
Program Library HOWTO
David A. Wheeler

version 1.36, 15 May 2010

This HOWTO for programmers discusses how to create and use program libraries on
Linux. This includes static libraries, shared libraries, and dynamically loaded libraries.

Table of Contents
Introduction ...3
Static Libraries...3
Shared Libraries ..4
Dynamically Loaded (DL) Libraries ...11
Miscellaneous..14
More Examples ..18
Other Information Sources ...22
Copyright and License ...23

Introduction
This HOWTO for programmers discusses how to create and use program libraries on
Linux using the GNU toolset. A “program library” is simply a file containing com-
piled code (and data) that is to be incorporated later into a program; program libraries
allow programs to be more modular, faster to recompile, and easier to update. Pro-
gram libraries can be divided into three types: static libraries, shared libraries, and
dynamically loaded (DL) libraries.

This paper first discusses static libraries, which are installed into a program exe-
cutable before the program can be run. It then discusses shared libraries, which are
loaded at program start-up and shared between programs. Finally, it discusses dy-
namically loaded (DL) libraries, which can be loaded and used at any time while a
program is running. DL libraries aren’t really a different kind of library format (both
static and shared libraries can be used as DL libraries); instead, the difference is in
how DL libraries are used by programmers. The HOWTO wraps up with a section
with more examples and a section with references to other sources of information.

Most developers who are developing libraries should create shared libraries, since
these allow users to update their libraries separately from the applications that
use the libraries. Dynamically loaded (DL) libraries are useful, but they require a
little more work to use and many programs don’t need the flexibility they offer.
Conversely, static libraries make upgrading libraries far more troublesome, so for
general-purpose use they’re hard to recommend. Still, each have their advantages,
and the advantages of each type are described in the section discussing that type.
Developers using C++ and dynamically loaded (DL) libraries should also consult
the “C++ dlopen mini-HOWTO”.

It’s worth noting that some people use the term dynamically linked libraries (DLLs)
to refer to shared libraries, some use the term DLL to mean any library that is used as
a DL library, and some use the term DLL to mean a library meeting either condition.
No matter which meaning you pick, this HOWTO covers DLLs on Linux.

This HOWTO discusses only the Executable and Linking Format (ELF) format for
executables and libraries, the format used by nearly all Linux distributions today.
The GNU gcc toolset can actually handle library formats other than ELF; in particu-
lar, most Linux distributions can still use the obsolete a.out format. However, these
formats are outside the scope of this paper.

If you’re building an application that should port to many systems, you might
consider using GNU libtool1 to build and install libraries instead of using the
Linux tools directly. GNU libtool is a generic library support script that hides the
complexity of using shared libraries (e.g., creating and installing them) behind
a consistent, portable interface. On Linux, GNU libtool is built on top of the
tools and conventions described in this HOWTO. For a portable interface to
dynamically loaded libraries, you can use various portability wrappers. GNU
libtool includes such a wrapper, called “libltdl”. Alternatively, you could use
the glib library (not to be confused with glibc) with its portable support for
Dynamic Loading of Modules. You can learn more about glib’s dynamic loading of
modules at http://library.gnome.org/devel/glib/stable/glib-Dynamic-Loading-
of-Modules.html. Again, on Linux this functionality is implemented using the
constructs described in this HOWTO. If you’re actually developing or debugging
the code on Linux, you’ll probably still want the information in this HOWTO.

This HOWTO’s master location is http://www.dwheeler.com/program-library/,
and it has been contributed to the Linux Documentation Project
(http://www.linuxdoc.org). It is Copyright (C) 2000 David A. Wheeler and is
licensed through the General Public License (GPL); see the last section for more
information.

3

Program Library HOWTO

Static Libraries
Static libraries are simply a collection of ordinary object files; conventionally, static
libraries end with the “.a” suffix. This collection is created using the ar (archiver)
program. Static libraries aren’t used as often as they once were, because of the ad-
vantages of shared libraries (described below). Still, they’re sometimes created, they
existed first historically, and they’re simpler to explain.

Static libraries permit users to link to programs without having to recompile its code,
saving recompilation time. Note that recompilation time is less important given to-
day’s faster compilers, so this reason is not as strong as it once was. Static libraries
are often useful for developers if they wish to permit programmers to link to their
library, but don’t want to give the library source code (which is an advantage to the
library vendor, but obviously not an advantage to the programmer trying to use the
library). In theory, code in static ELF libraries that is linked into an executable should
run slightly faster (by 1-5%) than a shared library or a dynamically loaded library,
but in practice this rarely seems to be the case due to other confounding factors.

To create a static library, or to add additional object files to an existing static library,
use a command like this:

ar rcs my_library.a file1.o file2.o

This sample command adds the object files file1.o and file2.o to the static library
my_library.a, creating my_library.a if it doesn’t already exist. For more information
on creating static libraries, see ar(1).

Once you’ve created a static library, you’ll want to use it. You can use a static library
by invoking it as part of the compilation and linking process when creating a pro-
gram executable. If you’re using gcc(1) to generate your executable, you can use the
-l option to specify the library; see info:gcc for more information.

Be careful about the order of the parameters when using gcc; the -l option is a linker
option, and thus needs to be placed AFTER the name of the file to be compiled. This
is quite different from the normal option syntax. If you place the -l option before the
filename, it may fail to link at all, and you can end up with mysterious errors.

You can also use the linker ld(1) directly, using its -l and -L options; however, in most
cases it’s better to use gcc(1) since the interface of ld(1) is more likely to change.

Shared Libraries
Shared libraries are libraries that are loaded by programs when they start. When a
shared library is installed properly, all programs that start afterwards automatically
use the new shared library. It’s actually much more flexible and sophisticated than
this, because the approach used by Linux permits you to:

• update libraries and still support programs that want to use older, non-backward-
compatible versions of those libraries;

• override specific libraries or even specific functions in a library when executing a
particular program.

• do all this while programs are running using existing libraries.

Conventions
For shared libraries to support all of these desired properties, a number of conven-
tions and guidelines must be followed. You need to understand the difference be-

4

Program Library HOWTO

tween a library’s names, in particular its “soname” and “real name” (and how they
interact). You also need to understand where they should be placed in the filesystem.

Shared Library Names
Every shared library has a special name called the “soname”. The soname has the
prefix “lib”, the name of the library, the phrase “.so”, followed by a period and a
version number that is incremented whenever the interface changes (as a special ex-
ception, the lowest-level C libraries don’t start with “lib”). A fully-qualified soname
includes as a prefix the directory it’s in; on a working system a fully-qualified soname
is simply a symbolic link to the shared library’s “real name”.

Every shared library also has a “real name”, which is the filename containing the
actual library code. The real name adds to the soname a period, a minor number,
another period, and the release number. The last period and release number are op-
tional. The minor number and release number support configuration control by let-
ting you know exactly what version(s) of the library are installed. Note that these
numbers might not be the same as the numbers used to describe the library in docu-
mentation, although that does make things easier.

In addition, there’s the name that the compiler uses when requesting a library, (I’ll
call it the “linker name”), which is simply the soname without any version number.

The key to managing shared libraries is the separation of these names. Programs,
when they internally list the shared libraries they need, should only list the son-
ame they need. Conversely, when you create a shared library, you only create the
library with a specific filename (with more detailed version information). When you
install a new version of a library, you install it in one of a few special directories and
then run the program ldconfig(8). ldconfig examines the existing files and creates
the sonames as symbolic links to the real names, as well as setting up the cache file
/etc/ld.so.cache (described in a moment).

ldconfig doesn’t set up the linker names; typically this is done during library installa-
tion, and the linker name is simply created as a symbolic link to the “latest” soname
or the latest real name. I would recommend having the linker name be a symbolic
link to the soname, since in most cases if you update the library you’d like to auto-
matically use it when linking. I asked H. J. Lu why ldconfig doesn’t automatically
set up the linker names. His explanation was basically that you might want to run
code using the latest version of a library, but might instead want development to link
against an old (possibly incompatible) library. Therefore, ldconfig makes no assump-
tions about what you want programs to link to, so installers must specifically modify
symbolic links to update what the linker will use for a library.

Thus, /usr/lib/libreadline.so.3 is a fully-qualified soname,
which ldconfig would set to be a symbolic link to some realname like
/usr/lib/libreadline.so.3.0. There should also be a linker name,
/usr/lib/libreadline.so which could be a symbolic link referring to
/usr/lib/libreadline.so.3.

Filesystem Placement
Shared libraries must be placed somewhere in the filesystem. Most open source soft-
ware tends to follow the GNU standards; for more information see the info file docu-
mentation at info:standards#Directory_Variables. The GNU standards recommend
installing by default all libraries in /usr/local/lib when distributing source code
(and all commands should go into /usr/local/bin). They also define the convention
for overriding these defaults and for invoking the installation routines.

The Filesystem Hierarchy Standard (FHS) discusses what should go where in a dis-
tribution (see http://www.pathname.com/fhs). According to the FHS, most libraries
should be installed in /usr/lib, but libraries required for startup should be in /lib and
libraries that are not part of the system should be in /usr/local/lib.

5

Program Library HOWTO

There isn’t really a conflict between these two documents; the GNU standards
recommend the default for developers of source code, while the FHS recommends
the default for distributors (who selectively override the source code defaults,
usually via the system’s package management system). In practice this works nicely:
the “latest” (possibly buggy!) source code that you download automatically installs
itself in the “local” directory (/usr/local), and once that code has matured the
package managers can trivially override the default to place the code in the standard
place for distributions. Note that if your library calls programs that can only be
called via libraries, you should place those programs in /usr/local/libexec (which
becomes /usr/libexec in a distribution). One complication is that Red Hat-derived
systems don’t include /usr/local/lib by default in their search for libraries; see the
discussion below about /etc/ld.so.conf. Other standard library locations include
/usr/X11R6/lib for X-windows. Note that /lib/security is used for PAM modules,
but those are usually loaded as DL libraries (also discussed below).

How Libraries are Used
On GNU glibc-based systems, including all Linux systems, starting up an ELF binary
executable automatically causes the program loader to be loaded and run. On Linux
systems, this loader is named /lib/ld-linux.so.X (where X is a version number). This
loader, in turn, finds and loads all other shared libraries used by the program.

The list of directories to be searched is stored in the file /etc/ld.so.conf. Many
Red Hat-derived distributions don’t normally include /usr/local/lib in the file
/etc/ld.so.conf. I consider this a bug, and adding /usr/local/lib to /etc/ld.so.conf
is a common “fix” required to run many programs on Red Hat-derived systems.

If you want to just override a few functions in a library, but keep the rest of the library,
you can enter the names of overriding libraries (.o files) in /etc/ld.so.preload; these
“preloading” libraries will take precedence over the standard set. This preloading file
is typically used for emergency patches; a distribution usually won’t include such a
file when delivered.

Searching all of these directories at program start-up would be grossly inefficient, so
a caching arrangement is actually used. The program ldconfig(8) by default reads in
the file /etc/ld.so.conf, sets up the appropriate symbolic links in the dynamic link
directories (so they’ll follow the standard conventions), and then writes a cache to
/etc/ld.so.cache that’s then used by other programs. This greatly speeds up access
to libraries. The implication is that ldconfig must be run whenever a DLL is added,
when a DLL is removed, or when the set of DLL directories changes; running ldconfig
is often one of the steps performed by package managers when installing a library.
On start-up, then, the dynamic loader actually uses the file /etc/ld.so.cache and then
loads the libraries it needs.

By the way, FreeBSD uses slightly different filenames for this cache. In FreeBSD, the
ELF cache is /var/run/ld-elf.so.hints and the a.out cache is /var/run/ld.so.hints.
These are still updated by ldconfig(8), so this difference in location should only mat-
ter in a few exotic situations.

Environment Variables
Various environment variables can control this process, and there are environment
variables that permit you to override this process.

LD_LIBRARY_PATH
You can temporarily substitute a different library for this particular execution. In
Linux, the environment variable LD_LIBRARY_PATH is a colon-separated set of di-
rectories where libraries should be searched for first, before the standard set of di-

6

Program Library HOWTO

rectories; this is useful when debugging a new library or using a nonstandard li-
brary for special purposes. The environment variable LD_PRELOAD lists shared
libraries with functions that override the standard set, just as /etc/ld.so.preload
does. These are implemented by the loader /lib/ld-linux.so. I should note that, while
LD_LIBRARY_PATH works on many Unix-like systems, it doesn’t work on all; for
example, this functionality is available on HP-UX but as the environment variable
SHLIB_PATH, and on AIX this functionality is through the variable LIBPATH (with
the same syntax, a colon-separated list).

LD_LIBRARY_PATH is handy for development and testing, but shouldn’t
normally be modified by an installation process for normal use; for an
explanation of why, see David Barr’s “Why LD_LIBRARY_PATH is Bad” (
http://xahlee.org/UnixResource_dir/_/ldpath.html). But it’s still useful for
development or testing, and for working around problems that can’t be worked
around otherwise. If you don’t want to set the LD_LIBRARY_PATH environment
variable, on Linux you can even invoke the program loader directly and pass it
arguments. For example, the following will use the given PATH instead of the
content of the environment variable LD_LIBRARY_PATH, and run the given
executable:

/lib/ld-linux.so.2 --library-path PATH EXECUTABLE

Just executing ld-linux.so without arguments will give you more help on using this,
but again, don’t use this for normal use - these are all intended for debugging.

LD_DEBUG
Another useful environment variable in the GNU C loader is LD_DEBUG. This trig-
gers the dl* functions so that they give quite verbose information on what they are
doing. For example:

export LD_DEBUG=files
command_to_run

displays the processing of files and libraries when handling libraries, telling you
what dependencies are detected and which SOs are loaded in what order. Setting
LD_DEBUG to “bindings” displays information about symbol binding, setting it to
“libs” displays the library search paths, and setting it to “versions” displays the ver-
sion dependencies.

Setting LD_DEBUG to “help” and then trying to run a program will list the possible
options. Again, LD_DEBUG isn’t intended for normal use, but it can be handy when
debugging and testing.

Other Environment Variables
There are actually a number of other environment variables that control the loading
process; their names begin with LD_ or RTLD_. Most of the others are for low-level
debugging of the loader process or for implementing specialized capabilities. Most
of them aren’t well-documented; if you need to know about them, the best way to
learn about them is to read the source code of the loader (part of gcc).

Permitting user control over dynamically linked libraries would be disastrous for
setuid/setgid programs if special measures weren’t taken. Therefore, in the GNU
loader (which loads the rest of the program on program start-up), if the program is
setuid or setgid these variables (and other similar variables) are ignored or greatly
limited in what they can do. The loader determines if a program is setuid or set-
gid by checking the program’s credentials; if the uid and euid differ, or the gid
and the egid differ, the loader presumes the program is setuid/setgid (or descended
from one) and therefore greatly limits its abilities to control linking. If you read the

7

Program Library HOWTO

GNU glibc library source code, you can see this; see especially the files elf/rtld.c
and sysdeps/generic/dl-sysdep.c. This means that if you cause the uid and gid to
equal the euid and egid, and then call a program, these variables will have full effect.
Other Unix-like systems handle the situation differently but for the same reason: a
setuid/setgid program should not be unduly affected by the environment variables
set.

Creating a Shared Library
Creating a shared library is easy. First, create the object files that will go into the
shared library using the gcc -fPIC or -fpic flag. The -fPIC and -fpic options enable
“position independent code” generation, a requirement for shared libraries; see be-
low for the differences. You pass the soname using the -Wl gcc option. The -Wl option
passes options along to the linker (in this case the -soname linker option) - the com-
mas after -Wl are not a typo, and you must not include unescaped whitespace in the
option. Then create the shared library using this format:

gcc -shared -Wl,-soname,your_soname \
-o library_name file_list library_list

Here’s an example, which creates two object files (a.o and b.o) and then creates a
shared library that contains both of them. Note that this compilation includes debug-
ging information (-g) and will generate warnings (-Wall), which aren’t required for
shared libraries but are recommended. The compilation generates object files (using
-c), and includes the required -fPIC option. Note: The GCC 4.5 manual says that if
you use -shared, "For predictable results, you must also specify the same set of op-
tions that were used to generate code (-fpic, -fPIC, or model suboptions)". Thus, you
should include -fPIC when linking as well as during the original compilation.8

gcc -fPIC -g -c -Wall a.c
gcc -fPIC -g -c -Wall b.c
gcc -shared -fPIC -Wl,-soname,libmystuff.so.1 \

-o libmystuff.so.1.0.1 a.o b.o -lc

Here are a few points worth noting:

• Don’t strip the resulting library, and don’t use the compiler option -fomit-frame-
pointer unless you really have to. The resulting library will work, but these actions
make debuggers mostly useless.

• Use -fPIC or -fpic to generate code. Whether to use -fPIC or -fpic to generate code
is target-dependent. The -fPIC choice always works, but may produce larger code
than -fpic (mnenomic to remember this is that PIC is in a larger case, so it may
produce larger amounts of code). Using -fpic option usually generates smaller and
faster code, but will have platform-dependent limitations, such as the number of
globally visible symbols or the size of the code. The linker will tell you whether it
fits when you create the shared library. When in doubt, I choose -fPIC, because it
always works.

• In some cases, the call to gcc to create the object file will also need to include the
option “-Wl,-export-dynamic”. Normally, the dynamic symbol table contains only
symbols which are used by a dynamic object. This option (when creating an ELF
file) adds all symbols to the dynamic symbol table (see ld(1) for more information).
You need to use this option when there are ’reverse dependencies’, i.e., a DL li-
brary has unresolved symbols that by convention must be defined in the programs
that intend to load these libraries. For “reverse dependencies” to work, the master
program must make its symbols dynamically available. Note that you could say “-
rdynamic” instead of “-Wl,export-dynamic” if you only work with Linux systems,

8

Program Library HOWTO

but according to the ELF documentation the “-rdynamic” flag doesn’t always work
for gcc on non-Linux systems.

During development, there’s the potential problem of modifying a library that’s also
used by many other programs -- and you don’t want the other programs to use the
“developmental”library, only a particular application that you’re testing against it.
One link option you might use is ld’s “rpath” option, which specifies the runtime
library search path of that particular program being compiled. From gcc, you can
invoke the rpath option by specifying it this way:

-Wl,-rpath,$(DEFAULT_LIB_INSTALL_PATH)

If you use this option when building the library client program, you don’t need to
bother with LD_LIBRARY_PATH (described next) other than to ensure it’s not con-
flicting, or using other techniques to hide the library.

Installing and Using a Shared Library
Once you’ve created a shared library, you’ll want to install it. The simple approach
is simply to copy the library into one of the standard directories (e.g., /usr/lib) and
run ldconfig(8).

First, you’ll need to create the shared libraries somewhere. Then, you’ll need to set
up the necessary symbolic links, in particular a link from a soname to the real name
(as well as from a versionless soname, that is, a soname that ends in “.so” for users
who don’t specify a version at all). The simplest approach is to run:

ldconfig -n directory_with_shared_libraries

Finally, when you compile your programs, you’ll need to tell the linker about any
static and shared libraries that you’re using. Use the -l and -L options for this.

If you can’t or don’t want to install a library in a standard place (e.g., you don’t have
the right to modify /usr/lib), then you’ll need to change your approach. In that case,
you’ll need to install it somewhere, and then give your program enough information
so the program can find the library... and there are several ways to do that. You can
use gcc’s -L flag in simple cases. You can use the “rpath” approach (described above),
particularly if you only have a specific program to use the library being placed in a
“non-standard” place. You can also use environment variables to control things. In
particular, you can set LD_LIBRARY_PATH, which is a colon-separated list of direc-
tories in which to search for shared libraries before the usual places. If you’re using
bash, you could invoke my_program this way using:

LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH my_program

If you want to override just a few selected functions, you can do this by creating an
overriding object file and setting LD_PRELOAD; the functions in this object file will
override just those functions (leaving others as they were).

Usually you can update libraries without concern; if there was an API change, the
library creator is supposed to change the soname. That way, multiple libraries can be
on a single system, and the right one is selected for each program. However, if a pro-
gram breaks on an update to a library that kept the same soname, you can force it to
use the older library version by copying the old library back somewhere, renaming
the program (say to the old name plus “.orig”), and then create a small “wrapper”
script that resets the library to use and calls the real (renamed) program. You could
place the old library in its own special area, if you like, though the numbering con-
ventions do permit multiple versions to live in the same directory. The wrapper script
could look something like this:

9

Program Library HOWTO

#!/bin/sh
export LD_LIBRARY_PATH=/usr/local/my_lib:$LD_LIBRARY_PATH
exec /usr/bin/my_program.orig $*

Please don’t depend on this when you write your own programs; try to make sure
that your libraries are either backwards-compatible or that you’ve incremented the
version number in the soname every time you make an incompatible change. This is
just an “emergency” approach to deal with worst-case problems.

You can see the list of the shared libraries used by a program using ldd(1). So, for
example, you can see the shared libraries used by ls by typing:

ldd /bin/ls

Generally you’ll see a list of the sonames being depended on, along with the directory
that those names resolve to. In practically all cases you’ll have at least two dependen-
cies:

• /lib/ld-linux.so.N (where N is 1 or more, usually at least 2). This is the library that
loads all other libraries.

• libc.so.N (where N is 6 or more). This is the C library. Even other languages tend
to use the C library (at least to implement their own libraries), so most programs
at least include this one.

Beware: do not run ldd on a program you don’t trust. As is clearly stated in the ldd(1)
manual, ldd works by (in certain cases) by setting a special environment variable (for
ELF objects, LD_TRACE_LOADED_OBJECTS) and then executing the program. It
may be possible for an untrusted program to force the ldd user to run arbitrary code
(instead of simply showing the ldd information). So, for safety’s sake, don’t use ldd
on programs you don’t trust to execute.

Incompatible Libraries
When a new version of a library is binary-incompatible with the old one the soname
needs to change. In C, there are four basic reasons that a library would cease to be
binary compatible:

1. The behavior of a function changes so that it no longer meets its original speci-
fication,

2. Exported data items change (exception: adding optional items to the ends of
structures is okay, as long as those structures are only allocated within the li-
brary).

3. An exported function is removed.

4. The interface of an exported function changes.

If you can avoid these reasons, you can keep your libraries binary-compatible. Said
another way, you can keep your Application Binary Interface (ABI) compatible if
you avoid such changes. For example, you might want to add new functions but not
delete the old ones. You can add items to structures but only if you can make sure
that old programs won’t be sensitive to such changes by adding items only to the
end of the structure, only allowing the library (and not the application) to allocate
the structure, making the extra items optional (or having the library fill them in), and
so on. Watch out - you probably can’t expand structures if users are using them in
arrays.

10

Program Library HOWTO

For C++ (and other languages supporting compiled-in templates and/or compiled
dispatched methods), the situation is trickier. All of the above issues apply, plus many
more issues. The reason is that some information is implemented “under the covers”
in the compiled code, resulting in dependencies that may not be obvious if you don’t
know how C++ is typically implemented. Strictly speaking, they aren’t “new” issues,
it’s just that compiled C++ code invokes them in ways that may be surprising to you.
The following is a (probably incomplete) list of things that you can and can’t do in
C++ and retain binary compatibility (these were originally reported by Troll Tech’s
Technical FAQ; a more up-to-date list is in KDE’s Policies/Binary Compatibility Is-
sues With C++9):

1. add reimplementations of virtual functions (unless it it safe for older bina-
ries to call the original implementation), because the compiler evaluates Su-
perClass::virtualFunction() calls at compile-time (not link-time).

2. add or remove virtual member functions, because this would change the size
and layout of the vtbl of every subclass.

3. change the type of any data members or move any data members that can be
accessed via inline member functions.

4. change the class hierarchy, except to add new leaves.

5. add or remove private data members, because this would change the size and
layout of every subclass.

6. remove public or protected member functions unless they are inline.

7. make a public or protected member function inline.

8. change what an inline function does, unless the old version continues working.

9. change the access rights (i.e. public, protected or private) of a member function
in a portable program, because some compilers mangle the access rights into
the function name.

Given this lengthy list, developers of C++ libraries in particular must plan for more
than occasional updates that break binary compatibility. Fortunately, on Unix-like
systems (including Linux) you can have multiple versions of a library loaded at the
same time, so while there is some disk space loss, users can still run “old” programs
needing old libraries.

Dynamically Loaded (DL) Libraries
Dynamically loaded (DL) libraries are libraries that are loaded at times other than
during the startup of a program. They’re particularly useful for implementing plu-
gins or modules, because they permit waiting to load the plugin until it’s needed.
For example, the Pluggable Authentication Modules (PAM) system uses DL libraries
to permit administrators to configure and reconfigure authentication. They’re also
useful for implementing interpreters that wish to occasionally compile their code
into machine code and use the compiled version for efficiency purposes, all without
stopping. For example, this approach can be useful in implementing a just-in-time
compiler or multi-user dungeon (MUD).

In Linux, DL libraries aren’t actually special from the point-of-view of their format;
they are built as standard object files or standard shared libraries as discussed above.
The main difference is that the libraries aren’t automatically loaded at program link
time or start-up; instead, there is an API for opening a library, looking up symbols,
handling errors, and closing the library. C users will need to include the header file
<dlfcn.h> to use this API.

11

Program Library HOWTO

The interface used by Linux is essentially the same as that used in Solaris, which
I’ll call the “dlopen()” API. However, this same interface is not supported by all
platforms; HP-UX uses the different shl_load() mechanism, and Windows platforms
use DLLs with a completely different interface. If your goal is wide portability, you
probably ought to consider using some wrapping library that hides differences
between platforms. One approach is the glib library with its support for Dynamic
Loading of Modules; it uses the underlying dynamic loading routines of the
platform to implement a portable interface to these functions. You can learn more
about glib at http://developer.gnome.org/doc/API/glib/glib-dynamic-loading-of-
modules.html. Since the glib interface is well-explained in its documentation, I
won’t discuss it further here. Another approach is to use libltdl, which is part of
GNU libtool11. If you want much more functionality than this, you might want to
look into a CORBA Object Request Broker (ORB). If you’re still interested in directly
using the interface supported by Linux and Solaris, read on.

Developers using C++ and dynamically loaded (DL) libraries should also consult the
“C++ dlopen mini-HOWTO”.

dlopen()
The dlopen(3) function opens a library and prepares it for use. In C its prototype is:

void * dlopen(const char *filename, int flag);

If filename begins with “/” (i.e., it’s an absolute path), dlopen() will just try to use it
(it won’t search for a library). Otherwise, dlopen() will search for the library in the
following order:

1. A colon-separated list of directories in the user’s LD_LIBRARY_PATH environ-
ment variable.

2. The list of libraries specified in /etc/ld.so.cache (which is generated from
/etc/ld.so.conf).

3. /lib, followed by /usr/lib. Note the order here; this is the reverse of the order
used by the old a.out loader. The old a.out loader, when loading a program,
first searched /usr/lib, then /lib (see the man page ld.so(8)). This shouldn’t
normally matter, since a library should only be in one or the other directory
(never both), and different libraries with the same name are a disaster waiting
to happen.

In dlopen(), the value of flag must be either RTLD_LAZY, meaning “resolve un-
defined symbols as code from the dynamic library is executed”, or RTLD_NOW,
meaning “resolve all undefined symbols before dlopen() returns and fail if this can-
not be done”. RTLD_GLOBAL may be optionally or’ed with either value in flag,
meaning that the external symbols defined in the library will be made available to
subsequently loaded libraries. While you’re debugging, you’ll probably want to use
RTLD_NOW; using RTLD_LAZY can create inscrutable errors if there are unresolved
references. Using RTLD_NOW makes opening the library take slightly longer (but it
speeds up lookups later); if this causes a user interface problem you can switch to
RTLD_LAZY later.

If the libraries depend on each other (e.g., X depends on Y), then you need to load
the dependees first (in this example, load Y first, and then X).

The return value of dlopen() is a “handle” that should be considered an opaque value
to be used by the other DL library routines. dlopen() will return NULL if the attempt
to load does not succeed, and you need to check for this. If the same library is loaded
more than once with dlopen(), the same file handle is returned.

12

Program Library HOWTO

In older systems, if the library exports a routine named _init, then that code is ex-
ecuted before dlopen() returns. You can use this fact in your own libraries to im-
plement initialization routines. However, libraries should not export routines named
_init or _fini. Those mechanisms are obsolete, and may result in undesired behavior.
Instead, libraries should export routines using the __attribute__((constructor)) and
__attribute__((destructor)) function attributes (presuming you’re using gcc). See the
Section called Library constructor and destructor functions for more information.

dlerror()
Errors can be reported by calling dlerror(), which returns a string describing the er-
ror from the last call to dlopen(), dlsym(), or dlclose(). One oddity is that after calling
dlerror(), future calls to dlerror() will return NULL until another error has been en-
countered.

dlsym()
There’s no point in loading a DL library if you can’t use it. The main routine for using
a DL library is dlsym(3), which looks up the value of a symbol in a given (opened)
library. This function is defined as:

void * dlsym(void *handle, char *symbol);

the handle is the value returned from dlopen, and symbol is a NIL-terminated string.
If you can avoid it, don’t store the result of dlsym() into a void* pointer, because then
you’ll have to cast it each time you use it (and you’ll give less information to other
people trying to maintain the program).

dlsym() will return a NULL result if the symbol wasn’t found. If you know that the
symbol could never have the value of NULL or zero, that may be fine, but there’s a
potential ambiguity otherwise: if you got a NULL, does that mean there is no such
symbol, or that NULL is the value of the symbol? The standard solution is to call
dlerror() first (to clear any error condition that may have existed), then call dlsym() to
request a symbol, then call dlerror() again to see if an error occurred. A code snippet
would look like this:

dlerror(); /* clear error code */
s = (actual_type) dlsym(handle, symbol_being_searched_for);
if ((err = dlerror()) != NULL) {
/* handle error, the symbol wasn’t found */

} else {
/* symbol found, its value is in s */

}

dlclose()
The converse of dlopen() is dlclose(), which closes a DL library. The dl library main-
tains link counts for dynamic file handles, so a dynamic library is not actually deallo-
cated until dlclose has been called on it as many times as dlopen has succeeded on it.
Thus, it’s not a problem for the same program to load the same library multiple times.
If a library is deallocated, its function _fini is called (if it exists) in older libraries, but
_fini is an obsolete mechanism and shouldn’t be relied on. Instead, libraries should
export routines using the __attribute__((constructor)) and __attribute__((destructor))
function attributes. See the Section called Library constructor and destructor functions
for more information. Note: dlclose() returns 0 on success, and non-zero on error;
some Linux manual pages don’t mention this.

13

Program Library HOWTO

DL Library Example
Here’s an example from the man page of dlopen(3). This example loads the math
library and prints the cosine of 2.0, and it checks for errors at every step (recom-
mended):

#include <stdlib.h>
#include <stdio.h>
#include <dlfcn.h>

int main(int argc, char **argv) {
void *handle;
double (*cosine)(double);
char *error;

handle = dlopen ("/lib/libm.so.6", RTLD_LAZY);
if (!handle) {

fputs (dlerror(), stderr);
exit(1);

}

cosine = dlsym(handle, "cos");
if ((error = dlerror()) != NULL) {

fputs(error, stderr);
exit(1);

}

printf ("%f\n", (*cosine)(2.0));
dlclose(handle);

}

If this program were in a file named "foo.c", you would build the program with the
following command:

gcc -o foo foo.c -ldl

Miscellaneous

nm command
The nm(1) command can report the list of symbols in a given library. It works on
both static and shared libraries. For a given library nm(1) can list the symbol names
defined, each symbol’s value, and the symbol’s type. It can also identify where the
symbol was defined in the source code (by filename and line number), if that infor-
mation is available in the library (see the -l option).

The symbol type requires a little more explanation. The type is displayed as a letter;
lowercase means that the symbol is local, while uppercase means that the symbol
is global (external). Typical symbol types include T (a normal definition in the code
section), D (initialized data section), B (uninitialized data section), U (undefined; the
symbol is used by the library but not defined by the library), and W (weak; if another
library also defines this symbol, that definition overrides this one).

If you know the name of a function, but you truly can’t remember what library it
was defined in, you can use nm’s “-o” option (which prefixes the filename in each
line) along with grep to find the library name. From a Bourne shell, you can search
all the libraries in /lib, /usr/lib, direct subdirectories of /usr/lib, and /usr/local/lib
for “cos” as follows:

14

Program Library HOWTO

nm -o /lib/* /usr/lib/* /usr/lib/*/* \
/usr/local/lib/* 2> /dev/null | grep ’cos$’

Much more information about nm can be found in the nm “info” documentation
locally installed at info:binutils#nm.

Library constructor and destructor functions
Libraries should export initialization and cleanup routines using the gcc
__attribute__((constructor)) and __attribute__((destructor)) function attributes.
See the gcc info pages for information on these. Constructor routines are executed
before dlopen returns (or before main() is started if the library is loaded at load
time). Destructor routines are executed before dlclose returns (or after exit() or
completion of main() if the library is loaded at load time). The C prototypes for these
functions are:

void __attribute__ ((constructor)) my_init(void);
void __attribute__ ((destructor)) my_fini(void);

Shared libraries must not be compiled with the gcc arguments “-nostartfiles” or “-
nostdlib”. If those arguments are used, the constructor/destructor routines will not
be executed (unless special measures are taken).

Special functions _init and _fini (OBSOLETE/DANGEROUS)
Historically there have been two special functions, _init and _fini that can be used to
control constructors and destructors. However, they are obsolete, and their use can
lead to unpredicatable results. Your libraries should not use these; use the function
attributes constructor and destructor above instead.

If you must work with old systems or code that used _init or _fini, here’s how they
worked. Two special functions were defined for initializing and finalizing a module:
_init and _fini. If a function “_init” is exported in a library, then it is called when the
library is first opened (via dlopen() or simply as a shared library). In a C program,
this just means that you defined some function named _init. There is a corresponding
function called _fini, which is called whenever a client finishes using the library (via a
call dlclose() that brings its reference count to zero, or on normal exit of the program).
The C prototypes for these functions are:

void _init(void);
void _fini(void);

In this case, when compiling the file into a “.o” file in gcc, be sure to add the gcc option
“-nostartfiles”. This keeps the C compiler from linking the system startup libraries
against the .so file. Otherwise, you’ll get a “multiple-definition” error. Note that this
is completely different than compiling modules using the recommended function
attributes. My thanks to Jim Mischel and Tim Gentry for their suggestion to add this
discussion of _init and _fini, as well as help in creating it.

Shared Libraries Can Be Scripts
It’s worth noting that the GNU loader permits shared libraries to be text files
using a specialized scripting language instead of the usual library format. This is

15

Program Library HOWTO

useful for indirectly combining other libraries. For example, here’s the listing of
/usr/lib/libc.so on one of my systems:

/* GNU ld script
Use the shared library, but some functions are only in
the static library, so try that secondarily. */

GROUP (/lib/libc.so.6 /usr/lib/libc_nonshared.a)

For more information about this, see the texinfo documentation on ld linker
scripts (ld command language). General information is at info:ld#Options and
info:ld#Commands, with likely commands discussed in info:ld#Option Commands.

Symbol Versioning and Version Scripts
Typically references to external functions are bound on an as-needed basis, and are
not all bound when the application starts up. If a shared library is out of date, a
required interface may be missing; when the application tries to use that interface, it
may suddenly and unexpectedly fail.

A solution to this problem are symbol versioning coupled with version scripts. With
symbol versioning, the user can get a warning when they start their program if the
libraries being used with the application are too old. You can learn more about this
from ld manual’s descussion of version scripts at http://www.gnu.org/manual/ld-
2.9.1/html_node/ld_25.html.

GNU libtool
If you’re building an application that should port to many systems, you might
consider using GNU libtool14 to build and install libraries. GNU libtool is a generic
library support script. Libtool hides the complexity of using shared libraries behind
a consistent, portable interface. Libtool provides portable interfaces to create object
files, link libraries (static and shared), link executables, debug executables, install
libraries, install executables. It also includes libltdl, a portability wrapper for
dynamically loading programs. For more information, see its documentation at
http://www.gnu.org/software/libtool/manual.html

Removing symbols for space
All the symbols included in generated files are useful for debugging, but take up
space. If you need space, you can eliminate some of it.

The best approach is to first generate the object files normally, and do all your debug-
ging and testing first (debugging and testing is much easier with them). Afterwards,
once you’ve tested the program thoroughly, use strip(1) to remove the symbols. The
strip(1) command gives you a good deal of control over what symbols to eliminate;
see its documentation for details.

Another approach is to use the GNU ld options “-S” and “-s”; “-S” omits debug-
ger symbol information (but not all symbols) from the output file, while “-s” omits
all symbol information from the output file. You can invoke these options through
gcc as “-Wl,-S” and “-Wl,-s”. If you always strip the symbols and these options are
sufficient, feel free, but this is a less flexible approach.

16

Program Library HOWTO

Extremely small executables
You might find the paper Whirlwind Tutorial on Creating Really Teensy ELF Exe-
cutables for Linux16 useful. It describes how to make a truly tiny program executable.
Frankly, you shouldn’t use most of these tricks under normal circumstances, but
they’re quite instructive in showing how ELF really works.

C++ vs. C
It’s worth noting that if you’re writing a C++ program, and you’re calling a C library
function, in your C++ code you’ll need to define the C function as extern "C". Oth-
erwise, the linker won’t be able to locate the C function. Internally, C++ compilers
“mangle” the names of C++ functions (e.g., for typing purposes), and they need to
be told that a given function should be called as a C function (and thus, not have its
name mangled).

If you’re writing a program library that could be called from C or C++, it’s recom-
mended that you include ’extern "C"’ commands right in your header files so that
you do this automatically for your users. When combined with the usual #ifndef at
the top of a file to skip re-executing header files, this means that a typical header file
usable by either C or C++ for some header file foobar.h would look like this:

/* Explain here what foobar does */

#ifndef FOOBAR_H
#define FOOBAR_H

#ifdef __cplusplus
extern "C" {
#endif

... header code for foobar goes here ...

#ifdef __cplusplus
}
#endif
#endif

Speeding up C++ initialization
The KDE developers have noticed that large GUI C++ applications can take a long
time to start up, in part due to its needing to do many relocations. There are several
solutions to this. See Making C++ ready for the desktop (by Waldo Bastian)17 for more
information.

Link-Time Optimization
GCC 4.5 has added a new optimization option, -flto. When source files are compiled
and linked using -flto, GCC applies optimizations as if all the source code were in a
single file, which lets it perform far more aggressive optimizations. You have to also
use an optimization level (-Owhatever). It obsoletes the old -combine, but you might
want to seriously consider combining it with -fwhole-program. If you want to do
this, you need to use -flto at all steps of the process, and you should use exactly the
same optimization and machine-dependent options throughout. The article "What’s
new in GCC 4.5?" in Linux Weekly News (LWN)18 has more information.

17

Program Library HOWTO

Linux Standard Base (LSB)
The goal of the Linux Standard Base (LSB) project is to develop and promote a set
of standards that will increase compatibility among Linux distributions and enable
software applications to run on any compliant Linux system. The project’s home page
is at http://www.linuxbase.org.

A nice article that summarizes how to develop LSB-compliant applications was pub-
lished in October 2002, Developing LSB-certified applications: Five steps to binary-
compatible Linux applications20 by George Kraft IV (Senior software engineer, IBM’s
Linux Technology Center). Of course, you need to write code that only accesses the
standardized portability layer if you want your code to be portable. In addition, the
LSB provides some tools so that application writers of C/C++ programs can check for
LSB compliance; these tools use some capabilities of the linker and special libraries
to do these checks. Obviously, you’ll need to install the tools to do these checks; you
can get them from the LSB website. Then, simply use the "lsbcc" compiler as your
C/C++ compiler (lsbcc internally creates a linking environment that will complain if
certain LSB rules aren’t followed):

$ CC=lsbcc make myapplication
(or)

$ CC=lsbcc ./configure; make myapplication

You can then use the lsbappchk program to ensure that the program only uses func-
tions standardized by the LSB:

$ lsbappchk myapplication

You also need to follow the LSB packaging guidelines (e.g., use RPM v3, use LSB-
conforming package names, and for add-on software must install in /opt by default).
See the article and LSB website for more information.

Merging Libraries into Larger Shared Libraries
What if you want to first create smaller libraries, then later merge them into larger
libraries? In this case, you may find ld’s "--whole-archive" option useful, which can
be used to forcibly bring .a files and link them into an .so file.

Here’s an example of how to use --whole-archive:

gcc -shared -Wl,-soname,libmylib.$(VER) -o libmylib.so $(OBJECTS) \
-Wl,--whole-archive $(LIBS_TO_LINK) -Wl,--no-whole-archive \
$(REGULAR_LIBS)

As the ld documentation notes, be sure to use --no-whole-archive option at the end,
or gcc will try to merge in the standard libraries as well. My thanks to Kendall Bennett
for both suggesting this recipe, as well as providing it.

Other Information
Red Hat’s Ulrich Drepper How to Write Shared Libraries21 (August 28, 2004) has more
information that you may find useful.

More Examples
The following are more examples of all three approaches (static, shared, and dynam-
ically loaded libraries). File libhello.c is a trivial library, with libhello.h as its header.

18

Program Library HOWTO

File demo_use.c is a trivial caller of the library. This is followed by commented scripts
(script_static and script_dynamic) showing how to use the library as a static and
shared library. This is followed by demo_dynamic.c and script_dynamic, which show
how to use the shared library as a dynamically loaded library.

File libhello.c

/* libhello.c - demonstrate library use. */

#include <stdio.h>

void hello(void) {
printf("Hello, library world.\n");

}

File libhello.h

/* libhello.h - demonstrate library use. */

void hello(void);

File demo_use.c

/* demo_use.c -- demonstrate direct use of the "hello" routine */

#include "libhello.h"

int main(void) {
hello();
return 0;

}

File script_static

#!/bin/sh
Static library demo

Create static library’s object file, libhello-static.o.
I’m using the name libhello-static to clearly
differentiate the static library from the
dynamic library examples, but you don’t need to use
"-static" in the names of your
object files or static libraries.

gcc -Wall -g -c -o libhello-static.o libhello.c

Create static library.

ar rcs libhello-static.a libhello-static.o

19

Program Library HOWTO

At this point we could just copy libhello-static.a
somewhere else to use it.
For demo purposes, we’ll just keep the library
in the current directory.

Compile demo_use program file.

gcc -Wall -g -c demo_use.c -o demo_use.o

Create demo_use program; -L. causes "." to be searched during
creation of the program. Note that this command causes
the relevant object file in libhello-static.a to be
incorporated into file demo_use_static.

gcc -g -o demo_use_static demo_use.o -L. -lhello-static

Execute the program.

./demo_use_static

File script_shared

#!/bin/sh
Shared library demo

Create shared library’s object file, libhello.o.

gcc -fPIC -Wall -g -c libhello.c

Create shared library.
Use -lc to link it against C library, since libhello
depends on the C library.

gcc -g -shared -Wl,-soname,libhello.so.0 \
-o libhello.so.0.0 libhello.o -lc

At this point we could just copy libhello.so.0.0 into
some directory, say /usr/local/lib.

Now we need to call ldconfig to fix up the symbolic links.

Set up the soname. We could just execute:
ln -sf libhello.so.0.0 libhello.so.0
but let’s let ldconfig figure it out.

/sbin/ldconfig -n .

Set up the linker name.
In a more sophisticated setting, we’d need to make
sure that if there was an existing linker name,
and if so, check if it should stay or not.

ln -sf libhello.so.0 libhello.so

Compile demo_use program file.

gcc -Wall -g -c demo_use.c -o demo_use.o

Create program demo_use.
The -L. causes "." to be searched during creation
of the program; note that this does NOT mean that "."

20

Program Library HOWTO

will be searched when the program is executed.

gcc -g -o demo_use demo_use.o -L. -lhello

Execute the program. Note that we need to tell the program
where the shared library is, using LD_LIBRARY_PATH.

LD_LIBRARY_PATH="." ./demo_use

File demo_dynamic.c

/* demo_dynamic.c -- demonstrate dynamic loading and
use of the "hello" routine */

/* Need dlfcn.h for the routines to
dynamically load libraries */

#include <dlfcn.h>

#include <stdlib.h>
#include <stdio.h>

/* Note that we don’t have to include "libhello.h".
However, we do need to specify something related;
we need to specify a type that will hold the value
we’re going to get from dlsym(). */

/* The type "simple_demo_function" describes a function that
takes no arguments, and returns no value: */

typedef void (*simple_demo_function)(void);

int main(void) {
const char *error;
void *module;
simple_demo_function demo_function;

/* Load dynamically loaded library */
module = dlopen("libhello.so", RTLD_LAZY);
if (!module) {
fprintf(stderr, "Couldn’t open libhello.so: %s\n",

dlerror());
exit(1);

}

/* Get symbol */
dlerror();
demo_function = dlsym(module, "hello");
if ((error = dlerror())) {
fprintf(stderr, "Couldn’t find hello: %s\n", error);
exit(1);

}

/* Now call the function in the DL library */
(*demo_function)();

/* All done, close things cleanly */
dlclose(module);
return 0;

}

21

Program Library HOWTO

File script_dynamic

#!/bin/sh
Dynamically loaded library demo

Presume that libhello.so and friends have
been created (see dynamic example).

Compile demo_dynamic program file into an object file.

gcc -Wall -g -c demo_dynamic.c

Create program demo_use.
Note that we don’t have to tell it where to search for DL libraries,
since the only special library this program uses won’t be
loaded until after the program starts up.
However, we DO need the option -ldl to include the library
that loads the DL libraries.

gcc -g -o demo_dynamic demo_dynamic.o -ldl

Execute the program. Note that we need to tell the
program where get the dynamically loaded library,
using LD_LIBRARY_PATH.

LD_LIBRARY_PATH="." ./demo_dynamic

Other Information Sources
Particularly useful sources of information about libraries include the following:

• “The GCC HOWTO” by Daniel Barlow. In particular, this HOWTO discusses com-
piler options for creating libraries and how to query libraries. It covers information
not covered here, and vice versa. This HOWTO is available through the Linux Doc-
umentation Project at http://www.linuxdoc.org.

• “Executable and Linkable Format (ELF)” by the Tool Interface Standards (TIS) com-
mittee (this is actually one chapter of the Portable Formats Specification Version
1.1 by the same committee). This provides information about the ELF format (it
isn’t specific to Linux or GNU gcc), and provides a great deal of detail on the
ELF format. See ftp://tsx-11.mit.edu/pub/linux/packages/GCC/ELF.doc.tar.gz
If you get the file from MIT, note that the format is unusual; after gunzipping and
untarring, you’ll get an “hps” file; just strip off the top and bottom lines, rename it
to a “ps” file, and you’ll get a printable Postscript file with the usual filename.

• “ELF: From the Programmer’s Perspective” by Hongjui Lu. This gives
Linux and GNU gcc-specific information on ELF, and is available at
ftp://tsx-11.mit.edu/pub/linux/packages/GCC/elf.ps.gz.

• The ld documentation “Using LD, the GNU Linker” describes ld in far more detail.
It is available at http://sourceware.org/binutils/docs/ld/index.html.

• Dissecting shared libraries: Get to know your shared library26 by Peter Seebach
(published by developerWorks) has a simple summary on how shared libraries
work.

22

Program Library HOWTO

• You should also look at the normal "info" documentation, especially for ld and gcc.

Copyright and License
This document is Copyright (C) 2000 David A. Wheeler. It is covered by the GNU
General Public License (GPL). You may redistribute it without cost. Interpret the doc-
ument’s source text as the “program” and adhere to the following terms:

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

These terms do permit mirroring by other web sites, but please:

• make sure your mirrors automatically get upgrades from the master site,

• clearly show the location of the master site, http://www.dwheeler.com/program-
library/, with a hypertext link to the master site, and

• give me (David A. Wheeler) credit as the author.

The first two points primarily protect me from repeatedly hearing about obsolete
bugs. I do not want to hear about bugs I fixed a year ago, just because you are not
properly mirroring the document. By linking to the master site, users can check and
see if your mirror is up-to-date. I’m sensitive to the problems of sites which have
very strong security requirements and therefore cannot risk normal connections to
the Internet; if that describes your situation, at least try to meet the other points and
try to occasionally sneakernet updates into your environment.

By this license, you may modify the document, but you can’t claim that what you
didn’t write is yours (i.e., plagiarism) nor can you pretend that a modified version
is identical to the original work. Modifying the work does not transfer copyright of
the entire work to you; this is not a “public domain” work in terms of copyright
law. See the license for details, in particular noting that “You must cause the modi-
fied files to carry prominent notices stating that you changed the files and the date
of any change.” If you have questions about what the license allows, please con-
tact me. In most cases, it’s better if you send your changes to the master integrator
(currently David A. Wheeler), so that your changes will be integrated with everyone
else’s changes into the master copy.

Notes
1. http://www.gnu.org/software/libtool/libtool.html

2. http://library.gnome.org/devel/glib/stable/glib-Dynamic-Loading-of-
Modules.html

3. http://www.dwheeler.com/program-library/

4. http://www.linuxdoc.org

5. info:standards#Directory_Variables

6. http://www.pathname.com/fhs

23

Program Library HOWTO

7. http://xahlee.org/UnixResource_dir/_/ldpath.html

8. My thanks to Britton Kerin for pointing this out!

9. http://techbase.kde.org/Policies/Binary_Compatibility_Issues_With_C++

10. http://developer.gnome.org/doc/API/glib/glib-dynamic-loading-of-
modules.html

11. http://www.gnu.org/software/libtool/libtool.html

12. info:binutils#nm

13. http://www.gnu.org/manual/ld-2.9.1/html_node/ld_25.html

14. http://www.gnu.org/software/libtool/libtool.html

15. http://www.gnu.org/software/libtool/manual.html

16. http://www.muppetlabs.com/~breadbox/software/tiny/teensy.html

17. http://www.suse.de/~bastian/Export/linking.txt

18. http://lwn.net/Articles/387122/

19. http://www.linuxbase.org

20. http://www-106.ibm.com/developerworks/linux/library/l-
lsb.html?t=gr,lnxw02=LSBapps

21. http://people.redhat.com/drepper/dsohowto.pdf

22. http://www.linuxdoc.org

23. ftp://tsx-11.mit.edu/pub/linux/packages/GCC/ELF.doc.tar.gz

24. ftp://tsx-11.mit.edu/pub/linux/packages/GCC/elf.ps.gz

25. http://sourceware.org/binutils/docs/ld/index.html

26. http://www-106.ibm.com/developerworks/linux/library/l-
shlibs.html?ca=dgr-lnxw04SharedLib

27. http://www.dwheeler.com/program-library/

24

	Table of Contents
	Introduction
	Static Libraries
	Shared Libraries
	Conventions
	Shared Library Names
	Filesystem Placement

	How Libraries are Used
	Environment Variables
	LDLIBRARYPATH
	LDDEBUG
	Other Environment Variables

	Creating a Shared Library
	Installing and Using a Shared Library
	Incompatible Libraries

	Dynamically Loaded (DL) Libraries
	dlopen()
	dlerror()
	dlsym()
	dlclose()
	DL Library Example

	Miscellaneous
	nm command
	Library constructor and destructor functions
	Special functions init and fini (OBSOLETE/DANGEROUS)

	Shared Libraries Can Be Scripts
	Symbol Versioning and Version Scripts
	GNU libtool
	Removing symbols for space
	Extremely small executables
	C++ vs. C
	Speeding up C++ initialization
	LinkTime Optimization
	Linux Standard Base (LSB)
	Merging Libraries into Larger Shared Libraries
	Other Information

	More Examples
	File libhello.c
	File libhello.h
	File demouse.c
	File scriptstatic
	File scriptshared
	File demodynamic.c
	File scriptdynamic

	Other Information Sources
	Copyright and License

