot-config/
▶ busybox-1.22.1/
▶ host-pkgconf-0.8.9/
▶ kmod-1.18/
▶ build-time.log

▶ Where all source tarballs are extracted
▶ Where the build of each package takes place
▶ In addition to the package sources and object files, stamp files

are created by Buildroot
▶ Variable: BUILD_DIR

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 56/332

Build tree: $(O)/host

▶ output/
▶ host/

▶ usr/lib
▶ usr/bin
▶ usr/sbin

▶ usr/<tuple>/sysroot/bin
▶ usr/<tuple>/sysroot/lib
▶ usr/<tuple>/sysroot/usr/lib
▶ usr/<tuple>/sysroot/usr/bin

▶ Contains both the tools built for the host (cross-compiler, etc.)
and the sysroot of the toolchain

▶ Variable: HOST_DIR
▶ Host tools are directly in host/usr
▶ The sysroot is in host/<tuple>/sysroot/usr
▶ <tuple> is an identifier of the architecture, vendor, operating

system, C library and ABI. E.g:
arm-unknown-linux-gnueabihf.

▶ Variable for the sysroot: STAGING_DIR

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 57/332

Build tree: $(O)/staging

▶ output/
▶ staging/
▶ Just a symbolic link to the sysroot, i.e. to

host/<tuple>/sysroot/.
▶ Available for convenience

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 58/332

Build tree: $(O)/target

▶ output/
▶ target/

▶ bin/
▶ etc/
▶ lib/
▶ usr/bin/
▶ usr/lib/
▶ usr/share/
▶ usr/sbin/
▶ THIS_IS_NOT_YOUR_ROOT_FILESYSTEM
▶ ...

▶ The target root filesystem
▶ Usual Linux hierarchy
▶ Not completely ready for the target: permissions, device files,

etc.
▶ Buildroot does not run as root: all files are owned by the user

running Buildroot, not setuid, etc.
▶ Used to generate the final root filesystem images in images/
▶ Variable: TARGET_DIR

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 59/332

Build tree: $(O)/images

▶ output/
▶ images/

▶ zImage
▶ armada-370-mirabox.dtb
▶ rootfs.tar
▶ rootfs.ubi

▶ Contains the final images: kernel image, bootloader image,
root filesystem image(s)

▶ Variable: BINARIES_DIR

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 60/332

Build tree: $(O)/graphs

▶ output/
▶ graphs/
▶ Visualization of Buildroot operation: dependencies between

packages, time to build the different packages
▶ make graph-depends
▶ make graph-build
▶ make graph-size
▶ Variable: GRAPHS_DIR
▶ See the section Analyzing the build later in this training.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 61/332

Build tree: $(O)/legal-info

▶ output/
▶ legal-info/

▶ manifest.csv
▶ host-manifest.csv
▶ licenses.txt
▶ licenses/
▶ sources/
▶ ...

▶ Legal information: license of all packages, and their source
code, plus a licensing manifest

▶ Useful for license compliance
▶ make legal-info
▶ Variable: LEGAL_INFO_DIR

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 62/332

Toolchains in Buildroot

Toolchains in
Buildroot
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 63/332

What is a cross-compilation toolchain?

▶ A set of tools to build and debug code for a target
architecture, from a machine running a different architecture.

▶ Example: building code for ARM from a x86-64 PC.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 64/332

Two possibilities for the toolchain

▶ Buildroot offers two choices for the toolchain, called
toolchain backends:

▶ The internal toolchain backend, where Buildroot builds the
toolchain entirely from source

▶ The external toolchain backend, where Buildroot uses a
existing pre-built toolchain

▶ Selected from Toolchain → Toolchain type.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 65/332

Internal toolchain backend

▶ Makes Buildroot build the entire cross-compilation toolchain
from source.

▶ Provides a lot of flexibility in the configuration of the
toolchain.

▶ Kernel headers version
▶ C library: Buildroot supports uClibc, (e)glibc and musl

▶ glibc, the standard C library. Good choice if you don't have
tight space constraints (>= 10 MB)

▶ uClibc-ng and musl, smaller C libraries. uClibc-ng supports
non-MMU architectures. Good for very small systems (< 10
MB).

▶ Different versions of binutils and gcc. Keep the default
versions unless you have specific needs.

▶ Numerous toolchain options: C++, LTO, OpenMP,
libmudflap, graphite, and more depending on the selected C
library.

▶ Building a toolchain takes quite some time: 15-20 minutes on
moderately recent machines.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 66/332

Internal toolchain backend: result

▶ host/usr/bin/<tuple>-<tool>, the cross-compilation tools:
compiler, linker, assembler, and more. The compiler is hidden
behind a wrapper program.

▶ host/usr/<tuple>/
▶ sysroot/usr/include/, the kernel headers and C library

headers
▶ sysroot/lib/ and sysroot/usr/lib/, C library and gcc

runtime
▶ include/c++/, C++ library headers
▶ lib/, host libraries needed by gcc/binutils

▶ target/
▶ lib/ and usr/lib/, C and C++ libraries

▶ The compiler is configured to:
▶ generate code for the architecture, variant, FPU and ABI

selected in the Target options
▶ look for libraries and headers in the sysroot
▶ no need to pass weird gcc flags!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 67/332

External toolchain backend possibilities

▶ Allows to re-use existing pre-built toolchains
▶ Great to:

▶ save the build time of the toolchain
▶ use vendor provided toolchain that are supposed to be reliable

▶ Several options:
▶ Use an existing toolchain profile known by Buildroot
▶ Download and install a custom external toolchain
▶ Directly use a pre-installed custom external toolchain

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 68/332

Existing external toolchain profile

▶ Buildroot already knows about a wide selection of publicly
available toolchains.

▶ Toolchains from Linaro (ARM and AArch64), Mentor
Graphics (ARM, MIPS, NIOS-II, PowerPC, SuperH, x86,
x86-64), Analog Devices (Blackfin) and the musl project.

▶ In such cases, Buildroot is able to download and automatically
use the toolchain.

▶ It already knows the toolchain configuration: C library being
used, kernel headers version, etc.

▶ Additional profiles can easily be added.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 69/332

Custom external toolchains

▶ If you have a custom external toolchain, for example from
your vendor, select Custom toolchain in Toolchain.

▶ Buildroot can download and extract it for you
▶ Convenient to share toolchains between several developers
▶ Option Toolchain to be downloaded and installed in

Toolchain origin
▶ The URL of the toolchain tarball is needed

▶ Or Buildroot can use an already installed toolchain
▶ Option Pre-installed toolchain in Toolchain origin
▶ The local path to the toolchain is needed.

▶ In both cases, you will have to tell Buildroot the configuration
of the toolchain: C library, kernel headers version, etc.

▶ Buildroot needs this information to know which packages can
be built with this toolchain

▶ Buildroot will check those values at the beginning of the build

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 70/332

External toolchain example configuration

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 71/332

External toolchain: result

▶ host/opt/ext-toolchain, where the original toolchain
tarball is extracted. Except when a local pre-installed
toolchain is used.

▶ host/usr/bin/<tuple>-<tool>, symbolic links to the
cross-compilation tools in their original location. Except the
compiler, which points to a wrapper program.

▶ host/usr/<tuple>/
▶ sysroot/usr/include/, the kernel headers and C library

headers
▶ sysroot/lib/ and sysroot/usr/lib/, C library and gcc

runtime
▶ include/c++/, C++ library headers

▶ target/
▶ lib/ and usr/lib/, C and C++ libraries

▶ The wrapper takes care of passing the appropriate flags to the
compiler.

▶ Mimics the internal toolchain behavior
free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 72/332

Kernel headers version

▶ One option in the toolchain menu is particularly important:
the kernel headers version.

▶ When building user space programs, libraries or the C library,
kernel headers are used to know how to interface with the
kernel.

▶ This kernel/user space interface is backward compatible, but
can introduce new features.

▶ It is therefore important to use kernel headers that have a
version equal or older than the kernel version running on the
target.

▶ With the internal toolchain backend, choose an appropriate
kernel headers version.

▶ With the external toolchain backend, beware when choosing
your toolchain.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 73/332

Other toolchain menu options

▶ The toolchain menu offers a few other options:
▶ Purge unwanted locales

▶ This allows to get rid of translation files, when not needed.
They consume quite a lot of disk space.

▶ Target optimizations
▶ Allows to pass additional compiler flags when building target

packages
▶ Do not pass flags to select a CPU or FPU, these are already

passed by Buildroot
▶ Be careful with the flags you pass, they affect the entire build

▶ Target linker options
▶ Allows to pass additional linker flags when building target

packages
▶ gdb and Eclipse related options

▶ Covered in our Application development section later.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 74/332

Managing the Linux kernel configuration

Managing the
Linux kernel
configuration
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 75/332

Introduction

▶ The Linux kernel itself uses kconfig to define its configuration
▶ Buildroot cannot replicate all Linux kernel configuration

options in its menuconfig
▶ Defining the Linux kernel configuration therefore needs to be

done in a special way.
▶ Note: while described with the example of the Linux kernel,

this discussion is also valid for other packages using kconfig:
barebox, uclibc, busybox and u-boot.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 76/332

Defining the configuration

▶ In the Kernel menu in menuconfig, after selecting the kernel
version, you have two options to define the kernel
configuration:

▶ Use a defconfig
▶ Will use a defconfig provided within the kernel sources
▶ Available in arch/<ARCH>/configs in the kernel sources
▶ Used unmodified by Buildroot
▶ Good starting point

▶ Use a custom config file
▶ Allows to give the path to either a full .config, or a minimal

defconfig
▶ Usually what you will use, so that you can have a custom

configuration
▶ Additional fragments

▶ Also to pass a list of configuration file fragments.
▶ They can complement or override configuration options

specified in a defconfig or a full configuration file.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 77/332

Changing the configuration

▶ Running one of the Linux kernel configuration interfaces:
▶ make linux-menuconfig
▶ make linux-nconfig
▶ make linux-xconfig
▶ make linux-gconfig

▶ Will load either the defined kernel defconfig or custom
configuration file, and start the corresponding Linux kernel
configuration interface.

▶ Changes made are only made in
$(O)/build/linux-<version>/, i.e. they are not preserved
across a clean rebuild.

▶ To save them:
▶ make linux-update-config, to save a full config file
▶ make linux-update-defconfig, to save a minimal defconfig
▶ Only works if a custom configuration file is used

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 78/332

Typical flow

1. make menuconfig
▶ Start with a defconfig from the kernel, say

mvebu_v7_defconfig

2. Run make linux-menuconfig to customize the configuration
3. Do the build, test, tweak the configuration as needed.
4. You cannot do make linux-update-{config,defconfig},

since the Buildroot configuration points to a kernel defconfig
5. make menuconfig

▶ Change to a custom configuration file. There's no need for the
file to exist, it will be created by Buildroot.

6. make linux-update-defconfig
▶ Will create your custom configuration file, as a minimal

defconfig

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 79/332

Root filesystem in Buildroot

Root filesystem in
Buildroot
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 80/332

Overall rootfs construction steps

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 81/332

Root filesystem skeleton

▶ The base of a Linux root filesystem: Unix directory hierarchy,
a few configuration files and scripts in /etc. No programs or
libraries.

▶ First thing to get copied to $(TARGET_DIR) at the beginning
of the build.

▶ By default (BR2_ROOTFS_SKELETON_DEFAULT=y), the one in
system/skeleton is used.

▶ A custom skeleton can be used, through the
BR2_ROOTFS_SKELETON_CUSTOM and
BR2_ROOTFS_SKELETON_CUSTOM_PATH options.

▶ Not recommended though: the skeleton is only copied once at
the beginning of the build, and the base is usually good for
most projects.

▶ Use rootfs overlays or post-build scripts for customization.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 82/332

Installation of packages

▶ All the selected target packages will be built (can be Busybox,
Qt, OpenSSH, lighttpd, and many more)

▶ Most of them will install files in $(TARGET_DIR): programs,
libraries, fonts, data files, configuration files, etc.

▶ This is really the step that will bring the vast majority of the
files in the root filesystem.

▶ Covered in more details in the section about creating your
own Buildroot packages.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 83/332

Cleanup step

▶ Once all packages have been installed, a cleanup step is
executed to reduce the size of the root filesystem.

▶ It mainly involves:
▶ Removing header files, pkg-config files, CMake files, static

libraries, man pages, documentation.
▶ Stripping all the programs and libraries using strip, to remove

unneeded information. Depends on BR2_ENABLE_DEBUG and
BR2_STRIP_* options.

▶ Additional specific clean up steps: clean up unneeded Python
files when Python is used, etc. See TARGET_FINALIZE_HOOKS
in the Buildroot code.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 84/332

Root filesystem overlay

▶ To customize the contents of your root filesystem, to add
configuration files, scripts, symbolic links, directories or any
other file, one possible solution is to use a root filesystem
overlay.

▶ A root filesystem overlay is simply a directory whose contents
will be copied over the root filesystem, after all packages
have been installed. Overwriting files is allowed.

▶ The option BR2_ROOTFS_OVERLAY contains a space-separated
list of overlay paths.

.

.

$ grep ^BR2_ROOTFS_OVERLAY .config
BR2_ROOTFS_OVERLAY="board/myproject/rootfs-overlay"
$ find -type f board/myproject/rootfs-overlay
board/myproject/rootfs-overlay/etc/ssh/sshd_config
board/myproject/rootfs-overlay/etc/init.d/S99myapp

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 85/332

Post-build scripts

▶ Sometimes a root filesystem overlay is not sufficient: you can
use post-build scripts.

▶ Can be used to customize existing files, remove unneeded
files to save space, add new files that are generated
dynamically (build date, etc.)

▶ Executed before the root filesystem image is created. Can be
written in any language, shell scripts are often used.

▶ BR2_ROOTFS_POST_BUILD_SCRIPT contains a space-separated
list of post-build script paths.

▶ $(TARGET_DIR) path passed as first argument, additional
arguments can be passed in the
BR2_ROOTFS_POST_SCRIPT_ARGS option.

▶ Various environment variables are available:
▶ BR2_CONFIG, path to the Buildroot .config file
▶ HOST_DIR, STAGING_DIR, TARGET_DIR, BUILD_DIR,

BINARIES_DIR, BASE_DIR
free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 86/332

Post-build script: example

.
board/myproject/post-build.sh..

.

#!/bin/sh
TARGET_DIR=$1
BOARD_DIR=board/myproject/

Generate a file identifying the build (git commit and build date)
echo $(git describe) $(date +%Y-%m-%d-%H:%M:%S) > \

$TARGET_DIR/etc/build-id

Create /applog mountpoint, and adjust /etc/fstab
mkdir -p $TARGET_DIR/applog
grep -q "^/dev/mtdblock7" $TARGET_DIR/etc/fstab || \

echo "/dev/mtdblock7\t\t/applog\tjffs2\tdefaults\t\t0\t0" >> \
$TARGET_DIR/etc/fstab

Remove unneeded files
rm -rf $TARGET_DIR/usr/share/icons/bar

.Buildroot configuration..

.BR2_ROOTFS_POST_BUILD_SCRIPT="board/myproject/post-build.sh"

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 87/332

Generating the filesystem images

▶ In the Filesystem images menu, you can select which
filesystem image formats to generate.

▶ To generate those images, Buildroot will generate a shell
script that:

▶ Changes the owner of all files to 0:0 (root user)
▶ Takes into account the global permission and device tables,

as well as the per-package ones.
▶ Takes into account the global and per-package users tables.
▶ Runs the filesystem image generation utility, which depends

on each filesystem type (genext2fs, mkfs.ubifs, tar, etc.)
▶ This script is executed using a tool called fakeroot

▶ Allows to fake being root so that permissions and ownership
can be modified, device files can be created, etc.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 88/332

Permission table

▶ By default, all files are owned by the root user, and the
permissions with which they are installed in $(TARGET_DIR)
are preserved.

▶ To customize the ownership or the permission of installed
files, one can create one or several permission tables

▶ BR2_ROOTFS_DEVICE_TABLE contains a space-separated list of
permission table files. The option name contains device for
backward compatibility reasons only.

▶ The system/device_table.txt file is used by default.
▶ Packages can also specify their own permissions. See the

Advanced package aspects section for details.
.Permission table example..

.

#<name> <type> <mode> <uid> <gid> <major> <minor> <start> <inc> <count>
/dev d 755 0 0 - - - - -
/tmp d 1777 0 0 - - - - -
/var/www d 755 33 33 - - - - -

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 89/332

Device table

▶ When the system is using a static /dev, one may need to
create additional device nodes

▶ Done using one or several device tables
▶ BR2_ROOTFS_STATIC_DEVICE_TABLE contains a

space-separated list of device table files.
▶ The system/device_table_dev.txt file is used by default.
▶ Packages can also specify their own device files. See the

Advanced package aspects section for details.
.Device table example..

.

<name> <type> <mode> <uid> <gid> <major> <minor> <start> <inc> <count>
/dev/mem c 640 0 0 1 1 0 0 -
/dev/kmem c 640 0 0 1 2 0 0 -
/dev/i2c- c 666 0 0 89 0 0 1 4

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 90/332

Users table

▶ One may need to add specific Unix users and groups in
addition to the ones available in the default skeleton.

▶ BR2_ROOTFS_USERS_TABLES is a space-separated list of user
tables.

▶ Packages can also specify their own users. See the Advanced
package aspects section for details.

.Users table example..

.
<username> <uid> <group> <gid> <password> <home> <shell> <groups> <comment>
foo -1 bar -1 !=blabla /home/foo /bin/sh alpha,bravo Foo user
test 8000 wheel -1 = - /bin/sh - Test user

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 91/332

Post-image scripts

▶ Once all the filesystem images have been created, at the very
end of the build, post-image scripts are called.

▶ They allow to do any custom action at the end of the build.
For example:

▶ Extract the root filesystem to do NFS booting
▶ Generate a final firmware image
▶ Start the flashing process

▶ BR2_ROOTFS_POST_IMAGE_SCRIPT is a space-separated list of
post-image scripts to call.

▶ Post-image scripts are called:
▶ from the Buildroot source directory
▶ with the $(BINARIES_DIR) path as first argument
▶ with the contents of the BR2_ROOTFS_POST_SCRIPT_ARGS as

other arguments
▶ with a number of available environment variables:

BR2_CONFIG, HOST_DIR, STAGING_DIR, TARGET_DIR,
BUILD_DIR, BINARIES_DIR and BASE_DIR.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 92/332

Init mechanism

▶ Buildroot supports multiple init implementations:
▶ Busybox init, the default. Simplest solution.
▶ sysvinit, the old style featureful init implementation
▶ systemd, the new generation init system

▶ Selecting the init implementation in the
System configuration menu will:

▶ Ensure the necessary packages are selected
▶ Make sure the appropriate init scripts or configuration files are

installed by packages. See Advanced package aspects for
details.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 93/332

/dev management method

▶ Buildroot supports four methods to handle the /dev directory:

▶ Using devtmpfs. /dev is managed by the kernel devtmpfs,
which creates device files automatically. Requires kernel
2.6.32+. Default option.

▶ Using static /dev. This is the old way of doing /dev, not very
practical.

▶ Using mdev. mdev is part of Busybox and can run custom
actions when devices are added/removed. Requires devtmpfs
kernel support.

▶ Using eudev. Forked from systemd, allows to run custom
actions. Requires devtmpfs kernel support.

▶ When systemd is used, the only option is udev from systemd
itself.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 94/332

Other customization options

▶ There are various other options to customize the root
filesystem:

▶ getty options, to run a login prompt on a serial port or screen
▶ hostname and banner options
▶ DHCP network on one interface (for more complex setups,

use an overlay)
▶ root password
▶ timezone installation and selection

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 95/332

Deploying the images

▶ By default, Buildroot simply stores the different images in
$(O)/images

▶ It is up to the user to deploy those images to the target device.
▶ Possible solutions:

▶ For removable storage (SD card, USB keys):
▶ manually create the partitions and extract the root filesystem

as a tarball to the appropriate partition.
▶ use a tool like genimage to create a complete image of the

media, including all partitions
▶ For NAND flash:

▶ Transfer the image to the target, and flash it.
▶ NFS booting
▶ initramfs

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 96/332

Deploying the images: genimage

▶ genimage allows to create the complete image of a block
device (SD card, USB key, hard drive), including multiple
partitions and filesystems.

▶ For example, allows to create an image with two partition:
one FAT partition for bootloader and kernel, one ext4
partition for the root filesystem.

▶ Also allows to place the bootloader at a fixed offset in the
image if required.

▶ Can be called in a post-image script.
▶ More and more widely used in Buildroot default configurations

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 97/332

Deploying the images: genimage example
.genimage-raspberrypi.cfg..

.

image boot.vfat {
vfat {
files = {

"bcm2708-rpi-b.dtb",
"bcm2708-rpi-b-plus.dtb",
"bcm2708-rpi-cm.dtb",
"rpi-firmware/bootcode.bin",
"rpi-firmware/cmdline.txt",
[...]
"kernel-marked/zImage"

}
}
size = 32M

}

image sdcard.img {
hdimage {
}
partition boot {
partition-type = 0xC
bootable = "true"
image = "boot.vfat"

}
partition rootfs {
partition-type = 0x83
image = "rootfs.ext4"

}
}

.post-image script..

.

#!/bin/sh

BOARD_DIR="$(dirname $0)"
GENIMAGE_CFG="${BOARD_DIR}/genimage-raspberrypi.cfg"
GENIMAGE_TMP="${BUILD_DIR}/genimage.tmp"

rm -rf "${GENIMAGE_TMP}"

genimage \
--rootpath "${TARGET_DIR}" \
--tmppath "${GENIMAGE_TMP}" \
--inputpath "${BINARIES_DIR}" \
--outputpath "${BINARIES_DIR}" \
--config "${GENIMAGE_CFG}"

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 98/332

Deploying the image: NFS booting

▶ Many people try to use $(O)/target directly for NFS booting
▶ This cannot work, due to permissions/ownership being

incorrect
▶ Clearly explained in the THIS_IS_NOT_YOUR_ROOT_FILESYSTEM

file.
▶ Generate a tarball of the root filesystem
▶ Use sudo tar -C /nfs -xf output/images/rootfs.tar to

prepare your NFS share.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 99/332

Deploying the image: initramfs

▶ Another common use case is to use an initramfs, i.e. a root
filesystem fully in RAM.

▶ Convenient for small filesystems, fast booting or kernel
development

▶ Two solutions:
▶ BR2_TARGET_ROOTFS_CPIO=y to generate a cpio archive, that

you can load from your bootloader next to the kernel image.
▶ BR2_TARGET_ROOTFS_INITRAMFS=y to directly include the

initramfs inside the kernel image. Only available when the
kernel is built by Buildroot.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 100/332

Practical lab - Root filesystem construction

▶ Explore the build output
▶ Customize the root filesystem using

a rootfs overlay
▶ Use a post-build script
▶ Customize the kernel with patches

and additional configuration
options

▶ Add more packages
▶ Use defconfig files and out of tree

build

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 101/332

Download infrastructure in Buildroot

Download
infrastructure in
Buildroot
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 102/332

Introduction

▶ One important aspect of Buildroot is to fetch source code or
binary files from third party projects.

▶ Download supported from HTTP(S), FTP, Git, Subversion,
CVS, Mercurial, etc.

▶ Being able to do reproducible builds over a long period of
time requires understanding the download infrastructure.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 103/332

Download location

▶ Each Buildroot package indicates in its .mk file which files it
needs to be downloaded.

▶ Can be a tarball, one or several patches, binary files, etc.
▶ When downloading a file, Buildroot will successively try the

following locations:
1. The local $(DL_DIR) directory where downloaded files are kept
2. The primary site, as indicated by BR2_PRIMARY_SITE
3. The original site, as indicated by the package .mk file
4. The backup Buildroot mirror, as indicated by

BR2_BACKUP_SITE

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 104/332

Primary site

▶ The BR2_PRIMARY_SITE option allows to define the location of
a HTTP or FTP server.

▶ By default empty, so this feature is disabled.
▶ When defined, used in priority over the original location.
▶ Allows to do a local mirror, in your company, of all the files

that Buildroot needs to download.
▶ When option BR2_PRIMARY_SITE_ONLY is enabled, only the

primary site is used
▶ It does not fall back on the original site and the backup

Buildroot mirror
▶ Guarantees that all downloads must be in the primary site

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 105/332

Backup Buildroot mirror

▶ Since sometimes the upstream locations disappear or are
temporarily unavailable, having a backup server is useful

▶ Address configured through BR2_BACKUP_SITE
▶ Defaults to http://sources.buildroot.net

▶ maintained by the Buildroot community
▶ updated before every Buildroot release to contain the

downloaded files for all packages
▶ exception: cannot store all possible versions for packages that

have their version as a configuration option. Generally only
affects the kernel or bootloader, which typically don't
disappear upstream.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 106/332

DL_DIR

▶ Once a file has been downloaded by Buildroot, it is cached in
the directory pointed by $(DL_DIR)

▶ By default, $(TOPDIR)/dl
▶ Can be changed

▶ using the BR2_DL_DIR configuration option
▶ or by passing the BR2_DL_DIR environment variable, which

overrides the config option of the same name
▶ The download mechanism is written in a way that allows

independent parallel builds to share the same DL_DIR (using
atomic renaming of files)

▶ No cleanup mechanism: files are only added, never removed,
even when the package version is updated.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 107/332

Special case of VCS download

▶ When a package uses the source code from Git, Subversion or
another VCS, Buildroot cannot directly download a tarball.

▶ It uses a VCS-specific method to fetch the specified version of
the source from the VCS repository

▶ The source code is stored in a temporary location
▶ Finally a tarball containing only the source code (and not the

version control history or metadata) is created and stored in
DL_DIR

▶ Example: avrdude-
eabe067c4527bc2eedc5db9288ef5cf1818ec720.tar.gz

▶ This tarball will be re-used for the next builds, and attempts
are made to download it from the primary and backup sites.

▶ Due to this, always use a tag name or a full commit id, and
never a branch name: the code will never be re-downloaded
when the branch is updated.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 108/332

File integrity checking

▶ Buildroot packages can provide a .hash file to provide hashes
for the downloaded files.

▶ The download infrastructure uses this hash file when available
to check the integrity of the downloaded files.

▶ Hashs are checked every time a downloaded file is used, even
if it is already cached in $(DL_DIR).

▶ If the hash is incorrect, the download infrastructure attempts
to re-download the file once. If that still fails, the build aborts
with an error.

.Hash checking message..

.

strace-4.10.tar.xz: OK (md5: 107a5be455493861189e9b57a3a51912)
strace-4.10.tar.xz: OK (sha1: 5c3ec4c5a9eeb440d7ec70514923c2e7e7f9ab6c)
>>> strace 4.10 Extracting

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 109/332

Download-related make targets

▶ make source
▶ Triggers the download of all the files needed to build the

current configuration.
▶ All files are stored in $(DL_DIR)
▶ Allows to prepare a fully offline build

▶ make external-deps
▶ Lists the files from $(DL_DIR) that are needed for the current

configuration to build.
▶ Does not guarantee that all files are in $(DL_DIR), a

make source is required
▶ make source-check

▶ Checks whether the upstream site of all downloads needed for
the current configuration are still available.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 110/332

GNU Make 101

GNU Make 101
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 111/332

Introduction

▶ Buildroot being implemented in GNU Make, it is quite
important to know the basics of this language

▶ Basics of make rules
▶ Defining and referencing variables
▶ Conditions
▶ Defining and using functions
▶ Useful make functions

▶ This does not aim at replacing a full course on GNU Make
▶ http://www.gnu.org/software/make/manual/make.html

▶ http://www.nostarch.com/gnumake

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 112/332

http://www.gnu.org/software/make/manual/make.html
http://www.nostarch.com/gnumake

Basics of make rules

▶ At their core, Makefiles are simply defining rules to create
targets from prerequisites using recipe commands

.

.

TARGET ...: PREREQUISITES ...
RECIPE
...

▶ target: name of a file that is generated. Can also be an
arbitrary action, like clean, in which case it's a phony target

▶ prerequisites: list of files or other targets that are needed as
dependencies of building the current target.

▶ recipe: list of shell commands to create the target from the
prerequisites

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 113/332

Rule example

.Makefile..

.

clean:
rm -rf $(TARGET_DIR) $(BINARIES_DIR) $(HOST_DIR) \

$(BUILD_DIR) $(BASE_DIR)/staging \
$(LEGAL_INFO_DIR)

distclean: clean
[...]
rm -rf $(BR2_CONFIG) $(CONFIG_DIR)/.config.old \

$(CONFIG_DIR)/.auto.deps

▶ clean and distclean are phony targets

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 114/332

Defining and referencing variables

▶ Defining variables is done in different ways:
▶ FOOBAR = value, expanded at time of use
▶ FOOBAR := value, expanded at time of assignment
▶ FOOBAR += value, prepend to the variable, with a separating

space, defaults to expanded at the time of use
▶ FOOBAR ?= value, defined only if not already defined
▶ Multi-line variables are described using

define NAME ... endef:
.

.

define FOOBAR
line 1
line 2
endef

▶ Make variables are referenced using the $(FOOBAR) syntax.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 115/332

Conditions

▶ With ifeq or ifneq
.

.

ifeq ($(BR2_CCACHE),y)
CCACHE := $(HOST_DIR)/usr/bin/ccache
endif

distclean: clean
ifeq ($(DL_DIR),$(TOPDIR)/dl)

rm -rf $(DL_DIR)
endif

▶ With the $(if ...) make function:
.
.HOSTAPD_LIBS += $(if $(BR2_STATIC_LIBS),-lcrypto -lz)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 116/332

Defining and using functions

▶ Defining a function is exactly like defining a variable:
.

.

MESSAGE = echo "$(TERM_BOLD)>>> $($(PKG)_NAME) $($(PKG)_VERSION) $(call qstrip,$(1))$(TERM_RESET)"

define legal-license-header # pkg, license-file, {HOST|TARGET}
printf "$(LEGAL_INFO_SEPARATOR)\n\t$(1):\

$(2)\n$(LEGAL_INFO_SEPARATOR)\n\n\n" >>$(LEGAL_LICENSES_TXT_$(3))
endef

▶ Arguments accessible as $(1), $(2), etc.
▶ Called using the $(call func,arg1,arg2) construct

.

.

$(BUILD_DIR)/%/.stamp_extracted:
[...]
@$(call MESSAGE,"Extracting")

define legal-license-nofiles # pkg, {HOST|TARGET}
$(call legal-license-header,$(1),unknown license file(s),$(2))

endef

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 117/332

Useful make functions

▶ subst and patsubst to replace text
.
.ICU_SOURCE = icu4c-$(subst .,_,$(ICU_VERSION))-src.tgz

▶ filter and filter-out to filter entries
▶ foreach to implement loops

.

.

$(foreach incdir,$(TI_GFX_HDR_DIRS),
$(INSTALL) -d $(STAGING_DIR)/usr/include/$(notdir $(incdir)); \
$(INSTALL) -D -m 0644 $(@D)/include/$(incdir)/*.h \

$(STAGING_DIR)/usr/include/$(notdir $(incdir))/
)

▶ dir, notdir, addsuffix, addprefix to manipulate file names
.

.

UBOOT_SOURCE = $(notdir $(UBOOT_TARBALL))

IMAGEMAGICK_CONFIG_SCRIPTS = \
$(addsuffix -config,Magick MagickCore MagickWand Wand)

▶ And many more, see the GNU Make manual for details.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 118/332

Writing recipes

▶ Recipes are just shell commands
▶ Each line must be indented with one Tab

▶ Each line of shell command in a given recipe is independent
from the other: variables are not shared between lines in the
recipe

▶ Need to use a single line, possibly split using \, to do complex
shell constructs

▶ Shell variables must be referenced using $$name.
.
package/pppd/pppd.mk..

.

define PPPD_INSTALL_RADIUS
...
for m in $(PPPD_RADIUS_CONF); do \

$(INSTALL) -m 644 -D $(PPPD_DIR)/pppd/plugins/radius/etc/$$m \
$(TARGET_DIR)/etc/ppp/radius/$$m; \

done
...

endef

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 119/332

Integrating new packages in Buildroot

Integrating new
packages in
Buildroot
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 120/332

Why adding new packages in Buildroot?

▶ A package in Buildroot-speak is the set of meta-information
needed to automate the build process of a certain
component of a system.

▶ Can be used for open-source, third party proprietary
components, or in-house components.

▶ Can be used for user space components (libraries and
applications) but also for firmware, kernel drivers, bootloaders,
etc.

▶ Do not confuse with the notion of binary package in a regular
Linux distribution.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 121/332

Basic elements of a Buildroot package

▶ A directory, package/foo
▶ A Config.in file, written in kconfig language, describing the

configuration options for the package.
▶ A <pkg>.mk file, written in make, describing where to fetch

the source, how to build and install it, etc.
▶ An optional <pkg>.hash file, providing hashes to check the

integrity of the downloaded tarballs.
▶ Optionally, .patch files, that are applied on the package

source code before building.
▶ Optionally, any additional file that might be useful for the

package: init script, example configuration file, etc.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 122/332

Integrating new packages in Buildroot

Config.in file

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 123/332

package/<pkg>/Config.in: basics

▶ Describes the configuration options for the package.
▶ Written in the kconfig language.
▶ One option is mandatory to enable/disable the package, it

must be named BR2_PACKAGE_<PACKAGE>.
.

.

config BR2_PACKAGE_STRACE
bool "strace"
help

A useful diagnostic, instructional, and debugging tool.
Allows you to track what system calls a program makes
while it is running.

http://sourceforge.net/projects/strace/

▶ The main package option is a bool with the package name as
the prompt. Will be visible in menuconfig.

▶ The help text give a quick description, and the homepage of
the project.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 124/332

package/<pkg>/Config.in: inclusion

▶ The hierarchy of configuration options visible in menuconfig
is built by reading the top-level Config.in file and the other
Config.in file it includes.

▶ All package/<pkg>/Config.in files are included from
package/Config.in.

▶ The location of a package in one of the package sub-menu is
decided in this file.

.
package/Config.in..

.

menu "Target packages"
menu "Audio and video applications"

source "package/alsa-utils/Config.in"
...

endmenu
...
menu "Libraries"
menu "Audio/Sound"

source "package/alsa-lib/Config.in"
...

endmenu
...

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 125/332

package/<pkg>/Config.in: dependencies

▶ kconfig allows to express dependencies using select or
depends on statements

▶ select is an automatic dependency: if option A select
option B, as soon as A is enabled, B will be enabled, and
cannot be unselected.

▶ depends on is a user-assisted dependency: if option A
depends on option B, A will only be visible when B is enabled.

▶ Buildroot uses them as follows:
▶ depends on for architecture, toolchain feature, or big feature

dependencies. E.g: package only available on x86, or only if
wide char support is enabled, or depends on Python.

▶ select for enabling the necessary other packages needed to
build the current package (libraries, etc.)

▶ Such dependencies only ensure consistency at the
configuration level. They do not guarantee build ordering!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 126/332

package/<pkg>/Config.in: dependency example

.btrfs-progs package..

.

config BR2_PACKAGE_BTRFS_PROGS
bool "btrfs-progs"
depends on BR2_USE_WCHAR # util-linux
depends on BR2_USE_MMU # util-linux
depends on BR2_TOOLCHAIN_HAS_THREADS
select BR2_PACKAGE_ACL
select BR2_PACKAGE_ATTR
select BR2_PACKAGE_E2FSPROGS
select BR2_PACKAGE_LZO
select BR2_PACKAGE_UTIL_LINUX
select BR2_PACKAGE_UTIL_LINUX_LIBBLKID
select BR2_PACKAGE_UTIL_LINUX_LIBUUID
select BR2_PACKAGE_ZLIB
help

Btrfs filesystem utilities

https://btrfs.wiki.kernel.org/in...

comment "btrfs-progs needs a toolchain w/ wchar, threads"
depends on BR2_USE_MMU
depends on !BR2_USE_WCHAR || \

!BR2_TOOLCHAIN_HAS_THREADS

▶ depends on BR2_USE_MMU,
because the package uses
fork(). Note that there is
no comment displayed
about this dependency,
because it's a limitation of
the architecture.

▶ depends on BR2_USE_WCHAR
and depends on BR2_
TOOLCHAIN_HAS_THREADS,
because the package
requires wide-char and
thread support from the
toolchain. There is an
associated comment,
because such support can
be added to the toolchain.

▶ Multiple
select BR2_PACKAGE_*,
because the package needs
numerous libraries.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 127/332

Dependency propagation

▶ A limitation of kconfig is that it doesn't propagate
depends on dependencies accross select dependencies.

▶ Scenario: if package A has a depends on FOO, and package B
has a select A, then package B must replicate the
depends on FOO.

.libglib2 package..

.

config BR2_PACKAGE_LIBGLIB2
bool "libglib2"
select BR2_PACKAGE_GETTEXT if ...
select BR2_PACKAGE_LIBICONV if ...
select BR2_PACKAGE_LIBFFI
select BR2_PACKAGE_ZLIB
[...]
depends on BR2_USE_WCHAR # gettext
depends on BR2_TOOLCHAIN_HAS_THREADS
depends on BR2_USE_MMU # fork()

[...]

.neard package..

.

config BR2_PACKAGE_NEARD
bool "neard"
depends on BR2_USE_WCHAR # libglib2
libnl, dbus, libglib2
depends on BR2_TOOLCHAIN_HAS_THREADS
depends on BR2_USE_MMU # dbus, libglib2
select BR2_PACKAGE_DBUS
select BR2_PACKAGE_LIBGLIB2
select BR2_PACKAGE_LIBNL

[...]

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 128/332

Config.in.host for host packages?

▶ Most of the packages in Buildroot are target packages, i.e.
they are cross-compiled for the target architecture, and meant
to be run on the target platform.

▶ Some packages have a host variant, built to be executed on
the build machine. Such packages are needed for the build
process of other packages.

▶ The majority of host packages are not visible in menuconfig:
they are just dependencies of other packages, the user doesn't
really need to know about them.

▶ A few of them are potentially directly useful to the user
(flashing tools, etc.), and can be shown in the Host utilities
section of menuconfig.

▶ In this case, the configuration option is in a Config.in.host
file, included from package/Config.in.host, and the option
must be named BR2_PACKAGE_HOST_<PACKAGE>.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 129/332

Config.in.host example

.
package/Config.in.host..

.

menu "Host utilities"

source "package/genimage/Config.in.host"
source "package/lpc3250loader/Config.in.host"
source "package/openocd/Config.in.host"
source "package/qemu/Config.in.host"

endmenu

.
package/openocd/Config.in.host..

.

config BR2_PACKAGE_HOST_OPENOCD
bool "host openocd"
help
OpenOCD - Open On-Chip Debugger

http://openocd.org

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 130/332

Config.in sub-options

▶ Additional
sub-options can be
defined to further
configure the
package, to enable or
disable extra features.

▶ The value of such
options can then be
fetched from the
package .mk file to
adjust the build
accordingly.

▶ Run-time
configuration does
not belong to
Config.in.

.
package/pppd/Config.in..

.

config BR2_PACKAGE_PPPD
bool "pppd"
depends on !BR2_STATIC_LIBS
depends on BR2_USE_MMU
...

if BR2_PACKAGE_PPPD

config BR2_PACKAGE_PPPD_FILTER
bool "filtering"
select BR2_PACKAGE_LIBPCAP
help

Packet filtering abilities for pppd. If enabled,
the pppd active-filter and pass-filter options
are available.

config BR2_PACKAGE_PPPD_RADIUS
bool "radius"
help

Install RADIUS support for pppd

endif

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 131/332

Integrating new packages in Buildroot

Package infrastructures

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 132/332

Package infrastructures: what is it?

▶ Each software component to be built by Buildroot comes with
its own build system.

▶ Buildroot does not re-invent the build system of each
component, it simply uses it.

▶ Numerous build systems available: hand-written Makefiles or
shell scripts, autotools, CMake and also some specific to
languages: Python, Perl, Lua, Erlang, etc.

▶ In order to avoid duplicating code, Buildroot has package
infrastructures for well-known build systems.

▶ And a generic package infrastructure for software components
with non-standard build systems.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 133/332

Package infrastructures

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 134/332

generic-package infrastructure

▶ To be used for software components having non-standard
build systems.

▶ Implements a default behavior for the downloading, extracting
and patching steps of the package build process.

▶ Implements init script installation, legal information collection,
etc.

▶ Leaves to the package developer the responsibility of
describing what should be done for the configuration, building
and installation steps.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 135/332

generic-package: steps

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 136/332

Other package infrastructures

▶ The other package infrastructures are meant to be used when
the software component uses a well-known build system.

▶ They inherit all the behavior of the generic-package
infrastructure: downloading, extracting, patching, etc.

▶ And in addition to that, they typically implement a default
behavior for the configuration, compilation and installation
steps.

▶ For example, autotools-package will implement the
configuration step as a call to the ./configure script with
the right arguments.

▶ pkg-kconfig is an exception, it only provides some helpers for
packages using Kconfig, but does not implement the
configure, build and installation steps.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 137/332

Integrating new packages in Buildroot

.mk file for generic-package

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 138/332

The <pkg>.mk file

▶ The .mk file of a package does not look like a normal Makefile.
▶ It is a succession of variable definitions, which must be

prefixed by the uppercase package name.
▶ FOOBAR_SITE = http://foobar.com/downloads/
▶ define FOOBAR_BUILD_CMDS

$(MAKE) -C $(@D)
endef

▶ And ends with a call to the desired package infrastructure
macro.

▶ $(eval $(generic-package))
▶ $(eval $(autotools-package))
▶ $(eval $(host-autotools-package))

▶ The variables tell the package infrastructure what to do for
this specific package.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 139/332

Naming conventions

▶ The Buildroot package infrastructures make a number of
assumption on variables and files naming.

▶ The following must match to allow the package infrastructure
to work for a given package:

▶ The directory where the package description is located must
be package/<pkg>/, where <pkg> is the lowercase name of
the package.

▶ The Config.in option enabling the package must be named
BR2_PACKAGE_<PKG>, where <PKG> is the uppercase name of
the package.

▶ The variables in the .mk file must be prefixed with <PKG>_,
where <PKG> is the uppercase name of the package.

▶ Note: a - in the lower-case package name is translated to _ in
the upper-case package name.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 140/332

Naming conventions: global namespace

▶ The package infrastructure expects all variables it uses to be
prefixed by the uppercase package name.

▶ If your package needs to define additional private variables not
used by the package infrastructure, they should also be
prefixed by the uppercase package name.

▶ The namespace of variables is global in Buildroot!
▶ If two packages created a variable named BUILD_TYPE, it will

silently conflict.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 141/332

Behind the scenes

▶ Behind the scenes, $(eval $(generic-package)):
▶ is a make macro that is expanded
▶ infers the name of the current package by looking at the

directory name: package/<pkg>/<pkg>.mk: <pkg> is the
package name

▶ will use all the variables prefixed by <PKG>_
▶ and expand to a set of make rules and variable definitions that

describe what should be done for each step of the package
build process

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 142/332

.mk file: accessing the configuration

▶ The Buildroot .config file is a succession of lines
name = value

▶ This file is valid make syntax!
▶ The main Buildroot Makefile simply includes it, which turns

every Buildroot configuration option into a make variable.
▶ From a package .mk file, one can directly use such variables:

.

.

ifeq ($(BR2_PACKAGE_LIBCURL),y)
...
endif

FOO_DEPENDENCIES += $(if $(BR2_PACKAGE_TIFF),tiff)

▶ Hint: use the make qstrip function to remove double quotes
on string options:

.

.NODEJS_MODULES_LIST = $(call qstrip,$(BR2_PACKAGE_NODEJS_MODULES_ADDITIONAL))

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 143/332

Download related variables

▶ <pkg>_SITE, download location
▶ HTTP(S) or FTP URL where a tarball can be found, or the

address of a version control repository.
▶ CAIRO_SITE = http://cairographics.org/releases
▶ FMC_SITE = git://git.freescale.com/ppc/sdk/fmc.git

▶ <pkg>_VERSION, version of the package
▶ version of a tarball, or a commit, revision or tag for version

control systems
▶ CAIRO_VERSION = 1.14.2
▶ FMC_VERSION = fsl-sdk-v1.5-rc3

▶ <pkg>_SOURCE, file name of the tarball
▶ The full URL of the downloaded tarball is

$(<pkg>_SITE)/$(<pkg>_SOURCE)
▶ When not specified, defaults to

<pkg>-$(<pkg>_VERSION).tar.gz
▶ CAIRO_SOURCE = cairo-$(CAIRO_VERSION).tar.xz

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 144/332

Available download methods

▶ Buildroot can fetch the source code using different methods:
▶ wget, for FTP/HTTP downloads
▶ scp, to fetch the tarball using SSH/SCP
▶ svn, for Subversion
▶ cvs, for CVS
▶ git, for Git
▶ hg, for Mercurial
▶ bzr, for Bazaar
▶ file, for a local tarball
▶ local, for a local directory

▶ In most cases, the fetching method is guessed by Buildroot
using the <pkg>_SITE variable.

▶ Exceptions:
▶ Git, Subversion or Mercurial repositories accessed over HTTP

or SSH.
▶ file and local methods

▶ In such cases, use <pkg>_SITE_METHOD explicitly.
free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 145/332

Download methods examples

▶ Subversion repository accessed over HTTP:
.

.

CJSON_VERSION = 58
CJSON_SITE_METHOD = svn
CJSON_SITE = http://svn.code.sf.net/p/cjson/code

▶ Source code available in a local directory:
.

.
MYAPP_SITE = $(TOPDIR)/../apps/myapp
MYAPP_SITE_METHOD = local

▶ The "download" will consist in copying the source code from
the designated directory to the Buildroot per-package build
directory.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 146/332

Downloading more elements

▶ <pkg>_PATCH, a list of patches to download and apply before
building the package. They are automatically applied by the
package infrastructure.

▶ <pkg>_EXTRA_DOWNLOADS, a list of additional files to download
together with the package source code. It is up to the
package .mk file to do something with them.

▶ Two options:
▶ Just a file name: assumed to be relative to <pkg>_SITE.
▶ A full URL: downloaded over HTTP, FTP.

▶ Examples:
.sysvinit.mk...SYSVINIT_PATCH = sysvinit_$(SYSVINIT_VERSION)dsf-13.1+squeeze1.diff.gz

.perl.mk..

.
PERL_CROSS_SITE = http://raw.github.com/arsv/perl-cross/releases
PERL_CROSS_SOURCE = perl-$(PERL_CROSS_BASE_VERSION)-cross-$(PERL_CROSS_VERSION).tar.gz
PERL_EXTRA_DOWNLOADS = $(PERL_CROSS_SITE)/$(PERL_CROSS_SOURCE)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 147/332

Hash file

▶ In order to validate the integrity of downloaded files, and
make sure the user uses the version which was tested by the
Buildroot developers, cryptographic hashes are used

▶ Each package may contain a file named <package>.hash,
which gives the hashes of the files downloaded by the package.

▶ When present, the hashes for all files downloaded by the
package must be documented.

▶ The syntax of the file is:
.
.<hashtype> <hash> <file>

▶ Example:
.

.
Locally computed
sha256 2ee80bd0634a61a...3530396cccc09 unionfs-1.0.tar.gz
sha256 c8526f80448f344...03bcd713d9de2 0001-include-asm-ioctl.h-for-_IOC_SIZE.patch

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 148/332

Describing dependencies

▶ Dependencies expressed in Config.in do not enforce build
order.

▶ The <pkg>_DEPENDENCIES variable is used to describe the
dependencies of the current package.

▶ Packages listed in <pkg>_DEPENDENCIES are guaranteed to be
built before the configure step of the current package starts.

▶ It can contain both target and host packages.
▶ It can be appended conditionally with additional dependencies.

.python.mk..

.

PYTHON_DEPENDENCIES = host-python libffi

ifeq ($(BR2_PACKAGE_PYTHON_READLINE),y)
PYTHON_DEPENDENCIES += readline
endif

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 149/332

Mandatory vs. optional dependencies

▶ Very often, software components have some mandatory
dependencies and some optional dependencies, only
needed for optional features.

▶ Handling mandatory dependencies in Buildroot consists in:
▶ Using a select or depends on on the main package option in

Config.in
▶ Adding the dependency in <pkg>_DEPENDENCIES

▶ For optional dependencies, there are two possibilities:
▶ Handle it automatically: in the .mk file, if the optional

dependency is available, use it.
▶ Handle it explicitly: add a package sub-option in the

Config.in file.
▶ Automatic handling is usually preferred as it reduces the

number of Config.in options, but it makes the possible
dependency less visible to the user.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 150/332

Dependencies: ntp example

▶ Mandatory dependency: libevent
▶ Optional dependency handled automatically: openssl

.
package/ntp/Config.in..

.

config BR2_PACKAGE_NTP
bool "ntp"
select BR2_PACKAGE_LIBEVENT

[...]

.
package/ntp/ntp.mk..

.

[...]
NTP_DEPENDENCIES = host-pkgconf libevent
[...]
ifeq ($(BR2_PACKAGE_OPENSSL),y)
NTP_CONF_OPTS += --with-crypto
NTP_DEPENDENCIES += openssl
else
NTP_CONF_OPTS += --without-crypto --disable-openssl-random
endif
[...]

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 151/332

Dependencies: mpd example (1/2)

.
package/mpd/Config.in..

.

menuconfig BR2_PACKAGE_MPD
bool "mpd"
depends on BR2_INSTALL_LIBSTDCPP

[...]
select BR2_PACKAGE_BOOST
select BR2_PACKAGE_LIBGLIB2
select BR2_PACKAGE_LIBICONV if !BR2_ENABLE_LOCALE

[...]

config BR2_PACKAGE_MPD_FLAC
bool "flac"
select BR2_PACKAGE_FLAC
help

Enable flac input/streaming support.
Select this if you want to play back FLAC files.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 152/332

Dependencies: mpd example (2/2)

.
package/mpd/mpd.mk..

.

MPD_DEPENDENCIES = host-pkgconf boost libglib2

[...]

ifeq ($(BR2_PACKAGE_MPD_FLAC),y)
MPD_DEPENDENCIES += flac
MPD_CONF_OPTS += --enable-flac
else
MPD_CONF_OPTS += --disable-flac
endif

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 153/332

Defining where to install (1)

▶ Target packages can install files to different locations:
▶ To the target directory, $(TARGET_DIR), which is what will be

the target root filesystem.
▶ To the staging directory, $(STAGING_DIR), which is the

compiler sysroot
▶ To the images directory, $(BINARIES_DIR), which is where

final images are located.
▶ There are three corresponding variables, to define whether or

not the package will install something to one of these
locations:

▶ <pkg>_INSTALL_TARGET, defaults to YES. If YES, then
<pkg>_INSTALL_TARGET_CMDS will be called.

▶ <pkg>_INSTALL_STAGING, defaults to NO. If YES, then
<pkg>_INSTALL_STAGING_CMDS will be called.

▶ <pkg>_INSTALL_IMAGES, defaults to NO. If YES, then
<pkg>_INSTALL_IMAGES_CMDS will be called.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 154/332

Defining where to install (2)

▶ A package for an application:
▶ installs to $(TARGET_DIR) only
▶ <pkg>_INSTALL_TARGET defaults to YES, so there is nothing to

do
▶ A package for a shared library:

▶ installs to both $(TARGET_DIR) and $(STAGING_DIR)
▶ must set <pkg>_INSTALL_STAGING = YES

▶ A package for a pure header-based library, or a static-only
library:

▶ installs only to $(STAGING_DIR)
▶ must set <pkg>_INSTALL_TARGET = NO and

<pkg>_INSTALL_STAGING = YES

▶ A package installing a bootloader or kernel image:
▶ installs to $(BINARIES_DIR)
▶ must set <pkg>_INSTALL_IMAGES = YES

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 155/332

Defining where to install (3)

.libyaml.mk..

.LIBYAML_INSTALL_STAGING = YES

.eigen.mk..

.
EIGEN_INSTALL_STAGING = YES
EIGEN_INSTALL_TARGET = NO

.linux.mk..

.LINUX_INSTALL_IMAGES = YES

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 156/332

Describing actions for generic-package

▶ In a package using generic-package, only the download,
extract and patch steps are implemented by the package
infrastructure.

▶ The other steps should be described by the package .mk file:
▶ <pkg>_CONFIGURE_CMDS, always called
▶ <pkg>_BUILD_CMDS, always called
▶ <pkg>_INSTALL_TARGET_CMDS, called when

<pkg>_INSTALL_TARGET = YES, for target packages
▶ <pkg>_INSTALL_STAGING_CMDS, called when

<pkg>_INSTALL_STAGING = YES, for target packages
▶ <pkg>_INSTALL_IMAGES_CMDS, called when

<pkg>_INSTALL_IMAGES = YES, for target packages
▶ <pkg>_INSTALL_CMDS, always called for host packages

▶ Packages are free to not implement any of these variables:
they are all optional.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 157/332

Describing actions: useful variables

Inside an action block, the following variables are often useful:
▶ $(@D) is the source directory of the package
▶ $(MAKE) to call make
▶ $(MAKE1) when the package doesn't build properly in parallel

mode
▶ $(TARGET_MAKE_ENV) and $(HOST_MAKE_ENV), to pass in the

$(MAKE) environment to ensure the PATH is correct
▶ $(TARGET_CONFIGURE_OPTS) and $(HOST_CONFIGURE_OPTS)

to pass CC, LD, CFLAGS, etc.
▶ $(TARGET_DIR), $(STAGING_DIR), $(BINARIES_DIR) and

$(HOST_DIR).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 158/332

Describing actions: example (1)

.eeprog.mk..

.

EEPROG_VERSION = 0.7.6
EEPROG_SITE = http://www.codesink.org/download
EEPROG_LICENSE = GPLv2+
EEPROG_LICENSE_FILES = eeprog.c

define EEPROG_BUILD_CMDS
$(MAKE) $(TARGET_CONFIGURE_OPTS) -C $(@D)

endef

define EEPROG_INSTALL_TARGET_CMDS
$(INSTALL) -m 0755 -D $(@D)/eeprog $(TARGET_DIR)/usr/bin/eeprog

endef

$(eval $(generic-package))

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 159/332

Describing actions: example (2)
.zlib.mk..

.

ZLIB_VERSION = 1.2.8
ZLIB_SOURCE = zlib-$(ZLIB_VERSION).tar.xz
ZLIB_SITE = http://downloads.sourceforge.net/project/libpng/zlib/$(ZLIB_VERSION)
ZLIB_INSTALL_STAGING = YES

define ZLIB_CONFIGURE_CMDS
(cd $(@D); rm -rf config.cache; \

$(TARGET_CONFIGURE_ARGS) \
$(TARGET_CONFIGURE_OPTS) \
CFLAGS="$(TARGET_CFLAGS) $(ZLIB_PIC)" \
./configure \
$(ZLIB_SHARED) \
--prefix=/usr \

)
endef

define ZLIB_BUILD_CMDS
$(MAKE1) -C $(@D)

endef

define ZLIB_INSTALL_STAGING_CMDS
$(MAKE1) -C $(@D) DESTDIR=$(STAGING_DIR) LDCONFIG=true install

endef

define ZLIB_INSTALL_TARGET_CMDS
$(MAKE1) -C $(@D) DESTDIR=$(TARGET_DIR) LDCONFIG=true install

endef

$(eval $(generic-package))

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 160/332

Integrating new packages in Buildroot

autotools-package infrastructure

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 161/332

The autotools-package infrastructure: basics

▶ The autotools-package infrastructure inherits from
generic-package and is specialized to handle autotools
based packages.

▶ It provides a default implementation of:
▶ <pkg>_CONFIGURE_CMDS. Calls the ./configure script with

appropriate environment variables and arguments.
▶ <pkg>_BUILD_CMDS. Calls make.
▶ <pkg>_INSTALL_TARGET_CMDS, <pkg>_INSTALL_STAGING_CMDS

and <pkg>_INSTALL_CMDS. Call make install with the
appropriate DESTDIR.

▶ A normal autotools based package therefore does not need to
describe any action: only metadata about the package.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 162/332

The autotools-package: steps

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 163/332

The autotools-package infrastructure: variables

▶ It provides additional variables that can be defined by the
package:

▶ <pkg>_CONF_ENV to pass additional values in the environment
of the ./configure script.

▶ <pkg>_CONF_OPTS to pass additional options to the
./configure script.

▶ <pkg>_INSTALL_OPTS, <pkg>_INSTALL_STAGING_OPTS and
<pkg>_INSTALL_TARGET_OPTS to adjust the make target and
options used for the installation.

▶ <pkg>_AUTORECONF. Defaults to NO, can be set to YES if
regenerating Makefile.in files and configure script is
needed. The infrastructure will automatically make sure
autoconf, automake, libtool are built.

▶ <pkg>_GETTEXTIZE. Defaults to NO, can be set to YES to
gettextize the package. Only makes sense if
<pkg>_AUTORECONF = YES.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 164/332

Canonical autotools-package example

.libyaml.mk..

.

LIBYAML_VERSION = 0.1.6
LIBYAML_SOURCE = yaml-$(LIBYAML_VERSION).tar.gz
LIBYAML_SITE = http://pyyaml.org/download/libyaml
LIBYAML_INSTALL_STAGING = YES
LIBYAML_LICENSE = MIT
LIBYAML_LICENSE_FILES = LICENSE

$(eval $(autotools-package))

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 165/332

More complicated autotools-package example

.

.

POPPLER_VERSION = 0.32.0
POPPLER_SOURCE = poppler-$(POPPLER_VERSION).tar.xz
POPPLER_SITE = http://poppler.freedesktop.org
POPPLER_DEPENDENCIES = fontconfig
POPPLER_LICENSE = GPLv2+
POPPLER_LICENSE_FILES = COPYING
POPPLER_INSTALL_STAGING = YES
POPPLER_CONF_OPTS = \

--with-font-configuration=fontconfig

ifeq ($(BR2_PACKAGE_LCMS2),y)
POPPLER_CONF_OPTS += --enable-cms=lcms2
POPPLER_DEPENDENCIES += lcms2
else
POPPLER_CONF_OPTS += --enable-cms=none
endif

ifeq ($(BR2_PACKAGE_TIFF),y)
POPPLER_CONF_OPTS += --enable-libtiff
POPPLER_DEPENDENCIES += tiff
else
POPPLER_CONF_OPTS += --disable-libtiff
endif

[...]

.

.

[...]

ifeq ($(BR2_PACKAGE_POPPLER_QT),y)
POPPLER_DEPENDENCIES += qt
POPPLER_CONF_OPTS += --enable-poppler-qt4
else
POPPLER_CONF_OPTS += --disable-poppler-qt4
endif

ifeq ($(BR2_PACKAGE_OPENJPEG),y)
POPPLER_DEPENDENCIES += openjpeg
POPPLER_CONF_OPTS += \

-enable-libopenjpeg=openjpeg1
else
POPPLER_CONF_OPTS += -enable-libopenjpeg=none
endif

$(eval $(autotools-package))

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 166/332

Integrating new packages in Buildroot

python-package infrastructure

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 167/332

Python package infrastructure: basics

▶ Modules for the Python language often use distutils or
setuptools as their build/installation system.

▶ Buildroot provides a python-package infrastructure for such
packages.

▶ Supports all the generic-package metadata information
(source, site, license, etc.)

▶ Adds a mandatory variable <pkg>_SETUP_TYPE, which must
be set to either distutils or setuptools

▶ And several optional variables to further adjust the build:
<pkg>_ENV, <pkg>_BUILD_OPTS,
<pkg>_INSTALL_TARGET_OPTS,
<pkg>_INSTALL_STAGING_OPTS, <pkg>_INSTALL_OPTS,
<pkg>_NEEDS_HOST_PYTHON.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 168/332

Python package: simple example

.python-serial.mk..

.

PYTHON_SERIAL_VERSION = 2.6
PYTHON_SERIAL_SOURCE = pyserial-$(PYTHON_SERIAL_VERSION).tar.gz
PYTHON_SERIAL_SITE = http://pypi.python.org/packages/source/p/pyserial
PYTHON_SERIAL_LICENSE = Python Software Foundation License
PYTHON_SERIAL_LICENSE_FILES = LICENSE.txt
PYTHON_SERIAL_SETUP_TYPE = distutils

$(eval $(python-package))

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 169/332

Python package: more complicated example

.python-serial.mk..

.

PYTHON_LXML_VERSION = 3.4.2
PYTHON_LXML_SITE = http://lxml.de/files
PYTHON_LXML_SOURCE = lxml-$(PYTHON_LXML_VERSION).tgz
[...]
PYTHON_LXML_SETUP_TYPE = setuptools
PYTHON_LXML_DEPENDENCIES = libxml2 libxslt zlib

PYTHON_LXML_BUILD_OPTS = \
--with-xslt-config=$(STAGING_DIR)/usr/bin/xslt-config \
--with-xml2-config=$(STAGING_DIR)/usr/bin/xml2-config

$(eval $(python-package))

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 170/332

Integrating new packages in Buildroot

Target vs. host packages

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 171/332

Host packages

▶ As explained earlier, most packages in Buildroot are
cross-compiled for the target. They are called target
packages.

▶ Some packages however may need to be built natively for the
build machine, they are called host packages. They can be
needed for a variety of reasons:

▶ Needed as a tool to build other things for the target. Buildroot
wants to limit the number of host utilities required to be
installed on the build machine, and wants to ensure the proper
version is used. So it builds some host utilities by itself.

▶ Needed as a tool to interact, debug, reflash, generate images,
or other activities around the build itself.

▶ Version dependencies: building a Python interpreter for the
target needs a Python interpreter of the same version on the
host.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 172/332

Target vs. host in the package infrastructure (1)

▶ Each package infrastructure provides a <foo>-package macro
and a host-<foo>-package macro.

▶ For a given package in package/baz/baz.mk, <foo>-package
will create a package named baz and host-<foo>-package
will create a package named host-baz.

▶ <foo>-package will use the variables prefixed with BAZ_

▶ host-<foo>-package will use the variables prefixed with
HOST_BAZ_

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 173/332

Target vs. host in the package infrastructure (2)

▶ For many variables, when HOST_BAZ_<var> is not defined, the
package infrastructure uses BAZ_<var> instead: source, site,
version, license, etc.

▶ E.g. defining <PKG>_SITE once is sufficient.
▶ But not for all variables, especially commands

▶ E.g. HOST_<PKG>_BUILD_CMDS is not inherited from
<PKG>_BUILD_CMDS

▶ HOST_<PKG>_DEPENDENCIES is handled specially:
▶ Derived automatically from <PKG>_DEPENDENCIES, after

prepending host- to all dependencies.
▶ FOO_DEPENDENCIES = bar host-baz →

HOST_FOO_DEPENDENCIES = host-bar host-baz.
▶ Can be overridden if the dependencies of the host variant are

different than the ones of the target variant.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 174/332

Example 1: a pure build utility

▶ bison, a general-purpose parser generator.
▶ Purely used as build dependency in packages

▶ FBSET_DEPENDENCIES = host-bison host-flex

▶ No Config.in.host, not visible in menuconfig.
.
package/bison/bison.mk..

.

BISON_VERSION = 3.0.4
BISON_SOURCE = bison-$(BISON_VERSION).tar.xz
BISON_SITE = $(BR2_GNU_MIRROR)/bison
BISON_LICENSE = GPLv3+
BISON_LICENSE_FILES = COPYING
HOST_BISON_DEPENDENCIES = host-m4

$(eval $(host-autotools-package))

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 175/332

Example 2: a flashing utility

▶ dfu-util, to reflash devices support the USB DFU protocol.
Typically used on a development PC.

▶ Not used as a build dependency of another package → visible
in menuconfig.

.
package/dfu-util/Config.in.host..

.

config BR2_PACKAGE_HOST_DFU_UTIL
bool "host dfu-util"
help
Dfu-util is the host side implementation of the DFU 1.0
specification of the USB forum. DFU is intended to download
and upload firmware to devices connected over USB.

http://dfu-util.gnumonks.org/

.
package/dfu-util/dfu-util.mk..

.

DFU_UTIL_VERSION = 0.6
DFU_UTIL_SITE = http://dfu-util.gnumonks.org/releases
DFU_UTIL_LICENSE = GPLv2+
DFU_UTIL_LICENSE_FILES = COPYING

HOST_DFU_UTIL_DEPENDENCIES = host-libusb

$(eval $(host-autotools-package))

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 176/332

Example 3: target and host of the same package

.
package/e2tools/e2tools.mk..

.

E2TOOLS_VERSION = 3158ef18a903ca4a98b8fa220c9fc5c133d8bdf6
E2TOOLS_SITE = $(call github,ndim,e2tools,$(E2TOOLS_VERSION))

Source coming from GitHub, no configure included.
E2TOOLS_AUTORECONF = YES
E2TOOLS_LICENSE = GPLv2
E2TOOLS_LICENSE_FILES = COPYING
E2TOOLS_DEPENDENCIES = e2fsprogs
E2TOOLS_CONF_ENV = LIBS="-lpthread"
HOST_E2TOOLS_CONF_ENV = LIBS="-lpthread"

$(eval $(autotools-package))
$(eval $(host-autotools-package))

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 177/332

Practical lab - New packages in Buildroot

▶ Practical creation of several new
packages in Buildroot, using the
different package infrastructures.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 178/332

Advanced package aspects

Advanced package
aspects
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 179/332

Advanced package aspects

Licensing report

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 180/332

Licensing report: introduction

▶ A key aspect of embedded Linux systems is license
compliance.

▶ Embedded Linux systems integrate together a number of
open-source components, each distributed under its own
license.

▶ The different open-source licenses may have different
requirements, that must be met before the product using the
embedded Linux system starts shipping.

▶ Buildroot helps in this license compliance process by offering
the possibility of generating a number of license-related
information from the list of selected packages.

▶ Generated using:
.
.$ make legal-info

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 181/332

Licensing report: contents of legal-info

▶ sources/, all the source files that are redistributable (tarballs,
patches, etc.)

▶ buildroot.config, the Buildroot .config file
▶ host-manifest.csv, a CSV file with the list of host

packages, their version, license, etc.
▶ host-licenses/<pkg>/, the full license text of all host

packages, per package
▶ host-licenses.txt, the full license text of all host packages,

in a single file
▶ licenses.txt, the full license text of all target packages, in a

single file
▶ README
▶ licenses/, the full license text of all target packages, per

package
▶ manifest.csv, a CSV file with the list of target packages,

their version, license, etc.
free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 182/332

Including licensing information in packages

▶ <pkg>_LICENSE
▶ Comma-separated list of license(s) under which the package

is distributed.
▶ Free form string, but should if possible use the license codes

from https://spdx.org/licenses/
▶ Can indicate which part is under which license (programs,

tests, libraries, etc.)
▶ <pkg>_LICENSE_FILES

▶ Space-separated list of file paths from the package source
code containing the license text and copyright information

▶ Paths relative to the package top-level source directory
▶ <pkg>_REDISTRIBUTE

▶ Boolean indicating whether the package source code can be
redistributed or not (part of the legal-info output)

▶ Defaults to YES, can be overridden to NO
▶ If NO, source code is not copied when generating the licensing

report

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 183/332

https://spdx.org/licenses/

Licensing information examples

.linux.mk..

.
LINUX_LICENSE = GPLv2
LINUX_LICENSE_FILES = COPYING

.acl.mk..

.
ACL_LICENSE = GPLv2+ (programs), LGPLv2.1+ (libraries)
ACL_LICENSE_FILES = doc/COPYING doc/COPYING.LGPL

.owl-linux.mk..

.

OWL_LINUX_LICENSE = PROPRIETARY
OWL_LINUX_LICENSE_FILES = LICENSE
OWL_LINUX_REDISTRIBUTE = NO

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 184/332

Advanced package aspects

Patching packages

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 185/332

Patching packages: why?

▶ In some situations, it might be needed to patch the source
code of certain packages built by Buildroot.

▶ Useful to:
▶ Fix cross-compilation issues
▶ Backport bug or security fixes from upstream
▶ Integrate new features or fixes not available upstream, or that

are too specific to the product being made
▶ Patches are automatically applied by Buildroot, during the

patch step, i.e. after extracting the package, but before
configuring it.

▶ Buildroot already comes with a number of patches for various
packages, but you may need to add more for your own
packages, or to existing packages.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 186/332

Patch application ordering

▶ Overall the patches are applied in this order:
1. Patches mentioned in the <pkg>_PATCH variable of the

package .mk file. They are automatically downloaded before
being applied.

2. Patches present in the package directory
package/<pkg>/*.patch

3. Patches present in the global patch directories
▶ In each case, they are applied:

▶ In the order specified in a series file, if available
▶ Otherwise, in alphabetic ordering

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 187/332

Patch conventions

▶ There are a few conventions and best practices that the
Buildroot project encourages to use when managing patches

▶ Their name should start with a sequence number that
indicates the ordering in which they should be applied.

.
ls package/nginx/*.patch..

.

0001-auto-type-sizeof-rework-autotest-to-be-cross-compila.patch
0002-auto-feature-add-mechanism-allowing-to-force-feature.patch
0003-auto-set-ngx_feature_run_force_result-for-each-featu.patch
0004-auto-lib-libxslt-conf-allow-to-override-ngx_feature_.patch
0005-auto-unix-make-sys_nerr-guessing-cross-friendly.patch

▶ Each patch should contain a description of what the patch
does, and if possible its upstream status.

▶ Each patch should contain a Signed-off-by that identifies
the author of the patch.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 188/332

Patch example

.

.

From 81289d1d1adaf5a767a4b4d1309c286468cfd37f Mon Sep 17 00:00:00 2001
From: Samuel Martin <s.martin49@gmail.com>
Date: Thu, 24 Apr 2014 23:27:32 +0200
Subject: [PATCH 1/5] auto/type/sizeof: rework autotest to be cross-compilation
friendly

Rework the sizeof test to do the checks at compile time instead of at
runtime. This way, it does not break when cross-compiling for a
different CPU architecture.

Signed-off-by: Samuel Martin <s.martin49@gmail.com>

auto/types/sizeof | 42 ++++++++++++++++++++++++++++--------------
1 file changed, 28 insertions(+), 14 deletions(-)

diff --git a/auto/types/sizeof b/auto/types/sizeof
index 9215a54..c2c3ede 100644
--- a/auto/types/sizeof
+++ b/auto/types/sizeof
@@ -14,7 +14,7 @@ END

ngx_size=

-cat << END > $NGX_AUTOTEST.c
+cat << _EOF > $NGX_AUTOTEST.c
[...]

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 189/332

Global patch directories

▶ You can include patches for the different packages in their
package directory, package/<pkg>/.

▶ However, doing this involves changing the Buildroot sources
themselves, which may not be appropriate for some highly
specific patches.

▶ The global patch directories mechanism allows to specify
additional locations where Buildroot will look for patches to
apply on packages.

▶ BR2_GLOBAL_PATCH_DIR specifies a space-separated list of
directories containing patches.

▶ These directories must contain sub-directories named after the
packages, themselves containing the patches to be applied.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 190/332

Global patch directory example

.Patching strace..

.

$ ls package/strace/*.patch
0001-linux-aarch64-add-missing-header.patch

$ find ~/patches/
~/patches/
~/patches/strace/
~/patches/strace/0001-Demo-strace-change.patch

$ grep ^BR2_GLOBAL_PATCH_DIR .config
BR2_GLOBAL_PATCH_DIR="$(HOME)/patches"

$ make strace
[...]
>>> strace 4.10 Patching

Applying 0001-linux-aarch64-add-missing-header.patch using patch:
patching file linux/aarch64/arch_regs.h

Applying 0001-Demo-strace-change.patch using patch:
patching file README
[...]

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 191/332

Generating patches

▶ To generate the patches against a given package source code,
there are typically two possibilities.

▶ Use the upstream version control system, often Git
▶ Use a tool called quilt

▶ Useful when there is no version control system provided by the
upstream project

▶ http://savannah.nongnu.org/projects/quilt

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 192/332

http://savannah.nongnu.org/projects/quilt

Generating patches: with Git

Needs to be done outside of Buildroot: you cannot use the
Buildroot package build directory.
1. Clone the upstream Git repository

git clone git://...

2. Create a branch starting on the tag marking the stable release
of the software as packaged in Buildroot
git checkout -b buildroot-changes v3.2

3. Import existing Buildroot patches (if any)
git am /path/to/buildroot/package/<foo>/*.patch

4. Make your changes and commit them
git commit -s -m ``this is a change''

5. Generate the patches
git format-patch v3.2

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 193/332

Generating patches: with Quilt

1. Extract the package source code:
tar xf /path/to/dl/<foo>-<version>.tar.gz

2. Inside the package source code, reate a directory for patches
mkdir patches

3. Import existing Buildroot patches
quilt import /path/to/buildroot/package/<foo>/*.
patch

4. Apply existing Buildroot patches
quilt push -a

5. Create a new patch
quilt new 0001-fix-header-inclusion.patch

6. Edit a file
quilt edit main.c

7. Refresh the patch
quilt refresh

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 194/332

Advanced package aspects

User, permission and device tables

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 195/332

Package-specific users

▶ The default skeleton in system/skeleton/ has a number of
default users/groups.

▶ Packages can define their own custom users/groups using the
<pkg>_USERS variable:

.

.

define <pkg>_USERS
username uid group gid password home shell groups comment

endef

▶ Examples:
.

.

define AVAHI_USERS
avahi -1 avahi -1 * - - -

endef

.

.

define MYSQL_USERS
mysql -1 nogroup -1 * /var/mysql - - MySQL daemon

endef

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 196/332

File permissions and ownership

▶ By default, before creating the root filesystem images,
Buildroot changes the ownership of all files to 0:0, i.e.
root:root

▶ Permissions are preserved as is, but since the build is executed
as non-root, it is not possible to install setuid applications.

▶ A default set of permissions for certain files or directories is
defined in system/device_table.txt.

▶ The <pkg>_PERMISSIONS variable allows packages to define
special ownership and permissions for files and directories:

.

.

define <pkg>_PERMISSIONS
name type mode uid gid major minor start inc count
endef

▶ The major, minor, start, inc and count fields are not used.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 197/332

File permissions and ownership: examples

▶ sudo needs to be installed setuid root:
.

.

define SUDO_PERMISSIONS
/usr/bin/sudo f 4755 0 0 - - - - -

endef

▶ /var/lib/nginx needs to be owned by www-data, which has
UID/GID 33 defined in the skeleton:

.

.

define NGINX_PERMISSIONS
/var/lib/nginx d 755 33 33 - - - - -

endef

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 198/332

Devices

▶ Defining devices only applies when the chosen /dev
management strategy is Static using a device table. In other
cases, device files are created dynamically.

▶ A default set of device files is described in
system/device_table_dev.txt and created by Buildroot in
the root filesystem images.

▶ When packages need some additional custom devices, they
can use the <pkg>_DEVICES variable:

.

.

define <pkg>_DEVICES
name type mode uid gid major minor start inc count
endef

▶ Becoming less useful, since most people are using a dynamic
/dev nowadays.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 199/332

Devices: example

.xenomai.mk..

.

define XENOMAI_DEVICES
/dev/rtheap c 666 0 0 10 254 0 0 -
/dev/rtscope c 666 0 0 10 253 0 0 -
/dev/rtp c 666 0 0 150 0 0 1 32
endef

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 200/332

Advanced package aspects

Init scripts and systemd unit files

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 201/332

Init scripts, systemd unit files

▶ Buildroot supports several main init systems: sysvinit,
Busybox and systemd

▶ When packages want to install a program to be started at
boot time, they need to install either a startup script
(sysvinit/Busybox) or a systemd service file.

▶ They can do so with the <pkg>_INSTALL_INIT_SYSV and
<pkg>_INSTALL_INIT_SYSTEMD variables, which contain a list
of shell commands.

▶ Buildroot will execute either the <pkg>_INSTALL_INIT_SYSV
or the <pkg>_INSTALL_INIT_SYSTEMD commands of all
enabled packages depending on the selected init system.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 202/332

Init scripts, systemd unit files: example

.bind.mk..

.

define BIND_INSTALL_INIT_SYSV
$(INSTALL) -m 0755 -D package/bind/S81named \

$(TARGET_DIR)/etc/init.d/S81named
endef

define BIND_INSTALL_INIT_SYSTEMD
$(INSTALL) -D -m 644 package/bind/named.service \

$(TARGET_DIR)/usr/lib/systemd/system/named.service

mkdir -p $(TARGET_DIR)/etc/systemd/system/multi-user.target.wants

ln -sf /usr/lib/systemd/system/named.service \
$(TARGET_DIR)/etc/systemd/system/[...]/named.service

endef

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 203/332

Advanced package aspects

Config scripts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 204/332

Config scripts: introduction

▶ Libraries not using pkg-config often install a small shell
script that allows applications to query the compiler and
linker flags to use the library.

▶ Examples: curl-config, freetype-config, etc.
▶ Such scripts will:

▶ generally return results that are not appropriate for
cross-compilation

▶ be used by other cross-compiled Buildroot packages that use
those libraries

▶ By listing such scripts in the <pkg>_CONFIG_SCRIPTS variable,
Buildroot will adapt the prefix, header and library paths to
make them suitable for cross-compilation.

▶ Paths in <pkg>_CONFIG_SCRIPTS are relative to
$(STAGING_DIR)/usr/bin.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 205/332

Config scripts: examples

.libpng.mk..

.
LIBPNG_CONFIG_SCRIPTS = \

libpng$(LIBPNG_SERIES)-config libpng-config

.imagemagick.mk..

.

IMAGEMAGICK_CONFIG_SCRIPTS = \
$(addsuffix -config,Magick MagickCore MagickWand Wand)

ifeq ($(BR2_INSTALL_LIBSTDCPP)$(BR2_USE_WCHAR),yy)
IMAGEMAGICK_CONFIG_SCRIPTS += Magick++-config
endif

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 206/332

Config scripts: effect

.Without <pkg>_CONFIG_SCRIPTS..

.

$./output/staging/usr/bin/libpng-config --cflags --ldflags
-I/usr/include/libpng16
-L/usr/lib -lpng16

.With <pkg>_CONFIG_SCRIPTS..

.

$./output/staging/usr/bin/libpng-config --cflags --ldflags
-I.../buildroot/output/host/usr/arm-buildroot-linux-uclibcgnueabi/sysroot/usr/include/libpng16
-L.../buildroot/output/host/usr/arm-buildroot-linux-uclibcgnueabi/sysroot/usr/lib -lpng16

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 207/332

Advanced package aspects

Hooks

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 208/332

Hooks: principle (1)

▶ Buildroot package infrastructure often implement a default
behavior for certain steps:

▶ generic-package implements for all packages the download,
extract and patch steps

▶ Other infrastructures such as autotools-package or
cmake-package also implement the configure, build and
installations steps

▶ In some situations, the package may want to do additional
actions before or after one these steps.

▶ The hook mechanism allows packages to add such custom
actions.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 209/332

Hooks: principle (2)

▶ There are pre and post hooks available for all steps of the
package compilation process:

▶ download, extract, rsync, patch, configure, build, install, install
staging, install target, install images, legal info

▶ <pkg>_(PRE|POST)_<step>_HOOKS
▶ Example: CMAKE_POST_INSTALL_TARGET_HOOKS,

CVS_POST_PATCH_HOOKS, BINUTILS_PRE_PATCH_HOOKS
▶ Hook variables contain a list of make macros to call at the

appropriate time.
▶ Use += to register an additional hook to a hook point

▶ Those make macros contain a list of commands to execute.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 210/332

Hooks: examples

.libungif.mk: remove unneeded binaries..

.

define LIBUNGIF_BINS_CLEANUP
rm -f $(addprefix $(TARGET_DIR)/usr/bin/,$(LIBUNGIF_BINS))

endef

LIBUNGIF_POST_INSTALL_TARGET_HOOKS += LIBUNGIF_BINS_CLEANUP

.vsftpd.mk: adjust configuration..

.

define VSFTPD_ENABLE_SSL
$(SED) 's/.*VSF_BUILD_SSL/#define VSF_BUILD_SSL/' \

$(@D)/builddefs.h
endef

ifeq ($(BR2_PACKAGE_OPENSSL),y)
VSFTPD_DEPENDENCIES += openssl
VSFTPD_LIBS += -lssl -lcrypto
VSFTPD_POST_CONFIGURE_HOOKS += VSFTPD_ENABLE_SSL
endif

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 211/332

Advanced package aspects

Overriding commands

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 212/332

Overriding commands: principle

▶ In other situations, a package may want to completely
override the default implementation of a step provided by a
package infrastructure.

▶ A package infrastructure will in fact only implement a given
step if not already defined by a package.

▶ So defining <pkg>_EXTRACT_CMDS or <pkg>_BUILDS_CMDS in
your package .mk file will override the package infrastructure
implementation (if any).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 213/332

Overriding commands: examples

.jquery: source code is only one file..

.

JQUERY_SITE = http://code.jquery.com
JQUERY_SOURCE = jquery-$(JQUERY_VERSION).min.js

define JQUERY_EXTRACT_CMDS
cp $(DL_DIR)/$(JQUERY_SOURCE) $(@D)

endef

.tftpd: install only what's needed..

.

define TFTPD_INSTALL_TARGET_CMDS
$(INSTALL) -D $(@D)/tftp/tftp $(TARGET_DIR)/usr/bin/tftp
$(INSTALL) -D $(@D)/tftpd/tftpd $(TARGET_DIR)/usr/sbin/tftpd

endef

$(eval $(autotools-package))

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 214/332

Advanced package aspects

Legacy handling

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 215/332

Legacy handling: Config.in.legacy

▶ When a Config.in option is removed, the corresponding
value in the .config is silently removed.

▶ Due to this, when users upgrade Buildroot, they generally
don't know that an option they were using has been removed.

▶ Buildroot therefore adds the removed config option to
Config.in.legacy with a description of what has happened.

▶ If any of these legacy options is enabled then Buildroot
refuses to build.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 216/332

Advanced package aspects

Virtual packages

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 217/332

Virtual packages

▶ There are situations where different packages provide an
implementation of the same interface

▶ The most useful example is OpenGL
▶ OpenGL is an API
▶ Each HW vendor typically provides its own OpenGL

implementation, each packaged as separate Buildroot packages
▶ Packages using the OpenGL interface do not want to know

which implementation they are using: they are simply using
the OpenGL API

▶ The mechanism of virtual packages in Buildroot allows to
solve this situation.

▶ libgles is a virtual package offering the OpenGL ES API
▶ Eight packages are providers of the OpenGL ES API:

gpu-amd-bin-mx51, gpu-viv-bin-mx6q, mesa3d,
nvidia-driver, nvidia-tegra23-binaries, rpi-userland,
sunxi-mali, ti-gfx

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 218/332

Virtual packages

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 219/332

Virtual package definition: Config.in

.
libgles/Config.in..

.

config BR2_PACKAGE_HAS_LIBGLES
bool

config BR2_PACKAGE_PROVIDES_LIBGLES
depends on BR2_PACKAGE_HAS_LIBGLES
string

▶ BR2_PACKAGE_HAS_LIBGLES is a hidden boolean
▶ Packages needing OpenGL ES will depends on it.
▶ Packages providing OpenGL ES will select it.

▶ BR2_PACKAGE_PROVIDES_LIBGLES is a hidden string
▶ Packages providing OpenGL ES will define their name as the

variable value
▶ The libgles package will have a build dependency on this

provider package.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 220/332

Virtual package definition: .mk

.
libgles/libgles.mk..
.$(eval $(virtual-package))

▶ Nothing to do: the virtual-package infrastructure takes
care of everything, using the BR2_PACKAGE_HAS_<name> and
BR2_PACKAGE_PROVIDES_<name> options.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 221/332

Virtual package provider
.
sunxi-mali/Config.in..

.

config BR2_PACKAGE_SUNXI_MALI
bool "sunxi-mali"
select BR2_PACKAGE_HAS_LIBEGL
select BR2_PACKAGE_HAS_LIBGLES

config BR2_PACKAGE_PROVIDES_LIBGLES
default "sunxi-mali"

.
sunxi-mali/sunxi-mali.mk..

.

[...]
SUNXI_MALI_PROVIDES = libegl libgles
[...]

▶ The variable <pkg>_PROVIDES is only used to detect if two
providers for the same virtual package are enabled.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 222/332

Virtual package user

.
qt5/qt5base/Config.in..

.

config BR2_PACKAGE_QT5BASE_OPENGL_ES2
bool "OpenGL ES 2.0+"
depends on BR2_PACKAGE_HAS_LIBGLES
help
Use OpenGL ES 2.0 and later versions.

.
qt5/qt5base/qt5base.mk..

.

ifeq ($(BR2_PACKAGE_QT5BASE_OPENGL_DESKTOP),y)
QT5BASE_CONFIGURE_OPTS += -opengl desktop
QT5BASE_DEPENDENCIES += libgl
else ifeq ($(BR2_PACKAGE_QT5BASE_OPENGL_ES2),y)
QT5BASE_CONFIGURE_OPTS += -opengl es2
QT5BASE_DEPENDENCIES += libgles
else
QT5BASE_CONFIGURE_OPTS += -no-opengl
endif

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 223/332

Practical lab - Advanced packages

▶ Package an application with a
mandatory dependency and an
optional dependency

▶ Package a library, hosted on
GitHub

▶ Use hooks to tweak packages
▶ Add a patch to a package

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 224/332

Analyzing the build

Analyzing the
build
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 225/332

Analyzing the build: available tools

▶ Buildroot provides several useful tools to analyze the build:
▶ The licensing report, covered in a previous section, which

allows to analyze the list of packages and their licenses.
▶ The dependency graphing tools
▶ The build time graphing tools
▶ The filesystem size tools

▶ Additional tools can be constructed using instrumentation
scripts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 226/332

Dependency graphing

▶ Exploring the dependencies between packages is useful to
understand

▶ why a particular package is being brought into the build
▶ if the build size and duration can be reduced

▶ make graph-depends to generate a full dependency graph,
which can be huge!

▶ make <pkg>-graph-depends to generate the dependency
graph of a given package

▶ The graph is done according to the current Buildroot
configuration.

▶ Resulting graphs in $(O)/graphs/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 227/332

Dependency graph example

ALL

toolchain busybox strace rootfs-ubifs

toolchain-buildroot

host-gcc-final

uclibc

host-gcc-initial linux-headers

host-binutils host-mpc

host-mpfr

host-gmp

host-m4

host-mtd host-fakeroot host-makedevs

host-e2fsprogs

host-lzo

host-zlib

host-pkgconf

host-automake

host-autoconf

host-libtool

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 228/332

Dependency graphing: advanced

▶ Variable BR2_GRAPH_OUT, to select the output format.
Defaults to pdf, can be png or svg for example.

▶ Internally, the graph is generated by the Python script
support/scripts/graph-depends

▶ All options that this script supports can be passed using the
BR2_GRAPH_DEPS_OPTS variable when calling
make graph-depends

▶ Example
▶ Generate a PNG graph of the openssh package dependencies
▶ Custom colors
▶ Stop graphing on the host-automake package, to remove a

part of the graph we're not interested in

.

.
BR2_GRAPH_OUT=png \

BR2_GRAPH_DEPS_OPTS="--colours red,blue,green --stop-on=host-automake" \
make openssh-graph-depends

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 229/332

Build time graphing

▶ When the generated embedded Linux system grows bigger
and bigger, the build time also increases.

▶ It is sometimes useful to analyze this build time, and see if
certain packages are particularly problematic.

▶ Buildroot collects build duration data in the file
$(O)/build/build-time.log

▶ make graph-build generates several graphs in
$(O)/graphs/:

▶ build.hist-build.pdf, build time in build order
▶ build.hist-duration.pdf, build time by duration
▶ build.hist-name.pdf, build time by package name
▶ build.pie-packages.pdf, pie chart of the per-package build

time
▶ build.pie-steps.pdf, pie chart of the per-step build time

▶ Note: only works properly after a complete clean rebuild.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 230/332

Build time graphing: example

toolchain-external
toolchain

busybox

cups

host-m
4

host-libtool

host-autoconf

host-autom
ake

ijs zlib

lcm
s2

gettext

host-gettext

host-libffi

host-pkgconf

host-zlib

host-libglib2

libffi

pcre

libglib2

expat

freetype

fontconfig

poppler

qpdf

0

20

40

60

80

100

Ti
m

e
(s

ec
on

ds
)

Build time of packages, by build order

extract
patch
configure
build
install-target
install-staging
install-images
install-host

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 231/332

Filesystem size graphing

▶ In many embedded systems, storage resources are limited.
▶ For this reason, it is useful to be able to analyze the size of

your root filesystem, and see which packages are consuming
the biggest amount of space.

▶ Allows to focus the size optimizations on the relevant
packages.

▶ Buildroot collects data about the size installed by each
package.

▶ make graph-size produces:
▶ file-size-stats.csv, CSV with the raw data of the per-file

size
▶ package-size-stats.csv, CSV with the raw data of the

per-package size
▶ graph-size.pdf, pie chart of the per-package size

consumption

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 232/332

Filesystem size graphing: example

strace (289 kB)

9.2%

busybox (686 kB)

21.8%

lua (262 kB)

8.3%ncurses (198 kB)

6.3%

toolchain-external (1462 kB)

46.3%
libusb (71 kB)

2.3% htop (100 kB)

3.2% libhid (52 kB)
1.7% Other (32 kB)1.0%

Total filesystem size: 3156 kB

Filesystem size per package

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 233/332

Instrumentation scripts

▶ Additional analysis tools can be constructed using the
instrumentation scripts mechanism.

▶ BR2_INSTRUMENTATION_SCRIPTS is an environment variable,
containing a space-separated list of scripts, that will be called
before and after each step of the build of all packages.

▶ Three arguments are passed to the scripts:
1. start or stop to indicate whether it's the beginning or end of

the step
2. the name of the step
3. the name of the package

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 234/332

Instrumentation scripts: example

.instrumentation.sh..

.
#!/bin/sh
echo "${3} now ${1}s ${2}"

.Output..

.

$ make BR2_INSTRUMENTATION_SCRIPTS="./instrumentation.sh"
strace now starts extract
>>> strace 4.10 Extracting
xzcat /home/thomas/dl/strace-4.10.tar.xz | tar --strip-components=1 \

-C /home/thomas/projets/buildroot/output/build/strace-4.10 -xf -
strace now ends extract
strace now starts patch
>>> strace 4.10 Patching

Applying 0001-linux-aarch64-add-missing-header.patch using patch:
patching file linux/aarch64/arch_regs.h
>>> strace 4.10 Updating config.sub and config.guess
for file in config.guess config.sub; do for i in $(find \

/home/thomas/projets/buildroot/output/build/strace-4.10 -name $file); do \
cp support/gnuconfig/$file $i; done; done

>>> strace 4.10 Patching libtool
strace now ends patch
strace now starts configure
>>> strace 4.10 Configuring

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 235/332

Advanced topics

Advanced topics
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 236/332

BR2_EXTERNAL: principle

▶ Storing your custom packages, custom configuration files and
custom defconfigs inside the Buildroot tree may not be the
most practical solution

▶ Doesn't cleanly separate open-source parts from proprietary
parts

▶ Makes it harder to upgrade Buildroot
▶ The BR2_EXTERNAL mechanism allows to store your own

package recipes, defconfigs and other artefacts outside of the
Buildroot source tree.

▶ Note: can only be used to add new packages, not to override
existing Buildroot packages

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 237/332

BR2_EXTERNAL: example organization

▶ project/
▶ buildroot/

▶ The Buildroot source code, cloned from Git, or extracted from
a release tarball.

▶ external/
▶ Your external tree, with your own custom packages and

defconfigs
▶ output-build1/
▶ output-build2/

▶ Several output directories, to build various configurations
▶ custom-app/
▶ custom-lib/

▶ The source code of your custom applications and libraries.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 238/332

BR2_EXTERNAL: mechanism

▶ Specify BR2_EXTERNAL on the command line when building.
▶ Buildroot will:

▶ include $(BR2_EXTERNAL)/Config.in in the configuration
menu, under a new menu called User-provided options

▶ include $(BR2_EXTERNAL)/external.mk in the make logic
▶ include $(BR2_EXTERNAL)/configs/ in the list of defconfigs

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 239/332

BR2_EXTERNAL: recommended structure
.

.

+-- board/
| +-- <company>/
| +-- <boardname>/
| +-- linux.config
| +-- busybox.config
| +-- <other configuration files>
| +-- post_build.sh
| +-- post_image.sh
| +-- rootfs_overlay/
| | +-- etc/
| | +-- <some file>
| +-- patches/
| +-- foo/
| | +-- <some patch>
| +-- libbar/
| +-- <some other patches>
|
+-- configs/
| +-- <boardname>_defconfig
|
+-- package/
| +-- <company>/
| +-- package1/
| | +-- Config.in
| | +-- package1.mk
| +-- package2/
| +-- Config.in
| +-- package2.mk
|
+-- Config.in
+-- external.mk

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 240/332

BR2_EXTERNAL/Config.in

▶ Custom configuration options
▶ Configuration options for the BR2_EXTERNAL packages
▶ The $BR2_EXTERNAL variable is available

.Example $(BR2_EXTERNAL)/Config.in..

.
source "$BR2_EXTERNAL/package/package1/Config.in"
source "$BR2_EXTERNAL/package/package2/Config.in"

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 241/332

BR2_EXTERNAL/external.mk

▶ Can include custom make logic
▶ Generally only used to include the package .mk files

.Example $(BR2_EXTERNAL)/external.mk..

.include $(sort $(wildcard $(BR2_EXTERNAL)/package/*/*.mk))

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 242/332

Using BR2_EXTERNAL

▶ Not a configuration option, only an environment variable to
be passed on the command line

.

.make BR2_EXTERNAL=/path/to/external

▶ Automatically saved in the hidden .br-external file in the
output directory

▶ no need to pass BR2_EXTERNAL at every make invocation
▶ can be changed at any time by passing a new value, and

removed by passing an empty value
▶ Can be either an absolute or a relative path, but if relative,

important to remember that it's relative to the Buildroot
source directory

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 243/332

Use BR2_EXTERNAL in your configuration

▶ In your Buildroot configuration, don't use absolute paths for
the rootfs overlay, the post-build scripts, global patch
directories, etc.

▶ If they are located in your BR2_EXTERNAL, you can use
$(BR2_EXTERNAL) in your Buildroot configuration options.

▶ With the recommended structure shown before, a Buildroot
configuration would look like:

.

.

BR2_GLOBAL_PATCH_DIR="$(BR2_EXTERNAL)/board/<company>/<boardname>/patches/"
...
BR2_ROOTFS_OVERLAY="$(BR2_EXTERNAL)/board/<company>/<boardname>/rootfs_overlay/"
...
BR2_ROOTFS_POST_BUILD_SCRIPT="$(BR2_EXTERNAL)/board/<company>/<boardname>/post_build.sh"
BR2_ROOTFS_POST_IMAGE_SCRIPT="$(BR2_EXTERNAL)/board/<company>/<boardname>/post_image.sh"
...
BR2_LINUX_KERNEL_USE_CUSTOM_CONFIG=y
BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE="$(BR2_EXTERNAL)/board/<company>/<boardname>/linux.config"

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 244/332

Package-specific targets: basics

▶ Internally, each package is implemented through a number of
package-specific make targets

▶ They can sometimes be useful to call directly, in certain
situations.

▶ The targets used in the normal build flow of a package are:
▶ <pkg>, fully build and install the package
▶ <pkg>-source, just download the source code
▶ <pkg>-extract, download and extract
▶ <pkg>-patch, download, extract and patch
▶ <pkg>-configure, download, extract, patch and configure
▶ <pkg>-build, download, extract, patch, configure and build
▶ <pkg>-install-staging, download, extract, patch, configure

and do the staging installation (target packages only)
▶ <pkg>-install-target, download, extract, patch, configure

and do the target installation (target packages only)
▶ <pkg>-install, download, extract, patch, configure and

install

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 245/332

Package-specific targets: example (1)

.

.

$ make strace
>>> strace 4.10 Extracting
>>> strace 4.10 Patching
>>> strace 4.10 Updating config.sub and config.guess
>>> strace 4.10 Patching libtool
>>> strace 4.10 Configuring
>>> strace 4.10 Building
>>> strace 4.10 Installing to target
$ make strace-build
... nothing ...
$ make ltrace-patch
>>> ltrace 0896ce554f80afdcba81d9754f6104f863dea803 Extracting
>>> ltrace 0896ce554f80afdcba81d9754f6104f863dea803 Patching
$ make ltrace
>>> argp-standalone 1.3 Extracting
>>> argp-standalone 1.3 Patching
>>> argp-standalone 1.3 Updating config.sub and config.guess
>>> argp-standalone 1.3 Patching libtool
[...]
>>> ltrace 0896ce554f80afdcba81d9754f6104f863dea803 Configuring
>>> ltrace 0896ce554f80afdcba81d9754f6104f863dea803 Autoreconfiguring
>>> ltrace 0896ce554f80afdcba81d9754f6104f863dea803 Patching libtool
>>> ltrace 0896ce554f80afdcba81d9754f6104f863dea803 Building
>>> ltrace 0896ce554f80afdcba81d9754f6104f863dea803 Installing to target

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 246/332

Package-specific targets: advanced

▶ Additional useful targets
▶ make <pkg>-show-depends, show the package dependencies
▶ make <pkg>-graph-depends, generates a dependency graph
▶ make <pkg>-dirclean, completely remove the package source

code directory. The next make invocation will fully rebuild this
package.

▶ make <pkg>-reinstall, force to re-execute the installation
step of the package

▶ make <pkg>-rebuild, force to re-execute the build and
installation steps of the package

▶ make <pkg>-reconfigure, force to re-execute the configure,
build and installation steps of the package.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 247/332

Package-specific targets: example (2)

.

.

$ make strace
>>> strace 4.10 Extracting
>>> strace 4.10 Patching
>>> strace 4.10 Updating config.sub and config.guess
>>> strace 4.10 Patching libtool
>>> strace 4.10 Configuring
>>> strace 4.10 Building
>>> strace 4.10 Installing to target
$ ls output/build/
strace-4.10 [...]
$ make strace-dirclean
rm -Rf /home/thomas/projets/buildroot/output/build/strace-4.10
$ ls output/build/
[... no strace-4.10 directory ...]

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 248/332

Package-specific targets: example (3)

.

.

$ make strace
>>> strace 4.10 Extracting
>>> strace 4.10 Patching
>>> strace 4.10 Updating config.sub and config.guess
>>> strace 4.10 Patching libtool
>>> strace 4.10 Configuring
>>> strace 4.10 Building
>>> strace 4.10 Installing to target
$ make strace-rebuild
>>> strace 4.10 Building
>>> strace 4.10 Installing to target
$ make strace-reconfigure
>>> strace 4.10 Configuring
>>> strace 4.10 Building
>>> strace 4.10 Installing to target

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 249/332

Understanding rebuilds (1)

▶ Doing a full rebuild is achieved using:
.
.$ make clean all

▶ It will completely remove all build artefacts and restart the
build from scratch

▶ Buildroot does not try to be smart
▶ once the system has been built, if a configuration change is

made, the next make will not apply all the changes made to
the configuration.

▶ being smart is very, very complicated if you want to do it in a
reliable way.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 250/332

Understanding rebuilds (2)

▶ When a package has been built by Buildroot, Buildroot keeps
a hidden file telling that the package has been built.

▶ Buildroot will therefore never rebuild that package, unless a
full rebuild is done, or this specific package is explicitly
rebuilt.

▶ Buildroot does not recurse into each package at each make
invocation, it would be too time-consuming. So if you change
one source file in a package, Buildroot does not know it.

▶ When make is invoked, Buildroot will always:
▶ Build the packages that have not been built in a previous build

and install them to the target
▶ Cleanup the target root filesystem from useless files
▶ Run post-build scripts, copy rootfs overlays
▶ Generate the root filesystem images
▶ Run post-image scripts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 251/332

Understanding rebuilds: scenarios (1)

▶ If you enable a new package in the configuration, and run
make

▶ Buildroot will build it and install it
▶ However, other packages that may benefit from this package

will not be rebuilt automatically
▶ If you remove a package from the configuration, and run make

▶ Nothing happens. The files installed by this package are not
removed from the target filesystem.

▶ Buildroot does not track which files are installed by which
package

▶ Need to do a full rebuild to get the new result. Advice: do it
only when really needed.

▶ If you change the sub-options of a package that has already
been built, and run make

▶ Nothing happens.
▶ You can force Buildroot to rebuild this package using

make <pkg>-reconfigure or make <pkg>-rebuild.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 252/332

Understanding rebuilds: scenarios (2)

▶ If you make a change to a post-build script, a rootfs overlay or
a post-image script, and run make

▶ This is sufficient, since these parts are re-executed at every
make invocation.

▶ If you change a fundamental system configuration option:
architecture, type of toolchain or toolchain configuration, init
system, etc.

▶ You must do a full rebuild
▶ If you change some source code in

output/build/<foo>-<version>/ and issue make
▶ The package will not be rebuilt automatically: Buildroot has a

hidden file saying that the package was already built.
▶ Use make <pkg>-reconfigure or make <pkg>-rebuild
▶ And remember that doing changes in

output/build/<foo>-<version>/ can only be temporary:
this directory is removed during a make clean.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 253/332

Tips for building faster

▶ Build time is often an issue, so here are some tips to help
▶ Use fast hardware: lots of RAM, and SSD
▶ Do not use virtual machines
▶ You can enable the ccache compiler cache using BR2_CCACHE
▶ Use external toolchains instead of internal toolchains
▶ Learn about rebuilding only the few packages you actually care

about
▶ Build everything locally, do not use NFS for building
▶ Remember that you can do several independent builds in

parallel in different output directories

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 254/332

Practical lab - Advanced aspects

▶ Use legal-info for legal
information extraction

▶ Use graph-depends for
dependency graphing

▶ Use graph-build for build time
graphing

▶ Use BR2_EXTERNAL to isolate the
project-specific changes (packages,
configs, etc.)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 255/332

Application development

Application
development
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 256/332

Building code for Buildroot

▶ The Buildroot cross-compiler is installed in
$(HOST_DIR)/usr/bin

▶ It is already set up to:
▶ generate code for the configured architecture
▶ look for libraries and headers in $(STAGING_DIR)

▶ Other useful tools that may be built by Buildroot are installed
in $(HOST_DIR)/usr/bin:

▶ pkg-config, to find libraries. Beware that it is configured to
return results for target libraries: it should only be used when
cross-compiling.

▶ qmake, when building Qt applications with this build system.
▶ autoconf, automake, libtool, to use versions independent

from the host system.
▶ Adding $(HOST_DIR)/usr/bin to your PATH when

cross-compiling is the easiest solution.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 257/332

Building code for Buildroot: C program

.Building a C program for the host..

.

$ gcc -o foobar foobar.c
$ file foobar
foobar: ELF 64-bit LSB executable, x86-64, version 1...

.Building a C program for the target..

.

$ export PATH=$(pwd)/output/host/usr/bin:$PATH
$ arm-linux-gcc -o foobar foobar.c
$ file foobar
foobar: ELF 32-bit LSB executable, ARM, EABI5 version 1...

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 258/332

Building code for Buildroot: pkg-config
.Using the system pkg-config..

.

$ pkg-config --cflags libpng
-I/usr/include/libpng12

$ pkg-config --libs libpng
-lpng12

.Using the Buildroot pkg-config..

.

$ export PATH=$(pwd)/output/host/usr/bin:$PATH

$ pkg-config --cflags libpng
-I.../output/host/usr/arm-buildroot-linux-uclibcgnueabi/

sysroot/usr/include/libpng16

$ pkg-config --libs libpng
-L.../output/host/usr/arm-buildroot-linux-uclibcgnueabi/

sysroot/usr/lib -lpng16

Note: too long lines have been splitted.
free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 259/332

Building code for Buildroot: autotools

▶ Building simple autotools components outside of Buildroot is
easy:

.

.
$ export PATH=.../buildroot/output/host/usr/bin/:$PATH
$./configure --host=arm-linux

▶ Passing --host=arm-linux tells the configure script to use
the cross-compilation tools prefixed by arm-linux-.

▶ In more complex cases, some additional CFLAGS or LDFLAGS
might be needed in the environment.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 260/332

Building during development

▶ Buildroot is mainly a final integration tool: it is aimed at
downloading and building fixed versions of software
components, in a reproducible way.

▶ When doing active development of a software component, you
need to be able to quickly change the code, build it, and
deploy it on the target.

▶ The package build directory is temporary, and removed on
make clean, so making changes here is not practical

▶ Buildroot does not automatically ``update'' your source code
when the package is fetched from a version control system.

▶ Three solutions:
▶ Build your software component outside of Buildroot during

development. Doable for software components that are easy to
build.

▶ Use the local SITE_METHOD for your package
▶ Use the <pkg>_OVERRIDE_SRCDIR mechanism

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 261/332

local site method

▶ Allows to tell Buildroot that the source code for a package is
already available locally

▶ Allows to keep your source code under version control,
separately, and have Buildroot always build your latest
changes.

▶ Typical project organization:
▶ buildroot/, the Buildroot source code
▶ external/, your BR2_EXTERNAL tree
▶ custom-app/, your custom application code
▶ custom-lib/, your custom library

▶ In your package .mk file, use:
.

.
<pkg>_SITE = $(TOPDIR)/../custom-app
<pkg>_SITE_METHOD = local

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 262/332

Effect of local site method

▶ For the first build, the source code of your package is rsync'ed
from <pkg>_SITE to the build directory, and built there.

▶ After making changes to the source code, you can run:
▶ make <pkg>-reconfigure
▶ make <pkg>-rebuild
▶ make <pkg>-reinstall

▶ Buildroot will first rsync again the package source code
(copying only the modified files) and restart the build from
the requested step.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 263/332

local site method workflow

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 264/332

<pkg>_OVERRIDE_SRCDIR

▶ The local site method solution is appropriate when the
package uses this method for all developers

▶ Requires that all developers fetch locally the source code for all
custom applications and libraries

▶ An alternate solution is that packages for custom applications
and libraries fetch their source code from version control
systems

▶ Using the git, svn, cvs, etc. fetching methods
▶ Then, locally, a user can override how the package is fetched

using <pkg>_OVERRIDE_SRCDIR
▶ It tells Buildroot to not download the package source code,

but to copy it from a local directory.
▶ The package then behaves as if it was using the local site

method.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 265/332

Passing <pkg>_OVERRIDE_SRCDIR

▶ <pkg>_OVERRIDE_SRCDIR values are specified in a package
override file, configured in BR2_PACKAGE_OVERRIDE_FILE, by
default $(CONFIG_DIR)/local.mk.

.Example local.mk..

.
LIBPNG_OVERRIDE_SRCDIR = $(HOME)/projects/libpng
LINUX_OVERRIDE_SRCDIR = $(HOME)/projects/linux

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 266/332

Debugging: debugging symbols and stripping

▶ To use debuggers, you need the programs and libraries to be
built with debugging symbols.

▶ The BR2_ENABLE_DEBUG option controls whether programs
and libraries are built with debugging symbols

▶ Disabled by default.
▶ Sub-options allow to control the amount of debugging symbols

(i.e. gcc options -g1, -g2 and -g3).
▶ The BR2_STRIP_none and BR2_STRIP_strip options allow to

disable or enable stripping of binaries on the target.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 267/332

Debugging: debugging symbols and stripping

▶ With BR2_ENABLE_DEBUG=y and BR2_STRIP_strip=y
▶ get debugging symbols in $(STAGING_DIR) for libraries, and in

the build directories for everything.
▶ stripped binaries in $(TARGET_DIR)
▶ Appropriate for remote debugging

▶ With BR2_ENABLE_DEBUG=y and BR2_STRIP_none=y
▶ debugging symbols in both $(STAGING_DIR) and

$(TARGET_DIR)
▶ appropriate for on-target debugging

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 268/332

Debugging: remote debugging requirements

▶ To do remote debugging, you need:
▶ A cross-debugger

▶ With the internal toolchain backend, can be built using
BR2_PACKAGE_HOST_GDB=y.

▶ With the external toolchain backend, is either provided
pre-built by the toolchain, or can be built using
BR2_PACKAGE_HOST_GDB=y.

▶ gdbserver
▶ With the internal toolchain backend, can be built using

BR2_PACKAGE_GDB=y + BR2_PACKAGE_GDB_SERVER=y
▶ With the external toolchain backend, if gdbserver is provided

by the toolchain it can be copied to the target using
BR2_TOOLCHAIN_EXTERNAL_GDB_SERVER_COPY=y or otherwise
built from source like with the internal toolchain backend.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 269/332

Debugging: remote debugging setup

▶ On the target, start gdbserver
▶ Use a TCP socket, network connectivity needed
▶ The multi mode is quite convenient
▶ $ gdbserver --multi localhost:2345

▶ On the host, start <tuple>-gdb
▶ $./output/host/usr/bin/<tuple>-gdb <program>
▶ <program> is the path to the program to debug, with

debugging symbols
▶ Inside gdb, you need to:

▶ Connect to the target:
(gdb) target remote-extended <ip>:2345

▶ Set the path to the sysroot so that gdb can find debugging
symbols for libraries:
(gdb) set sysroot ./output/staging/

▶ Start the program:
(gdb) run

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 270/332

Debugging tools available in Buildroot

▶ Buildroot also includes a huge amount of other debugging or
profiling related tools.

▶ To list just a few:
▶ strace
▶ ltrace
▶ LTTng
▶ perf
▶ sysdig
▶ sysprof
▶ OProfile
▶ valgrind

▶ Look in Target packages →
Debugging, profiling and benchmark for more.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 271/332

Generating a SDK for application developers

▶ If you would like application developers to build applications
for a Buildroot generated system, without building Buildroot,
you can generate a SDK.

▶ To achieve this:
▶ Customize the BR2_HOST_DIR option to a path like

/opt/project-sdk/.
▶ Do a full build from scratch. Due to the value of

BR2_HOST_DIR, the cross-compiler and the sysroot with all its
libraries will be installed in /opt/project-sdk/ instead of the
normal $(O)/host.

▶ Tarball the /opt/project-sdk/ and share it with the
developers.

▶ Warnings:
▶ The SDK is not relocatable: it must remain in

/opt/project-sdk/
▶ The SDK must remain in sync with the root filesystem running

on the target, otherwise applications built with the SDK may
not run properly.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 272/332

Eclipse plug-in

▶ For application developers interested in using the Eclipse IDE,
a Buildroot-specific plugin has been developed.

▶ It integrates the toolchain(s) generated by Buildroot into the
Eclipse C/C++ Development Environment.

▶ Allows Eclipse projects to easily use the compiler, linker and
debugger provided by Buildroot

▶ In Buildroot, enable the BR2_ECLIPSE_REGISTER option.
▶ In Eclipse, install the Buildroot plugin, and follow the

instructions available from the plugin website.
▶ See https://github.com/mbats/eclipse-buildroot-

bundle/wiki for download, installation and usage details.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 273/332

https://github.com/mbats/eclipse-buildroot-bundle/wiki
https://github.com/mbats/eclipse-buildroot-bundle/wiki

Practical lab - Application development

▶ Build and run your own application
▶ Remote debug your application
▶ Use <pkg>_OVERRIDE_SRCDIR

▶ Set up Eclipse for Buildroot
application development

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 274/332

Understanding Buildroot internals

Understanding
Buildroot internals
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 275/332

Configuration system

▶ Uses, almost unchanged, the kconfig code from the kernel, in
support/kconfig (variable CONFIG)

▶ kconfig tools are built in $(BUILD_DIR)/buildroot-config/

▶ The main Config.in file, passed to *config, is at the top-level
of the Buildroot source tree

.

.

CONFIG_CONFIG_IN = Config.in
CONFIG = support/kconfig
BR2_CONFIG = $(CONFIG_DIR)/.config

-include $(BR2_CONFIG)

$(BUILD_DIR)/buildroot-config/%onf:
mkdir -p $(@D)/lxdialog
... $(MAKE) ... -C $(CONFIG) -f Makefile.br $(@F)

menuconfig: $(BUILD_DIR)/buildroot-config/mconf outputmakefile
@$(COMMON_CONFIG_ENV) $< $(CONFIG_CONFIG_IN)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 276/332

Configuration hierarchy

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 277/332

When you run make...

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 278/332

Where is $(TARGETS) filled?

.Part of package/pkg-generic.mk..

.

argument 1 is the lowercase package name
argument 2 is the uppercase package name, including a HOST_ prefix
for host packages

define inner-generic-package
...

$(2)_KCONFIG_VAR = BR2_PACKAGE_$(2)
...

ifeq ($$($$($(2)_KCONFIG_VAR)),y)
PACKAGES += $(1)
endif # $(2)_KCONFIG_VAR

endef # inner-generic-package

▶ Adds the lowercase name of an enabled package as a make
target to the $(PACKAGES) variable

▶ package/pkg-generic.mk is really the core of the package
infrastructure

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 279/332

Diving into pkg-generic.mk

▶ The package/pkg-generic.mk file is divided in two main
parts:
1. Definition of the actions done in each step of a package build

process. Done through stamp file targets.
2. Definition of the inner-generic-package, generic-package

and host-generic-package macros, that define the sequence
of actions, as well as all the variables needed to handle the
build of a package.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 280/332

Definition of the actions: code

.

.

$(BUILD_DIR)/%/.stamp_downloaded:
Do some stuff here
$(Q)touch $@

$(BUILD_DIR)/%/.stamp_extracted:
Do some stuff here
$(Q)touch $@

$(BUILD_DIR)/%/.stamp_patched:
Do some stuff here
$(Q)touch $@

$(BUILD_DIR)/%/.stamp_configured:
Do some stuff here
$(Q)touch $@

$(BUILD_DIR)/%/.stamp_built:
Do some stuff here
$(Q)touch $@

.

.

$(BUILD_DIR)/%/.stamp_host_installed:
Do some stuff here
$(Q)touch $@

$(BUILD_DIR)/%/.stamp_staging_installed:
Do some stuff here
$(Q)touch $@

$(BUILD_DIR)/%/.stamp_images_installed:
Do some stuff here
$(Q)touch $@

$(BUILD_DIR)/%/.stamp_target_installed:
Do some stuff here
$(Q)touch $@

▶ $(BUILD_DIR)/%/ → build directory of any package
▶ a make target depending on one stamp file will trigger the

corresponding action
▶ the stamp file prevents the action from being re-executed

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 281/332

Action example 1: download

.

.

Retrieve the archive
$(BUILD_DIR)/%/.stamp_downloaded:

$(foreach hook,$($(PKG)_PRE_DOWNLOAD_HOOKS),$(call $(hook))$(sep))
[...]

$(foreach p,$($(PKG)_ALL_DOWNLOADS),$(call DOWNLOAD,$(p))$(sep))
$(Q)mkdir -p $(@D)
$(Q)touch $@

▶ Step handled by the package infrastructure
▶ In all stamp file targets, PKG is the upper case name of the

package. So when used for Busybox, $($(PKG)_SOURCE) is
the value of BUSYBOX_SOURCE.

▶ Hooks: make macros called before and after each step.
▶ <pkg>_ALL_DOWNLOADS lists all the files to be downloaded,

which includes the ones listed in <pkg>_SOURCE,
<pkg>_EXTRA_DOWNLOADS and <pkg>_PATCH.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 282/332

Action example 2: build

.

.

Build
$(BUILD_DIR)/%/.stamp_built::

@$(call step_start,build)
@$(call MESSAGE,"Building")
$(foreach hook,$($(PKG)_PRE_BUILD_HOOKS),$(call $(hook))$(sep))
+$($(PKG)_BUILD_CMDS)
$(foreach hook,$($(PKG)_POST_BUILD_HOOKS),$(call $(hook))$(sep))
$(Q)touch $@
@$(call step_end,build)

▶ Step handled by the package, by defining a value for
<pkg>_BUILD_CMDS.

▶ Same principle of hooks
▶ step_start and step_end are part of instrumentation to

measure the duration of each step (and other actions)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 283/332

The generic-package macro

▶ Packages built for the target:
.

.
generic-package = $(call inner-generic-package,

$(pkgname),$(call UPPERCASE,$(pkgname)),
$(call UPPERCASE,$(pkgname)),target)

▶ Packages built for the host:
.

.
host-generic-package = $(call inner-generic-package,

host-$(pkgname),$(call UPPERCASE,host-$(pkgname)),
$(call UPPERCASE,$(pkgname)),host)

▶ In package/zlib/zlib.mk:
.

.

ZLIB_... = ...

$(eval $(generic-package))
$(eval $(host-generic-package))

▶ Leads to:
.
.
$(call inner-generic-package,zlib,ZLIB,ZLIB,target)
$(call inner-generic-package,host-zlib,HOST_ZLIB,ZLIB,host)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 284/332

inner-generic-package: defining variables

.Macro code..

.

$(2)_TYPE = $(4)
$(2)_NAME = $(1)
$(2)_RAWNAME = $$(patsubst host-%,%,$(1))

$(2)_BASE_NAME = $(1)-$$($(2)_VERSION)
$(2)_DIR = $$(BUILD_DIR)/$$($(2)_BASE_NAME)

ifndef $(2)_SOURCE
ifdef $(3)_SOURCE
$(2)_SOURCE = $$($(3)_SOURCE)

else
$(2)_SOURCE ?=
$$($(2)_RAWNAME)-$$($(2)_VERSION).tar.gz

endif
endif

ifndef $(2)_SITE
ifdef $(3)_SITE
$(2)_SITE = $$($(3)_SITE)

endif
endif

...

.Expanded for host-zlib..

.

HOST_ZLIB_TYPE = host
HOST_ZLIB_NAME = host-zlib
HOST_ZLIB_RAWNAME = zlib

HOST_ZLIB_BASE_NAME =
host-zlib-$(HOST_ZLIB_VERSION)

HOST_ZLIB_DIR =
$(BUILD_DIR)/host-zlib-$(HOST_ZLIB_VERSION)

ifndef HOST_ZLIB_SOURCE
ifdef ZLIB_SOURCE
HOST_ZLIB_SOURCE = $(ZLIB_SOURCE)

else
HOST_ZLIB_SOURCE ?=
zlib-$(HOST_ZLIB_VERSION).tar.gz

endif
endif

ifndef HOST_ZLIB_SITE
ifdef ZLIB_SITE
HOST_ZLIB_SITE = $(ZLIB_SITE)

endif
endif

...

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 285/332

inner-generic-package: dependencies
.

.

ifeq ($(4),host)
$(2)_DEPENDENCIES ?= $$(filter-out host-toolchain $(1),\

$$(patsubst host-host-%,host-%,$$(addprefix host-,$$($(3)_DEPENDENCIES))))
endif

▶ Dependencies of host packages, if not explicitly specified, are
derived from the dependencies of the target package, by adding a
host- prefix to each dependency.

▶ If a package foo defines
FOO_DEPENDENCIES = bar baz host-buzz, then the
host-foo package will have host-bar, host-baz and
host-buzz in its dependencies.

.

.

ifeq ($(4),target)
ifeq ($$($(2)_ADD_TOOLCHAIN_DEPENDENCY),YES)
$(2)_DEPENDENCIES += toolchain
endif
endif

▶ Adding the toolchain dependency to target packages. Except for
some specific packages (e.g. C library).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 286/332

inner-generic-package: stamp files

.

.

$(2)_TARGET_INSTALL_TARGET = $$($(2)_DIR)/.stamp_target_installed
$(2)_TARGET_INSTALL_STAGING = $$($(2)_DIR)/.stamp_staging_installed
$(2)_TARGET_INSTALL_IMAGES = $$($(2)_DIR)/.stamp_images_installed
$(2)_TARGET_INSTALL_HOST = $$($(2)_DIR)/.stamp_host_installed
$(2)_TARGET_BUILD = $$($(2)_DIR)/.stamp_built
$(2)_TARGET_CONFIGURE = $$($(2)_DIR)/.stamp_configured
$(2)_TARGET_RSYNC = $$($(2)_DIR)/.stamp_rsynced
$(2)_TARGET_RSYNC_SOURCE = $$($(2)_DIR)/.stamp_rsync_sourced
$(2)_TARGET_PATCH = $$($(2)_DIR)/.stamp_patched
$(2)_TARGET_EXTRACT = $$($(2)_DIR)/.stamp_extracted
$(2)_TARGET_SOURCE = $$($(2)_DIR)/.stamp_downloaded
$(2)_TARGET_DIRCLEAN = $$($(2)_DIR)/.stamp_dircleaned

▶ Defines shortcuts to reference the stamp files
.

.

$$($(2)_TARGET_INSTALL_TARGET): PKG=$(2)
$$($(2)_TARGET_INSTALL_STAGING): PKG=$(2)
$$($(2)_TARGET_INSTALL_IMAGES): PKG=$(2)
$$($(2)_TARGET_INSTALL_HOST): PKG=$(2)
[...]

▶ Pass variables to the stamp file targets, especially PKG

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 287/332

inner-generic-package: sequencing

.Step sequencing for target packages..

.

$(1): $(1)-install

$(1)-install: $(1)-install-staging $(1)-install-target $(1)-install-images

$(1)-install-target: $$($(2)_TARGET_INSTALL_TARGET)
$$($(2)_TARGET_INSTALL_TARGET): $$($(2)_TARGET_BUILD)

$(1)-build: $$($(2)_TARGET_BUILD)
$$($(2)_TARGET_BUILD): $$($(2)_TARGET_CONFIGURE)

$(1)-configure: $$($(2)_TARGET_CONFIGURE)
$$($(2)_TARGET_CONFIGURE): | $$($(2)_FINAL_DEPENDENCIES)
$$($(2)_TARGET_CONFIGURE): $$($(2)_TARGET_PATCH)

$(1)-patch: $$($(2)_TARGET_PATCH)
$$($(2)_TARGET_PATCH): $$($(2)_TARGET_EXTRACT)

$(1)-extract: $$($(2)_TARGET_EXTRACT)
$$($(2)_TARGET_EXTRACT): $$($(2)_TARGET_SOURCE)

$(1)-source: $$($(2)_TARGET_SOURCE)

$$($(2)_TARGET_SOURCE): | dirs prepare
$$($(2)_TARGET_SOURCE): | dependencies

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 288/332

inner-generic-package: sequencing diagram

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 289/332

Example of package build

>>> zlib 1.2.8 Downloading
... here it wgets the tarball ...

>>> zlib 1.2.8 Extracting
xzcat /home/thomas/dl/zlib-1.2.8.tar.xz | tar ...

>>> zlib 1.2.8 Patching

>>> zlib 1.2.8 Configuring
(cd /home/thomas/projets/buildroot/output/build/zlib-1.2.8;

...

./configure --shared --prefix=/usr)

>>> zlib 1.2.8 Building
/usr/bin/make -j1 -C /home/thomas/projets/buildroot/output/build/zlib-1.2.8

>>> zlib 1.2.8 Installing to staging directory
/usr/bin/make -j1 -C /home/thomas/projets/buildroot/output/build/zlib-1.2.8
DESTDIR=/home/thomas/projets/buildroot/output/host/usr/arm-buildroot-linux-uclibcgnueabi/sysroot
LDCONFIG=true install

>>> zlib 1.2.8 Installing to target
/usr/bin/make -j1 -C /home/thomas/projets/buildroot/output/build/zlib-1.2.8
DESTDIR=/home/thomas/projets/buildroot/output/target
LDCONFIG=true install

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 290/332

Preparation work: dirs, prepare, dependencies

.pkg-generic.mk..

.
$$($(2)_TARGET_SOURCE): | dirs prepare
$$($(2)_TARGET_SOURCE): | dependencies

▶ All packages have three targets in their dependencies:
▶ dirs: creates the main directories (BUILD_DIR, TARGET_DIR,

HOST_DIR, etc.). As part of creating TARGET_DIR, the root
filesystem skeleton is copied into it

▶ prepare: generates a kconfig-related auto.conf file
▶ dependencies: triggers the check of Buildroot system

dependencies, i.e. things that must be installed on the
machine to use Buildroot

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 291/332

Rebuilding packages?

▶ Once one step of a package build process has been done, it is
never done again due to the stamp file

▶ Even if the package configuration is changed, or the package
is disabled → Buildroot doesn't try to be smart

▶ One can force rebuilding a package from its configure step or
build step using make <pkg>-reconfigure or
make <pkg>-rebuild

.

.

$(1)-clean-for-rebuild:
rm -f $$($(2)_TARGET_BUILD)
rm -f $$($(2)_TARGET_INSTALL_STAGING)
rm -f $$($(2)_TARGET_INSTALL_TARGET)
rm -f $$($(2)_TARGET_INSTALL_IMAGES)
rm -f $$($(2)_TARGET_INSTALL_HOST)

$(1)-rebuild: $(1)-clean-for-rebuild $(1)

$(1)-clean-for-reconfigure: $(1)-clean-for-rebuild
rm -f $$($(2)_TARGET_CONFIGURE)

$(1)-reconfigure: $(1)-clean-for-reconfigure $(1)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 292/332

Specialized package infrastructures

▶ The generic-package infrastructure is fine for packages
having a custom build system

▶ For packages using a well-known build system, we want to
factorize more logic

▶ Specialized package infrastructures were created to handle
these packages, and reduce the amount of duplication

▶ For autotools, CMake, Python, Perl, Lua and kconfig packages

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 293/332

CMake package example: flann

.
package/flann/flann.mk..

.

FLANN_VERSION = d0c04f4d290ebc3aa9411a3322992d298e51f5aa
FLANN_SITE = $(call github,mariusmuja,flann,$(FLANN_VERSION))
FLANN_INSTALL_STAGING = YES
FLANN_LICENSE = BSD-3c
FLANN_LICENSE_FILES = COPYING
FLANN_CONF_OPT = \

-DBUILD_C_BINDINGS=ON \
-DBUILD_PYTHON_BINDINGS=OFF \
-DBUILD_MATLAB_BINDINGS=OFF \
-DBUILD_EXAMPLES=$(if $(BR2_PACKAGE_FLANN_EXAMPLES),ON,OFF) \
-DBUILD_TESTS=OFF \
-DBUILD_DOC=OFF \
-DUSE_OPENMP=$(if $(BR2_GCC_ENABLE_OPENMP),ON,OFF) \
-DPYTHON_EXECUTABLE=OFF

$(eval $(cmake-package))

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 294/332

CMake package infrastructure (1/2)

.

.

define inner-cmake-package

$(2)_CONF_ENV ?=
$(2)_CONF_OPT ?=
...

$(2)_SRCDIR = $$($(2)_DIR)/$$($(2)_SUBDIR)
$(2)_BUILDDIR = $$($(2)_SRCDIR)

ifndef $(2)_CONFIGURE_CMDS
ifeq ($(4),target)
define $(2)_CONFIGURE_CMDS

(cd $$($$(PKG)_BUILDDIR) && \
$$($$(PKG)_CONF_ENV) $$(HOST_DIR)/usr/bin/cmake $$($$(PKG)_SRCDIR) \

-DCMAKE_TOOLCHAIN_FILE="$$(HOST_DIR)/usr/share/buildroot/toolchainfile.cmake" \
...
$$($$(PKG)_CONF_OPT) \

)
endef
else
define $(2)_CONFIGURE_CMDS
... host case ...
endef
endif
endif

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 295/332

CMake package infrastructure (2/2)

.

.

$(2)_DEPENDENCIES += host-cmake

ifndef $(2)_BUILD_CMDS
ifeq ($(4),target)
define $(2)_BUILD_CMDS

$$(TARGET_MAKE_ENV) $$($$(PKG)_MAKE_ENV) $$($$(PKG)_MAKE) $$($$(PKG)_MAKE_OPT)
-C $$($$(PKG)_BUILDDIR)

endef
else
... host case ...
endif
endif

... other commands ...

ifndef $(2)_INSTALL_TARGET_CMDS
define $(2)_INSTALL_TARGET_CMDS

$$(TARGET_MAKE_ENV) $$($$(PKG)_MAKE_ENV) $$($$(PKG)_MAKE) $$($$(PKG)_MAKE_OPT)
$$($$(PKG)_INSTALL_TARGET_OPT) -C $$($$(PKG)_BUILDDIR)

endef
endif

$(call inner-generic-package,$(1),$(2),$(3),$(4))

endef

cmake-package = $(call inner-cmake-package,$(pkgname),...,target)
host-cmake-package = $(call inner-cmake-package,host-$(pkgname),...,host)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 296/332

Autoreconf in pkg-autotools.mk

▶ Package infrastructures can also add additional capabilities
controlled by variables in packages

▶ For example, with the autotools-package infra, one can do
FOOBAR_AUTORECONF = YES in a package to trigger an
autoreconf before the configure script is executed

▶ Implementation in pkg-autotools.mk
.

.

define AUTORECONF_HOOK
@$$(call MESSAGE,"Autoreconfiguring")
$$(Q)cd $$($$(PKG)_SRCDIR) && $$($$(PKG)_AUTORECONF_ENV) $$(AUTORECONF)

$$($$(PKG)_AUTORECONF_OPTS)
...

endef

ifeq ($$($(2)_AUTORECONF),YES)
...
$(2)_PRE_CONFIGURE_HOOKS += AUTORECONF_HOOK
$(2)_DEPENDENCIES += host-automake host-autoconf host-libtool
endif

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 297/332

Toolchain support

▶ One virtual package, toolchain, with two implementations in
the form of two packages: toolchain-buildroot and
toolchain-external

▶ toolchain-buildroot implements the internal toolchain
back-end, where Buildroot builds the cross-compilation
toolchain from scratch. This package simply depends on
host-gcc-final to trigger the entire build process

▶ toolchain-external implements the external toolchain
back-end, where Buildroot uses an existing pre-built toolchain

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 298/332

Internal toolchain back-end

▶ Build starts with utility host tools and libraries
needed for gcc (host-m4, host-mpc, host-mpfr,
host-gmp). Installed in
$(HOST_DIR)/usr/{bin,include,lib}

▶ Build goes on with the cross binutils,
host-binutils, installed in
$(HOST_DIR)/usr/bin

▶ Then the first stage compiler, host-gcc-initial
▶ We need the linux-headers, installed in

$(STAGING_DIR)/usr/include

▶ We build the C library, uclibc in this example.
Installed in $(STAGING_DIR)/lib,
$(STAGING_DIR)/usr/include and of course
$(TARGET_DIR)/lib

▶ We build the final compiler host-gcc-final,
installed in $(HOST_DIR)/usr/bin

ALL

toolchain

toolchain-buildroot

host-gcc-final

uclibc

host-gcc-initial linux-headers

host-binutils host-mpc

host-mpfr

host-gmp

host-m4

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 299/332

External toolchain back-end

▶ Implemented as one package, toolchain-external
▶ Knows about well-known toolchains (CodeSourcery, Linaro,

etc.) or allows to use existing custom toolchains (built with
Buildroot, Crosstool-NG, etc.)

▶ Core logic:
1. Extract the toolchain to $(HOST_DIR)/opt/ext-toolchain
2. Run some checks on the toolchain
3. Copy the toolchain sysroot (C library and headers, kernel headers) to

$(STAGING_DIR)/usr/{include,lib}
4. Copy the toolchain libraries to $(TARGET_DIR)/usr/lib
5. Create symbolic links or wrappers for the compiler, linker, debugger, etc

from $(HOST_DIR)/usr/bin/<tuple>-<tool> to
$(HOST_DIR)/opt/ext-toolchain/bin/<tuple>-<tool>

6. A wrapper program is used for certain tools (gcc, ld, g++, etc.) in order
to ensure a certain number of compiler flags are used, especially
--sysroot=$(STAGING_DIR) and target-specific flags.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 300/332

Root filesystem image generation

▶ Once all the targets in $(PACKAGES) have been built, it's time
to create the root filesystem images

▶ First, the target-finalize target does some cleanup of
$(TARGET_DIR) by removing documentation, headers, static
libraries, etc.

▶ Then the root filesystem image targets listed in
$(ROOTFS_TARGETS) are processed

▶ These targets are added by the common filesystem image
generation infrastructure, in fs/common.mk

▶ The purpose of this infrastructure is to factorize the
preparation logic, and then call fakeroot to create the
filesystem image

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 301/332

fs/common.mk

.

.

define ROOTFS_TARGET_INTERNAL

ROOTFS_$(2)_DEPENDENCIES += host-fakeroot host-makedevs \
$$(if $$(PACKAGES_USERS),host-mkpasswd)

$$(BINARIES_DIR)/rootfs.$(1): target-finalize $$(ROOTFS_$(2)_DEPENDENCIES)
@$$(call MESSAGE,"Generating root filesystem image rootfs.$(1)")
$$(foreach hook,$$(ROOTFS_$(2)_PRE_GEN_HOOKS),$$(call $$(hook))$$(sep))
...
echo "chown -h -R 0:0 $$(TARGET_DIR)" >> $$(FAKEROOT_SCRIPT)
echo "$$(HOST_DIR)/usr/bin/makedevs -d $$(FULL_DEVICE_TABLE) $$(TARGET_DIR)" >> \

$$(FAKEROOT_SCRIPT)
echo "$$(ROOTFS_$(2)_CMD)" >> $$(FAKEROOT_SCRIPT)
chmod a+x $$(FAKEROOT_SCRIPT)
PATH=$$(BR_PATH) $$(HOST_DIR)/usr/bin/fakeroot -- $$(FAKEROOT_SCRIPT)
...

rootfs-$(1): $$(BINARIES_DIR)/rootfs.$(1) $$(ROOTFS_$(2)_POST_TARGETS)

ifeq ($$(BR2_TARGET_ROOTFS_$(2)),y)
TARGETS_ROOTFS += rootfs-$(1)
endif
endef

define ROOTFS_TARGET
$(call ROOTFS_TARGET_INTERNAL,$(1),$(call UPPERCASE,$(1)))
endef

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 302/332

fs/ubifs/ubifs.mk

.

.

UBIFS_OPTS := -e $(BR2_TARGET_ROOTFS_UBIFS_LEBSIZE) \
-c $(BR2_TARGET_ROOTFS_UBIFS_MAXLEBCNT) \
-m $(BR2_TARGET_ROOTFS_UBIFS_MINIOSIZE)

ifeq ($(BR2_TARGET_ROOTFS_UBIFS_RT_ZLIB),y)
UBIFS_OPTS += -x zlib
endif
...

UBIFS_OPTS += $(call qstrip,$(BR2_TARGET_ROOTFS_UBIFS_OPTS))

ROOTFS_UBIFS_DEPENDENCIES = host-mtd

define ROOTFS_UBIFS_CMD
$(HOST_DIR)/usr/sbin/mkfs.ubifs -d $(TARGET_DIR) $(UBIFS_OPTS) -o $@

endef

$(eval $(call ROOTFS_TARGET,ubifs))

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 303/332

Final example

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 304/332

Buildroot community: support and contribution

Buildroot
community:
support and
contribution
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 305/332

Documentation

▶ Buildroot comes with its own documentation
▶ Pre-built versions available at

http://buildroot.org/docs.html (PDF, HTML, text)
▶ Source code of the manual located in docs/manual in the

Buildroot sources
▶ Written in Asciidoc format

▶ The manual can be built with:
▶ make manual
▶ or just make manual-html, make manual-pdf,

make manual-epub, make manual-text,
make manual-split-html

▶ A number of tools need to be installed on your machine, see
the manual itself.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 306/332

http://buildroot.org/docs.html

Getting support

▶ Free support
▶ The mailing list for e-mail discussion

http://lists.busybox.net/mailman/listinfo/buildroot

1300+ subscribers, quite heavy traffic.
▶ The IRC channel, #buildroot on the Freenode network, for

interactive discussion
130+ people, most available during European daylight hours

▶ Bug tracker
https:
//bugs.busybox.net/buglist.cgi?product=buildroot

▶ Commercial support
▶ A number of embedded Linux services companies, including

Free Electrons, can provide commercial services around
Buildroot.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 307/332

http://lists.busybox.net/mailman/listinfo/buildroot
https://bugs.busybox.net/buglist.cgi?product=buildroot
https://bugs.busybox.net/buglist.cgi?product=buildroot

Tips to get free support

▶ If you have a build issue to report:
▶ Make sure to reproduce after a make clean all cycle
▶ Include the Buildroot version, Buildroot .config that

reproduces the issue, and last 100-200 lines of the build output
in your report.

▶ Use pastebin sites like http://code.bulix.org when
reporting issues over IRC.

▶ The community will be much more likely to help you if you
use a recent Buildroot version.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 308/332

Release schedule

▶ The Buildroot community publishes stable releases every three
months.

▶ YYYY.02, YYYY.05, YYYY.08 and YYYY.11 every year.
▶ The three months cycle is split in two periods

▶ Two first months of active development
▶ One month of stabilization before the release

▶ At the beginning of the stabilization phase, -rc1 is released.
▶ Several -rc versions are published during this stabilization

phase, until the final release.
▶ Development not completely stopped during the stabilization,

a next branch is opened.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 309/332

Contribution process

▶ Contributions are made in the form of patches
▶ Created with git and sent by e-mail to the mailing list

▶ Use git send-email to avoid issues
▶ The patches are reviewed, tested and discussed by the

community
▶ You may be requested to modify your patches, and submit

updated versions
▶ Once ready, they are applied by the project maintainer Peter

Korsgaard, or the interim maintainer Thomas Petazzoni.
▶ Some contributions may be rejected if they do not fall within

the Buildroot principles/ideas, as discussed by the community.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 310/332

Patchwork

▶ Tool that records all patches sent on the mailing list
▶ Allows the community to see which patches need

review/testing, and the maintainers which patches can be
applied.

▶ Everyone can create an account to manage his own patches
▶ http://patchwork.buildroot.org/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 311/332

http://patchwork.buildroot.org/

Automated build testing

▶ The enormous number of configuration options in Buildroot
make it very difficult to test all combinations.

▶ Random configurations are therefore built 24/7 by multiple
machines.

▶ Random choice of architecture/toolchain combination from a
pre-defined list

▶ Random selection of packages using make randpackageconfig
▶ Random enabling of features like static library only, or

BR2_ENABLE_DEBUG=y

▶ Scripts and tools publicly available at
http://git.buildroot.net/buildroot-test/

▶ Results visible at http://autobuild.buildroot.org/
▶ Daily e-mails with the build results of the past day

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 312/332

http://git.buildroot.net/buildroot-test/
http://autobuild.buildroot.org/

autobuild.buildroot.org

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 313/332

Autobuild daily reports

From: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
To: buildroot@uclibc.org
Subject: [Buildroot] [autobuild.buildroot.net] Build results for 2015-05-05
Date: Wed, 6 May 2015 08:30:17 +0200 (CEST)

Build statistics for 2015-05-05
===============================

success : 301
failures : 50
timeouts : 1

TOTAL : 352

Classification of failures by reason
====================================

freerdp-770c67d340d5f0a7b48... | 6
postgresql-9.4.1 | 5

python-pyqt-4.11.3 | 5

Detail of failures
===================

powerpc | boost-1.57.0 | NOK | http://autobuild.buildroot.net/results/b64fd94a8ccff7fa8...
bfin | cc-tool-0.26 | NOK | http://autobuild.buildroot.net/results/5f84d5696a52c7541...

xtensa | cc-tool-0.26 | NOK | http://autobuild.buildroot.net/results/d971db839e84480a5...

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 314/332

What's new in Buildroot?

What's new in
Buildroot?
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 315/332

What's new in Buildroot

▶ The major improvements in each release are summarized in
the file named CHANGES in the Buildroot source tree

▶ Always mentions changes that could cause backward
compatibility problems

▶ The following slides summarize the major new features added
in each release between 2014.05 and 2016.05.

▶ All new Buildroot versions come with new packages, and
many updates to the existing packages

▶ Such package additions and updates are not listed in the
following slides.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 316/332

In 2014.05 (1)

▶ Architectures:
▶ Support for MIPS o32 ABI on MIPS-64 targets has been

removed (too exotic)
▶ Support for the ARM A12 variant and Intel corei7

▶ Defconfigs: Minnowboard and Altera SoCkit added, QEMU
updates.

▶ Bootloaders: Grub2 and gummiboot support, syslinux
support extended.

▶ Kconfig handling for minimum kernel headers version required
for packages. Now packages needing specific kernel header
features can specify these requirements in Kconfig.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 317/332

In 2014.05 (2)

▶ Toolchains:
▶ GCC 4.9. Glibc 2.19.
▶ Support for the musl C library for internal and external

toolchains.
▶ GCC 4.8-R3 support for ARC
▶ Internal toolchain support for Aarch64 and Microblaze
▶ Toolchain tuple vendor name can now be customized.
▶ Updated external Linaro ARM/Aarch64 toolchains.
▶ Added external Linaro ARMEB toolchain.
▶ A GDB gdbinit file is now generated for external toolchains to

automatically set the correct sysroot.
▶ Infrastructure:

▶ Support for (but disabled as it leads to unreproducible builds)
toplevel parallel builds.

▶ Python package infrastructure extended to support Python 3.x
▶ Perl and virtual package infrastructure support added.
▶ PRE_*_HOOKS support for all build steps.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 318/332

In 2014.08 (1)

▶ Architectures:
▶ Powerpc64 BE/LE added, AVR32 deprecated.
▶ Improved altivec / SPE /atomic instructions handling.

Additional PowerPC CPU variants added.
▶ Defconfigs: Atmel SAMA5D3, Congatec QMX6, Lego ev3,

TS-5x00, qemu-system-xtensa, qemu-aarch64-virt added. A
number of tweaks to existing ones. lpc32xx defconfigs
removed.

▶ Toolchain:
▶ Microblaze support for internal musl toolchain.
▶ Default to GCC 4.8 for internal toolchain, remove deprecated

4.3 and 4.6 versions.
▶ External CodeSourcery / Linaro toolchain updates
▶ Option to copy gconv libraries for external toolchains.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 319/332

In 2014.08 (2)

▶ Infrastructure:
▶ graph-depends improvements
▶ Download handling is now done using helper scripts.
▶ Integrity of downloads can now be verified using hashes
▶ Legal-info: License info of local or overridden packages are

saved as well. Toolchain packages are also taken into account.
▶ autotools: Static linking with libtool / v1.5 improvements
▶ Gettextize support, similar to autoreconf
▶ kconfig package infrastructure added

▶ User manual restructured / reworked

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 320/332

In 2014.11

▶ Toolchains:
▶ Use -mcpu / -march instead of -mtune
▶ Support additional ARC and sparc variants
▶ Updated Code sourcery and Linaro external toolchains

▶ Defconfigs: Freescale iMX6DL SabreSD, Minnowboard
MAX, QEMU powerpc64 pseries added and a number of
updates to the existing configurations.

▶ Infrastructure:
▶ Buildroot is now less noisy when built with the silent option

(make -s)
▶ A number of package infrastructure variables have been

renamed from *_OPT to *_OPTS for consistency
▶ Option to choose what shell /bin/sh points to

▶ Documentation:
▶ Various updates to the user manual
▶ The asciidoc documentation handling has now been extended

so it can be used by BR2_EXTERNAL

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 321/332

In 2015.02 (1)

▶ Static/shared library handling reworked
▶ This is now a tristate (shared only / shared and static / static

only)
▶ Default is now shared only to speed up the build.

BR2_PREFER_STATIC_LIB is now called BR2_STATIC_LIBS

▶ Toolchain:
▶ The toolchain (internal and external) will now warn when an

unsafe library or header path is used
▶ If BR2_COMPILER_PARANOID_UNSAFE_PATH is enabled under

build options this instead becomes an error.
▶ Architectures: Freescale E5500 and E6500 PowerPC support

added, deprecated MIPS 1/2/3/4 support removed.
▶ Defconfigs: Freescale p2020ds, MIPS creator CI20,

Raspberrypi with DT, UDOO Quad

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 322/332

In 2015.02 (2)

▶ make <foo>_defconfig now saves the path to the defconfig
in the .config, so a make savedefconfig automatically
updates it

▶ Infrastructure for packages using the Erlang rebar tool has
been added.

▶ Hashes for a large number of packages have been added.
Hashes are now checked for both target and host packages.

▶ The system menu now has an option to automatically
configure a network interface through DHCP at bootup.

▶ The default filesystem skeleton now uses a separate tmpfs for
/run instead of a symlink to /tmp/ for security reasons / to
protect against conflicts with user generated temporary files.

▶ BR2_EXTERNAL is now exported to post-build and post-image
scripts.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 323/332

In 2015.05 (1)

▶ Architectures:
▶ Removed AVR32 support, SuperH64 deprecated
▶ Added support for steamroller, corei7-avx and core-avx2 x86

variants.
▶ Toolchains:

▶ IPv6 and Largefile support now enforced for uClibc.
Corresponding Kconfig symbols removed.

▶ External CodeSourcery AMD64 2014.05 added
▶ musl-cross 1.1.6 added
▶ CodeSourcery SuperH 2 and Xilinx Microblaze v2/14.3

removed
▶ Distro-class external toolchains are now detected and

blacklisted
▶ Internal toolchain support for Nios2 added, Blackfin removed.
▶ Aarch64 and sh musl support.
▶ uClibc-ng support added
▶ Libatomic is now handled for internal and external toolchains.
▶ Link time optimization (LTO) support.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 324/332

In 2015.05 (2)

▶ Defconfigs: Freescale i.MX28 EVK, i.MX31 PDK and
SABRE Auto, Raspberry Pi 2, RIoTboard

▶ Infrastructure:
▶ Hashes for a large number of packages have been added.
▶ Missing hashes now stop the build unless explicitly disabled.
▶ Spaces and colons (:) are now supported in package versions.
▶ Dependencies can now be listed for the patch step

(<PKG>_PATCH_DEPENDENCIES).
▶ Kconfig and Linux kernel extensions infrastructure has been

added.
▶ Makedevs now has a recursive (r) option
▶ external-deps, legal-info, source, source-check have

been reimplemented using the package infrastructure, so their
output/behaviour may differ from earlier (some packages were
not included in the past).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 325/332

In 2015.08

▶ Architectures: Minimal support for ARM Cortex-M3 and
AArch64 big-endian.

▶ Toolchains: Use uClibc-ng by default, add gcc 5.x support,
update toolchain components

▶ Defconfigs: VIA VAB-820/AMOS-820, OLimex OLinuxino
A20 Lime, many Atmel evaluation boards, ACME Systems
Aria G25, WarPboard, Altera Cyclone 5 Development Board,
Xilinx zc706, ARC AXS101 and AXS103

▶ Infrastructure:
▶ Predictable permissions in the generated rootfs
▶ Support for kconfig fragments
▶ New kernel-module infrastructure
▶ Rework of the skeleton and init scripts packaging
▶ New linux-tools infrastructure in the linux package
▶ GCC version dependency mechanism

▶ Filesystems: Complete rework of the ISO9660 support.
free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 326/332

In 2015.11

▶ Architectures: sparc64, mips32r6, mips64r6, Intel Quark
X1000 support added

▶ Toolchains: toolchain wrapper now also used for internal
toolchains, in addition to external toolchains, which fixes
ccache support. Updated external toolchains and toolchain
components.

▶ Defconfigs: ARC HS38 VDK virtual boards, Avnet Microzed,
Boundary Devices Nitrogen SoloX, Freescale i.MX6 SoloX
Sabre SD, OLinuxino A20 Lime2, Qemu Sparc64, Qemu
SuperH 4 big endian, Synopsys AArch64 VDK virtual platform

▶ Infrastructure:
▶ Addition of graph-size
▶ Addition of <pkg>_EXCLUDES to prevent specific parts of a

package from being extracted
▶ Addition of <pkg>_PKGDIR, which points to package/<pkg>/

▶ Skeleton: support a merged usr/ configuration, enforced for
systemd, optional otherwise

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 327/332

In 2016.02

▶ Toolchain: gcc 5.3 support added, dropped support for
uClibc as uClibc-ng is now used. Updated external toolchains.

▶ Defconfigs: ARM Juno r0/r1 development boards, Freescale
i.MX6UL Evaluation Kit, Intel Galileo Gen 2, Orange Pi PC

▶ Images: more widespread use of genimage to generate
complete SD card images

▶ Infrastructure: makedevs now accepts textual
(non-numerical) user and group names

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 328/332

In 2016.05

▶ Architectures: support for ARM Cortex-M3/M4 added with
improved ARM noMMU support, m68k re-enabled with
Coldfire support.

▶ Toolchains: gcc 6 support added. External toolchains and
toolchain componenents updated.

▶ Languages: support for the Go language has been added.
▶ Defconfigs: Firefly RK3288, Boundary Devices i.MX7

Nitrogen7, STM32F429 and STM32F469 Discovery boards,
Hardkernel ODROID-C2, Raspberry Pi Zero and Raspberry Pi
3. Some Qemu defconfigs were added for m68k,
eXtensa-nommu and ColdFire.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 329/332

Acknowledgements

▶ Free Electrons would like to thank the following members of
the Buildroot community for their useful comments and
reviews during the development of these training materials:

▶ Thomas De Schampheleire
▶ Peter Korsgaard
▶ Yann E. Morin
▶ Arnout Vandecappelle
▶ Gustavo Zacarias

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 330/332

Last slides

Last slides
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 331/332

Last slide

Thank you!
And may the Source be with you

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 332/332

	Generic course information
	Introduction to Embedded Linux
	Introduction to Buildroot
	Managing the build and the configuration
	Buildroot source and build trees
	Source tree
	Build tree

	Toolchains in Buildroot
	Managing the Linux kernel configuration
	Root filesystem in Buildroot
	Download infrastructure in Buildroot
	GNU Make 101
	Integrating new packages in Buildroot
	Config.in file
	Package infrastructures
	.mk file for generic-package
	autotools-package infrastructure
	python-package infrastructure
	Target vs. host packages

	Advanced package aspects
	Licensing report
	Patching packages
	User, permission and device tables
	Init scripts and systemd unit files
	Config scripts
	Hooks
	Overriding commands
	Legacy handling
	Virtual packages

	Analyzing the build
	Advanced topics
	Application development
	Understanding Buildroot internals
	Buildroot community: support and contribution
	What's new in Buildroot?
	Last slides

