
SEED Document 1

How Linux Capability Works in 2.6.25

1 Overview

The UNIX-style user privileges come in two varieties, regular user and root. Regular users’ power is
quite limited, while the root users are very powerful. If a process needs more power than those of regular
users, the process is often running with the root privilege. Unfortunately, most of the time the processes
do not actually need all the privileges. In other words, they have more powerful than what they need. This
can pose serious risk when a process gets compromised. Therefore, having only two types of privileges is
not sufficient; a more granular privilege set is required. The POSIX capabilities is exactly designed for this
purpose.

2 How Linux Capability Works

2.1 Process Capability

Each Linux process has four sets of bitmaps called the effective (E), permitted (P), inheritable (I), and bset
capabilities. Each capability is implemented as a bit in each of these bitmaps, which is either set or unset.

struct task_struct
{

kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset;
}

typedef struct kernel_cap_struct {
__u32 cap[_KERNEL_CAPABILITY_U32S];

} kernel_cap_t;

The constant KERNEL CAPABILITY U32S indicates how many capabilities the kernel has, it would be
defined to be 2 if kernel has more than 32 capabilities, otherwise, 1.

The effective capability set indicates what capabilities are effective. When a process tries to do a privi-
leged operation, the operating system will check the appropriate bit in the effective set of the process (instead
of checking whether the effective uid of the process i 0 as is normally done). For example, when a process
tries to set the clock, the Linux kernel will check that the process has the CAP SYS TIME bit (which is
currently bit 25) set in its effective set.

The permitted capability set indicates what capabilities the process can use. The process can have
capabilities set in the permitted set that are not in the effective set. This indicates that the process has
temporarily disabled this capability. A process is allowed to set a bit in its effective set only if it is available
in the permitted set. The distinction between effective and permitted makes it possible for a process to
disable, enable and drop privileges.

The inheritable capability set indicates what capabilities of the current process should be inherited by
the program executed by the current process. When a process executes a new program (using exec()), its
new capability sets are calculated according to the following formula:

pI_new = pI
pP_new = (X & fP) | (fI & pI)



SEED Document 2

pE_new = pP_new if fE == true
pE_new = empty if fE == false

A value ending with 11new” indicates the newly calculated value. A value beginning with a p indicates a
process capability. A value beginning with an f indicates a file capability. X indicates capability bounding
set. This work is done by cap bprm apply creds() in linux/security/commoncap.c.

Nothing special happens during fork() or clone(). Child processes and threads are given an exact
copy of the capabilities of the parent process.

The capability bounding set (cap bset) is a set beyond which capabilities cannot grow. Previous
kernels implement cap bset for whole OS. You can find it in /proc/sys/kernel/cap-bound. Now each
process has its own bounding set, which can be modified (droping only) via prctl().

2.2 Manipulate Process Capability

Two system calls are provided to let users interact with process capabilities. They are capget() and
capset() in kernel/capability.c. But unforturnately, with file capability support, process can only manip-
ulate its own capability, this restriction is implemented in the following:

security/commoncap.c:
#ifdef CONFIG_SECURITY_FILE_CAPABILITIES
static inline int cap_block_setpcap(struct task_struct *target)
{

/*
* No support for remote process capability manipulation with

* filesystem capability support.

*/
return (target != current);

}

2.3 File Capability

To reduce the risk caused by Set-UID programs, we can assign a minimal set of capabilities to a privileged
program, instead of giving the program the root privilege. Binding a set of capabilities to programs has
been implemented since kernel 2.6.24. It is called file capability.

The basic idea is to assign certain attribute to the inode. Going through the process of exec() can give
us a picture of how file capability works. (The capability-unrelated parts are omitted here)

in fs/exec.c:
int do_execve(...)
{

prepare_binprm(bprm);
search_binary_handler(bprm, regs);

}

Basically prepare binprm() is to get capability from the inode. The function search binary handler()
calls specific loading function of certain type of binary file, which finally calls cap bprm apply creds()
in the capability module. Its job is to apply the capability to the current process.



SEED Document 3

int prepare_binprm(struct linux_binprm *bprm)
{

security_bprm_set(bprm);
}

in security/security.c:
int security_bprm_set(struct linux_binprm *bprm)
{

return security_ops->bprm_set_security(bprm);
}

The security ops points to secondary LSM. In 2.6.25, by default, it is capability module, which is
stacked on SELinux module. Capability module is implemneted in security/commoncap.c. Since this
module is always considered to be stacked on other modules, the hook functions in the module only do
capability-related works, which do not cover all function points in struct security operations (please refer to
details on LSM mechanism). Here, bprm set security() points to cap bprm set security().

in security/commoncap.c:
int cap_bprm_set_security (struct linux_binprm *bprm)
{

get_file_caps(bprm);
if (!issecure (SECURE_NOROOT)) {

if (bprm->e_uid == 0 || current->uid == 0) {
cap_set_full (bprm->cap_inheritable);
cap_set_full (bprm->cap_permitted);

}
if (bprm->e_uid == 0)

bprm->cap_effective = true;
}

}

The function get file caps(bprm) first fetches the capability from the inode to struct linux binprm.
Then turn on all the capabilities if current user is root and SECURE NOROOT is not set. SECURE NOROOT
is a security mode. SECURE NO SETUID FIXUP is another one, when it is not set, then when a process
switches its real or effective uids to or from 0, capability sets are further shifted around. 2.6.26 has more of
them. We won’t talk furture on this here.(check include/linux/securebits.h for the detailed definition)

2.4 Manipulating File Capability

Linux does not provide specific system call to manipulate file capability. But since it is implemented as inode
attribute, we can use system call getxattr() and fsetxattr(). Please refer to cap get file()
and cap set file() in cap file.c in libcap for details on how to use it.

2.5 Checking Capability

The capabilities of a process are checked almost everywhere when an access attempt is made. Some of them
can still grant permission even if ACL check fails. For example:

in fs/namei.c:



SEED Document 4

int generic_permission(...)
{
check_capabilities:

/*
* Read/write DACs are always overridable.

* Executable DACs are overridable if at least one exec bit is set.

*/
if (!(mask & MAY_EXEC) ||

(inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
if (capable(CAP_DAC_OVERRIDE))

return 0;
}

The function capable(CAP DAC OVERRIDE) checks whether the current process has CAP DAC OVERRIDE
as an effective capability. The capable() function is linked to SELinux module function which is again
linked to cap capable() in the capability module as a seccondary module.

in security/commoncap.c:
int cap_capable (struct task_struct *tsk, int cap)
{

/* Derived from include/linux/sched.h:capable. */
if (cap_raised(tsk->cap_effective, cap))

return 0;
return -EPERM;

}

References

[1] Taking Advantage of Linux Capabilities. Available at

http://www.linuxjournal.com/article/5737

[2] Linux kernel capabilities FAQ. Available at

http://ftp.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.4/capfaq-0.2.txt

[3] Linux Capabilities: making them work. Available at

http://ols.fedoraproject.org/OLS/Reprints-2008/hallyn-reprint.pdf

[4] POSIX file capabilities: Parceling the power of root. Available at

http://www.ibm.com/developerworks/library/l-posixcap.html?ca=dgr-lnxw01POSIX-capabilities


