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DEFENDED POSITION

• Meta-programming is essential for significant applications.

• Meta-programming is best achieved in C++ by elevating existing language
constructs to the meta-level.

• The FOG solution for meta-programming is logical, systematic and
adequate for typical applications.

• Compilation problems of both FOG and plain C++ are resolvable by
introduction of a clear partitioning between syntactic and semantic
analyses.

• FOG renders the C preprocessor redundant.
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ABSTRACT

Software Engineering progresses as improvements are made in languages and
methodologies. Significant advances have been made through the use of Object-
Oriented Programming, exploiting the effective support available in C++. Further
evolution of OOP involving the use of design patterns and aspects requires
additional language support.

Increased flexibility in the declaration of objects is proposed in the form of the
FOG (Flexible Object Generator) language, which is a superset of C++
implemented by a translator to C++. FOG generalises C++ syntax and supports
compile-time meta-programming and reflection.

The syntax generalisations provide the freedom for programmers to organise code
to suit programming concerns and eliminate the need for duplication between
interfaces and implementations. Further generalisations define composition
policies for repeated declarations so that classes, arrays, enumerations and
functions may all be extended. These composition policies support the weaving
necessary for re-useable implementation of design patterns and for Aspect
Oriented Programming.

A declarative form of meta-programming is supported by derivation rules, which
specify how a declaration specified in a base class is to be reinterpreted in derived
classes. Automated generation of derived functionality is important for a number
of design patterns.

More general meta-programming is provided by elevating most run-time concepts
to the meta-level, allowing conditional and iterated manipulation of declarations at
compile-time. Compile-time execution enables subsequent run-time code to be
optimised to suit application requirements.

The use of meta-variables and meta-functions together with a well-disciplined
lexical context for meta-programming and meta-level execution provide a complete
replacement for the traditional C preprocessor functionality, satisfying
Stroustrup’s goal of making Cpp redundant [Stroustrup97]. The new functionality
is integrated with the language, fits within an Object-Oriented framework and
provides adequate support for modern Software Engineering practices.

The C++ grammar is known to pose a significant parsing challenge and to require
context dependent type and template knowledge. This creates considerable
difficulties when meta-programming occurs in unresolved contexts. A new
approach to parsing C++ has therefore been developed that defers the use of type
and template information. This approach leads to a simpler grammar
implementation. An extended form of regular expression is presented and used to
predict known ambiguities and then show that this simpler grammar covers the
C++ grammar.



Meta-compilation for C++ ACKNOWLEDGEMENTS

Page vi 29-June-2001

ACKNOWLEDGEMENTS

My various academic supervisors gave invaluable support, while they remained at
Surrey. Chris Jesshope got me started and prompted me to broaden my
programming outlook. Sasha Shafarenko never allowed me to become
complacent. Slava Muchnick explained some of the intricacies of data parallelism
and then encouraged me as the research direction changed. Slava read drafts
enthusiastically, challenging my English from a uniquely Russian perspective.

A premature examination of Revision 1 (dated January 4, 2000) provoked Robert
Stroud into making many insightful suggestions.

Eventually George Pavlou picked up the reins and ensured that a suitable portion
of these suggestions were incorporated to produce this much improved revision.

My industrial supervisor, Edward Stansfield, ensured everything ran smoothly
from the industrial angle.

Brian Hillam offered encouragement and a suitably objective critique of associated
papers. Lui Melechi provided reassurance that the direction was sensible.

And finally, of course, I am extremely grateful to my employer, Thales Research
(then called Racal Research), for supplying the motivation, time and resources,
and to Peter Blair for presenting the opportunity and then allowing the research to
take its course.



TABLE OF CONTENTS Meta-compilation for C++

29-June-2001 Page vii

TABLE OF CONTENTS
DEFENDED POSITION ............................................................ iii
RELEVANT PUBLICATIONS BY THE AUTHOR ......................... iv
ABSTRACT.............................................................................. v
ACKNOWLEDGEMENTS ..........................................................vi
TABLE OF CONTENTS ........................................................... vii
LIST OF FIGURES ................................................................. xvi
LIST OF TABLES .................................................................. xvii

1 Introduction ............................................................................. 1
1.1 Language Limitations .............................................................................. 5
1.2 Organisation ........................................................................................... 6
1.3 Conventions ........................................................................................... 7
1.4 Traditional Preprocessing ........................................................................ 8
1.4.1 Lexical substitution............................................................................ 9
1.4.2 Name concatenation.......................................................................... 9
1.4.3 String conversion .............................................................................. 9
1.4.4 Text replacement ............................................................................... 9
1.4.5 Conditional compilation ................................................................... 10
1.5 Object-Oriented preprocessing .............................................................. 11
1.5.1 Scopes ........................................................................................... 11
1.5.2 Joint interface and implementation ................................................... 12
1.5.3 Composition .................................................................................... 13
1.5.4 Derivation rules ............................................................................... 15
1.5.5 Compilation model........................................................................... 17
1.5.6 Meta-concepts ................................................................................ 18
1.5.7 Meta-Programming .......................................................................... 18
1.6 FOG versions ....................................................................................... 18

2 Related Work ......................................................................... 21
2.1 Language Constructs ............................................................................ 21
2.1.1 Syntax ............................................................................................ 21
2.1.2 Macros ........................................................................................... 21
2.1.3 Joins .............................................................................................. 22
2.1.4 Meta-classes................................................................................... 23
2.2 Meta-level and Reflection ...................................................................... 23
2.2.1 The tower........................................................................................ 23
2.2.2 Metaobject Protocols ....................................................................... 24
2.2.3 Languages ...................................................................................... 24
2.2.4 Applications .................................................................................... 25
2.3 Programming Styles .............................................................................. 26
2.3.1 Patterns .......................................................................................... 26
2.3.2 Aspects .......................................................................................... 27
2.3.3 Generative Programming ................................................................. 29
2.4 Applications.......................................................................................... 30
2.4.1 Design by contract .......................................................................... 30
2.4.2 Persistence and Marshalling ............................................................ 30
2.4.3 Synchronisation .............................................................................. 31
2.5 Summary.............................................................................................. 31

3 FOG Grammar ....................................................................... 33
3.1 Grammar Extensions............................................................................. 33
3.1.1 Substitution, Concatenation and Tokenization ................................... 33
3.1.1.1 C++ Phase 6 Concatenation Grammar ....................................... 34
3.1.1.2 C++ Phase 7 Tokenization Grammar .......................................... 34



Meta-compilation for C++ TABLE OF CONTENTS

Page viii 29-June-2001

3.1.1.3 FOG Phase 6 Concatenation Grammar ...................................... 35
3.1.1.4 FOG Phase 7 Tokenization Grammar ......................................... 36
3.1.1.5 character-literal ............................................................................ 38
3.1.1.6 FOG tree-literals ......................................................................... 38
3.1.1.7 Design Rationale ...................................................................... 42
3.1.2 Names ............................................................................................ 43
3.1.3 Syntax Generalisation ..................................................................... 45
3.1.3.1 Forward declaration for namespace ........................................... 45
3.1.3.2 access-specifiers as decl-specifiers ................................................... 46
3.1.3.3 Pure-virtual .............................................................................. 46
3.1.3.4 !static .................................................................................. 47
3.1.3.5 !inline .................................................................................. 47
3.1.3.6 !virtual ................................................................................ 48
3.1.4 Syntax Enhancements ..................................................................... 49
3.1.4.1 Default member initializer .......................................................... 49
3.1.4.2 gcc indexed array initializer ....................................................... 50
3.1.4.3 compound-declaration ............................................................... 51
3.1.4.4 using ...................................................................................... 51
3.1.4.5 using template .......................................................................... 54
3.1.4.6 Object-statement-scopes .......................................................... 55
3.1.4.7 Function-statement-scopes ....................................................... 56
3.1.4.8 Derivation Rules ....................................................................... 57
3.1.5 Meta-Programming .......................................................................... 59
3.1.5.1 Meta-names ............................................................................. 63
3.1.5.2 Meta-classes ............................................................................ 63
3.1.5.3 Base Meta-classes .................................................................... 64
3.1.5.4 Meta-types ............................................................................... 65
3.1.5.5 Meta-variables .......................................................................... 66
3.1.5.6 Meta-functions .......................................................................... 67
3.1.5.7 Meta-constructor and Meta-destructor ....................................... 68
3.1.5.8 Meta-control-statements and meta-control-declarations .............. 68
3.1.5.9 Meta-typedef ............................................................................ 70
3.1.5.10 Meta-expression-statement ....................................................... 70
3.2 Built-In Functionality ............................................................................. 73
3.2.1 Built-in Root Meta-class .................................................................. 73
3.2.2 Built-in Meta-variables ..................................................................... 73
3.2.3 Built-in Meta-functions..................................................................... 73
3.2.4 std meta-namespace ...................................................................... 73
3.3 Incompatibilities.................................................................................... 73
3.3.1 Semantic Errors .............................................................................. 74
3.3.2 Transparency .................................................................................. 74
3.3.3 auto ............................................................................................... 74
3.3.4 Incompatible concatenation ............................................................. 74
3.4 Cpp Replacement ................................................................................. 75
3.4.1 Cpp limitations ................................................................................ 75
3.4.1.1 Unwanted substitution ............................................................... 76
3.4.1.2 Language independence ........................................................... 76
3.4.1.3 Side-effects .............................................................................. 76
3.4.1.4 Substitution level ...................................................................... 77
3.4.1.5 Backslash continuations ............................................................ 78
3.4.2 Concatenation and Stringizing ......................................................... 78
3.4.3 #define directive ............................................................................ 79
3.4.4 #include directive .......................................................................... 79
3.4.5 #if, #ifdef, #ifndef, #else, #elif, #endif directives .................. 79
3.4.6 #line directive................................................................................ 80
3.4.7 #error directive .............................................................................. 80
3.4.8 #pragma directive ............................................................................ 80



TABLE OF CONTENTS Meta-compilation for C++

29-June-2001 Page ix

3.5 Summary.............................................................................................. 80

4 FOG Semantics...................................................................... 83
4.1 Meta-compilation stages ....................................................................... 83
4.1.1 Potential and Actual Declarations..................................................... 85
4.1.2 Meta-types ...................................................................................... 86
4.1.3 Meta-objects ................................................................................... 89
4.1.4 Working meta-variables ................................................................... 90
4.1.5 Scalars, Arrays, Lists and Trees ....................................................... 91
4.1.6 Meta-type conversions..................................................................... 95
4.1.6.1 Meta-type Synonyms ................................................................. 95
4.1.6.2 Potential to Actual meta-type conversion .................................... 95
4.1.6.3 Resolution of the value of a meta-object .................................... 95
4.2 Substitution .......................................................................................... 96
4.2.1 Substitution levels ........................................................................... 96
4.2.1.1 Character-level substitution ....................................................... 97
4.2.1.2 Token-level substitution ............................................................. 98
4.2.1.3 Syntax-level substitution ........................................................... 98
4.2.1.4 Semantic-level substitution ........................................................ 99
4.2.2 Syntactic Polymorphism................................................................. 100
4.2.3 FOG substitution ........................................................................... 100
4.3 Name Resolution ................................................................................ 103
4.3.1 Search Locations .......................................................................... 105
4.3.2 Meta-name-space contents ............................................................ 106
4.3.3 The Substituted Value ................................................................... 108
4.3.4 Derived context resolution ............................................................. 109
4.3.5 Lexical scope resolution ................................................................ 111
4.3.6 Defining or invoking resolution ....................................................... 112
4.3.7 Multi-$-expression resolution ......................................................... 113
4.3.8 Transferred lexical scope for object-statements-clauses ......................... 115
4.3.9 No lexical scope for :: nesting ...................................................... 115
4.3.10 No Lexical scope for initializers and arguments .............................. 115
4.3.11 Formal parameters ........................................................................ 117
4.3.12 Meta-function and substitution semantics ....................................... 118
4.4 Composition ....................................................................................... 119
4.4.1 Class composition ......................................................................... 120
4.4.1.1 Nested contexts ...................................................................... 120
4.4.1.2 Base classes .......................................................................... 120
4.4.1.3 Miscellaneous declarations ..................................................... 121
4.4.2 Object statement composition ........................................................ 121
4.4.3 Enum composition ......................................................................... 121
4.4.4 Construct composition ................................................................... 122
4.4.5 Value composition ......................................................................... 123
4.4.6 Variable composition ..................................................................... 123
4.4.7 Array composition ......................................................................... 123
4.4.8 Function composition..................................................................... 124
4.4.9 Meta-variable composition ............................................................. 128
4.4.10 Meta-function composition ............................................................. 128
4.5 Meta-classes ...................................................................................... 129
4.6 Meta-programming .............................................................................. 135
4.7 Syntax macros .................................................................................... 138
4.8 Summary............................................................................................ 141

5 Parsing .................................................................................143
5.1 Terminology........................................................................................ 144
5.2 Approaches to C++ Parsing ................................................................. 147



Meta-compilation for C++ TABLE OF CONTENTS

Page x 29-June-2001

5.3 Alternatives ........................................................................................ 148
5.3.1 Roskind grammar .......................................................................... 148
5.3.2 gcc ............................................................................................... 149
5.3.3 CPPP ........................................................................................... 149
5.3.4 PCCTS ......................................................................................... 150
5.3.5 C++ to F-code translator ................................................................ 150
5.4 FOG parsing....................................................................................... 150
5.5 Analysis of the C++ Grammar.............................................................. 153
5.5.1 Notation ........................................................................................ 153
5.5.2 C++ Grammar Properties............................................................... 156
5.5.2.1 Names ................................................................................... 156
5.5.2.2 Declarators, Declarations and Type Identifiers .......................... 160
5.5.2.3 Expressions ............................................................................ 162
5.5.3 C++ Ambiguities (using type information) ....................................... 164
5.5.3.1 Declaration / Declaration Ambiguity ......................................... 164
5.5.3.2 Declaration / Expression ambiguity .......................................... 167
5.5.3.3 Expression / Expression ambiguities ........................................ 170
5.5.3.4 type-id / expression-list ambiguity ................................................. 171
5.5.3.5 call / functional-cast ambiguity ................................................ 172
5.6 Parsing the ambiguities ....................................................................... 172
5.6.1 Parsing against an ambiguity (the traditional approach) .................. 173
5.6.2 Parsing without an ambiguity (the multi-pass approach) .................. 174
5.6.3 Parsing with the ambiguity (the superset approach) ........................ 175
5.7 The Superset Grammar Approach........................................................ 175
5.7.1 C++ Ambiguities (without type information)..................................... 176
5.7.1.1 Declaration / Expression ambiguity .......................................... 176
5.7.1.2 Expression / Expression ambiguity .......................................... 177
5.7.1.3 type-id / expression-list ambiguity .................................................. 177
5.7.1.4 Call / functional-cast ambiguity ................................................ 178
5.7.2 A naive Assignment-Expression / Parameter-Declaration superset .. 178
5.7.3 The Superset ................................................................................ 179
5.7.3.1 Generalised Name .................................................................. 179
5.7.3.2 Generalised Array ................................................................... 181
5.7.3.3 Generalised Parentheses ........................................................ 181
5.7.3.4 Generalised pointers ............................................................... 182
5.7.3.5 Generalised primary-expression ................................................... 182
5.7.3.6 Generalised assignment-expression ............................................... 182
5.7.3.7 Generalised parameter-declaration ............................................... 183
5.7.3.8 Coverage of the generalised parameter-declaration ....................... 183
5.7.4 Ambiguities in the superset grammar ............................................. 186
5.8 Back-tracking...................................................................................... 187
5.8.1 Linear search in yacc .................................................................... 187
5.8.2 Binary tree search in yacc ............................................................. 189
5.9 FOG grammar..................................................................................... 193
5.10 Code Structure ................................................................................... 193
5.11 Grammar Metrics ................................................................................ 195
5.12 Summary............................................................................................ 199

6 Files .................................................................................... 201
6.1 Practical problems .............................................................................. 201
6.2 File disposition ................................................................................... 201
6.3 Utility ................................................................................................. 203
6.4 Dependency Analysis.......................................................................... 204
6.4.1 Create Usages .............................................................................. 207
6.4.2 Usage ordering ............................................................................. 207
6.4.3 Usage closure ............................................................................... 208



TABLE OF CONTENTS Meta-compilation for C++

29-June-2001 Page xi

6.4.4 File usage ordering ....................................................................... 208
6.4.5 File pre-ordering ........................................................................... 208
6.4.6 File post-ordering .......................................................................... 209
6.4.7 Emission ....................................................................................... 209
6.5 Target File Generation Policies ............................................................ 209
6.5.1 Global namespace......................................................................... 209
6.5.2 Friend functions ............................................................................ 210
6.5.3 Source File Protection ................................................................... 210
6.5.4 Suppressed Non-changes .............................................................. 210
6.5.5 Net dependencies ......................................................................... 210
6.5.6 Pretty Printing ............................................................................... 210
6.5.7 #line ............................................................................................. 211
6.5.8 Integrity ........................................................................................ 211
6.5.8.1 Checksum .............................................................................. 212
6.5.8.2 Database ................................................................................ 212
6.6 Summary............................................................................................ 213

7 Examples..............................................................................215
7.1 Idioms ................................................................................................ 215
7.1.1 InheritedTypedef ........................................................................... 215
7.1.2 NoAssign, NoCopy ........................................................................ 217
7.1.3 Mutate .......................................................................................... 219
7.1.4 Clone, Prototype ........................................................................... 220
7.2 Patterns ............................................................................................. 221
7.2.1 StaticFlyweight.............................................................................. 221
7.2.2 Member ........................................................................................ 224
7.2.3 ReferenceCount ............................................................................ 226
7.2.4 WholePart ..................................................................................... 230
7.2.5 Visitor ........................................................................................... 233
7.3 Meta-Programming ............................................................................. 235
7.3.1 OS Traits....................................................................................... 235
7.3.2 SynchronisedEnum........................................................................ 236
7.3.3 RTTI ............................................................................................. 237
7.4 Aspects .............................................................................................. 239
7.4.1 Marshalling ................................................................................... 240
7.4.2 Monitor ......................................................................................... 246
7.5 A Real Example - BURG ..................................................................... 251
7.6 Summary............................................................................................ 255

8 Summary ..............................................................................257
8.1 Parsing............................................................................................... 257
8.1.1 Context-free syntactical C++ parsing.............................................. 257
8.1.2 Back-tracking in yacc..................................................................... 257
8.1.3 Superset grammar ......................................................................... 258
8.1.4 Semantic analysis restricted to semantics ...................................... 258
8.1.5 Extended regular expressions ........................................................ 258
8.2 C++ Extensions .................................................................................. 258
8.2.1 Meta-programming ........................................................................ 258
8.2.2 Composition rather than One Definition Rule .................................. 259
8.2.3 Minor extensions ........................................................................... 259
8.2.4 Derivation rules ............................................................................. 259
8.2.5 Syntax macros .............................................................................. 259
8.3 Detailed Language Issues ................................................................... 259
8.3.1 Scoped preprocessing ................................................................... 259
8.3.2 Deferred substitution ..................................................................... 259
8.3.3 Polymorphic syntax ....................................................................... 259



Meta-compilation for C++ TABLE OF CONTENTS

Page xii 29-June-2001

8.3.4 Literal source ................................................................................ 260
8.3.5 Potential and Actual ...................................................................... 260
8.4 Further Work ...................................................................................... 260
8.5 Limitations.......................................................................................... 261
8.6 Other Languages ................................................................................ 262
8.7 Resolution of Goals ............................................................................ 262

9 Glossary .............................................................................. 265
9.1 Acronyms ........................................................................................... 265
9.2 Terms................................................................................................. 266

10 References .......................................................................... 267

A FOG Grammar changes ....................................................... 279
A.1 Keywords ..........................................................................................  279
A.2 Lexical conventions............................................................................  280
A.2.1 Phase 6 Concatenation Grammar................................................... 280
A.2.2 Phase 7 Tokenization Grammar ..................................................... 281
A.3 Basic concepts ..................................................................................  282
A.4 Expressions.......................................................................................  282
A.5 Statements ........................................................................................  282
A.6 Declarations ......................................................................................  283
A.7 Declarators........................................................................................  284
A.8 Classes .............................................................................................  285
A.9 Derived Classes ................................................................................  286
A.10 Special member functions ..................................................................  286
A.11 Overloading .......................................................................................  286
A.12 Templates..........................................................................................  286
A.13 Exception Handling ............................................................................  286
A.14 Tree Literals ......................................................................................  286
A.15 Object statements..............................................................................  287
A.16 Meta-Programming ............................................................................  288
A.16.1 Meta-names .................................................................................. 288
A.16.2 Meta-classes................................................................................. 288
A.16.3 Meta-types .................................................................................... 289
A.16.4 Meta-variables .............................................................................. 289
A.16.5 Meta-functions, Meta-constructors and Meta-destructors ................ 289
A.16.6 Meta-statements ........................................................................... 289
A.16.7 Meta-expressions .......................................................................... 290
A.17 Syntax macros...................................................................................  291
A.18 Files..................................................................................................  291

B C++ Grammar ..................................................................... 293

C FOG Grammar .................................................................... 313

D Command Line .................................................................... 343
D.1 Miscellaneous options........................................................................  343
D.2 Preprocessor options .........................................................................  343
D.3 Variant C++ options ...........................................................................  343
D.4 Generated C++ options ......................................................................  343
D.5 Output file options..............................................................................  343
D.6 Diagnostic options .............................................................................  344
D.7 Predefined macros .............................................................................  344



TABLE OF CONTENTS Meta-compilation for C++

29-June-2001 Page xiii

E Built-In Functionality ............................................................ 345
E.1 Built-in Meta-classes..........................................................................  345
E.1.1 auto ............................................................................................. 345
E.2 Built-in Meta-namespaces ..................................................................  345
E.2.1 std ............................................................................................... 345
E.3 Built-in Meta-variables .......................................................................  346
E.4 Built-in Meta-functions .......................................................................  347
E.4.1 array_modifier ............................................................................... 349
E.4.2 base and base_specifier ................................................................ 349
E.4.3 built_in and built_in_type_specifier................................................. 350
E.4.4 character ...................................................................................... 350
E.4.5 class and class_specifier ............................................................... 350
E.4.6 class_key ...................................................................................... 350
E.4.7 cv_qualifier ................................................................................... 350
E.4.8 decl_specifier ................................................................................ 350
E.4.9 declaration .................................................................................... 350
E.4.10 elaborated_type_specifier .............................................................. 350
E.4.11 entity and specifier ........................................................................ 350
E.4.12 enum and enum_specifier .............................................................. 350
E.4.13 enumerator and enumerator_definition ........................................... 350
E.4.14 exception and exception_declaration .............................................. 350
E.4.15 exception_specification.................................................................. 350
E.4.16 expression .................................................................................... 350
E.4.17 filespace and filespace_specifier .................................................... 351
E.4.18 function, function_modifier and function_specifier ........................... 351
E.4.19 handler ......................................................................................... 351
E.4.20 identifier ....................................................................................... 351
E.4.21 iterator .......................................................................................... 351
E.4.22 keyword ........................................................................................ 352
E.4.23 linkage and linkage_specification ................................................... 352
E.4.24 meta_class and meta_class_specifier............................................. 352
E.4.25 meta_function and meta_function_specifier .................................... 352
E.4.26 meta_parameter and meta_parameter_specifier ............................. 352
E.4.27 meta_type ..................................................................................... 352
E.4.28 meta_variable and meta_variable_specifier .................................... 352
E.4.29 modifier ........................................................................................ 352
E.4.30 name ............................................................................................ 352
E.4.31 namespace and namespace_definition ........................................... 352
E.4.32 namespace_alias and namespace_alias_definition ......................... 352
E.4.33 number ......................................................................................... 353
E.4.34 object and object_specifier ............................................................ 353
E.4.35 object_statement ........................................................................... 353
E.4.36 parameter and parameter_specifier ................................................ 353
E.4.37 pointer_modifier ............................................................................ 353
E.4.38 punctuation ................................................................................... 353
E.4.39 reference_modifier ........................................................................ 353
E.4.40 reserved ....................................................................................... 353
E.4.41 scope and scope_specifier............................................................. 353
E.4.42 scoped_modifier ............................................................................ 354
E.4.43 specifier ........................................................................................ 354
E.4.44 statement...................................................................................... 354
E.4.45 string ............................................................................................ 354
E.4.46 template_parameter and template_parameter_specifier .................. 355
E.4.47 token ............................................................................................ 355
E.4.48 type and type_specifier.................................................................. 356
E.4.49 typedef and typedef_specifier ........................................................ 356
E.4.50 typename...................................................................................... 356



Meta-compilation for C++ TABLE OF CONTENTS

Page xiv 29-June-2001

E.4.51 using and using_declaration .......................................................... 356
E.4.52 using_directive .............................................................................. 356
E.4.53 variable and variable_specifier ....................................................... 356
E.4.54 void .............................................................................................. 356

F Implementation ................................................................... 357
F.1 Syntax Implementation.......................................................................  357
F.1.1 !const and !volatile ................................................................. 357
F.1.2 Member variable delegation ........................................................... 358
F.1.3 Pattern names............................................................................... 359
F.1.4 #line directive.............................................................................. 360
F.2 Resolution of parsing difficulties .........................................................  360
F.2.1 Context-free problems ................................................................... 360
F.2.1.1 #include anomaly .................................................................. 361
F.2.1.2 Type information ..................................................................... 362
F.2.1.3 < as template-start or greater than (§14.2-3) ............................ 362
F.2.1.4 > as template-end or greater than (§14.2-3) ............................. 362
F.2.1.5 Meta-types ............................................................................. 363
F.2.2 Trivial Ambiguities ......................................................................... 363
F.2.2.1 Empty statement ..................................................................... 363
F.2.2.2 Template parameter ................................................................ 363
F.2.3 Syntactic Ambiguities .................................................................... 364
F.2.3.1 Dangling else (§6.4.1) ............................................................ 364
F.2.3.2 < as template-start or less than (§14.2-3) ................................ 364
F.2.3.3 Multiply nested scope (§7.1-2) ................................................ 364
F.2.3.4 new-type-id (§5.3.4-2), conversion-function-id (§12.3.2-4) ........ 365
F.2.3.5 Array of operator ambiguity ..................................................... 365
F.2.4 Deep Ambiguities .......................................................................... 366
F.2.4.1 Bit-field or Inheritance ............................................................. 366
F.2.4.2 Type I functions ...................................................................... 367
F.2.5 Semantic Ambiguities .................................................................... 367
F.2.5.1 Declaration/Expression ambiguity (§6.8) .................................. 367
F.2.5.2 Parenthesised-call / cast-parenthesis

parenthesised-binary / cast-unary ambiguity ............................ 368
F.2.5.3 Call/functional-cast ambiguity .................................................. 369
F.2.5.4 Destructor name/one’s complement ambiguity (§5.3.1-9) .......... 369
F.2.5.5 new-placement/new-initializer ambiguity ......................................... 369
F.2.5.6 sizeof ambiguity ................................................................... 369
F.2.5.7 typeid ambiguity ................................................................... 370
F.2.5.8 Template argument type/value ambiguity ................................. 370
F.2.6 New C++ ambiguities..................................................................... 370
F.2.6.1 ctor-initializer or Named Bit-field ................................................ 371
F.2.6.2 class-specifier or enum-specifier as function-definition name ................ 371
F.2.6.3 delete[] ambiguity ................................................................ 371
F.2.6.4 linkage-specification ambiguity ..................................................... 372
F.2.7 Extra FOG ambiguities .................................................................. 372
F.2.7.1 built-in-type-id maximised ........................................................... 372
F.2.7.2 label preferred to anonymous bit-field ...................................... 373
F.2.7.3 handler-seq maximised .............................................................. 373
F.2.7.4 access-specifier ........................................................................... 373
F.2.7.5 inline/ and virtual/ cannot be expressions ........................ 373
F.2.7.6 using string-literal is not an expression ..................................... 374
F.3 Semantic checks................................................................................  374
F.3.1 Resolution .................................................................................... 374
F.3.1.1 Declaration/Expression (§6.8) ................................................. 375
F.3.1.2 new-placement/new-initializer ambiguity ......................................... 376
F.3.1.3 sizeof and typeid ambiguity ................................................. 376



TABLE OF CONTENTS Meta-compilation for C++

29-June-2001 Page xv

F.3.1.4 pure-specifier ............................................................................. 376
F.3.1.5 explicit-instantiation ..................................................................... 376
F.3.1.6 Implicit int ............................................................................. 376
F.3.2 Correction ..................................................................................... 377
F.3.2.1 Template/arithmetic ambiguity ................................................. 377
F.3.2.2 Parenthesised-call / cast-parenthesis

parenthesised-binary / cast-unary ambiguity ............................ 377
F.3.2.3 Call/functional-cast ambiguity .................................................. 377
F.3.2.4 Destructor name/one’s complement ambiguity (§5.3.1-9) .......... 377
F.3.2.5 Array of operator ambiguity ..................................................... 377
F.3.2.6 delete[] ambiguity ................................................................ 377
F.3.3 Validation...................................................................................... 377
F.3.4 Implementation ............................................................................. 378
F.4 File Syntaxes.....................................................................................  378
F.4.1 Target File Names ......................................................................... 378
F.4.2 Target File Identities ...................................................................... 380
F.4.3 Target File Placement .................................................................... 380
F.4.4 File-spaces ................................................................................... 381
F.4.5 Target File Dependencies .............................................................. 382
F.4.6 File inclusion................................................................................. 383

INDEX ..................................................................................385



Meta-compilation for C++ LIST OF FIGURES

Page xvi 29-June-2001

LIST OF FIGURES
Figure 1.1 Meta-compilation model ........................................................................ 17

Figure 3.1 C++ translation ..................................................................................... 34

Figure 4.1 FOG Meta-compilation Stages............................................................... 84

Figure 4.2 Intrinsic Meta-type inheritance .............................................................. 88

Figure 4.3 Potential and Actual Meta-type inheritance ............................................ 89

Figure 4.4 Example Potential Declaration Tree ....................................................... 90

Figure 4.5 Example Actual Declaration Tree ........................................................... 90

Figure 4.6 Example Tree initializer ......................................................................... 93

Figure 4.7 int i = k ............................................................................................... 100

Figure 4.8 Meta-function and function meta-object distinction ............................... 104

Figure 4.9 Pure OO object model......................................................................... 129

Figure 4.10 C++ object model (Memory Perspective) .............................................. 131

Figure 4.11 C++ object model (Naming Perspective) .............................................. 132

Figure 4.12 C++ Run-time object model ................................................................. 133

Figure 4.13 FOG Compile-time object model .......................................................... 134

Figure 4.14 Inheritance and Meta-inheritance ........................................................ 136

Figure 5.1 Compiler Translation Stages................................................................ 144

Figure 5.2 Abstract Syntax Tree........................................................................... 146

Figure 5.3 C++ Names ........................................................................................ 158

Figure 5.4 FOG analysis phases .......................................................................... 194

Figure 6.1 Usage Dependency Graph .................................................................. 206

Figure 7.1 Pattern Class Friendships ................................................................... 231

Figure 7.2 Visitor classes .................................................................................... 233



LIST OF TABLES Meta-compilation for C++

29-June-2001 Page xvii

LIST OF TABLES
Table 3.1 Statement and Declaration Grammar ..................................................... 61

Table 4.1 Intrinsic Meta-types .............................................................................. 91

Table 4.2 Potential and Actual Meta-types ............................................................ 92

Table 5.1 Terminals and Non-Terminals .............................................................. 155

Table 5.2 Mathematical Operators ...................................................................... 156

Table 5.3 Grammatical Operators ....................................................................... 157

Table 5.4 Properties .......................................................................................... 159

Table 5.5 Back-tracking costs............................................................................. 192

Table 5.6 Grammar Statistics ............................................................................. 196

Table 7.1 Token size reduction through use of FOG ............................................ 252

Table F.1 File Name Component Contributions.................................................... 379



Meta-compilation for C++ LIST OF TABLES

Page xviii 29-June-2001



Introduction Meta-compilation for C++

29-June-2001 Page 1

0 1 Introduction

Improved languages and improved methodologies jointly contribute to improved
programming practice and performance. However the two contributions are not
balanced. Whereas a language extension supports a better methodology, a novel
methodology may demand a language change.

The advent of practical support for Object Oriented Programming in C++ has made
OO extremely popular, the most forward looking, although not yet the dominant
industry programming style.

Extensive use of an OO style in C++ reveals its limitations and demands
improvements. An OO style results in large numbers of classes whose structure
and relationships are in some way predictable, often conforming to a number of
design patterns. It can be difficult to capture the predictability, so that the
programming intent is expressed compactly, reliably and re-usably, indeed it is
sometimes difficult to express the intent in more than comments.

An OO style is well suited to a program organisation based on a data-centric file
structure, but some problems are better modularised from an algorithmic or
Aspect Oriented perspective. C++ lacks facilities to weave a variety of
contributions together to produce the required composite program.

We address these limitations and resolve them by introducing the run-time meta-
programming capabilities of languages such as CLOS and Smalltalk as compile-
time capabilities in C++, without losing the fundamental run-time efficiency or
deviating too far from the language. At the same time we replace the historical
anomaly that is the C preprocessor to create a more powerful and integrated
programming language.

The solutions, which are embodied in an enhanced C++ language and compiler
called FOG (Flexible Object Generator), form the topic for this thesis.
Implementation of FOG required the development of a new approach to parsing
C++ without the use of semantic information. This work is presented in Chapter 5
so that it may read in isolation by those only interested in C++.

Background

C++ [C++98] is a popular, very widely used and successful industrial strength
language with support for Object Orientation. The popularity of C++ is in part
attributable to a very high degree of compatibility with C [C89]. Portability and run-
time efficiency are some of C’s and consequently C++’s attractions to
programmers.

Efficiency is achieved in C by providing programming constructs that are relatively
low level. Efficiency is preserved in C++ by using a restrictive form of object model
that enables C++ to resolve at compile-time what many other Object-Oriented
languages resolve at run-time.

Programmers as well as compiler writers seek to trade run-time for compile-time
activity. A programmer may improve run-time efficiency by identifying better
algorithms, selecting a more efficient compiler, or structuring code to exploit the
good, or avoid the poor, characteristics of a compiler. In order to improve compile-
time, there appear to be few approaches, although different coding styles and
appropriate management of include file dependencies and compilation unit sizes
can show surprising benefits.

The inadequacies of C support for compile-time programming were recognised
from the outset by the provision of Cpp (the C preprocessor). C++ has introduced
more powerful language constructs but provides no assistance for programmers
who need to capture predictable programming structure that does not correspond
to language constructs.
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Programming style, patterns and aspects

Dramatic improvements in programming time (and maintainability and reliability)
may be achieved when an automatic code generator such as lex or yacc is
applicable, or when an application generator such as a GUI builder is suitable. For
many more mundane programming applications, the structure of the code is in
some way predictable, but not of sufficient size or complexity to justify the
development of a custom code generator. For these applications, the programmer
is forced into workarounds, exploiting whatever tools are available. These
workarounds often require indirect or repeated expression of the programming
intent, introducing:

• maintenance problems through lack of clarity

• inefficiencies through the need for repeated editing

• errors through inconsistent repeated editing.

Cpp was for a long time the main tool available to C and C++ programmers. And,
prior to the introduction of templates, it was standard practice to use some very
large preprocessor macros to define generic classes for containers. Templates
now provide a powerful solution to problems that can be characterised by the
requirement to define a family of types or functions. However, for many other
problems, Cpp remains the only alternative. Lexical pasting using the
preprocessor is inelegant and not without its problems, but it is less error prone
than manual approaches.

Compatibility with C required C++ to preserve Cpp, although its limitations as a
programming tool have long been recognised (and are summarised in
Section 3.4). While C++ introduces a number of new constructs that eliminate
some traditional uses of Cpp, other uses remained. The power and complexity of
Object Orientation and the increasing use of simple patterns [Gamma95], clichés
[Gil97] or idioms [Coplien92] considerably increases the need for programmers to
program at compile-time and as a result Cpp is perhaps more, rather than less,
important to C++ than to C.

Cpp should be replaced rather than eliminated.

The Object Oriented Programming community has recognised that groups of
objects with a shared behaviour can be found within apparently dissimilar
applications. These shared behaviours are classified by patterns. There is no
precise definition of what constitutes a pattern, but it is generally agreed that a
pattern is a solution to a recurring problem in a context. Recurrence is an
important discriminant between generic patterns and candidate patterns, which
may be just special purpose tricks. A pattern is used in a specific context which
imposes constraints (or forces) that influence the way in which the pattern solves
the problem The description of a pattern provides a range of solutions and a
discussion of how the differing forces from the application context may influence
the usage. The generality of the pattern concept allows the pattern form to be very
widely applied: from project management through to idiomatic coding. This
generality is a little frustrating since the literature lacks focus.

Analysis, design and coding patterns are of significance to this work. Coding
patterns tend to be simple program idioms that implement standard coding
practices that are not directly supported by the target language. Design patterns
capture the collaborations between implemented objects. Analysis patterns
similarly capture collaborations, but at a more abstract level reflecting the higher
level analysis perspective. The extent to which patterns used during analysis,
design or coding appear in the implementation is a rather contentious issue.
Automated implementation of patterns would seem attractive but Misconception 4
of [Vlissides98] strongly cautions against this.

From the purist perspective, compromising between the generally conflicting
forces unique to each application requires careful selection between a wide range
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of possible solutions. It is inappropriate and impossible to offer a cookbook
solution to a pattern, partly because such a solution cannot offer sufficient
flexibility. In many applications, more than one pattern is employed and where the
patterns overlap, the solution must be adapted to share rather than duplicate the
overlapping functionality.

From the practical perspective, an inferior set of proven cookbook solutions is
often preferable to optimal handcrafted solutions. Programmers tend to implement
solutions they are familiar with, rather than those that could be more optimal. If
patterns have been used as part of the analysis and design phases, it seems
appropriate for these patterns to find some form of expression in the code.
Otherwise, if the patterns are not expressed at all, the patterns are lost
[Soukup94] and subsequent code maintenance is hampered by greater barriers to
comprehension. When patterns are expressed only in the form of comments,
compliance with design principles and constraints is informal; no enforcement
occurs during implementation or subsequent maintenance.

The challenge is to provide cookbook solutions with sufficient parameterisation to
satisfy the purists, while offering adequate efficiency and utility for practical
requirements. Enthusiastic use of templates, as practised in Generative
Programming [Czarnecki97] can result in highly configurable functions and to
some extent types and components. However much of the required
parameterisation involves appropriate selection and configuration of declarations
in ways not amenable to template programming. Program configuration in C++
should occur at compile-time, but the facilities of the C preprocessor are
inadequate for the task and a generally inappropriate foundation for this new
programming paradigm.

Compile-time programming is necessary to configure declarations.

A problem with implementing patterns is that a pattern tends to involve more than
one class, and so use of a pattern requires code to be added to more than one
class. A similar but larger scale problem arises in Aspect Oriented Programming
[Mens97], in which an aspect is a programming concern (such as error recovery)
that cuts across more than one class. AO programs organise source code
according to the programming concerns and then use a weaver to combine the
disparate contributions into a complete program.

Patterns and AOP require weaving.

The C++ One Definition Rule ([C++98] §3.2) mandates a single definition of each
declaration, with the result that with a few exceptions (forward references, externs,
typedefs, and namespaces) C++ source code must be organised to satisfy the
constraint of complete declarations. It is not possible to interleave class
declarations. This might seems like a desirable restriction, until it is appreciated
that this prevents weaving in support of AOP or even support for a multi-class
pattern solution.

The One Definition Rule must be circumvented.

Meta-programming

Prior to C++, Object Orientation, as then exemplified by Smalltalk, was perceived
to be inherently inefficient because of the run-time costs associated with message
dispatch. C++ introduced a more restrictive object model that enabled most of the
run-time costs to be replaced by compile-time computation. As a result Object
Orientation in C++ is efficient and widely used. (More efficient implementation
approaches developed to make Smalltalk costs more acceptable are now being
exploited by Java).

C++ requires that the layout of objects be frozen at compile-time, and that the
(base) type of the recipient of any message is known. The layout constraint implies
a single contiguous memory allocation for each object, simplifying memory
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management and providing member variable access by a simple indexing
operation. The messaging constraint enables static and some dynamic methods
to be implemented as simple function calls. The remaining dynamic methods
require a virtual function that is implemented by a single indirection from a known
index into a relatively small dispatch table. These are pragmatic constraints on the
object model. Elimination of run-time object flexibility removed the need for run-
time code to manipulate object structure, and for run-time objects to describe it.
The meta-classes that are essential for languages such as Smalltalk were
therefore not necessary for C++, and so they are not part of the C++ language.

It has been found that some degree of self-awareness is useful to an Object
Oriented program. This may involve

• a knowledge of class names for diagnostic purposes

• availability of inheritance information as Run-Time Type Information to
validate dynamic casts

• object layout information to support marshalling for communication

• object layout information for persistent storage in data bases

• full class descriptions for browsers or debuggers

The first two of these needs have been addressed as C++ has evolved from ARM
[Ellis90] to ISO standard [C++98]. Applications requiring more substantial
information must resort to special purpose pre- or post-processing. Reflection
supports this extra processing directly as part of the compilation process.

Introspection is useful for simple applications.
Reflection is almost essential for sophisticated applications.

When a Smalltalk or CLOS program reflects upon itself, this necessarily happens
at run-time, since this is when object structure is defined. Support for reflection is
relatively easily provided by formalising the interface to the underlying run-time
language support.

In C++, objects are defined at compile-time, and so an opportunity exists for a
program to reflect upon itself at compile-time as well as, or instead of, at run-time.
If the purpose of that reflection is just to extract some information or perform some
checking in a one-off fashion, it is clearly preferable for such code to execute at
compile-time. This is very much in the C++ spirit of maximising run-time
performance by resolving as much program structure as possible at compile-time.
C++ only optimises those constructs that form part of C++. Reflection supports
optimisation of user defined concepts.

If reflection is to happen continuously, then it must occur at run-time. The C++
philosophy dictates that unwanted language functionality should not impose run-
time costs, so provision of run-time reflection must be cost free, when unused. The
amount of run-time reflection may vary between applications, with the majority not
using it at all. Some may wish to just browse data structures describing
declarations. Very sophisticated applications may seek to reify1 the different
stages of message dispatch to validate argument lists or call-from access rights.
The required support for run-time reflection can be achieved by using compile-
time reflection to create data structures and modify code to collaborate with a run-
time support environment. The degree of support can be tailored to match the
requirements.

It is not entirely clear that compile-time modification of executable code is
necessary for many practical applications, and so we consider only perusal and
modification of declarations. Modification of code is nevertheless possible,
provided the intended target for modification is encapsulated within a template or
inline function, which can then be modified as a declaration.

1. To make a thing, typically by creating an object to represent an abstract concept.



Introduction Meta-compilation for C++

29-June-2001 Page 5

1.1 Language Limitations

The work described in this thesis grew out of a recognition that the programming
effort for C++ programs increased disproportionately with the size of the program.
This is not particularly unexpected. Large programs have been a consistent
problem for software developers. Solutions have been found through improved
languages and programming methodologies, with C++ and Object Orientation
making their contributions. The concepts of patterns and Aspect Orientation offer
further improvements to programming methodologies but highlight constraints
imposed by C++. We therefore assess and resolve these limitations.

Declarative Redundancy

C++ exhibits significant lexical redundancy.

There is duplication between many interface and implementation declarations.
This requires a duplication of editing effort and provides a limited opportunity for
inconsistencies to introduce errors.

In a deep inheritance hierarchy, the same virtual function may have many
implementations, again requiring repeated editing effort. This effort is most
noticeable when it is necessary to change the function signature: two additional
edits may be needed for each derived class to realise what is a single conceptual
change. More seriously, an inconsistency between declarations within the
hierarchy is not necessarily an error, although a helpful compiler may choose to
flag the hazard.

Lexical redundancy should be eliminated.

Algorithmic Redundancy

Implementation of many idioms imposes a well-defined protocol that must be
observed by derived classes. C++ provides no mechanism for implementation of
this protocol, although in some cases use of a pure virtual function may diagnose
a non-implementation. Correct observance of the protocol requires implementors
of derived classes to add the code manually, sometimes making use of
preprocessor macros. This practice is at best tedious. It makes derivation from
third party libraries unnecessarily difficult because application writers have to
supply extra library support code.

Predictable code should be provided automatically.

Organisational Restrictions

Implementation of more interesting idioms and patterns requires code injection
into multiple classes. This is not supported in C++. A particular solution to a
pattern requires an interface and an implementation preprocessor macro for each
collaborator. These macros are typically invoked from the interface and
implementation files of each class. As a result a pattern involving 3 classes may
require 6 macros. These 6 macro invocations that instantiate a single concept are
dispersed throughout the source code.

A concept should be instantiated by a single invocation.

For some applications, it is appropriate to partition the source code according to
the data structures: algorithmic code is then naturally assigned to classes. For
other applications, in particular Aspect Oriented applications, the algorithmic
perspective may be more important, and so all the code for one algorithm or
aspect should be kept in one source module, while that for another should be in
another module. In this situation the aspect cuts across the class structure. C++
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requires sequential declaration of complete classes. It is not possible for partial
declarations to be interleaved.

Interleaved declarations should be allowed.

Summary of Problems

Cpp should be replaced rather than eliminated.
Compile-time programming is necessary to configure declarations.
Patterns and AOP require weaving.
The One Definition Rule must be circumvented.
Introspection is useful for simple applications.
Reflection is almost essential for sophisticated applications.
Lexical redundancy should be eliminated.
Predictable code should be provided automatically.
A concept should be instantiated by a single invocation.
Interleaved declarations should be allowed.

The FOG Solution

These problems require revision of C++, and so in order to avoid development of
a new language, or a new compiler for a modified language, revisions were
implemented within a translator from extended C++ to standard C++.

The experimental translator is called the Flexible Object Generator (FOG) and the
extended language is FOG. The translator

• revises C++ (upward compatibly, with no new reserved words)

• rearranges source code

• synthesizes declarations

• interprets meta-programs

The most significant revision is the relaxation of the One Definition Rule to support
composition of multiple declarations. This is a major semantic enhancement, but
it is almost invisible syntactically. This revision opens the door to weaving and
pattern implementation.

The facilities of the C preprocessor are essential for practical programming, but
integrate very poorly with C or C++. Many of the FOG extensions provide
replacements for Cpp functionality, thus meta-functions replace function-like
macros, tree-literals invite a replacement avoiding the accidental substitutions
characteristic of Cpp, and meta-statements support conditional compilation.
Consistent generalisation of each of these concepts results in a compile-time
environment in which meta-programs can be interpreted.

1.2 Organisation

An overview of FOG is provided in this chapter, so that the later full exposition of
the FOG grammar can provide examples less constrained by forward referencing.

Some related work has already been mentioned as part of the motivation for this
work. Chapter 2 contains a more extensive review and comparison.

The main description of FOG is provided with Chapter 3 covering the lexical and
syntactical enhancements as the foundation for the more substantial discussions
of the semantics of substitution, composition and meta-classes in Chapter 4. The
changes are described one at a time in Chapter 3 interspersed with discussion.
The modified grammar is therefore repeated in Appendix A for ease of comparison
with Annex A of [C++98].
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A context-free grammar is important for flexible meta-programming, and it is well-
known that the C++ grammar is not context-free. This would appear to preclude
context-free meta-programming. Chapter 5 examines existing parsing
approaches, and introduces a new approach that supports context-free syntactical
analysis of C++. The validity of the new approach is shown by using an extended
form of regular expression to analyze the C++ grammar and deduce the
ambiguities. A working yacc-able implementation of the C++ grammar alone is
presented in Appendix B, with the full FOG version in Appendix C.

Operation of FOG as a translator to C++ involves a number of practical concerns
regarding file locations, partitioning of declarations into files and generation of
appropriate include file dependencies. These issues and a description of the
algorithms required for code emission are described in Chapter 6.

A number of small examples are provided as part of the overview and enlarged
upon together with a few slightly larger ones in Chapter 7.

The achievements of FOG are summarised in Chapter 8, followed by a glossary of
significant terms and acronyms and a list of all references.

The FOG command line is described in Appendix D.

The preliminary catalogue of built-in meta-functions may be found in Appendix E.

Detailed descriptions of

• discarded syntax

• parsing ambiguity resolution

• C++ ambiguities introduced by the superset grammar approach

• FOG ambiguities introduced by the superset grammar approach

• file placement and dependency syntax

are presented in Appendix F.

1.3 Conventions

Before we provide an overview of the FOG functionality, we must define the
typographical conventions used throughout the rest of the text.

The FOG grammar is a superset of C++ and so it is necessary to make occasional
reference to the C++ grammar as defined by [C++98] and then summarised in its
Annex A, which is very similar to Appendix A of [Stroustrup97]. In order to save
the reader having to keep a copy to hand, relevant sections are included in the text
and in Appendix A. Specific paragraphs are referenced as §11.4, or more
commonly as §11.4-5 where the 5 denotes the numbered paragraph within the
section numbered 11.4 in [C++98].

The BNF-like (Backus Naur Form) language of the C++ standard is used in this
document. Terminals (such as static) are distinguished by the use of a typewriter
font. Non-terminals (such as parameter-declaration-clause) are in an italicised
seriphed font. A production (rule) comprises a non-terminal on its left-hand side
followed by a colon followed by the right-hand side. Productions that share a
common left-hand side are grouped together with one right-hand side per line.
Optional elements are denoted by an opt suffix. Comments may be supplied
following a //. Thus

base-specifier:
::opt nested-name-specifieropt class-name // defaults to private
virtual access-specifieropt ::opt nested-name-specifieropt class-name
access-specifier virtualopt ::opt nested-name-specifieropt class-name

comprises the 3 rules that define the syntax of a base-specifier. (The standard is a
little lax in its formatting of these productions, neglecting to use typewriter font for
the virtual keyword or the :: punctuation.)
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In order to ease comparison of similar FOG and C++ grammar, the two are
combined with a strike-through to denote C++ constructs removed in FOG, and an
underline to denote FOG constructs added to C++. Thus the C++ rules

primary-expression:
literal
this
:: identifier
:: operator-function-id
:: qualified-id
( expression )
id-expression

and the replacement FOG rules

primary-expression:
literal
this
( expression )
declarator-id

may be shown in combination as

primary-expression:
literal
this
:: identifier
:: operator-function-id
:: qualified-id
( expression )
id-expression
declarator-id

When a strike-through or underline is applied to a shared left-hand side rather
than a rule, the strike-through or underline applies to all rules, but is omitted in the
interests of readability.

using-declaration:
using typenameopt ::opt nested-name-specifier unqualified-id ;
using :: unqualified-id ;

Application of a strike-through to the left-hand side (definition) non-terminal
implies application of a strike-through to all references of the non-terminal as well.

C++ grammar productions are generalised in FOG, but are not given different
meanings. There is therefore no ambiguity in referring to the grammar production
for a declaration as declaration. Italics in normal text denote a non-terminal.

When it is necessary to show examples of grammar implementation rather than
specification, typewriter font is used throughout. Non-parametric terminals are
spelled out in single or double quotes ('*' or "class"). Parametric terminals are
shown in mixed-case (StringLiteral). Non-terminals are shown in lower case
(base_specifier).

base_specifier:
"::".opt nested_name_specifier.opt class_name

| "virtual" access_specifier.opt "::".opt nested_name_specifier.opt class_name
| access_specifier "virtual".opt "::".opt nested_name_specifier.opt class_name

Multi-character terminals such as "::" or "virtual" are a non-standard
extension and are not supported by yacc or bison. They are used in the main text
for clarity. They are not used in the grammars in Appendix B or Appendix C where
an upper-case lexical token such as SCOPE or VIRTUAL is used.

1.4 Traditional Preprocessing

This overview of FOG starts by showing how the basic facilities of Cpp are
replaced, using very simple examples, that are gradually reworked as more
powerful facilities are described and exploited.
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1.4.1 Lexical substitution

Lexical substitution enables common definitions to be shared, given sensible
names, and factored out if alternative definitions are needed in different contexts.
When used responsibly, this leads to a considerable improvement in code quality,
and is one of the main reasons for the widespread use of the preprocessor.
However it is very easy for unfortunate substitutions to occur, and the presence of
all names from all header files in a single name space is a source of many
problems.

C++ has removed the need for many substitutions by the introduction of initialised
consts and scoped enumerations. However, even where these are appropriate,
the need for a non-integral type may defeat C++ enhancements.

Problems with Cpp substitution stem from the single namespace and from forceful
substitution irrespective of context. Resolution of the namespace problem in FOG
will be dealt with later. The problem of over-enthusiastic substitution is resolved
by changing to a policy of substitution by invitation, rather than substitution by
imposition. In FOG, instantiation of the definition of NAME is invited by $NAME, with
the fallback of ${NAME} when subsequent characters could cause an unwanted
meaning. The increased safety incurs the cost of the trigger character(s) to invite
the substitution. These characters are not too out of place in a cryptic language
such as C. The syntax should be familiar to Unix shell or make programmers.

1.4.2 Name concatenation

Name concatenation is useful for generating a new name derived from some stem.
Thus an implementation of the NullObject pattern [Martin97] may automatically
define a Null class derived from its AbstractObject by suffixing Null to the class
name of the AbstractObject.

class AbstractObjectNull : public AbstractObject
{ /*...*/ };

This can be realised directly in FOG, where unseparated identifiers and literals
(numbers, strings and characters) are concatenated

class ${ABSTRACTOBJECT}Null : public $ABSTRACTOBJECT
{ /*...*/ };

Cpp provides the ## concatenation operator that can only be used within a macro:

#define NULLOBJECT_INTERFACE(ABSTRACTOBJECT) \
class ABSTRACTOBJECT ## Null : public ABSTRACTOBJECT { /*...*/ };

1.4.3 String conversion

It is sometimes necessary, particularly for diagnostic purposes, to use a name as
both an identifier and a string.

const char *Class::class_name() const { return "Class"; }

This may be expressed directly in FOG, exploiting concatenation of an empty
string to perform a lexical cast, since the result of a concatenation is of the same
kind as the first contribution.

const char *${CLASS}::class_name() const { return ""$CLASS; }

Cpp provides the # operator for use within macros.

#define CLASS_NAME_IMPLEMENTATION(CLASS) \
const char *CLASS::class_name() const { return # CLASS; }

1.4.4 Text replacement

The preprocessor #define directive is used to define object-like macros
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#define PI 3.14159

and function-like macros

#define max(a,b) ((a) > (b) ? (a) : (b))

supporting usage as

a = max(sin(2*PI*f),0.5)

The replacement text is an arbitrary sequence of preprocessor tokens that are
substituted without regard to context. Errors, particularly in nested definitions, are
difficult to diagnose, because substitution occurs before any language
interpretation is applied; few compilers or debuggers support tracing back to the
source once substitution has occurred. Long definitions require the use of
backslashed continuation lines, which are inconvenient and unreliable to edit or
read. Readability is further impaired by the need to use parentheses to guard
against the possibility of accidental association problems.

FOG provides a meta-level where conventional run-time concepts can be used at
(meta-)compile time. Meta-variables replace object-like macros and meta-
functions replace function-like macros. Meta-variables and meta-functions are
declared and typed in a very similar way to normal C++ variables and functions,
save for the new use of the auto keyword and the introduction of meta-types:

auto double PI = 3.14159; // Meta-variable

auto expression max(expression a, expression b) // Meta-function
{

$a > $b ? $a : $b;
}

for use as

a = $max(sin(2*$PI*f),0.5)

The auto keyword is almost totally obsolete in C++, where auto is only permitted
within functions. auto is reused outside of functions in FOG to declare meta-
functionality. Readers may choose to pronounce auto as meta, throughout this
thesis.

The meta-types correspond to the basic kinds of token (identifier, string and
character), the numeric types (bool, double, int and etc.) and also to
productions such as declaration and expression from the C++ grammar.

Use of meta-types enables the parser to ensure that arguments are passed and
returned compatibly, and to diagnose errors more helpfully. When appropriate,
conversions between the basic kinds are performed automatically.

Substitution within the meta-function replaces each invocation by its
corresponding argument expression.

The simple meta-function implementation of max solves the parenthesis problem,
works for arbitrary types but remains prone to side effects. The invocation

$max(a++, b++)

will result in one argument receiving a double increment just as in Cpp.

1.4.5 Conditional compilation

Conditional compilation is essential to support a variety of configuration options,
often to resolve distinctions between different operating systems. It may be
appropriate to define

static const char *temp_path = "/tmp/";

for use under Unix whereas NT might require

static const char *temp_path = "C:\\Temp\\";
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FOG elevates C++ run-time statements such as if ... else ... for use at the
meta-level, so that the selection may be made using an apparently conventional
test:

auto if ($UNIX)
static const char *temp_path = "/tmp/";

else
static const char *temp_path = "C:\\Temp\\";

Cpp provides line-oriented conditional directives that mark-up rather than form
part of the source text:

#if defined(UNIX)
static const char *temp_path = "/tmp/";

#else
static const char *temp_path = "C:\\Temp\\";

#endif

C++ statements occur only within functions. The use of the auto prefix in FOG is
therefore redundant in the above example. However since the prefix makes meta-
code easier to distinguish, the prefix will be used throughout this thesis.

1.5 Object-Oriented preprocessing

The facilities described above provide consistent replacement for Cpp behaviour.
Most of the extensions could be regarded as extensions to C rather than C++.
Reviewing and generalising the facilities within the context of C++ leads to a much
more powerful programming environment in which predictable program structures
can be coded effectively.

1.5.1 Scopes

Meta-variables and meta-functions may be scoped and inherited, and meta-
statements may occur within declaration scopes.

Revisiting the conditional compilation example of Section 1.4.5 from an Object-
Oriented perspective, we find no need for conditional compilation. The
characteristics of each configuration option may be packaged as meta-variables
(and meta-functions) of a (meta-)class.

class OsTraits_Abstract
{

auto bool NT = false; // default value
auto bool UNIX = false;
//...

};

class OsTraits_NT : public OsTraits_Abstract // derived class
{

auto bool NT = true; // overriding value
auto string temp_path = "C:\\Temp\\";
//...

};

class OsTraits_Unix : public OsTraits_Abstract
{

auto bool UNIX = true;
auto string temp_path = "/tmp/";
//...

};

OsTraits_NT may be configured as the implementation of OsTraits, by
specifying the value of OS on the FOG command line

fog ... -D OS=NT ...

and using the built-in meta-function
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auto string std::get_cpp(string macroName)

to access it from

class OsTraits : public OsTraits_$std::get_cpp("OS") {};

thereby creating the equivalent declaration

class OsTraits : public OsTraits_NT {};

This maps the required configuration to OsTraits, so that an operating system
specific file may be defined using the temporary path by

const char *fileName = $OsTraits::temp_path "results.dat";

This is then resolved at compile-time to

const char *fileName = "C:\\Temp\\results.dat";

Having isolated the configuration in separate classes and an associated header
file, a new operating system can be supported by providing a prefix file
characterising the new system and invoking it with an appropriate command line.
Existing source files need no change. This could be achieved directly using
multiple layers of name substitutions with C preprocessor, but it never is.
Modularization is much easier when supported by the programming environment.
This cannot be achieved using C++ templates, which lack the ability to perform
string manipulations.

1.5.2 Joint interface and implementation

Introduction of a meta-compiler that synthesises interface and implementation
files eliminates the need for independent interface and implementation
declarations. It is appropriate to generalise C++ declarations to remove the
distinction between interface-specific and implementation-specific declarations.
This generalisation turns out to be almost entirely semantic, since the C++
grammar already permits an interface-specific keyword such as virtual to
accompany a function-definition. It is only necessary to allow an access-specifier (e.g.
protected) as part of a decl-specifier (the type part of a declaration), and to permit
a full id-expression (e.g. Scope::name) where previously only an identifier was
allowed.

Programmers may then use an implementation style of declaration for parts of
interfaces

public typedef size_t Class::SizeType;

or provide complete implementations in interfaces:

class Class
{

protected virtual void f(int x = 0) = 0 { std::cout << x; }
public:

static double y = 0;
};

A complete solution to the class_name() example from Section 1.4.3 may now be
captured by the single meta-function

auto declaration ClassName()
{

public virtual !inline const char *class_name() const
{ return ""$Scope; }

};

which can be invoked as
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class NamedClass
{

$ClassName();
};

The reserved meta-variable Scope refers to the prevailing scope, avoiding the
need to pass it as a parameter.

The negated keyword !inline ensures that the function body is not inlined.
Similarly !static would provide for explicit rather than default programming
intent.

The single meta-function invocation generates the equivalent C++ interface

class NamedClass
{ /* ... */
public:

virtual const char *class_name() const;
};

and implementation

const char *NamedClass::class_name() const { return "NamedClass"; }

This requires a pair of macros when implemented using Cpp.

#define CLASS_NAME_INTERFACE() \
virtual const char *class_name() const;

#define CLASS_NAME_IMPLEMENTATION(CLASS) \
const char *CLASS::class_name() const { return # CLASS; }

and a corresponding pair of invocations one from the interface

CLASS_NAME_INTERFACE()

and one from the implementation

CLASS_NAME_IMPLEMENTATION(NamedClass)

1.5.3 Composition

In C++, multiple declarations are an error. In FOG, multiple compatible
declarations are composed; only incompatible declarations are an error. A brief
summary of the composition rule is given here. A full exposition is provided in
Section 4.4.

Composed declarations merge their components, and so a variable qualified with
static carries the static with it when merged with another variable that has no
static specification, but provokes an error message if merged with a !static.

Overloaded function declarations compose independently. Default values may be
repeated but may not conflict.

Arrays and enumerations extend to accommodate all contributions. Duplicate
initialisations must match. Holes in arrays are zero filled. The GNU C [Stallman98]
extension is supported so that sparse arrays can be defined and composed.

bool is_prime[] = { [2] true, true, [5] true, [7] true, [11] true };

The constructor initialisers for a particular constructor are composed and must not
conflict. Unspecified initialisers for non-copy constructors are obtained from
member variable initialisers. For example, code to support an error handling
aspect may add a member variable with a default initializer:

public bool Class::_error_generated = false;

A constructor independently added in support of some other aspect

Class::Class(PersistenceManager&) /*...*/;

then provides the requisite initialisation.
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Classes expand to encompass all distinct member declarations, with repeated
declarations composed recursively.

Function (and constructor) bodies are composed by concatenating code
contributions within named regions, which are in turn concatenated to form the
overall function body. The regions named entry and exit typically provide for
variable declaration and initialisation and a return statement, ensuring a
predictable structure. Regions named pre and post provide code to operate
before or after the default body region of the function. Function definitions are
extended to support a declarative scope within which regions are prefixed by their
name.

public bool Manager::do_it()
:{ // Start of declarative scope

entry { bool exitStatus = true; };
exit { return exitStatus; };

};

defines a framework for a composed function. A return variable is initialised in the
entry region, and returned by the exit region. With the framework in place, code
concerned with a particular aspect may contribute code to the function:

private Aspect Manager::_aspect;

public bool Manager::do_it()
{

if (!_aspect.do_it())
exitStatus = false;

}

FOG weaves the contributions together to produce the equivalent C++
declarations:

class Manager
{
private:

Aspect _aspect;
public:

bool do_it();
};

bool Manager::do_it()
{

bool exitStatus = true;
if (!_aspect.do_it())

exitStatus = false;
return exitStatus;

}

Readers who have programmed extensively with a macro assembler may
recognise that the ability to extend classes, function code regions, enumerations
and arrays at will gives each declaration space the attributes of a program section.

It is possible to define a meta-function that performs extension of an enumeration
and a text array so that numeric and text declarations are automatically
synchronised.

auto declaration NamedEnum(identifier aName)
{

public enum Enum { $aName };
public static const char *names[] = { ""$aName };

}

Invocation as
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class Colours
{

$NamedEnum(RED);
$NamedEnum(GREEN);
$NamedEnum(BLUE);

};

provides successive entries for Colours::Enum and corresponding entries for
Colours::names[], as if the user had typed:

class Colours
{
public:

enum Enum { RED, GREEN, BLUE };
static const char *names[];

};

and

const char *Colours::names[] = { "RED", "GREEN", "BLUE" };

The conversion of a single name such as RED into multiple interleaved declarations
cannot generally be achieved using the preprocessor or C++ templates.

1.5.4 Derivation rules

There are many idioms that require entirely predictable code to be provided by
derived classes in order to comply with a protocol defined by a base class. The
class_name() method of Section 1.5.2 provides one example. In C++, a
declaration applies to the scope for which it is specified. In FOG, this scope is
referred to as the root scope for that potential declaration. An optional derivation
rule specifies how that potential declaration may be automatically redefined in the
inheritance tree of scopes that derive from the root scope to contribute to a
number of actual declarations. Refining the example from Section 1.5.2:

auto declaration ClassName()
{

public virtual !inline const char *class_name() const
:{

derived(true) { return ""@Scope; };
};

};

A declarative scope has been introduced by the :{ ... } to prefix a derivation
rule to the function body. The predicate of derived(true) is always true and so
the potential declaration is applied throughout the entire inheritance tree, that is
at the root scope and all derived scopes.

The change of substitution operator from $ to @, changes the evaluation time. $ is
an early substitution operator, evaluated when source tokens are first parsed to
create a potential declaration in its associated root scope, at which point Scope
resolves to the root scope. @ is a late substitution operator, evaluated when a
potential declaration becomes an actual declaration in its eventual scope, at which
point Scope resolves to the actual scope. (If the $ operator were used in the
example, all derived scopes would return the name of the root scope.)

Derivation rules can apply to the declaration of any entity. Michael Tiemann
provided a solution [Stroustrup94] to the problem of providing a mnemonic name
for the primary base class

class foreman : public employee {
typedef employee inherited;
//...
void print();

};
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class manager : public foreman {
typedef foreman inherited;
//...
void print();

};

enabling a derived class to refer to its base class mnemonically as inherited
rather than explicitly.

void manager::print()
{

inherited::print();
//...

}

In FOG, the entire hierarchy of typedefs can be expressed by a single declaration.

private typedef @Super employee::inherited
:{ derived(!is_root()); };

This provides a typedef for all derived classes. The derivation predicate inhibits
the declaration at the root, where the built-in meta-variable Super may have no
valid resolution for the primary base class.

The Prototype pattern [Gamma95], virtual constructor, or cloning idiom
[Stroustrup97] is also provided very easily using a derivation rule. The
conventional approach requires that a clone method be defined for every non-
abstract class in an inheritance hierarchy

class ConcreteClass /* ... */
{

/* ... */
virtual RootClass *clone() const;

};

RootClass *ConcreteClass::clone() const
{ return new ConcreteClass(*this); }

This requires the programmer to manually weave the code in to every class. This
is potentially error prone and costs at least one line per interface and one line per
implementation file of every class. Using FOG, the idiom can be fully defined by a
meta-function:

auto declaration Prototype()
{

public virtual $Scope2 *clone() const = 0
:{

derived(!Scope.is_pure()) { return new @{Scope}(*this); };
};

}

The !Scope.is_pure() derivation predicate specifies that the declaration
contributes code to all derived classes that have no pure virtual functions.

Instantiation requires a single line in the base class that defines the protocol. No
code is required in derived classes.

class Base
{

$Prototype();
};

These two examples demonstrate FOG at its most advantageous: one line in the
base class guarantees protocol observance and replaces one or more lines in
each derived class.

2. $Scope may be changed to @Scope in the above example to use the derived type
as the return type.
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1.5.5 Compilation model

C++ supports a two stage translation process involving multiple independent
compilations followed by a link editing stage to produce a final executable. The
independent compilations are consistent provided the One Definition Rule (§3.2)
is observed. Simply stated, this rule requires that a declaration in one compilation
must not have a different meaning in any other. In practice, placing declarations
in header (interface) files, which are included by each compilation session that
requires them, usually satisfies the One Definition Rule.

From the perspective of a compiler writer, the One Definition Rule is very useful,
if not essential. From the perspective of the programmer, the One Definition Rule
is very inconvenient. Declarations must be provided twice, once in the interface
file and again in the implementation file. Declarations cannot be freely interleaved.

In more serious applications, a conflict arises between language constraints and
the programmer's need to organise code to suit algorithmic or functional
perspectives. Code has to be organised to suit the compiler. Patterns cannot be
preserved in the code [Soukup94] and Aspect-Oriented Programming [Kiczales97]
is not readily supported.

A preprocessor for C++, that performs its processing prior to compilation, can
bridge the gap between the organisational requirements of the programmer and
the integrity requirements of the compiler. FOG operates in this way using an
augmented compilation model as shown in Figure 1.1.

The centre and right hand sides show the conventional C++ compilation model.
Interface files provide the declarations to be shared by independent compilations,
which produce object files to be linked together with libraries to produce an
executable. (The complexities of static construction and template instantiation are
conveniently hidden by the ‘Linker2’ activity.) Meta-compilation adds the extra
stages on the left hand side. The conventional C++ interface and implementation
files are generated by one or more meta-compilations from source files (the
forward arrows) and from frozen interfaces (the reverse arrows). Sources may be
shared between meta-compilations, and a single meta-compilation may generate
any number of interfaces and/or implementations.

Clearly the One Definition Rule must still be respected by the interface and
implementation files fed to the compiler. However a more relaxed Composite
Definition Rule can now be imposed on the source files. Simply stated, the
composite meaning of all like declarations must be the same in each meta-
compilation. The composite meaning is explained in Section 4.4.
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1.5.6 Meta-concepts

Compile-time programming is often referred to as meta-programming, and data
structures describing data are often referred to as meta-data. In particular,
classes are described by meta-classes. We therefore refer to FOG as a meta-
compiler, and generally use the meta- prefix to refer to a conventional run-time
C++ concept elevated to compile-time, or more precisely the new meta-compile-
time that precedes conventional compile-time. It is however often convenient to
loosely refer to meta-compile-time and compile-time together as just compile-
time.

Thus meta-classes describe classes, and meta-inherit from base meta-classes:
classes which are in turn the meta-classes of the corresponding base classes. A
meta-class has meta-members which are meta-functions and meta-variables with
static and non-static variants. Statements that are interpreted at meta-compile-
time are meta-statements. Declarations for use at meta-compile-time are meta-
declarations. The type system available for use at meta-compile-time comprises
meta-types.

Meta-compilation involves a two stage translation from FOG source text
declarations to C++ declarations suitable for emission. Source declarations are
first converted into potential declarations (or specifiers) at which point the
eventual scope into which the declaration contributes may be undetermined. Once
the scope is determined, the potential declaration is installed as an actual
declaration of the determined scope.

Meta-programs run within the compiler, and so it is more accurate to say that the
meta-program is interpreted rather than executed. Of course a sophisticated
meta-compiler could compile the meta-program and then (meta-)execute it. Meta-
programming may operate on potential or actual declarations.

1.5.7 Meta-Programming

FOG supports static meta-programming, that is the execution of user supplied
code at meta-compile-time. This code may analyze and modify declarations in
order to ensure compliance with some constraint.

This may just involve monitoring declarations to ensure that some policy is
observed. For instance a meta-program could verify the presence of a virtual
destructor under all or selected conditions.

More powerfully, a meta-program may be used to generate code automatically to
support run-time access to compile-time information. The generated code can be
optimised to suit user requirements:

• a very modest form comparable to RTTI for simple debugging

• a more extensive set of tables or functions to support persistence or
marshalling

• a very substantial set of tables to support full run-time meta-programming
supported by a corresponding run-time executive

The facilities provided by FOG are very much focused on meta-programming as a
manipulation of program declarations. This contrasts with but complements the
manipulation of types, functions and expressions using template meta-
programming.

1.6 FOG versions

The FOG grammar is a superset of the C++ grammar, with extensions to support
compile-time programming. FOG is a translator from extended C++ to standard
C++. The extensions are sufficient to render the C preprocessor redundant,
although Cpp continues to be supported for compatibility.
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It was originally thought that the goals of FOG could be achieved by relatively
simple processing at a lexical level. This proved to be naive. Useful manipulation
of C++ declarations requires accurate parsing of those declarations and therefore
a fully fledged C++ parser is needed. C++ is context dependent, but flexible meta-
programming requires source declarations to be interpreted before their context is
known. A new approach is therefore introduced so that FOG can perform context-
free syntactical analysis of C++. The evolution to the current implementation is
described in Chapter 5.

Superset Implementation (version 2)

The description of the FOG meta-compiler in this thesis applies mainly to the
current implementation that uses a superset grammar to support context-free
parsing of FOG (and C++) source. The lexical and syntactical analyses of this
meta-compiler are substantially complete. The semantic analysis and subsequent
stages are fairly complete, and more than sufficient to demonstrate the soundness
of the approach using simple examples. Missing functionality is mostly at the edge
of the language and so concerns exceptions, partial template specialisations,
namespace-aliases and using-directives.

In some areas, the examination and resolution of design decisions goes some way
beyond the implementation.

Multi-pass Implementation (version 1)

The previous implementation resolved syntactical ambiguities using multiple
passes. Ambiguities in meta-constructs were avoided by using a syntax-driven
and consequently context-dependent method. This implementation suffered from
deficiencies inherent in the syntax-driven method.

FOG and associated publications are available from the FOG home page:

http://www.computing.surrey.ac.uk/research/dsrg/fog
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0 2 Related Work

2.1 Language Constructs

2.1.1 Syntax

Stroustrup has highlighted the inadequacies of the C preprocessor in
[Stroustrup97], where he calls for its eventual demise. Very little work has been
published on practical alternatives. Straightforward lexical alternatives such as m4
suffer from many of the same problems by operating independently of the
underlying language. Operation in collaboration with C++ involves tackling the
challenge of C++ syntax, which is difficult to parse and difficult to extend. It is hard
to add new syntax to C++ and so the limited extensions available through meta-
functions and meta-variables have an inevitably inferior appearance to a solution
that introduces new keywords. Werther [Werther96] provides a sensible proposal
for a completely new C++ syntax using more conventional syntactical styles like
Ada or Pascal. Within a clean syntactical framework, it would be much easier for
researchers to examine alternative syntaxes, and it would be possible for a meta-
program to perform syntax extension.

2.1.2 Macros

Macros have a very long history, much of it rather old since macros were important
to augment early ‘high’ level languages. Macros remain essential for assembler
programming. [Solntseff74] provides a survey of 22 extensible languages,
classifying them as Type A to G according to whether language extension is
performed during

• lexical analysis

• syntactic analysis

• parse tree production (semantic analysis)

• intermediate analysis (tree optimisation)

• code generation

• code conversion

Consideration of code conversion was then purely hypothetical but foreshadowed
Java load-time activities. It is difficult to classify FOG, where substitution occurs
as trees are manipulated during syntactic rather than semantic analysis. Re-use
of parse trees corresponds to a Type C extension, but operation during syntactic
analysis is Type B.

A different classification of just macros rather than language extension
mechanisms is made by [Cheatham66]. Extension may occur

• preceding lexical analysis - text macros

• during syntactic analysis - syntactic macros

• following syntactic analysis - computational macros

Text macros correspond to C preprocessor macros, and computational macros
correspond to C++ inline functions and templates. It is syntactic macros that are
missing from C++. Since there is no distinction between syntactic and semantic
analysis, FOG substitution and prototypes fall tidily into the syntactic macro
classification.
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An easier to understand classification is based upon the structure of the
replacement. [Weise93] identifies

• character-level substitution - text macros

• token-level substitution

• syntax-level substitution - syntax macros

• semantic-level substitution

Token-level substitution as practised by the ANSI C preprocessor occurs between
lexical analysis and syntactic analysis. (Or possibly as a late phase of lexical
analysis as in Figure 5.4.) This does not quite fit the earlier classifications.

Semantic-level substitution is used by [Maddox89] to classify semantically-
sensitive macros; problems distinguishing between the use of a name from a
definition or invocation context are resolved by passing environments as
parameters. This difficulty is also addressed by [Hieb92] where problems of losing
source context are addressed by hygienic macros.

At the usage level, the situation is rather different. in FOG. ‘Macro’ operation is
occurring at (meta-)compile-time rather than run-time in a language that supports
hierarchical naming through classes and namespaces. The problems of resolution
in the correct environment are addressed by appropriate use of @ or $’s as the
substitution operator, and if necessary by passing an appropriate metaobject as a
parameter.

At the implementation level, the problems and solutions are very similar in FOG;
an abstract FogScopeContext class is the root of a hierarchy of some 60 odd
environment defining classes that are passed between compilation routines
(These classes make extensive use of the Decorator pattern to support addition
of behaviour to pre-existing behaviour. The instances form a daisy chain of stack
based objects, making for efficient creation and easy traversal to resolve problems
such as multiple-dollar look-ups.) Source line tracing presents no significant
problems for FOG.

The syntactic macro was introduced by [Cheatham66] and [Leavenworth66]. The
macro and its arguments have syntactic types corresponding to parts of the
language grammar. [Vidart74] gave these concepts a sound and efficient
foundation using an Abstract Syntax Tree (AST) to represent them and avoid
repeated syntactical analysis of source text.

[Weise93] applies these ideas to ANSI C and exploits a Lisp-like backquote to
support a pattern template for substitution, avoiding the need for extensive call
trees to rearrange the AST. Weise’s approach is very much an extension to ANSI
C introducing new keywords and 9 lexical operators. The approach in FOG is in
some ways very similar to Weise’s, however by giving existing concepts a compile-
time meaning, and retaining a degree of consistency for all the corollaries, FOG
achieves a notation that is more compact, supports character- or syntax-based
substitution with only two new lexical operators ($ and @) and no new reserved
words. Where Weise needs backquotes and an explicit return statement to
activate source-like declarations, FOG just treats all declarations as the return. In
FOG, all concepts are put into a C++ Object Oriented perspective.

2.1.3 Joins

Relatively well-behaved coarse-grained merging of application functionality is
provided by functions. More flexible but ill-disciplined merging is provided by
macros. The BETA fragment system [Knudsen99] provides a finer-grained
composition that observes predictable semantics for code fragments that satisfy
the attributes of pre-declared slots.
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2.1.4 Meta-classes

The concepts of meta-classes were first defined for Smalltalk. Languages such as
CLOS have been extended with a MOP (MetaObject Protocol) [Kiczales91]. Even
Java [Gosling97] has a class type for every class. C++ has rather lagged behind,
perhaps through a mismatch of the run-time characteristics of traditional MOPs
and the statically compiled philosophy of C++, perhaps through the compiler
writer’s desire to prevent further explosion of language complexity. FOG provides
statically compiled meta-functionality, which can be used to define customised
run-time meta-functionality.

Meta-classes were first introduced to support the configuration of objects at run-
time in Smalltalk, and have subsequently become an important part of most Object
Oriented languages. Limitations of the Smalltalk implementation led to the
development of the simpler Deltatalk [Borning87]. The problems are resolved in
the pure object model of ObjVlisp [Cointe87]. However, [Maes87] argues that the
pure object model fails to distinguish the meta-level adequately. The restricted
object model in FOG does precisely this; only metaobjects exist at compile-time,
and only real objects at run-time.

A more versatile object model allowing the inheritance of meta-classes to differ
from their classes is supported by CLOS and SOM. [Graube89] identified the
resulting compatibility problems that arise during traversal of parts of the cycle:
class, derived-class, derived-meta-class, meta-class, class. The history of these
problems and their solutions in SOM 1, 2, and 2.1 are described in [Danforth94].
[Bouraqadi-Saâdani98] synthesises additional meta-classes with multiple
inheritance to resolve the problems. These problems do not arise in FOG since
the two inheritance hierarchies are the same. They also do not arise since there
is no object creation at meta-compile time and so no level traversal.

[Briot89] explains the motivation for distinct meta-class inheritance as an ad hoc
solution to the propagation problem whereby a concrete class inherits the
inappropriate property of abstractness from its abstract base class. This problem
does not arise in FOG, since C++ offers at least two distinct solutions to the
original problem using pure virtual functions or protected constructors.

The lack of meta-classes has always been a deficiency of C++, for which various
proposals were suggested during standardisation. Eventually the standardisation
committee compromised on the relatively limited functionality known as Run-Time
Type Information (RTTI). A more substantive proposal [Buschmann92], is largely
proprietary and so it is difficult to assess accurately. It defines a run-time Meta-
Information Protocol providing more extensive data structures with global
functions to support iteration. FOG provides a compile-time meta-level, in which
application meta-programs may be used to create whatever run-time data
structures are appropriate. These may vary from just class names to large
descriptive tables for use by a run-time environment that supports run-time meta-
programming.

2.2 Meta-level and Reflection

A procedure that manipulates declarations at compile-time might seem to be a
simple generalisation of a macro, however harnessing the increased power,
provided by this form of self-modifying code, offers ample scope for some fairly
difficult papers.

2.2.1 The tower

[Smith84] coined the term reflective for a program that is self-aware. He
introduces a minor Lisp variant 2-Lisp that subsumes Scheme, but provides a
semantically rationalised notion of evaluation. The 2-Lisp dialect forms a sound
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foundation upon which the reflective 3-Lisp dialect is realised. Further application
dialects can then be defined recursively to form the ‘reflective tower’.

The use of a different language dialect at each level of the tower presents
challenges to analysis. [Wand88] describes the behaviour without using reflection.
Multiple dialects are well-understood in theory, but a major inconvenience in
practice. The difficulties are overlooked by many implementations, leading to the
problem of meta-circularity when more than one meta-program operates upon the
same program. Which meta-program operates first? Does the second meta-
program operate on the source or the results of the first meta-program? How does
a meta-program behave when it changes its own declarations? [Chiba96] notes
that each level of the reflective tower must exist to define an ordering, so that one
meta-program operates consistently on the results of a more nested meta-
program and is isolated from its own and less nested meta-programs.

2.2.2 Metaobject Protocols

A reflective program manipulates the metaobjects that describe the program. The
programming interface to these objects is defined by a MetaObject Protocol such
as that provided for CLOS by [Kiczales91].

Each metaobject represents the reification of some programming concept, and so
different reflective languages support very different MOPs. This may be as
minimal as the RTTI facilities of C++, or as substantial as the meta-computation
protocol of [Sobel96].

2.2.3 Languages

OpenC++ version 1 [Chiba93] provided a run-time MOP for C++, through the
recognition of comment mark-ups requesting indirection of method calls through
metaobjects. This approach was abandoned in favour of a largely compile-time
MOP in OpenC++ version 2 [Chiba95], using a two-stage compilation process, first
to build an enhanced compiler for the extended language and then to use that
compiler. The two stage process avoids the costs of interpreted meta-execution,
but unfortunately prevents the realisation of the reflective tower. Although
OpenC++ extends most C++ concepts to the meta-level, somehow the language
doesn’t feel like C++; the extensions are rather haphazard, and much of the meta-
programming involves considerable insight into the operation of a compiler. The
working representation is a rather strange hybrid between a Lisp-like list and a
C++ syntax tree in which punctuation remains significant. This is perhaps
attributable to the development path through S++, a form of Scheme supporting
C++ concepts.

OpenC++ claims to be based on the principles of the CLOS MOP [Kiczales91], but
C++ concepts are so different that it is difficult to see any resemblance. The CLOS
MOP was developed for run-time support, and is a natural formalisation of an API
that is present anyway. Lists are well-supported by CLOS and so while the list
manipulations involved in meta-programming may be difficult for a C++
programmer to understand, they are consistent and compact. When these
concepts are transferred to C++, the alien nature of list processing, the
consequent lack of language support and the very different C++ perspectives
make for an uncomfortable programming environment.

MPC++ [Ishikawa96a] provides a compile-time meta-level that like OpenC++
supports fairly extensive interception of compiler activities and subsequent peek
and poke meta-programming, using conventional C++ syntax shifted to the meta-
level by $meta. MPC++ avoids the problems of the tower by supporting a stack of
output streams, but since these are text rather than syntax-based, they lack the
integrity of composition of declarations, statement nesting or character
concatenation in FOG.
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OpenC++ and MPC++ share the same principle of operation. A meta-program
intercepts stages in the compilation process, recognises patterns1 in the code,
and modifies the syntax tree by construction of alternate partial trees. The FOG
approach is completely different. The pattern is explicitly identified by the
invocation of some declaration (often a meta-function) that implements the
pattern. Additional declarations may be composed to elaborate the
implementation for more sophisticated requirements.

The peek and poke approach is able to achieve most programming goals, but
requires the programming skills to peek and poke syntax trees and poses the
challenge of recognising all variants of the target pattern. The declarative
approach in FOG is less flexible, but only requires relatively conventional skills
and may need the interception points to be explicitly identified, albeit by inline
function calls. In FOG two declarations are woven by providing the two
declarations. The peek and poke approach requires a program to be invoked, the
join point to be identified in one tree, and the tree for the other declaration to be
hand assembled and merged.

The ease with which OpenC++, MPC++, Sina/St (a precursor to C++/CF) and D (a
precursor to AspectJ) could be used is discussed in [Lin99]. All are found lacking
for a three-level architecture and so Adapter++ is presented. The problem would
appear to be directly soluble with FOG.

Iguana [Gowing96] provides a run-time MOP in which many different activities can
be reified on a per-object, per-method or per-class basis. The implementation cost
is therefore determined by the required degree of reification. This provides
considerable flexibility at run-time but offers little at compile-time, since Iguana is
not a reflective complier. [McAffer95] takes reification even further with seven
components to a message invocation.

Meta-classes form part of the Java language definition, and so there is more
language support for reflection and the interesting opportunity for a user-defined
class loader to perform meta-programming at load-time. Dalang [Welch98] and
Kava [Welch99] provide an ability to intercept method calls. Guaraná [Oliva98]
introduces composer metaobjects to enforce composition policies.

OpenJava [Chiba98a] migrates the peek and poke concepts of OpenC++ to Java,
providing a way of implementing parameterised classes [Chiba98b] that is rather
at odds with more serious language proposals such as GJ [Bracha98], NextGen
[Cartwright98] or [Agesen97]. Java Beans are used as the basis for a two-layer
meta-level model by [Wu98], and by [Lorenz98] to provide a reflective
implementation of the Visitor pattern.

2.2.4 Applications

Reflection has been used to solve problems in a wide variety of applications.

[Cartwright98] reports on the successful use of OpenC++ to simplify and enforce
the interface to an AI library, but only after flattening their meta-program to avoid
OpenC++ restrictions.

[Kasbekar98] again using OpenC++, identifies run-time data-dependencies so
that a roll-back to a checkpoint can be done efficiently.

[Yokote92] describes the reflective Operating System Apertos.

Further applications involving aspects, communication, constraints, distribution,
patterns, persistence and synchronisation are discussed elsewhere.

1. Not a design pattern, although the FOG invocation is design pattern-like.
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2.3 Programming Styles

2.3.1 Patterns

The original GoF patterns book [Gamma95] has provoked considerable interest
and a growing number of specialised conferences and workshops. Example
implementations of the patterns were mostly in C++ but just occasionally in
Smalltalk, so translations exist for Java [Grand98] and Smalltalk [Alpert98]. The
POSA book [Buschmann96] provides further architectural and design patterns.

Unfortunately, from a programmer’s perspective, the ability to present any problem
as a pattern has broadened the field so that the additional coding patterns
contributions provided by the PLOPD conferences [Coplien95b], [Vlissides96],
[Martin97] and [Harrison99] are diluted by management and organisational
patterns. However, remaining within the programming domain, [Fowler97] covers
the rather different perspective required during analysis.

Patterns are very abstract and so pose considerable classification challenges. A
pattern is often named rather arbitrarily by its author, and so looking for a pattern
that concerns a particular kind of problem is hampered by the lack of clear
vocabulary for problem or solution. Two attempts at classifying the basic patterns
have been made. [Gil97] distinguishes between clichés (straightforward use of
prevalent mechanisms), idioms (a built-in facility in some languages) and cadets
(not built-in to any language). [Agerbo98] takes a harsher view of just the GoF
patterns, discarding 2 as not patterns at all, 7 as Language-Dependent Design
Patterns, and 2 as closely Related Design Patterns: only 12 survive to be
classified as Fundamental Design Patterns.

A much more fundamental perspective on patterns is taken by [Pree94], where all
collaborations are reduced to seven meta-patterns corresponding to different
forms of 1:1 and 1:N relationship. Pree claims a high-level perspective, which is
surely wrong: a complete set of object to object relationships is a suitable low-
level abstraction that can form one of the layers for a parameterised pattern. The
GenVoca approach [Batory97] with its cascade of small orthogonal behaviours
would appear to combine well with Pree’s meta-patterns, once a suitable tool,
such as FOG, is available to glue the behaviours together.

Most attempts to represent patterns in code are informal. Soukup addresses the
problems of implementing patterns, with [Soukup95] summarising the much more
extensive treatment in [Soukup94]. Soukup’s solution, supported by the
CodeFarms library, realises each pattern as a data-less class that is declared as
a friend of each collaborator. Pattern operations are realised by static member
functions of the pattern class, so the programming interface is unnatural:
operations are invoked upon the pattern, not the primary collaborator. However,
the behaviour is very regular and has extremely good characteristics with respect
to include file dependencies. The implementation is hampered by the same
limitations that motivated the removal of the One Definition Rule from C++: a
special preprocessor has to be used, which could beneficially be replaced by
FOG.

An alternative text-based mechanism is provided by SNIP [Wild96], although the
enhancements effectively introduce two new languages to implement a kind of
marked up source text with a rather accidental semantics for lexical composition.

A reflective implementation of two patterns using OpenJava is described in
[Tatsubori98]. Instantiation of a pattern is quite tidy. Definition of a pattern involves
a significant amount of peek and poke code and the introduction of reserved
words.

The difficulty of actually fielding a reusable implementation of a particular solution
is rather neglected. Vlissides participated in the development of a GUI tool to
generate code for patterns automatically [Budinsky96], but then expresses
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considerable reservations in his book [Vlissides98]. It is indeed difficult to
conceive an automatic generator that will have sufficient flexibility to balance all
the conflicting forces and select the appropriate cookbook implementation. There
is rightly much generality and ambiguity in pattern descriptions. However
programmers regularly re-use particular pattern implementations with which they
are familiar, and providing an improvement over cut and paste for such re-use
would be beneficial.

Some experimental work on a GUI-based interface for pattern instantiation in
Smalltalk has been reported in [Florijn97] and [Meijers96]. It is difficult to assess
quite what has been achieved. Their system seems to exploit the ability of a
Smalltalk program to reconfigure dynamically at run-time allowing pattern objects
to be cloned interactively to extend the system under development.

Early descriptions of patterns identified the participants as the collaborators,
which tended to be classes in an implementation. More recent work [Riehle97] and
[Riehle98] has concentrated on the different roles that the participants play, and
thereby begun to establish a hierarchy in which some more sophisticated patterns
are composites of simpler patterns.

Application of a pattern requires roles to be associated with classes. The early
descriptions tended to assume that a particular set of roles was performed by
each collaborator, blurring the distinction between roles and classes. The role-
based perspective provides a more generic insight and offers more opportunity for
providing flexible tool support.

Composition of patterns is also addressed by [Lauder98]. A very generalised
abstract pattern is identified for decoupled collaborations that can be trimmed to
satisfy the more specific behaviour of the Adapter, Facade, Mediator, Observer or
Reactor [Schmidt95] patterns.

Although patterns and roles (and aspects) appeared rather late in the evolution of
UML, the generalisation of a collaboration diagram described in the User Guide
[Booch99] permits parameterised instantiation. This appears to provide the
required notational support. Unfortunately the change is minor and recent, and so
attracts little attention in the Reference Manual [Rumbaugh99] or the Unified
Process [Jacobson99] and temporarily lacks graphical tool support.

An approach to the enforcement of compliance with pattern constraints is provided
by [Hedin97a] using attribute extension [Hedin97b] to extend a language grammar
to incorporate patterns directly.

Reverse engineering patterns from code is provided by DP++ [Bansiya98].
Heuristics are required to recognise the relatively ill-defined implementations that
need to be found, and it is not possible to distinguish structurally similar but
operationally different patterns.

Direct generation of code from CAD tools has been an unrealised goal for many
years. The flexibility for the invocation of a single meta-function to generate
declarations in many classes, and for meta-programming to enforce or create non-
trivial program structure may provide the necessary support for a CAD tool that
just emits parameterised calls to a suite of meta-functions implemented by a meta-
library developer.

2.3.2 Aspects

Traditional programming approaches decompose a problem into functions or
objects that often have a direct realisation in an implementation. An alternative
decomposition can be made in terms of the concerns, properties or aspects of the
system that the programmer must consider in order to satisfy system
requirements. Effective decomposition identifies loosely coupled modules that can
be implemented and tested independently, but decomposition from one
perspective generally destroys modularity from other perspectives. For instance,
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a concern for error logging may pervade many functions and objects. Since a
practical implementation is likely to be a function or object, the problem arises as
to how to modularise the error logging aspect. The design of an aspect should be
isolated from the application functionality but the implementation must be inter-
woven with the application code.

An informal2 estimate indicates that about 80% of an application is well suited to
a structural decomposition, whereas the remaining 20% cuts across this structure
and is more appropriately decomposed into aspects or programming concerns.

[Aksit96] discusses the need to maintain separation between the different
concerns, and advocates the use of Composition Filters [Glandrup95]. Therefore,
in C++/CF the different stages of message passing are reified, so that meta-code
can intercept messages according to a variety of source and destination criteria.
The practical implementation of C++/CF involves a custom preprocessor of limited
capability that imposes considerable restrictions and obligations on the
programmer. The greater capabilities of FOG could remove much of the
inelegance.

The concepts of aspects have been taken up more generally in the new field of
Aspect Oriented Programming. The review of the first ECOOP workshop [Mens97]
considered whether AOP was really new or just a more palatable name for meta-
programming, given that AOP problems could be solved by reflection. [Kiczales97]
provides an extensive discussion of the need for AOP and some interesting
examples involving loop fusion, arguing that a meta-programming approach is just
a stepping stone. Eventually each aspect could be supported by a customised
programming language or environment [Fradet99], [Seinturier99].

Combining the functionality of the aspect code with the non-aspect code requires
a mechanism to define how the code should be combined and requires a weaver
to perform the composition. [Ossher98] discusses the join points where
composition occurs and highlights the dangers imposed by the invasive
characteristics of extra Aspect-Oriented code in comparison to the additive
characteristic of Object-Oriented code. In a rather different field, [Mulet95]
describes constraints upon the composition of functions so that composition
occurs predictably via nested invocation rather than ad hoc cut and paste. FOG
can provide rather ad hoc code merging, but the use of nested meta-variables as
in Section 7.4.1 provides an opportunity for greater discipline.

AspectJ [Lopes98] provides the flexibility for Java programmers to make
controlled additions to classes via introduce and advise weaves. An aspect is
introduced into Java as an instantiable entity, providing the flexibility to
dynamically associate aspects and objects at run-time; the object behaviour can
mutate. This provides direct language support for a particular and certainly useful
pattern, and by introducing the support at load-time3 rather than compile-time is
able to do so without specifying detailed implementation semantics. The aspect
syntax forces tight coupling to the application, and so [Beaugnard99] suggests a
relaxation to allow aspect, join and application to be independent.

FOG provides more extensive and more varied facilities than AspectJ, but needs
to resort to meta-programs to implement the limited but useful capabilities directly
available in AspectJ.

The flexibility of load-time weaving is also exploited by [Welch99]. Run-time
weaving with support for aspects at the meta-level is advocated in [Böllert99],
[Lunau98] and [Pryor99]. A more pragmatic compromise in which some aspects
are statically woven at compile-time while others are retained at run-time is
suggested by [Matthijs97].

2. Gregor Kikzales at an AspectJ tutorial

3. The current implementation weaves at compile-time.
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A slightly different take on programming concerns arises in Subject Oriented
Programming [Harrison93], where the differing perspectives of the same objects
appropriate to different applications is considered. The concepts of different views
of an object provided by CV++ [Shilling89] are taken much further so that each
application may be written with its own subjective view of each object. When such
objects are shared between subsystems or applications, an update to one subject
must make consistent changes to the underlying object and alternate subjective
views. Composition policies and language extensions to achieve this are
described by [Ossher95]. FOG could be used to implement the associated
disciplines.

2.3.3 Generative Programming

Generative Programming [Czarnecki97] seeks to provide highly configurable
components that can be combined and optimised at compile-time so that minimal
overheads are incurred by an application.

An early perspective into reusable components is provided by [Batory92]. Two
independently developed domain-specific module generators, Genesis and Avoca,
were found to have very similar design and implementation. The common
concepts were combined to give the GenVoca principles of composing very thin
fairly orthogonal layers to create a desired component. In [Batory93] these
concepts are applied to C++ libraries, resulting in fewer source concepts to
generate more, smaller and faster library components than standard C++ libraries.
Further improvements in speed and flexibility are reported in [Batory94], using a
succession of customised preprocessors and compilers: P1, P2 leading to P++
that adds support for realm and component to C++ [Singhal96]. Composition of
components is based on a realm of interchangeable components with a common
interface. The realm may therefore be used as a type signature. However, in
practice, not all components are completely interchangeable, there may be
constraints on, or prerequisites for, the ordering of compositions. [Batory97]
identifies the need for upward and downward checking of constraints, using
pre/post-conditions/restrictions. A related implementation of container libraries
using template meta-programming is described in [Czarnecki99].

A direct form of generative programming is possible with imaginative use of C++
templates. [Myers95] describes the concepts of traits classes (template classes of
parameters), which are used to pass a set of parameters and interrelationships as
a single template parameter, thereby considerably simplifying the instantiation
interface. These concepts underlie much of the flexibility of the Standard Template
Library [C++98]. Inference of expression types at compile-time is exploited in
[Veldhuizen94] to generate customised inline functions that outperform
conventional library implementations. Control structures are realised by recursive
template instantiation in [Veldhuizen95] supporting generation of more
sophisticated customised inline functions for sin, FFT or bubble sort.

The practise of composition of behaviour using mix-ins is reported to incur a
potentially exponential growth in the length of template class names in
[Smaragdakis98], where an extra outer mix-in layer is introduced to resolve the
problem.

The GenVoca approach seems well suited to the implementation of efficient
reusable components from very simple building blocks. Template meta-programs
provide effective techniques for composing the building blocks at compile-time,
provided the composition results in a function or type. Unfortunately interesting
components are more complicated. [Eisenecker97] suggests that GP subsumes
AOP, but the template approach requires aspect functionality to use pre-existing
parameterisation, rather than an independently developed weave. The facilities of
FOG are required to compose more general declarations, in particular for
extensions not supported by the base functionality.
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2.4 Applications

C++ has been extended in minor ways by practical compilers [Stallman98] and
[Microsoft97], and a few isolated language extensions such as [Baumgartner97]
have been published. Researchers in many fields have chosen to use C++, but
found it inadequate for their purposes. There are therefore many domain specific
extensions to C++, just some of which are mentioned here.

Domain specific extensions, when fully integrated with C++, can provide a clean
solution to the domain problem. However, many extensions are poorly integrated
because of the size and complexity of C++ and so provide little more than a
research tool. Many of the problems dealt with in a domain-specific fashion can
be resolved in a domain-independent way by using the meta-level programming
facilities of FOG. However FOG meta-programming is restricted to declarations
and so the more radical changes of C** [Larus96] in which data parallel semantics
are introduced to expressions could probably not be addressed.

2.4.1 Design by contract

Design by contract advocates the use of pre- and post-conditions and invariants
to define the behaviour of components, and it is beneficial for these properties to
be expressed in implementation code.

Support for contracts is an integral part of Eiffel [Meyer92]. It has to be added for
C++.

A++ [Cline90] extends C++ in a fairly natural way to support class assertions and
invariants, which can in principle be optimised at compile-time.

CCEL [Duby92] adds a form of meta-programming using assertions in a predicate
calculus so that constraints can be validated.

[Porat95] proposes some language extensions to support pre-conditions, post-
conditions and invariants.

2.4.2 Persistence and Marshalling

A low level understanding of object layout is necessary for persistent storage of
objects in databases or for marshalling objects whether for signalling between
nodes in a communication network or distribution between nodes in a parallel
processor.

Persistence is commonly supported by an extended language adding a
persistent keyword to C++ as in OQL or E [Vemulapati95], or a replacement
allocator such as pnew in O++. An alternative approach is taken by [Park96] using
an object pre-header at negative address offset, so that persistent objects are
interchangeable with non-persistent objects. A MOP approach is recommended by
[Stroud94] to avoid the inflexibility imposed by the extended language PC++. A
simple reflective system based upon the Java API is described by [Lee98].

Wilson and Lu [Wilson96] provides extended articles by 16 of the leading research
teams using C++ for parallel processing. Some researchers used only library
classes and run-time support code, and so remain entirely within the normal
confines of the C++ language. Others introduce language extensions, which are
variously implemented as translators to C++, or modified C++ compilers. MPC++
[Ishikawa96b] exploits meta-level facilities to support an extended syntax within a
“standard” C++ compiler. Many of the C++ extensions appear unnecessary and
some authors recognise that more imaginative use of C++ facilities, particularly
those not readily available at the start of their research could have reduced the
need for divergence.
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2.4.3 Synchronisation

Synchronisation is critical for reliable multi-process or multi-processor
applications. Concurrent access to data has to be restricted, a problem resolved
in principle by monitors [Hoare74]. In practice there are typographical difficulties
in ensuring that monitor protocols are not accidentally bypassed and genuine
difficulties in ensuring that a synchronisation policy is sensibly applied by derived
classes. Alternative strategies are considered in [Matsuoka93], where reflection
is considered necessary to solve the inheritance anomaly. Reflection is exploited
by [Stroud95] to implement atomic access to data types.

2.5 Summary

The different approaches demonstrate that language extension can occur at three
different levels:

• Library classes and run-time environments can be developed without any
language or compiler changes. FOG’s increased capabilities at compile-
time provide library developers with more options, perhaps supporting
simpler interfaces, reduced requirements for user support code, or
stronger compile-time detection of protocol violations.

• Translators that recognise one or two extra reserved words require
development of the translator but do not affect the underlying compiler.
FOG syntax macros provide an ability to introduce custom extensions to
C++, enabling many of the characteristics of custom translators to be
achieved by a general-purpose translator.

• New forms of code generation necessitate significant revision to both
language and compiler. FOG offers very little to applications that need to
rewrite the basic compiler.

The need for many different research teams to develop customised variants of
C++ demonstrates the need to be able to extend C++ to support new domains.

Research in the fields of patterns and Generic Programming shows an increasing
need to structure large software components from smaller ones.

Aspect Oriented Programming demonstrates the need to combine relatively
independent software modules into a composite whole.

FOG provides facilities to assist in all these areas. Unfortunately, it is difficult to
answer the critique that C++ is too large, and that adding meta-functionality is an
enhancement too far. However, it is also difficult to avoid recognising that the
absence of meta-functionality is restrictive for some domains and an inhibition to
re-use for all.

Programmers need to be able to express their ideas in compact modules. so that
any form of repetitive and consequently predictable practice can be captured by a
module that can be re-used. Functions support this concept for algorithmic
behaviour. Records and objects support this for data structures. Templates extend
the concepts across a variety of data types. FOG derivation rules provide further
extension to program declarations. More arbitrary flexibility requires compile-time
or meta-programming with meta-functions capturing the repetitive program
structure.

FOG, OpenC++ and MPC++ each provide meta-programming, but FOG’s
capabilities are distinctly inferior because FOG does not currently provide direct
access to the underlying ASTs. However, because FOG operates by composing
declarations, FOG meta-programming integrates with C++, and so replaces the C
preprocessor, and solves many practical programming problems decoratively.
Equivalent solutions using OpenC++ or MPC++ must use imperative peeking and
poking. FOG is upward compatible with C++ and so can make a much stronger
claim to be an extended C++ than OpenC++ of MPC++.
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Expanding FOG’s support for analysis of expression ASTs is a matter for further
research.
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0 3 FOG Grammar

Sections 1.4 and 1.5 provided a brief overview of the FOG extensions to C+
including

• substitution

• concatenation

• composition

• meta-scopes

• derivation rules

• meta-programming

In this chapter these language extensions are presented in detail and the
semantics specific to each extension are discussed. More general semantic
issues are discussed in Chapter 4.

Description of the necessary but rather peripheral extensions required to support
multiple intermediate files between the FOG translator and the C++ compiler is
deferred till Chapter 6.

It is a moot point whether this chapter should appear early, or late or be relegated
to an appendix. On the one hand, it contains too much important material to be an
appendix and lays the foundation for the subsequent chapters. On the other hand
some of the detailed descriptions become very detailed. The material is therefore
presented here, and the reader is invited to skip directly to the summary in
Section 3.5 on page 80, if satisfied by the overview in Chapter 1, or to skip to a
following sub-section if a description becomes too detailed.

The changes are presented one at a time in this chapter. The summary of the
changed grammar in Appendix A shows all changes combined and is structured
to ease comparison with Annex A of [C++98].

The final section justifies the claim that FOG renders the C preprocessor
redundant.

3.1 Grammar Extensions

Most of the FOG extensions contribute extra grammar, however the substitution
and concatenation functionality is white-space sensitive and so must be
performed earlier. This occurs during phase 6 of the C++ translation process
summarised in Figure 3.1.

3.1.1 Substitution, Concatenation and Tokenization

The C++ standard defines (§2.1-6) translation phase 6 as:

Adjacent ordinary string literals are concatenated. Adjacent wide
string literals are concatenated.

and (§2.1-7) phase 7 as:

White-space characters separating tokens are no longer
significant. Each preprocessing token is converted to a token. The
resulting tokens are syntactically and semantically analyzed and
translated.

FOG generalises phase 6 processing to support more extensive concatenation
and also the recognition of substitution operators. The parsed result of a
substitution or non-trivial concatenation is referred to as a tree-literal, since it
comprises a pre-parsed AST.

FOG generalises phase 7 to support tokenization of a tree-literal as an identifier, and
to defer treatment of non-reserved words as identifiers.
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The enhanced behaviour of FOG is most easily explained by first elaborating the
simple C++ descriptions into grammars before showing the revised grammars.

3.1.1.1 C++ Phase 6 Concatenation Grammar

The C++ Phase 6 translations can be expressed as

string-literalcat:
string-literalpp
string-literalcat whitespaceopt string-literalpp

‘anything-else’cat:
‘anything-else’pp

pp denotes the preprocessor token input to phase 6 from phase 5 and cat the
concatenated output production passed from phase 6 to phase 7.

Single quotes as in ‘anything-else’ surround a production whose meaning is obvious
though difficult to express compactly.

3.1.1.2 C++ Phase 7 Tokenization Grammar

Phase 7 tokenization can be expressed by the following ‘grammar’

‘discard’: // Token is discarded
whitespace

‘punctuation’: // e.g. , or += or ...
‘punctuation’cat

‘reserved-word’: // e.g. true or unsigned or if
identifiercat // If identifiercat is a reserved word

character-literal:
character-literalcat

floating-literal:
number-literalcat // If number-literalcat is floating point

Phase 1 : character decoding

Phase 2 : continuation lines

Phase 3 : tokenization

Phase 5 : character set mapping

Phase 4 : preprocessing

Phase 6 : concatenation

Phase 7 : syntactic and semantic analysis

Source Program

Figure 3.1 C++ translation
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integer-literal:
number-literalcat // If number-literalcat is fixed point

string-literal:
string-literalcat

identifier:
identifiercat // If identifiercat is anything else

3.1.1.3 FOG Phase 6 Concatenation Grammar

FOG replaces phase 6 by a white-space sensitive grammar to augment the C++

• concatenation of adjacent string-literals

by

• concatenation of unseparated character-literals

• concatenation of unseparated identifiers

• concatenation of unseparated number-literals

• concatenation of unseparated tree-literals

As in C++, the distinction between ordinary and wide-string literals can be
ignored, since their adjacency leads to undefined behaviour (§2.13.4-3).
Behaviour is only defined for a sequence of same-width string-literals or character-
literals.

text-literalpp:
character-literalpp
identifierpp // Including all reserved words
number-literalpp
string-literalpp
tree-literalpp // a $ or @ expression

character-literalcat:
character-literalpp
character-literalcat text-literalpp

identifiercat:
identifierpp
identifiercat text-literalpp

number-literalcat:
number-literalpp
number-literalcat text-literalpp

string-literalcat:
string-literalpp
string-literalcat text-literalpp
string-literalcat whitespaceopt string-literalpp

tree-literalcat:
tree-literalpp
tree-literalcat text-literalpp

‘anything-else’cat:
‘anything-else’pp

Translation of source tokens involves three significant textual representations1:

• the original source code spelling

Any escape sequences and digraphs in this representation are replaced during
translation phase 5 to give

• an internal textual (multi-)byte sequence

1. There is a momentary fourth true source code spelling before trigraphs are
replaced in translation phase 1.
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that comprises straightforward binary encoding of each character. This
representation is in turn converted during the emission phase to

• a representation suitable for output

which may require regeneration of escape sequences. This regeneration
propagates the original source spelling when the output corresponds directly (no
concatenation) to a source token.

Concatenation operates by concatenation of internal sequences without regard to
the character-literal, identifier, number-literal or string-literal categorisation.

The textual byte sequence of a numeric value is the source spelling, if the value
originated from source. Otherwise the textual sequence is generated from the
numeric value using a numeric to ASCII conversion. The default formatting is
specified only to require precision not less than long for an integer-literal or float
for a floating-literal. Specific built-in meta-functions may be used for more precisely
controlled formatting.

The textual byte sequence of a tree-literal comprises the byte sequence of the main
unqualified name in the tree-literal, such as the class-name of a class-specifier:

auto class_specifier c = class Scope::Class {};
auto identifier i = $c; // i = Class

Preservation of unchanged format and conversion between identifier and string-
literal perspectives provides most of the functionality of Cpp # operator stringizing.
Generalisation to character-literals and number-literals provides consistency rather
than significant new functionality.

It is surprising that this fundamental lexical extension causes only very minor
incompatibilities, mandating protective spaces where only a perverse coding style
would omit them:

• around the string-literal in a linkage-specification: extern "C" declaration

• around alternative tokens: and, and_eq, bitand, bitor, ..., xor, xor_eq

• following expression prefixes: return, sizeof, throw

This is described in Section 3.3.4.

There is no incompatibility regarding the L prefix for wide-characters or wide-
strings since the L" and " are stripped during phase 3. Phase 6 processes the
contents using a parallel rather than prefix annotation to signify a wide-string.

3.1.1.4 FOG Phase 7 Tokenization Grammar

The concatenated preprocessor tokens are tokenized by the following ‘grammar’

‘discard’: // Token is discarded
whitespace

‘reserved-word’:
identifiercat // If identifiercat is a reserved word

‘punctuation’:
‘punctuation’pp

character-literal:
character-literalcat

floating-literal:
number-literalcat // If number-literalcat is floating point

integer-literal:
number-literalcat // If number-literalcat is fixed point

string-literal:
string-literalcat

meta-type-name: // If identifiercat is a meta-type name
identifiercat // (and not a reserved word)
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‘non-reserved-word’:
identifiercat // If identifiercat is a non-reserved word

identifier:
other-identifier:

identifiercat // If identifiercat is anything else

tree-literal:
tree-literalcat

Identifiers are categorised as one of reserved-word, meta-type-name (name of a built-
in meta-type), non-reserved-word (word used in a FOG syntax extension) or other-
identifier. The latter three and tree-literal are combined in the main grammar for
uniform treatment where an identifier is expected.

identifier:
other-identifier
meta-type-name
non-reserved-word
tree-literal

The results of concatenation in phase 6 may not yield consistent tokens. For
instance:

auto identifier plus = '+';
x ${plus}${plus};

could be perceived as

x ++;

If the tokenization grammar recognises that the identifier ++ can be tokenized as
the corresponding punctuation token, then the example comprises an expression-
statement that increments x.

The multi-pass grammar FOG implementation took this approach, reclassifying
the byte sequences masquerading as identifiers into reserved-words, punctuation,
number-literals or identifiers. However tree-literals are not necessarily resolvable
during phase 6 without invoking a very tight coupling with syntactic and semantic
analysis.

Retokenization of identifiers is no longer performed and so the only change in
FOG phase 7 processing is the propagation without interpretation of tree-literals to
the syntactic analysis, where they are treated, again without interpretation, as
identifiers. (The justification for treating a tree-literal as an identifier is given in
Section 4.2.3.)

The processing is therefore context-free and the example is interpreted as

• identifier with value x

• identifier with value ++

• the punctuation ;

This is a syntactically valid definition of a global variable named ++ of type x. It
must be rejected during semantic analysis.

Retokenization can be achieved by using the std::parse built-in meta-function,
using which, the increment behaviour may be obtained by:

$std::parse("x "${plus}${plus}";");

Whether trivial concatenations are resolved during phase 6 is an implementation
option. However, certain complicated concatenations involving substitutions can
only be resolved during semantic analysis.

The lack of direct support for retokenization does not introduce any incompatibility
with C++, merely a limitation to the language extension. Very few programs are
likely to require retokenization, and those that do will presumably only do so in a
very restricted context, where the subtle behaviour may benefit from the need to
expose it more clearly.
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3.1.1.5 character-literal

In C++, a character-literal should comprise a single character, whereas a string-literal
may contain any number of characters.

While C++ defines the concept of a multi-character-literal, the definition is of limited
utility since it is implementation defined.

In order to support concatenation consistently, FOG generalises character-literals to
encompass multi-character-literals and the zero-character-literal to treat them
equivalently to string-literals during lexical and syntactic analysis. A character-literal
may have any number of characters, however when a character-literal with other
than one character is used in a C++ context (as a literal in a primary-expression), the
behaviour is undefined.

This change supports concatenation consistently, but offers only minor
functionality enhancements: an empty character can be used as a concatenation
join or as a concatenation cast.

auto for (int i = 0; i < 10; ++i)
{

static char digit_values[] = char($i); // 0 to 9
static char digit_codes[] = ''$i; // '0' to '9'

}

3.1.1.6 FOG tree-literals

Tree-literals support the use of a parsed AST from a meta-variable or meta-
function.

Definition occurs using the meta-function or meta-variable declarations described
in Section 3.1.5.5 and Section 3.1.5.6.

auto enum_specifier enumTree = enum f { F };

Access occurs through use of a $ or @ expression to provide a tree-literalpp token.

typedef $enumTree E;

This syntactic usage exploits the treatment of a pre-parsed AST tree-literal as an
identifier by the main FOG grammar as described in Section 4.2.3.

tree-literalpp:
at-literal
dollar-literal
syntax-macro // Section 4.7

at-literal: // Loosely referred to as an @-expression
@ tree-expression
@ { tree-expression }

dollar-literal: // Loosely referred to as a $-expression
$ tree-expression
$ { tree-expression }
$ dollar-literal

The first two forms of tree-literal are triggered by a $ or @ introducer with an optional
pair of braces to surround the actual expression. Syntax ambiguities are avoided
in the absence of braces by defining the lexical expression as the longest possible
token sequence. The semantics of syntax-level substitution is described in
Section 4.2. The name-resolution rules are described in Section 4.3, and the
significance of repeated $’s in Sections 4.3.5 and 4.3.6.

The third form of tree-literal supports a user-defined syntax-macro comprising a
triggering identifier and relatively arbitrary subsequent syntax. Syntax macros are
described in Section 4.7.

Analysis of the tree-literal invocation sequence is initiated by recognition of the
trigger token in the white-space sensitive phase 6 concatenation grammar. This
activates a nested whitespace insensitive syntactic analysis to identify the syntax
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tree to be returned for use by the interrupted syntactic analysis. This syntax tree
represents the invocation; it is not evaluated, since the invocation may not be
directly or uniquely resolvable.

The nested analysis to identify the tree-literal invocation obtains tokens from the
same source as, and in the same way as, each token of the interrupted analysis.
Nested recognition of tree-literals is therefore supported with $a$b$c resolved as
${a${b${c}}}.

The tree-expression defining the metaobject referred to by a $ or @ expression is
defined by:

primary-tree-expression:
meta-scoped-id // Section 3.1.5.1
( tree-expression )

postfix-tree-expression:
primary-tree-expression
postfix-tree-expression ( tree-argument-listopt ) // meta-function call
postfix-tree-expression [ expression ] // meta-array index
postfix-tree-expression . scoped-id // meta-member selection
postfix-tree-expression -> scoped-id // meta-member selection via iterator

tree-expression:
postfix-tree-expression
* tree-expression // iterator indirection

meta-scoped-id is the optionally scoped name of a metaobject (in the meta-name-
space).

A meta-function-call invokes a user-defined or built-in meta-function, globally or
on a selected metaobject.

Array indexing selects a list element.

Member-selection selects a named member of a metaobject. Indirect member
selection and indirection apply only to metaobjects of iterator meta-type, since
these are the only form of meta-pointer.

tree-arguments and tree-statements

Relatively arbitrary segments of program code may be passed as pre-parsed
syntax trees to meta-functions as in the meta-function call above and as
initializers for meta-variables. These arbitrary code segments must satisfy the
syntax of a tree-argument when used in a comma-separated context, such as a meta-
function call. In the more general whitespace-separated context the tree-statement
syntax must be satisfied.

tree-argument-list:
tree-argument
tree-argument-list , tree-argument

tree-argument:
tree-statement
unterminated-tree-argument

tree-statement:
terminated-tree-argument
unterminated-tree-argumentopt ;

compound-tree-statement:
{ tree-statement-seqopt }

tree-statement-seq:
tree-statement
tree-statement-seq tree-statement

The constructs that may contribute to a tree-argument or a tree-statement are split into
two categories.

terminated-tree-arguments have an inherent lexical termination, enabling parsing
without any lookahead

namespace X {} // namespace-definition does not need a ;
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unterminated-tree-arguments require lookahead to the following punctuation

enum Y {} // unterminated and so indeterminate
enum Y {}; // ... enum-specifier
enum Y {} a = 0; // ... simple-declaration

terminated-tree-argument:
asm-definition
compound-tree-statement
control-statement
declaration-statement
explicit-instantiation
explicit-specialization
expression-statement
file-dependency-declaration
file-placement-declaration
filespace-declaration
function-definition
include-declaration
linkage-specification
namespace-alias-definition
namespace-declaration
namespace-definition
template-declaration
using-declaration
using-directive
auto meta-class-declaration
auto meta-control-declaration
auto meta-expression-statement
auto meta-function-definition
auto meta-variable-declaration

unterminated-tree-argument:
access-specifier
accessibility-specifier
base-specifier
built-in-type-id
class-specifier
condition
cv-qualifier
decl-specifier
enum-specifier
enumerator-definition
expression
filespace-specifier
function-try-block
handler-seq
initializer-clause
mem-initializer
parameter-declaration
reserved-word
simple-type-parameter
storage-class-specifier
template-argument
template-parameter
type-parameter
auto meta-class-specifier

When used as a tree-argument in the comma-separated tree-argument-list the extra
semicolon is optional for the unterminated productions.

$f(int a;, int b, c, d;);

When used as a tree-statement as the initializer of a meta-variable the semicolon is
mandatory for the unterminated productions.

auto statement s = { a(); b(); c(); };
auto declaration d = int a;
auto identifier i = if;

The trailing semicolon satisfies syntactic requirements, but has no semantic
meaning. There is therefore no semantic difference between the expression
argument in:

$meta_something(a=5)



FOG Grammar Meta-compilation for C++

29-June-2001 Page 41

and the expression-statement argument in:

$meta_something(a=5;)

The argument is parsed as the more flexible expression, which may be converted
to an expression-statement if required to satisfy some meta-type constraint, such
as the formal meta-type of the meta_something parameter. They may be used
interchangeably as tree-arguments.

Ambiguity

There is an ambiguity between multiple comma-separated components of a
specific tree-argument and multiple tree-arguments. The meta-function invocation

$f(int a, b, c, if (d) e, f; else g, h;)

comprises four arguments, the fourth of which is overlined and obviously a
selection-statement, however the earlier three could be an init-declaration-list, a
parameter-declaration-clause, or perhaps an exception-specification followed by a two
element expression. The ambiguity is not resolved until the actual arguments are
associated with formal parameters. When semantic interpretation occurs, the
declaration of f may be found to be:

auto statement f(parameter_declaration p1,
identifier p2[],
statement p3)

The available arguments are then associated from left to right, associating as
many arguments as possible with one parameter before advancing to the next
parameter. int a is associated with the parameter-declaration p1. The p2 formal
parameter can associate with an exposed list of identifiers (see Section 4.1.5). The
second and third arguments are syntactically valid identifiers and so the list
comprising b and c is associated as the list for p2. Finally the fourth argument is
associated with p3.

The ambiguity resolution resulting from unconditionally associating arguments
with the left-most parameter is consistent with similar disambiguation policies
such as §5.3.4-2 for trailing *’s in new-declarators.

In practice, meta-functions with argument lists that comprise an exposed list,
followed by further arguments, should be avoided since left to right association
may prevent subsequent arguments being passed. For instance, it is not possible
to pass an identifier representing a simple expression-statement as the fourth argument
to f above since the identifier would be associated with the preceding exposed list
parameter.

It is not possible to solve the problem by introducing parentheses or braces, since
this would further overload existing punctuation and introduce ambiguities with
respect to their existing meaning.

Syntax coverage

The productions listed for terminated-tree-argument and unterminated-tree-argument cover
most of the C++ constructs and exhibit significant redundancy. In practice it is
more helpful to identify what is not covered, why it is not covered, and how the
limitation can be worked around.

The limitations represent very minor limitations on the language extension. They
do not introduce any C++ incompatibility.

• an anonymous bit-field cannot be specified because a labeled-statement is
unconditionally preferred

- give the bit-field a name or
- provide an access-specifier or
- use a class or typename prefix for the type
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• do followed by semicolon is presumed to be the start of an iteration
statement, so do as a reserved-word must not be followed by semicolon

- omit the semicolon in a tree-argument

- use "do" and implicit (or explicit) string to identifier conversion

• operator followed by a comma is presumed to be the sequencing function
name, so operator as a reserved-word cannot be followed by a list-
separating comma

- use operator;,

• meta-declarations in tree-arguments cannot be specified without a leading
auto to avoid ambiguity with conventional declarations and statements.

- use auto prefix for all meta-declarations
- omit auto prefix for all normal declarations.

• major punctuation defines lexical structure and so cannot be passed as a
punctuation argument. This affects: { } , ; " ' ( ) #

- use $std::parse("{")

3.1.1.7 Design Rationale

Lists and Trees

Support for list (or more strictly tree structured) arguments as described above is
convenient and the disambiguation rule solves some inelegant practical problems,
at the expense of being a little cute.

One simpler alternative policy identifies maximal length sub-list elements
unconditionally without reference to the invoking context. This unfortunately
requires the additional semicolons (shown with an overline) to prevent unwanted
grouping:

$f(int a;, b, c;, if (d) e, f; else g, h;)

and more unacceptably requires three identifiers to be passed as:

$g(a;, b;, c)

Another alternative policy prohibits transparent passing of list elements, which is
obviously less flexible. ()’s or {}’s must then be used to encapsulate the lists for
those syntaxes where bracketing is permitted. A syntax extension is needed for
other syntaxes.

All three policies are difficult to implement in practice because a generalised
superset grammar needs to treat a potential constructor argument list

 a : b(c), d(e)

as an unresolved prefix that could be a bit-field followed by a variable, or a
constructor and initializers. The solution in Appendix C exploits the generalised
monomorphic characteristic of each argument to avoid premature parsing
decisions.

Comma-separated lists of arguments that may themselves comprise comma-
separated lists are therefore supported, since support imposes fewer
programming constraints and no extra implementation difficulty.

auto declaration f(parameter_declaration_clause p);

can be invoked as:

$f(int a, char *b, ...); // Ellipsis token as third argument
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Sequences

Sequences (unseparated lists) of arguments are not supported to avoid a syntax
ambiguity between a sequence and further syntax as the initializer of a meta-
variable list:

 auto statement meta_variable[] = stmt1; stmt2; stmt3;

This is not a limitation since a sequence can be expressed in its compound form.

 auto statement meta_variable[] = { stmt1; stmt2; } stmt3;

Labels

The goto form of a labeled-statement:

label : statement

and an anonymous bit-field

type : 5 ;

are ambiguous and have dissimilar syntax tree structure; a label decorates a
statement, whereas a bit-field width decorates a declarator.

It does not seem worth significant effort to unify these rare constructs. The label
form is therefore excluded from a meta-control-declaration to avoid changing the
semantics of a member-declaration. However, when a bit-field is added to an init-
declarator and consequently to a statement, the syntactic conflict must be resolved to
the label. The same conflict arises for a tree-argument and so the same
unconditional resolution of identifier : as a label is made for compatibility with C++.
This behaviour is a little surprising and so the equivalent ambiguity for tree-literal :
is resolved to the more useful bit-field.

3.1.2 Names

FOG syntactic analysis has to be context-free while operating on both potential
and actual declarations, since it is inevitable that the context cannot be known for
potential declarations, for which complete identification of all enclosing scopes is
missing.

Chapter 5 shows how the traditional template and type name context
dependencies are eliminated using the superset grammar.

Since FOG does not use template or type name information, it is necessary to
generalise the syntax of names to eliminate the productions dependent upon
semantic name classification:

typedef-name:
identifier

namespace-name:
original-namespace-name
namespace-alias

original-namespace-name:
identifier

namespace-alias:
identifier

class-name:
identifier
template-id

enum-name:
identifier

template-name:
identifier

template-id:
template-name < template-argument-list >
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Much simpler unclassified name productions are used instead:

id:
identifier
identifier < template-argument-list > // 2

template identifier < template-argument-list >

nested-id:
id
id :: nested-id

scoped-id:
::opt nested-id

A straightforward conversion to a context-free grammar replaces the C++ usage
of xxx-name by id.

A further syntax generalisation permits declarations to appear as interface style
declarations inside class braces or implementation style declarations outside.
This requires that xxx-name be replaced by scoped-id.

In addition to the regular names based upon identifiers and templates, there are
the special function names that involve punctuation characters:

special-function-id:
~ id // 3

conversion-function-id
operator-function-id

nested-special-function-id:
special-function-id
id :: nested-function-special-id

scoped-special-function-id:
::opt nested-special-function-id

These new non-terminals replace the existing names for declarators, expressions
and declarations:

declarator-id:
::opt id-expression
::opt nested-name-specifieropt type-name
scoped-id
scoped-special-function-id

primary-expression:
literal
this
:: identifier
:: operator-function-id
:: qualified-id
( expression )
id-expression
declarator-id

using-declaration:
using typenameopt ::opt nested-name-specifier unqualified-id declarator-id ;
using :: unqualified-id ;

Type specifiers are simplified:

simple-type-specifier:
::opt nested-name-specifieropt type-name scoped-id
char
...

enum-specifier:
enum identifieropt scoped-idopt { enumerator-listopt }

2. Resolution of the context-dependency for < is discussed in Section 5.8.

3. An unqualified destructor is ambiguous with respect to a complement expression,
and very rarely valid. In practice it is easier to exclude the local destructor from
special-function-id and introduce it only once nested in nested-special-function-id.
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elaborated-type-specifier:
class-key ::opt nested-name-specifieropt identifier scoped-id
enum ::opt nested-name-specifieropt identifier scoped-id
typename ::opt nested-name-specifieropt identifier scoped-id
typename ::opt nested-name-specifieropt identifier < template-argument-list >

class-head:
class-key identifieropt scoped-idopt base-clauseopt
class-key nested-name-specifier identifier base-clauseopt

base-specifier:
::opt nested-name-specifieropt class-name scoped-id
...

Namespace definitions are simplified dramatically after eliminating semantic
distinctions from the syntactic grammar:

namespace-definition:
named-namespace-definition
unnamed-namespace-definition
namespace scoped-idopt { namespace-body }

named-namespace-definition:
original-namespace-definition
extension-namespace-definition

original-namespace-definition:
namespace identifier { namespace-body }

extension-namespace-definition:
namespace original-namespace-name { namespace-body }

unnamed-namespace-definition:
namespace { namespace-body }

Impact

The simplified naming defers semantic constraints so that the grammar defines
just syntax. As a result, the grammar covers much that is illegal; in particular,
every occurrence of a templated-name requires semantic validation and very
occasionally correction as well.

3.1.3 Syntax Generalisation

Perhaps the most significant simple language change in FOG is the relaxation of
the One Definition Rule (§3.2) described in Section 4.4, so that multiple
declarations compose to give an extended declaration rather than an error. This
change is entirely semantic.

A further generalisation is the unification of syntax to combine interface and
implementation declarations. This is almost entirely semantic, since the C++
grammar for functions and variables embraces most of the required FOG
generalisations within syntax that is only semantically invalid in C++.

Some minor syntax generalisations to resolve anomalies are described in this
section. Some slightly more significant enhancements appear in the next section.

3.1.3.1 Forward declaration for namespace

A FOG declaration may first appear as:

int Scope::name;

name is added to Scope, which must be a previously declared namespace or class.
C++ already allows a prior declaration of a class to be provided by

class Scope;

A similar declaration for a namespace should be possible. So FOG adds:

declaration: // Extension of
namespace-declaration
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namespace-declaration:
namespace scoped-id ;

Impact

This is an unnecessary extension. It just provides consistency without introducing
any problems. A namespace could alternatively be forward declared by:

namespace Scope {}

3.1.3.2 access-specifiers as decl-specifiers

The public/protected/private accessibility of a member declaration is
necessarily specified in C++ by a preceding and relatively independent access-
specifier. Other characteristics such as inline or static are specified by decl-
specifiers.

class MyClass
{
protected:

inline static void protected_method();
};

In order to avoid declarations relying on surrounding context and causing
indeterminacies during composition, FOG allows the access-specifier to be specified
as part of a declaration.

decl-specifier: // Extension of
access-specifier

The presence of an access-specifier as part of a decl-specifier affects only the specified
declaration. Subsequent declarations continue to use the prevailing default
accessibility.

class MyClass
{
protected:

public virtual void public_method();
inline static void protected_method();

};

private void MyClass::private_method();

Impact

This generalisation introduces a syntax ambiguity whereby public: could
introduce an implicitly int anonymous bit-field. There is no such thing and the
ambiguity is resolved.

3.1.3.3 Pure-virtual

C++ allows a pure-virtual function to be declared

class MyClass
{

virtual int f() = 0;
};

and then implemented

int MyClass::f() { return 0; }

but does not allow the two declarations to be combined, so that the
implementation is inlined within the interface. This strange prohibition is removed,
in order to allow a complete function definition in one FOG declaration.

function-definition:
decl-specifier-seqopt declarator pure-specifieropt ctor-initializeropt function-body
decl-specifier-seqopt declarator pure-specifieropt function-try-block
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pure-specifier:
= 0

The following is invalid C++, but valid FOG.

class MyClass
{

virtual int f() = 0 { return 0; }
};

Impact

The extra term poses no additional problem to the generalised superset grammar.
It could pose significant problems to a conventional grammar. This may be the
reason for the current exclusion.

3.1.3.4 !static

The static keyword specifies whether a member function or variable is
associated with a class or an instance. This is a fundamental programming
decision that should not normally be changed as a result of composing multiple
declarations.

In C++ the class usage is explicitly specified, the instance usage is implicit. In
order to make the instance usage explicit as well, and so ensure that any
inconsistent composition is detected, the inverse behaviour of certain keywords
can be specified explicitly.

storage-class-specifier: // Extension of
static
! static

When composing declarations it is only necessary to supply enough of the
declaration name to identify the declaration unambiguously. The remaining parts
of multiple declarations compose. Unspecified static may compose with either
static or !static. However an attempted composition of static and !static
gives an error.

Implementation

The ! operator in an expression using a generalised parse of a name can be
ambiguous with only one token of look-ahead.

(type) ! static a // Cast of non-static a
(type) ! static a // Cast of complement of static a

Neither interpretation is semantically valid, so the generalised name parsing
excludes decl-specifiers appearing as prefixes.

!const and !volatile were originally supported but withdrawn for reasons
described in Appendix F.1.1.

3.1.3.5 !inline

In C++, the request to inline function may be explicitly provided in the interface or
in the implementation, depending on whether the inline keyword is associated
with the interface or the implementation declaration. FOG merges these
declarations and so the presence or absence of inline in a FOG definition cannot
express the three C++ alternatives. The syntax of inline is therefore extended to
express all three intents explicitly.

function-specifier: // Extension of
inline
! inline
inline / implementation
inline / interface
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no inline

In the absence of any form of inline keyword, FOG must decide whether functions
are to be defined in the interface or implementation file.

class X
{

int f(int a) { return a-1; }
};

Functions are placed in the implementation unless all the following criteria are
satisfied:

The function is declared as above within class braces.

The function body code is simple, on the basis of a complexity estimate formed by
counting the number of accesses and operations and comparing it with a
command line threshold that has a default value of 10.

The function is not virtual.

The function is not static at namespace scope.

inline

The default form of inline is interpreted in a context sensitive fashion in order to
provide compatibility with common C++ coding styles:

class X
{

inline void f1();
};

inline void X::f2() { /* ... */ }

An inline appearing within class braces as in f1 is conditionally inlined within
the interface, whereas a function such as f2 with only an inline outside class
braces is conditionally inlined in the implementation.

inline/interface

Requests that the function be inlined in the interface.

inline/implementation

Requests that the function be inlined in the implementation (and therefore not in
the interface).

!inline

Specifies that the function is not to be inlined in the interface or in the
implementation.

Impact

Parsing of a generalised name accepts a decl-specifier as a suffix and so

name1 inline / interface ( name2 ) ;

could be an expression involving a division and a function call or a more explicitly
positioned inline function declaration. This is a false conflict since inline can
never occur in an expression, so inline followed by / is unconditionally resolved
to an extended form of inline.

3.1.3.6 !virtual

The syntax for virtual is expanded to support its negation and to give an
alternative and less cryptic way of specifying pure-virtual.
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function-specifier: // Extension of
virtual
! virtual
virtual / pure

Impact

The same ambiguity arises and the same resolution is used as for inline in
Section 3.1.3.5.

3.1.4 Syntax Enhancements

In Section 3.1.3, generalisations and very minor enhancements were introduced
to support composition consistently. In this section more significant
enhancements are introduced again in support of composition.

3.1.4.1 Default member initializer

In C++, it is easy for a constructor to leave member variables of simple types
uninitialized. For classes with a non-trivial number of variables or constructors this
can be a maintenance problem.

FOG allows one set of compositions to add member variables and another to add
constructors. There is therefore ample scope for two compositions to aggravate
the problem of uninitialized member variables, so FOG allows a default initializer
to be specified for member variables.

The (C++) syntax for the declaration of global variables and for the definition of
any variable outside a class supports initialization:

simple-declaration:
decl-specifier-seqopt init-declarator-listopt ;

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeropt

initializer:
= initializer-clause
( expression-list )

initializer-clause:
assignment-expression
{ initializer-list ,opt }
{ }

This is incorporated into the more restrictive syntax for definition of member
variables within classes.

member-declaration:
decl-specifier-seqopt member-declarator-listopt ;

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:
declarator pure-specifieropt
declarator constant-initializeropt
declarator initializeropt
identifieropt : constant-expression

constant-initializer:
= constant-expression

The default initialization of member variables may be declared:
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class MyClass
{

bool _satisfies_predicate = false;
int _usages[3] = { 1, 2, 3 };
That _that(*this);

};

Semantics

The default initializer provides an explicit initial value for use in every constructor
that does not provide an initializer. The value is never used in a copy constructor,
since a copy constructor provides an implicit initializer for each member.

C++ does not support direct initialization of array members during construction.
The array initialization must therefore be synthesised by code placed at the start
the constructor body, and so the construction order of array members is not
defined.

Syntax Ambiguity

The constructor form of initializer introduces the function-declaration/constructor-
invocation ambiguity into a class (Section 5.5.3.2).

class A
{

int a(a_type); // member function declaration
int b(not_a_type); // member variable and initialization

};

It is amenable to exactly the same resolution as outside a class. Resolution
favours the declaration perspective and so preserves upward compatibility with
existing C++ code.

The assignment form is clearer but unable to express multi-argument construction
directly. (The result of an explicit constructor call can be used less directly.)

3.1.4.2 gcc indexed array initializer

In order to support composition of arrays usefully, it is necessary to be able to
specify the location of array initializers. The gcc [Stallman98] indexed array
initialization syntax is therefore supported:

initializer-clause:
assignment-expression
[ constant-expression ] assignment-expression
{ initializer-list ,opt }
{ }

Each array initializer may be prefixed by an expression specifying its position.

Implementation

Parsing of this syntax causes no problems in a precise grammar, however an
ambiguity arises in the superset grammar, since a prefix [] is already recognised
to avoid a conflict for delete [] cast-expression. Generalising the solution to the
delete[] conflict, so that [ constant-expression ] is parsed as another form of cast,
accepts the indexed initializer without extra syntax.

abstract_expression:
parenthesis_clause // Like '(' expression.opt ')'

| '[' expression.opt ']'

cast_expression:
unary_expression

| abstract_expression cast_expression
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3.1.4.3 compound-declaration

compound-declaration:
{ declaration-seqopt }

compound-declaration is introduced to support polymorphic use of multiple
declarations as a single declaration, in the same way as multiple statements can
behave as a single statement. However this is a purely lexical grouping; no nested
declarative region is defined. The new region has no name; treating it as a
declarative region would prevent access to names forming part of a declaration.
The analogy is therefore with an anonymous union, whose names are externally
visible, rather than with a function block, whose names are local.

3.1.4.4 using

A C++ using-declaration supports the re-use of the name of a base-class declaration
in a derived class.

class Lock
{ //...
public:

bool is_locked() const;
};

class LockableWidget : public Widget, private Lock
{ // ...
public:

using Lock::is_locked; // Make private base class name public.
};

FOG generalises this concept in a re-using-declaration to support re-use of the name
of any declaration and re-use (extension) of an existing declaration.

class Debug
{ //...
public:

static bool diagnose();
};

class LockableWidget : public Widget, private Lock
{ // ...
public:

// Incorporate Lock::is_locked() as is_locked()
using Lock::is_locked;
// Incorporate Debug::diagnose() as show_conflicts()
using Debug::diagnose show_conflicts;

};

The extended syntax supports:

• signature re-use

• function placement

• built-in functionality extension

The specific syntax for a using-declaration is removed and covered by adding using
to decl-specifier.

using-declaration:
using typenameopt ::opt nested-name-specifier unqualified-id
using :: unqualified-id

decl-specifier: // Extension of
using

This generalization covers the existing syntax as part of the declarations now
contributing to:
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simple-declaration:
decl-specifier-seqopt init-declarator-listopt ;

function-definition:
decl-specifier-seqopt declarator pure-specifieropt ctor-initializeropt function-body
decl-specifier-seqopt declarator pure-specifieropt function-try-block

A long form of the new re-using-declaration

using A::b C::d; // Use signature of A::b to define C::d

is present when

• decl-specifier-seqopt includes using

• decl-specifier-seqopt includes a type-specifier

A short form of the new re-using-declaration,

using A::b; // Use signature of A::b to define b

that subsumes the existing syntax and functionality of using-declaration, is present
when

• decl-specifier-seqopt includes using

• decl-specifier-seqopt includes no type-specifier

Signature re-use

In deep polymorphic, or wide isomorphic object hierarchies, it is common for the
same function signature to recur in many, if not all, classes in the hierarchy. This
incurs a little lexical redundancy, and acts as a barrier to code evolution; a change
to a function signature may involve a very substantial amount of editing. FOG
allows a function signature to be defined once and re-used many times, so that
changes to the function declaration can be made in one place.

class A
{

public void protocol(int a, double b) const { /* ... */ }
};

class B : public A {
{

using B::protocol { /* ... */ } // Short form
};

using A::protocol B::protocol { /* ... */ } // Long form

Both using lines contribute code to the function

public void B::protocol(int a, double b) const;

The short-form creates or extends the entity that must already be unambiguously
visible with the name B::protocol Since A::protocol is visible as
B::protocol, the function B::protocol is therefore created with the same
signature as A::protocol.

The long-form uses the signature of A::protocol (which could be a typedef) to
create or extend the function named B::protocol. Overload resolution of
B::protocol is performed using the signature from A::protocol to select one
precisely matching alternative. There is no overload resolution for A::protocol,
however distinct names can be associated with each overload by using typedefs
to define A::protocol.

With either form, the signature of A::protocol is being re-used, enabling a
change to the signature to be made in one place. However re-used signatures
must also re-use parameter names, since there is no need for them to be
respecified. This is a little inconvenient, since parameter names now have a more
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global import. However there may also be some advantages to the requirement for
consistent parameter names in closely related functions

Function placement and tuning of built-in functionality

The C++ compiler may automatically generate code for

• default constructor

• copy constructor

• assignment operator

• destructor

• dereferencing operator (unary &)

With the exception of the destructor, whose functionality is only extensible, any
attempt to modify the auto-generated code requires manual re-implementation of
the entire functionality. Trivial modifications such as specification of the access,
inlining, virtual or placement in a specific file should be possible.

The extended re-using-declaration syntax supports this, since re-using a function
involves composition with its existing functionality. Therefore within a class
declaration, where @Scope resolves to the class name:

using virtual ~@Scope;

defines the destructor as virtual, without affecting any other declaration that
specifies accessibility.

using !inline ~@Scope;

forces an out-of-line implementation of the destructor avoiding any unwanted
include file dependencies that might result from the default inline version.

using protected operator=(const @Scope&) { _assigns++; }

specifies that the assignment operator is to have protected access and adds a
counter update to the existing (default) functionality.

using @Scope(const @Scope&) : _share_count(1) {}

overrides the initialization of one member in a copy constructor, leaving other
members unaffected and therefore retaining their default member-wise copy,
whereas:

@Scope(const @Scope&) : _share_count(1) {}

specifies an explicit initialization of one member, and a default initialization of all
other members.

Semantics

The re-using-declaration may be elaborated with an access-specifier, decl-specifiers,
parameter-declaration-clause, default arguments, initializers, function-bodys and object-
statement-clauses. These compose with existing declarations as described in
Section 4.4.8.

The long form of re-using-declaration applies functionality from the source
declaration identified in the decl-specifier to the target declaration identified in
(each) init-declarator or declarator. Source and target declarations may be
independently scoped and resolved with respect to the surrounding declarative
region.

The short form of re-using-declaration subsumes the existing using-declaration. It
specifies both source and target declarations as the init-declarator or declarator. For
compatibility with the existing using-declaration, any specified scope must serve to
locate the source declaration. The target declaration is therefore necessarily part
of the surrounding declarative region.
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For both forms, the name provided as the source declaration must be visible within
the surrounding declarative region. decl-specifiers forming part of the source
declaration are copied to the target declaration, except that conflicting decl-
specifiers are discarded in favour of those forming part of the re-using-declaration.

Implementation

When an overloaded signature is re-used, it is not clear which signature is
required. The deprecated ARM C++ access-declaration suffered from this problem
too. In FOG, the problem was originally solved by introducing a nick-naming
capability so that overloads could be given alternate names:

MyClass::MyClass()/overload=default_constructor
MyClass::MyClass(const @Scope&)/overload=copy_constructor
MyClass& MyClass::operator=(const @Scope&)/overload=assign

using default_constructor { /* ... */ }

However it was realised that this was unnecessary as well as clumsy. A more
generalised use of a typedef is better:

auto namespace HandySignatures //4

{
typedef default_constructor();
typedef copy_constructor(const @Scope& thatObject);
typedef @Scope assign(const @Scope& thatObject);

};

supports use as

using HandySignatures::assign MyClass::operator= { /* ... */ }

The typedefs stretch the syntactic legality of C++, but only define what was
previously meaningless. The constructor typedefs lack a type-specifier, and so
there is a potential ambiguity for

typedef a(b());

between

• the constructor typedef of a taking a pointer to function argument

• the redundantly parenthesised function b returning a.

Only the latter is valid in C++. The former is a new alternative interpretation that
must be ignored. The ambiguity does not arise when the missing parameter names
are specified as is necessary for the definition of a constructor signature to be
useful.

typedef a(b (*c));

The typedef approach supports sharing of signatures independent of inheritance.
The nickname approach needed further elaboration to support this.

The parameter names are retained as part of the typedef so that they form part
of the re-used signature.

3.1.4.5 using template

A using keyword may prefix a template-specialization to indicate that the
subsequent declarations re-use and so compose with, rather than replace, the
declarations from the less specialized template.

template-declaration:
exportopt usingopt template < template-parameter-list > declaration

4. class could be used rather than auto namespace. The use of a meta-namespace
just serves to eliminate unnecessary declarations emitted for compilation.
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explicit-specialization:
usingopt template < > declaration

Impact

This usage introduces a parsing lookahead problem with respect to

using template name < args >;

The lookahead is eliminated by accepting any decl-specifier rather than just using
during syntactical analysis and then rejecting the spurious alternatives during
semantic analysis.

3.1.4.6 Object-statement-scopes

Specialized placement of a declaration in a specific file, or accurate resolution of
dependencies may require use of FOG extensions to annotate the declaration.
Adding the additional syntax to support these declarations is rather difficult, see
Appendix F.1.

When composing declarations, it may be necessary to share meta-context
between contributions. Defining meta-variables at class scope to share this
context can lead to unpleasant interactions when similar composition policies or
meta-programs affect more than one function.

Both of these problems are resolved by the introduction of the concept of an
object-statement-scope: a declarative region exclusively for use at meta-compile-
time. Meta-declarations may be placed in this scope, and shared between
contributions to the object. The scope is defined by an object-statements-clause, within
which, annotations can be placed without introducing syntactical conflicts. It is
only necessary to identify one syntax extension that does not conflict with existing
syntax. This is achieved by using :{ and } to delimit the region.

init-declarator:
declarator initializeropt object-statements-clauseopt

member-declarator:
declarator pure-specifieropt object-statements-clauseopt
declarator constant-initializeropt object-statements-clauseopt
identifieropt : constant-expression object-statements-clauseopt

object-statements-clause:
: { object-statement-seqopt }

object-statement-seq:
object-statement
object-statement-seq object-statement

object-statement:
;
initializer ;
function-used-block
file-dependency-declaration // Appendix F.4.5
file-placement-declaration // Appendix F.4.3
filespace-declaration // Appendix F.4.4
meta-control-declaration // Section 3.1.5.8
auto meta-control-declaration // Section 3.1.5.8
auto meta-expression-statement // Section 3.1.5.10
auto meta-function-definition // Section 3.1.5.6
auto meta-variable-declaration // Section 3.1.5.5
derived-clause object-statement // Section 3.1.4.8
derived-clause : { object-statement-seqopt } // Section 3.1.4.8

The rule involving an initializer is only semantically valid for a variable-statement-
scope (an object-statement-scope associated with a variable).

The rule involving a function-used-block is only semantically valid for a function-
statement-scope (an object-statement-scope associated with a function).

Section 4.3.2 describes the revised search order for meta-name resolution within
the object, then the object scope and then class scopes.
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Impact

The syntax is unambiguous because colon is only followed by { in C++ in the
limited context of a label-statement of the form

identifier : { statement-seqopt }

The usage as an object-statements-clause has a more substantial prefix.

Care is required to avoid a shift-reduce conflict with only one token of lookahead.

3.1.4.7 Function-statement-scopes

Object-statement-scopes or more specifically function-statement-scopes are
essential for annotating the contributions to a composed function. Each
contribution may have its own constructor initializers and function body re-
interpreted in derived classes in accordance with a derivation rule.

The contribution may be further annotated to define its include ‘file’ dependencies,
its positioning relative to other contributions and a position in the overall function
structure.

function-used-block:
ctor-initializer ;
ctor-initializeropt function-body
function-try-block
using file-id-list function-used-block // Appendix F.4.5
segment function-used-block

Note that a function-statement-scope is a syntactic extension of init-declarator and
consequently requires a trailing semicolon to form a simple-declaration.
(Implementation as a function-definition leads to challenging conflicts.)

friend ostream& operator<<(ostream& s, const MyClass& myClass)
:{

using ostream { /* ... */ return s; }
};

Usage of commas to separate multiple declarations with object-statements-clauses
should be considered extremely bad style, however an outright prohibition
appears to add a slight complexity rather than a simplification.

Segments

Program segments identify five distinct domains of composition. Code
contributions are composed independently for each segment, but emitted as one
contiguous code body. The segments are emitted in the order listed for:

segment:
entry
pre
body
post
exit

The body is the default segment in which code is normally placed.

entry and exit segments bracket the rest of the code. The intention is that the
entry segment contain any required declarations and the exit segment a return
statement.

pre and post are intended for passive code that wraps pre-condition and post-
condition checks or diagnostics around the active part of the function.

These default policies are informal. Composition of function bodies and the
redefinition of function structure is described in Section 4.4.8.
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3.1.4.8 Derivation Rules

A derivation rule determines how a potential declaration is interpreted so as to
automatically generate derived declarations. A declaration is conventionally
supplied for a specific scope, which is referred to as the root scope of that
potential declaration. Derivation rules consider the inheritance hierarchy at and
below that root scope, evaluating a predicate expression in the meta-name-space
of each class to determine whether the derivation rule is enabled.

derived-clause:
derived ( meta-conditional-expression )

The following pair of declarations

protected inline static int Class::static_inheritance_depth()
:{

derived (is_root())
{ return 0; }

derived (!is_root())
{ return @{Super}::static_inheritance_depth() + 1; }

};

public virtual int Class::dynamic_inheritance_depth() const
:{

derived (true)
{ return static_inheritance_depth(); }

};

define a pair of functions that are implemented for Class and all its derived
classes so that invocation of dynamic_inheritance_depth() on p, a pointer to a
Class object:

Class& p = ...
... = p.dynamic_inheritance_depth();

returns the actual inheritance depth of p. The implementation of the static inline
function static_inheritance_depth() for the root scope, where the is_root()
predicate is satisfied, provides a function body that just returns zero. The
implementation for derived classes, where the !is_root() predicate is satisfied,
returns the super-class depth +1. The true predicate is always satisfied, and so
dynamic_inheritance_depth() is a virtual function for the root scope and all
derived classes, which ensures that the correct depth is returned.

The :{ } object-statement-scope contains a number of object-statements. The
meta-function invoked within the derivation predicate is therefore resolved with
respect to the prevailing meta-object to locate the built-in
object_statement::is_root(). As will be seen in subsequent examples a
Scope. prefix may be used to resolve the meta-function with respect to the scope.

The predicate meta-conditional-expression may involve user-defined or built-in meta-
functions and meta-variables. Two groups of built-in functions are provided
primarily for use as derivation rule predicates. One group defines structural
predicates upon the inheritance tree. The second group defines abstract
predicates dependent upon the position of pure virtual functions in the inheritance
hierarchy.

Structural Predicates

true

Specifies that the declaration is to be applied throughout the inheritance
hierarchy: in the root scope and all its derived classes.

object_statement::is_root()

Specifies that the declaration is to be applied to the root scope. This is the default
derivation rule and ensures upward compatibility with C++.
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object_statement::is_leaf()
scope::is_leaf()

Specifies that the declaration is to be applied to all classes in the inheritance
hierarchy that have no derived classes. In the degenerate case, this may be just
the root scope.

Leaf-ness is a class (or struct or union) property and so the information is provided
by scope::is_leaf(). object_statement::is_leaf() is provided for
convenience; it just delegates the inquiry to the scope.

Leaf-ness is independently determined from the types declared during each meta-
compilation session. There is no overall global view across meta-compilation
sessions, so if further derivation occurs unknown to one session, leaf-based
decisions may be inaccurate in another.

More complicated conditions can be built-up using expression operators:

derived(!is_root() && !is_leaf())

selects all intermediate nodes in an inheritance hierarchy.

Abstract Predicates

Abstract predicates support efficient and appropriate generation of code
depending on the presence of pure virtual functions. The !is_pure() predicate
may be used to avoid generation of code that illegally attempts to new an abstract
class. The is_boundary() predicate may place code just once at the inheritance
boundary between abstract and concrete classes.

scope::is_pure()

Specifies that the declaration is to be applied to all classes in the inheritance
hierarchy that have at least one pure virtual function.

scope::is_boundary()

Specifies that the declaration is to be applied to the least derived class in the
inheritance hierarchy derived from the root scope for which there are no pure
virtual functions.

function::is_boundary()

Specifies that the declaration is to be applied to the least derived class in the
inheritance hierarchy derived from the root scope for which the virtual function is
not pure.

Semantics

In the absence of a derivation rule, a declaration contributes to its root scope.

With a derivation rule, the declaration name is provisionally present in the root
scope and all derived scopes. Once it can be determined that the derivation
predicate cannot be satisfied, the declaration is disabled, and consequently is not
emitted.

Some predicates, such as true or is_root(), can be evaluated immediately.

Other predicates, such as is_leaf() or Scope.is_pure() can be affected by
further declarations or meta-programming and so cannot be evaluated promptly.
Resolution is therefore automatically deferred until the code emission phase of
meta-compilation. Deferred evaluation of user-defined predicates may be
enforced by use of an @ operator to delay evaluation until the body is resolved
during code emission.
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The derivation predicate gates the body of a declaration

• function-body and return type of a function

• ctor-initializers of a constructor

• initializer and type of a variable

• value of a typedef

The body is not evaluated until the predicate has been resolved, thereby avoiding
problems that might occur through use of invalid manipulations, such as a base-
class (@Super) of a root scope.

Deferred evaluation of a body is only possible if the body is not used. References
to the body must therefore also use the @ operator to defer evaluation. Direct use
of the body such as the use of a typedef to define a function signature are an error
if the body is not immediately resolvable.

Implementation

The presence of derivation rules dependent upon the abstract context of a class
leads to a potential ambiguity:

class Root
{

virtual void f1() = 0
:{

derived(@is_boundary())
{}

};
};

class Branch : public Root {};

class Leaf : public Branch {};

Which, if any, of Root::f1, Branch::f1 and Leaf::f1 should be implemented to
define the boundary? The Root class has an explicit pure virtual, is clearly
abstract and so cannot constitute a boundary. Implementation of none or one of
Branch::f1 and Leaf::f1 gives a consistent behaviour.

FOG implements Branch::f1 as a result of compiling classes in a least-derived
order, and of making the presumption that an ambiguously pure/concrete class is
concrete while evaluating the derivation predicates of its members. This ensures
that practical problems yield a stable solution. Since the predicates may be
arbitrary expressions, a predicate may introduce a contradiction for which an error
message is produced.

Historical Note

Derivation rules were introduced in FOG before meta-programming. They offer
little that cannot be achieved by meta-programming, but do so with a much more
compact and manageable syntax for many common cases.

3.1.5 Meta-Programming

Meta-programming extends C++ run-time behaviour by providing very similar
behaviour at (meta-)compile-time.

In order to introduce additional functionality without new reserved words, the
existing syntax is heavily overloaded, which has the advantage of requiring very
little new syntax to be learnt, but incurs the risk that the rather different behaviour
may be overlooked.

The auto keyword is used to introduce meta-functionality. Its existing usage is
only valid as a decl-specifier within a function and so all other usage of auto is
retracted, at no cost to semantically valid programs.
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storage-class-specifier: // Part of
auto

The apparent loss of support for auto for local variables in functions is resolved
by broadening the replacement meta-expression-statement syntax to cover the old
usage and then recognising the old style usage during semantic analysis.

Integration

FOG introduces a number of new distinct syntaxes and generalises some existing
syntaxes. In order to see how these integrate with the C++ grammar, the three
contexts in which the C++ grammar supports a diverse range of syntaxes are
presented.

namespace statements

Contributions to namespaces occur as a sequence of declarations within the top-
level (unnamed global namespace), within namespaces, and within external
linkages:

declaration-seq:
declaration
declaration-seq declaration

translation-unit:
declaration-seqopt

namespace-body:
declaration-seqopt

linkage-specification:
extern string-literal { declaration-seqopt }
extern string-literal declaration

member statements

Contributions to classes occur as a sequence of member-declaration

member-specification:
member-declaration member-specificationopt
access-specifier : member-specificationopt

class-specifier:
class-head { member-specificationopt }

function statements

Contributions to function bodies occur as a sequence of statement

function-body:
compound-statement

compound-statement:
{ statement-seqopt }

statement-seq:
statement
statement-seq statement

C++ contributions therefore arise as a declaration, member-declaration or statement.
FOG adds a fourth context in which object-statements contribute to an object-statement-
clause in order to qualify the behaviour of a function, typedef or variable (see
Section 3.1.4.6). A fifth generic context arises when almost arbitrary syntax is
parsed as a tree-statement to form a tree-literal (see Section 3.1.1.6).

Meta-functionality extends each of the three existing contexts and contributes to
the two new contexts. The capabilities of each context are difficult to grasp from
the grammar and so the contributions to each context are tabulated in Table 3.1.
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The first column identifies the nature of a contribution and the five subsequent
columns show how that contribution applies to each context.

a. access-declaration is deprecated and therefore now appears as just qualified-id in
the grammar.

b. access-specifier : is syntactically a member-declaration since it is interchangeable in
its only usage which is as a sequence of member-declarations in a member-specifi-
cation.

Non-terminal declaration
member-

declaration
statement

object
statement

tree
statement

Compound Statements
compound-declaration FOG FOG
compound-statement C++
compound-tree-statement FOG

Control Statements and Declarations
control-statement
try-block

C++ FOG

meta-control-declaration FOG FOG auto FOG auto
Expression Statements

expression-statement C++ FOG
meta-expression-statement FOG FOG auto FOG auto

Declaration Statements
function-definition
template-declaration

C++ C++ FOG

using-declaration C++ C++ C++ FOG
simple-declaration
‘simple-’member-declaration

C++ C++ C++ FOG

=assignment-expression C++ FOG C++ FOG
={ ... } C++ FOG C++ FOG
(expression-list) C++ FOG C++ FOG
=constant-expression (C++) C++ (C++) (FOG)
bit-field FOG C++ FOG

meta-class-declaration
meta-function-definition
meta-variable-declaration

FOG FOG FOG FOG

Others
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition

C++ FOG FOG

asm-definition
namespace-alias-definition
using-directive

C++ FOG C++ FOG

access-declarationa

access-specifier :
FOG C++b FOG

file-dependency-declaration
file-placement-declaration
filespace-declaration

FOG FOG FOG FOG

include-declaration
namespace-declaration

FOG FOG FOG

syntax-macro-definition FOG FOG
‘most-other-things’ FOG

Table 3.1 Statement and Declaration Grammar
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The contributions to simple-declaration and its member-declaration counterpart are
further split into additional rows that reflect the alternate forms of initialization:
scalar initializer (run-time evaluation), array initializer, constructor, scalar
initializer (compile-time evaluation) and bit-field.

Boxes marked

• C++ identify a contribution in the standard C++ grammar

• FOG identify FOG extensions

• auto identify FOG extensions disambiguated by an auto keyword

• () identify degenerate grammar covered by another contribution

Thus a standard C++ member-declaration covers contributions from a function-
definition, template-declaration, using-declaration, member-declaration (without initializer,
with a constant-expression initializer, or with a bit-field), access-declaration and access-
specifier.

FOG removes the syntactic distinction between declaration and member-declaration,
and adds meta-functionality, resulting in the many further contributions shown by
the boxes annotated as FOG.

The syntax of declarations is extended by the addition of meta-expression-statements
and meta-control-declarations so that conditional and iterated compilation may
embrace declarations. The existing control-statement syntax is re-used as is, with the
result that declaration/expression ambiguities now occur at the declaration as well
as statement level; extension of the existing disambiguation rule (§6.8) to favour
declarations preserves compatibility.

gotos and associated statement labels are not re-used in meta-control-declarations,
primarily because the label syntax has a challenging ambiguity with respect to an
anonymous bit-field.

Since meta-control-declarations re-use control-statement syntax, they cannot be added
directly to statement syntax. Boxes labelled auto therefore indicate where an auto
prefix is necessary to disambiguate between a standard C++ construct and
extended FOG meta-construct.

Meta-variables and meta-functions are added by overloading the auto keyword to
mean “meta”. Since the auto keyword has no meaning outside of functions this
change merely gives meaning to constructs that are meaningless in C++.

In lexical form, the FOG extensions are:

statement: // Extension of
auto control-statement
auto meta-expression-statement

control-statement: // New non-terminal with old functionality
labeled-statement
selection-statement
iteration-statement
jump-statement

declaration: // Extension of
namespace-declaration // Section 3.1.3.1
accessibility-specifier
compound-declaration // Section 3.1.4.3
meta-control-declaration // Section 3.1.5.8
auto meta-control-declaration // Section 3.1.5.8
expression-statement // Section 3.1.5.10
auto meta-expression-statement // Section 3.1.5.10
auto meta-class-declaration // Section 3.1.5.2
auto meta-function-definition // Section 3.1.5.6
auto meta-variable-declaration // Section 3.1.5.5
syntax-macro-definition // Section 4.7
include-declaration // Appendix F.4.6
file-dependency-declaration // Appendix F.4.5
file-placement-declaration // Appendix F.4.3
filespace-declaration // Appendix F.4.4
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The syntactic difference between declaration and member-declaration is eliminated and
consequently the member-declarator syntax must be added to init-declarator and an
accessibility-specifier to declaration. The changes are syntactic only; C++ declarations
that are not syntactically valid as member-declarations, and conversely, C++ member-
declarations that are not syntactically valid as declarations, are semantically invalid
in FOG. Accessibility and bit-fields may not be specified for namespaces and
explicit-instantiations or using-directives may not be specified within classes.

init-declarator:
declarator pure-specifieropt object-statements-clauseopt
declarator initializeropt object-statements-clauseopt
identifieropt : constant-expression object-statements-clauseopt

class-specifier:
class-head { member-specificationopt declaration-seqopt }

accessibility-specifier:
access-specifier :

member-specification:

member-declaration:

member-declarator-list:

member-declarator:

3.1.5.1 Meta-names

The built-in types have meta-classes and the auto meta-class is the root of all
meta-classes. We therefore define names that incorporate these alternative
scopes, including their meta-constructors and meta-destructors.

built-in-type-id: // e.g. unsigned int
built-in-type-specifier
built-in-type-id built-in-type-specifier

meta-id:
id
meta-type
auto

meta-nested-id:
meta-id
~ meta-id
meta-id :: meta-nested-id

meta-scoped-id: // e.g. ::auto::symbol_table
::opt meta-nested-id

3.1.5.2 Meta-classes

Section 4.5 describes how every user-defined and built-in type has a meta-class
with the same name. The meta-class is discarded after meta-compilation
completes, so that the meta-class forms no part of the emitted code. The meta-
class defines additional functionality for use at compile-time.

Meta-classes for classes that have no declarations may not be needed at compile-
time and so such classes may not need emission. In order to forward reference
such a meta-class, or to diagnose any inadvertent use of compile-time
declarations, an auto may prefix a very similar syntax to a class-specifier. This
asserts that the meta-class alone is required, avoiding an empty class declaration
cluttering the generated output.

meta-class-id:
meta-id
meta-id :: meta-class-id

meta-class-key:
class-key
namespace
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meta-class-specifier:
meta-class-key meta-class-id
meta-class-key meta-class-id base-specifier-clauseopt { declaration-seqopt }

meta-class-declaration:
meta-class-specifier ;

declaration: // Extension of
auto meta-class-declaration

access-specifiers are ignored for meta-declarations in a meta-class. All meta-
declarations are therefore public. The presumption is that meta-functionality
contributes to a tightly coupled pool of collaborating code, where access
restrictions would be an inconvenience rather than an asset.

Impact

Re-use of reserved-words such as class as meta-type-names creates some
inconvenient ambiguities with respect to meta-variable-declaration and meta-function-
definitions. Most of these can be resolved by careful implementation to share
common parsed prefixes. It is not obvious how to solve the problem of a global
name as a meta-class-id, for which the leading :: in

auto class ::MyClass { /* ... */ };

signifies the nested meta-class class::MyClass of the class meta-type.

Introducing parentheses:

auto class (::MyClass) { /* ... */ };

satisfies a generalised syntax for the meta-constructor of the class meta-type.
However this cannot be unified because the body of a meta-constructor comprises
statements whereas the body of a meta-class comprises declarations.

Therefore FOG does not support explicitly global scoping in meta-class-specifiers. An
inelegant workaround is:

auto identifier globalScopeId = "";
auto class ${globalScopeId}::MyClass { /* ... */ };

3.1.5.3 Base Meta-classes

Every user-defined and built-in type has a corresponding meta-class, whose
meta-inheritance corresponds to the compile-time inheritance. The base meta-
classes are the meta-classes of the base-classes. The meta-inheritance is
augmented so that every meta-class without a base meta-class meta-inherits from
the built-in root meta-class named auto. Additional meta-inheritance may be
specified by using the auto keyword as an access-specifier in a base-specifier.

base-specifier:
::opt nested-name-specifieropt class-name
virtual access-specifieropt ::opt nested-name-specifieropt class-name
access-specifier virtualopt ::opt nested-name-specifieropt class-name
scoped-id
built-in-type-id
access-specifier base-specifier
virtual base-specifier
! virtual base-specifier
auto base-specifier

The rewritten recursion removes the syntactic limitations on multiple access-
specifiers. It is therefore a semantic error for more than one of auto and the three
distinct access-specifiers or for both virtual and !virtual to be supplied.

The virtual keyword is ignored for base meta-classes whose behaviour is always
virtual; only one copy of a meta-class is inherited.
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3.1.5.4 Meta-types

The arguments and returns of meta-functions and the values of meta-variables are
defined by meta-types. All meta-types are built-in and there is no facility for user-
defined meta-types. (User-defined classes are not meta-types, although
extending meta-class definitions to support user-defined assignment might be a
logical extension.) The defined set is

meta-type:
meta-type-name
built-in-type-id
meta-class-key
enum
typedef
typename
using

The direct mention of typedef, and indirect mention of class and signed re-
instates names that duplicate reserved words and which were consequently
tokenized as a reserved-word rather than a meta-type-name (Section 3.1.1.4). All the
built-in C++ numeric types are available for use as meta-types for compile-time
calculations. (The current FOG implementation maps the 20 distinct C++ types to
one of: bool, unsigned, signed or double.)

meta-type-name:
intrinsic-meta-type-name
actual-meta-type-name
potential-meta-type-name

The intrinsic meta-types define concepts that do not depend upon their program
context.

intrinsic-meta-type-name: one of
array_modifier assignment_expression
character class_key
constant_expression cv_qualifier
decl_specifier declaration
expression function_modifier
handler identifier
initializer_clause iterator
keyword meta_type
modifier name
number pointer_modifier
punctuation reference_modifier
reserved scoped_modifier
statement string
template_argument token
tree_literal using_directive

Potential meta-types define concepts that have limited meaning until associated
with some parent context.

potential-meta-type-name: one of
base_specifier built_in_type_specifier
class_specifier elaborated_type_specifier
enum_specifier file_dependency_specifier
file_placement_specifier enumerator_definition
exception_specification filespace_specifier
function_specifier linkage_specification
meta_class_specifier meta_function_specifier
meta_parameter_specifier meta_variable_specifier
namespace_definition namespace_alias_definition
object_specifier object_statement
parameter_specifier scope_specifier
specifier template_parameter_specifier
templated_parameter_specifier type_parameter_specifier
type_specifier typedef_specifier
using_declaration value_parameter_specifier
variable_specifier

Actual meta-types define concepts that have been associated with a parent
context, and in many cases correspond to emitted declarations.
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actual-meta-type-name: one of // 5

base built_in
class entity
enum enumerator
exception filespace
function linkage
meta_class meta_function
meta_parameter meta_variable
namespace namespace_alias
object parameter
scope struct
template_parameter type
typedef typename
union using
variable

The semantics of these types is defined in Section 4.1.2.

Although meta-types are built-in, their names are not reserved words. There is
therefore no compatibility problem when migrating C++ code that makes use of
some of the meta-type names for its own identifiers. It is just a little confusing to
read:

void f()
{

bool moveable;
typedef bool variable;
variable t = moveable; // Assign value to run-time type
auto variable t = moveable; // Assign name to compile-time meta-type

}

The values stored in meta-variables may be scalars or trees exploiting the
polymorphic characteristics available at compile that are described in
Section 4.1.5.

3.1.5.5 Meta-variables

Meta-variables support storage of values at compile-time. Their definition differs
from conventional variables through the use of an auto prefix, the requirement for
an initializer, and the acceptance of almost any syntactically valid construct as
that initializer.

meta-variable-declaration:
staticopt constopt meta-type meta-scoped-id exposed-treeopt = tree-statement
staticopt constopt meta-type meta-scoped-id exposed-treeopt object-statements-clause
staticopt constopt meta-type ( meta-scoped-id ) exposed-treeopt = tree-statement
staticopt constopt meta-type ( meta-scoped-id ) exposed-treeopt object-statements-clause

exposed-tree:
[ ]

declaration: // Extension of
auto meta-variable-declaration

When []’s are omitted, the syntax defines a scalar meta-variable with a single
initializer. The single initializer may be a tree of initializers with compound-tree-
statements used as tree-statements to create the tree structure. All leaves in the
initializer tree must satisfy the syntax of the meta-type. When subsequently
assigned to an iterator, the iteration domain comprises the one root element.

When []’s are present, the syntax similarly defines a meta-variable but from a
compound initializer. When subsequently assigned to an iterator, the iteration
domain comprises the first generation of children, thereby treating the tree as an
array.

The semantics of the composed list and tree types are discussed in Section 4.1.5.

5. Some meta-type names are also reserved words. The usage as a meta-type name
augments usage as a reserved word.
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static meta-variables have a single value shared by all derived meta-classes.

!static meta-variables have distinct copies for each derived class.

const meta-variables may have only a single unchanging value. Assignment or
redeclaration is illegal.

non-const meta-variables may change value either by assignment or by
composition with a further declaration.

Meta-variables are non-const and !static by default.

Impact

The meta-expression-statement and meta-variable-declaration syntaxes exhibit
expression/declaration ambiguities. The existing disambiguation rule is extended
to resolve an ambiguity in favour of the meta-declaration.

Members of the meta-classes of the built-in types and members of globally scoped
meta-classes can be difficult to specify:

auto int int::a = 0;
auto int ::MyClass::a = 0;

In the first case, the disambiguation rule for built-in types maximises the length of
built-in type specifiers, treats int int as a single type and so the example is an
assignment expression.

In the second case, extrapolation from the §7.1-2 disambiguation rule, that
maximises the length of a type-specifier-seq, maximises the length of the alternating
names and scopes and so once again the example is an assignment to the
semantically illegal nested class of int.

Parentheses must be used to define valid declarations.

auto int (int::a) = 0;
auto int (::MyClass::a) = 0;

Each of these examples is now syntactically valid as both a meta-expression and
a meta-declaration, so the disambiguation rule resolves in favour of the required
meta-declaration.

There is no ambiguity with respect to meta-constructor declarations, since there
are no pure virtual meta-functions and meta-constructors have no parameters.

3.1.5.6 Meta-functions

Meta-functions provide code for execution during the meta-compilation process.

declaration: // Extension of
auto meta-function-definition

meta-function-definition: // Part of
staticopt meta-type meta-scoped-id ( meta-parameter-listopt ) exposed-treeopt

compound-tree-statement
staticopt meta-type meta-scoped-id ( meta-parameter-listopt ) exposed-treeopt

object-statements-clause

meta-parameter-list:
meta-parameter
meta-parameter-list , meta-parameter

meta-parameter:
meta-type identifier exposed-treeopt
meta-type identifier exposed-treeopt = tree-argument

static meta-functions have a single copy shared by all derived classes.

!static meta-functions have distinct copies for each derived class.

The distinction between the two is relatively subtle given that a single instance
always exists and so there is always a meta-object available. The non-static
meta-function operates in the derived scope and so any use of $Dynamic returns
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the derived scope, and any access to a meta-variable is made with respect to the
derived scope.

The syntax is very similar to a conventional function declaration, except for the use
of the much simpler and restrictive meta-type system. Default parameter values
are supported, but not overloading or exception specifications.

The lack of support for overloading was once necessary because resolution of the
meta-function was necessary to identify the syntax with which each argument was
parsed. The evolution to a context free grammar, as described in Chapter 5,
removes this constraint. Overloading could now be supported. It is just a matter
of defining overload resolution rules that are in keeping with existing C++ overload
resolution policies, but which are also appropriate for the dynamic rather than
static type information available during meta-compilation.

An alternative form of definition and invocation is provided by the syntax-macro
defined in Section 4.7.

3.1.5.7 Meta-constructor and Meta-destructor

Meta-constructors and meta-destructors provide for relatively independent meta-
programs. They are invoked automatically during the meta-construction and meta-
destruction compilation phases. They therefore have no parameters.

meta-nested-constructor-id:
meta-id
meta-id :: meta-nested-constructor-id

meta-scoped-constructor-id:
::opt meta-nested-constructor-id

meta-nested-destructor-id:
~ meta-id
meta-id :: meta-nested-destructor-id

meta-scoped-destructor-id:
::opt meta-nested-destructor-id

meta-function-definition: // Part of
meta-scoped-constructor-id ( ) compound-tree-statement
meta-scoped-constructor-id ( ) object-statements-clause
meta-scoped-destructor-id ( ) compound-tree-statement
meta-scoped-destructor-id ( ) object-statements-clause

3.1.5.8 Meta-control-statements and meta-control-declarations

Meta-statements control compilation. The control part of a meta-control-statement or
meta-control-declaration is evaluated, as the source text is analysed or a meta-
program executed, to affect the interpretation of the child statement or declaration.

Within a statement-seq, the conventional program control statements retain their run-
time meaning. Additional meta-programming control applies when an auto prefix
is used.

statement: // Extension of
control-statement
auto control-statement

control-statement:
labeled-statement
selection-statement
iteration-statement
jump-statement

Within a declaration-seq, C++ provides no program control and so the existing
statement syntax is re-used with an optional auto prefix to define a meta-control-
declaration.

declaration: // Extension of
meta-control-declaration
auto meta-control-declaration
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meta-control-declaration:
case constant-expression : declaration
default : declaration
do declaration while ( expression ) ;
for ( for-init-statement conditionopt ; expressionopt ) declaration
if ( condition ) declaration
if ( condition ) declaration else declaration
switch ( expression ) declaration
while ( condition ) declaration
jump-statement

The meta-control-declaration syntax repeats nearly all the program control syntax of
statement replacing child statements by child declarations. The goto form of labeled-
statement is omitted to avoid introduction of a syntax ambiguity with respect to an
anonymous bit-field. goto is therefore not supported for meta-programming.

A return meta-statement has no meaning, since the semantics of meta-function
execution involve a return of the entire meta-function body as a tree for
interpretation in the calling context (Section 4.3).

Impact

Interspersing compile-time and run-time control apparently introduces more
ambiguities:

do
{

if (...)
{

auto do
{

auto if (... ) {}
} while (...);

}
else {...}

} while (...);

How do the ifs, elses, dos and whiles pair up?

The meta-syntax is integrated with the language, and statements nest. The pairing
is therefore exactly the same as would be the case with the auto keywords
removed and all meta-statements changed to statements. The dangling else
ambiguity is resolved as always to the nearest if, or auto if.

It is unnecessary and highly undesirable to introduce an auto prefix for else or
the while of do...while. This would permit the meta-programming control flow
to interleave programming control flow. Although this is permitted by the C
preprocessor, it leads to difficult to understand code. The following example
demonstrates how preprocessor directives can be used in a very unstructured
fashion.

if
{

a();
#if B

}
else
{

#endif
b();

#if !B
}
else
{

#endif
c();

}
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The distinct preprocessor syntax makes the example comprehensible. If this were
permitted in FOG, the use of almost identical syntax for meta-statements and
statements would render interleaved code unintelligible.

There is also a pragmatic reason to avoid prefixing else with auto; 2 tokens of
lookahead are required to resolve a dangling auto else ambiguity.

The declarations in selection and iteration meta-statements have a data-dependent
interpretation. These productions must therefore be parsed with the appropriate
number of side-effects. Section 4.2.1 describes how this may be achieved either
by using a simple lookahead parser to cache the unparsed tokens for deferred
parsing under control of the parent statement. Alternatively, AST nodes may be
constructed directly, but without any resolution of tree-literals. Resolution of tree-
literals is initiated by the parent statement. The earlier multi-pass FOG
implementation was context-dependent and took the former approach. The
superset grammar is context-free and takes the latter.

3.1.5.9 Meta-typedef

A typedef defines a more convenient name for a run-time type during compilation.
That name has no meaning at run-time.

A meta-typedef could therefore define a more convenient name for a compile-time
type during (meta-)compilation. That name also has no meaning at run-time.

meta-typedefs are not currently implemented in FOG. There is no obvious reason
why they should not be. Arguably, the typedefs in HandySignatures on page 54
are meta-typedefs.

3.1.5.10 Meta-expression-statement

A meta-expression-statement takes two forms, each of which must be preceded by an
auto prefix to distinguish from the very similar syntax of an expression-statement in
contexts where an ambiguity could arise: function bodes and tree-literals. In other
contexts (declarations) an auto prefix is optional.

The first form performs some operation as a side effect:

auto a++;
auto f();

The second form updates a meta-variable

auto a = 5;
auto listVariable += { "a", a * b, g[] };

meta-primary-expression:
literal
this
meta-scoped-id
meta-type meta-nested-id
( tree-argument-listopt )

meta-postfix-expression:
meta-primary-expression
meta-postfix-expression ( tree-argument-listopt )
meta-postfix-expression [ expressionopt ]
meta-postfix-expression . declarator-id
meta-postfix-expression -> declarator-id
meta-postfix-expression ++
meta-postfix-expression --
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meta-unary-expression:
meta-postfix-expression
++ meta-unary-expression
-- meta-unary-expression
* meta-unary-expression
+ meta-unary-expression
- meta-unary-expression
! meta-unary-expression
~ meta-unary-expression
sizeof unary-expression

meta-multiplicative-expression:
meta-unary-expression
meta-multiplicative-expression * meta-unary-expression
meta-multiplicative-expression / meta-unary-expression
meta-multiplicative-expression % meta-unary-expression

meta-additive-expression:
meta-multiplicative-expression
meta-additive-expression + meta-multiplicative-expression
meta-additive-expression - meta-multiplicative-expression

meta-shift-expression:
meta-additive-expression
meta-shift-expression << meta-additive-expression
meta-shift-expression >> meta-additive-expression

meta-relational-expression:
meta-shift-expression
meta-relational-expression < meta-shift-expression
meta-relational-expression > meta-shift-expression
meta-relational-expression <= meta-shift-expression
meta-relational-expression >= meta-shift-expression

meta-equality-expression:
meta-relational-expression
meta-equality-expression == meta-relational-expression
meta-equality-expression != meta-relational-expression

meta-and-expression:
meta-equality-expression
meta-and-expression & meta-equality-expression

meta-exclusive-or-expression:
meta-and-expression
meta-exclusive-or-expression ^ meta-and-expression

meta-inclusive-or-expression:
meta-exclusive-or-expression
meta-inclusive-or-expression | meta-exclusive-or-expression

meta-logical-and-expression:
meta-inclusive-or-expression
meta-logical-and-expression && meta-inclusive-or-expression

meta-logical-or-expression:
meta-logical-and-expression
meta-logical-or-expression || meta-logical-and-expression

meta-conditional-expression:
meta-logical-or-expression
meta-logical-or-expression ? meta-conditional-expression : meta-conditional-expression

meta-expression-statement:
meta-conditional-expression ;
meta-logical-or-expression assignment-operator tree-statement

The expression syntax is repeated so that meta-primary-expression resolves meta-scoped-
id in the meta-name-space, whereas primary-expression resolves declarator-id in the
conventional name-space. The semantics of meta-assignment differ and some
inappropriate operators are omitted. A conventional assignment is right
associative. Therefore:

a = b = c = d;

is equivalent to:

a = (b = (c = d));
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A meta-assignment does not associate. The entire right-hand side is analyzed as
a tree-statement and is assigned to the left-hand side as a literal syntactic element:

auto a = b = c = d;

assigns b = c = d to a. Of these names, only a is resolved in the meta-name-
space. b, c and d are not resolved in any namespace, since they form part of a
literal. Eventually when the value of a is used, the name-space in which to resolve
b, c and d may become clear.

$a; // b = c = d;
// b, c, d in normal name-space.

auto $a; // auto b = c = d;
// b resolved in meta-name-space
// c and d still literals

The generality required to parse the tree-statement necessitates a simplification of
meta-conditional-expression to exclude assignments and comma-separated lists of
meta-expressions.

The meta-expression grammar has the following further incidental differences:

• no casts

• no typeid

• no new

• no delete

• no unary &

• no .* or ->*

Removing explicit casts simplifies the implementation. The remaining constructs
are inappropriate for the current language definition.

Impact

The meta-expression-statement and meta-variable-declaration syntaxes exhibit
expression/declaration ambiguities. The existing disambiguation rule (§6.8) is
extended to resolve an ambiguity in favour of the meta-declaration.

The tree-statement is initially analyzed without knowledge of the expected syntactic
type. When assigned to a meta-variable, used as a meta-parameter or returned
from a meta-function, a further analysis checks that the value is compatible with
the required meta-type. The program is ill-formed if it is incompatible.

void f()
{

int x;
int y;
y = x; // Ok expression
auto class_specifier x = class X {}; // Ok class-specifier init
auto class_specifier y = class Y {}; // Ok class-specifier init
auto y = class X {}; // Ok class-specifier assign
auto y = $x; // Ok class-specifier assign
auto y = x; // Error x is integer
auto y = class X {}; // Ok class-specifier assign
y = $x; // Error not expression
$y z; // Ok z of local class
$y x; // Error redeclaration of x
$y = x; // Error assign int to class
$y = $x; // Error assign class to class

}

A meta-expression-statement replaces and must therefore cover the syntax for a local
function variable with an auto prefix. This requires the practical implementation of
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the above grammar to add unary & to support local reference variables, and accept
cv-qualifiers following * to support local pointer variables.

3.2 Built-In Functionality

The built-in functionality is described at length in Appendix E, and so only a very
brief summary is provided here.

3.2.1 Built-in Root Meta-class

auto is the root meta-class for all other meta-classes (including those for
namespaces and built-in types). It has no functionality, but user-defined
functionality can be added and thereby affect all classes.

3.2.2 Built-in Meta-variables

Meta-type-specific meta-variables support access to declarations.

3.2.3 Built-in Meta-functions

Meta-type-specific meta-functions support access to declarations.

3.2.4 std meta-namespace

The std meta-namespace is used as a repository for useful language support
meta-functions.

static bool std::ambiguous(expression aName)
static bool std::defined(expression aName)
static token std::find(expression aName) []

interrogate the meta-name-space to determine whether a reference to aName is
ambiguous, defined, or to return a list of all definitions.

static void std::diagnostic(string aString)
static void std::error(string aString)
static void std::warning(string aString)

generate diagnostic, error and warning messages.

static string std::get_cpp(string aString)

resolves a definition within the preprocessor/command line name-space.

static string std::get_env(string aString)

resolves a definition within the external environment.

static string std::date()
static string std::file()
static string std::time()

replace the ANSI C __DATE__, __FILE__ and __TIME__ macros.

static token std::parse(string aString)
static token std::parse_tokens(token someTokens[])
static token std::tokenize(string aString) []

support character-level substitution and re-entrant analysis.

3.3 Incompatibilities

In principle the FOG grammar is a superset of the C++ grammar. In practice there
are some very minor incompatibilities.
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3.3.1 Semantic Errors

Most of the significant FOG enhancements occur by defining a meaning for
constructs that are semantic (or syntactic) errors in C++. Therefore a C++ program
with semantic errors may be error-free in FOG.

This is an inevitable consequence of enhanced semantics.

3.3.2 Transparency

FOG generates multiple output files with a default disposition to an interface and
an implementation file per top level class. If FOG is used to preprocess C++ code
requiring a more sophisticated file allocation, the file structuring may be lost. file-
placement-declarations may be needed to create the required structure, see
Appendix F.4.3.

This is an inconvenience that occurs when porting C++ code to FOG. C++ code
used via #include or using/utility is not regenerated and so retains its file
structure.

3.3.3 auto

FOG meta-constructs are defined by overloading the auto keyword. This causes
no incompatibility outside functions, where the keyword is semantically invalid.
The keyword is required to disambiguate syntax within a function.

void f()
{

int i = 5; // Assignment of 5 to (integer) i
auto int j = 5; // As above with redundant auto
auto e = k = 5; // Assignment of k = 5 to (expression) e

}

3.3.4 Incompatible concatenation

Extension of the ANSI C string concatenation policy to characters, identifiers,
numbers and strings potentially introduces a major incompatibility for FOG.
However the definition of the major syntax elements of C++ (whitespace,
punctuation, characters, numbers, strings, identifiers and keywords) and
accidental properties of the C++ grammar limit the problems.

An incompatibility arises wherever FOG concatenates but C++ does not. This may
occur when characters, identifiers (including keywords), numbers and strings
occur without intervening whitespace or punctuation. There are 16 combinations
of adjacent characters, identifiers, numbers and strings to consider:

Character-anything only occurs in C++ when a character-literal arises as a literal in
a primary-expression and the subsequent operator is not punctuation. In ARM C++
[Ellis90] there were no non-punctuation operators, however the standard [C++98]
introduced the alternative tokens (and, and_eq, bitand, bitor, compl, not,
not_eq, or, or_eq, xor, xor_eq).

Anything-character occurs in C++ when a character-literal arises as a literal in a
primary-expression and is preceded by non-punctuation. This occurs for the
alternative tokens and following a return, sizeof or throw keyword.

The same possibilities occur for number-anything, anything-number, string-
anything and anything-string.

String-string concatenates in FOG, and corresponds to ANSI C behaviour.

"This " "is"" ""a" " single"" string" // "This is a single string"

Identifier-identifier cannot occur since whitespace or punctuation is required to
terminate the first identifier.
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For identifier-string and string-identifier there is a further problem that arises in
the linkage-specification syntax.

extern"C"size_t f;

must be written in FOG as

extern "C" size_t f;

This is unlikely to cause many problems since few programmers would choose to
be so economical with whitespace in these cases.

The FOG concatenation extension therefore introduces minor incompatibilities.
Whitespace cannot be omitted around the string-literal of a linkage-specification,
following return, sizeof or throw or around alternative tokens, if the omission
conflicts with a concatenation interpretation.

3.4 Cpp Replacement

Stroustrup, in The Design and Evolution of C++ [Stroustrup97], identifies
elimination of the preprocessor as a major goal for C++, devoting the final chapter
to a discussion of its weaknesses, and identifying some remedies that C++
provides. In the final paragraph, Stroustrup writes

“I’d like to see Cpp abolished. However the only realistic and
responsible way of doing that is first to make it redundant ...”.

In order to justify the claim that FOG makes Cpp redundant, we must briefly review
the deficiencies and facilities of Cpp to determine to what extent FOG resolves
and replaces them.

3.4.1 Cpp limitations

Cpp supports the definition of and replacement of object-like and function-like
macros.

An object-like macro associates an identifier with a replacement sequence of
preprocessor tokens.

#define OCTAL_CASES \
'0': case '1': case '2': case '3': case \
'4': case '5': case '6': case '7'

The replacement tokens replace the macro identifier wherever it occurs.

switch (c)
{

case OCTAL_CASES: /* ... */ break;
case ALPHABETIC_CASES: /* ... */ break;
case '%': /* ... */ break;

}

Substitution occurs at a very low level, offering the programmer considerable
flexibility. In the above example, the replacement sequence omits an initial case
keyword and a trailing colon token. The missing tokens accompany the
instantiation. Readers may form their own opinion as to whether the unusual
definition leads to a dangerously obscure or aesthetically pleasing implementation
of the switch statement.

A function-like macro associates an identifier and a list of formal parameters with
a replacement sequence.

#define MAX(a,b) ((a) > (b) ? (a) : (b))

Invocation of the macro provides the actual arguments that replace the formal
parameters in the replacement sequence.



Meta-compilation for C++ FOG Grammar

Page 76 29-June-2001

Macro substitution is simple but prone to accidents. Substitution occurs at a
lexical level and so ignores any logical structure that may be present in the source
code.

The intention that MAX returns an expression from a pair of expression arguments
is only realised when the actual usage is appropriate.

The apparently redundant parentheses in the macro definition avoid the surprising
evaluation that would otherwise result from the interpretation of

price + MAX(current_rate, fixed_rate) * commission

as

(price + current_rate) > fixed_rate)
? current_rate : (fixed_rate * commission)

3.4.1.1 Unwanted substitution

Perhaps the most serious problem with the preprocessor is that of name capture.
All names occur in a single namespace and so every conventional use of a name
that is defined as a macro can malfunction. For instance the enumeration

struct Options
{

enum { LEFT, RIGHT, UP, DOWN, MAX };
};

should operate quite satisfactorily with Options::MAX denoting the number of
options. This definition will typically be placed in some include file. However if
another include file contains the earlier definition of MAX, any reference to
Options::MAX will fail whenever both include files are used. If the macro is
defined before the enumeration, a syntax error will spring up in the enumeration.

This form of error is obscure and confusing. It can appear to be intermittent since
compilations that do not use both include files succeed. Novice programmers are
baffled. Experienced programmers may take a little time to detect the handiwork
of the preprocessor.

This problem is resolved in FOG by changing to a policy of invited substitution.
The replacement functionality for MAX substitutes only as part of a $ or @
expression.

3.4.1.2 Language independence

The independence of macros from the underlying language is resolved in FOG by
use of meta-types to constrain the syntax of meta-variable values and of meta-
function argument and return values. Parentheses are not required.

When a meta-function is invoked, the argument is represented by a parsed AST
and eventually validated against the required syntax. The tree is substituted for
each reference within the meta-function, and since the tree has already been
parsed there is no possibility of re-interpretation in conjunction with surrounding
tokens.

3.4.1.3 Side-effects

When a macro such as MAX is invoked with an argument that causes a side effect

c = MAX(a++, ++b)

one of the arguments is evaluated twice, and so receives a double increment. If
the first argument is greater, the result is obtained after one increment has
occurred. It is therefore unlikely that the program will function as required.

FOG does not resolve this problem, since FOG passes the syntax tree for a++ into
the meta-function and instantiates the tree for each reference. FOG does not



FOG Grammar Meta-compilation for C++

29-June-2001 Page 77

‘evaluate’ the argument once and then pass it. This is not possible because the
argument is a syntax tree, not a value. It may be that the syntax happens to
correspond to a value as in the MAX case, but not in general.

MAX is a poor example for a syntactic meta-function. MAX is a computational
operation and so can and should be implemented by some form of inlined function.

3.4.1.4 Substitution level

Many implementations of the original Kernighan and Ritchie C preprocessor
[Kernighan78] performed character-based substitution. The replacement
characters were inserted between the surrounding characters and the resulting
character stream was then re-analysed. This offered considerable flexibility, but
different implementations varied in their treatment of obscure recursions and
encountered difficulties when a composite token such as += arose as a result of
character concatenation.

The ANSI C preprocessor changed to token-based substitution. The preprocessor
identifies the tokens and substitution replaces a sequence of tokens. Composite
tokens can only arise through explicit use of the ## operator.

Although the FOG substitution is syntax-based, character-based substitution is
also supported through use of the std::parse built-in meta-function and the
token meta-type6. token is the most primitive and generic terminal of the FOG
grammar. Every number, string, identifier or piece of punctuation such as >>= is a
token.

auto string OCTAL_CASES[] =
"'0': case '1': case '2': case '3': case "
"'4': case '5': case '6': case '7'";

The required tokens are represented as a concatenation of two strings to fit the
available line length. This is then incorporated into its overall context by further
string concatenation before $std::parse is invoked to convert to a syntax tree.

$std::parse(
"switch (c)"
"{"
" case " $OCTAL_CASES ": /* ... */ break;"
" case " $ALPHABETIC_CASES ": /* ... */ break;"
" case '%': /* ... */ break;"
"}"
);

A cleaner solution is available by meta-programming:

auto statement multi_case(signed lo, signed hi)
{

auto for (signed i = $lo; i <= hi; ++i)
case $i: ;

}

...

switch (i)
{

$multi_case('0', '7') /*...*/ break;
$multi_case('a', 'z') /*...*/ break;
case '%': /* ... */ break;

}

6. Token-based substitution could easily be supported, but it is difficult to conceive
of an example that is not better resolved by syntax-based substitution, or more
clearly resolved by character-based substitution.



Meta-compilation for C++ FOG Grammar

Page 78 29-June-2001

This exploits the non-structured definition of a case statement to treat
case 'a':; as a statement that drops through to the next case. The extra
semicolon avoids the need for a case meta-type.

case '0': ;
... ... ...
case '7': ;

/* ... */ break;

3.4.1.5 Backslash continuations

The C preprocessor requires all directive lines to comprise exactly one complete
line. This restriction is alleviated by the ability to continue a line with a trailing
backslash, but results in less readable and difficult to maintain code.

FOG integrates replacement functionality into the main grammar and so the
replacement facilities are free format.

3.4.2 Concatenation and Stringizing

The character-based substitution of the K&R C preprocessor enabled composite
tokens (normally an extended identifier) to be formed by causing the character
sequences to abut.

begin/**/_and_/**/end // begin_and_end

An identifier could be converted to a string by substitution within a macro:

#define STRINGIZE(s) "s"
STRINGIZE(text) // "text"

In the ANSI C preprocessor, the change to token-based substitution, and the
requirement that a comment be replaced by a whitespace character, lost this
flexibility necessitating the introduction of the ## operator to request
concatenation, and the # operator to support stringizing.

#define CONC3(a,b,c) a ## b ## c
CONC3(begin,_and_,end) // begin_and_end

#define STRINGIZE(s) #s
STRINGIZE(text) // "text"

In FOG character-based concatenation occurs between characters, numbers,
strings, identifiers (including keywords) without intervening whitespace. An empty
string or character can be used to provide separation between elements that
require concatenation.

begin""_and_''end // begin_and_end

An empty string (or character) can be used as a meta-cast for stringizing. The
subsequent text acquires the string (or character) characteristics of the start of the
sequence.

""text // "text"

Alternatively, meta-functions can be defined with similar behaviour to the ANSI C
approach

auto identifier CONC3(identifier a, identifier b, identifier c)
{ ${a}${b}$c }

auto string STRINGIZE(identifier s) { $s; }

$CONC3(begin,_and_,end) // begin_and_end
$STRINGIZE(text) // "text"

$ invocations in the body of CONC3 access the formal parameters. The first two
invocations use the ${} form to ensure evaluation as ${a}${b}${c}, since the
default of taking the longest possible interpretation of $a$b$c would evaluate
${a${b${c}}}.
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The stringize meta-function apparently does nothing, however the distinct
parameter and return meta-types arrange for an identifier to string
conversion, which also does nothing. The stringizing occurs at the point of usage;
when a string representation is required, the internal representation is formatted
as a valid string.

3.4.3 #define directive

Preprocessor object-like definitions

#define PI 3.14159

and function-like definitions

#define MAX(a, b) ((a) > (b) ? (a) : (b))

are replaced by meta-variable

auto double PI = 3.14159;

and meta-function

auto expression MAX(expression a, expression b)
{ $a > $b ? $a : $b }

definitions in FOG. The FOG definitions have syntactical types that can be
checked and avoid the need for protective parentheses.

3.4.4 #include directive

The historical semantics of the #include directive permit an arbitrary sequence
of tokens to be incorporated more than once in almost any context. This flexibility
is excessive and almost never needed. Most programmers have learnt to tame the
directive by placing an include file guard within each include file to inhibit multiple
inclusion:

#ifndef FRED_H_INCLUDED
#define FRED_H_INCLUDED
//...
#endif

although many have not learnt how much compile time can be saved by inhibiting
the include as in

#ifndef FRED_H_INCLUDED
#include "fred.h"
#endif

FOG supports a more disciplined form of inclusion like the #import of Objective
C [Cox86]:

using "fred.h";

performs the inclusion provided the file has not already been included. Guards are
unnecessary.

3.4.5 #if, #ifdef, #ifndef, #else, #elif, #endif directives

Preprocessor conditional compilation

#if defined(UNIX)
static const char *temp_path = "/tmp/";

#else
static const char *temp_path = "C:\\Temp\\";

#endif

is replaced by the use of meta-statements
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auto bool unix = $std::get_cpp(UNIX);
auto if (unix)

static const char *temp_path = "/tmp/";
else

static const char *temp_path = "C:\\Temp\\";

with built-in meta-functions of the std meta-namespace providing support when
necessary. (The auto preceding the if is unnecessary if the example occurs
outside a function.)

3.4.6 #line directive

The #line directive is not used in source programs generated by human beings.
It provides a very simple but useful mechanism for automatic source code
generators to ensure that compilers and debuggers refer to the original source
lines rather than some scrambled intermediate. #line performs this role
adequately and needs no replacement. Once Cpp has been discontinued, an
extension that uses a more cryptic free format spelling and releases the # token
could be considered. This is examined in Appendix F.1.4.

3.4.7 #error directive

FOG provides the built-in meta-functions

auto void std::diagnostic(string someText)
auto void std::error(string someText)
auto void std::warning(string someText)

to support emission of meta-compile-time messages.

3.4.8 #pragma directive

FOG provides no explicit counterpart for pragmas. However the effects of pragmas
may be achieved by vendor-defined built-in meta-functions.

A compilation system that supports intrinsic functions might recognise

#pragma intrinsic(memset)

to request use of the intrinsic rather than function call implementation of memset.

In a compatible meta-compilation system, a built-in meta-function to implement
the pragma could be hypothetically declared:

auto void std::intrinsic(identifier anIdentifier);

and invoked as

$std::intrinsic(memset);

Invocation on a meta-compiler without support for the pragma could be dummied
out by defining the meta-function to have no functionality:

auto void std::intrinsic(identifier anIdentifier) {}

or to redirect to a different pragma:

auto void std::intrinsic(identifier anIdentifier)
{ $std::use_intrinsics(""$anIdentifier); }

3.5 Summary

We have shown how C++ string concatenation can be usefully generalised by
simple lexical changes to phase 6 of the C++ translation. This eliminates the need
for Cpp concatenation.

We have shown how an additional form of literal representing a pre-parsed AST
may be incorporated into the C++ grammar as an identifier to support the re-use
of syntax trees. This eliminates the need for Cpp macros.
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We have shown how the auto keyword can be re-used to make C++ control and
declaration constructs available for meta-programming. This eliminates the need
for Cpp conditionalisation.

We have introduced minor syntactic and semantic generalisations to provide
greater consistency when multiple declarations are composed together in
response to the relaxation of the One Definition Rule. This supports weaving of
multiple code contributions together as required for Aspect Oriented
Programming.

We have shown how these changes introduce minimal incompatibilities. The
changes make Cpp redundant by providing replacement facilities that integrate
with the main C++ language. In the next chapter we show how these changes
facilitate meta-programming.
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0 4 FOG Semantics

Chapter 3 presented the FOG grammar and discussed many of the minor semantic
issues, but deferred the more major ones for resolution in this chapter.

We first describe the compilation stages that transform a FOG source program into
C++ files, and distinguish between the potential declarations appearing in the
FOG source and the actual declarations that are finally emitted. This leads on to
a discussion of the meta-types and meta-objects used to represent these
declarations, and the type-constructors used to support iterators and trees.

We then describe alternative models for substitution, justify the choice of syntax-
level substitution in FOG, and examine the constraints imposed by supporting
context free parsing of arbitrary syntax.

The distinction between the conventional name-space used for C++ declarations
and the meta-name-space of meta-declarations is examined. Consideration of the
context in which substitution occurs shows the need for more than one substitution
operator, and a requirement to use lexically nested scopes rather than structurally
nested scopes.

The flexibility that FOG provides for redeclarations is a critical distinction between
FOG and C++ that is resolved by composing the multiple contributions to a single
composite C++ declaration. The composition policies for different categories of
declaration are described.

FOG has a simple meta-class model. Other languages have different models. We
review the alternate models and show that the FOG meta-class model is a natural
and consistent extension applying the run-time programming perspective to
(meta-)compile-time.

User-defined code may contribute to decisions made at (meta-)compile-time
through static meta-programming either through direct invocation from source
code or through provision of meta-programs. Meta-programming by direct
invocation is discussed in Sections 4.2, 4.3 and 4.4. Independent meta-programs
are discussed in Section 4.6.

Finally the behaviour of syntax macros is described.

4.1 Meta-compilation stages

The significant processing stages of meta-compilation are shown in the left-hand
column of Figure 4.1.

The right-hand column identifies the distinct representations used, with solid
arrows indicating the flow of data between the processing stages. As will shortly
be explained, the anomalous arrow direct to an actual declaration from a potential
declaration is the result of automatic creation of an actual declaration from a
potential declaration in a determined context.

Chapter 5 describes the successive stages of lexical, syntactic and semantic
analysis that steadily increase the precision of the internal representation of the
following trivial program

int x;

as

• six source characters for int x;

• three tokens for identifier int, identifier x and punctuation ;

• a syntax tree for the generalised expression int x

• a potential declaration for the variable-specifier int x

• an actual declaration for the global variable int ::x
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Actual declarations are emitted to the C++ output files, after construction of the
usage dependency graph by the compilation stage as discussed in Chapter 6.

The distinction between potential declarations (in an unresolved context) and
actual declarations (in a resolved context) is not necessary for C++, since every
declaration has a well-defined context.

FOG supports passing of declarations to meta-functions, and the regeneration of
declarations in derived contexts by derivation rules. Potential declarations
therefore describe a declaration after semantic analysis. Transformation to an
actual declaration occurs as soon as the declaration is associated with an actual
context.

Static meta-programming may occur during

• semantic analysis

• meta-construction

• meta-main

• meta-destruction

• compilation

Meta-programming during semantic analysis occurs through interpretation of
meta-statements:

auto if (generateDebugCode)
/* debug code */

or more generally to service meta-function calls

$CachedString::flyweight("pointer");

The meta-construction, meta-main and meta-destruction stages are described in
Section 4.6. They consist exclusively of application functionality.

The final opportunity for meta-programming occurs during the compilation stage.
At this point meta-functions and meta-variables used within the derivation
predicates and bodies of declarations are evaluated, and meta-programming must
be restricted to the acquisition of information from the pool of declarations. New

lexical analysis

semantic analysis

syntax analysis

Figure 4.1 FOG Meta-compilation Stages

FOG source

meta-main

meta-construction

meta-destruction

emission

compilation

potential declarations

 tokens

syntax trees

actual declarations

usage nodes

C++ files
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declarations cannot be added, although previously declared declarations can be
extended by composition and meta-variables updated.

4.1.1 Potential and Actual Declarations

In C++, each (non-template) class, function, type or variable declaration provided
as source text is analysed in, and contributes once to, its surrounding context.

Templates provide a macro facility that enables certain parametric references to
be resolved automatically, but each template reference contributes at most once
to its surrounding context.

In FOG, derivation rules and more generally meta-programming may cause one
source declaration to make multiple contributions to a variety of contexts. Since
there is no longer a one to one relationship between source text declarations and
implemented declarations, we need to introduce new terminology.

A declaration appearing as source text is a potential declaration. A potential
declaration has the potential to be resolved to an arbitrary number of actual
declarations.

A declaration resolved to its eventual context is an actual declaration. Actual
declarations correspond to the declarations emitted for subsequent compilation by
the C++ compiler.

The two forms of declaration have significant differences. Consider the possible
specifiers for an enum, which may occur in source text and consequently as a
potential declaration for:

• a definition

enum Enum { ENUMERATOR }

corresponding to

enum-specifier:
enum identifieropt { enumerator-listopt }

• or a to be resolved reference

enum Enum

corresponding to

elaborated-type-specifier: // Part of
enum ::opt nested-name-specifieropt identifier

Neither of these can be resolved without knowledge of the prevailing context,
whereas an actual declaration has already been resolved and known to be
perhaps enum ::MyNameSpace::EnumScope::Enum.

There is no point in instantiating an actual declaration at the source level, since
this can only create a duplicate of the resolved declaration. Conversely, it is
meaningless to probe the unresolved context of a potential declaration.

There are therefore necessarily three distinct concepts to be represented by the
meta-type system:

• a potential definition

• a (potential) unresolved reference

• an (actual) reference resolved to an actual definition

The distinctions between potential and actual declarations can be seen in the
following example, which makes use of the built-in meta-types, class_specifier,
declaration, and identifier. Meta-objects with these types store constructs
that comply with the class_specifier, declaration, and identifier syntax. The more
detailed semantics of meta-types are explained in the next section.

class Actual {};
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auto declaration nest(identifier anId, class_specifier aClass)
{

class $anId
{

$aClass;
};

}

auto declaration cached = $nest(Nested, class Potential {});

class ReNested
{

$cached;
};

The first potential declaration, for class Actual, can be resolved immediately
and so results in an actual declaration of class ::Actual.

The meta-function definition similarly results in the actual declaration of the meta-
function ::nest. Analysis of the meta-function body creates a potential
declaration for the class-specifier (class $anId) using the first formal parameter
(anId), for which preliminary semantic analysis can verify compatibility of the
identifier meta-type. Syntactic analysis of the tree-literal ($aClass) in the class-
specifier encounters the usage of the second formal parameter. For reasons
explained in Section 4.2.3, this is presumed to be an identifier which is a
degenerate declaration. Again a preliminary semantic analysis can verify the meta-
type compatibility of a class_specifier.

Analysis of the invocation of the nest meta-function creates potential declarations
for the two arguments: Nested and class Potential {}. The first is an identifier,
for which there is no distinction between potential and actual declarations. The
second is a class-specifier whose context cannot be resolved, so the potential
declaration cannot be converted to an actual. Further analysis verifies that the
arguments can be converted to satisfy the identifier and class_specifier
syntaxes of the formal parameters.

Interpretation of the meta-function replaces the formal parameters and returns the
meta-function-body for execution in the calling context as if the source were:

auto declaration cached = class Nested
{

class Potential {};
 };

Further potential declarations for class Nested and class Nested::Potential
are created as the initializer for the potential and actual declarations of ::cached.

A potential and actual declaration for class ::ReNested are then created and the
cached variable replaced as if the source were:

class ReNested
{

class Nested
{

class Potential {};
};

};

so that potential and actual declarations are also created for class
ReNested::Nested and class ReNested::Nested::Potential.

4.1.2 Meta-types

Execution of a meta-program involves manipulation of declarations that have
some syntactical (meta-)type.
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A very simple form of meta-execution could be supported by defining just a single
meta-type such as syntax_element, which could exhibit polymorphic behaviour
for all possible syntax elements. However source syntax checking is normally a
rigorous activity and type-less meta-execution is not philosophically consistent
with C++, which is (in principle) a strongly typed language.

FOG should therefore support strongly typed meta-execution. The obvious set of
types correspond to the grammar productions: class_name, expression,
statement, template_parameter, etc. The set of types provided by FOG will be
described shortly.

Casting

C++ supports type-widening but requires some form of cast to narrow a type.

class A {};
class B : public A {};

void f()
{

B b;
A *pa = &b;
B *pb = &b;
pa = pb; // Widening ok.
pb = static_cast<B *>(pa); // Narrowing needs a cast.

}

This is necessary since it is not generally possible to determine at compile-time
that a type-narrowing is safe. Static meta-programs execute at compile-time and
so it is always possible to determine safety at compile-time. Precise replication of
run-time behaviour at compile-time is therefore unnecessary and undesirable:
casts are not available for meta-programming. Assignments are checked
dynamically and if possible the assigned value is converted to a value compatible
with the target meta-type.

auto identifier i = label; // Ok label is an identifier
auto statement s = $i; // Ok identifier to expression-statement
auto expression e = $s; // Ok expression-statement to expression

No error occurs on the assignment of a statement to an expression, although not
all statements are expressions, because the conversion is performed on the value
which is an expression-statement for which there is a safe conversion. The permissible
conversions are described in Section 4.1.6.

Meta-type as syntax predicate

It is appropriate to regard the meta-type as a syntax predicate, since the
polymorphism available at compile-time can be exploited to convert the result of
an assignment to the specified meta-type.

In order to keep the FOG grammar context-free, it is necessary to be able to parse
the argument of a meta-function, or the initializer of a meta-variable without
knowledge of the required syntax (or meta-type). A single syntax must cover all
possibilities. This syntax is the tree-statement syntax described in Section 3.1.1.6. It
satisfies the weakest predicate of the token meta-type, and also the stronger
predicates corresponding to the meta-types used to create the AST.

Since each meta-type corresponds to a syntax predicate, a meta-type could be
defined for each non-terminal in the FOG grammar.

There are three problems:

Excluding the lexical productions, there are about 150 non-terminals in the C++
grammar (more in FOG).
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The non-terminals are not orthogonal. For instance after parsing the source text
containing the isolated letter a, what is its syntactic type? It could be an identifier,
template-argument, expression, abstract-declarator etc. Choosing the more primitive
meta-type would be possible if the grammar was completely context-free and so
the productions corresponded to nodes of a tree, unfortunately

a < b > ( c )

could be a postfix-expression or a declarator, for which postfix-expression is a shared
common syntax type in the superset grammar implementation of FOG. However
there is no shared syntax type in the C++ (or FOG) grammar.

Distinct meta-types are needed to describe potential and actual declarations.

We therefore need extra meta-types to capture the potential/actual distinction, but
want fewer of them to reduce the definition and documentation effort. There seems
little point introducing meta-types to distinguish between a logical-and-expression and
a logical-or-expression.

A more pragmatic approach is therefore taken, defining meta-types only for those
concepts for which a meta-program may reasonably need to make a distinction.

Implemented meta-types

Each meta-type corresponds to a non-terminal, whose production rules define the
valid syntax for syntax trees with the meta-type. Many non-terminals are
specialisation of others, thus, identifier is a (specialisation of) id-expression which is
a primary-expression which is an expression which is a token.

This specialisation hierarchy resembles an Object Oriented inheritance hierarchy.
The UML [Booch99] inheritance diagram in Figure 4.3 shows the externally visible
general structure and some of the more significant meta-types.

Figure 4.2 shows some of the intrinsic meta-types. Intrinsic meta-types define a

syntax that can be directly identified and require no distinction between potential
and actual declarations. A fuller listing of the intrinsic meta-types is provided in
Table 4.1, with specialisation indicated by the partitioning into more specific meta-
types across the “intrinsic meta-types” columns.

Figure 4.3 shows some potential and actual meta-types. Meta-objects of a
potential meta-type more specialised than specifier are created by the
(syntactic and) semantic analysis to describe potential declarations. These Meta-
objects are converted to have an actual meta-type more specialised than entity
once the context supports the conversion from a potential to an actual declaration.
A fuller listing of the potential and actual meta-types is shown in Table 4.2 again
using partitioning to denote specialisation.

Declarations and Statements

The syntax generalisations in FOG remove the principal distinctions between
declarations and statements, however both concepts are widely used and so both
declaration and statement meta-types should be provided. Implementation of

token

declarationexpression

Figure 4.2 Intrinsic Meta-type inheritance

punctuation

identifier

number is more specialised thanname
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these types within a simple inheritance hierarchy requires one to be more
specialised than the other. But within a function, a declaration-statement is a
specialised statement, whereas in a class a meta-expression-statement is a specialised
declaration.

The dilemma is resolved from the external perspective by treating the two names
as synonyms for the same meta-type. A subtle, and almost irrelevant, distinction
is made that a declaration resolves an ambiguous labeled-
statement/anonymous-bit-field to the bit-field, whereas a statement resolves to
the label.

4.1.3 Meta-objects

Potential and actual declarations and their constituent elements are represented
by meta-objects within the meta-compiler, and many of these meta-objects are
available for manipulation by meta-programs. Meta-objects are created by the
presence of the corresponding declaration, and are managed automatically as
part of a hierarchical pool of meta-objects maintained by the meta-compiler. There
is no need or facility for explicit creation or deletion of meta-objects; there is no
meta-operator new or meta-operator delete. Garbage collection of objects
that are not required during the code emission phase occurs automatically.

Each meta-object has a corresponding meta-type, with distinct meta-types for
potential and actual declarations. When

enum Enum { E1, E@Second };

is parsed to create a potential declaration, a meta-object of enum_specifier
meta-type is created with two child meta-objects: an identifier of identifier meta-
type and a list of enumerator-definitions. The list in turn comprises two child objects
of enumerator_definition meta-type, each of which has a child meta-object to
define the name. The unresolved name of the second enumerator is represented
by an expression tree to capture the deferred resolution. The root of the tree has
the name meta-type. The meta-types (and some values) for the meta-objects
defining the potential declaration are shown in Figure 4.4.

When the potential declaration is converted to an actual declaration, the
unresolved name is evaluated in its actual context to yield a meta-object of
identifier meta-type, and the enum_specifier and enumerator_definition
meta-objects are converted to the meta-objects of enum and enumerator meta-
type shown in Figure 4.5.

Access to these automatically managed meta-objects occurs by establishing a
reference. At the time of creation:

token

declaration

specifier entity

scope objectscope_specifierobject_specifier

variable_specifier

enum_specifier enum

variable

Figure 4.3 Potential and Actual Meta-type inheritance

is more specialised than

typetype_specifier
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auto enum_specifier potentialDef = enum Enum { E1, E@Second };
$potentialDef;

by subsequent direct reference

auto enum_specifier potentialRef = enum Enum;
auto enum actualRef = enum Enum; // See Section 4.1.6.2

or by indirect reference

auto enumerator enum2a = $Enum::E2;
auto enumerator enum2b = $Enum.enumerators()[1];

4.1.4 Working meta-variables

Temporary meta-objects may be used for numeric calculations and iterators.

class X
{

auto int i = 0;
auto for (iterator p = $Enum.enumerators(); p; ++p)

auto /* ... */ ++i /* ... */
};

The declaration of i has no syntactical indication that i is a temporary variable,
so it isn’t. The meta-variable X::i is therefore not temporary.

FOG establishes local scopes for meta-programming in the same way that C++
establishes local scopes for normal programming. The iterator is therefore a

enum_specifier

name

enumerator_definition

enumerator_definition[]

enumerator_definition

tree_literal

identifier : Second

identifier : E1

identifier : ENUM

identifier : Enum

Figure 4.4 Example Potential Declaration Tree

enum

enumerator

enumerator[]

enumerator

identifier : E1

identifier : Enum

Figure 4.5 Example Actual Declaration Tree

identifier : E2
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temporary meta-variable since it is declared within a for loop. However, so are any
other meta-variables declared within the loop. This problem may be circumvented
by prefixing the declaration with This to start name resolution beyond the local
scopes.

auto for (iterator p = $Enum.enumerators(); p; ++p)
auto if (p->value() > 255)

auto number This.has_big_enum = true;

4.1.5 Scalars, Arrays, Lists and Trees

The elemental meta-types and their use for compile-time calculation and syntax
validation has been described. Use of scalar types alone is inadequate for meta-
programming, since many declarations involve lists of child declarations, and in
some cases trees of descendant declarations. Traversal of these structures must
be supported.

Intrinsic Meta-Type
Grammar

example non-terminal

punctuation = ‘punctuation’

modifier

array_modifier .. []

ptr-operator
function_modifier .. (int x) throw y

pointer_modifier *T::Q const ..

reference_modifier & ..

name
keyword

reserved case ‘reserved-word’

meta_type
function meta-type

class_key class class-key

decl_specifier
static (non-type) decl-specifier

cv_qualifier volatile cv-qualifier

identifier i identifier

X::i declarator-id

expression

assignment_
expression

a = b ^ c assignment-expression

constant_
expression

5 constant-expression

character 'a' character-literal

number 4.0 number-literal

string "string" string-literal

a,b

throw (a)
int
x(5)

expression
... ... ...

throw-expression
template-argument

mem-initializer

statement
declaration

label: x;
if (a) ;

while (1) ;
goto label;

try {} catch ... {}

labeled-statement
selection-statement
iteration-statement

jump-statement
try-block

a = b;
int a;

template T<Q> a;

asm "";
using namespace X;

{}
{}
{}

expression-statement
declaration-statement
explicit-instantiation
explicit-specialization

asm-definition
using-directive

compound-statement
compound-declaration

function-body

handler catch (a) ; handler

exception_specification throw (a) exception-specification

Table 4.1 Intrinsic Meta-types
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C++ supports constructed types through pointer-to, array-of, function-returning
and record-of type constructors, and perhaps the same type constructors should
be available for meta-types.

The C++ pointer system inherited from C is necessary to support uncontrolled
memory access and arbitrary memory allocation through the type-less malloc().
This lack of discipline causes many problems through the use of null, dangling or
stale pointers and allows memory to leak. C++ introduced operator new and
references and thereby alleviated some of the problems. Java supports only
references and consequently has no comparable memory access problems. It is
not clear that there is any need for genuine dynamic memory allocation at meta-
compile time, since FOG allocates and manages meta-objects automatically. A
more pragmatic set of type constructors is therefore implemented, exploiting the
freedom to define all meta-types and lists of meta-types as specialisations of the
token meta-type.

Potential Meta-Type
Grammar

Actual Meta-Type
example non-terminal

specifier

namespace_alias_definition namespace X = Y
namespace-alias-

definition namespace_alias

entity

scope_
specifier

namespace_definition namespace X {} namespace-definition namespace

scope

linkage_specification extern "C" {} linkage-specification linkage

filespace_specifier
namespace/file

X {}
filespace-specifier filespace

meta_class_specifier auto class X {} meta-class-specifier meta_class

type_
specifier

class_specifier class X {} class-specifier
class

type

elaborated_
type_specifier

class X
elaborated-type-

specifiertypename X typename

enum X

enumenum_
specifier

enum X {} enum-specifier

built_in_
type_specifier

long int
‘built-in-type-

specifier’ built_in

base_specifier public X base-specifier base

enumerator_definition E = 5 enumerator-definition enumerator

object_
specifier

using_declaration using X::y using-declaration using

object

function_specifier
void f() {} function-definition

function
void f() simple-declaration

init-declarator
declarator

abstract-declarator
member-declarator

variable_specifier
int v = 0

variable
int errno

typedef_specifier typedef a b typedef

parameter_specifier int * = 0 parameter-declaration parameter

meta_function_specifier type f() {}
meta-function-

definition
meta_

function

meta_variable_specifier name n = n
meta-variable-

declaration
meta_

variable

meta_parameter_specifier identifier i meta-parameter meta_
parameter

exception_declaration int * = 0 exception-declaration exception

template_parameter_
specifier

class T = X template-parameter template_
parameter

Table 4.2 Potential and Actual Meta-types
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Meta-Array-Of

C++ defines a compound-statement to be a statement, and an expression-list to be an
expression. FOG extends this by defining a compound-declaration to be a declaration and
a compound-tree-statement to be a tree-statement. There is clearly a significant
polymorphism between an element and a list of those elements. It is therefore
appropriate to define a meta-type as polymorphic to a list of the same or more
specialised meta-type, so that we may use nested lists to handle arbitrary tree
structures.

The list has many similarities to a C++ array and so we can safely re-use the
nested {} syntax for list initialization and [] for indexing.

auto string s = { "a", { "b", { "c", { "d" }}}};

defines a tree with a first, second, third and fourth generation descendant, as
shown in Figure 4.6.

s is the element { "a", { "b", { "c", { "d" }}}}
s[0] is the element "a"
s[1] is the element { "b", { "c", { "d" }}}
s[1][1][1] is the element { "d" }

There is no provision for uninitialized meta-variables and so no need to declare
tree shapes independent of initializers. The initializers define the shape: explicitly
as in the above example, implicitly when a declaration tree is assigned to a meta-
variable.

Meta-programs need to be able to iterate over lists of declarations. A polymorphic
iterator meta-type is therefore provided that acts as a pointer to a list.

With this system an iterator could be used as:

auto for (iterator i = $bases(); i; ++i)
$i->do_something();

bases() returns a list of base class specifiers. The iterator is initialized by the
elements of the iteration domain, but why does iterator i = $bases() establish
an iteration over the domain comprising the elements of the list rather than the
domain comprising the list as a single element? While it is convenient to treat the
list as polymorphic to an element, there must be a predictable mechanism for
deciding when and by how much to flatten a tree. The simplest algorithm, which
never flattens implicitly, does not support the above example.

An operator is necessary to expose the contents of the list, so that continuing the
earlier example

{ }

"b"

{ }

{ }

{ }"a"

"c"

"d"

Figure 4.6 Example Tree initializer
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s[] is the two element list "a", { "b", { "c", { "d" }}}
s[1][1][1][] is the elemental list "d"

allowing the iteration to be written:

auto for (iterator i = $bases()[]; i; ++i)// Non-FOG example

The extra [] changes the initialization to the elements of the list ensuring an
iteration over each base class. This is clumsy and prone to errors, since the [] is
too easily omitted.

We therefore extend the system to distinguish exposed and encapsulated lists.

An encapsulated list variable comprises a single element, which may be a list.

auto identifier encapsulatedList = { a, b, c, d };

An exposed list variable identified by a [] declarator suffix comprises the arbitrary
number of elements of a list.

auto identifier exposedList[] = a, b, c, d;

The {} and [] encapsulate and expose symmetrically, so that

exposedList is-the-same-as encapsulatedList[]

encapsulatedList is-the-same-as { exposedList }

Defining the initialization of an iterator and the return from built-in meta-functions
as exposed lists eliminates the need for the clumsy [] and allows the natural
programming style:

auto for (iterator i = $bases(); i; ++i)
$i->do_something();

or even

auto for (iterator i = $A::bases(), $B::bases(); i; ++i)
$i->do_something();

to achieve iteration over the concatenation of two exposed lists.

The hypothetical built-in declaration for bases is therefore

auto base class::bases() [];

and for iterator initialization:

auto iterator::iterator(token []);
auto void iterator::operator=(token []);

Meta-Pointer-To

This approach supports scalars, arrays and more generally trees, with all names
behaving as references. The limited need for a pointer is handled by the
polymorphic iterator.

Meta-Function-Returning

There is no direct support for pointers to functions, however functions and meta-
functions can be manipulated under the guise of the function or meta_function
meta-types, or more generally as declarations.

auto function_specifier add_constant(number fixedValue)
{

inline double ${unique_name()}(double functionArgument)
{

return functionArgument + $fixedValue;
}

}

auto function plusTwo = $add_constant(2);
a = ${plusTwo.name()}(b); // a = b + 2;
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add_constant is a meta-function that returns the function-specifier (potential
declaration) for an inline function which adds fixedValue to the
functionArgument. The name of the returned function is determined by a unique
name-generating meta function.

A potential declaration for a function that adds 2 is created by the invocation to
initialize the plusTwo meta-variable. Since the required meta-type is for an actual
function the inline function is created in the current (global) context.

The name of the function is then used in the final line.

Meta-Record-Of

User defined meta-types are not supported in FOG. This seems a very natural
extension when more substantial compile-time programming is required. A little
careful thought is necessary to distinguish (or unify) the conflicting perspectives
of user-defined meta-types as types constructed from existing meta-types, and as
predicates upon extended syntax.

4.1.6 Meta-type conversions

When a meta-object is used as an intermediate term in a meta-expression, the
meta-object may be suitable for direct use:

$metaObject.meta_function();
auto int i = $metaObject1 + $metaObject2;

Alternatively, a conversion to a more suitable form may be required, which may
involve:

• conversion of a potential declaration to an actual one

• resolution of the value of a meta-object

• conversion to a synonym

• conversion to a character, identifier, number or string meta-type

• conversion of an expression to an expression_statement

• conversion of an expression_statement to an expression

• conversion of the break keyword to a statement

• conversion of the continue keyword to a statement

• conversion of the return keyword to a statement

4.1.6.1 Meta-type Synonyms

The declaration and statement meta-types may be interchanged, as may the
expression and initializer_clause meta-types.

4.1.6.2 Potential to Actual meta-type conversion

When a potential meta-type occurs in a context where an actual is required, an
actual declaration is created from the potential in the prevailing context.

auto enum_specifier potentialEnum = enum E;// No conversion
auto enum actualEnum = enum E; // Creates ::E

4.1.6.3 Resolution of the value of a meta-object

A tree-literal defines an expression to be resolved in the meta-name-space resulting
in a meta-object whose value replaces the tree-literal. The replacement value must
be a meta-object that has meaning beyond the meta-level; it must therefore be a
character-literal, identifier, number-literal or string-literal, since these represent all
possible alternatives for a C++ literal. This value is obtained by invoking the built-
in conversion meta-function, operator identifier(), unless the tree-literal forms
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part of a concatenation in which case one of operator character(), operator
number() or operator string() may be invoked instead.

For the character, identifier, number and string meta-objects these
conversion meta-functions perform conversions as described in Section 3.1.1.3.

For named meta-objects, the unqualified name is first expressed as an
identifier, and then further converted if necessary. This supports the idiomatic

const char *class_name = ""$Scope;

rather than the more explicit

const char *class_name = ""$name();

or even more explicit

const char *class_name = ""$Scope.name();

Meta-variables, meta-iterators and meta-functions have no run-time object and so
the appropriate conversion operator is applied to their value.

The value of a meta-function is the function body.

The value of a meta-iterator is a boolean meta-object, whose value is true while
the iterator is valid. This supports:

auto for (iterator p = $functions(); p; ++p)
/* ... */

4.2 Substitution

Substitution is triggered when a reference such as

$name

is detected that satisfies the tree-literal syntax described in Section 3.1.1.6. The
reference clearly cannot be fully resolved until the definition is available, which
requires that the semantic processing of the definition has completed.

The C preprocessor has an independent definition syntax using #define that can
easily be fully analysed before processing continues. In FOG, the definition syntax
is integrated with the rest of the language, where alternative substitution
semantics impose distinct requirements on the overall processing.

4.2.1 Substitution levels

Substitution of a segment of source code by a replacement is often called macro
processing. A variety of models and classifications of macro processing are
discussed in Section 2.1.2. The most appropriate for discussing substitution in
FOG is the distinction between character-, token-, and syntax-level substitution.

These alternate levels will be considered while attempting to implement the
following example meta-program. in which a loop populates an array with the value
of the meta-variable used as the loop counter.

auto for (unsigned i = 0; i < 10; ++i)
static const char *digits[] = { ""$i };

The example involves repeated interleaved definition and reference of a meta-
variable. The statement should be equivalent to the following C++ declaration, for
which the loop provides the values which are automatically comma-separated as
FOG emits the composed list.

static const char *digits[] =
{ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" };

In each iteration, the identifier i must be resolved to the appropriate meta-
variable, and evaluation must use the prevailing value of the meta-variable. (In
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most examples, such as this one, i resolves to the same meta-variable on each
iteration, however this cannot be assumed.)

While maintenance of the loop counter is often restricted to the loop header, it is
unsafe to assume that the loop body is clean:

auto for (unsigned i = 0; i < 10; ++i)
{

auto if (i == 5)
auto i += 2;

static const char *digits[] = { ""$i };
}

4.2.1.1 Character-level substitution

Character-level substitution supports replacement of a text macro by an arbitrary
run of characters, allowing perverse programs such as:

auto string s = "= 5;";
x +$s // x += 5; (Not valid in FOG)

The original K&R C preprocessor used this form of substitution.

Character-level substitution requires lexical analysis of the replacement to be (at
least partially) deferred until the adjoining characters are available, and so
requires the lexical analysis to be repeated in each substitution context. Therefore
preliminary syntactic analysis of the example iteration-statement cannot identify more
structure than:

auto for (unsigned i = 0; test-chars; step-chars)
body-chars

The preliminary analysis of the xxx-chars character sequences for each of the
three sub-clauses must invoke a special scanner that is sensitive only to syntax
involving the structuring tokens: ( ) { } ; if else do while. Resolution of
replacements cannot occur immediately, or even in lexical order, since the
replacement for use in step-chars is not necessarily known until body-chars has
been interpreted.

This imposes the restriction that replacement character streams involving
structuring tokens may behave unpredictably, since the assumptions about
embedded punctuation may be unjustified.

Once the three character sequences have been cached, interpretation may then
proceed by repeated invocation of lexical, syntactic and semantic analyses for
each of the cached test-chars, body-chars and step-chars. Eventually the
interrupted lexical analysis may resume, following on from the for statement.

Since character-level substitution during lexical analysis requires semantic
interpretation, it is necessary to perform each of the lexical, syntactic and
semantic analyses re-entrantly for each level of statement nesting.

An early version of FOG used this form of substitution, concurrently with Cpp
substitution at the cost of considerable implementation difficulty and rather ill-
defined behaviour.

FOG now supports explicit invocation of character-level substitution from the
semantic analysis, rather than re-entrant semantic analysis within the lexical
analysis. The perverse example can be realised as

auto string s = "= 5;";
$std::parse("x +"$s);
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4.2.1.2 Token-level substitution

Token-level substitution performs substitution after lexical analysis has completed
the conversion of source text into a token stream. This improves efficiency and
provides for a more predictable environment but loses flexibility.

Operation at the token-level prevents the formation of composite punctuation
tokens such as +=. This is probably beneficial. However, losing the ability to create
extended identifiers and the ability to convert character sequences to strings is
restrictive. The ANSI C preprocessor uses this substitution model and introduces
the # and ## operators to provide a slightly clumsy way around the restrictions.

Token-level substitution prohibits syntactic analysis of the replacement tokens in
isolation, since adjacent tokens may influence the meaning; syntactic analysis
must be repeated for each replacement and error diagnostics associated with
instantiation rather than definition.

Token-level substitution simplifies the example only slightly, requiring the
preliminary parse to resolve:

auto for (unsigned i = 0; test-tokens; step-tokens)
body-tokens

The special scanner now caches token sequences rather than character
sequences, but is still vulnerable to unexpected replacement behaviour that
involves the structuring tokens.

Re-entrant invocation of syntactic and semantic processing is again necessary to
interpret the cached token sequences during syntactic analysis of the loop.

A form of this token-level substitution was used by the multi-pass grammar
implementation of FOG, which performs syntax-driven re-entrant analysis. The
difficulty of defining the token { (for use in a replacement) rather than the
punctuation { (for defining program structure) was at one point assisted by
introducing the additional lexemes \{ and \}. This fudge was then replaced by
an identifier to punctuation conversion fudge in the phase 7 tokenization grammar.
Neither fudge is required in the next approach:

4.2.1.3 Syntax-level substitution

Syntax-level substitution uses a syntax tree from an earlier syntax analysis as the
replacement. The replacement is therefore constrained to satisfy an explicit
syntactical type, rather than the much weaker constraints of sequence-of-
character or sequence-of-token.

Syntax level substitution

• further improves efficiency since no source code experiences repeated
lexical or syntactic analysis

• supports improved error diagnosis since the definition of a replacement
can be checked syntactically

• avoids the syntactical interpretation changing in response to its
instantiation context (the parenthesis problem of Section 3.4.1).

The informal restriction on the occurrence of structuring tokens is removed, or
rather becomes intrinsic to the substitution model; it is difficult to define
structuring tokens as replacements, since partial syntax does not satisfy
syntactical requirements.

Direct syntactic analysis of the entire example is supported by incorporating an
AST node for $i. This node is then resolved and evaluated during each iteration
of the loop. With syntax-level substitution it is possible to complete syntactic
analysis of the entire program before any semantic analysis starts. Re-entrancy
occurs, but only within the confines of the semantic analysis.
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The superset grammar implementation of FOG uses syntax-level substitution and
avoids all context dependencies. Substitution below syntax-level is supported by
deferred character-level substitution:

auto string braced_else = "} else";
$std::parse("if (a) { b; " $braced_else " c;");

// if (a) { b; } else c;

Although this supports dubious concatenation, the prevailing syntax type must
always be syntactically valid. The mismatching } preceding the else is only
mismatched while represented as a string. Conversion to a useful syntactic
element must wait until string concatenation provides valid source for std::parse
to convert to a generic syntax element: in this case a selection-statement.

For the C preprocessor, there is no looping and so references always occur after
their definitions.

#define SOME_THING
...
... SOME_THING ...

There is no flexibility in the location of a resolved definition. Replacements occur
directly, with complexity arising only for formal parameters of function-like macros,
for which replacement text is affected by the later actual argument.

#define DO_SOME_THING(ResolveLater) ... ResolveLater ...
...
... DO_SOME_THING(WITH_THIS) ...

The same is not true for FOG.

While syntax-level substitution is efficient and predictable, it inhibits character-
level and token-level substitution.

In practice, many substitutions would satisfy the constraint that an invariant
definition lexically precede a reference from a determined context. So it is
tempting to allow such backward reference substitutions in which replacement
characters or tokens could be substituted while the source was at character or
token level. However this would be a special behaviour that could change
unexpectedly as a program evolved. Provision of std::parse to allow an explicit
recursion from semantic level back to the lexical level seems to satisfy the
potential requirements for lower level substitution without introducing irregular
behaviour. Other requirements are satisfied by the concatenation mechanism.

4.2.1.4 Semantic-level substitution

The three preceding levels of substitution correspond to different degrees of
validity for the definition of a replacement:

A character-level replacement is lexically indeterminate:

- an arbitrary sequence of valid characters

A token-level replacement is lexically valid but syntactically indeterminate:

- an arbitrary sequence of valid tokens

A syntax-level replacement is syntactically valid but semantically indeterminate:

- an arbitrary tree satisfying a valid syntax

A fourth semantic-level substitution is possible using a replacement that is
semantically as well as syntactically valid. This level is not possible in FOG, since
semantic analysis requires type information which may come from the surrounding
context. The replacement cannot be semantically analysed in isolation. Overall
semantic validity is determined where the replacement is used, although some
checks can be made at the definition site.
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4.2.2 Syntactic Polymorphism

Replacement of syntactically consistent trees allows some rather dubious
programs to be written:

auto expression decl0 = i;
auto declaration decl1 = int i;
auto for (unsigned j = 0; j < 2; ++j)

$decl$j = k;

On the first iteration decl0 is selected1 and so the loop body is an expression:

i = k;

On the second iteration using decl1, the loop body is a declaration:

int i = k;

The variation in syntactical type is legal, since there is no requirement for
uniformity.

The declaration form is only legal in FOG because int i satisfies the generalised
naming that resolves int i as a name before assigning k to it, resulting in the
syntax tree shown in Figure 4.7.

This is not completely consistent with the exposition of the C++ grammar in the
standard, for which i = k is resolved as an init-declarator, before the int prefix is
applied as the decl-specifier-seq of a simple-declaration. However, since C++ ascribes
no semantics to partial declarations, FOG does not create an incompatibility by
defining them.

The ordering in the FOG grammar is necessary to support context free syntactic
analysis. The FOG grammar should therefore be expressed in a way more closely
resembling the practical implementation in Appendix C rather than the changed
C++ grammar of Appendix A.

4.2.3 FOG substitution

The C++ reference model (§2.1) provides for each of the minor translation phases
to be performed in sequence. However, the many responsibilities of phase 7 (the
main compilation phase) are just bundled together, reflecting the apparent need
for syntactic and semantic analyses to be tightly coupled.

In FOG, resolution of a tree-literal is detected during the phase 6 (string
concatenation) processing but requires the use of phase 7 syntactic processing to
identify the tree-expression syntax and any meta-function arguments. FOG originally
used syntax-driven parsing to resolve each argument according to its known
syntax. This imposed tight semantic coupling and required deferred analysis in
contexts where the syntax was initially unknown. FOG is now context-free and so
no syntactical knowledge or deferral is required.

1. The right to left evaluation of nested $-expressions is explained in Section 3.1.1.6.

=

iint

ktyped-name

Figure 4.7 int i = k
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The early translation stages naturally operate in a demand-driven fashion with the
phase 7 syntactical analysis, in the main grammar, making repeated requests to
a phase 6 procedure to provide the next token for syntactic analysis. When phase
6 detects a tree-literal, phase 7 processing is activated re-entrantly to acquire and
analyze the source tokens of the tree-literal. These are returned to the interrupted
phase 7 processing as a tree-literal token, which describes the unresolved tree-
expression. Recognition of tree-literals may occur re-entrantly to arbitrary depth.

FOG therefore introduces a need for re-entrant invocation of phase 7 syntactic
processing, but achieves an overall simplification through the separation of
syntactic and semantic processing. All syntactic processing can be completed
before any semantic processing starts2.

This is important since, in general, semantic information is not available. When the
tree-literal is encountered in the meta-function body of:

auto declaration defer(class clientClass)
{

${${clientClass}::deferred($Scope)};
}

it is only known that clientClass identifies a class. It is not known which class,
so the existence or signature of the deferred meta-function cannot be
determined, and the required syntax type of the parameter is unresolvable. The
invocation context is unknown, so the syntactical type of the $Scope argument is
also unknown.

Syntax-driven parsing is not possible when the syntactical type of either a formal
parameter or an actual argument cannot be determined. In the example, neither
can be known. The FOG grammar must therefore be context-free.

The example is resolved by initially parsing only for a generic syntax element.
Eventually the syntax element is used in a deterministic context where semantic
interpretation ensures compliance with the syntax types.

tree-literal definition

Definition of a tree-literal in one context, generally involves names that are resolved
in another context.

auto expression e = a(*b);

The initializer a(*b) is therefore parsed against the generic tree-statement syntax,
which accepts almost any C++ sentence, including many that are not expressions.
Association of the initializer with the meta-variable performs only a weak semantic
validation to verify that the initializer could satisfy the syntax of an expression. It
does not matter that the initializer could satisfy more than one syntax: a function
call or a function parameter with a redundantly parenthesised parameter.

When the meta-variable is used in a determined context:

class X
{

typedef int b;
class $e; // class a(*int);

};

two errors can be detected. First that the value of e does not satisfy a strong
semantic check of the syntax of an expression, and secondly that this particular
expression is not a valid name for a class.

The first of these errors can be subverted by use of a syntactically weaker meta-
type.

2. Semantic processing of syntax macros must occur at the syntactic level.
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auto token f = $e;
class $f;

The original initializer is checked to verify that it could satisfy the syntax of a token
(which everything satisfies). When class $f is checked, the strong check then
detects that this particular token is not a valid name for a class.

tree-literal syntactical analysis

The deferred invocation example

auto declaration defer(class clientClass)
{

${${clientClass}::deferred($Scope)};
}

showed that the syntactic type of tree-literals is not necessarily known during
syntactic analysis of sentences involving tree-literals. This would appear to
preclude syntactic analysis of the meta-function body at the definition site. Even
if the syntax type could be known, its use introduces a tight coupling between the
semantic analysis that determines syntax types and the syntactic analysis that
uses these types.

Revising the C++ grammar to incorporate indeterminate contributions is not
possible. The result would be totally ambiguous:

$a $b $c $d ;

could be a namespace-alias-definition:

namespace x = y ;

amongst very many alternatives.

A useful compromise leaves the C++ grammar almost untouched, but supports
most practical replacements. The compromise makes the simple assumption that
each occurrence of a tree-literal represents an identifier. Syntactical analysis and the
grammar is therefore only affected by the categorisation of a tree-literal as an
identifier.

This assumption imposes minor limitations. tree-literals cannot be used to source
keywords or punctuation where these define program structure. The use of $a and
$c for the namespace-alias-definition example is therefore impossible.

The assumption is much less restrictive than it might appear. It does not require
the tree-literal to be an identifier, merely to be used where an identifier could be used.

identifier is a degenerate sentence for many syntaxes:

• a type name (since there is no type/non-type discrimination)

• any form of expression (identifier is a primary-expression)

• a parameter-declaration(-clause) (identifier is a type)

• a decl-specifier(-seq) (identifier is a type)

identifier ; is a degenerate sentence for most other syntaxes:

• any form of statement (identifier ; is a degenerate expression-statement)

• any form of declaration (identifier ; is a degenerate simple-declaration)
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It is only for very narrow syntaxes involving just reserved words or punctuation that
a substitution cannot be allowed, for example:

• access-specifier

• class-key

• cv-qualifier

• function-specifier

• operator

• ptr-operator

• storage-class-specifier

• unary-operator

These limitations do not prevent definition and usage of these syntactic types,
however they do prevent parameterisation of syntax that uses them. For instance,
a class/struct/union tag cannot easily be used directly:

auto class_key ClassKey = struct; // Ok
$ClassKey Class { /* ... */ }; // Illegal

Some of these restrictions can be worked around by using a wider syntactical type
such as decl-specifier rather than cv-qualifier. Others could be worked around by
relaxing the assumption that all tree-literals are identifiers so that a functional cast
can specify the built-in meta-type.

$class_key($ClassKey) Class { /* ... */ };

However it seems perverse to cast something to its own type, and even more
perverse to do so without validation. It seems that some variant of a $-expression
is needed that uses the semantic knowledge where the programmer can
guarantee that the type satisfies ‘appropriate’ constraints on being ‘adequately’
resolvable. Choosing a satisfactory syntax and resolving ‘appropriate’ and
‘adequate’ is a matter for further research.

Restrictions involving punctuation or reserved words acting as punctuation cannot
sensibly avoided. There is no point introducing single-valued ‘casts’ to reserved
words or punctuation, when the reserved words or punctuation could be more
easily used directly:

$'namespace'($a) $b $'='($c) $d; // Silly non-FOG example

4.3 Name Resolution

In C++, there are three categories of name-space (as distinct from namespace).

• the hierarchical name-space of (run-time) program declarations

- template-names
- type-names
- non-type-names

• the per-function name-space of labels available for use by gotos.

• the C preprocessor macro definition name-space

FOG adds

• the hierarchical meta-name-space of (compile-time) program declarations.

FOG removes the distinction between template, type and non-type names at the
meta-programming level, since meta-programming may occur before such
distinctions are possible. The distinction is preserved where C++ semantics apply.

The C++ name-spaces are used for resolving names of conventional and extended
C++ declarations, and for the scopes of meta-names.

The meta-name-space is explicitly used when resolving tree-expressions
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$Scope @bases()[0].is_virtual()

and implicitly by the left-hand side of meta-expressions (within meta-statements)

auto if (meta_variable) /* ... */;

Resolution of a tree-expression involves four phases

• location of an object in the run-time name-space

• location of the meta-object that describes it

• evaluation of expression operators that use meta-objects

• conversion of the resultant meta-object to suit the invoking context

A meta-object for use in tree-expression is identified by a meta-scoped-id

meta-id:
id
meta-type
auto

meta-nested-id:
meta-id
~ meta-id
meta-id :: meta-nested-id

meta-scoped-id:
::opt meta-nested-id

The names are resolved in the conventional name-space, with the minor
generalisation that meta-classes such as unsigned int or auto, which have no
conventional classes are treated as having empty classes.

Thus, considering the meta-objects in Figure 4.8, the tree-literal

$X::Y::f.is_static()

is resolved by successively locating X, Y and f using the conventional name-space
to identify the «function meta-object» that describes the «function» X::Y::f.
Invocation of is_static() upon this «function meta-object» tests whether the
«function» X::Y::f has a static qualifier.

Whereas in:

$X::Y.g.is_static()

«meta-function meta-object»

X::Y::g

«function»

X::Y::f

«function meta-object»

X::Y::f

«describedBy»
«instance meta-object»

X::Y

member-namesmeta-member-names

Figure 4.8 Meta-function and function meta-object distinction

«instance»«describedBy»

«meta-function»

X::Y::g

«describedBy»«describedBy»

meta-levelmeta-meta-level

«class»

«class meta-object»

X::Y
«meta-class»

«instance meta-meta-object»

an X::Y
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X, Y are successively located using the conventional name-space to identify the
«class meta-object» that describes the «class» X::Y (not «instance», since X::Y
is a class-name not an instance-name). Selection of the g member selects the
child «meta-function meta-object» named g. Invocation of is_static() upon this
«meta-function meta-object» tests whether the «meta-function» X::Y::g has a
static qualifier.

These two mechanisms can coexist without conflict, since the «function meta-
object» describing a «function» is not a «meta-function». This is shown in
Figure 4.8 and discussed in greater detail in Section 4.5. The meta-objects of the
members of a «class» are not members of their corresponding «meta-class».
Therefore :: always performs resolution of references in the class/namespace
hierarchy, and . or -> are resolved within the prevailing name-space.

Note that this has the corollary that when defining a meta-variable or meta-
function, either :: or . may be used for the final scoping:

auto int Class.meta_variable = 0; // Correct
auto int Class::meta_variable = 0; // Also correct

Note also that, as might be expected,

$v.is_static()

is a short form of

$the-current-context3.v.is_static()

so that v is located in the meta-object describing the current context. The meta-
object describing v is not the start of the resolution.

The meta-name-space is used for meta-class, meta-function and meta-variable
names. It is not used for meta-function arguments or the right-hand side of a meta-
assignment, which, in the absence of further $ or @ operators, represents a literal
AST to be interpreted in the usage context.

Search for a name is always restricted to the expected name-space, however it
should be noted that template parameters are present in both name-spaces.

A $ or @ prefix is necessary to access the meta-name-space where the run-time
name-space would normally be used.

4.3.1 Search Locations

C++ has complicated rules (§3.4) for determining when and where names should
be resolved:

A name may be resolved within

• the enclosing local block hierarchy

• the local object

• a parameter list

• the local class

• the base class hierarchy

• the enclosing (structural) class hierarchy

• the enclosing (structural) namespace hierarchy

3. the-current-context is This, and so $This.v.is_static() may be used.
However, it is still necessary to use the meta-object describing the current context
to locate This, since This is defined only in the meta-name-space.
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FOG adds further complications. The resolution of a name may be available within

• the meta-name-space

• the enclosing lexical hierarchy

• the local block hierarchy

• the root or derived scope of an actual declaration

• the definition or invocation context of a meta-function

The C++ name resolution rules are complicated, and so arbitrary extension to
cover new possibilities would cause considerable confusion. Resolution of names
within different name-spaces in conventional contexts is therefore signalled
explicitly by the @ or $ operators.

4.3.2 Meta-name-space contents

Resolution of a name within the conventional run-time name-space proceeds
according to the rules defined in the C++ standard. Resolution within the meta-
name-space is triggered by the use of a $ or @ prefix to establish a tree-literal, or
by the use of a meta-scoped-id on the left-hand side of a meta-expression.

Resolution of a name within the compile-time meta-name-space proceeds
according to similar principles as run-time resolution, but without the context-
dependent visibility of type-names. All names in a meta-name-space context are
visible to all searches of that context. The search for a name proceeds in stages,
with different candidate sets of locations considered in each stage. The search
terminates at the end of the first search stage in which a definition is found, or
when all stages have been completed. It is an error for more than one distinct
resolution to be found in a search stage.

The search stages are in order:

Local scope

The search for a meta-name in a meta-program may find:

• meta-variables declared in a local scope established by a loop or
compound-statement.

Local object-scope

The search for a meta-name in a meta-object may find (using a function as an
example):

• meta-functions declared in an object-statements-clause

• meta-variables declared in an object-statements-clause

• the built-in meta-variables of the function meta-type

- This resolving to the meta-object of the function

• the built-in meta-functions of the function meta-type
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Meta-class

The search for a meta-name in a class meta-object occurs either through use of
the class, or through failure to resolve the name in a local-object scope. The
search for a meta-name in a class meta-object may find:

• meta-functions declared in a class-specifier

• meta-variables declared in a class-specifier

• the built-in meta-variables of the class meta-type

- This resolving to the (meta-)class
- Scope resolving to the (meta-)class
- OuterScope resolving to the less nested (meta-)class

• the built-in meta-functions of the class meta-type

• the formal template parameters.

Search of a class meta-object does not find

• the class name or base class names

• nested types (classes, enums or typedefs)

• member functions

• member variables

• enumerators

or their meta-objects.

Base Meta-classes

If a meta-name is not found directly in a meta-class, the search proceeds
recursively by searching each base meta-class and recurses for each of the base
classes, stopping individual searches when a name is found or after the root base
meta class has been searched. Repeated resolutions with the same value are
discarded. Ambiguous resolutions are an error.

Less nested base meta-classes

If a meta-name is not found in a meta-class or its base meta-class, the search is
repeated successively for the meta-classes of each hierarchically less nested
class stopping once resolved, or when the namespace scope is reached.

Meta-namespace

The search for a meta-name in a meta-namespace may find:

• meta-functions declared in a namespace-body

• meta-variables declared in a namespace-body

• the built-in meta-variables of the namespace meta-type

- This resolving to the (meta-)namespace name
- Scope resolving to the (meta-)namespace name
- OuterScope resolving to the (meta-)namespace name
- Namespace resolving to the (meta-)namespace name
- OuterNamespace resolving to the less nested

(meta-)namespace name

• the built-in meta-functions of the namespace meta-type
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Less nested meta-namespaces

If a meta-name is not found in the namespace, the search is repeated successively
for each structurally less nested namespace stopping once resolved, or after the
unnested global namespace has been searched.

The built-in functions and variables for the meta-types are summarised in
Appendix E.

4.3.3 The Substituted Value

When a substitution requested by a $ or @-expression is resolved, the expression
is resolved in the invoking context to identify the meta-object whose value
replaces the expression.

$i[1]

The meta-object must necessarily have already been defined, at which point any
$-expressions that reference the defining context are resolved.

auto token i[] = { ""$Scope, ""$Super };

Once the meta-object has identified any $-expressions referring to formal
arguments are replaced. This involves not only the explicit parameters of a meta-
function, but also the implicit Static, Dynamic and template parameter names for
meta-functions or meta-variables.

Each replacement takes the form of an already parsed syntax tree, albeit with
residual $ and @-expressions which are then resolved after substitution into the
invoking context. Execution of a meta-function body therefore occurs within the
invoking context, since:

Multi-$ expressions are resolved when the meta-function is defined (see
Section 4.3.6).

Single-$ expressions are replaced as the meta-function body is substituted within
the invoking context.

@-expressions are resolved, and meta-statements executed each time the
expression is analysed within the invocation context.

The following example

auto statement nextDay(string dayText)
{

static const char *dayTable[] = { $dayText };
auto dayCount++;

}

auto int dayCount = 0;
$nextDay("Sunday");
$nextDay("Monday");
$nextDay("Tuesday");
$nextDay("Wednesday");
$nextDay("Thursday");
$nextDay("Friday");
$nextDay("Saturday");
static const int maxDay = $dayCount;

results in the equivalent C++ code:

static const char *dayTable[] =
{ "Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday" };
static const int maxDay = 7;

showing how the dayCount++ expression is executed seven times within the
invoking context. The array initializer is similarly executed seven times, with the
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initializer resolved from the formal argument; the redeclarations compose as
described in Section 4.4.7 to give the composite array declaration.

4.3.4 Derived context resolution

A declaration specified using a derivation rule may need to use names referring
to the root scope or the derived class. The following example (elaborated in
Section 7.1.4) defines a clone method for a RootClass and a derivation rule to
implement the protocol automatically for all derived concrete classes.

public virtual $Scope *RootClass::clone() const = 0
:{

 derived(!Scope.is_pure())
{ new @{Scope}(*this); }

};

The body of the clone method must refer to the derived class, but the return type
must use the root scope (on pre-standard compilers).

The two requirements are resolved by the different substitution operators.

A $-expression is resolved within the defining context of a declaration. This is
RootClass in the above example.

An @-expression is resolved as late as possible, which is generally within the
actual context of a declaration. This is the derived class in the above example. ‘As
late as possible’ may arise at three distinct times, depending upon the context of
the @-expression:

@-expression in scope

An @-expression forming part of the scope of a declaration is resolved when the
declaration is interpreted in a determined context in order to install the declaration
in the determined scope. This applies to each @-expression in:

class @Outer
{

int @Inner::i;
};

Since this form of usage that creates an actual declaration directly, there is no
distinction between a (single $) $-expression and an @-expression. However a
distinction does arise when the conversion to actual is deferred; the @-expression
is resolved in the actual context, whereas a $-expression is resolved in the
defining context.

auto identifier Outer = "Outside";
auto identifier Inner = "Inside";
auto class_specifier cachedClass1 = class $Outer

{
int $Inner::i;

};

auto class_specifier cachedClass2 = class @Outer
{

int @Inner::i;
};

This defines the meta-variable cachedClass1 with the value

class Outside { int Inside::i; };

and the meta-variable cachedClass2 with the value

class @Outer { int @Inner::i; };

Immediate usage in which the invoking context is the same as the defining context

$cachedClass2;
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results in

class Outside { int Inside::i; };

as would also be the result for $cachedClass1. However cachedClass2 can be
invoked from an alternate context:

class AnotherContext
{

auto identifier Outer = "Without";
auto identifier Inner = "Within";
$cachedClass1; // class Outside { ... }
$cachedClass2; // class Without { ... }

};

with the result that the deferred resolution of $cachedClass2 uses the distinct
invocation context.

@-expression in name

An @-expression occurring as part of the naming of a declaration is resolved when
the signature is resolved to install a declaration in its actual scope. Resolution of
the @-expression may then respond to any change of scope caused by derivation
rules, or meta-programming.

The naming comprises the name, types and parameter names, but not default
initializers. (Parameter names do not form part of the unique signature of a
declaration.) This therefore applies to each @-expression in:

class X
{

auto string prefix = "p";
@Scope *accept_@{Scope}(@Scope& @{prefix}@Scope)

:{ derived(true) { return &@{prefix}@Scope; } };
};

class Y : public X
{

auto prefix = "q";
};

which consequentially generates the functions:

X *X::accept_X(X& pX) { return &pX; }
Y *Y::accept_Y(Y& qY) { return &qY; }

The lexical concatenation of accept_ and @{Scope} although syntactically
analysed as an identifier remains unresolved until the declaration is installed in its
actual scope.

@-expression in body

An @-expression occurring as part of the body of a declaration is resolved when
the body is compiled in the final compilation phase prior to emission. This differs
only slightly from the earlier example, by deferring resolution till all meta-
programming for all declarations has completed, except for side effects caused by
other @-expressions also in declaration bodies.
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The body of a declaration comprises

• the body of a function

• the handler of a function-try-block

• the initializer of a ctor-initializer

• the parameters of exception-specifications

• the initializer of a variable

• the default-initializer of a function argument

• the predicate of a derivation rule

static int X::member_variables = @variables().size();
static bool X::f(int i = @default_init())
:{

derived(@predicate()) { return i == @threshold(); }
};

Thus:

class HeapAllocated
{

protected virtual ~@{Scope}() :{ derived(true) {} };
};

enforces protected access on the destructor throughout a class hierarchy. The
derivation rule ensures regeneration in all derived classes, and ~@{Scope}
specifies the correct name in each derived class.

Note that:

class Base
{

@{Scope}(const $Scope&) :{ derived(true) { /* ... */ } };
};
class Derived : public Base {};

provides a copy constructor in the root scope where @Scope and $Scope are the
same class, and so generates:

Base::Base(const Base&) { /* ... */ }

but an ordinary constructor in derived classes, where the failure to defer resolution
results in:

Derived::Derived(const Base&) { /* ... */ }

The final $Scope must be replaced by @Scope to specify a copy constructor
throughout the class hierarchy.

4.3.5 Lexical scope resolution

In C++, there is little need to use lexical nesting for name resolution since
structural nesting is substantially the same.

class Outer // ::Outer
{
public:

/*...*/ name /*...*/; // ::Outer::name
class Inner // ::Outer::Inner
{

/*...*/ name /*...*/ // resolved in structural scope.
};

};

Resolution of name searches in ::Outer::Inner, then ::Outer (and finally ::).
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The FOG generalisation to support interleaved declarations and arbitrary
scopings means that a lexically enclosing scope is not necessarily a structurally
enclosing scope.

namespace Domain
{

class Outer // ::Outer
{
public:

/*...*/ name /*...*/; // ::Outer::name
class ${Namespace}::Sibling // ::Sibling
{

/*...*/ $name /*...*/ // Error - unresolved.
/*...*/ $Outer::name /*...*/ // Ok - resolvable.

};
};

}

Resolution of $name searches in Domain::Sibling and Domain and ::, but not
in Domain::Outer, so the definition is only visible when explicitly qualified as
$Outer::name. The lack of visibility introduces significant problems for a meta-
function such as:

auto declaration create_sibling()
{

/*...*/ name /*...*/;
public class ${Namespace}::Sibling
{

/*...*/ $name /*...*/
};

}

The meta-function establishes some declarations, such as name, in its invocation
context. These should be visible to other declarations in lexically nested contexts.
The surrounding context is available as $Scope, which could be used to explicitly
qualify the reference, except that the reference occurs within a lexical nesting that
redefines Scope. Caching the value of Scope in a temporary meta-variable across
the lexical boundary is possible but hardly elegant.

A solution is provided by extending the $ operator.

$x resolves x in the prevailing context.

$$x resolves x in the surrounding lexical context.

$$$x resolves x in the surrounding surrounding lexical context.

etc.

The meta-function can therefore be written in re-usable fashion as

auto declaration create_sibling()
{

/*...*/ name /*...*/;
public class ${Namespace}::Sibling
{

/*...*/ $$name /*...*/
};

}

4.3.6 Defining or invoking resolution

Name references within C++ functions normally occur as if resolved within the run-
time execution context. With the exception of virtual functions, these resolutions
actually occur at compile time, and therefore make use of the defining context
which is known at compile-time.
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Name references within FOG meta-functions occur when the meta-function
defined in a (definition) context is invoked from another (invocation) context. Both
contexts are known at compile-time, and since meta-programming is manipulating
declarations, resolution within the invocation context as well as the definition
context can be useful.

The semantics of meta-function execution is that formal parameters are replaced
and then the entire body of the meta-function is returned for interpretation within
the invocation context (see Section 4.3.3). This ensures that the invocation
context can be manipulated but prevents the definition of a meta-function reacting
to its defining context. The following example attempts to conditionalise the
behaviour of a meta-function in accordance with a DEBUG command line variable:

auto bool debug = $std::get_cpp("DEBUG");

auto declaration f()
{

if ($debug) // Not the way to do it
/* ... */

/* ... */
}

class X
{

auto declaration debug() { /* ... */ }
$f();

};

Resolution of $debug occurs within the invocation context and so the
conditionalisation is resolved by the non-zero body of the meta-function
X::debug.

This problem is well known to Lisp programmers who call it the functional
argument or FUNARG problem. A segment of code with free symbols is passed to
a context where the free symbols may obtain an unexpected resolution.

Although this is a different problem to the lexical scoping problem, it is amenable
to the same solution. Defining a meta-function declaration as establishing a
nested lexical scope, causes the rewritten meta-function:

auto declaration f()
{

if ($$debug)
/* ... */

/* ... */
}

to perform the resolution of debug in the surrounding lexical context ensuring the
intended resolution to ::debug.

4.3.7 Multi-$-expression resolution

The generalisation of $-expressions is logical and predictable. The following
example has nested meta-functions defined within nested classes. The outer
meta-function A::B::f() is invoked within D::E to define the inner meta-function
D::E::A::g(), which is invoked within F::G.

//6
class A
{//5

class B
{//4

auto declaration f() // A::B::f
{//3

class A
{//2
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auto declaration g()
{//1

/*reference*/
}

};
}

};
};

class D
{

class E
{

$A::B::f();
};

};

class F
{

class G
{

$D::E::A::g();
};

};

Considering alternative invocations at /*reference*/, for which Scope is a
convenient built-in meta-variable to demonstrate the context in which name
resolution occurs:

$Scope resolves within //1, which is the meta-function body that replaces the
invocation as $D::E::A::g() from ::F::G. It therefore resolves to ::F::G.

$$Scope resolves within //2 which is nested scope within meta-function body that
replaces the invocation as $A::B::f() within ::D::E. It therefore resolves
to ::D::E::A.

$$$Scope resolves within //3, which is the meta-function body that replaces the
invocation as $A::B::f() within ::D::E. It therefore resolves to ::D::E.

$$$$Scope resolves within //4, which is a nested scope and resolves to ::A::B.

$$$$$Scope resolves within //5, which is a scope and resolves to ::A.

$$$$$$Scope resolves within //6 which is the global namespace ::,.

$$$$$$$Scope is an error since there is no surrounding context for the global
namespace.

And for completeness:

Scope is an identifier.

@Scope resolves to ::F::G, or a class derived from ::F::G, if the reference
occurs within a declaration that is regenerated by a derivation rule or meta-
program.

This is clearly not a complete set of all contexts, since neither D nor F appear
although they constitute lexically surrounding scopes of contexts that do appear.
However the existence of D and F are implementation details that cannot be known
to the author of the meta-functions. A more elaborate 2-dimensional scheme
supporting access to the third surrounding lexical context of the second
surrounding meta-function invocation would therefore be inappropriate.

The relevant lexical context is readily identified by counting back through braces
surrounding the /*reference*/ invocation expression. It is independent of the
subsequent usage. Each additional $ causes resolution in a less nested context:
the invocation context for a meta-function body or the internal context of a class
body.
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Nested lexical contexts are established:

• between { and } of a class (or namespace) body

• between { and } of a meta-function body

• between :{ and } of an object-statements-clause

Nested lexical contexts are not established for:

• { and } or :{ and } within :{ and }

• structural nesting established by ::

• compound statements

• compound declarations

• filespaces (see Appendix F.4.4)

• initializer clauses

4.3.8 Transferred lexical scope for object-statements-clauses

When meta-function or class bodies nest within an object-statements-clause, the object-
statements-clause establishes a lexical context. The function bodies do not establish
a further context.

auto statement f()
:{ // Outer grouping :{} is a lexical scope

derived(true)
:{ // Grouping :{} is not a lexical scope

entry
{ // Grouped {} is not a lexical scope

/* ... */
};

};
};

4.3.9 No lexical scope for :: nesting

It might seem that :: should establish a nested lexical scope so that there is no
difference between the following pair of meta-functions:

auto identifier A::B::f() { $$Scope; }
class A
{

class B
{

auto identifier g() { $$Scope; }
};

};

However this would introduce an inconsistency for

auto $X A::B::h() /* ... */

which by analogy with the C++ declaration

X A::B::h() /* ... */

would suggest that X be resolved in its surrounding (global) context rather than the
nested A::B context. There is no strong reason why f() and g() should behave
in the same way. C++ consistency requires that they do not. Therefore :: does not
establish a lexical scope.

4.3.10 No Lexical scope for initializers and arguments

Not establishing lexical contexts for initializer clauses seems obvious since in

int scalingMatrix[2][2] = { { $Scale, 0 }, { 0, $Scale } };
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the braces are a grouping operator, they do not create a lexical context in which
declarations could be differently resolved.

It is less clear whether the = and ; of a variable initializer or the ( or , and , or )
surrounding a meta-function argument should establish a nested lexical scope.

At first sight it is clear that in

class X
{

auto identifier p = $Scope;
$f($Scope);

};

$Scope should be resolved as X using the prevailing context. However, the
semantics of meta-function execution return the body of a meta-function for
interpretation in the invoking context. Perhaps the initializers and arguments
should also be interpreted within their usage context. It is then necessary to use
$$Scope to ensure that the above example has the obvious behaviour.

Considering a more complicated meta-function call in which a class-specifier is
passed as a meta-function parameter to create the class To::X.

auto declaration f(class_specifier c)
{

class ::To
{

$c;
};

}

class Call::From
{

$f(class X
{

... $Scope ...

... $$Scope ....
});

};

which expands to

class Call::From
{

class ::To
{

class X
{

... $Scope ...

... $$Scope ....
};

};
};

$Scope should clearly resolve to ::To::X, rather than Call::From (which is not
visible from ::To::X), or Call::From::X (which may not ever exist).

$$Scope resolves to a surrounding context, but is it Call::From (that surrounding
the definition of the argument) or ::To (that surrounding the instantiation
as ::To::X)?

Either resolution is tenable, however resolution as To in the invoking context
involves the use of a surrounding context that is not lexically identified where a
meta-variable is initialized or where a meta-function argument specified. It does
not seem necessary to make this scope easily accessible. This invisibility of
remote contexts mirrors the invisibility of the remote lexical scopes for D and F in
the nested class and meta-function example of Section 4.3.7. Therefore
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initializers and meta-function arguments do not establish a nested lexical scope:
resolution of $-expressions has the obvious behaviour.

Although the remote surrounding lexical context is not directly accessible, it can
be accessed indirectly. When X is structurally as well as lexically nested, Scope
can be resolved in the surrounding structural scope by $OuterScope. Even when
X is not structurally nested, access is possible by creating a dummy lexical and
structural nesting:

class From
{

$f(auto class ExtraNesting
{

class ::X
{
... $Scope ...
... $$OuterScope ....
};

});
};

The structurally and lexically nested ExtraNesting meta-class establishes an
additional lexical context surrounding X, which can be reached using $$, and from
which OuterScope can traverse to the surrounding structural (and lexical) context.

4.3.11 Formal parameters

Formal parameters are visible throughout a meta-function-body, including any
nested lexical contexts, so it is unnecessary to use additional $’s to access formal
parameters from within nested lexical contexts.

auto declaration X::f(identifier outerParameter)
{

$resolved_in_invocation_context;
$$reaches_out_to_defining_context;
auto declaration h(identifier innerParameter)
{

class $outerParameter
{

$innerParameter; // one $ is enough
$outerParameter; // one $ is enough

};
}

}

The semantics of meta-function execution, that resolves tree-literals primarily in
the invocation context, makes the definition context less accessible and requires
the use of a multi-$-expression. This is not adequate for all forms of access. For
instance in the above example, definition as X::f rather than class X { ...
f }; prevents access to X using a built-in meta-variable. If the meta-function is
invoked in a derived class, neither form of definition supports access to the
derived definition class name. Two built-in formal parameters are therefore
supplied to circumvent the problems.

The Static built-in formal parameter resolves to the static definition scope of the
meta-function.

The Dynamic built-in formal parameter resolves to the dynamic definition scope of
the meta-function.
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auto class MetaBase
{

auto static declaration static_mf()
{

public static char *static_dynamic = ""$Dynamic;
public static char *static_static = ""$Static;
public static char *static_scope = ""$Scope;

}
auto declaration nonstatic_mf()
{

public static char *nonstatic_dynamic = ""$Dynamic;
public static char *nonstatic_static = ""$Static;
public static char *nonstatic_scope = ""$Scope;

}
};

auto class DerivedMetaBase : auto MetaBase {};

class Invoking
{

$DerivedMetaBase::static_mf();
$DerivedMetaBase::nonstatic_mf();

};

Within the invocation of DerivedMetaBase::static_mf, $Dynamic resolves to
MetaBase, whereas within the invocation of DerivedMetaBase::nonstatic_mf,
$Dynamic resolves to DerivedMetaBase. In both cases $Static resolves to
MetaBase and $Scope to Invoking.

Formal template parameters are treated as formal parameters supporting use of
the definition parameterisation in the invocation context.

These additional built-in parameters may hide names in the invocation context,
necessitating the use of $This.Static to resolve Static in the invocation
context rather than as a built-in formal.

4.3.12 Meta-function and substitution semantics

Declarations within meta-function bodies are analysed in three contexts

• when the meta-function is defined

- to resolve (multi-)$-expressions that use formal parameters
- to resolve multi-$-expressions in the definition context

• each time the meta-function is invoked

- to resolve residual $-expressions in the invocation context

• when any generated declarations are compiled

- to resolve @-expressions in the actual context

Formal parameters may hide declarations in nested classes, and may be hidden
by formal parameters of nested meta-functions. A formal parameter occluded in
this way may be accessed by using sufficient $’s to reach out to a lexical context
in which the occluding formal is not visible.

auto declaration g(identifier id)
{

auto declaration h(identifier id)
{

$j($$id, $id); // j(outer-id, inner-id)
}

}

It is an error if a $-expression reaches out to an external context where it cannot
be resolved.
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The usage of the formal parameter names is identified during analysis in the
defining context. The formal parameter names are therefore not visible while
resolving $-expressions in the invocation context.

auto declaration k(identifier aParameter)
{

${$nestedInvocation};
${$$nestedDefinition};

}

Therefore, if in the above example $nestedInvocation has the value
aParameter, the subsequent access to aParameter is resolved in the invocation
context, ignoring the formal parameter. Furthermore, since $$nestedDefinition
reaches out to the external context, it is resolved in the defining context and so if
nestedDefinition has the value aParameter, the $-expression is resolved to the
formal parameter.

Upon invocation of a meta-function, all accesses to formal parameters within the
meta-function body are replaced by their corresponding actual arguments before
the entire body and residual $-expressions are interpreted as part of the
invocation context.

4.4 Composition

The C++ One Definition Rule (§3.2) permits only one appearance of each
declaration, and requires the declaration to have the same meaning in all
compilation sessions in which it is used. A few exceptions to the rule permit
repeated forward references and typedefs.

Violations of the rule within a single compilation should be trapped by the
compiler. Violations between compilation sessions may go undetected and lead to
unpredictable program behaviour. Some of these inter-session violations are
diagnosed by the practice of using name mangling for function declarations.

Most opportunities for inter-session violations are eliminated by the practice of
placing interfaces within include files that are shared between compilation
sessions. As a result a program malfunction due to violation of the ODR arises
mainly through the undue enthusiasm of some incremental compilers.

The ODR in combination with the hierarchical nature of C++ class declarations
prevents declarations from more than one class being interleaved. This is a severe
impediment to the implementation of patterns or Aspect Oriented Programming
and so FOG relaxes the ODR with respect to FOG source code, requiring only that
it be possible to satisfy the ODR after translation has been completed.

Multiple declarations are permitted and the contributions from each are combined
hierarchically to form composite declarations. If the contributions are
incompatible, the inconsistency is diagnosed and the resulting behaviour is
unpredictable.

Composition is performed for the actual declarations of classes (including
namespaces, structs and unions), enums, arrays, variables, functions, meta-
variables and meta-functions.

When any potential declaration is associated with a determined context, an
existing actual declaration is first located. If one is found, the new potential
declaration is composed with the existing actual declaration. When searching for
such a declaration, the search for the declared name is restricted to the specified
scope, which is located conventionally.

Thus a declaration for A::B::f creates f within the scope visible as B within the
scope visible as A. It may compose within an existing f. It hides, rather than
composes with, an f that is visible in (by inheritance) but not part of A::B. This
provides consistency with the single definition in C++.



Meta-compilation for C++ FOG Semantics

Page 120 29-June-2001

This implies that A::B::A::f is legal and probably refers to A::f since the more
nested A is visible as the less nested A. The unlikely alternative with an occluding
nested class is demonstrated by:

class A;
public class A::B;
private class A::B::A;

in which case A::B::A::f and A::f would be distinct entities.

Names must be made visible before they are used. In particular scopes must be
forward declared as in the cascade of declarations leading to A::B::A. Direct
declaration of a nested scope without its less nested scopes could be interpreted
as an implied forward declaration, but it leaves class/struct/union distinctions
and nested access constraints unclear. It also requires assumptions to be made
about the nature of the intervening names. These assumptions may be invalidated
by typedefs or additional base classes.

4.4.1 Class composition

Most class composition occurs hierarchically: the class grows to accommodate
distinct member declarations, or to compose repeated member declarations.

4.4.1.1 Nested contexts

Nested class-specifiers, namespace-definitions and linkage-specifications compose
hierarchically.

Compound declarations are not nested contexts. They are just a syntactical
grouping of multiple declarations as a single declaration. Declarations within a
compound-declaration are therefore composed individually ignoring any
compound structure.

Nested filespaces, described in Appendix F.4.4, are not nested contexts. The
filespace just associates file-placement with its enclosed declarations.
Declarations within a filespace are therefore composed without reference to the
filespace beyond retention of their required placement. It is an error for composed
declarations to have conflicting placement requirements.

4.4.1.2 Base classes

A base-specifier-list comprises an ordered list of base-specifiers. Composition occurs as
one or more lists of potential base-specifier declarations (each being a
base_specifier meta-object) are transformed into the single composed list of
actual base-specifier declarations (each being a base meta-object). Additional
potential base-specifiers whose class-name is already on the list compose with the
existing actual. Additional potential base-specifiers for new class-names are
converted to actuals and appended to the list.

Composition of a base-specifier involves merging the access-specifier and the virtual
keywords. An error arises if a conflict arises such as private with protected, or
virtual with !virtual. A conflict does not arise when merging a specified
access with an unspecified access or virtual with unspecified virtual.

class A : B, C, B, !virtual D {};
class A : E, protected B, F, private D, public E {};

composes to:

class A : protected B, C, private !virtual D, public E, F {};

The use of unspecified access is deprecated in C++ and defaults to private. This
remains the case in FOG, but only after composition, which may provide a
specified access.
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4.4.1.3 Miscellaneous declarations

accessibility-specifier

An accessibility-specifier changes defaults for subsequent declarations, within the
prevailing context. An accessibility-specifier does not affect and is not composed with
other contributions to the same context.

meta-expressions and meta-control-declarations

Meta-programs are interpreted directly and so there is nothing to compose.

include-declaration

An include-declaration is interpreted directly and so there is nothing to compose.

syntax-macro-definition (Section 4.7)

Syntax macros with matching argument lists compose in the same way as meta-
functions. Syntax macros with distinct argument list are overloaded and so do not
compose.

using-directive
namespace-alias-definition
file-dependency-declaration (see Appendix F.4.5)
explicit-instantiation
explicit-specialization

Multiple declarations are gathered together. Duplicates are eliminated.

asm-definition

Multiple declarations are gathered together. Duplicates are preserved.

file-placement-declaration (see Appendix F.4.3)

Multiple declarations are gathered together. Only one distinct location may be
specified for each interface and implementation file.

4.4.2 Object statement composition

Object-statement-scopes provide a limited form of scope at meta-compile time for
functions and variables. Composition of declarations proceeds in the same way as
composition for equivalent concepts in classes.

The presence of derivation rules supports multiple bodies in a potential
declaration. Composition of these bodies is deferred until the compile compilation
stage at which point only those bodies that are enabled by derivation predicates
are retained.

4.4.3 Enum composition

In C++, an enum-specifier comprises a list of enumerator-definitions each of which is a
name-value pair. The value part may be omitted, in which case it assumes the
value zero for the first enumerator, or the preceding value plus 1 for subsequent
values.
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enum Enums
{

ZERO, // Implicitly 0
TWO = 2, // Explicitly 2
THREE // Implicitly TWO + 1

};

In FOG, composition occurs as one or more potential declarations comprising
meta-objects of enum_specifier meta-type and lists of meta-objects of
enumerator_definition meta-type are converted to an actual declaration of
enum meta-type and an actual list of enumerator meta-type.

As each additional potential enum-specifier is composed, each additional potential
enumerator-definition is appended to the list of actual enumerators. The missing
enumerator value is resolved as zero for the first enumerator or one plus the value
of the most recent addition to the list for all subsequent values.

enum Enums // Composing with above
{

FOUR, // Implicitly THREE + 1
FIVE, // Implicitly FOUR + 1
TWO = 2, // Explicitly 2
THREE, // Implicitly TWO + 1
ONE = TWO - 1 // Explicitly TWO - 1

};

Enumerator names may be repeated provided the value associated with the
enumerator is the same for each repetition. Repeated names are discarded so that
a meta-program traversal of the enumerators and the final code emission iterates
over the domain

{ ZERO = 0, TWO = 2, THREE = 3, FOUR = 4, FIVE = 5, ONE = 1 }

The “same value” involves a direct comparison of numeric values, whose
evaluation may use the already resolved enumerators. There is no support for
deferred evaluation and comparison of Abstract Syntax Trees.

4.4.4 Construct composition

Composition of constructs first identifies the construct (function, typedef or
variable) to be composed using its unique signature, and then composes the
remaining parts of the construct.

The unique signature of a typedef or variable involves the scope, template
arguments and the name of the typedef or variable.

static const int X<A>::v = 5; // Signature ::X<A>::v
typedef int (*PFunc)() const; // Signature ::PFunc

The unique signature of a function additionally involves the function arguments
and those cv-qualifiers that resolve overloads.

virtual inline int f(const size_t& p = 5, const int q) volatile
// Signature ::f(const unsigned int &, int) volatile

The unique signature does not include other decl-specifiers such as static,
virtual or inline, the type-specifier-seq, or function parameter names or default
function arguments4. Type names using typedefs are resolved. Redundant cv-
qualifiers for by-value arguments are ignored (§13.1-3).

The type-specifier-seq, e.g. function return type, is not part of the unique signature,
since overloading of functions (or variables or typedefs) on the type is not

4. Exclusion of static from the signature is possible since the standard specifically
excludes overloading static and non-static member functions (§13.1-2).
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supported. When multiple contributions are composed, each type-specifier-seq must
refer to the same type to avoid an error.

The friend, typedef and using decl-specifiers are not composed. friend and
typedef distinguish between different categories of construct. They must be
present for each declaration of a name.

using, in the context of the re-using-declaration described in Section 3.1.4.4,
indicates that only part of the declaration is provided, and that the remainder is
obtained from the re-used declarations. Composition of using in the context of a
using-directive has been described in Section 4.4.1.3.

The private, protected and public access-specifiers are composed using a four-
valued algorithm. Matching values compose to preserve the value. An omitted
value composes with an explicit value to preserve the explicit value. Conflicting
explicit values are an error.

A missing value for a new declaration specified within class braces automatically
acquires the prevailing access for declarations in its scope. Repeated declarations
within class braces, or any declaration outside class braces retain unspecified
access until composed with a declaration that has a defined access.

It is an error for a declaration forming part of a class to have no access-specifier from
any source.

access-specifiers for declarations forming part of a namespace-body or linkage-specification
are discarded.

The static and !static decl-specifiers are composed using a three-valued
algorithm. Matching values compose to preserve the value. An omitted value
composes with an explicit value to preserve the explicit value. Conflicting explicit
values are an error.

The explicit, export, extern, mutable and register decl-specifiers are
composed using a two-valued algorithm. Matching values compose to preserve
the value. An omitted value composes with an explicit value to preserve the
explicit value. There are no conflicting values to cause an error.

4.4.5 Value composition

Values may need to be composed as initializers for variables, dimensions of
arrays, or default initializers for function arguments. Successful composition
verifies that all alternative contributions have the same or no value, with the
specific value being used rather than the no value. In the case of trees of values
this policy is applied recursively to build a composite tree, by overlaying the lists
at each level to form the longer list with consistent values. At any stage
composition of a value with a different value or list of values is an error.

Conflict is determined by a syntax tree comparison after any tree-literals and
constant values have been resolved. No symbolic interpretation of the syntax tree
is performed, and so a redundant pair of parentheses or the interchange of binary
operands is sufficient to cause a composition failure.

4.4.6 Variable composition

Declarations of (non-array) variables are composed by composing the residual
decl-specifiers as outlined above in Section 4.4.4, and initializers as described in
Section 4.4.5. Any conflict is an error.

4.4.7 Array composition

Declarations of array variables are composed by composing the residual
decl-specifiers as outlined above in Section 4.4.4, and dimensions as described in
Section 4.4.5. Composition of array initializers is performed by filling up a multi-
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dimensional array from [0][0]..., in the same way that a normal C++ initializer
defines its initializers. Each composition continues where the previous one left off;
it does not restart from [0][0]....

The gcc [Stallman98] indexed initializer syntax (Section 3.1.4.2) may be used to
define a specific placement for an initialization value. As a result that it, and
subsequent values in adjacent locations, may provide multiple initializers for the
same array index. These are composed provided the values are consistent as
described in Section 4.4.5. Missing initializers are given a zero value when the
equivalent C++ declaration is emitted for the composite initializer.

The default incremental composition is most useful within the idiomatic loop

class X
{

public static const char *variableNames[];
auto for (iterator p = $variables(); p; ++p)

using variableNames = { ""$p->name() };
using variableNames = { 0 };

};

The first line fully declares an array variable but without a dimension or any
initializers. The loop iterates over the member variables of class X. The body of
the loop contains a re-using-declaration to re-use the array declaration with a single
initializer comprising the concatenation of the empty string and the member
variable name. Each iteration composes the additional initializer with the existing
declaration, so that the array gradually builds up a list of strings. Finally the last
line adds a null terminator to the list.

Re-use of the declaration avoids a potentially conflicting redeclaration, but is not
readily recognisable to C++ programmers. The loop can be specified more
explicitly, saving a line:

auto for (iterator p = $variables(); p; ++p)
public static const char *variableNames[] = { ""$p->name() };

public static const char *variableNames[] = { 0 };

Indexed initializers are useful for applications such as automatically creating an
array of debug text strings from an enumerator.

auto declaration EnumTextArray(name textsName, enum enumDecl)
{

auto for (iterator p = $enumDecl.enumerators(); p; ++p)
using $textsName = { [$p->value()] ""$p->name() };

}

class EnumClass
{

public enum Enums { A, E = 4, F, B = 1 };
};

static const char *enum_names[];
$EnumTextArray(enum_names, EnumClass::Enums);

is equivalent to and eventually emitted as

class EnumClass
{
public:

enum Enums { A, E = 4, F, B = 1 };
};

static const char *enum_names[] = { "A", "B", 0, 0, "E", "F" };

4.4.8 Function composition

Function composition involves composition of residual decl-specifiers, parameter
names, default arguments and function bodies. Composition of non-function-specifier
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decl-specifiers proceeds as above. The composition policies specific to functions
are:

The inline, !inline, inline/interface or inline/implementation
decl-specifiers are composed using a five-valued algorithm. Matching values
compose to preserve the value. An omitted value composes with an explicit value
to preserve the explicit value. Conflicting explicit values are an error, except that
composition of plain inline with the more specific inline/interface or
inline/implementation composes to preserve the more specific value.

The virtual, !virtual and virtual/pure decl-specifiers are composed using a
four-valued algorithm. Matching values compose to preserve the value. An omitted
value composes with an explicit value to preserve the explicit value. Conflicting
explicit values are an error. For the above algorithm virtual/pure may be
explicitly specified as virtual/pure or by use of virtual and a subsequent = 0
pure-specifier. The existence of a corresponding virtual function in a base class is
ignored during composition, however during the compilation phase the virtual
attribute is propagated to derived functions, resulting in an error message for a
conflicting requirement for a !virtual function derived from a virtual function,
and a warning message for a virtual function derived from a non-virtual
function.

Function parameter types do not compose, since distinct types represent distinct
overloaded functions.

Function parameter names compose using a two-valued algorithm. Matching
names compose to preserve the name. An omitted name composes with an
explicit name to preserve the explicit name. Conflicting names are currently an
error. This is a necessary constraint imposed by the potential for re-use of
parameter names by multiple function bodies or derived functions. A less
restrictive implementation should tolerate a local respecification of parameter
names in function bodies and automatic renaming to those in the first declaration.

Default function arguments compose as described in Section 4.4.5.

Constructor initializers compose by gathering all initializers together. Multiple
initializations for the same member variable compose as described in
Section 4.4.5, however since the initializers form part of the function body, they
are guarded by derivation predicates. Disabled initializations are ignored. When
the constructor is emitted, the constructor initializers are emitted in constructor
initialization order using explicit values, where available, with implicit values from
member variable initializers as defaults.

Exceptions

Composition of exception-specifications and function-try-blocks goes well beyond the
considered policies for FOG, and so is an area for further work. It would appear
that exception-specifications for a particular function should just be gathered together
with duplicates discarded. It seems that exception-specifications should propagate up
the inheritance hierarchy to extend non-empty exception-specifications, so that the
exception-specification of a derived virtual function should never be wider than its
inherited exception-specification. This may lead to errors when inheriting from library
classes, whose specifications cannot be changed, but these errors diagnose a
problem rather than imposing a restriction. function-try-blocks should probably just
be concatenated on a per-handled type basis, with handlers organised to ensure
handlers for more derived types precede those for less derived types. It may be
necessary to extend the syntax for a default member-variable initializer to wrap a
try-block around it.

Body

The overall function body is formed from the concatenation of contributions to five
named segments within which contributions are independently composed.



Meta-compilation for C++ FOG Semantics

Page 126 29-June-2001

return-type function-name(function-arguments) cv-qualifiers
exception-specification

{
entry-segment-contribution
pre-segment-contribution
body-segment-contribution
post-segment-contribution
exit-segment-contribution

}

Contributions to each segment are concatenated and by default, contributions are
made to the body segment, so that

void f() { i++; }
void f() { i--; }

composes to

void f()
{

i++;
i--;

}

More explicit control of contributions requires the use of an object-statements-clause
in which the extra annotation syntax does not cause conflicts. The entry and exit
segments are useful for establishing a function framework:

class Manager
{

public Manager() {}
public bool do_it()
:{

entry { bool exitStatus = true; };
exit { return exitStatus; };

};
};

Other sources modules may contribute code. An independent module could
specify:

class Manager
{

private MyContext& _context = MyContext::make(*this);
using do_it { if (!_context.do_it()) exitStatus = false; }

};

Composition of the framework established by entry and exit segments together
with the extra body results in the composed function:

bool Manager::do_it()
{

bool exitStatus = true;
if (!_context.do_it())

exitStatus = false;
return exitStatus;

}

The framework can be extended by any number of independent contributions. The
safety of such extensions is dependent upon their orthogonality. If the
contributions interact, then the meta-compilation source files must be carefully
sequenced to ensure the intended result.

As well as extending the do_it function, an additional member variable was
specified with a default initializer. The composed class therefore looks like:
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class Manager
{
private:

MyContext& _context;
public:

Manager();
bool do_it();

};

The default initializer is automatically supplied for all non-copy constructors:

Manager::Manager()
:

_context(MyContext::make(*this))
{}

The five segments provide sufficient flexibility for many applications, but are not
adequate for all. For instance, wrapping an if around a function body:

void f()
:{

pre { if(...) { } // Not valid in FOG
post { } } // Not valid in FOG

};

requires partial syntax that violates the syntactical requirement for statements.
There is also a parsing ambiguity between { and } as partial syntax and as syntax
structuring. (An earlier version of FOG used \{ and \} for partial syntax and
allowed any list of tokens as a composed contribution.)

The structure of a function body is defined with two levels of indirection through
meta-variables:

auto statement function::value[] = { @function_structure };
auto static const statement token::function_structure[] =

{ @entry; @pre; @body; @post; @exit; };
auto statement function::entry[] = {};
auto statement function::pre[] = {};
auto statement function::body[] = {};
auto statement function::post[] = {};
auto statement function::exit[] = {};

The segment-name/body syntax

derived(is_root()) entry { bool exitStatus = false; };

is therefore syntactic sugar for:

derived(is_root()) auto entry += { bool exitStatus = false; };

in which the internal meta-expression-statement of the form

auto list-name += tree-statement

is used to append the requisite code to the list using the built-in operator+= which
is valid for lists.

An if may therefore be wrapped around the existing body without violating syntax
constraints by:

void f()
:{

auto body = { if (...) @body; };
};

Braces are optional around @body since it is treated as a single statement. The
use of @ rather than $ is very important to defer evaluation until the compilation
phase. A $ would be evaluated when the potential declaration is associated with
an actual function, allowing further potential declarations or meta-programs to
extend the body following, rather than within, the if.
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The global structure of functions cannot be changed by redefining
token::function_structure, since this is a const meta-variable.

The structure of an individual function can be changed by defining
function_structure within an object-statements-clause. Code segments may be
added and removed, but the syntactic sugar for the five built-in segments is
unaffected; user-defined segments can only be extended using an expression
operator such as +=.

Statements can be appended to a segment using += or replaced by just using =.
as in the examples above.

Declaration of a meta-variable as const precludes multiple assignments, and so
may be used to provide some protection against unforeseen activities by
interfering meta-programs. Thus

auto const statement body[] = {};

(re)defines the body segment to be empty, detects an error if the existing content
is anything other than the built-in empty default, and detects an error when any
subsequent attempt is made to change the content.

As semantic analysis and meta-programming proceeds, the meta-objects for each
function build a list of object-statements with their associated derivation
predicates. @-expressions in these object-statements remain unevaluated.

During the compilation stage, classes are compiled in least derived first order, and
individual members of each class are compiled in an unspecified order. The list of
object-statements is scanned in the order in which potential declarations
contributed to actual declarations, with the further inherited lists of object-
statements applied in destruction order: a base-class can therefore wrap code
around its derived implementations predictably.

Historical Note

The multi-pass implementation of FOG was able to, but did not, parse function
bodies which were therefore treated as an arbitrary list of brace-delimited tokens.
Code composition was supported by arbitrary concatenation of such lists giving
total flexibility and anarchy since there was no syntactical constraint upon the
composition, and no discovery of error until a subsequent compilation failed.

The superset implementation parses function bodies and imposes syntactical
consistency for each composition. These constraints provide much needed
integrity and respond to some of the hazards outlined by [Ossher98] and impose
some of the discipline discussed by [Mulet95].

4.4.9 Meta-variable composition

Meta-variables are working variables for use at meta-compile-time. Any
redeclaration of a meta-variable must therefore have the same meta-type and
current value, which in the case of a const meta-variable must be the initial value.

Redeclaration of a const meta-variable with the same value is permitted, although
reassignment of a const meta-variable with the same value is an error.

4.4.10 Meta-function composition

Meta-functions compose in the same way as functions. By default, contributions
are gathered into the body list of declarations. When a meta-function is invoked,
the body returned for incorporation in the invoking context comprises the
hierarchical composition of segment contributions with the formal parameters
replaced by actual arguments.

Declaration of a const meta-function can be used to inhibit a redefinition:
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auto const declaration f()
:{

auto const statement body[] = { /* ... */ };
};

4.5 Meta-classes

Conventional programming involves programs that operate on application entities.
Meta-programming involves programs that operate on program entities: the class,
function and variable declarations that define a program.

In the same way that newcomers to Object-Orientation are easily confused by
loose usage of the terms class, instance and object, newcomers to meta-
programming are easily confused by loose usage of the term meta-class. One
confusion arises because, in Object-Oriented Programming, the phrase is-a
denotes an inheritance relationship, but in meta-programming is-a can
alternatively be used to denote an instantiation relationship. Further confusion
arises because the object models available to the programmer do not correspond
to the underlying abstraction.

The exact one to one relationship between classes and meta-classes in FOG is
easy for the programmer to appreciate and natural to use, but apparently in
conflict with some of the more traditional perspectives of meta-classes and meta-
meta-classes. We will therefore describe the very pure object model exemplified
by ObjVlisp [Cointe87], before describing the C++ model and the enhancements
provided by FOG in order to justify the FOG model.

A very simple three-class hierarchy is shown in the central column of Figure 4.9
in which class X inherits from class Y, and class Y inherits from class Z. Three
Instances of each class are shown stacked to its right with the top instance named
respectively anX, aY and aZ.

An Object Oriented program performs computation as a result of the interaction of
its object instances at run-time, and in the simplest object model, instances have
meaning only as object instances at run-time; classes exist solely as an
abstraction at compile time.

A more sophisticated object model enables the run-time objects to make use of
class information, and in a pure object model, this information is provided by a run-
time object for each class. Each such class object provides a description of the
instances of its class.

Every object must be an instance of some class, so it is necessary to define meta-
classes that are instantiated as the class objects. The meta-classes are labelled

InstancesClasses

aZ

aY

anX

Z

Y

_X X

_Y

_Z

inherits from
 described by

Meta-Classes

Figure 4.9 Pure OO object model
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_X, _Y and _Z in the figure. (If the same description applies to each of X, Y and
Z, then _Z alone is sufficient to describe all classes.)

The pure object model requires a run-time object to describe each of these meta-
classes, and so there are corresponding meta-class objects to describe each
class. A potentially infinite recursion is avoided by ensuring that the instance of
_Z is also a valid description of _Z. Every box in Figure 4.9 corresponds to a run-
time object; vertical arrows denote an inheritance relationship; horizontal arrows
denote an instance-of or described-by relationship from right to left or a describes
relationship from left to right.

The pure object model just described is that of ObjVlisp [Cointe87]. Few other
languages comply to it. Smalltalk provides a similar but more restrictive model; the
meta-classes of meta-classes are not visible [Briot89]. CLOS and SOM provide
considerably more generality. The inheritance relationships of meta-classes and
classes need not correspond. This leads to a number of significant compatibility
issues [Graube89], whose resolution seems to create further problems
[Danforth94], [Forman94].

Meta-classes were originally introduced for languages such as CLOS to assist in
the construction of instances whose layout was entirely defined at run-time. More
efficient languages such as C++ or Eiffel define object layouts at compile-time and
compiler writers have no need to provide meta-classes. The available facilities in
C++ are limited.

The C++ components corresponding to Figure 4.9 are shown in Figure 4.10. The
instances in the right hand column comprise

• a contiguous piece of memory for the member variables

• a hidden pointer to the instance description often called vptr,
which has been arbitrarily labelled -rtti-

Each class (and meta-class) ‘object’ comprises a potentially contiguous area of
memory containing the compiler generated run-time type information as an
instance of std::type_info, and generally discontiguous areas of memory for
the static member variables and functions.

Most of the behaviour of std::type_info is implementation defined, but it will
typically comprise

• a pointer to the class description (-rtti-)

• a list of base-class instance descriptions (-bases-)

• a class name

• a dispatch table for virtual functions (-vtable-).

Very limited functionality is exposed for the std::type_info class, whose sole
instance both describes and is an instance of the std::type_info class. This is
the only meta-class in ISO C++, although a more substantive facility was proposed
by [Buschmann92] during the standardisation process.

The class object of any suitable type T is returned by the typeid(T) operator. The
solitary meta-class object is returned by typeid(typeid(T)) or just
typeid(std::type_info).

Class variables

The symmetry of Figure 4.9 and the presentation in Figure 4.10 implies that the
class variables (static member variables) form a logical part of their corresponding
class object. This follows postulate 6 of [Cointe87] that the class variables of an
instance are the instance variables of its meta-class. However, in common with
many programming languages, C++ does not require the programmer to
distinguish between use of class variables and instance variables. This
programming convenience leads to some confusion between class and instance
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meanings, and undermines the pure perspective of the meta-class structure. The
class variables are logically shared parts of each instance. The alternative
detailed presentation of Figure 4.11 and its simplified presentation in Figure 4.12

is more appropriate. All visible names now appear in one rather than two columns.

At the source level, a member of a class or instance is accessed by name. The
access is resolved by consulting the instance description5 to convert the name
into the address of a variable or function. In C++, this conversion process is almost
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entirely performed at compile-time; those few conversions that cannot be
completely resolved at compile-time are partially resolved as fixed indexes that
index the -vtable- at run-time. The -vtable- is all that remains of the more
general name to address conversion table required by less compiled languages.

Seen from this perspective, class variables and instance variables differ in their
access policy, but share the same name-space. Each class variable exists with a
1:1 relationship to a class, and is accessible by name from that class, and derived
classes. However, there is no reason for class variables to be grouped as an
object, and in C++ they are not. It is in fact impossible to group class variables as
a contiguous object, since shared class variables cannot be adjacent for more
than two distinct derived classes.

When class variables are accessible with respect to instances, there is no reason
for them to be accessible with respect to their classes as well, and again in C++
they are not. However, the symmetrical interpretation, in which class variables are
the instance variables of their meta-classes, requires that they are accessible with
respect to instances and classes and so blurs the distinction between meta-levels
[Maes87].

Therefore names of class variables (and functions) are visible in the instance
description (the conventional name-space for access with respect to instances),
but are omitted from the class description (the meta-namespace for access
relative to instance meta-objects (classes)).

Compile-time object model

The run-time object model of Figure 4.11 is redrawn without the clutter and
without inheritance in Figure 4.12.

Programming normally operates using the multiple instance objects of each class
shown in the right-hand column. Static and non-static member functions and
variables share the same name-space. The hidden -rtti- pointer identifies the
run-time type information description of the instance. Invocation of typeid()

5. An instance description is a description of the names visible in an instance (on
Figure 4.11 and Figure 4.12. A “class description” misleadingly refers to the
wrong meta-level.

run-timemeta-meta-level

instance description

instance meta-object (class object)

-rtti-

member variables
-rtti-

instance object

static member functions

static member variables

member functions

class description

instance meta-meta-object (meta-class object)

-rtti-

static member functions

static member variables

member functions

meta-levelmeta-meta-meta-level

Figure 4.12 C++ Run-time object model
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shifts the programming perspective to the meta-level, where only the members of
the typeinfo instance describing the class are visible. A further invocation of
typeid() shifts to the meta-meta-level and since typeinfo is its own meta-class,
only its members remain visible.

The corresponding compile-time programming model for FOG is shown in
Figure 4.13.

A meta-level instance at compile-time (Figure 4.13) has instance variables and
functions, as well as class variables and functions in just the same way as an
instance at run-time (Figure 4.12) has instance (member) variables and functions
and class (static member) variables and functions. The class meta-object
members are referred to as (non-static) meta-members and static meta-members
by direct analogy with (non-static) members and static members.

Each class declaration forms part of a class meta-object that also comprises
meta-variables and a description of the run-time instance objects. The very right-
hand ‘level’ corresponds to the normal run-time perspective, in which a small
amount of the instance description maintained by the class meta-object is
provided as the run-time-type-information of the class object. This level does not
exist at compile-time.

Meta-programming occurs at the meta-level where the description of objects
(member names and types) is available as well as the meta-members of the meta-
class. The -ctti- counterpart of -rtti- identifies the describing meta-object.
The class description describing an instance meta-object contains the full
mapping from names to built-in and user-defined meta-functions and meta-
variables, rather than the highly optimised -vtable- in the run-time type
information.

Instance meta-objects are instances of class or class_specifier meta-types.
Class and meta-class meta-objects are instances of the meta_type meta-type.

In the same way that typeid() shifts the perspective to the left in the run-time
diagram, the meta_type() built-in member function shifts the compile-time

meta-meta-meta-level meta-meta-level meta-level

Figure 4.13 FOG Compile-time object model
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perspective to the left. Whereas the typeid of a run-time class is type_info, the
meta-type of a compile-time meta-object is meta_type.

The meta-class

The compile-time representation of a class comprises two meta-objects, one class
meta-object to describe the class, and one instance meta-object to describe run-
time instances. Since these two meta-objects have matching inheritance and
always exist as a pair, it is convenient to regard the pair of meta-objects as a
single object, which may be safely but loosely referred to as the meta-class.

Other meta-types

Figure 4.13 is drawn for the meta-objects describing classes and their instances.
The same diagram applies for all meta-objects, replacing ‘instance’ by the meta-
object category. However, only variables, functions, meta-variables and meta-
functions have their own user-defined meta-functions and meta-variables.

A function meta-object, of meta-type function or function_specifier, contains
a function description (the parameters). The corresponding function meta-meta-
object contains the mapping of all meta-names applicable to the function including
any meta-variables defined within an object-statements-clause. The function body is
indirectly defined via the value meta-variable.

Similarly, but taking care to use distinct terminology, a meta-function meta-object,
of meta-type meta_function or meta_function_specifier, contains a meta-
function description (the parameters). The corresponding meta-function meta-
meta-object contains the mapping of all meta-names applicable to the meta-
function including any meta-variables defined within an object-statement-clause. The
meta-function body is indirectly defined via the value meta-variable.

The distinction between meta-functions and function meta-objects is shown in
Figure 4.8 on page 104.

Meta-inheritance

C++ supports instance objects and, to a limited extent, class objects at run-time.
FOG extends C++ to support class objects and, to a limited extent, meta-class
objects at compile time. FOG provides a meta-class for every class and built-in
type. The inheritance of meta-classes mirrors that of the class hierarchy, so that
the base meta-classes of every meta-class are the meta-classes of the base
classes of the corresponding class. Every meta-class without any other base
meta-classes automatically inherits (virtually) from the built-in meta-class ::auto.
Additional meta-inheritance may be specified by using the auto keyword as an
access-specifier. The inheritance and meta-inheritance for

class Base {};
class Derived : public Base, auto char {};

is shown in Figure 4.14. With the exception of meta-inheritance from ::auto
which is always virtual, meta-inheritance is defined by the virtual keyword. A
virtual meta-class appearing more than once in the meta-inheritance hierarchy
only contributes one set of meta-variables.

4.6 Meta-programming

The description of compilation stages in Section 4.1 identified the different
contexts in which meta-programming can occur.

A parasitic form of meta-programming occurs through augmented behaviour
during semantic analysis and compilation as tree-literals are resolved. However,
even allowing for the extra flexibility provided by derivation rules, this behaviour
constrains the actions of meta-programming to be closely correlated with the
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corresponding timing of compiler activity. This is adequate for simple elaboration
of declarations, but a poor foundation for a meta-program where the programmer,
rather than the meta-compilation system should determine the sequencing.

FOG therefore provides additional compilation stages in which the programmer
has greater control. The meta-construction provides an opportunity for algorithms
that operate on meta-classes to be activated in a base-functionality first order
analogous to construction, with meta-destruction providing a similar opportunity
in base-functionality last order analogous to destruction. In addition the meta-
main stage provides the programmer with no sequencing assistance or
constraints.

meta-construction

During the meta-construction stage, the meta-constructor of each class (including
built-in types) is invoked once in a least-derived first order. Programs may supply
code for execution during this stage by declaring a meta-constructor:

auto MyClass::MyClass()
{

/* meta-program */
}

This code is composed with any other definitions of the same meta-constructor.
Such composition includes inherited contributions, which are executed first in
accordance with the normal principles of constructors. Since everything inherits
from the auto class, definition of a meta-constructor for auto provides a
mechanism for executing a meta-program in all classes.

meta-main

The meta-main stage consists of execution of all definitions of:

auto void main()
{

/* meta-program */
}

in the order in which the declarations are encountered.

meta-destruction

The meta-destruction stage mirrors the meta-construction stage. The meta-
destructor for each class is executed once, again in least-derived first order, but

Figure 4.14 Inheritance and Meta-inheritance
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with inherited contributions executed after local contributions in accordance with
destructor principles.

Integrity

It has been recognised [Chiba96] that the operation of two apparently independent
meta-programs on the same program can lead to poorly defined behaviour. For
instance, a problem can arise even with two very simple meta programs which

• add a diagnostic print-out to every function to create a call-trace

• add a check_invariant() and invocation from each non-const function

Whether a diagnostic print-out is added to the check_invariant() routine
depends upon the application order. Whether such a print-out should be added is
a subtle user preference.

The distinction is fairly trivial in this example. The distinction is critical for
applications that involve synchronization or persistence, since functions or
variables added by meta-program A after the class structure has been analysed
by meta-program B may not be subjected to a re-analysis by meta-program B.

The problem is largely ignored in practical reflective systems. It is assumed that
the meta-programmer will coordinate multiple meta-programs. The theoretical
problem is addressed by the reflective tower [Smith84], in which each level6 of
reflection defines a new language for the level above that hides the language of
the level below. The rather impractical need for a distinct representation of each
object at each level is described by [Chiba96].

The three stages offered by FOG perhaps represent a pragmatic compromise and
symmetry with run-time concepts of static-construction, main-program and static-
destruction. During the meta-construction stage, actual declarations are in a
highly unstable state, since further meta-programming may provide additional
declarations. It is therefore unwise to place any code in a meta-constructor that
browses child declarations. Meta-construction code should consist only of
definitions. Browsing meta-programming should be implemented in meta-
destructors, and meta-programs should avoid creating new declarations during
meta-destruction in order to support consistent behaviour by other meta-
destructors. Meta-destructors should only elaborate and compose with existing
declarations. The meta-main stage is not strictly necessary, however it avoids the
need for relatively arbitrary meta-programs to be constrained by the invocation
mechanisms of meta-construction or meta-destruction.

The non-trivial examples in Chapter 7 make extensive use of the meta-
construction and meta-destruction phases to realise each example. It would
appear that the two traversals of the tree of program declarations are insufficient
to support multiple meta-programs.

It is essential for all of one meta-program to execute before any of the next, since
use of just the meta-construction and meta-destruction phases requires
interleaved meta-program execution as the inheritance hierarchy is descended.

In principle, the problem of many meta-programs can be directly resolved by
multiple meta-main programs, each of which perform a hierarchical traversal
starting with an iteration over ::all_classes(). However this requires the
source declarations to be presented in the correct order. A slightly less direct
approach could support registration of activities as one or more lists of meta-
functions during meta-construction. These lists could then be serviced by meta-

6. A level of reflection, counting the number of layers of language elaboration
provided by meta-programming, should not be confused with a meta-level,
counting the number of levels of description for instance, meta-instance/class,
meta-meta-instance/meta-class, ...
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main. This indirection provides some opportunity for programmed prioritising,
rather than source file sequencing, to determine the behaviour.

Identifying a more direct mechanism for specifying multiple meta-programs and
their sequencing dependencies is an area for further work. This could tie in to
consideration of user-defined meta-types, for which the current use of meta-
constructors and meta-destructors for compilation stages rather than meta-type
maintenance could be embarrassing.

4.7 Syntax macros

The superset parsing approach described in Chapter 5 isolates the syntactic and
semantic analysis stages. This supports an implementation in which all syntactic
processing completes before any semantic processing starts. However, enforcing
this isolation prohibits any syntax dependency on semantics, and unfortunately
prevents the definition of syntax macros, since resolving the definition of a syntax
macro is a semantic activity.

It is important to distinguish the C++ syntax macro problem from the equivalent
Lisp problem. Lisp has a very disciplined lexical structure, in which the program
tree structure is represented by parentheses in the source. It is therefore easy for
a Lisp preprocessor to manipulate its syntax trees, since they can easily be
identified. There is no equivalent underlying lexical structure in C++, not even {}
are predictable,

namespace X {} // } completes a {} construct
struct X {} a; // ; completes a {} construct
if (a) {} // } sometimes completes a {}
if (a) {} else if {b}; else; // construct except when ...
do {} while(); // {} may be mid-construct
for ( ; ; ) {} // ; may be in a strange place

Identifying a C++ construct cannot be reliably performed by a simple
preprocessor, unless that preprocessor has such a substantial understanding of
C++ syntax, and indeed semantics, that it cannot really be regarded as a simple
preprocessor. Section 5.4 describes how early attempts to implement FOG in
preprocessor style failed through lack of adequate language comprehension.

In Lisp, a syntax macro can be defined and exploited by a preprocessor. In C++,
definition and exploitation of the syntax macro must be integrated with the
language.

A syntax macro supports (or rather gives the illusion of supporting) user-defined
language extensions7. Such an extension could in its general form support
arbitrary additional syntax so that:

with counter from 1 to 100 step 5 in { sum += $counter; }

could be recognised as an alternate way of writing

for (int counter = 1; counter < 100; counter += 5)
{ sum += $counter; }

More practically syntax macros should support what appear to be extra
decl-specifiers

synchronized class MyClass
{

persistent int _count;
};

so that programmers appear to use an extended language, although the
synchronized and persistent extensions are realised by meta-programming in

7. The extensions are shown by italicizing the type-writer font.
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a standard language. The example is clearly more readable than the functionally
equivalent:

$synchronized(class MyClass
{

$persistent(int _count);
};)

In both cases application meta-functions are invoked to support the concepts of
multi-process synchronisation or data-base persistence. The syntax macro
approach has the advantage of offering a much more acceptable programming
interface.

Implementation of a syntax macro requires the trigger word (persistent) to be
recognised in order to perform the appropriate syntactical parse.

Recognition of the trigger word in an unconstrained context requires the trigger
word to become a new reserved word, introducing the problems of conflicting
usage and unwanted replacement associated with the C preprocessor.

Alternatively, recognition of the trigger word within a restricted syntactical context
imposes the implementation problem of executing yacc at compile-time to
generate an updated syntax analyser, and the practical problem of enabling the
application programmer to understand the shift-reduce conflicts associated with a
proposed macro. Resolution of these conflicts is unlikely to be portable. The
complexity of generating and diagnosing an updated analyser at compile-time are
inappropriate for a language with as difficult a syntax as C++.

A potential solution to the problem of conflicting name capture lies in the use of
the C++ name hierarchy. A syntax macro could be defined within a namespace or
class and would only be a reserved word within that namespace or class.
However this approach has two problems:

A reserved word does not necessarily occur lexically within its class:

persistent int MyClass::_status;

would have to be written:

class MyClass
{

persistent int _status;
};

This is inelegant but could perhaps be tolerated.

The class may be indeterminate:

$do_something(class MyClass
{

persistent int _status;
};
);)

Since the context of MyClass is undetermined, it cannot be known whether
persistent is a scope-dependent reserved word and so syntactic analysis is not
possible.

This is also inelegant and could perhaps also be tolerated, but the first example
indicates that scope-specific syntax macros do not extend C++ comfortably. The
second example shows an incompatibility with other FOG concepts.

A syntax macro must therefore be scope-independent, and so have the same
status as any other reserved word. Syntax macros should be restricted to
applications where the benefit of the cleaner invocation far outweighs the hazards
of the introduction of a global name.

Definition of a syntax macro should integrate with the rest of the language, and
necessarily occurs at global scope. However, usage of a syntax macro requires



Meta-compilation for C++ FOG Semantics

Page 140 29-June-2001

semantic analysis of its definition to have been completed. Therefore preserving
the implementation option of completing syntactical analysis before starting
semantic analysis requires semantic analysis of syntax-macro-definitions to occur
during syntax analysis. Syntax macro definitions therefore have a distinctive
syntax to facilitate this special treatment.

Although definition of a syntax macro can be regarded as a preprocessing activity,
its exploitation occurs in conjunction with the subsequent compilation activities.

syntax-macro-definition:
explicit auto meta-type identifier ( syntax-macro-parameter-listopt ) exposed-treeopt

compound-tree-statement

syntax-macro-parameter-list:
syntax-macro-parameter
syntax-macro-parameter-list , syntax-macro-parameter

syntax-macro-parameter:
meta-type identifier exposed-treeopt
identifier
reserved-word
punctuation

The further overloading of explicit and auto is unpleasant and only slightly
mnemonic. Introducing a new reserved word such as syntax would be better.

Declaration of a syntax-macro declares the identifier to be a reserved trigger word
for a sentence that should satisfy the meta-type syntax. The syntax to be accepted
by the parser comprises this trigger word followed by the sequence of syntax-macro-
parameters, which comprise expected syntax elements and further words or
punctuation which are temporarily reserved between recognition of the trigger
word and detection of the end of the syntax.

It is a slightly surprising but fortunate accident that this syntax supports
specification of any combination of intervening punctuation including , or ). Thus
the syntax-macro to intercept and pack a fractional coordinate such as

pt(0.5, -0.7)

could be specified as

explicit auto expression pt( (
, assignment_expression8 x
, ,
, expression y
, )
)

{ (int(32768 * $x) << 16) | (int(32768 * $y) & 0xFFFF); }

using an overline to distinguish tokens defining the structure of the definition from
those parameterising the definition.

The above definition makes pt a reserved word throughout the rest of the
program. Once the reserved word is recognised, its literal arguments are given a
temporarily reserved status. These are the punctuation comma and ), following pt
(or from, to, step, in following with in the earlier example). The temporarily
reserved status ensures that separators are treated as separators, giving a well-
defined, if not necessarily flexible behaviour. Premature recognition of the comma
as a separator in

pt(pow(1,2), 0)

will give a potentially confusing error diagnostics from arithmetic on "pow(1", even
if no earlier confusion was caused by the trailing ", 0)". Syntax macros are
perhaps best restricted to single arguments that comply with a C++ construct,.

8. assignment_expression rather than expression is necessary to ensure that
pt(0,0) is not treated as pt((0,0) *missing*), since 0,0 is an expression.
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Overloading is permitted, subject to the constraint that the set of temporarily
reserved tokens is the union of all syntaxes triggered by the overloaded trigger
word. In the following example with single arguments, there are no separator
tokens, so there are no temporarily reserved tokens to cause confusion.

explicit auto variable_specifier persistent(variable_specifier v)
{

$v;
/* additional meta-programming using $v */

}

explicit auto class_specifier persistent(class_specifier c)
{

$c;
/* additional meta-programming using $c */

}

Syntax-macro parameters are identified one at a time. For each parameter, a one
token lookahead is used to see whether the explicit identifier, reserved-word or
punctuation requirement of a parameter can be satisfied. If satisfied, the lookahead
is discarded, overload alternatives without explicit requirements are discarded
and the scan continues looking for the next parameter. When no explicit
requirement can be satisfied and a meta-typed parameter is required, a recursive
syntactical analysis is invoked to locate a generic syntax element. Overload
alternatives that the generic element satisfies are retained. Eventually:

• no alternatives remain:
a syntax error has been detected

• one alternative remains and it requires no further parameters:
the syntax-macro arguments have been successfully identified

• more than one alternative remains:
an ambiguous invocation has been detected

The temporarily reserved words are restored to their previous status after
processing of the syntax macro. This may still be a reserved status since syntax
macros can be invoked recursively.

Care should be exercised in the use of { } and ; as specific punctuation since
FOG uses these for recovery from syntax errors, which may be hampered by
unconventional usage of these tokens.

A syntax-macro is functionally the same as a meta-function. It differs only in its
invocation mechanism. A meta-function invocation has a trigger operator ($ or @)
and an expression identifying the meta-function name followed by parenthesised
comma-separated generic syntax elements. A syntax macro has a trigger word
identifying the macro followed by a sequence of user-defined punctuation,
(temporarily) reserved words and generic syntax elements.

The foregoing description has been implemented in so far as FOG is able to
perform the syntactic analysis of syntax macro definitions, including the pt
example above. Meta-functions have also been implemented, so there is a
relatively small gap to bridge to activate the alternative invocation mechanism,
particularly for the simple case of single argument macros. Resolution of
overloads and multiple separators is not particularly difficult, however it is clear
that the lack of an underlying lexical C++ structure imposes severe limits upon the
useful complexity of multi-argument syntax macros. Implementing this and
assessing the utility is an area for further work.

4.8 Summary

We have described the FOG compilation activities and the transformation of
source declarations to potential declarations, at which level meta-programming
and composition can operate before conversion to the actual declarations that are
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emitted as C++ declarations. We have shown how meta-types act as a syntax
predicate and justify the polymorphic treatment of a single meta-type with a tree
of the same meta-type, supporting meta-programming over useful program
structures.

Alternative models for macro substitution have been examined and the choice of
syntax level substitution in FOG justified. The rationale for treatment of a tree-
literal as an identifier has been given.

The C++ name-spaces have been described. The new meta-name-space has
been related to the run-time name-space, with usage within auto statements or
tree-expressions. A multi-$ invocation has been provided to resolve lexical
scoping problems and the FUNARG problem. The need for the built-in meta-
function parameters Dynamic, Static has also been given.

Composition rules have been provided to define the behaviour once the C++ One
Definition Rule has been relaxed so that it applies only at the output from FOG.
Some of the hazards of ill-disciplined function body composition have been
addressed by the use of token lists.

The general concepts of meta-classes have been reviewed in order to establish
the C++ perspective and show how FOG provides a consistent compile-time
generalisation of meta-classes and other meta-types.

The need for flexible meta-programming has been motivated and solutions
provided by meta-construction, meta-main and meta-destruction compilation
stages.

Finally, the difficulties of implementing syntax macros in C++ have been
considered, and a proposal described that works reasonably, at least for single
argument macros.



Parsing Meta-compilation for C++

29-June-2001 Page 143

0 5 Parsing

This chapter deals with the practical problems encountered during the
development of the parser for FOG, and the reasons for the solutions adopted.
The problems and solutions, while motivated by the needs of FOG, are almost
entirely concerned with C++. This chapter therefore concentrates on the C++
perspective, so that readers only interested in the analysis and techniques for
analysis of C++ syntax and the novel C++ parsing approach may read this chapter
in isolation.

Readers particularly concerned about C++ language details may care to browse
the on-line penultimate working draft [C++96] of [C++98] at

http://www.maths.warwick.ac.uk/c++/pub/wp/html/cd2

or print off a copy of Annex A from

http://www.maths.warwick.ac.uk/c++/pub/dl/cd2/CD2-{PDF,PS}.tar.Z

Overview

Traditional approaches to parsing C++ make use of semantic (type-name and
template-name) knowledge during the lexical and syntactical analysis stages.
Meta-programming in FOG can involve manipulation of declarations before type
and template information is available. A traditional approach to parsing C++ will
therefore not work for FOG, so a new superset approach is necessary.

The superset approach involves identifying a larger language than C++ that can
be parsed without semantic knowledge. The traditional declaration/expression
ambiguities are unambiguous in the larger language, and so their resolution can
be deferred until the semantic analysis that performs the narrower C++ analysis.
This approach is then able to operate without type-name information

A lack of template-name information is more disruptive, and so another new
approach is required. This involves a potentially brute force search of all the
template/non-template alternative parses until a syntactically consistent parse is
found. This search is shown to incur only minor costs in practice, and a simple
implementation of the search is provided by introducing back-tracking without
modifying yacc/bison. The rare discrepancy between a syntactically consistent
and the semantically correct interpretation is able to be deferred until the C++
semantic analysis, at which point minor corrections produce the required parse.

The combination of these two new approaches enables the different parsing
stages to be isolated. Lexical analysis is performed using a very simple lex
grammar, that makes use of no syntactical or semantic knowledge. Syntax
analysis is performed with a yacc grammar that is smaller and closer to the
language standard than traditional grammars. Since the grammar does not use
semantic knowledge, it does not suffer from the problems of potentially infinite
lookahead to resolve types that normally arise. The final semantic analysis occurs
within the context of the Abstract Syntax Tree that represents the entire program,
so the analysis may be coded in a natural style, rather than within the tight
confines of parser action routines that have only limited context and must not
provoke shift-reduce conflicts.

A further innovation extends the regular expression notation so that complex
productions from the C++ grammar can be analysed and the ambiguities deduced.

Chapter Summary

The traditional technology, structure and terminology of a compiler are briefly
outlined in order to provide some grounding for readers not well-versed in compiler
fundamentals. The dragon book [Aho86] is the recognised authority.
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Typical approaches to parsing C++ are discussed, the choice of parsers available
as a basis for the FOG parser is reviewed and then the evolution of FOG from a
very simple to fully fledged parser is described.

The potential and actual ambiguities encountered by a C++ parser are analysed,
by way of demonstrating an extended form of regular expression notation that
supports reasoning about grammars.

The syntax generalisations of the superset grammar are described and the new
notation is then used to justify the soundness of the superset parsing approach,
which solves the need for type information. The use of back-tracking in bison is
then described to solve the need for template information.

A few details of the code structure are provided to demonstrate the high degree of
isolation between the parsing stages.

Finally some size metrics are produced to compare the new C++ parsing
approaches against other approaches and estimate the extra cost of the FOG
enhancements.

5.1 Terminology

Figure 5.1 is based on Figure 1.9 of the dragon book [Aho86]. It shows the typical

components of an application that translates a source program into a target
program.

Successive stages of analysis extract the meaning of the source program,
enabling an intermediate representation to be built, optimised and then converted
to the required target program. A symbol table maintains information to be shared
between stages. The error handler supports generation of error messages in as
helpful a fashion as possible.

The analysis is broken into three stages. The lexical analysis identifies and
validates individual lexemes (words), the syntax analysis identifies and validates
grammatical constructs (sentences), and the semantic analysis validates the
meaning of each construct within a wider context.

Lexeme is the normal term for the product of lexical analysis. The same concept
is more commonly referred to as token in the context of syntax analysis. Syntax

lexical analyzer (lexer)

semantic analyzer

syntax analyzer (parser)

intermediate code generator

code generator

code optimizer

symbol-table manager error handler

source program

target program

Figure 5.1 Compiler Translation Stages
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presents the greater technical challenge and so the term token is preferred in this
thesis.

In C and C++, the preprocessor provides additional translation. It may be
implemented as a separate program, or as an additional stage between lexical
analysis and syntax analysis. The C++ standard treats the preprocessor as an
extra stage and uses the term preprocessor token to describe a lexeme that
passes from lexical analysis to preprocessor, and the term token to describe a
lexeme passed from preprocessor to syntax analyser.

Lexical and syntactical analysis were once the hardest parts of a compiler to write,
however with the advent of standard lexer and parser generator tools, these
stages are now relatively easily automated.

The lex program converts a grammar specification in the form of a number of
regular expressions into a state machine or DFA (Deterministic Finite Automaton)
that accepts characters one by one from a source file and emits a lexeme for each
analysed word. lex [Lesk75] is the standard tool. flex [Levine90] is a more polished
version distributed as part of the GNU tool set.

The yacc program converts a grammar specification in the form of BNF rules into
an LALR(1)1 parser that demands lexemes one by one from the lexer and invokes
action routines as each parsing rule is satisfied. yacc [Johnson75] is the standard
tool. bison [Levine90] is a more polished version distributed as part of the GNU
tool set.

The flex++ [Coëtmeur93b] and bison++ [Coëtmeur93a] variants were used for
FOG. The variants encapsulate the generated lexer or parser as a C++ class, and
so readily support multiple and re-entrant lexers and parsers. FOG uses one lexer
grammar, four (tiny) parser grammars for ANSI C preprocessing and one (huge)
parser grammar for extended C++ parsing. Deferred character-level substitution
by std::parse allows lexer and parser to be re-entered during meta-compilation.

The operation of the state machine generated by an LALR parser is extremely
simple comprising just four actions for each possible next token.

• accept the token as the termination of a sentence in the grammar

• reject the token as inconsistent with any sentence of the grammar

• shift to another state, deferring any decision

• reduce following recognition of a rule

Parser generators allow application code to be supplied for execution when a rule
is recognised. This code will typically create a data structure that describes the
information that has just been parsed. In compiler applications, these data
structures are highly recursive and well represented by a tree structure. The
structure is called an Abstract Syntax Tree.

In the following very simple yacc grammar, there are 7 rules leading to 4
productions. Each (production or reduction) rule has a non-terminal at its left-hand
side and may use terminals or non-terminals on its right-hand-side. Identifier
and '*' are terminals.

term: Identifier { $$ = create_identifier_node($1); }
| Number { $$ = create_number_node($1); }

product: term { $$ = $1; }
| product '*' term { $$ = create_multiply_node($1, $3); }

1. Parsing algorithms are categorised as LL “Left-to-right scanning of input, Light-
most derivation”, LR “Left-to-right scanning of input, Right-most derivation in
reverse”, and LALR(k) “k token Look-Ahead, Left-to-right scanning of input, Right-
most derivation in reverse”. Handwritten parsers are typically LL. LR parsers are
more powerful than LL, but need to be machine generated. Standard tools such
as yacc and bison pursue the more compact LALR(1) approach.
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expression: product { $$ = $1; }
| expression '+' product { $$ = create_sum_node($1, $3); }

grammar: expression ';' { $$ = $1; }

There are two rules for the production of a term. One from an Identifier and
one from a Number. A create_xxx routine is associated with each rule using the
special $n variables to access inputs, and $$ to propagate a result.

The source sentence

a + b * 5 ;

is parsed to create the AST

Shifts occur to advance to states that reflect a partial parse following each of +, b
and *. Reductions occur as each rule is recognised

• one reduction after the a

• one reduction after the b

• three reductions after 5, for each of the rules

- Number to term

- product * term to product

- expression + product to expression.

Each of these reductions activates the application code that creates the AST
nodes. Once the external textual representation has been converted to an internal
AST form, the program can be manipulated by compilation code to perform
whatever checking, correction, rearrangement or optimisation is necessary to
perform the translation.

An unambiguous grammar provides for only one possible parse tree for a given
input, although a potentially infinite amount of lookahead may be required to
distinguish between alternative partial trees for partial inputs. Conflicts arise from
an attempt to distinguish alternatives prematurely. A reduce-reduce conflict arises
if there are two alternate simplifications available. A shift-reduce conflict arises
between an elaboration and a simplification of context.

A parser generator has a policy by which conflicts are resolved to produce a
deterministic, although not necessarily useful parser. The default resolution of
conflicts may be controlled by the programmer using the concept of precedence.
The name reflects its original use to resolve precedence problems with arithmetic
operators. The concept is of more general use. A special %prec non-terminal may
be used to specify resolution of a conflict.

Translation programs are frequently presented with source files containing errors.
As many of these errors as possible should be detected and diagnosed in a helpful
fashion. It is rarely acceptable for a translator to just stop and report that a “parse
error” has been encountered somewhere. The analysis must therefore continue
after an error has occurred. In support of this philosophy, yacc suspends analysis
and generates a special error token when an error is encountered. A carefully
written grammar can make use of error to control resumption of the analysis.

*

+

number
5

identifier
a

identifier
b

Figure 5.2 Abstract Syntax Tree
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5.2 Approaches to C++ Parsing

An LALR(1) shift-reduce parser generates a table driven parser for an
unambiguous context-free grammar, subject to the requirement for detection of
the right-most edge of a grammar production with 1 token of lookahead. The C++
grammar is ambiguous, context-dependent, and potentially requires infinite
lookahead to resolve some ambiguities:

int(x), y, *const z; // int x; int y; int *const z;

Is a comma-separated list of declarations in which the first is redundantly
parenthesised, whereas changing the final list element:

int(x), y, new int; // ((int(x)), (y), (new int));

gives a list of expressions, the first two of which are redundant, and the third
causes a memory leak.

Other ambiguities are resolved by the language definition:

int(x), y, z = 0; // int x; int y; int z = 0;

This could be an expression too, but isn’t. It may not be possible to determine the
meaning until a potentially infinite amount of further source text has been
analysed.

An LALR parser is not an obvious match to these requirements. However the
alternatives are worse. A (bottom-up) LALR parser is faster and more compact
than an LR parser, and able to handle all grammars that could be handled by a
simpler (top-down) LL parser, and so the most widely used parsers are based on
LALR(1).

In order to satisfy the constraints of an LALR(1) parser, the ambiguities, context
dependence, and lookahead problems of C++ must be resolved.

The dragon book [Aho86] recognises that the boundaries between lexical,
syntactic and semantic analysis are not clear cut.

Traditional C++ approaches seek a correct high resolution parse. As a result, the
boundary between syntactic and semantic analysis has to be shifted to exploit
semantic information during syntactic analysis by the parser and to leak semantic
information through to the lexer. Use of semantic information during syntactic
analysis requires very tight coupling to ensure that scope context is honoured and
that changes of name visibility in mid-statement are correct. [Roskind91] provides
a particularly unpleasant example where a change of classification midway
through an apparent declaration leads to a contradiction, that is only resolvable
as an expression.

The two variants of the new parsing approach described in this chapter do not
move the boundary. The parser proceeds without full semantic knowledge and
produces a result that is syntactically consistent, but sometimes semantically
incorrect. An additional pass is therefore added to the semantic analysis to correct
the inaccuracies of the syntactic analysis.

The advantages of this approach are:

• elimination of type (and template) tagging

• much simpler grammar that more closely follows the standard

• clear separation of syntactic and semantic processing

• conversion of syntactic ambiguities to semantic ambiguities

- disentangles resolution from grammar implementation

• conversion of syntactic errors to semantic errors

- avoids some losses of synchronization
- provides more opportunities for helpful error diagnostics
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• probably very slightly smaller code size

- more functionality to be coded
- simpler context for the code

The disadvantages of this approach are:

• introduction of new ambiguities

• an additional semantic correction pass

• additional semantic validity checking

• probably very slightly slower

- more functionality to be invoked
- more functionality to be executed
- simpler context for the code

Two variants of the approach are described. The previous implementation
(available on the net in the v1 subdirectory) uses multiple passes to resolve
ambiguities. The current implementation (available on the net in the v2
subdirectory) uses a superset grammar approach enabling operation without type
or template information, as is necessary to support meta-programming
consistently (Section 4.2.3).

The context-dependencies of C++ are described in detail in Appendix F.2.1.

5.3 Alternatives

Before developing the FOG parser, a brief review of the available alternatives was
made. These alternatives are described in this section, along with two others that
were not known at the time. Unfortunately, the developers of commercial C++
compilers do not make their parsers freely available in the public domain, and so
the many proprietary implementations cannot be considered. However,
comparison of the public domain approaches is sufficient to shed useful light on
the difficulties.

5.3.1 Roskind grammar

A yacc-able C++ 2.1 grammar was made available by Jim Roskind [Roskind91].
This grammar dates from 1991 and has not been updated to handle C++ facilities
such as templates or exceptions foreshadowed by the ARM [Ellis90], or to
incorporate concepts such as bool and namespace added during standardisation.
The paper accompanying the grammar provides a very insightful discussion into
the source of the parsing problems and some rather pathological examples, whose
correct interpretation is debatable.

The grammar resolves context dependence by a “lex hack”, so that the lexer
classifies identifiers as either IDENTIFIER or TYPEDEFname. The paper notes
the need for another such hack to resolve template names.

The grammar is no more than a grammar. There is no action code to react to
successfully analysed constructs, and only dummy hooks at the places where
symbol table maintenance must be performed. The grammar code has no error
recovery.

Ambiguities are resolved but are not removed from the grammar code. Some
ambiguities are eliminated by rewriting parts of the grammar. Others are carefully
analysed to ensure that the default ambiguity resolution policy of the parser
generator chooses the required alternative.

Some potential lookahead problems are resolved by structuring the grammar code
to recurse on the right-hand side, or by flattening out, in each case deferring
reductions until more context has been seen. Other lookahead problems are
resolved using the disambiguation policies of the previous paragraph. Further
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problems could have been resolved by more flattening, but were perceived not to
merit resolution while there was a possibility that the C++ grammar could change.

The grammar has a total of 24 shift-reduce and 18 reduce-reduce conflicts,
originating from 11 ambiguities. (Since conflicts occur between states, an
ambiguity results in more than one conflict if the ambiguity affects more than one
state transition.)

5.3.2 gcc

The GNU C compiler [Stallman98] has evolved to handle Objective C and C++.
The compiler continues to improve, and is close to the C++ standard, but currently
(version 2.8.0) experiences significant problems with template instantiation,
because of the lack of a compilation database. These problems would not affect
the use of gcc as a foundation for FOG.

The gcc compiler is portable to a very large number of operating systems, on
which a build process normally involves compiling gcc through the local compiler,
then recompiling gcc using the potentially better optimisations of gcc. The need to
bootstrap through the local compiler requires extensive conditionalisation so that
the gcc sources avoid the defects of all known compilers. gcc source code is
therefore harder to read than it might be.

gcc source code is necessarily written in C, and so lacks the modularization and
polymorphism that can be achieved using classes and Object Orientation in a
language such as C++. The internal data structures of gcc comprise a tree node
that is a union of all possible expressions, operators, names, declarations,
statements, files etc.

The gcc compiler is a complete compiler including good error recovery and
diagnosis, and full symbol table maintenance. gcc is recognised to be of
production quality.

The lexer is hand coded and makes a seven way categorisation of identifiers to
disambiguate the subsequent parser. However the subsequent parser requires
109 %prec directives to resolve 704 conflicts explicitly, leaving 5 shift-reduce and
38 reduce-reduce conflicts to be resolved automatically.

5.3.3 CPPP

A C++ parser was developed at Brown University, as a general purpose tool for
which a variety of applications were foreseen [Reiss95]. This parser has steadily
evolved, however the most recent version available on the net is version 1.82 from
1996. It would appear that development stopped before facilities such as
namespace or bool were implemented.

CPPP achieves a higher degree of decoupling between lexer, parser and database
than gcc, and has a grammar that closely resembles the published C++ grammar.
CPPP comprises three stages: a lexer, a lookahead parser, and a main parser.
The lookahead parser recognises potentially ambiguous constructs and invokes
custom parsing routines to look sufficiently far ahead to resolve the ambiguity.
Additional tokens are inserted into the token stream so that the subsequent parser
proceeds without ambiguity.

The P++ developers [Singhal96] report extending CPPP successfully, but only
after resolving a fair number of bugs. CPPP was also used for Iguana [Gowing96].

The grammar has only one unresolved shift-reduce conflict, but uses precedence
extensively (22 %prec) to suppress a further 410 conflicts. The high number of
conflicts is misleading. Most are the result of flattening the expression syntax and
using grammar precedence to implement arithmetic precedence. This results in a
faster parser since an expression term is reduced just once, rather than once at
each of the ten binary operator precedence levels of the C++ grammar.



Meta-compilation for C++ Parsing

Page 150 29-June-2001

5.3.4 PCCTS

The Purdue Compiler Construction Tool Set provides alternative versions of lex
and yacc called DLG and ANTLR. ANTLR is an LL(k) parser generator. Use of LL
principles provides the freedom and (for practical grammars) the necessity of
incorporating semantic resolution within the parse. A C++ grammar is available for
use with PCCTS [Lilley97], but is heavily disclaimed as initial and experimental. A
significantly customised version of ANTLR is required by the grammar.

5.3.5 C++ to F-code translator

The work described in this thesis concerns meta-compilation and the FOG
implementation. The inspiration for FOG arose from research aimed at the
development of a compiler implementing optimisations appropriate to DSP
processors. This compiler was to use F-code [Muchnick93] as its intermediate
representation. Some work was performed on a C++ to F-code translator as part
of this earlier research. At that time, there was no knowledge of the CPPP or
PCCTS grammar and so there was an implementation choice between

• the out-of-date Roskind grammar (42 conflicts)

• the tightly coupled gcc grammar (747 conflicts)

• a custom solution

The author had previously extended gcc to perform automated documentation
generation for C++ code. This had merely required a late read-only traversal of the
internal data structures. The difficulties of debugging with union nodes, the lack
of clear documentation on the semantics of each node, and the enormous 250,000
line size of the code indicated that wholesale extension of gcc could lead to
considerable problems.

A simpler alternative of just reusing the gcc parser grammar was examined.
Examination of the parser showed that the parser, lexer and program data base
were too closely coupled, making separate re-use of the grammar alone
impractical.

The seemingly large number of unresolved conflicts, out-of-date character and
obscure coding of declarators in the Roskind grammar discouraged its use.
Recognition that the introduction of tree-literals would impact the heart of the
grammar indicated that a clean grammar should be the starting point. A custom
solution seemed the only alternative.

5.4 FOG parsing

The original aims of FOG concerned facilities for

• automatic insertion of repetitious code into class declarations

• elimination of redundant source text

• support for algorithm-centric modularization

The first aim is satisfied by derivation rules.

The others correspond to what is now known as weaving in the Aspect Oriented
Programming world.

FOG/1 - superficial guided parse

It was perceived that these goals could be satisfied by a very simple parser
assisted by extra keywords (guides). The first implementation therefore explicitly
annotated C++ source adding new reserved words such as constructor,
function, variable and type for the guides. Lines that needed special treatment
could be easily identified and other lines copied from input to output without
interpretation.
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constructor Class::Class(int aSize) : _size(aSize) {};

This approach imposed a language incompatibility. For a legal C++ source file to
be acceptable to FOG/1, it was necessary to manually add the guides to every
declaration.

A second problem arose as to what syntax to use following the guide. The C++
declaration syntax is complicated and highly recursive. There are better syntaxes
than the C++ syntax [Werther96], but they look very out of place in a C++ program.
The C++ declaration syntax was preserved, and the problem of recursion of
function signatures was partially solved by treating the function signature as
unparsed text to be copied though to the output. This hid the problem for most
functions but could not cope with pointers to functions, where the name is buried
in, rather than preceding, punctuation.

variable int (*v)();
function int (*f())();

FOG/2 - pragmatic guided parse

Resolution of the function signature problem mandated an accurate parse of the
signature. This problem had already been solved as part of the C++ to F-code
translator and so the relevant part of the grammar was re-used. C++ function
signatures comprise parameter types, names and optional default values. The
default value was initially left unparsed, with the text copied unchanged to the
output.

function void f(int a = unparsed_text);

This usually works, but requires recognition of the ) or , that terminates the
initializer. The initializer is an expression and so is subject to the use of templates.
A simple parse of the initializer in

template <bool T1, int T2> class B;
function void f(int a = B < c, 5>);

may identify the comma-terminated B < c as the first initializer, before
misinterpreting the residue. It requires the knowledge that B in the unparsed text
is a template to correctly resolve the instantiation. Reliable parsing of declarations
requires reliable parsing of expressions too.

FOG/3 - pragmatic full parse

At this point it was becoming clear that many of the complexities of C++ parsing
could not be avoided in FOG, and it seemed likely that every attempt to avoid a
complexity would introduce a deficiency. This is a far from unique discovery. There
are a number of commercial development tools that have taken short-cuts to
parsing C++, with the result that interesting C++ programs are misinterpreted. The
class browser of Microsoft Visual C++ is just one example.

Another large segment of the C++ to F-code grammar was therefore added to
FOG, so that FOG contained most of the C++ grammar. The traditional C++
declaration / expression ambiguities did not (yet) arise, because expressions
occurred only in the limited context of initializers.

The need for guides was a barrier to porting existing C++ code to exploit FOG.
Some of the first code to be ported from C++ to run through FOG was some
compiler code. This code made use of the guides as function names. Requiring
that the member function type() be renamed did not seem sensible.

With the increasingly accurate C++ parsing in FOG, it was no longer essential to
have the extra guides. Parsing was no longer made easy by their use.

Once the extra guide keywords had been eliminated, there were few fundamental
differences between FOG and C++ syntax. Each of these was challenged and
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eliminated, with the result that the FOG grammar is an almost pure2 superset of
C++.

$-parsing

Tree-literals were originally envisaged as being resolved by a preprocessor before
the real code emerged. A tree-literal was therefore recognised very early and
replaced. Replacement could occur anywhere, including within strings. The
semantics of the replacement were purely lexical, and so the replaced text could
contribute partial strings and partial reserved words. This was flexible, powerful,
undisciplined and awkward to implement. The ability to handle partial tokens
required an unpleasant ability to recurse earlier lexing stages. The implementation
resulted in a very complicated lexer, that had to maintain a stack of states
according to how far through a string / character / number it was when a
replacement started. It was far from clear that the implementation would behave
correctly under perverse usage.

Recognition that the ANSI C string concatenation could be generalised to
concatenation of adjacent textual tokens revealed that there was no need for
substitution within strings:

"built at $time on $date" // Not FOG

It could happen almost as easily between strings:

"built at "$time" on "$date // FOG

This then enabled the lexer to be more disciplined; preprocessor tokens could be
identified first, then substitution could occur token by token, with only a minor
complexity in retokenizing the result of a concatenation. Retokenisation was
eventually discarded as unnecessary (Section 3.1.1.4).

Ambiguity resolution

Removal of the guides requires the syntaxes for typedefs, variables and functions
to coexist. Ambiguities arise:

T ( A );

could be a constructor for T with an unnamed parameter of type A. Or it could be
a variable of type T with the redundantly parenthesised name A. This problem is
traditionally resolved by ensuring that the lexer has the semantic information
available to classify T and A as class-name or type-name or identifier. In C++, this
classification requires accurate scope context and symbol table maintenance to
ensure that an identifier is classified as a type-name at the declaration point.

Type information was not being used in the FOG parse and it seemed desirable to
continue not using type information. The few ambiguities that appeared as a result
were resolved by back-tracking, which is described in Section 5.8.

Development of the C++ to F-code translator had revealed how difficult resolving
the expression / declaration ambiguity was. The grammar grew unpleasantly large
as productions were elaborated to create sub-productions without ambiguities.
Back-tracking was introduced to support sequential rather than concurrent
consideration of alternatives.

Since FOG was then only analysing declarations and meta-statements, the major
C++ ambiguities did not arise, only minor problems and implementation
inconveniences. It was not necessary to perform semantic correction of syntactic
errors, the parse-declarations-first policy disambiguated adequately.

2. Some very minor exceptions are listed in Section 3.3.
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This summarises the evolution leading up to the previous implementation of FOG
which uses back-tracking to resolve all ambiguities. Semantic leakage is limited
to template names; type information is not used.

Superset

Consideration of the performance overheads associated with marking and back-
tracking for every meta-statement, and of the validity of not using type information
led to the more efficient superset parsing approach described in this chapter. The
grammar for this approach has been implemented, cross-checked for
completeness against the C++ standard, and processed by both bison and yacc
to show lack of fundamental ambiguity, and successfully used to parse C++
programs. The bison report file has been used to verify correct resolution of the
24 conflicts that result from the 4 residual C++ ambiguities, 1 introduced
ambiguity, and 5 implementation artefacts. These ambiguities are summarised in
the comment header of Appendix B and described in Appendix F.2.

The ambiguities and semantic corrections resulting from the lack of type
information apply to this superset parsing approach, and to a lesser extent to the
multi-pass parsing approach.

The back-tracking to perform a binary tree search to resolve the template name
ambiguities applies to both approaches.

5.5 Analysis of the C++ Grammar

The parsing approach described in this thesis deviates from accepted practice. It
is therefore necessary to justify that the approach is sound. In order to do this we
must first understand the standard problems and then identify any new problems
before showing how the new approach resolves them. This requires a fairly
detailed examination of some aspects of the C++ grammar and the introduction of
a notation that supports reasoning about that grammar.

5.5.1 Notation

The dragon book [Aho86] describes two different notations for defining languages.

Regular Expressions

The simple regular expression notation supports description of classes of
character sequences and is the basis for the lex lexer generator. An identifier can
be defined by

[A-Z_a-z][0-9A-Z_a-z]*

The expression starts with a character from the class containing the alphabetic
characters or underscore and continues with an arbitrary number of repetitions of
the second class that adds the numeric characters. This is a compact notation but
is unable to express recursion and so cannot describe the language of matched
nested braces ( {}, {{}}, {{{}}} etc. ). The inability to specify matching
delimiters prevents the use of regular expressions to define most (if not all)
programming languages; the use of matched parentheses to enforce arithmetic
precedence is almost universal.

Context-Free Grammars

A (Context-Free) Grammar (CFG) is used to describe a more complicated
language and is the basis of the yacc parser generator. A grammar is defined by
rules that operate on the terminals and non-terminals of the language. Terminals
correspond to the input tokens, non-terminals appear as the left-hand side of
production rules involving terminals and/or non-terminals on their right-hand side.
The brace language may be defined using { and } as terminals and braces and
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grammar as non-terminals. grammar is the distinguished non-terminal that defines
the language.

grammar: braces
| { grammar }

braces: { }

The grammar is specified using a Backus-Naur Form. Alternative rules producing
the same non-terminals are separated by |. When a clear multi-line formatting
policy is used as in the C++ standard, the | may be omitted. Rules are variously
referred to as production rules, or reduction rules.

The availability of intermediate non-terminals gives Context-Free Grammars much
greater power than regular expressions. However the requirement to use multiple
rules and the transformation of repetition into recursion makes it difficult to reason
about the grammar.

Extended Regular Expression notation

C++ comprises two relatively independent subgrammars, one to define
expressions and another to define declarations. It is well known that there are
sentences such as.

int (var);

that are ambiguous. It could be a functional cast of the variable var to an integer
value or a declaration of the redundantly parenthesised var as an integer.
Identifying these ambiguities in the grammar is difficult because a few hundred
inter-related rules are not a convenient representation for logical reasoning.

We need to be able to substitute one rule in another in order to derive the rules
that identify each non-terminal with respect to terminals, or relatively fundamental
non-terminals. We will therefore extend regular expressions so that C++ syntax
can be represented. We can then represent an expression as one extended
regular expression, a declaration as another, and identify the ambiguities by
comparing their terms.

Both regular expressions and context-free grammars can describe the
concatenation of lexically adjacent elements, but only context-free grammars
support a complex ordering through nesting of non-terminals. We therefore
introduce •, a functional operator to support more arbitrary ordering in regular
expressions.

The • operator is always applied to a specific argument and so associates from
right to left. This of course differs from the composition operation in functional
languages, since we are interested in successive application, not in function
composition.

The • operator has higher precedence than lexical concatenation. Thus:

α  Z • γ ;
represents α  concatenated with the application of Z to γ. If Z denotes application
of braces, and α  and γ are the identifiers a and g, the above expression denotes
the sentence

a { g } ;

The nested braces language, using ε as the empty set of sentences, is

Z•ε { }
Z•Z•ε { { } }
Z•Z•Z•ε { { { } } }
Z•Z•Z•Z•ε { { { { } } } }
etc.

which we abbreviate to



Parsing Meta-compilation for C++

29-June-2001 Page 155

Z+•ε
More practically, we represent the pointer prefix of a declarator by Pd(ζ ) and the

array suffix of a declarator by Ad(η?), where ζ  is a free symbol denoting a ptr-

operator, η  is a free symbol denoting an assignment-expression, and ? is the standard
regular expression operator denoting 0 or 1 of.

Pd(X::y::*const)•Ad(5)•v

therefore denotes

X::y::*const v [5]

The subscripts in these names form part of a compact naming policy: P for pointer,
A for array, Pd for a pointer valid for use in a declarator, Ae for an array valid for
use in an expression.

Since the parenthesised parameterization is not usually significant in ambiguity
reasoning, we can refer more simply to

Pd•Ad•θd

where θd is any name valid in a declarator.

The full notation is summarised in the following tables

There are no operators that apply to more than one operand, although operators
such as Pd may take additional parenthesised parameters.

The infix operator Oi applies to one operand that denotes two (or three) terms,
each independently of the same form as the one operand. Thus, a particular

a. See Section 5.5.2.1.

(Non-)Terminal Notation Description or example

Free (untyped) symbols α

Built-in type (one word) β int

Declaration δ simple-declaration

The empty set ε

Pointer Type ζ ptr-operator

Assignment-expression η assignment-expression

Name in declaration θd declarator-id

Name in expression θe id-expression plus a bita

Name other than local destructor θ

Constant-expression κ constant-expression

Character, Number or String λ literal

Parameter-Declaration π parameter-declaration

Parameter-Declaration
and Assignment-Expression

ρ ρ = η ∩ π

Type-name in declaration σd size_t

Simple-type-specifier σe simple-type-specifier

Type τ type-id

Generalised Assignment-Expression χ χ ⊇ η

Generalised Parameter-Declaration
or Assignment-Expression

ω ω ⊇ η ∪ π

Table 5.1 Terminals and Non-Terminals
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lexical presentation of the tertiary Oi•η  is "test ? 5 / 8 : 6", since each of
"test", "5 / 8" and "6" are assignment-expressions.

The list operator L uses a pre-superscript rather than a post-superscript to
highlight the distinction between the repetition of the operand many times and
multiple application of the operator. The operand is repeated with no constraint

between the operands. Thus 2L•Z?•α  covers the 4 possibilities of Z present or

absent independently for each operand whereas Z?•2L•α  covers only the 2
possibilities of Z jointly present or absent.

Overloading of lexical tokens and other simple lexical properties lead to the
properties shown in Table 5.4.

5.5.2 C++ Grammar Properties

This notation will now be applied to analyze the declaration and expression
syntaxes. The analysis is a little lengthy and ignores a number of peripheral
syntaxes that do not contribute to ambiguities. Thus ..., which is unique to a
parameter-declaration-clause, and sizeof(), which is unique to an expression are
excluded from the analysis.

5.5.2.1 Names

Before we can analyse the grammar, and show that the new approach is
compatible, we must first understand how names are used in the standard
grammar.

When a variable is declared, it complies to a syntax that simplifies a little to:

decl-specifier-seq declarator = initializer ;

The decl-specifier-seq comprises the miscellaneous qualifiers such as static or
extern and a type-specifier-seq that provides the type such as const unsigned int
(but no pointers). The declarator comprises a name in the form of a declarator-id
potentially wrapped up with pointer prefixes, function and array suffixes and
clarifying parentheses.

When a variable is used in an expression, it complies to the id-expression syntax.

Operator Notation Description

Independent instances α1, α2, α3, α4

Zero or one Z?•α α  or Z•α

Zero or more Z*•α α  or Z•α  or Z•Z•α  or Z•Z•Z•α  or etc..

One or more Z+•α Z•α  or Z•Z•α  or Z•Z•Z•α  or Z•Z•Z•Z•α  or etc..

Exactly one of α1 or α2

Comma separated list of L•α 0L•α  is ε 1L•α  is α 2L•α  is α1 , α2
3L•α  is α1 , α2 , α3 etc.
*L•α / +L•α have at least 0 / 1 elements

Covers/Contains α1 ⊆ α 2 Every sentence of α1 is contained in α2

Strictly Covers /
Contains

α1 ⊂ α 2 Every sentence of α1 is contained in α2, and
some sentence of α2 is not contained in α1

Intersection α1 ∩ α 2 Sentences common to α1 and α2

Union α1 ∪ α 2 Sentences of α1 or α2

Table 5.2 Mathematical Operators

α1

α2 
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The id-expression and declarator-id are therefore the main name concepts, that have
subtle but significant differences. Understanding the distinctions from the C++
grammar is quite hard, so the same information is presented in graphical form in
Figure 5.3. The diagram is a kind of Venn diagram in which different forms of name
are arranged in four columns and thirteen rows. Shaded areas indicate the
coverage of each production.

Four columns represent the possible scope nestings of a name:

• unscoped name (e.g. name)

• nested name (e.g. Nested::name)

• global scope nested name (e.g. ::Nested::name)

• global name (e.g. ::name)

a. The ={} form of initializer is incorporated directly into a generalised Oi to
slightly reduce the number of distinct declarator / expression operators.

Operator Notation Lexical Example

Array declarator suffix Ad(κ?)•α α  [ ]

Array expression suffix Ae(+L•η)•α α  [ η  ]

Array for declarator and expression Ade(κ )•α α  [ κ  ]

Array for declarator or expression A(*L•η)•α α  [ η  ]

Parenthesis Brackets B•α ( α  )

Cast expression C(τ)•α ( τ  ) α

decl-specifier prefix D•α extern α

exception-specification suffix E•α α  throw ( )

Function declarator suffix E?•V?•Fd(*L•π)•α α  ( π1 , π2 ) const throw ( )

Function call suffix Fe(*L•η)•α α  ( η1 , η2 )

Function call and declarator Fde(*L•ρ)•α α  ( ρ1 , ρ2 )

Function call or declarator E?•V?•F(*L•ω)•α α  ( ω1 , ω2 ) const throw ( )

Assigned initializer I(η)•α α = η
α = { 5 }

Constructed initializer J(+L•η)•α α  ( η1 , η2 )

(Non-pointer) Prefix operator Op•α ++ α

Infix operatora Oi•α α 1 / α2
α = { 5 }
α1 ? α2 : α3

Suffix operator Os•α α ++

ptr-operator Pd(ζ )•α * volatile α
& α
Class::* const α

Pointer for expression Pe(ζ )•α * α
& α

Unified Pointer operator P(ζ )•α *cv-qualifier-seqopt α
& α
D+•ε ::*cv-qualifier-seqopt α

type-specifier prefix T•α int α

cv-qualifier-seq suffix V•α α const

Table 5.3 Grammatical Operators
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Thirteen rows represent each of the different categories of name. The top 8 rows
correspond to type-names:

• ...decl-specifier, keywords such as virtual, static and friend

• elaborated-type-specifier, an enum or class reference

• class-specifier, a class definition

• enum-specifier, an enum definition

• cv-qualifier, const or volatile

• β, a single word built-in type such as int

• template-id (e.g. FixedSizeArray < 4 >)

• identifier (e.g. MyType)

The bottom five rows denote non-type names:

• template-id (e.g. sort < int >)

• identifier (e.g. my_variable)

• operator-function-id (e.g. operator+=)

• conversion-function-id (e.g. operator MyClass **)

• destructor name (e.g. ~MyClass)

identifier

operator-function-id

conversion-function-id

~ class-name

template-id

name Nested::name

unqualified-id qualified-id

id-expression

θe = name part of a primary-expression

::name::Nested::name

Figure 5.3 C++ Names

θd = declarator-id

enum-specifier

class-specifier

cv-qualifier

type-name

β

elaborated-type-specifier

...decl-specifier

template-id

identifier

θ = generalised name

D•ε = decl-specifier

T•ε = type-specifier
σe = simple-type-specifier

σd = type part of declarator-id

enum X {}

class X {}

class X

virtual

const

int
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Figure 5.3 shows that qualified-id grammar production covers all categories of
nested non-type-name, and that a declarator-id covers all possible non-type-names
and user-definable type-names.

The irregular shape of the θe contributions to a primary-expression is the source of
many difficulties in implementing the parser grammar. Reduce-reduce conflicts
arise from a need to commit to a declarator-id or primary-expression before sufficient
lookahead context has been examined. Part of this is just a trap for the unwary
implementor. Since θe ⊂ θ d, no conflict need arise. It is just the unhelpful way the
grammar is written that is a problem.

Name differences between declarator and expression

A type-name is not generally valid in an expression. However, a specific variant of
function call in the syntax for postfix-expression, supports use of a type-name as the
function name, and serves to invoke a constructor or functional cast.

Omission of an unscoped destructor name from id-expression resolves the ambiguity
between the one’s complement operator and a destructor for

~non_class_name & 7;

and gives the correct interpretation (§5.3.1-9) of

Notation Description

σd ⊂ σ e ⊂  T•ε ⊂  D•ε Application type-names

β ⊂ σ e ⊂  T•ε ⊂  D•ε Built-in type-names

σd ⊂ θ d Declarator type-names

θe ⊂ θ d Non-type-names

V•ε ⊂  T•ε
Ade•α ⊂  Ad•α , Ade•α ⊂  Ae•α

A•α ⊃  Ad•α  , A•α ⊃  Ae•α

Fde•α ⊂  Fd•α , Fde•α ⊂  Fe•α

E?•V?•F•α ⊃  Fd•α  , E?•V?•F•α ⊃  Fe•α

I•α ⊂  Oi•α

Pde•α ⊂  Pd•α  , Pde•α ⊂  Pe•α

P•α ⊃  Pd•α  , P•α ⊃  Pe•α

B•τ  = C(τ)•ε = F(τ)•ε Parenthesis / cast null / abstract
function

B•*L•π = Fd(*L•π)•ε Parenthesis / abstract function

B•*L•η  = Fe(*L•η)•ε Parenthesis / null-call

B•*L•ω = F(*L•ω)•ε Parenthesis / null-call or function

Prefix and suffix operators commute

Table 5.4 Properties

Op
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~ClassName();

Omission of a global conversion-function-id from id-expression is semantically correct,
but represents a needless syntactic complexity, since an ambiguity resolution of

something-ending-in-:: conversion-function-id

exploiting the syntactic exclusion requires something-ending-in-:: to be
meaningful. The only construct ending in :: is a nested-name-specifier, whose
presence contradicts the presence of a global name.

Omission of a global destructor name from id-expression is similarly semantically
correct, but syntactically redundant.

The same argument applies to a global template-id, however in this case, it would
appear that the omission is an error. Given:

template <class T> void sort(T *anArray, size_t arraySize);

Refusal to permit the hopefully redundant :: in

p = &::sort<int>;

seems unreasonable.

Conclusion

The global name exclusions from a primary-expression can be ignored syntactically.
A subsequent semantic check may yield a helpful diagnostic. Only the omission of
the local destructor need be honoured.

Once the distinction between type-name and identifier is removed, the local
destructor exclusion is the sole difference between a declarator-id and a name in a
primary-expression. The generalised name coverage shown as θ is used for both
purposes in Section 5.7. This covers some syntactically meaningless names in an
expression, but misses out the local destructor from a declarator-id. The omission
will be covered by a complement expression and must be repaired semantically.

5.5.2.2 Declarators, Declarations and Type Identifiers

The C++ grammar defines

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator ( parameter-declaration-clause )

cv-qualifier-seqopt exception-specificationopt
direct-declarator [ constant-expressionopt ]
( declarator )

It is the two level recursion between these productions that makes them difficult
to understand. Two levels are required because a CFG cannot express both prefix
and suffix elaboration in the same production unambiguously. Considering:

affixed-production:
terminal
prefix affixed-production
affixed-production suffix

It is unclear whether the prefix or suffix production rule is reduced first in:

prefix terminal suffix

In the extended regular expression notation outlined above, functional operators
are used for lexical prefixes, suffixes and their combinations. The prefix-suffix
ordering ambiguity is therefore removed and all forms of lexical decoration can be
expressed uniformly. We may express the declarator syntax as
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The recursion in the first choice can be simplified:

and then substituted in the second to give

Applying the same analysis to other parts of the C++ grammar we find that

declarator
direct-declarator

Pd declarator⋅ 
 
 

=

direct-declarator

θd

E ? V ?• F• d direct-declarator⋅
Ad direct-declarator⋅

B declarator⋅ 
 
 
 
 
 
 

=

declarator Pd
*

direct-declarator•=

direct-declarator

E ? V ?• F• d

Ad

B Pd
*• 

 
 
 
 

*

θd•=

declarator Pd
*

E ? V ?• F• d

Ad

B Pd
*• 

 
 
 
 

*

θd••=

abstract-declarator Pd
*

E ? V ?• F• d

Ad

B Pd
*• 

 
 
 
 

* E ? V ?• F• d

Ad

B Pd
+• 

 
 
 
 

•

Pd 
 
 
 
 
 
 

ε••=

type-id τ T=
+ Pd•

*
E ? V ?• F• d

Ad

B Pd
*• 

 
 
 
 

* E ? V ?• F• d
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B Pd
+• 

 
 
 
 

•

 
 
 
 
 

?

ε••=

new-type-id T + Pd•
*

Ad
* ε••=

init-declarator
I

J 
 
 

?

Pd
*•

E ? V ?• F• d

Ad

B Pd
*• 

 
 
 
 

*

θd••=
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 where

(The usage of θd in a parameter-declaration is syntactically correct although semantic
constraints allow only an identifier.)

Ignoring the optional ellipsis which is not a source ambiguity:

Generalising slightly by ignoring the constraint that a decl-specifier-seqopt applies
only to the first element of an init-declarator-list:

5.5.2.3 Expressions

Analysis of an expression omitting uniquely prefixed terms such as new or
const_cast that may be conveniently considered to be part of λ  leads to

While analysing prefix operations, we lump the more mundane operators such as
++ under Op, but keep the potentially ambiguous pointer operators * and & as Pe.

init-declarator-list L+ I

J 
 
 

?
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Simplifying the nested arbitrary choice, and substituting the postfix-expression

The ten levels of precedence for binary operators, tertiary operator and
assignment are not significant to this analysis. All such operators are represented
by Oi and we may write

The doubly nested one or more choices permit arbitrary ordering

unary-expression

postfix-expression

Op

Pe 
 
 

cast-expression•
 
 
 
 
 

=

cast-expression
unary-expression

C cast-expression• 
 
 

C*
unary-expression•= =

C* Op

Pe 
 
 

C*•
 
 
 

*

• postfix-expression•=

cast-expression

Op
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C 
 
 
 
 

* Ae
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Os 
 
 
 
 

* θe

λ
F e σe•

B expression• 
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and the arbitrary ordering subsumes the multiplicity of prefixes

5.5.3 C++ Ambiguities (using type information)

We have derived relatively simple formulae for the major declaration and
expression constructs. The utility of this representation will be shown by deriving
formulae that describe the conventional C++ ambiguities, when type information
is available. This derivation can then be revisited to assess the consequences of
parsing without type information.

The major ambiguities occur between and within declarations and expressions,
since these syntaxes lack unique keywords. Ambiguities in statement syntax are
isolated, since a leading if isolates the syntax from all other syntax (but not from
the dangling else problem).

We concentrate on declarations and expressions since these are the sources of
problems

• as many other implementors have already discovered

• as any attempt to implement a C++ grammar with yacc detects

5.5.3.1 Declaration / Declaration Ambiguity

A declaration / declaration ambiguity arises when
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is open to more than one interpretation. Multiple interpretations are possible
because there is lexical overlap between the different operators.

D*•θd and D*•Pd•θd

A declarator-id (θd) or ptr-operator (Pd) may start with a :: which may be ambiguous
with respect to the last name in a decl-specifier (D).

Class ::Scope::p
Class ::Scope::* p // A pointer to member

This ambiguity is not explicitly resolved in the standard, but a resolution may be
inferred from the requirement to maximise the length of a decl-specifier-seq (§7.1-2).
The resolution guarantees a semantic error.

Class::Scope::p // Error name but no type
Class::Scope ::* p // Error illegal ptr-operator

Ad•θd or θd

An array declarator may add a [] suffix to a name.

The names operator new[] and operator delete[] end in [], and the names
operator new and operator delete exist. It is therefore unclear whether

int operator new[];

declares an array or a scalar. Since neither alternative is semantically valid, the
syntactic problem is academic.

Fd•θd or θd

A function declarator may add a () suffix to a name.

The name operator() ends in (), but there is no name operator so there is no
ambiguity.

Fd(1L•π)•θd or D•B•π
The overloaded usage of parentheses leads to an ambiguity between

• Fd(1L•π)•θd - a single argument constructor declaration

• D•B•π - a redundantly parenthesised variable declaration

for:

T(a)

Trimming δ to match these two forms

The initializers, array and function suffixes can be dismissed using the semantic
constraints on a constructor, leaving
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The ambiguity arises for , which is non-trivial when the name preceding the

parentheses is (see Figure 5.3). The inside of the parenthesis is

ambiguous when the parameter

is ambiguous with respect to

Trimming impossible terms gives the two constraints on the parenthesised
ambiguity in

TypeName(π)

 is a simple solution to .

A more complicated solution arises through the recursive ambiguity between
precedence and function argument parentheses.

leading to the complete form of the constructor / parenthesised variable ambiguity
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J(*L•η)•θd or D•B•*L•π
Parenthesis overloading would also appear to lead to an ambiguity between
construction of an object and a redundantly parenthesised variable. However,
construction of an object requires an explicit type and so the object construction

must at least be of the form D•J(*L•η)•θd. The ambiguity of this with respect to a
function declaration is considered next.

D*•J(*L•η)•θd or D*•Fd(*L•π)•θd

There is a lexical ambiguity between

• D*•J(*L•η)•θd - a constructed object declaration

• D*•Fd(*L•π)•θd - a function declaration

for:

T a(b), c(d), e(f);

Semantic constraints permit and require ambiguous decl-specifier-seq prefixes for
the first element of an init-declarator-list, but require no decl-specifier-seq for
subsequent elements. The D and L terms are therefore eliminated to give the
following forms for each alternative simple-declaration.

These two terms are a direct match syntactically, subject to the recursive

ambiguity to satisfy the parameter lists. This is Fde(*L•ρ) and is analysed in the
next section. The ambiguity is therefore:

5.5.3.2 Declaration / Expression ambiguity

The declaration / expression ambiguity arises when a

followed by a semi-colon, forming part of a statement, is ambiguous with respect to
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which when followed by a semi-colon is an expression-statement.

The expression / declaration ambiguity may be identified by comparing terms to
give

D0 matches the absence of D in an expression.
+L enforces the expression requirement for at least one element.

Commutativity of prefix and suffix operators permits the intervening pointer to be
traversed by the initializers so that: I resolves the ambiguity between I and Oi since
I ⊂ Oi. J is covered by an Fe in an expression.

Pe unifies Pe and Pd acquiring the Pe from the expression multiplier term.

Fde is the recursive ambiguity between Fd and Fe analysed below.

Ade resolves the ambiguity between Ad and Ae restricting the array argument to
exactly one constant-expression.

1L is the identity operator necessary to cover B•Pd
* by successive B•+L and Pe

terms from the expression multiplier term.

θe resolves the ambiguity between θd and θe since θe ⊂ θ d.

The Fde•σe terms arises because σe ⊂ θ d.

A quick test of this formula makes the prediction that

i = 0;

should be ambiguous, although such a simple ambiguity is not mentioned
elsewhere, and resolution as a declaration would reject most C++ programs. The
reason is that the analysis above is purely syntactic. In the production

simple-declaration: decl-specifier-seqopt init-declarator-listopt ;

the strict syntactic interpretation permits the decl-specifier-seq (the type) to be
omitted. i = 0 is a valid form of init-declarator-list. An untyped name alone is
therefore syntactically ambiguous. Since §6.8-3 prohibits the use of more than
semantic type information to disambiguate, there appears to be a problem. The
problem disappears if the constraint in §7-7 is interpreted as a syntactic rather
than semantic constraint. The constraint specifies that a decl-specifier-seq may only
be omitted for function-like declarations.
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Incorporating this constraint, together with the constraint on no implicit int
functions, eliminates the possibility of the Pe prefixes.

The constraint that functions are not constructed eliminates the J.

The I? covers only the = 0 of a pure-specifier and can be eliminated since there is
no D prefix to supply a virtual keyword.

θe covers only destructor names and conversion-function-ids, which cannot be
declared where expression statements are valid.

Functions returning arrays or functions are invalid.

Application of semantic constraints therefore reduces the ambiguity to the more
familiar:

Continuing the analysis to determine the recursive ambiguity. The Fde ambiguity
arises when a parameter-declaration-clause is ambiguous with respect to a
parenthesised expression-list. This occurs when each parameter-declaration

is ambiguous with respect to the corresponding

The presence of D+ in the parameter-declaration would appear to preclude an
ambiguity, however σe ⊂  D•ε. Trimming completely unsuitable terms and arranging

to exploit the lexical commutation  gives the solution as
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This simplifies to give

as the form of an argument of Fde that is ambiguously either a parameter-declaration

or an expression. This ambiguity is not only recursive, but also exhibits multiplicity
in its recursion.

Performing a sanity check: the simplest form is

TypeName()

which is recognisable as an expression involving construction of a TypeName. That
it is also a parameter-declaration requires understanding of a very dark corner of C++
(§8.3.5-3). The declaration interpretation is of an abstract (unnamed) function
taking no arguments and returning TypeName. This has no meaning in C++, since
functions are not first class entities. Function names are interpreted as pointers
to functions and so the example is equivalent to:

TypeName (*)()

5.5.3.3 Expression / Expression ambiguities

The foregoing analysis has taken little account of ambiguity between operators.
Operators are excessively overloaded: parentheses variously denote a cast, a
function-call or arithmetic grouping. We therefore analyse an assignment
expression in terms of its lexical layout eliminating the application operator and

using only lexical adjacency. For this purpose we introduce ~ so that denotes a
comma separated list of zero or more elements of α . Punctuation such as (, ), [,
and ] represent the lexical character.

The lexical production rule for an assignment expression is:

The use of [η ] for an array is almost unique to indexing an array and so creates no
expression ambiguities. The sole other use occurs in operator new [] and
operator delete [] where the absence of η  disambiguates.
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The () of calls, casts, parentheses and function-casts may create

• parenthesised-call / cast-parenthesis

• parenthesised-binary / cast-unary

• call / functional-cast

ambiguities.

The parenthesised-call / cast-parenthesis ambiguity is

and the parenthesised-binary / cast-unary is

There are ambiguities when η2 = η3 and η1
~ = τ  and Oi is +, −, ∗  or &. Further

ambiguities exist when Oi is ++ or -- and η2 and η3 are parenthesised.

The ambiguities arising when η  = τ  are analysed in Section 5.5.3.4 as the type-id /
assignment-expression ambiguity.

The call / functional-cast ambiguity analysed in Section 5.5.3.5 does not arise
when type-name information is available.

Some suffix operators such as ++ are also prefix operators. No ambiguity can
arise because suffix operators cannot precede a prefix operator.

Some infix operators such as + are also prefix operators, while others such as *
are also pointer operators. No ambiguity arises since, in an expression such as

a * * * b

the absence of a further suffix ambiguity ensures that the first * must be infix and
subsequent *’s prefix. However, a conversion-function-id is covered by θe and may
end in a * creating this further suffix ambiguity.

&Class::operator int* * *pointer

This is resolved by language definition (§12.3.2-4) to maximise the length of the
conversion-function-id: a resolution that can never avoid a subsequent semantic error.
An equivalent ambiguity within a new-expression is similarly resolved (§5.3.4-2).

θe and λ  are independent and cause no ambiguity, beyond those already
discussed.

5.5.3.4 type-id / expression-list ambiguity

A parenthesised-call / cast-parenthesis or parenthesised-binary / cast-unary
ambiguity exists when the

of the cast may be confused with the
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of the parenthesised call as (a) in

(a)(b)

(a)-b

(a)++(b)

The T+ term can only match the σe, since σe ⊂  T•ε, leading to the solution

which again makes use of the strange equivalence of a function and pointer to
function to determine that type information alone is insufficient to disambiguate

(Class())(x) // Cast to function

which could be

Class().operator()(x) // Call of operator()

or

(Class (*)())(x) // Cast to pointer to function

A cast to function is not one of the recognised forms of cast enumerated in §5.4,
and so the ambiguity has a well-defined semantic resolution, which may be used
to avoid the syntactic ambiguity.

5.5.3.5 call / functional-cast ambiguity

The call / functional-cast ambiguity arises when the type-name σe in a functional-
call can be mistaken for an assignment-expression. A type-name is not valid as an
assignment-expression so there is no call / functional-cast ambiguity when type-name
information is available.

5.6 Parsing the ambiguities

We have used an extended regular expression notation to derive the declaration
and expression ambiguities in C++ syntax, in a way that is not possible with the
standard regular expression or C++ grammar notations. We now examine how
ambiguities may be resolved in a practical parser.

If the BNF provided as part of the C++ standard is converted directly into a yacc
grammar, yacc reports many ambiguities, mostly relating to declarations and
expressions. The expression / declaration ambiguities are by far the most serious
and much the hardest to resolve.
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We now consider the traditional approach to resolving an ambiguity, a multi-pass
approach formerly adopted by FOG, and a more efficient superset grammar
approach.

5.6.1 Parsing against an ambiguity (the traditional approach)

An ambiguity may be resolved within the grammar, by rewriting the grammar to
remove the ambiguity, or by providing assistance in the form of disambiguation
tokens from a lookahead parser. The lookahead approach is straightforward, but
just redefines the problem as one to be solved elsewhere, potentially using ad hoc
code that may be prone to incorrect programming assumptions resulting from the
complexity of a recursive ambiguity.

Removing the ambiguities within the grammar is very hard. Given two mutually
ambiguous subgrammars A and B, it is easy to see that the ambiguity is removed
by identifying the ambiguity AandB comprising all sentences that could form part
of A and could form part of B. The ambiguous case may then be removed from
each of the original subgrammars to leave OnlyA and OnlyB. The revised
grammars comprising OnlyA, AandB and OnlyB are free from the A B ambiguity.

The analyses in the previous section show how complex grammars could be
analysed, enabling AandB to be identified from A and B, and show that in the case
of the expression / declaration ambiguity, the ambiguity has to be expressed
recursively. Converting AandB back into BNF rules is relatively straightforward.
However OnlyA and OnlyB require a subtraction of formulae and consequently
result in very complicated expressions for OnlyA and OnlyB. Determining these in
the non-recursive context is somewhat daunting. An accurate recursive resolution
of expression-that-is-not-a-declaration is a major undertaking.

For the C++ declaration / expression case, the other subtraction leading to
declaration-that-is-not-an-expression does not need to be evaluated, because the
disambiguation rule (§6.8) mandates that the ambiguity be resolved as a
declaration. It is sufficient to parse the declaration unchanged as A and the
expression-that-is-not-a-declaration as OnlyB.

Once unambiguous formulae have been identified, they then need to be converted
to BNF in a way that does not require more than one token of lookahead. It is not
sufficient to convert the formulae independently. They must be converted together
so that no shift-reduce or reduce-reduce conflicts are introduced when the parser
has seen a partial input that could prefix more than one alternative.

In conventional C++ parsers, the use of type information resolves nearly all
ambiguities, so that the shared prefix constraint is the hard problem.

The relatively arbitrary nature of the gcc, CPPP and Roskind grammars suggest
that an approximate solution to the above problems was discovered empirically.
The problem is too complex to be amenable to an empirical approach. Both the
gcc and CPPP grammars are reported to fail to correctly resolve more complicated
declaration / expression ambiguities.

In summary, parsing against an ambiguity requires an accurate implementation of
the grammar. This is hard to achieve for a deep and recursive ambiguity.
[Roskind91] describes his solution as “A LOT of work” and notes that some
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ambiguities are resolved prematurely. The gcc implementation was also not easily
reached.

5.6.2 Parsing without an ambiguity (the multi-pass approach)

Expressions and declarations are disambiguated by preferring a declaration to an
expression whenever there is an ambiguity (§6.8). A two-pass parser can
therefore be designed that first parses for a declaration, and if that parse fails,
then parses for an expression.

This makes for a much simpler grammar implementation since no grammar
revision is required to remove the ambiguity. We just need to support the ability to
perform multiple passes.

Back-tracking in the context of a parser involves examining the input token stream
to see whether the stream satisfies a candidate syntax, and if not backing up again
to try another candidate.

This practice is common in hand-written parsers, which normally use a top-down
left-most reduction at the left policy (LL). Examining the left of a production tends
to make premature decisions that then need to be undone.

Use of derivation at the right in an LR parser avoids premature decisions and can
make back-tracking unnecessary. Generally, back-tracking is undesirable, since
work performed upon each backed-up path is wasted. Well-structured grammar
code does not need to back-track.

The standard parser tools do not support back-tracking, and so the
implementation of back-tracking presented in Section 5.8 may be novel.

Cost

Accurate determination of the cost of back-tracking requires instrumentation of a
parser that adopts both approaches. Such a parser has not been developed, so
we can only estimate the likely costs.

Back-tracking incurs three costs:

• marking and unmarking a restart position (always)

• restarting at the mark (only when a back-track necessary)

• wasted analysis effort (only when a back-track necessary)

Maintenance of the marked position need not be particularly costly, if each token
is already represented by a polymorphic object, but may be more noticeable if the
tokens would otherwise have been acquired directly as a binary stream from a
preprocessor.

FOG maintains a garbage collector context at each mark, so re-establishing the
mark not only back-tracks on the input context, but also destroys any unwanted
objects created to support the failed analysis. This cost will be low, since a failed
analysis will normally fail before creating many objects.

The wasted analysis effort will also be small, since an illegal syntax will usually
fail after only a few tokens.

Back-tracking incurs no costs for syntax such as selection-statements that can be
identified from their first token. Costs remain small for syntax that corresponds to
the first analysis alternative. The costs only become significant for expression-
statements that closely resemble declaration-statements and so cause significant
wasted effort.
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The parsing cost is estimated to increase by 20%, which is undesirable for a
production compiler, but justifiable in terms of the improved modularity for a
research tool.

The approach recommended in the next section reduces this 20% estimate to a
negligible level, and so no attempt at accurate measurement has been made.

5.6.3 Parsing with the ambiguity (the superset approach)

A design philosophy of C is the principle that declarations imitate the style of their
usage. The declaration syntax is therefore deliberately rather than accidentally
and inconveniently similar to the expression syntax. This property can be
exploited to develop a superset syntax that encompasses both declarations and
expressions.

AorB covers all sentences that satisfy A and all sentences that satisfy B. Deriving
AorB involves adding the relevant formulae and pruning any duplication. In order
to simplify the grammar we may choose to add further terms to AorB provided we
do not introduce any new ambiguities, or at least provided we can resolve any new
ambiguities that we do introduce. We require the grammar for AorB to provide
cover for at least A and at least B. We do not require precise equivalence.

The consequence of choosing to make AorB larger is that some sentences that
were formerly syntax errors, are now accepted by the superset grammar. These
sentences should be diagnosed in a later semantic analysis. This is actually
beneficial, since the extra sentences that are accepted have a close similarity to
legal sentences and so cover likely programming errors. Accepting such errors
syntactically improves the likelihood that a diagnostic will report an error that is
relevant to the programmers intent. For instance given

typedef type a virtual;

many compilers may succeed in diagnosing an illegal typedef. The greater
syntactic coverage may allow the compiler to accept the typedef initially but report
that virtual is not a legal qualifier for the name of a typedef.

With such a superset grammar there is then no ambiguity, merely a loss of
resolution. The loss of resolution can be recovered by semantic processing
following the superset syntactic parse.

5.7 The Superset Grammar Approach

The superset grammar approach described in this section comprises two
innovations, each of which could in principle be used independently.

Unification of declaration and expression syntaxes provides a solution to the major
C++ parsing problem: the declaration / expression ambiguity. The problem ceases
to be syntactic. It is deferred to the semantic level where it belongs and is
relatively easily resolved.

Elimination of the use of type information avoids the need for potentially infinite
lookahead to perform type disambiguation (of ρ in Section 5.5.3.2), since
incorporation of type requires substantial grammar elaboration to handle the
undecided lookahead. Removal of type simplifies the grammar, allowing type
related ambiguities to be removed from the grammar and deferred for semantic
resolution, where they too belong.

We first revisit the ambiguity analysis of Section 5.5.3 to see what problems a lack
of type information causes. We then present relevant parts of the superset
grammar to show how the superset is implemented. The full superset C++
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grammar may be found in Appendix B, and the extended FOG superset in
Appendix C.

5.7.1 C++ Ambiguities (without type information)

With type information, σe is a type-name and is distinct from θe which is a non-
type-name. Their C++ usage is distinct:

Without type information there is no distinction, and we just use the superset name
θ. This was shown graphically in Figure 5.3 on page 158.

The Fe•σe term may be subsumed by the replicator to give the superset
expression.

5.7.1.1 Declaration / Expression ambiguity

The strict ambiguity for a declaration / expression ambiguity (from Section 5.5.3.2)
simplifies initially to

and after application of semantic constraints to:
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with the corresponding recursive parameter ambiguity ultimately simplifying to

These are greater ambiguities but they have the same structure as before. The
former ambiguities involving just σe now involve θ. This loss of precision can be
recovered as soon as type information is available. Type information is not
necessary to identify the syntactical structure in which θ is used. The ambiguity
may therefore be safely deferred for semantic rather than syntactic resolution.

5.7.1.2 Expression / Expression ambiguity

Removal of the distinction between σe and θe requires reassessment of
ambiguities related to σe and τ .

The former declaration / declaration ambiguity involving operator new[] now
becomes an expression / expression ambiguity as well.

5.7.1.3 type-id / expression-list ambiguity

A parenthesised-call / cast-parenthesis or parenthesised-binary / cast-unary
ambiguity exists when the

of the cast may be confused with

The T+ term can now match part of θ, since without type information ,
leading to the solution (for the potential type names)

indicating that

(T)+5

is now ambiguous: is it a cast of +5 to type T, or the sum of T and 5?

This decision cannot be made without type information. However it can be
deferred until type information is available, since an AST node that misleadingly
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describes the addition of a type to a value can be detected and corrected to
describe the corresponding cast. This error is highly localised unlike the template
corrections of Section 5.8.1.

5.7.1.4 Call / functional-cast ambiguity

The call / functional-cast ambiguity arises when the type-name σe in a functional-
call can be mistaken for an assignment-expression. A type-name is not distinct from θ
which is a valid assignment-expression. All forms of functional-cast become
ambiguous. The functional-cast is excised from the grammar, with detection of
functional-casts deferred until type information is available to determine whether
the function-name associated with a call is a type-name or not.

5.7.2 A naive Assignment-Expression / Parameter-Declaration superset

assignment-expression and parameter-declaration occur as part of the recursive
ambiguity between an expression-list as a function call argument list and the
parameter-declaration-clause of a function-definition. We must find a superset that covers
both

and

.

A very naive common superset for  is
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where

• A is the superset of Ad and Ae

• F(*L•ω) is the superset of Fd(*L•π) and Fe(*L•η)

• P is the superset of Pd and Pe

This superset covers ε and so introduces numerous ambiguities. For instance a
name could be either θ or D•ε, and an infix operator with ε as its left operand is
indistinguishable from the equivalent prefix operator. A much tighter superset is
required.

5.7.3 The Superset

Definition of a superset that covers a parameter-declaration and assignment-expression
requires that their component terms also represent corresponding supersets. We
therefore present the component supersets in increasing order of complexity
before finally reaching the generalised parameter-declaration and showing that it
provides superset grammar coverage.

5.7.3.1 Generalised Name

The ambiguity in

prefix ( b )

causes extreme parsing difficulties because the C++ grammar prepends the
prefix to the parenthesis for two different reasons, only one of which is
guaranteed to have parentheses present:

• a prefix name is associated with parentheses for a function call

• a prefix name is associated with an optionally parenthesised declarator for
a simple-declaration

One of these alternatives must be eliminated to resolve the parsing difficulty.
Eliminating a function call is undesirable since parsing of function arguments
occurs in the midst of productions that enforce arithmetic precedences.
Eliminating the name from the decl-specifier-seq prefix of declarations is possible.

The solution is to maximise the parsed length of any word-like sequence before
associating punctuation. Therefore

extern int f()

is parsed so that extern int f is parsed in its entirety before the parentheses
are applied. This avoids the problem of whether a prefixed name may be followed
by a parenthesis or not, since a name is only prepended in one place. The cascade
of names is parsed first. As a result of this, the parse trees for

D*
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int (var)
Class(arg)
Class(int)

are all the same. Semantic processing must use type information to separate the
possibilities and recognise the equivalence of

int (var);
int var;

The template keyword affects the way in which a name is used. It must therefore
bind to that name. template is therefore always parsed close to the name. This
potentially causes a conflict with an explicit-instantiation which provides an external
binding of the template keyword.

explicit-instantiation: template declaration

The C++ grammar therefore suggests that

template int X<int>::f();

be parsed as

f
X<int>::f
X<int>::f()
int X<int>::f();
template int X<int>::f();

in which each subsequent line represents the increased knowledge resulting from
reducing a parsing rule.

In FOG, names and the template keyword are resolved with high priority to avoid
ambiguities, the reduction order is

f
X<int>::f
int X<int>::f
template int X<int>::f
template int X<int>::f()
template int X<int>::f();

The conflict is resolved by ensuring that every valid declaration that can
participate in an explicit-instantiation incorporates the template prefix. In practice
this means that every prefixing rule that could form part of a declaration in the
generalised expression must apply a template prefix if it applied any other prefix.
Parsing of an explicit-instantiation is therefore subsumed by parsing a declaration.

In the grammar analysis, a maximised name is denoted by D+, which is convenient
for analysis but does not perform very much of a syntactic breakdown. Classifying
the components of D as

u a user-defined name (e.g. ::name or operator const char *
or class X {...}) already including an optional template prefix

b a built-in type name (e.g. short)

t the template keyword

q anything else (e.g. const or extern or virtual)

D+ is parsed (using regular expression syntax) as

(t*q)* ( (t*b(b|q)*)? (uq*(b(b|q)*)?)* | t*b(b|q)*)

rather than

(u|b|q|t)+

All possibilities are parsed and the requirement to gather template prefixes is
observed. The b(b|q)* grouping captures a complete (multi-word) built-in type
name together with all interspersed and trailing qualifiers. The uq* similarly
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captures a single word user-defined name together with all trailing qualifiers. An
arbitrary mix of names is permitted recognising that two built-in type-names
cannot be adjacent. This grouping ensures that only one AST node need be
created for each name and that trailing qualifiers attach to their preceding name.
The (t*q)* prefix associates any prefix qualifiers with the first name.

The leading (t*q)* is separated and not implemented as part of a D+ parse. This
exploits the semantic constraint that a name must contain at least a user-defined
or built-in type name, and avoids ambiguities when a generalised name:

• follows a cast generalised with a trailing cv-qualifier-seqopt to cover an
abstract function declarator

(cast) const p

• follows a cv-qualified pointer

int * const p

• is used with the FOG negated qualifier extension

!static int p;

The omitted prefix (t*q)* term is only valid as part of a decl-specifier-seq which
occurs at the start of certain declarations. The missing specifiers are therefore
parsed as a prefix once all other ambiguities have been removed:

simple_declaration: ';'
| init_declaration_list ';'
| decl_specifier_prefix simple_declaration

A related complexity arises with pointers to members

Class :: *

since the following is syntactically valid

Type Class::* p = 0

In order to pursue the same policy of maximising the name to avoid shift-reduce
conflicts, the parse for the pointer scope absorbs all the preceding name
components. This must of course eventually be sorted out by the semantic
processing, but differs little from the problem of resolving

int * * p = 0

which the superset parse identifies as an assignment of zero to the product of the
name int and the dereference of p. This might appear to be a severe misparse,
but actually corresponds to an economy of AST nodes. The pointer-to declarator
node does not need to exist. Its functionality is folded into the superset multiplier
node, which now has one behaviour for types and another behaviour for values.

5.7.3.2 Generalised Array

The two forms of array suffix: Ad(κ?) and Ae(+L•η) are generalised to A(*L•η).

5.7.3.3 Generalised Parentheses

The two forms of function suffix: E?•V?•Fd(*L•π) and Fe(+L•η) are generalised to

E?•V?•F(*L•ω) where ω ⊇ π ∪ η

The precedence enforcing parentheses are generalised from B•*L to E?•V?•B•*L.

Although not necessary to unify declarations and expressions, generalisation of a
cast is necessary to avoid shift-reduce conflicts. C is therefore replaced by

E?•V?•C.

In order to parse delete[] followed by an unparenthesised expression. C(τ)•α  is

further generalised to cover [ η? ] α  as well as ( τ ) α .
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5.7.3.4 Generalised pointers

ptr-operator is not generalised, however the usage of * as a binary operator is
replaced by star-ptr-operator in order to accept a cv-qualifier-seqopt following a * in a
multiplicative-expression. Additionally any decl-specifier preceding the scope of a
pointer to member is associated with the scope, thereby avoiding conflicts and the
need to introduce another infix expression operator.

unary_expression:
postfix_expression

| "++" cast_expression
| "--" cast_expression
| ptr_operator cast_expression
| suffix_decl_specified_scope star_ptr_operator cast_expression
...

multiplicative_expression:
pm_expression

| multiplicative_expression star_ptr_operator pm_expression
| multiplicative_expression '/' pm_expression
| multiplicative_expression '%' pm_expression

star_ptr_operator:
'*'

| star_ptr_operator cv_qualifier

5.7.3.5 Generalised primary-expression

In order to cover some forms of abstract-declarator as expressions and thereby avoid
shift-reduce conflicts, a primary-expression is extended to cover an abstract array A•ε
in addition to an abstract function covered by the parenthesis generalisation to

E?•V?•B•*L•ω. The same

term is therefore used as an expression (to support abstract-declarator), as an
expression prefix (to support a cast) and as an expression suffix (to support
function parameters). Use of precisely the same syntax avoids shift-reduce
conflicts.

primary_expression:
literal

| "this"
...
| abstract_expression

abstract_expression:
parenthesis_clause

| '[' expression.opt ']'
| "template" abstract_expression

parenthesis_clause:
parameters_clause cv_qualifier_seq.opt exception_specification.opt

parameters_clause:
'(' parameter_declaration_clause ')'

5.7.3.6 Generalised assignment-expression

In order to provide complete coverage of a declarator initializer, the right-hand
expression of an assignment-expression using = is extended to accept {} forms.

assignment_expression:
conditional_expression

| logical_or_expression assignment_operator assignment_expression
| logical_or_expression '=' braced_initializer
| throw_expression

braced_initializer:
'{' initializer_list '}'

| '{' initializer_list ',' '}'
| '{' '}'

A

E ? V ?• B L*•• 
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The overall form of the generalised assignment-expression is

χ ⊃ η  since A ⊃  Ae, F ⊃  Fe, P ⊃  Pe, D+•ε ⊃ θ .

5.7.3.7 Generalised parameter-declaration

Adding one extra term to χ provides coverage for π, and ensures that ω ⊃ χ ⊃ η .

The additional term defines ω as a generalised parameter-declaration

The extra D+•Pd
*•I?•ε exhibits significant prefix ambiguity with a binary expression.

It is only the ε at the right-hand side that disambiguates

a **** ,

from

a **** b,

Implementation of this term therefore re-uses intermediate expression
productions to avoid shift-reduce conflicts, and consequently covers many
meaningless sentences.

abstract_pointer_declaration:
ptr_operator_seq

| multiplicative_expression star_ptr_operator ptr_operator_seq.opt

abstract_parameter_declaration:
abstract_pointer_declaration

| and_expression '&'
| and_expression '&' abstract_pointer_declaration

special_parameter_declaration:
| abstract_parameter_declaration
| abstract_parameter_declaration '=' assignment_expression
| “...”

parameter_declaration:
assignment_expression

| special_parameter_declaration
| decl_specifier_prefix parameter_declaration

5.7.3.8 Coverage of the generalised parameter-declaration

It must be shown that  where

χ
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To keep the equations more manageable:

π may be split to create 4 sub-problems:

each of which will be shown after first showing that pointers to ξ  are covered.

Pd
*•I?•ξ ⊂ ω

Of the four alternatives offered by the right hand term of ξ , the top one and bottom

two are clearly covered, since I ⊂ Oi, Pd ⊂  P, θd ⊂  D+•ε. The second may be written
more fully as

ω
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and then rewritten

and then expanding ω gives

Examining top and bottom right-hand terms shows them to be covered by ω.

1) D+•I?•ε ⊂ ω

This term is covered by Oi
?•D+•ε since prefix and suffix operators commute and

we generalised the right-hand side of an assignment to support the {} form of
declaration initializer.

2) D+•Pd
+•I?•ε ⊂ ω

This is covered by the extra term added for use of a generalised parameter-
declaration rather than a generalised assignment-expression.

3) D+•Pd
+•I?•ξ ⊂ ω

Taking the lexical perspective for ordinary pointers and references: the first Pd in
a term which could be a multiplier in a declaration of the form

static long int * *a = 0 ;
The problem

D+•Pd•Pd
*•I?•ξ

can be written, after introducing lexical separation around the first Pd, as

D+•ε Pd•ε Pd
*•I?•ξ

which is covered by

D+•ε Oi•ε Pd
*•I?•ξ

since Pd is covered by Oi, and the possibility of a trailing cv-qualifier-seq on Pd is
covered by the generalisations to unary-expression and multiplicative-expression.
Introduction of the dyadic Oi partitions the problem into the two smaller problems:

D+•ε ⊂ ω  and Pd
*•I?•ξ ⊂ ω .

It is clear that D+•ε ⊂ ω , and we have already shown that Pd
*•I?•ξ ⊂ ω .

For pointers to members such as

extern int Class::* p = 5
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the generalised form of pointer P subsumes the D+ prefix leaving the problem

Pd
*•I?•ξ ⊂ ω  which has already been shown.

4) D+•I?•ξ ⊂ ω
This may be shown by considering the three alternative locations for the left-most
occurrence of a B in:

There may be no occurrence of a B:

This is covered since the absence of prefix operators allows the D prefix to be
combined with the θd or ε.

There may only be a B in the final replicator.

which may be rewritten as

which is satisfied since the function argument Pd
+•ε ⊂ ω ⊂ *L•ω.

There may be a B in the first multiplier

which may be rewritten as

which is covered since the recursive problem Pd
*•ξ ⊂ ω ⊂ *L•ω has already been

shown.

5.7.4 Ambiguities in the superset grammar

The complete C++ grammar implemented using the superset approach is provided
in Appendix B. Processing that grammar through bison and yacc provides a
rigorous check of the ambiguities, which are described in Appendix F.2.
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The overall accuracy of the grammar depends on transcription errors in the
conversion of the textual exposition of Annex A of the standard [C++98] to an
executable yacc grammar, and the number of changes required to resolve
ambiguities. The grammar is similar to the standard and so relatively easily
checked in conjunction with the justification of the superset.

The more substantial changes to resolve ambiguities are based on establishing a
superset of the declaration and expression syntax. The ability of the superset to
parse the composite declaration and expression syntax was shown in the previous
section. Much simpler proofs are used to show that the same or a slightly tailored
superset solves other ambiguity problems. Restructuring of a few productions is
necessary to remove or at least resolve shift-reduce conflicts.

Provided that the syntactic parse discards no information, ambiguities that are not
resolved syntactically can be resolved semantically. This is easily achieved by
ensuring that each reduction fully parameterises each AST node that is created.

A discussion of the resolution of the practical difficulties associated with the
detailed C++ syntax may be found in Appendix F.2 including details of the new
ambiguities resulting from the superset approach in Appendix F.2.6. The semantic
processing required to recover from the reduced syntactic resolution is described
in Appendix F.3.

5.8 Back-tracking

Introduction of back-tracking into an LALR parser grammar in order to support a
reparse against an alternate syntax proves to be remarkably easy. The author is
not aware of any other implementation that back-tracks, however tools such as
yacc are in such widespread use by ‘imaginative’ programmers that it is unlikely
that the approach is totally new.

We first show how a linear search of alternative syntaxes may be made, as was
required to resolve the declaration/expression ambiguity in the earlier multi-pass
grammar.

We then show how a binary tree search of alternative syntaxes can be
orchestrated in order to resolve the template/arithmetic ambiguity for the superset
grammar.

5.8.1 Linear search in yacc

The multi-pass FOG productions to perform a linear search through the
declaration and expression ambiguities of a statement resemble

statement: mark declaration_statement unmark
| mark remark expression_statement unmark
| mark remark error ';' unmark

mark: /* empty */ { push_input_context_marker(); }

remark: error { rewind_input_context_to_marker(); }

unmark: /* empty */ { pop_input_context_marker(); }

in which

• /* empty */ is a comment to highlight use of the ε terminal

• {} surrounds the code invoked when a rule is reduced.

• error is a special error recovery token generated by the parser when an
inconsistent token is encountered.

The mark rule places a marker on the input token sequence. remark back-tracks
and starts another attempt to parse the same sequence. unmark removes the
marker but does not affect the token stream. In practice, statements nest, and this
approach is used to resolve other parsing problems too, so mark pushes onto and
unmark pops from a stack of marked positions.



Meta-compilation for C++ Parsing

Page 188 29-June-2001

The operation of the parser requires that all three alternatives start by shifting and
then reducing the mark to ensure that the parser generator has a common prefix,
and that the context stack is consistently maintained. The first alternative then
attempts to parse the input token sequence as a declaration-statement and unmarks
if that parse succeeds. The other two alternatives are inactivate until an error
occurs, as will be the case if the declaration-statement parse fails. Reduction of the
remark rule that handles the error rewinds the input context back to the mark so
that an attempt at an expression-statement parse occurs. If this also fails, the further
error of the third alternative is satisfied and error recovery proceeds by
discarding tokens until a semicolon is encountered.

Successful parsing of the first alternative therefore occurs without the use of any
error tokens. Successful parsing of the second alternative occurs after a single
error. Only after two errors does a proper error recovery get activated as the
third alternative.

This approach directly implements the disambiguation rule (§6.8-1): if it could be
a declaration, it is (first alternative), otherwise it’s an expression (second
alternative). However the parse is a syntactic one. If it looks like a declaration, it
is parsed as a declaration, otherwise it is parsed as an expression. This is not a
problem when accurate type information is available, however we are advocating
parsing without type information and so those ambiguities that require type
information are resolved in favour of declarations (because declarations are
parsed in the first pass). Expressions that are misparsed because they look like,
but cannot be, declarations must be corrected once type information is introduced
in subsequent semantic processing. The nature of these expressions is discussed
in Appendix F.2.5 and their resolution in Appendix F.3.1.

Code to detect the misparse has the full construct available as AST nodes,
avoiding the difficult partial context and lookahead problems that occur while
trying to disambiguate in the grammar. Code to correct the misparse performs a
localised tree rearrangement with many of the misparsed declaration AST nodes
re-usable as nodes in the corrected expression tree.

The approach is relatively easy to implement in the parser, but requires the input
token source to support marking, and back-tracking to specific positions. In
practice there is a potential for errors in the grammar. Failure to pair mark and
unmark leads to stack drift that materialises as an unhelpful parsing failure with a
generally confusing diagnostic. Parsing control actions are transparent to the
parse table generator, and so unnecessary marks may be omitted:

statement: selection_statement
| mark declaration_statement unmark
| mark remark expression_statement unmark
| mark remark error ';' unmark

selection-statement:
if ( condition ) statement
if ( condition ) statement else statement
switch ( condition ) statement

A statement starting with an if keyword can only be a selection-statement, since if
occurs nowhere else in the grammar. A selection-statement can therefore be parsed
without marking the context for backtracking. This works because the parser
generator uses one token of lookahead. It may therefore examine the token
logically following the mark before deciding which parsing alternatives to retain.
This avoids incurring the cost of back-tracking. The corollary is that the marked
position in the input token sequence must be adjusted to ensure that the
lookahead token is made available following a back-track. A more unpleasant
corollary occurs if the omission of a mark is a programming error. In the above
example, if a declaration-statement could start with an if, the ambiguity would be
diagnosed by the parse generator as a shift-reduce conflict. However if the
expression-statement could start with an if, no diagnostic results, the generated
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parser parses the selection-statement, but does not perform a back-track for the
expression-statement. This is one of the harder forms of parsing error to cure: the
grammar code looks correct.

The back-tracking approach is able to resolve the type-name or identifier
ambiguity adequately because there is very little syntactic difference: both are
names. Most ambiguities are correctly resolved in favour of the declaration.

Back-tracking for templates

Back-tracking is less well-suited to resolving the template-name ambiguity, since
in one case the syntax involves what should be paired brackets

template_name < a , b > - 5 // template_name<a,b> - 5

and in the other case an infix operator

non_template_name < a , b > - 5 // non_template_name<a , b>-5

The ASTs for the two alternatives are rather different, the error in the tree
structure is poorly localised, and grows as the number of ambiguous <’s increase.
However, it is not resolvable by back-tracking to try an alternative restarting at the
<, because the template name may be parsed successfully

template_name < a > b [ 5 ] // Ok
template_name < a > b [ 5 ] + 7 // Syntax error
non_template_name < a > b [ 5 ] + 7 // Ok

and consequently reduced and removed from the parser stack before a syntactic
contradiction is detected.

For back-tracking to succeed, the entire expression and more generally the entire
declaration or statement, must be retried to test each template / non-template
hypothesis. This requires a search of the binary tree of alternate hypotheses.

Back-tracking for template-names is perhaps not appropriate for a C++ parser that
performs semantic interpretation. Relatively loose coupling between syntactic and
semantic processing will suffice to provide the information needed for syntactic
analysis, since template-names cannot be introduced in mid-statement.

Back-tracking for template-names may be appropriate for C++ parsers that do not
need full program comprehension. For instance, the relatively rare errors from a
template misparse need not render a pretty printing program unusable.

However back-tracking for templates is unavoidable in FOG, since semantic
information cannot be provided.

5.8.2 Binary tree search in yacc

The lack of context during meta-programming described in Section 4.2.3
mandates parsing without template information, and so a search of the binary tree
of possible parses is required.

The problem to be solved is this: given a declaration or statement containing an
arbitrary number of occurrences of an identifier followed by a <, find a permutation
of the template/arithmetic interpretations for each occurrence such that a
syntactic parse can succeed.

The solution may be expressed as a boolean vector whose length is the number
of identifier < occurrences, with a false value for each template verdict and a true
value for each arithmetic verdict.

The parser interacts with the solution in two contexts. An outer context sequences
the search, advancing in depth first fashion through the solutions. Interaction
occurs through

start_search to mark the current context and create the first solution

advance_search to restore the marked context and select the next solution
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end_search to accept the current (or no) solution and clean up

(Solutions are maintained on a stack, so that nested problems can be solved.)

The outer context of course has no knowledge of the problem depth, which is
maintained by the inner context: where the identifier < occurs.

For the first solution, and for deeper exploration of later solutions, each encounter
of identifier < establishes a deeper problem and so the encounter lengthens the
solution vector and enters a false verdict making a presumption of template usage.

If a solution attempt fails, advance_search is invoked and the solution vector is
advanced to the next candidate solution by binary addition at the deep end of the
vector with ripple carry to the shallow end. The current depth is then reset to zero
ready for the next pass, during which the depth is incremented as each identifier
< is re-encountered. Each re-examined identifier < therefore responds according
to the template/arithmetic behaviour appropriate to the candidate solution.

Outer context

The search is orchestrated by marking the input token context at the start of each
declaration or statement, and associating a binary tree search context with that
mark. The grammar

compound-statement:
{ statement-seqopt }

statement:
control-statement
...

is implemented as

compound_statement: '{' statement_seq.opt '}'
| '{' statement_seq.opt looping_statement '#' bang error '}'

{ UNBANG("Bad statement-seq."); }

statement_seq.opt: /* empty */
| statement_seq.opt looping_statement
| statement_seq.opt looping_statement '#' bang error ';'

{ UNBANG("Bad statement."); }

looping_statement: start_search looped_statement { end_search(); }

looped_statement: statement
| advance_search '+' looped_statement
| advance_search '-'

statement: control_statement
...

advance_search: error { yyerrok; yyclearin; advance_search(); }
bang: /* empty */ { BANG(); }
start_search: /* empty */ { start_search(); }

Usages of statement are served by looping_statement which organises the binary
tree search around statement.

The search iteration is managed by the three functions start_search(),
advance_search() and end_search() invoked from the action routines.
start_search() and end_search() occur as the pre and post actions that
looping_statement imposes upon looped_statement.

Retries are triggered by the error token, which invokes advance_search to
rewind the context for the next attempt.

In order to avoid an infinite loop, advance_search needs a way to return a value
to the parser to signal whether to continue looping, or to finish the loop. It might
seem that an error token could terminate the loop, but the error token is already
being used to sequence the loop, so another approach is required.
advance_search() injects either a '+' token or a '-' '#' token sequence into
the source from which yylex() reads tokens, and ensures that one is fetched by
clearing out any lookahead with yyclearin.3
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The third solution is therefore accepted after the parser has apparently parsed the
rule:

start_search advance_search '+' advance_search '+' statement { end_search(); }

An unsuccessful attempt may have the apparent rule:

start_search advance_search '+' advance_search '-' { end_search(); }

Re-use of the error token enables the loop to be realised, however the
unsuccessful parse has to be successful in order to avoid making double use of
the error token. The extra '#' token is therefore injected to cause a guaranteed
regeneration of the error, since '#' is reserved for use by the C preprocessor
and so never occurs after preprocessing. In order to give a useful diagnostic, the
injected '#' is caught in the sequence

... looping_statement '#' bang error '}' { UNBANG("Bad statement-seq."); }

The bang production is empty but has an action routine that interacts with an error
message handler to ensure that users don’t see a "parser error" diagnostic
from each failed parsing attempt. There are no productions able to successfully
handle any tokens following the injected '#', so the parser is forced to start error
recovery, for which it finds continuation of the above possible. Error recovery
continues by discarding tokens until resynchronisation occurs at the next '}', at
which point the UNBANG macro interacts once again with the error message handler
to restore the previous behaviour and emit an appropriate message, together with
helpful context information.

Generation of a good quality diagnostic requires the diagnostics associated with
the most-nearly-successful loop iteration to be cached during the loop for
emission at the end of the loop. The most-nearly-successful metric is conveniently
determined as the largest number of tokens parsed prior to the error.

Inner context

The domain of the search cannot be directly known by the loop management
productions. It is maintained as a side effect of identifier parsing.

id: identifier                      %prec SHIFT_THERE
| identifier template_test '+' template_argument_list '>'
| identifier template_test '-'
| template_id

template_test: '<' { template_test(); }

template_id: "template" identifier '<' template_argument_list '>'

A template ambiguity arises, whenever an identifier is followed by a < without a
template prefix. The ambiguity is resolved, in the absence of template
information, by the prevailing state of the binary tree search. This state is
determined by the template_test() routine which injects '+' token to select a
template interpretation or a '-' '<' token sequence for an arithmetic
interpretation.

The template_test rule introduces a shift-reduce conflict between the usage in
the expression syntax and the usage presented above. This conflict is resolved by
the %prec to force all occurrences of identifier < to take the test. When the test
injects a '+', parsing continues by analysing template arguments. When the test
injects a '-' and '<', the '-' satisfies the parse for an identifier and the extra
'<' restores the token required to proceed with the arithmetic interpretation.

On the first traversal of source tokens, template_test() increases the binary
tree search depth and selects the template hypothesis. On subsequent traversals,
template_test() signals the prevailing binary tree search hypothesis.

3. Any pair of tokens other than error could be used since the injected token is used
solely to distinguish two forms of advance_search in the grammar.
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It is rarely necessary to perform the full binary tree search, since a branch and
bound can exploit early failure and avoid searching other hypotheses that share
the same failing prefix.

There is unfortunately no guarantee that the first accepted hypothesis is correct,
and so the subsequent semantic analysis must be prepared to reorganise the AST
to accommodate errors in either direction.

It should be noted that there is no error handling for template arguments, so that
a template argument parse failure propagates onwards enabling the statement
level binary tree search to poll syntax alternatives.

Cost

This algorithm clearly has exponential complexity with respect to the number of
ambiguous <’s in a statement, although this complexity does not arise in practice
as is demonstrated by applying the grammar of Appendix C to three large bodies
of code to determine its cost. The results are summarised in Table 5.5.

The fog code is the entire C++ source code for FOG. Fewer than 1% (290 out of
38470) of statements contained an identifier followed by a <, and a consistent
syntax for these was usually (166 out of 290) found without back-tracking by
assuming the template form. A consistent syntax was always found after one back-
track. The comparatively low proportion of ambiguous statements is due to a
coding habit that hides templated lists and pointers behind typedefs.

The product code is the entire C++ source code for a proprietary product. A higher
proportion but still fewer than 4% of statements contained an identifier followed by
an <, and a consistent syntax for these was almost always found after one back-
track. A consistent syntax was always found after three back-tracks.

The gcc code comprises almost the entire source code of the gcc compiler. This
is C code and so gives worst case performance under the back-tracking
presumption to try template syntax first. Nearly 2% of statements were
ambiguous. 29 statements were incorrectly resolved as templates without back-
tracking. 2047 statements were correctly resolved after the back-track necessary
to change the template presumption. The higher number of back-tracks do not
indicate the correctness of their parsing conclusion. However since the maximum
depth of the binary tree search was 6, it is clear that the use of branch and bound
in the search ensured that the 64th solution was found in at most 8 tries.

The C++ examples use templates but predate the Standard Template Library
[C++98]. Although STL code may well use more templates, the parsing is likely to
be more accurate since the current implementation assumes a template resolution
and only retries when that is inconsistent. The gcc code without any templates is
therefore a representative worst case.

These results confirm the intuitively expected behaviour. Arithmetic expressions
tend to have at most one relational operator, and so favouring template usage

Code
body

Preprocessed
Lines

Statements
identifier <

statements

%
ambigu

ous

Back-tracks

0 1 2 3 4 5 6 7

fog 88133 38470 290 0.75 166 124 0 0 0 0 0 0

product 119383 44353 1652 3.7 784 851 9 8 0 0 0 0

gcc 426797 127366 2099 1.7 29 2047 7 21 1 2 2 1

Table 5.5 Back-tracking costs
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when syntactically consistent results in few expressions that need semantic
correction.

The exponential search complexity does not arise in practice. From the C++
results, we may estimate that back-tracking may occur for 50% of ambiguous
statements, which appear to be about 2% of all statements. From the gcc results
we may estimate that a wrong parse is found 1% of the time. The syntactic cost is
therefore an extra 1% of syntactic statement analysis. Estimating the cost of an
aborted partial analysis at half the cost of a successful complete analysis, we may
estimate that the net semantic cost involves the correction of a template misparse
for 0.01% of statements.

5.9 FOG grammar

The full FOG grammar in Appendix C uses similar techniques to those for the
simpler C++ grammar in Appendix B.

In addition to the use of back-tracking in the superset grammar to solve the C++
parsing problems

• template name (Appendix F.2.1.3 and Appendix F.2.1.4)

• bit field or inheritance (Appendix F.2.4.1)

the back-tracking approach is also used to solve the following parser problems

• “old-style” C (type I) function declarations(Appendix F.2.4.2)

Multi-pass implementation

The earlier multi-pass implementation of FOG parsed first for declarations and
then back-tracked for expressions. Further nested back-tracking was used to
resolve

• cast ambiguities (Appendix F.2.5.2)

• new placement / initializer ambiguity (Appendix F.2.5.5)

• sizeof ambiguity (Appendix F.2.5.6)

• typeid ambiguity (Appendix F.2.5.7)

• type / value template arguments (Appendix F.2.5.8)

The preliminary scan of the body of a meta-function marked the position of the
start of any tree-literal and attempted to parse a formal parameter. If a formal
parameter was referenced, its value was used. Otherwise the parser back-tracked
and copied the tree-literal unchanged into the meta-function body.

The multi-pass implementation did not parse statements within function bodies
further than the replacement of $-expressions. It therefore incurred very few of the
severe ambiguities that arise when expressions and declarations coexist.

5.10 Code Structure

The file input processing acquires tokens from source files and performs ANSI C
preprocessing. The implementation closely follows the translation phases
described in §2.1. It is shown in pictorial form in Figure 5.4.

Phase 1 (character mapping, trigraph replacement and universal character
replacement) and phase 2 (backslash line continuation) are performed by nested
subroutines in the input routine to the lexer.

Phase 2 operates in a demand-driven fashion, returning one line at a time to the
lexer.

The lexer, automatically generated by flex++, performs phase 3. The lexer is very
simple (150 lines of rules), just identifying each of the different lexemes, and
creating an appropriate derived instance of the polymorphic FogToken.
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Construction costs are reduced by making substantial use of the Flyweight pattern
[Gamma95], with all tokens stored in a tokenization symbol table which is initially
populated by special objects for all the reserved words and punctuation
sequences. Whenever a text string is tokenized, the appropriate Flyweight is
chosen, so that a string such as and_eq is encoded as an object that retains its
spelling for the purposes of stringizing, but which otherwise behaves the same as
the object created for the text string &=. Reserved words such as bool or else are
similarly associated with objects that have relevant behaviour.

Minor complexities are resolved by using four alternate lexer states to handle

• normal tokenization

• waiting for */ in a multi-line C-style comment

• recognising preprocessor keywords between the # and subsequent
directive

• non-standard tokenization after a #include.

Phase 3 operates in a demand driven fashion, returning one lexeme at a time.
Each lexeme has a dual identity, as a preprocessor token and as a token.

The phase 4 preprocessing directives and macro substitution are not performed
by the lexer. Phase 4 processing is performed by two further layers of processing,
each operating in a demand-driven fashion to return one lexeme at a time to its
caller. The inner layer performs macro substitution. The outer layer detects and
implements preprocessor directives. Macro substitution is performed by three very
simple parser grammars that

• locate any macro arguments following a function-like macro

• substitute any identifiers in the macro replacement

• retokenize around ## and stringize # identifier

Substitution (scan 1) and replacement (scan 2) of identifiers may involve a
recursive substitution, but not where scan 1 detects an identifier matching the
current macro (§16.3.4-2). The entire replacement for the detected macro and

Phase 1 : character decoding - hand-coded

Phase 2 : continuation lines - hand-coded

Phase 3 : tokenization - flex++ grammar

Phase 5 : character set mapping - empty

Phase 4a : macro substitution - 3 bison++ grammars
Phase 4b : preprocessor directives - bison++ grammar

Phase 6 : concatenation - hand-coded
Phase 7a : syntactic analysis- bison++ grammar

Phase 7b : semantic analysis - hand-coded

C preprocessor

Lexical Analysis

Semantic Analysis

Syntactical Analysis

AST representation

Source Program

Figure 5.4 FOG analysis phases
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arguments is determined as soon as the macro is detected, with the resultant
token sequence cached and then emptied by successive demands for more
lexemes.

Preprocessor # directive lines are parsed using a further grammar, with identifier
substitution bypassed except where permitted by the syntax. Conditional
directives maintain a state stack, the top of which determines whether lexemes
from non-preprocessor lines should be discarded. #define and #undef maintain
the dictionary of macro definitions referenced by the inner preprocessor layer.
#include pushes a new source context on to the lexer.

The lexemes returned from the outer preprocessor layer comprise the token
stream after all ANSI C preprocessing has been completed, and before any FOG
extensions have been realised. The token stream includes whitespace and new
lines. To improve error diagnostics, each token is returned with its source file,
source line and source column context.

There is no phase 5 in FOG, the execution and source character sets of a source
to source translator are necessarily the same. There is however a distinct internal
character set in which escape sequences, universal characters and other
characters are uniformly represented by binary values within characters and
strings. The uniform internal representation forms the basis for concatenation,
and is created (lazily) when the string or character lexeme is created during phase
3. Each number, string or character has three spellings: the original ASCII source
spelling to be used by preprocessor stringizing, the uniform internal binary
representation, and a regenerated ASCII spelling for output purposes. The output
may need to differ from the input to preserve the meaning of concatenated escape
sequences (§2.13.4-3):

"\xA" "B" concatenates to "\012B" not "\xAB"

The concatenation phase 6 and the analysis phase 7 are described in
Section 3.1.1.

Early FOG implementations performed $-substitution, Cpp substitution and
#directive resolution within the lexer, permitted $-substitution within characters
and strings and identified reserved words explicitly. The implementation was
large, complicated, vulnerable to obscure programs and lacked clear semantics.
The current implementation is simple, with a clear responsibility for each
processing layer. The leakage between layers is very constrained:

• macro definitions are accessible via the std::get_cpp() meta-function

• the using form of include currently shares the same low-level
implementation mechanism as #include

• the source file identification describing the name and origin of each source
file contains a mixture of pre-processor and non-preprocessor attributes

The very mundane organisation of analysis phases demonstrates how the
superset approach successfully avoids the phase dependencies prevalent in other
C++ compilers.

5.11 Grammar Metrics

The complexity of the FOG grammar and the success of the multi-pass and
superset approaches can be judged by comparing the parser generator statistics
for three alternative C++ grammars. Table 5.6 provides a summary of the statistics
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variously extracted from the source grammar, from the generated output or from
the report file of the modified version of bison++ used to build FOG.

Imperfections in the grammar result in conflicts, which may be left unresolved, in
which case they are tabulated in the top two lines. Alternatively %prec may be
exploited to resolve them, in which case the conflicts appear on the third line.
Whether conflicts should be resolved is something of a matter of taste: any
unresolved conflicts give cause to concern that grammar problems are present,
and that the default resolution is erroneous, but equally a large number of resolved
conflicts may hide some erroneous resolutions.

The number of %prec’s used to resolve conflicts are shown on the fourth line.
%prec’s operate by resolving the competition between a shift and a reduction. A
large number %prec’s is bad since a %prec introduced to solve one problem may
accidentally resolve another wrongly.

%prec’s operate by establishing a precedence between rules and input tokens.
The number of input tokens that can be compared is shown on the fifth line. Again
large numbers are bad because there is greater opportunity for accidental wrong
resolution of problems.

The remaining lines are explained in subsequent commentary.

The figures should be treated with some caution, because the goals and
completeness of each grammar are not comparable. (A smaller number is better
for all entries.)

The Roskind grammar is accurate, but lacks templates and other modern facilities.

The gcc grammar is an almost complete C++ grammar, and contains a few
extensions. The grammar code also contains error recovery and performance
optimisations.

The CPPP grammar is preliminary, and lacks some modern facilities.

The multi-pass and superset grammars aim for syntactic consistency, whereas the
other grammars aim for semantic accuracy.

The C++ superset grammar (Appendix B) is a complete working C++ grammar with
error recovery. The grammar unifies the declaration and expression syntax to
resolve ambiguities.

The FOG multi-pass grammar is that of the earlier FOG implementation. It is fairly
complete, adds syntax for meta-level processing, has some error recovery, but
does not provide parsing within function bodies.

Roskind gcc CPPP
C++

super-
set

C++
multi-
pass

FOG
multi-
pass

FOG
super-

set

Unresolved Shift-Reduce conflicts 24 5 1 0 0 0 0

Unresolved Reduce-Reduce conflicts 18 38 0 0 0 0 0

Resolved conflicts 0 704 410 23 14 16(+1) 31

%prec usage 0 109 22 8 6 6(+1) 15

Tokens with precedence 0 61 40 14 4 4 17

Rules 664 779 431 561 661 1456 958

States 1257 1399 702 897 1119 2217 1585

Non-ASCII terminals 77 82 104 95 82 241 110

YYLAST 13954 9534 3724 5060 6501 30119 14545

Table 5.6 Grammar Statistics
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The C++ multi-pass grammar is a version of the FOG multi-pass grammar trimmed
to handle just C++ but adapted to parse all of C++. The grammar contains some
error recovery, and a structure that retains some unnecessary generality from the
full grammar. The grammar has never been used. The results serve to compare
the parsing approach adopted in FOG with other C++ approaches, and to
determine the extra complexity introduced by FOG extensions.

The FOG superset grammar (Appendix C) is the working FOG grammar, using
unified parsing and incorporating error recovery.

Conflicts

Each conflict provides an opportunity for a programming error to yield an incorrect
grammar implementation. The low number of conflicts in the Roskind and even
smaller number in the new grammars ensure that the residual conflicts can be
analysed by hand.

Roskind makes a point of avoiding %prec, relying on line ordering in the grammar
instead. This is an understandable policy with yacc, since yacc does not report
conflicts resolved by using %prec. However, the use of %prec in FOG, and
validation by bison, allows lines to be reordered and explicitly identifies each
conflict where that conflict is intended to be resolved. The extensive use of
precedence by gcc and CPPP and the very large number of tokens which can
participate in precedence resolution offer ample scope for a conflict to be silently
and erroneously resolved.

The FOG grammars use only two active precedence levels, reducing hazards of
fortuitous resolution between levels. 16 tokens share the same level, and so only
one token has a distinct precedence level. Two bordering precedence levels have
the dummy tokens REDUCE_HERE and SHIFT_THERE so that precedence rules are
coded as in Appendix F.2.3.1.

The superset and multi-pass approaches clearly have fewer conflicts. The multi-
pass approach has fewest, since grammar conflicts are resolved in independent
passes. The (+1) on the FOG grammar accounts for the dangling else resolved by
the token acquisition routine. Substantially larger numbers should be added to gcc
and CPPP metrics to account for their lookahead code.

Size

The number of rules in a grammar corresponds to the line count in a more
conventional program, and so measures the programming effort. The number of
states in the generated state machine is a measure of the complexity of the
problem that the program solves. YYLAST is the dimension of the two largest
tables generated for the table-driven parser. YYLAST therefore provides a good
indication of the executable size after all compactions have been performed. The
size of the FOG multi-pass grammar is close to the 32767 implementation limit for
the standard bison parser. During development FOG exceeded that limit, which is
why a modified version of bison++ was used to support 99999 table entries.

The number of rules and states in the Roskind and gcc grammars are surprisingly
similar, more so after allowing for the greater completeness and error recovery in
the gcc grammar. The CPPP grammar is noticeably smaller, which might be an
indication of a better grammar, or confirmation of its inaccurate status.

The C++ superset grammar is noticeably smaller, the benefit of merging declarator
rules into expressions rather than flattening out to try to create more lookahead.

The trimmed C++ multi-pass grammar is similar in size to the gcc and Roskind
grammars. Each of these grammars is over-size through the use of grammar
flattening to extract or resolve extra semantic context at the syntactic level.
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The full multi-pass FOG grammar is at least twice as large, the result of some
extra grammar for the meta-level syntax and the extra rules to support syntax-
driven interaction with meta-functions and meta-variables. The extra rules are
mostly simple. It would be wrong to infer that FOG doubles the grammar
complexity.

A fairer comparison of the parsing cost of FOG can be drawn from the more
effective superset grammar which is rather less than twice the complexity of its
C++ counterpart and pretty similar to the gcc and Roskind grammars.

Parsing Assistance

The number of non-ASCII terminals used by the grammar provides a little insight
into the assistance provided to the parser. Some non-ASCII terminals are
unavoidable to represent the 24 special character sequences (+=), 63 primary
reserved words (class), 11 alternate reserved words (xor_eq) and 4 parametric
tokens (identifier). The exact number of such terminals depends upon whether
alternate reserved words are resolved by the lexer, and whether groups of similar
reserved words such as private, protected and public are replaced by a
parametric token such as access-specifier. A practical implementation uses more
than the minimum number of terminals in order to communicate extra
disambiguation information to the parser.

The Roskind figure does not account for some more recent reserved words and
has one extra disambiguating token.

The gcc figure is more representative, adding six disambiguating tokens.

The larger value for CPPP is the result of the extra information provided by its
lookahead parser.

The values for the superset C++ grammar correspond to exactly one token per
reserved word, punctuation sequence, and 5 parametric tokens.

The much larger figure for the FOG multi-pass grammar is mostly caused by the
need for two tokens per meta-type, one to prime the parser to perform the correct
syntax-driven parse, and one to identify the meta-type of a meta-variable
instantiation.

The additional tokens for the FOG superset grammar are required for the non-
reserved words.

Performance

The superset approach incurs minimal costs from back-tracking, since a back-
track occurs only for very unusual code and the very occasional4 template retry.
The parser is probably slightly slower because more reductions are performed for
the many levels of expression precedence than for the normal nesting of
declarators. This cost could be alleviated by flattening the expression syntax and
using precedence as in the CPPP grammar. The extra semantic disambiguation
will incur a small cost, but since it occurs within the disciplined context of a tree
rather than the less appropriate parser stack, there is probably a small net saving.
The need for semantic correction to the AST is rare and so should incur very little
cost.

The overall relative speed cost of the superset approach may be slightly adverse.
Additional semantic analysis work is introduced by the need to correct the syntax
analysis, and some time is wasted on pursuing inconsistent candidate
template/arithmetic syntaxes. It is difficult to assess to what extent these
moderate costs are offset by the significant simplifications of each of the lexical,
syntactic and semantic analyses. However this loss is well justified given the

4. Estimated at 0.01% in Section 5.8.
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elimination of intra-statement coupling between syntactic and semantic analysis
stages and the possibility of demonstrating that the grammar implementation is
accurate.

The parsing tables for the superset grammar approach are clearly smaller. The
AST provides an easier environment in which to resolve ambiguities. It is therefore
likely that deferring ambiguity resolution to the semantic level may contribute a
further small code saving.

5.12 Summary

We have shown how the need for type information to parse C++ can be eliminated
by identifying a larger superset language of which C++ is a part.

We have introduced an extended form of regular expressions that enables
ambiguities in the C++ grammar to be analysed.

We have described a potentially novel approach to back-tracking in yacc that
enables C++ to be parsed without template information.

We have therefore shown how a C++ parser can be constructed without leakage
between its lexical, syntactic and semantic stages leading to considerable
simplifications in each stage.

A minor disadvantage arises from the need to correct a syntax analysis error
during semantic analysis. This is estimated to occur for approximately 0.01% of
statements.
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0 6 Files

This chapter is concerned with the code generation stages of the FOG to C++
translator; that is the preparation of the AST for output and then emission of the
AST as C++ code.

We first describe some practical problems that arise from the use of a standalone
meta-compiler and introduce the concept of utility level to coordinate multiple
sessions and multiple generated files.

A default mapping of declarations to output files is described. The straightforward
syntax extensions to support user control of placement and dependencies is
relegated to Appendix F.4.

Then we describe the declaration dependency analyses necessary to establish a
legal ordering and the subsequent emission of output files using that ordering.

Finally we consider the need for integrity between meta-compilation sessions and
suggest how this may be achieved after further research.

6.1 Practical problems

The compilation model for FOG in Figure 1.1 showed how any number of
conventional C++ interface and implementation files are generated by one or more
meta-compilations.

Three practical problems arise from the use of a meta-compiler as an independent
translator prior to a conventional compiler, rather than an integrated part of that
compiler.

The new problems concern

• naming and location of output files

• mapping of declarations to output files

• unique and consistent generation of each output file

The problems are resolved by providing a default naming and placement policy,
which may be at least partially suitable for many applications.

Syntax extensions are necessary to support full control of output files for more
interesting applications. These extensions are an unfortunate but unavoidable
corollary of the need to generate multiple outputs.

Consistency between sessions is facilitated by classification of source
declarations as

• unique to a meta-compilation session

• shared contributions to multiple sessions

• shared immutable reference declarations

6.2 File disposition

FOG translates extended C++ to plain C++, which must comply with the C++
standard. In particular the resulting C++ declarations must satisfy the One
Definition Rule (§3.2); each declared entity must be defined just once. FOG must
therefore partition declarations between interface and implementation files.

A conventional C or C++ compilation processes many input files and generates a
single output file. The input files and output file are readily specified on the
compilation command line in conjunction with additional information to identify
search paths for include files.

This policy does not extend directly to a meta-compiler that may generate many
output files, whose existence may be unknown to the author of the command line.



Meta-compilation for C++ Files

Page 202 29-June-2001

The default behaviour of FOG is to emit an implementation and an interface file
for each non-nested class and each namespace encountered in its source files.
Template specializations are emitted with the primary template. Template
instantiations may be placed using file-spaces (Appendix F.4.4). Command line
options allow specification of

• default paths for output directories

• output file prefixes (such as sys/)

• output file suffixes (such as .hxx)

• a file name for the global namespace

Files are named from their constituent class or namespace, with interface files
acquiring a .hxx suffix, and implementation files a .cxx suffix. Template files are
given distinct .H and .C suffixes. The following code is therefore partitioned
according to the comments

class MyClass // MyClass.hxx
{

int i; // MyClass.hxx
!inline void f() { /*...*/ } // MyClass.cxx (and hxx)
class Nested {}; // MyClass.hxx

};

template <class T>
class MyTemplate // MyTemplate.H
{

static T t; // MyTemplate.C (and H)
};

template <>
static int MyTemplate<int>::t = 0; // MyTemplate.C (and H)

Include file guards are incorporated into all generated files. The guard name is
determined by converting all alphanumeric characters of the file name to upper
case and non-alphanumerics to underscore. The file MyClass.hxx is:

/*!$@FOG@$!
* Generated at Mon Apr 30 12:31:58 2001
*
* by fog 2.0.0 of 16:13:22 Apr 28 2001
*
* from
* Thesis_6_2.fog
*/

#ifndef MYCLASS_HXX
#define MYCLASS_HXX

class MyClass
{
private:
#line 3 "Thesis_6_2.fog"

int i;

private:
#line 4

void f();

private:
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class Nested
{
};

};

#endif

The file naming and disposition policy outlined above provides a convenient and
often adequate default. Programmers may use environment variables, command
line tokens or extended declaration syntax to choose their own modularization
where appropriate.

6.3 Utility

It is rarely appropriate to emit interfaces and implementations for every class,
since this generates new interfaces for standard classes such as iostream.
Although it could be convenient to generate a new interface with an extra virtual
function, this requires availability of the source and an ability to recompile all code
that makes use of iostream.

In practice, certain external classes must be immutable. In order to support
multiple meta-compilations, it is also desirable to group application classes into
sub-systems that are mutually immutable.

When FOG is used to support an Aspect Oriented Programming style, weaving the
contributions from a number of algorithm-centric source modules into the data-
centric perspective of C++ classes, a single source file may contribute to many
class files, and a class file may have contributions from many source files. This
many-to-many transformation must be tamed if a number of partial rather than one
massive meta-compilation session is to be supported.

These problems are resolved by extrapolating from the concept of a class utility
[Booch94], where a class utility is free-standing code independent of the current
application. A utility level metric determines the extent of each contribution to the
generated code.

FOG associates a utility level with each source file and source declaration. From
these FOG determines a utility level for each output file and output declaration.
On output, the utility level is used to suppress output for declarations independent
of the current meta-compilation, and to diagnose inconsistent packaging of
declarations.

Utility levels

The utility levels in increasing order of stringency are:

pool

The pooled utility level supports source files contributing to more than one meta-
compilation session. The source file contains a pool of declarations, some of
which may be output in one session, others in another.

Files and declarations with pool utility are not emitted, however once composed
with other declarations or into scopes with emit utility, the declarations contribute
to emitted files.

In a typical usage, a pool utility file defines some virtual functions for classes A,
B and C. These virtual functions support some algorithm-centric programming
concern that cuts across the conventional data-centric organisation of the
classes. When the conventional class file (with emit utility) is meta-compiled in
conjunction with the pool file, the pool declarations for that class are promoted
to emit and so complete interface and implementation files for the class are
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generated. Declarations for other classes remain as pool declarations and do not
provoke partial or conflicting emission.

emit

This is the default utility level. It imposes no constraint on the composition or
emission of declarations. All declarations should be emitted to some output file.

utility

This is the most stringent utility level. Declarations from a utility file are not to
be changed or overwritten. This utility level is the same as frozen, differing only
in that the name indicates that the file was included via using/utility rather
than #include.

Output files with a utility or frozen utility level are not emitted and any
contained declarations of emit level are diagnosed.

frozen

The frozen utility level is applied automatically whenever a file is read as a result
of a #include directive. Declarations from such a file can only be used, they
cannot be changed, and of course the file cannot be overwritten. This provides the
requisite compatibility to use C++ libraries.

Semantics

The more stringent of the prevailing utility level and the enclosing scope utility
level is applied to each potential declaration. Composition of potential
declarations to produce the final actual declaration again selects the most
stringent utility level.

No utility level is maintained for forward declarations, and the utility level is not
inherited.

As each source file is included, any specified non-emit utility becomes the
prevailing utility to be applied to all declarations in that source file. The previous
utility level is restored on completion of the file. The source file utility is specified
by a switch as part of the replacement syntax for #include.

A more stringent utility level may be explicitly specified for an individual
declaration. And when that declaration is a scope, the utility level applies
recursively to all declarations in that scope.

A more stringent utility level may also be specified for a potential output file to
ensure that its usage is restricted to references from generated #include
directives. Emission of declarations to that output file is therefore inhibited.

Compilation

The utility of each declaration is recursively propagated to enclosing scopes and
containing files, so that any scope or file has the most stringent utility of any
declaration in that scope or file. (No propagation occurs for namespaces). The
results of this propagation are checked in a verification pass over the AST. Any
declarations with a less stringent utility than their enclosing scope are diagnosed
as illegal attempts to compose additional functionality where a change is not
permitted. Similarly any declarations with a less stringent utility than their
containing file are diagnosed as attempts to modify immutable files.

6.4 Dependency Analysis

FOG declarations permit considerable freedom in their ordering and placement.
C++ declarations are much more stringent. FOG must therefore find an



Files Meta-compilation for C++

29-June-2001 Page 205

appropriate form in which to emit the declarations to avoid C++ compilation errors.
This requires establishing a legal order for declarations, a partitioning of those
declarations into files and incorporation of appropriate forward references and
#include directives. While observing the constraints of a legal order, FOG groups
similar declarations to improve readability, and normalises the output using an
alphabetic ordering to maximise the likelihood of an unchanged regeneration.

The legal order is established by a number of passes over the AST. These first
establish file names and then build graphs to define the ordering constraints.

An implementation and interface file is established for each declaration using an
explicit specification or an algorithmic default. The default is determined by the
enclosing scope, which at the top level associates distinct files with each class or
namespace using the policy summarised in Table F.1.

Usage nodes are defined for each form of usage of each declaration, and a usage
dependency graph is built between these usage nodes by traversing each
declaration and identifying the declarations upon which it depends. This is most
easily understood from an example.

class A {};

class B {};

class F;

class C
{

static A a;
B b;
!inline F *f() { return 0; }

};

// class A : public C {};

The corresponding usage dependency graph is shown in Figure 6.1, in which solid
arcs denote a directed dependency of the node at the start upon the node at the
finish. Dashed arcs denote redundant dependencies. The dotted arc is an extra
dependency for the commented line at the end of the example.

Six of the eight different forms of usage node are used in the diagram:

• Cname, a forward referenced name of C such as class C;

• Chead, the start of the interface for C, such as class C {

• Ctail, the end of the interface for C, such as };

• Cinline, the start of the inline implementation of C: just a place-holder.

• C::fint, the interface of C::f, such as F *f();

• C::fimp, the implementation of C::f, such as F *C::f() { return 0; }

A further two forms are required to represent:

• friend relations

• explicit file dependencies

The interfaces of class members are bounded by the head and tail of their class.
Although not shown, a nested class fits in naturally with its head and tail bounding
its contents. The original ARM-style nested classes may be enforced by declaring
the nested name and the nested head as dependent on its enclosing head, and
correspondingly that the enclosing tail depends on the nested name and nested
tail. Alternatively, when the -unnest command line option is used, the ISO C++
option of nested class definition appearing independently is enforced. The nested
name is then defined as dependent on its enclosing head, and correspondingly the
enclosing tail as dependant on just the nested name. In addition the nested head
is then dependent on the enclosing tail.
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The external dependencies of the class member interfaces are promoted to the
class, since extra-class declarations may not occur intra-class. Thus the
dependency of C::fint upon Fname shown dashed is promoted to a dependency
from Chead.

The differing dependency patterns of C::a and C::b upon A and B reflect the
distinct dependency of static and non-static member variables; a static member is
not part of the class and so its type may be incomplete (§9.4.2), whereas a non-
static member is. As a result, removing the comment from the final line in the
example adds the extra dependency shown dotted, and does not form a loop,
although a casual examination of the code might indicate that it does.

The usage dependency graph describes the entire sub-program visible to the
meta-compilation session. This is generally smaller than the entire application, but
much larger than the distinct subset of declarations used by each output file.

In the example, declarations of F remain unknown. When C.hxx is emitted, it must
#include B.hxx, but need only forward reference A and F. If A.hxx is included,
subsequent compilations of C will be burdened with unnecessary dependencies.
If F.hxx is included, a failure may occur since the forward declaration of F is
insufficient to establish F.hxx as the appropriate interface file name.

The declarations emitted in each file must be carefully organised, so that each
emitted file is useable and doesn’t refer to unnecessary files. Unnecessary
declarations should be avoided. Necessary declarations must be referenced.

The usage graph contains all the necessary information. If appropriately
organised, emission of any file just involves selecting all the corresponding usage

Aname Bname

Ahead

Atail

Bhead

Btail

Fname

Chead

C::bintC::aint C::fint

C::aimp

Ctail

Cinline

C::fimp

Cname

Figure 6.1 Usage Dependency Graph
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nodes for emission, and ensuring that all their ancestors are resolved by
#include directives or forward declarations. The passes over the AST and usage
graphs to achieve this appropriate organisation are now described.

6.4.1 Create Usages

The create usages pass traverses the complete AST to create the usage nodes
and dependency arcs.

Six different forms of usage were used on Figure 6.1, and show how even a simple
program generates a complicated graph. The complexities arise from two sources

• the context-sensitive form of each usage in C++ (§3.2)

• the need to observe modularity constraints in the generated files

The C++ complexity requires careful coding of the create_usages() vir tual
function at the relevant AST nodes. Particular care and complexity arises for
templates for which instantiations delegate dependencies to the primary template,
but for which (partial) specializations compound dependencies. Namespaces,
friends, comma-separated declarations, typedefs, inlined functions, default
argument lists and anonymous unions provide their own minor complexities.

The modularity constraints arise because declarations cannot be freely ordered.
Forward referencing constraints must be observed. Class declarations must occur
together without any interleaving. Grouping of declarations in files must be
possible, although this may sometimes necessitate some declarations preceding,
and others following a #include. Files may therefore appear to overlap.

Most of these modularity constraints can be enforced by adding additional
dependencies to the usage graph. Thus in the earlier example, member
dependencies were promoted to the class head to ensure that they were satisfied
before class emission started, and so ensure that class emission could proceed
without interleaving. The remaining modularity constraints are observed, if
possible, by careful ordering of usages and files. It is possible for a programmer
to over-specify the placement of declarations and so define an insoluble problem.
In this case the problem is diagnosed and then approximated.

6.4.2 Usage ordering

Each node of the usage graph is assigned to one of the following worklists

• 25 lists of nodes with no remaining dependencies upon other nodes

• an input list of nodes with dependencies

25 lists are maintained so that each different style of declaration is in a separate
list. They are, in prioritised order:

"interface-finish", // Tail/end of a scope
"name",
"friend",
"public typedef",
"protected typedef",
"private typedef",
"public enum",
"protected enum",
"private enum",
"public variable",
"protected variable",
"private variable",
"public function",
"protected function",
"private function",
"static public variable",
"static protected variable",
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"static private variable",
"static public function",
"static protected function",
"static private function",
"interface-start", // Head/start of a scope
"file", // #include
"inline", // inline implementation
"implementation", // not-inline implementation

Thus public/protected/private, static/non-static and function/variable/typedef
distinctions are each associated with different lists. The lists are prioritised and,
as a result, the ordering algorithm automatically groups similar declarations. This
improves readability and repeatability. Most of the priorities are chosen for
aesthetic properties of the output files. However, in order to avoid overlapped and
consequently interleaved emission of classes, the tail of a scope is given very high
priority and the head of a scope given very low priority. If the dependency graph
has been built correctly, this ensures that the class members are emitted and the
class brace closed before another class brace is opened.

The worklist ordering algorithm repeatedly chooses the highest priority non-empty
dependency-free list, ensures it is in alphabetical order and moves the first entry
to a further list, the ordered output list, in which maintains the output in a
dependency observing order. The dependencies from all nodes dependent upon
the moved node have now been observed. These are removed with the result that
some nodes may be moved from the final list to the dependency-free lists.

The algorithm has quadratic asymptotic complexity, but the behaviour is close to
linear in practice.

The algorithm stalls if there is a dependency loop. In this case the loop is printed
out in an error message and a dependency in the loop is arbitrarily discarded
before the algorithm resumes.

The asymptotic complexity under error conditions is quartic. This is highly
pathological requiring dependency loops between all nodes.

6.4.3 Usage closure

Once the legal order has been established, the transitive closure of the
dependencies of each usage node is determined by propagating the set of
ancestors to each child. Each usage node now has a set of precursors:
declarations that must be visible before the usage node is emitted. This trades off
the one-off execution time of this propagation and the memory costs for each set
against the cost of repeated traversals of ancestors in later algorithms.

6.4.4 File usage ordering

A similar worklist algorithm is used to establish the ordering of potential #include
directives, after projecting the usage node dependency on to the much smaller
number of file nodes to create a file node dependency graph. Only one list of
dependency-free nodes is used.

6.4.5 File pre-ordering

In order to emit dependencies efficiently. it is necessary to know what usage
nodes are visible after a file has been included. This information is gathered in two
passes.

The first pass is a simple initialisation of all files to identify the usages visible
within the file but excluding those visible from nested includes.
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6.4.6 File post-ordering

The second pass is performed using a traversal of all files ordered according to
their earliest last (most dependent) usage node. This order guarantees that
nested include files are processed before less nested includes. In this pass all
usage nodes visible in included files are added to those visible in the including
files.

6.4.7 Emission

The final emission pass creates the output file from the ordered usage nodes for
that file. Code generation is relatively straightforward since each usage node
closely corresponds to a partial declaration. Linear traversal of the usage nodes
generates the required output.

In order to ensure compact and correct resolution of references, the set of
currently visible declarations is maintained during emission. As each usage node
is considered for output, its necessary precursors are checked. If any of these is
not visible, appropriate forward references or #include directives are emitted,
with more highly dependent include files favoured to maximise the rate at which
necessary declarations become visible. Eventually the usage node can be
emitted, but only after the appropriate scope has been established. Namespace
scopes are established lazily to avoid repetition of the same scoping construct,
since eager establishment of scope would fail to suppress the commented lines in:

extern "C"
{

declaration-1;
// };
// extern "C"
// {

declaration-2;
};

Generation of C++ text from the AST nodes inserts appropriate braces or
parentheses to respect the exposure/encapsulation of lists and to use comma or
whitespace separation between elements. This ensures that the results of meta-
programming are correctly formatted in accordance with their usage context. The
meta-programmer does not need to worry about the punctuation, since there is no
punctuation in the AST, merely metaobjects with appropriate meta-types.

The potential output file is generated in memory so that it can be compared with
any pre-existing file. An unchanged file is not overwritten to avoid corrupting its
modification time.

6.5 Target File Generation Policies

6.5.1 Global namespace

Class and namespace declarations are normally written to files based upon the
declaration name. Unfortunately, the global namespace has no name and creation
of name-less files such as .hxx and .cxx would cause confusion.

The global namespace contains many utility declarations from C libraries which
do not need repetition in another file. The global namespace contains few
declarations from application code, since C++ encourages the use of
encapsulation to avoid polluting the global name-space.

The default behaviour of FOG is therefore to ignore global namespace
declarations. A command line option permits a name to be specified for the global
name-space. If this option is used, the global namespace behaves (for output file
naming purposes) as if it were a namespace with the specified name.



Meta-compilation for C++ Files

Page 210 29-June-2001

6.5.2 Friend functions

A significant exception to the above discussion occurs for friend functions. Such
functions although logically part of some class are often given namespace scope
to avoid biasing overload resolution to the left argument

friend MyClass operator+(const MyClass&, const MyClass&);

or to use some other class as the first argument

friend ostream& operator<<(ostream&, const MyClass&);

Since these are (global) namespace scoped, the implementation should be
emitted to the namespace implementation, which is unlikely to be what is required.
The implementation of a namespace-scoped function is therefore placed with the
implementation of the class that declares it a friend, provided there is exactly one
such class.

6.5.3 Source File Protection

The output from FOG comprises C++ source files that may not differ significantly
in name or path from files input to FOG. There is ample scope for accidental
overwriting of input files by output files, either through ill-considered user
commands, or through coding errors in FOG.

FOG protects against such errors by starting every generated file with the
character sequence /*!$@FOG@$! and only allowing overwrites of files with this
signature. If the user really wants to give FOG complete freedom to overwrite
anything, then the -f command line option must be used.

6.5.4 Suppressed Non-changes

FOG may generate many output files from a single invocation, normalising each
file to minimise changes. It may often be the case that some generated files are
unchanged and so subsequent dependent recompilations are unnecessary. FOG
therefore compares each potential output file with any pre-existing file, and if the
potential output file differs only in whitespace (or comments), the existing file is
retained, avoiding any change of creation date. A make script can then skip
unnecessary compilations.

The operation of this algorithm may be observed using command line options: -nc
to notifies file changes and -ne to notifies preservation of existing file. The policy
may be overridden by using -f to force all files to be created.

6.5.5 Net dependencies

In order for a makefile to determine whether FOG needs to be executed, the
makefile needs to know the dependencies of output files and input files. The -o
command line option may be used to emit a make include file that defines the
dependencies as the dependants of that include file. All other generated files can
then be reliably created by side effects.

6.5.6 Pretty Printing

The files generated by FOG are readable, unlike files generated by code
generators such as cfront. The generated text differs little from what could have
been typed manually.

In the multi-pass implementation, function bodies were emitted directly from the
almost unparsed phase 6 token stream. This token stream retained an indication
of the original source whitespace, and so the generated output could reproduce
much of the user layout. In order to achieve consistent indentation, source text
indentation was normalised to the first non-whitespace character in a function-
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body, and then denormalised after pretty-printing had determined the position of
the first character.

Source text normalisation required tab characters to be converted to spaces. The
default FOG behaviour assumed the traditional 8 column tab spacing. The
increasingly common configuration of 4 column tabs could be specified by adding
-t4 to the command line.

The superset implementation parses function bodies into syntax trees and so
loses original whitespace. The entire output is therefore pretty printed without
reference to the input.

6.5.7 #line

Translators to C or C++ may incorporate #line directives in their generated files,
so that compiler diagnostics and debugger single stepping refer to the original
source context, rather than the intermediate generated files. This is generally very
helpful to the programmer, but when the translation process is unreliable or when
obscure problems arise, access to the hidden intermediate is more useful.

The default behaviour of FOG is to incorporate #line directives in its output. The
#line directives may be replaced by comments by using the
-comment_line_numbers command line option, or suppressed altogether by
-no_line_numbers.

Use of #line directives has the unfortunate consequence that almost any change
to a source file causes regeneration of most output files, if only to update line
number information.

Total suppression of line numbers produces the most readable intermediate, but
gives no clue as to the origin of each source code segment.

Preservation of the line numbers as comments avoids the regeneration problem,
while retaining traceability. Operation at this level may often be appropriate, since
single stepping a misbehaving function composed from many contributions is
probably best performed when the function body appears in its composed form.
Strange compilation errors are also more easily diagnosed when the full context
is visible. However, the line numbers are in comments and so the intermediate
files are not regenerated to update them, and the commented line numbers may
therefore prove to be seriously adrift.

Ideally a debugger would support more than one line number domain. In practice
users may have to choose which domain best suits the prevailing needs.

6.5.8 Integrity

There is a danger that the composite declarations in different meta-compilation
sessions may be incompatible. This danger may be compounded by command
lines requesting more than one meta-compilation session to generate the same
output files, thereby causing subsequent compilations to be inconsistent. If the
user is fortunate, the inconsistencies will lead to helpful compilation errors. More
likely there will be confusing linker diagnostics or worse still, run-time failures. The
latter problems are violations of the C++ One Definition Rule (§3.2) which the
standard allows an implementation to leave undetected. It is a user programming
error. In C++, use of shared include files makes this form of mistake relatively rare,
although over-enthusiastic incremental compilers can easily trigger such errors.

The increased level of abstraction and greater opportunity for configuration
problems in FOG justifies extra effort to assist the programmer. This is an area for
future research. Two possible solutions are outlined:
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6.5.8.1 Checksum

The integrity problem may be solved by incorporation of a cyclic redundancy check
(CRC) hash code as part of the name of a static member variable in every FOG
generated class. The member variable is initialised by a meaningless calculation
that causes the linker to reference the equivalent names in all dependent classes.
Thus if class A uses classes B and C, the consistency checking code for class A
could be:

class A
{
public:

static char _c_r_c_A43F1507; // A43F1507 is CRC of rest of class
};

char A::_c_r_c_A43F1507 = char(&B::_c_r_c_5670BD33
+ &C::_c_r_c_EE8241C5);

The definition originates from the defining session. The references are
independently calculated by referencing sessions. If the two sessions are using
inconsistent definitions, the problem will eventually show up as a requirement for
the linker to resolve two different symbols for the one class. This will fail and
prevent run-time anomalies, subject to the CRC algorithm producing highly
uncorrelated hash codes.

When class A uses class B is a matter for further research and careful definition.

A safe definition could follow the normal C++ usage definition (§3.2-4). This is
unnecessarily strong, since meta-compilation does not establish class layout, and
so the usage of types during meta-compilation is generally by name rather than
by value.

A simpler but not quite safe definition defines the usage as all classes generated
by the same meta-compilation session. This is unsafe because derivation rules for
meta-programs may have used declarations from base classes.

It would seem that each meta-compilation session should keep track dynamically
of each type used in more than name, and that the references in the linker
expression should involve all such types.

This approach incurs a one byte per class penalty, which could be eliminated if it
were possible to access the linker symbol calculations directly. A zero cost
implementation could use the generated symbol name as the name of the virtual
function table.

6.5.8.2 Database

The problem of detecting conflicting or redundant generation of an output file by
more than one meta-compilation session is less easy to detect early. The
checksum approach will detect a conflict late in the build process, and is unlikely
to produce a helpful diagnostic. A rebuild using -nc should not result in
notification of any file creations, so this at least provides a way to investigate the
conflicts.

Direct diagnosis of such conflicts, or any diagnosis of redundant but compatible
generation from multiple meta-compilations requires a database file that maps
output files to meta-compilation sessions. Duplicate mappings are errors.

The coordinating database could easily be specified as a command line
parameter, and new or repeated meta-compilations would update the database.
However meta-compilation sessions do not have a reliable identity, so it is not
possible to detect whether a slightly changed meta-compilation command line
represents a new or replacement session. It is certainly not possible to detect
obsolete sessions. This problem is most easily resolved by manual or automatic
deletion of the database whenever make scripts are changed.
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This problem and solution is closely related to the template instantiation database
necessary to satisfy the C++ requirement for instantiation of precisely the used
functionality. The template database is necessary for language compliance and an
aid to compiler efficiency. A similar or combined FOG database is just a diagnostic
aid.

6.6 Summary

We have introduced the concept of utility level to assist in placing and diagnosing
misplacement of declarations across multiple files.

We have shown how a valid C++ output file ordering can be established for the
FOG declaration AST by building usage dependency graphs first at the declaration
level and then at the file level.

Finally we have described some minor details concerning file emission and
identified the need for further work to establish reliable diagnosis of inconsistent
meta-compilation sessions.
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0 7 Examples

This chapter provides example uses of FOG, starting with very simple idioms and
progressing to more serious applications.

7.1 Idioms

An idiom is a simple coding construct that arguably could be part of the C++
language.

Although some of the simple idioms are little more than one-liners, they should not
be dismissed as trivial programs. They demonstrate how real programming
problems can have very simple solutions in FOG. The examples support direct
expression and realisation of programming intent and consequently improve
reliability and maintainability, trading off some declarative complexity against ease
of instantiation.

7.1.1 InheritedTypedef

Using inheritance, a programmer may derive a specialisation from a base class.
This may involve a refined implementation of a base class operation. Whereas the
derived implementation is constrained by the inner invocation from the base
class, in languages such as BETA [Madsen93], C++ imposes few limitations. The
programmer is free to provide a replacement implementation, or to incorporate the
derived functionality where appropriate. The derived functionality is incorporated
by invoking the base-class method explicitly.

void DerivedClass::method()
{

// some code
BaseClass::method();
// more code

}

When DerivedClass is derived directly from BaseClass

class DerivedClass : public BaseClass { /* ... */ };

the code fragment operates as might be expected.

However, if DerivedClass is indirectly derived

class IntermediateClass : public BaseClass { /* ... */ };
class DerivedClass : public IntermediateClass { /* ... */ };

it is unclear why IntermediateClass::method() was bypassed.

It may be that when the fragment was first written, DerivedClass was directly
derived, and there was no IntermediateClass method to worry about. When
subsequent maintenance or evolution introduced IntermediateClass and
IntermediateClass::method(), a bug was also introduced.

If IntermediateClass::method() is accidentally bypassed, then the use of the
BaseClass name may lead to incorrect behaviour.

If IntermediateClass::method() is deliberately bypassed, then the code is
obscure, since in some respect DerivedClass is not a specialization of
IntermediateClass, or IntermediateClass is not a specialization of
BaseClass. Such obscurity probably hides a design flaw, and certainly merits a
comment to explain why the IntermediateClass::method() has been
bypassed.

Summarising: The use of explicit type names to refer to inherited members leads
to fragile code.

Stroustrup on page 292 of The Design & Evolution of C++ [Stroustrup94]
describes discussions about a potential language extension to resolve this
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problem, and credits Michael Tiemann for providing the following very simple
solution:

class foreman : public employee {
typedef employee inherited;
//...
void print();

};

class manager : public foreman { //1a
typedef foreman inherited; //1b
//...
void print();

};

void manager::print()
{

inherited::print();
//...

}

The base class is referred to as inherited throughout the class, limiting the
knowledge of the inheritance hierarchy to lines //1a and //1b. The reader is
assured that the intent is to invoke the base class functionality, and may then
question any reference to class names other than inherited. The maintainer
does not risk breaking code when the inheritance hierarchy is reviewed.

FOG offers three alternative solutions that avoid the redundancy of line //1b, and
consequently avoid the risk of an inconsistency between line //1a and //1b.

Super meta-variable

FOG provides a built-in meta-variable Super that refers to the first base class.
There is therefore no need for a typedef. The built-in meta-variable can be used
instead.

void manager::print()
{

${Super}::print();
//...

}

This is not a very elegant solution. It requires a $-expression to appear in normal
application code.

Super typedef

The typedef can be reintroduced to hide the $-expression from application code.

class manager : public foreman {
typedef $Super inherited;

This clearly expresses the intent and is guaranteed to be locally correct. There is
however a possibility that the typedef could be omitted for a derived class, and if
the typedef is accessible no compilation error would arise.

InheritedTypedef meta-function

The problem of an inaccurate definition in a derived class, and the inconvenience
of providing the definition in every class can be resolved by a derivation rule, and
since the final solution is of general utility it is presented as a meta-function.

auto declaration InheritedTypedef()
{

private typedef @Super inherited :{ derived(!is_root()); };
}
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Expressing the solution as a meta-function introduces three changes to the
typedef declaration:

A private keyword is added to ensure that the typedef is not visible outside the
class. Omission of the keyword would leave the declaration vulnerable to
assuming a prevailing accessibility from the invocation context.

An object-statement-scope :{...} follows the typedef so that additional
declarations can qualify the typedef. The derived(!is_root()) derivation rule,
causes the typedef declaration to be generated in all classes that derive from the
class for which the meta-function is invoked. Thus when invoked as

class employee
{

$InheritedTypedef();
};

no typedef is generated at the root (employee) for which Super may be
undefined, but typedefs are generated for all classes derived from employee.

The use of @Super rather than $Super defers resolution of the meta-expression
until each actual declaration generated as a result of the derivation rule is
installed in the derived class. @Super therefore resolves to the super-class of the
actual derived class. In contrast, $Super would be resolved when the potential
declaration is defined for the root class, and would therefore result in the typedef
always resolving to the super-class of the root class.

Benefit

Use of the meta-function requires a single line of source code for each base class,
and ensures consistency throughout an inheritance hierarchy.

The conventional implementation requires one line of source code per derived
class in the inheritance hierarchy, and is vulnerable to typographic errors.

Alternatives

This problem cannot be solved reliably without access to the name of the base-
class.

The Tiemann approach localises the redundant declarations to a single place,
potentially adjacent to the necessary declaration.

Applications that already make extensive use of preprocessor macros to define
class scaffolding can implement the typedef with no additional application code:

<Interface-file>
class DerivedClass : public BaseClass
{

SCAFFOLDING_INTERFACE(DerivedClass, BaseClass)
//...

};

<Implementation-file>
SCAFFOLDING_IMPLEMENTATION(DerivedClass)

The typedef can be incorporated in the SCAFFOLDING_INTERFACE preprocessor
macro. The examples in Sections 7.3.3 and 7.5 show how other standard
declarations that may form part of SCAFFOLDING_INTERFACE can also be resolved
automatically, rendering both of the SCAFFOLDING_IMPLEMENTATION and
SCAFFOLDING_INTERFACE macros obsolete.

7.1.2 NoAssign, NoCopy

C++ provides powerful facilities to support the definition of encapsulated data
types. C++ also eases the definition of user defined types by providing default
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implementation for constructors, destructors and assignment operators. For
classes involving pointers or allocated resources, the default implementations are
often inappropriate. Replacement implementations may need to be provided.

For some classes, there is no possible replacement. Consider a class that defines
properties of colours, with a single unique object for each used colour
combination. Creating a copy of such an object is meaningless because that would
break the uniqueness property. Assigning to such an object is illegal since
assignment would involve creation of a new combination, and so could not be
represented by the old object.

For other classes, the replacement implementation might never be used and so
the development cost and code size of the replacement cannot be justified.

These problems are solved in C++ by declaring the relevant methods to be private
and not providing an implementation for them [Coplien92] p45.

class UniqueColor
{
private:

UniqueColor(const UniqueColor&); // not implemented
UniqueColor& operator=(const UniqueColor&);// not implemented

};

Any attempt to copy or assign to a UniqueColor object outside of the scope of
UniqueColor encounters a compilation error through the private access
restriction. Within the scope of UniqueColor, compilation succeeds, but a linker
error results from the missing implementations.

This is a well-known idiom, but is obscure and so not always recognised by the
novice programmer. An accidental implementation of the not implemented
functions may break the informal coding convention.

Meta-functions may be provided in FOG to express the intent more clearly and to
enforce the non-implementation constraint.

auto declaration NoAssign()
{

private $Scope& operator=(const $Scope&)
:{ export/noimplementation; };

};

auto declaration NoCopy()
{

private ${Scope}(const $Scope&) :{ export/noimplementation; };
};

The meta-functions may be invoked as

class UniqueColor
{

$NoCopy();
$NoAssign();

};

clearly expressing the programming intent.

The implementation of each meta-function makes extensive use of $Scope to
define declarations appropriate to the invoking scope. The :{} declares an object-
statements-clause, within which function annotations can occur. In this case the
function scope contains the single declaration export/noimplementation, which
ensures that FOG generates a compilation error if any attempt is made to
compose an implementation.

Use of $Scope and @Super are interchangeable in this example, since there is no
re-evaluation in derived contexts. The extra {} on ${Scope} is necessary to avoid
the interpretation ${Scope(const $Scope&)}.



Examples Meta-compilation for C++

29-June-2001 Page 219

Alternatives

NOCOPY and NOASSIGN preprocessor macros could be defined, however the name
of the surrounding scope would have to be passed as a parameter.

class UniqueColor
{

NOCOPY(UniqueColor);
NOASSIGN(UniqueColor);

};

Enforcement of no-implementation requires the additional language support
provided by FOG.

7.1.3 Mutate

ANSI C introduced the const qualifier to types to define unchanging values. C++
extends const to apply to objects and consequently member functions. Use of
const ensures that any attempt to change an object is detected at compile time.

However, it may be appropriate for the implementation of an object to perform lazy
evaluation of some of its properties, caching the results to avoid a re-evaluation.
For example, the conventional complex class has a Cartesian representation, and
must therefore calculate a polar representation, each time the polar
representation is requested. A more sophisticated complex number class could
cache the polar representation lazily, so that no calculation cost was incurred
when the polar representation was unused, and avoid additional calculation cost
for uses after the first. From an external perspective, the complex number object
is unchanged by the use of a polar representation and so the usage method should
be const. Internally the cached context changes and so the object is not const.

This distinction is referred to as physically-const and logically-const on p26 of
[Coplien95b]. On p76, [Meyers92] uses the term conceptual constness.

Implementation of logically-const code requires that the const qualifier to be cast
away.

((ComplexNumber *)this)->_polar_value = ...

Usage of casts in application code is considered poor style. They are prone to
error: any kind of change can be performed, although only a very subtle change
was intended. When reviewing code it is difficult to locate casts with searching
tools, and it is not always obvious what the intent of the cast is. Wrapping the
necessary cast up in a private overloaded inline function makes the meaning
clear, and simplifies searching for the usage, and allows a stronger no-casts
programming practice to be used elsewhere.

class ComplexNumber
{ /* ... */
private:

inline ComplexNumber& mutate() const
{ return *(ComplexNumber *)this; }

};

supports use within ComplexNumber member functions as:

mutate()._polar_value = ...

This can be implemented by a simple meta-function:

auto declaration Mutate()
{

private $Scope& mutate() const { return *($Scope *)this; }
}

and installed in a class by
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class ComplexNumber
{

$Mutate();
};

Alternatives

The introduction of the mutable storage-class-specifier resolves many of the problems
of logically-const const. In the above example, declaring _polar_value as
mutable would be a complete solution. However mutable is a storage-class-specifier
and not a cv-qualifier and so non-const methods cannot be invoked without some
form of cast.

mutate().set_polar_value(...);

The introduction of const_cast<T> resolves the danger of inadvertently casting
to a different class, since the type of T can be statically checked. However

const_cast<ComplexNumber>(*this)._polar_value = ...

is a little harder to read, contains a redundant typename, and does not work on
old compilers. The improved functionality of const_cast can be exploited to give
a more robust meta-function:

auto declaration Mutate()
{

private $Scope& mutate() const
{ return const_cast<$Scope>(*this); }

}

7.1.4 Clone, Prototype

In languages such as Smalltalk, creating a copy of an object presents no problem,
since there is direct language support. In C++, creating a copy of an object whose
type is known at compile-time makes use of the copy constructor. However when
the type is not statically known, the programmer must provide support code.

Stroustrup on p424 of [Stroustrup97] refers to this support code as a virtual
constructor. The technique is also referred to a cloning and forms part of the
Prototype pattern [Gamma95].

The support code requires that every concrete1 class implements a virtual
function to create a clone of itself.

class RootClass
{ //...
public:

virtual RootClass *clone() const = 0;
};

class IntermediateClass : public RootClass
{ //...
};

class ConcreteClass : public IntermediateClass
{ //...
public:

virtual RootClass *clone() const;
};

RootClass *ConcreteClass::clone() const
{

return new ConcreteClass(*this);
}

1. a class with no pure virtual methods
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Invocation of the virtual function upon an object of unknown type therefore invokes
the appropriate class-specific method to create the clone.

const RootClass& someObject = ...;
RootClass *clonedObject = someObject.clone();

Implementation of this idiom requires contributions to the interface and to the
implementation of each concrete class. These will often be in different files,
because of the need to avoid excess include file dependencies. Observance of the
protocol is largely enforced by the use of a pure virtual function. However an
inaccurate implementation can arise through failing to create an instance of the
correct class, or through failing to implement clone when one concrete class
inherits from another concrete class.

A FOG meta-function using a derivation rule can generate all derived class code
automatically

auto declaration Prototype()
{

public virtual $Scope2 *clone() const = 0
:{

derived(!Scope.is_pure()) { return new @{Scope}(*this); };
};

}

The clone functionality is woven by a single invocation from the root class.

class RootClass
{

$Prototype();
};

The pure virtual function is defined in the invoking class. The function body has
an associated derivation rule requiring implementation in all concrete classes.
The function body, and consequently its declaration, is therefore generated in
each concrete class. The use of @{Scope} within the function body ensures that
resolution of the name is deferred until the function body is installed in its actual
class, and so ensures that a new instance of the concrete class is created.

It is important to use derived(!is_pure()) rather than a less restrictive rule
such as derived(true) to avoid generation of code that creates instances of
abstract classes, since compilers are required to generate error messages if an
abstract class is constructed.

Alternatives

This problem is insoluble without an automatic code generator. Traditional
approaches require extensive use of scaffolding macros.

7.2 Patterns

The general problem of providing implementations of patterns is not soluble,
because patterns are too vague and require tailoring to suit the application
context. However, implementations of patterns suitable for more restrictive
contexts are possible. A few such implementations are presented in the following
sections.

7.2.1 StaticFlyweight

Components are easier to use when components that exhibit similar functionality
provide it in a predictable way. This can be achieved by providing an external

2. $Scope may be changed to @Scope to use the derived type as the return type, which
is permitted in standard C++ but not allowed in earlier implementations of C++.
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interface for a standardised internal behaviour, often realised by the use of vir tual
functions to provide polymorphic behaviour at run-time. Classes (and more
generally declarations) with this form of external interface compatibility are called
isomorphic.

The concept of an isomorphic interface at compile-time is not normally used in
C++, but lies at the heart of the Standard Template Library, where many of the
templates operate on any type that complies with the defined isomorphic interface.
The concept of isomorphism is independent of polymorphism and inheritance: the
templates work for a variety of independent inheritance trees; there is no need for
a common base class.

Provision of meta-functions and meta-variables makes the advantages of
isomorphism more visible to the programmer. Families of isomorphic meta-
functions can be declared, one per class, to provide the same functionality for the
programmer, but using a distinct implementation appropriate to each class.

The Flyweight pattern [Gamma95] describes how shared objects can be used to
reduce allocation costs. The pattern comprises a Flyweight manager responsible
for managing a pool of Flyweight objects, one of which is returned in response to
a request from the client. The manager creates a new Flyweight when no existing
one is available.

In the general implementation, the pool may be large and so the factory manager
needs some form of map to locate the Flyweights.

A useful variation occurs when the Flyweight objects can be enumerated at
compile-time and may have the same life-time as the program. The manager then
degenerates to a set of static member functions one per flyweight.

class DayOfWeek // ...
{
public:

static const String& monday()
{ static const String theDay("Mon"); return theDay; }

static const String& tuesday()
{ static const String theDay("Tue"); return theDay; }

// ...
};

The DayOfWeek class makes the textual representation of each day available as
flyweight objects, using function scope to define the object lifetime and thereby
avoid the race conditions during object construction that can arise from the use of
static member variables.

Using a family of isomorphic meta-functions to capture this variant of the
Flyweight pattern avoids the need for an application programmer to understand
the construction protocols of the relevant flyweight.

class String
{ /* ... */

auto declaration StaticFlyweight(identifier name,
string init = "")

{
public static const String& ${name}()
{

static const String staticInstance($init);
return staticInstance;

}
}

};

The DayOfWeek class may then be simplified to
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class DayOfWeek // ...
{

$String::StaticFlyweight(monday, "Mon");
$String::StaticFlyweight(tuesday, "Tue");
// ...

};

The programming complexity is now partitioned appropriately. Provision of a
flyweight requires just a single line. The two to five lines to implement flyweight
construction appear just once as part of the flyweight class, rather than repeated
throughout each static flyweight manager. Since the construction protocol for the
flyweight is encapsulated by the meta-function, different protocols may be used,
without affecting the callers, except in so far as additional initialisation arguments
might be required. For instance, if an implementation of String makes use of the
Flyweight pattern to share all identical strings across an application, the above
code might not work. The String class might define private constructors and/or
destructors to prohibit static instances. The following may be necessary:

auto declaration String::StaticFlyweight(identifier name,
string init = "")

{
public static const String& ${name}()
{

static const StringHandle staticInstance($init);
return *staticInstance;

}
}

where StringHandle is a smart pointer to a String.

Alternatives

It is possible to use the preprocessor to solve this problem

#define STRING_STATIC_FLYWEIGHT(name, init) \
static const String& name() \
{ \

static const String staticInstance(init); \
return staticInstance; \

}

However the preprocessor approach is unnatural and so programmers tend to
avoid its use. Meta-functions fit within the context of the language and so provide
a useful addition to a programmer’s tool-box.

This kind of problem can sometimes be solved using templates. However in this
case the initializer is a string value which is not a legal template parameter, so in
the following example the initializer is changed to a character to produce legal
code.

class String
{ /* ... */
public:

template <const char initString>
class StaticFlyweight
{
public:

const String& operator()() const
{ static const String iT(initString); return iT; }

};
};
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class DayOfWeek
{ /*...*/
public:

static const String::StaticFlyweight<'M'> monday;
static const String::StaticFlyweight<'T'> tuesday;

};

The initializer is cached as the template parameter so that access of the flyweight
as

DayOfWeek::monday()

invokes

String::StaticFlyweight<'M'>::operator()()

which maintains the appropriate flyweight instance. The above code compiles, but
fails to link because no implementation objects were created. It is unfortunately
necessary to duplicate the declarations of the flyweights in the interface by
defining implementations of the functional objects, even though they are never
used and have no content.

const String::StaticFlyweight<'M'> DayOfWeek::monday;
const String::StaticFlyweight<'T'> DayOfWeek::tuesday;

This example shows many of the limitations of templates:

• limited range of parameter types

• more than one line to express the invocation

• relatively obscure implementation

Note that use of operator()() is the only way in which instantiation of a template
can result in a user-defined function name. Since it is necessary to provide a
corresponding definition, this approach requires two declarations for a user-
defined name, just the same as for renaming with an inline function or a typedef.

When more than a single declaration is required, the template approach fails,
although the preprocessor approach may remain viable.

7.2.2 Member

It is customary to declare member variables and associated support declarations
individually, typically involving

• member declaration

• initialization

• get methods

and sometimes

• set methods

in addition to any actual application functionality. Any intended mode of behaviour
of the member is left to be inferred from the miscellaneous declarations.

For variables with primitive types, coding errors can easily arise from missing
initializers.

For variables with more complicated types, the associated declarations may be
less obvious.

The standard declarations are easily provided by meta-functions, whose name
demonstrates the programming intent, and whose use offers opportunities for
uniform code evolution along the conventional development path, or for meta-
programming to compose additional functionality.

The three declarations required to define a member variable (name), a protected
set accessor (set_name) and a public get accessor (get_name) are provided by:
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auto declaration ScalarMember(identifier type,
identifier name, expression init = 0)

{
private $type $name = $init;
protected void set_${name}(const $type& aValue)

{ $name = aValue; }
public const $type& get_${name}() const { return $name; }

};

A similar isomorphic meta-function can be provided to use a smart pointer as the
member type:

template <class T>
class SmartPointer
{ /* ... */
public:

SmartPointer(T&);
SmartPointer(const SmartPointer&);
SmartPointer& operator=(T&);
SmartPointer& operator=(const SmartPointer&);
T& operator*();
const T& operator*() const;

};

auto declaration SmartPointerMember(identifier type,
identifier name, expression init = 0)

{
private SmartPointer<$type> $name = $init;
protected void set_${name}(const $type& aValue)

{ $name = aValue; }
public const $type& get_${name}() const { return *$name; }

};

Member variables and their standard accessors may then be defined as

class Application
{ /* ... */

$ScalarMember(bool, is_valid, false);
$SmartPointerMember(Client, client);

};

The example uses multiple parameters to pass the type, name and initial values.
A complete declaration may be passed as

$ScalarMember(bool is_valid = false);

at the expense of a little extra declaration effort:

auto declaration ScalarMember(variable_specifier var)
{

private $var.type() $var.name() = $var.value();
protected void set_${var.name()}(const $var.type()& aValue)

{ $var.name() = aValue; }
public const $var.type()& get_${var.name()}() const

{ return $var.name(); }
};

Alternatives

Much of this functionality can be provided by preprocessor macros, however FOG
extensions are required to support member or static member initialisation from a
single invocation. ISO C++ has relaxed the initialisation rules for static but not for
non-static members.

Default initialisation can be enforced by a templated member such as

Initialized<bool> _is_valid(false);
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and operator()() can be used to support a sensibly named get method.
However, further flexibility cannot be provided by templates.

7.2.3 ReferenceCount3

C++ has no garbage collector. It is therefore the C++ application programmer’s
responsibility to ensure that allocated memory is appropriately released. For
simple forms of object use, allocated memory can be freed later in the same
function. For slightly more complicated situations, objects may be organised in
trees, with the parent objects assuming responsibility for releasing the resources
of children; the application programmer’s responsibility is then only with the roots
of the trees. In the general case, it is too difficult, inconvenient or even impossible
for the program structure to ensure that resources are released.

In the absence of a garbage collector, the problem is resolved by making each
object responsible for releasing its own resources. Users of the object register
their usage with the object. Then, when no users are registered, the object detects
that it is no longer required and self-destructs, releasing the redundant resources.
It is not necessary for the object to know the identities of its users, merely their
number. This form of resource management is therefore implemented by reference
counting: maintaining a count of the number of registered users [Coplien92].

Implementation of reference counting involves two collaborators: the reference
counted object and its user. The reference counted object maintains a count of its
users, that register their usage, often using a smart pointer. Construction and
destruction of the pointer increment and decrement the reference count.

The reference count may be intrusive or non-intrusive.

An intrusive reference count adds an extra member variable to the reference
counted object, it

• increases object size

• must be part of the class declaration

• is efficient

A non-intrusive reference count, maintains the count in a disjoint area of memory,
possibly accessed by an associative look-up from the object address, possibly at
a location known to the user. It

• need not be part of the class declaration

• is inefficient on space and/or time

The example here supports injection of the intrusive functionality. An isomorphic
meta-function could be defined for the non-intrusive behaviour.

External Interface

In order to support reference counting we need an application class to have an
external interface such as

3. A version of this example that was tested using the multi-pass implementation of
FOG was presented at TOOLS Eastern Europe [Willink99a]. The version
presented here uses the improved syntax for derivation rules and clarifies the
heap/non-heap allocation policies.
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class ApplicationClass
{
protected:

virtual ~ApplicationClass();
public:

void annul() const;
void share() const;
friend inline void annul(const ApplicationClass *anObject)

{ if (anObject) anObject->annul(); }
};

share() and annul() increment and decrement the reference count, with
annul() provoking self-destruction once all references have been removed. Since
the object manages its own destruction, it is important to prevent deletion by any
other mechanism. In particular

ApplicationClass *countedObject = ...;
delete countedObject;

could cause premature deletion. Use of delete should therefore be trapped as a
compile-time error whenever possible, with a run-time trap as well to double
check. Making the destructor protected ensures a compile-time error

annul() acts as a replacement for delete and so the friend function is provided
to create a closer analogue for delete as

annul(countedObject);

(An exact analogue could be provided using a syntax macro, but at the expense
of defining annul as a reserved word.)

Internal implementation

The internal representation involves a counter, which is constructed with value 1,
so that decrementing to 0 triggers self-destruction. Care is required to ensure that
copy construction and assignment preserve registrations; the copy constructor
defines the count to one, and the assignment leaves the counts unchanged, since
the number of referenced objects should increase by one on construction and be
unchanged by assignment.

It is convenient to encapsulate this behaviour in a class, so that the
unconventional implementation of copy construction and assignment can be
automatically incorporated into otherwise conventional implementations of the
same functions in client classes.

class ReferenceCount
{
private:

mutable unsigned int _shares;
public:

ReferenceCount() : _shares(1) {}
ReferenceCount(const ReferenceCount&) : _shares(1) {}
ReferenceCount& operator=(const ReferenceCount&)

{ return *this; }
~ReferenceCount() { /* ASSERT(_shares == 1); */ }
bool annul() const

{ return (_shares == 1) ? false : (_shares--, true); }4

bool heap_only_annul() const { return --_shares != 0; }
void share() const { _shares++; }
unsigned int shares() const { return _shares; }

};

4. This rather contrived form of conditional ensures that there is only one return state-
ment, which is a prerequisite for inlining by some compilers.
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The destructor may beneficially validate that the share count is 1. This may detect
a premature deletion through the use delete, or some more obscure problem
such as double destruction through some unpleasant pointer recursion. The
implementation of share() performs the increment for registration of an additional
user. The implementation of annul() collaborates with the counted object to
decrement when a usage is removed. The return status indicates whether the
counted object should continue in existence. The count is not decremented if
destruction is due, in order to ensure consistent count behaviour for the three
following usage patterns

void test()
{

static ApplicationClass staticallyAllocatedObject;
ApplicationClass stackAllocatedObject;
ApplicationClass *heapAllocatedObject = new ApplicationClass();
// ...
annul(heapAllocatedObject);

}

For the statically and stack allocated objects, construction and destruction bound
the lifetime, any additional sharing through annul and share is optional. Only the
statically allocated object may live on beyond the function return. For the heap
allocated object the life-time of the object terminates with respect to the local
function with the annul, but any additional registration in the commented section
may prolong the lifetime. If only heap usage is required, the simpler
implementation of annul() as heap_only_annul() is adequate.

Glue code

Installing the ReferenceCount into an ApplicationClass class requires the
following code to convert the partial functionality of the ReferenceCount class
into the required external interface of the ApplicationClass class.

class ApplicationClass
{
private:

ReferenceCount _shares;
protected:

virtual ~ApplicationClass();
public:

void annul() const
{ if (!_shares.annul()) delete (ApplicationClass *)this; }

void share() const { _shares.share(); }
friend inline void annul(const ApplicationClass *anObject)

{ if (anObject) anObject->annul(); }
// ...

};

This is rather too much to be entered by the programmer. In the past, the author
has used a preprocessor macro for all except the virtual destructor which has been
dealt with manually. A meta-function provides a more powerful solution:

auto declaration ReferenceCount::install(bool heapOnly = false)
{

auto if (!defined(has_reference_count)) //1.1
{ //1.2

auto bool has_reference_count = true; //1.3
private ReferenceCount _shares; //2.1
public void share() const { _shares.share(); } //2.2
auto if ($heapOnly) //2.3a
{

public void annul() const //2.4a
{ if (!_shares.heap_only_annul()) //2.5a
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delete ($Scope *)this; }
protected ~${Scope}() :{ derived(true) {} }; //2.6a

}
else //2.3b

public void annul() const //2.4b
{ if (!_shares.annul()) //2.5b

delete ($Scope *)this; }
friend inline void annul(const $Scope *anObject) //2.7

{ if (anObject) anObject->annul(); } //2.8
} //1.4

}

The meta-function may be invoked as

class ApplicationClass /* ... */
{ /* ... */

$ReferenceCount::install();
};

leaving little opportunity for error or misunderstanding.

Lines 2.1 to 2.8 of the meta-function closely follow the glue code above, save for
the use of per-declaration rather than prefix access-specifiers (Section 3.1.3.2) and
for the use of $Scope to access the invoking class name.

The meta-function contains an outer conditionalisation on lines 1.1 to 1.4. to guard
against double installation. When first invoked, the has_reference_count meta-
variable is not defined, and so the conditional succeeds. The meta-variable is then
defined on line 1.3, and any reinvocation of the meta-function within the
ApplicationClass class or its derived classes is suppressed by the conditional.

The guard code is followed by the definition of the member variable (2.1), two
member functions (2.2, 2.4) and a friend function (2.7). The _shares member
variable provides the run-time storage needed by the share count, and interacts
via its constructors and destructors with the equivalent functions for the reference
counted class. The share() member function simply delegates the member
variable. The annul() member function completes the share counting protocol by
deleting the reference counted object when the final share is removed. The
annul() friend function just provides a more convenient destruction option
avoiding the need to worry about null pointers.

The inner conditionalisation (2.3) upon the formal parameter heapOnly selects
between declarations that inhibit non-heap object construction, and the more
flexible default behaviour allowing static as well as heap objects.

Line 2.6a defines the destructor as protected in the invoking class and as a
result of the derivation rule, in all derived classes. This provides a compile-time
check to catch most attempts to create counted objects statically or on the stack,
which might other wise have a lifetime extended either through a start-
up/shutdown race condition or beyond the return of a function. The virtual
keyword is omitted to avoid prejudicing the class designer’s decision on whether
the destructor should be virtual. Although the destructor should probably be
virtual, it is not appropriate for a meta-function to enforce ‘good’ style [Meyers92]
when there may be legitimate reasons for an alternate style.

Accidental double installation within the same class may seem unlikely for
conventionally structured code, however when more than one meta-function is
invoked as in

class ApplicationClass /* ... */
{ /* ... */

$NonIntrusiveList::install();
$NonIntrusiveMap::install();

};
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a multiple installation could occur indirectly. Accidental double installation within
an inheritance tree can easily occur, and is partially trapped by the inheritance of
has_reference_count. The guard is not proof against a later installation of a
reference count into a base class, or against multiply inherited reference counts.
Solutions to these problems require installation to be split into two phases, first to
determine the overall requirements, and then to generate the corresponding
declarations. The Monitor example in Section 7.4.2 shows how the more general
problem can be resolved, without affecting application or glue code.

Alternatives

There is an efficient solution to this problem, for the case of unconstrained usage
from a well-defined class, using the Curiously Recurring Template Pattern
[Coplien95a] in which a derived class parameterises its base class.

class ApplicationClass : /* ... */,
public ReferenceCounted<ApplicationClass>

{ /* ... */ };

In this application, the template parameter is required to support a static_cast
from a pointer to the base ReferenceCounted<ApplicationClass> to a pointer
to the derived ApplicationClass for use by the delete in a complete rather than
partial implementation of annul().

template <class T>
class ReferenceCounted
{ /* ... */

void annul() const
{

if (!--_shares)
delete static_cast<T *>(this);

}
};

Alternatively, if the compulsory expense of the virtual function table is acceptable,
a non-templated version of ReferenceCounted can be written using a virtual
destructor and no cast.

If protected destructors are used to enforce heap-only usage, an extra friend
declaration is required to allow the base class access to the derived destructor,
violating the goal of a single mention in the instantiation glue (unless a meta-
function is used to define base class and friend).

A non-templated approach is more flexible, and necessary when multiple
inheritance is involved:

class ApplicationClass : /* ... */,
public virtual ReferenceCounted

{ /* ... */ };

The latter approach can always be used, but at the expense of an extra indirection
for the much commoner single inheritance cases.

The meta-programming approach supports an arbitrary request for reference
counting functionality, leaving the meta-program to choose an efficient
implementation strategy. The conventional approach requires the programmer to
choose and implement the strategy directly.

7.2.4 WholePart

Soukup [Soukup94] makes a persuasive case for implementing patterns using
pattern classes. A pattern class is just a grouping of static functions templated by
the types of each collaborator as shown in Figure 7.1.
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The pattern class contains no member variables and is a friend of each
collaborator. A pattern is used by invoking the static member function of the
pattern class with the appropriate collaborator instances as parameters.

class C1
{ /* ... */

friend class P1<C1, C2>;
};

template <class T1, class T2>
void P1::do_something(T1& c1, T2& c2)
{

c1.poke = c2.peek;
}

Since the pattern class is a friend of each collaborator, the function is free to peek
and poke the working variables in the collaborator objects to perform the required
actions. This approach achieves a very regular style of implementation, and has
very beneficial effects in reducing include file dependencies. However the
extensive use of friend declarations runs counter to normal programming practice.

Instantiation of a pattern using a pattern class requires instantiation of the pattern
class, and insertion of friendship declarations and working variables into the
collaboration classes. Instantiation of the pattern class is readily resolved by
conventional C++ template instantiation. Insertion of declarations into the
collaborators could be performed by manual editing. [Soukup94] describes a
custom preprocessor for the CodeFarms library that performs this insertion
automatically, provided the programmer has left a hook in each class of the form.

class State
{

MEMBER_State // Hook to enable Cpp to insert declarations
/*...*/

};

class Town
{

MEMBER_Town // Hook to enable Cpp to insert declarations
/*...*/

};

The custom preprocessor scans pattern class instantiations such as

WHOLE_PART(State,Town) // Declaration that State has many Towns

to produce conventional Cpp definitions such as

#define MEMBER_Town \
friend class WholePart<State,Town>; \
State *_whole;

Pattern
Classes

C1 C4C3C2

P1<T1,T2> P2<T2,T3,T4>

Collaboration
Classes

Figure 7.1 Pattern Class Friendships
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Multiple patterns are readily accommodated; the generated Cpp macro just grows.

This approach demonstrates that implementation of a particular pattern solution
requires that declarations be injected into the code for collaborator classes. Only
for the degenerate case of a pattern involving a single class can injection be
avoided. In the terminology of Aspect Orientation, the declarations associated
with each aspect (or pattern) must be woven together to create composite
declarations acceptable to the C++ compiler. FOG supports this weaving and
eliminates the need for a custom preprocessor and for the preprocessor hooks
that support the CodeFarms library.

template <class Whole, class Part>
auto declaration WholePart::install()
{

class $Whole
{

friend class $Dynamic;
private list<$Part> _parts;
/* optional construction, delegations and destruction */

};
class $Part
{

friend class $Dynamic;
private $Whole *_whole;
/* optional construction, delegations and destruction */

};
}

Invocation of the installation function as

$WholePart<State,Town>::install();

just adds the required friend declaration and member variable to each collaborator
class identified by the template parameters.

The semantics of meta-function execution involve replacement only of formal
parameters in the scope of the meta-function, before returning the declarations in
the meta-function body for interpretation within the invocation scope. The meta-
function apparently has no formal parameters. It actually has four (see
Section 4.3.11). All meta-functions have two built-in formal parameters Static
and Dynamic corresponding to the declared scope of the meta-function and the
actual scope, which differs if invoked for a derived class. In addition, each
template parameter is also a formal parameter. The usage of $Whole rather than
Whole therefore ensures that a replacement occurs before the body is returned to
the calling scope where Whole may be undefined or differently defined.

The example shows only the minimum to activate the pattern solution. Additional
declarations could enforce appropriate construction and destruction protocols,
and provide delegation so that users are unaware that a pattern class is in use.

It is not necessary to use Soukup’s pattern class approach, although it has a
pleasant symmetry. Installation can be organised with respect to a dominant
collaborator, probably the Whole class in this case. It is then only necessary to
perform code injection into the other collaborators. However, whatever approach
is adopted, a pattern solution with more than one collaborator class requires either
manual editing to spread the pattern solution or automatic code injection.
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7.2.5 Visitor

An implementation of the Visitor pattern [Gamma95] provides a more complete
example of some of the facilities of FOG.

The pattern involves a hierarchy of data classes (DerivedData1, DerivedData2,
etc.) and a number of algorithms that may be performed on the data. The
algorithms are realised by algorithm classes (DerivedAlgorithm1,
DerivedAlgorithm2, etc.) and inherit from the abstract Visitor class
AbstractAlgorithm. The data classes similarly inherit from an abstract class
AbstractData.

Usage of the pattern requires the appropriate data and algorithm dependent
action to be performed. This is achieved by an invocation of the virtual method
AbstractData::accept(AbstractAlgorithm&), whose derived implementation
invokes AbstractAlgorithm::accept_DerivedDatan(DerivedDatan&), which
can in turn have a derived implementation to perform the required action as
DerivedAlgorithmm::accept_DerivedDatan(DerivedDatan&).

In a system with A algorithms and D data classes, there may be as many as A*D
functions to be declared and implemented. The implementations in the algorithm
classes performs the required actions in response to the two dimensional
dispatch.

The scaffolding code required in the data element classes can be generated
automatically by FOG.

The pattern has two degrees of freedom, which contributes to the inconvenience
of a conventional manual approach. Addition of an extra algorithm class is
relatively benign, requiring just that the new algorithm class implements as many
of the data functions as required. Addition of an extra data class requires that the
data class complies with the inherited protocol and that an additional method be
defined for the abstract algorithm. It may also be necessary to implement this
method in every derived algorithm class.

The example implementation uses two meta-functions, one to be invoked in the
root data class (AbstractData), and another to be invoked in each derived data
class (DerivedDatan).

A derivation rule cannot satisfy the derivation requirements of this pattern, since
a derivation rule can only regenerate potential declarations in derived contexts. In
this case, derivation of a data element class (DerivedDatan) needs to export a
declaration to the abstract visitor class (AbstractAlgorithm). A generalisation of
the rule could be considered, but appears to be necessary only for this pattern.
The cost of a one-line invocation in each derived data element class is small
compared to the associated response code in the algorithm classes, and provides
flexibility for deliberate omission if abstract levels of the data element hierarchy do
not need visitor support.

AbstractData
accept(AbstractAlgorithm&)

AbstractAlgorithm

accept_DerivedData1(DerivedData1&)

Figure 7.2 Visitor classes

inherits

invokes

DerivedAlgorithm2

DerivedAlgorithm1

DerivedData1

DerivedData2

DerivedDerivedData

accept_DerivedData2(DerivedData2&)

accept_DerivedDerivedData(DerivedDerivedData&)

accept_AbstractData(AbstractData&)
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auto declaration VisitorBaseElement(identifier V)
{

public typedef $V Visitor;
public virtual void accept($V& aVisitor) = 0;

};

auto declaration VisitorDerivedElement()
{

public virtual void accept(Visitor& aVisitor)
{ aVisitor.accept_${Scope}(*this); }

public virtual void Visitor::accept_${Scope}($Scope& aData)
{}

};

The abstract classes may invoke the pattern as

class AbstractAlgorithm /* ... */
{

// ...
};

class AbstractData /* ... */
{

$VisitorBaseElement(AbstractAlgorithm);
// ...

};

Invocation of VisitorBaseElement defines the AbstractData::Visitor typedef
with the value AbstractAlgorithm, avoiding the need to pass the identity of the
visitor class to invocations in derived classes:

class DerivedData1 : /* ... */ public AbstractData /* ... */
{

$VisitorDerivedElement();
//...

};

class DerivedData2 : /* ... */ public AbstractData /* ... */
{

$VisitorDerivedElement();
//...

};

class DerivedDerivedData : /* ... */ public DerivedData2 /* ... */
{

$VisitorDerivedElement();
//...

};

Definition of the derived algorithm classes, like the abstract algorithm classes
requires no explicit code. The declarations are provided automatically by the
second declaration in the VisitorDerivedElement meta-function, which also
provides a default empty algorithm implementation. Since the signatures of the
algorithm are defined in the base class, implementation of the derived algorithm
code need only mention the name.

class DerivedAlgorithm1 : public AbstractAlgorithm
{

using accept_DerivedData1
{

// ...
}

};

The short form using-declaration requires usage within class braces. Independent
usage can be provided by a long form using-declaration at the expense of a double
mention:
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using accept_DerivedData1 DerivedAlgorithm1::accept_DerivedData1
{

// ...
}

or directly at the cost of requiring distributed editing to change a signature:

void DerivedAlgorithm1::accept_DerivedData1(DerivedData1& aData)
{

// ...
}

The pattern is expressed compactly, and instantiated so that its use is clear.
Compliance with the pattern is ensured because the pattern provides all the
relevant declarations. The manually contributed code is reduced to that necessary
to provide the actual implementation. The scaffolding is almost completely
removed.

7.3 Meta-Programming

7.3.1 OS Traits

Conditional compilation is essential to support a variety of configuration options,
often to resolve distinctions between different operating systems. Control values
are variously predefined by the compiler, supplied by command line or defined in
header files.

#if defined(UNIX)
static const char *temp_path = "/tmp/";

#else
static const char *temp_path = "C:\\Temp\\";

#endif

C++ statements occur only within functions and express evaluations to be
resolved at run-time. In FOG, meta-statements are declarations and so the
example simplifies to:

auto bool unix = $std::get_cpp("UNIX") != "";
auto if (unix)

static const char *temp_path = "/tmp/";
else

static const char *temp_path = "C:\\Temp\\";

The invocation of std::get_cpp looks up UNIX in the C preprocessor namespace,
providing controlled access to command line definitions.

Using an Object-Oriented perspective eliminates the need for conditionalisation.
The characteristics of each configuration option may be packaged as meta-
variables (and meta-functions) of a (meta-)class, extending the traits concepts of
[Myers95].

auto5 class OsTraits_Abstract
{

auto static bool NT = false; // default value
auto static bool UNIX = false;
//...

};

5. These autos were omitted from the presentation in Section 1.5.1, where, as a re-
sult, classes were defined. The extra autos here declare that only the meta-classes
are required, so avoiding the eventual emission of unnecessary C++ declarations.
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auto5 class OsTraits_Nt : auto5 OsTraits_Abstract
{

auto static bool NT = true; // overriding value
auto static string temp_path = "C:\\Temp\\";
//...

};

auto5 class OsTraits_Unix : auto5 OsTraits_Abstract
{

auto static bool UNIX = true;
auto static string temp_path = "/tmp/";
//...

};

The appropriate configuration may then be chosen using std::get_cpp("OS") to
resolve OS from the command line. Thus

auto5 class OsTraits : auto5 OsTraits_$std::get_cpp("OS") {};

maps the required configuration to OsTraits. The appropriate operating system
may be specified on the FOG command line by:

fog ... -D OS=Nt ...

A file may then be opened on the operating system specific temporary path by:

std::ofstream s($OsTraits::temp_path "results.dat");

(The pair of strings concatenate to give the required file name).

Having isolated the configuration in separate classes and an associated header
file, a new operating system can be supported by providing a prefix file
characterising the new system and invoking it with an appropriate command line.
Existing source files need no change.

Alternatives

This could be achieved directly using multiple layers of name substitutions with C
preprocessor, but it never is. Modularization is much easier when supported by the
programming environment.

This cannot be achieved by templates, which lack the ability to perform string
manipulations.

7.3.2 SynchronisedEnum

In Section 4.4.7 on page 123, an example was given showing how a meta-function
could transform a list of enumerations into an array of text strings. An alternative
approach may sometimes be preferable, defining additional enumerators and text
array elements incrementally.

For instance a compiler may be structured so that the sub-algorithms for each AST
traversal algorithm are placed with one complete algorithm per file, and an
enumeration may be used to identify which algorithm is in active. Addition of an
additional algorithm should then be possible with the minimum of disruption to
other code. The declaration of the enumerator for the constant folding pass is
beneficially performed by a meta-function invocation such as
$install_ast_traversal(constant_folding) that resolves as many of the
shared declarations as possible
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class ApplicationClass
{

public enum Enum {};
public static const char *texts[] = {};
auto declaration define(identifier aName, expression aValue)
{

enum Enum { $aName = $aValue };
static const char *texts[] = { [$aValue] ""$aName };

}
};

Application code may then define enumerators with explicit values (and text
elements) by:

$ApplicationClass::define(LABEL, 40);

The example can be usefully simplified and made more reliable by using the
sequentially allocated enumerator values directly:

auto declaration define(identifier aName)
{

enum Enum { $aName };
static const char *texts[] = { ""$aName };

}

Alternatives

The above example cannot be expressed in C++. Conventional practice requires
that a maintainer update both enumeration and array of text strings consistently.
The FOG pattern updates both at once, and provides freedom for each invocation
of ApplicationClass::define to be located with code associated with the
invocation, avoiding the need to fragment code to satisfy compiler constraints.

7.3.3 RTTI

Prior to the adoption of RTTI into C++, it was necessary for large Object Oriented
programmers to implement RTTI as part of the application code. Each third party
library had its own policy, which imposed significant compliance burdens upon
consumers. RTTI within the language eliminates much of the add-on functionality,
however it pursues the C++ philosophy of avoiding costs of unused functionality
by providing only minimal functionality. Extra functionality must still be provided
extra-lingually, using the unique RTTI type identifier as an index to custom
information. Applications may therefore still need to provide RTTI, albeit tailored
to exploit the built-in functionality.

FOG meta-programming supports conversion of declarations into a format
suitable for use at run-time.

A simple example supporting just class name diagnostics and inheritance tables
is provided here. A more extensive example involving formatting of member
variable names is provided to support marshalling in Section 7.4.1.

Class-name information

Class-name information may be provided by:

class Rtti;

auto declaration Rtti::class_names()
{

virtual const char *class_name() const
:{ derived (true) { return ""$Scope; } }

}

and invoked as
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class ApplicationClass
{

$Rtti::class_names();
}

to have class_name() return the class name for ApplicationClass and all its
derived classes.

This does not work for template classes, whose full name is not known at meta-
compile-time. A rather more elaborate approach is necessary that concatenates
the names of each argument during construction of a static instance within the
invoked method.

Inheritance information

We are trying to generate code such as:

class MyClass : public Base1, protected Base2
{
public:

virtual const Rtti& dynamic_type_info() const //1
{ return static_type_info(); }

static const Rtti& static_type_info() //2
{

static const Rtti rtti("MyClass", _base_info); //3
return rtti;

}
protected:

static const Rtti::BaseInfo _base_info[] = //4
{
 { &Base1::static_type_info(), //7

(char *)&(Base1&)(MyClass&)*(char *)0x1000-(char *)0x1000 },
 { &Base2::static_type_info(), //7

(char *)&(Base2&)(MyClass&)*(char *)0x1000-(char *)0x1000 },
 { 0, //9

0 }
};

};

The dynamic_type_info and static_type_info methods provide the class
description in a similar way to the get_info and info methods on p448 of
[Stroustrup91]. dynamic_type_info is a virtual function and so returns the
dynamic type of a pointer, whereas static_type_info is static and so returns the
declared type.

The detailed class description uses a null-terminated list of Rtti::BaseInfo base
class descriptors to define the context of a class with respect to its bases. The
descriptor provides two fields, one that points to the base class, and the other that
identifies the offset of the particular base class object within the enclosing object.

The horrendous sequence of casts establish a phantom MyClass instance at
address 0x1000 upon which offset calculations are performed. (The phantom
object can be placed at any address other than the obvious 0x0 for which C++
mandates that all offset arithmetic returns 0.)

class Rtti
{
public:

struct BaseInfo // List element in list of bases
{

const Rtti *_base_rtti; // Base class description
int _offset_to_this; // Base position

};
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Rtti(const char *className, const BaseInfo baseList[]);
};

auto declaration Rtti::base_names()
{

public virtual const Rtti& dynamic_type_info() const //1
:{ derived (true) { return static_type_info(); } }

public static const Rtti& static_type_info() //2
:{ derived (true)

{
static const Rtti rtti(""@Scope, _base_info); //3
return rtti;

}
}

protected static const Rtti::BaseInfo _base_info[]; //4
:{ derived (true); }

auto ~${Scope}() //5
{

auto for (iterator b = $bases(); b; ++b) //6
using _base_info =
{ {

&${b}::static_type_info(), //7
(char *)&($b&)($Scope&)*(char *)0x1000 - //8

(char *)0x1000
} };

using _base_info = { { 0, 0 } }; //9
};

};

The functionality is installed in the same way as before with a single line at the
root of an inheritance hierarchy:

class ApplicationClass
{

$Rtti::base_names();
};

as a result of which ApplicationClass has two methods static_type_info (2)
and dynamic_type_info (1), a null-terminated array of base class descriptors (4)
and a meta-destructor (5). The methods and array have derivation rules with a true
predicate, these methods and the array are therefore regenerated in all derived
classes. Construction of the local Rtti object (3) uses @Scope ensuring that the
derived class name is used.

The meta-destructor executes for each derived class. It loops over all base
classes (6). Each iteration adds a list element comprising a pointer to the base-
class type information (7), and an offset of the base-class within the derived object
(8). Finally the list is null-terminated (9). Each using exploits the extended re-
using-declaration (Section 3.1.4.4) to refer to protected static const
Rtti::BaseInfo _base_info[] as just _base_info before specifying an
additional array element to be composed (Section 4.4.7).

This technique generates predictable functionality in derived classes
automatically, and so compares very favourably with traditional approaches
relying on multiple preprocessor scaffolding macros per class.

7.4 Aspects

Aspect Oriented Programming [Mens97] seeks to isolate independent
programming concerns as aspects, each of which can be implemented (and
re-used) independently. The next two examples show partitioning of a problem into
the application, some additional concern implemented as an aspect, and a very
small amount of glue code which initiates weaving the code for each aspect into
the main application code. The examples also demonstrate how application code



Meta-compilation for C++ Examples

Page 240 29-June-2001

is simplified and consequently made more reliable by the initial expenditure of
extra declarative effort to achieve re-use. This is a natural extension of OO
philosophy, where a class can encapsulate difficult concepts making use easy
although definition difficult. FOG provides additional declarative power supporting
better encapsulation.

7.4.1 Marshalling6

Communication between programs requires messages to be passed between
those programs. Each message is usefully represented as an object, and so the
programmer is presented with the problem of transferring the contents of one
object between programs. This is readily achieved using an Interface Definition
Language and CORBA when such high level facilities are available, however when
working at a lower level, as often occurs for embedded systems, the problem must
be solved by the programmer.

A typical approach involves the conversion of each object into a sequence of bytes
with a common header that describes the format and length of the subsequent
bytes. The sending program must marshal the data elements of each object into
the byte stream and the receiving program must perform the corresponding
unmarshalling back into an object. Preparation of this marshalling code is
straightforward, but not amenable to automation with conventional compilers. In
order to show how this can be resolved by FOG, it is helpful to first show one
possible conventional solution. The exposition matches the subsequent
automated solution. Numbered comments (//3.0) may assist the reader in
correlating the two solutions.

All messages inherit from the Message class, which defines the marshalling and
unmarshalling interfaces and an enumeration, whose values distinguish between
possible message formats.

typedef unsigned char uchar; // Short name for shorter lines

class Message
{ /* ... */
protected:

enum MessageTypes //1.0
{

MESSAGE_StockReport /* , ... */ //1.1
};

public:
virtual size_t marshal(uchar data[]) const; //2.0
static Message *unmarshal(uchar data[]); //3.0

};

Invocation of the marshal function fills data[] with the byte stream and returns
the message size. The unmarshal function is passed a byte stream and returns a
pointer to an object if the message is valid, or 0 on failure. A single very simple
message comprising just two data elements is used for this example.

6. A version of this example that was tested using the multi-pass implementation of
FOG was presented at TOOLS Eastern Europe [Willink99b]. That version used ad
hoc token pasting within function bodies. The version presented here exploits the
polymorphic behaviour of token lists available with the superset implementation.
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class StockReport : public Message
{ /* ... */
private:

unsigned long _item_number;
short _stock_level;

private:
inline StockReport(uchar data[]); //5.0

public:
static StockReport *make(uchar data[]); //4.0
virtual size_t marshal(uchar data[]) const; //2.1

};

The message-specific marshalling into data[] is performed by a virtual function:

size_t StockReport::marshal(uchar data[]) const //2.2
{

uchar *p = data; //2.3
*p++ = MESSAGE_StockReport; // Message type //2.4
*p++ = 6; // Message body length //2.5
*p++ = (_item_number >> 24) & 0xFF; //2.6
*p++ = (_item_number >> 16) & 0xFF;
*p++ = (_item_number >> 8) & 0xFF;
*p++ = _item_number & 0xFF;
*p++ = (_stock_level >> 8) & 0xFF; //2.7
*p++ = _stock_level & 0xFF;
return p - data; //2.8

}

Unmarshalling from data[] selects the message-specific routine:

Message *Message::unmarshal(uchar data[]) //3.1
{

switch (data[0]) //3.2
{ //3.3

default: //3.4
return 0; // 0 for bad message type error.

case MESSAGE_StockReport: //3.5
return StockReport::make(data);

/* ... */
} //3.6

}

Then the message-specific object is created, but only if the length is valid:

StockReport *StockReport::make(uchar data[]) //4.1
{

if (data[1] != 6)
return 0; // 0 for bad message length error.

else
return new StockReport(data);

}

Finally, construction performs the message-specific unmarshalling:
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StockReport::StockReport(uchar data[]) //5.1
{

uchar *p = data+2); //5.2
{ //5.3

unsigned long temp = *p++;
temp = (temp << 8) | *p++;
temp = (temp << 8) | *p++;
temp = (temp << 8) | *p++;
_item_number = temp;

}
{ //5.4

unsigned long temp = *p++;
temp = (temp << 8) | *p++;
_stock_level = short(temp);

}
}

The marshalling and unmarshalling code is very predictable and in principle easy
to write, however when there are many messages, it is tedious and error prone.
When a data type is changed or a member variable added, there are many places
where updates are required. It is preferable to generate the code automatically.
This requires a meta-program that can reflect upon the message class
declarations and generate code accordingly.

Application aspect

The marshalling support may be separated completely from the application code.
The message classes express their own inheritance relationships, their data
contents, and any other application declarations that may be necessary.

typedef unsigned char uchar; // Short name for shorter lines

class Message { /* ... */ };

class StockReport : public Message
{ /* ... */
private:

unsigned long _item_number;
short _stock_level;

};

Aspect weaving

The marshalling aspect is added (woven) by invoking the installation meta function
of the Marshal meta-class.

using "Marshal.fog";

class Message
{

$Marshal::install();
};

Marshalling aspect

The installation meta-function is:

auto class Marshal {};
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auto declaration Marshal::install()
{

auto type MessageClass = $Scope; //10.1
auto static statement switchBody = //10.2
{

default: //3.4
return 0;

}
auto number byte_count = 0; //10.3

protected enum MessageTypes {}; //1.0

public virtual size_t marshal(uchar data[]) const //2.0/1/2
:{

derived(true) entry
{

uchar *p = data; //2.3
*p++ = MESSAGE_@Scope; //2.4
*p++ = @byte_count; //2.5

}
derived(true) exit
{

return p - data; //2.8
}

};

public static !inline $Scope *unmarshal(uchar data[]);//3.0/1
{

switch (dataBuffer[0]) //3.2
@switchBody;

}

public static @Scope *make(uchar data[]) //4.0/1
:{ derived(true)

{
if (*p++ != @byte_count)

return 0;
else

return new @{Scope}(data);
}

};

auto ${Scope}() //11
{

protected enum ${MessageClass}::MessageTypes
{ MESSAGE_$Dynamic }; //1.1

auto switchBody +=
case MESSAGE_$Dynamic: //3.5

return ${Dynamic}::make(data);
private inline/implementation

${Dynamic}(uchar data[]) //5.0/1
{

uchar *p = data+2; //5.2
}

}

auto ~${Scope}() //12.0
{

auto for (iterator i = $all_variables(); i; ++i) //12.2
auto if (!i->is_static()) //12.3

$i->type().marshal($i->id()); //12.4
}

}

The install meta-function is invoked from a class declaration for Message and
executes as part of the source file reading and analysis compilation phase. All
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lines declare declarations that are added to the Message class. Three meta-
variables (10.1, 10.2, 10.3), a meta-constructor (11) and a meta-destructor (12.0)
are declared in addition to more conventional declarations (1.0, 2.0, 3.0, 4.0).

The first meta-variable (10.1) caches the name of the invocation scope in the
meta-variable MessageClass for access by the meta-constructor.

The second meta-variable (10.2) defines the switchBody meta-variable, which
will accumulate the switch cases for the unmarshal routine. It is initialized with a
list comprising the default case.

The third meta-variable (10.3) defines byte_count which will be incremented with
a count of the bytes required to express the marshalled data. It is initialized to
zero.

Note that byte_count is non-static since each derived class has a distinct size,
whereas switchBody is static because all derived classes should contribute to
the single base class list.

The enumeration of message types is declared (1), ready for extension by the
meta-constructor.

The framework of each marshalling routine is defined (2), with a derivation rule to
ensure regeneration in each derived class. The framework defines three lines of
code for the function entry, and one line for the function exit. The function body
will be defined during meta-destruction.

The unmarshalling routine is defined (3) in its entirety, using a deferred @ to
reference the switchBody after meta-programming has defined its content. There
is no need for braces around the meta-variable, since FOG automatically supplies
the appropriate brace/parenthesis/comma punctuation when emitting a list as part
of a C++ declaration.

The make routine is similarly defined in its entirety (4) embedding the calculated
count, using a deferred reference to await its determination by meta-programming
and of the copy appropriate to the particular derived class, since the derivation
rules ensures that the make function appears in all derived classes.

The meta-constructor is invoked for Message and all its derived classes during the
meta-construction compilation phase. Invocations occur in least derived first
order. The meta-constructor first defines an enumerator and then appends a
switch case.

An enumerator is defined (1.1) in the MessageTypes enumeration of the Message
class. The additional enumerator extends the enumeration and so acquires a
unique value for each message class. The enumerator name is formed by
concatenation of the prefix MESSAGE_ and $Dynamic, the class name of the
derived meta-constructor (the derived message class).

The additional switch case is defined (3.5) and appended to the switchBody
meta-variable, thereby extending the unmarshal routine that uses it. The
invocation of the Dynamic built-in variable ensures that the identity of the derived
rather than base message class is used. Note the absence of braces to ensure
that a case rather than a list of one case is appended.

The meta-constructor then defines the interface and the start of the
implementation for the derived message class constructor, on whose behalf the
meta-constructor is executing.

The meta-destructor is similarly invoked on behalf of each message class, during
the meta-destruction phase, by which time all member variables have been
defined. It comprises a loop to resolve the member variable dependent code and
count the number of bytes in the message.

The byte count is maintained in a meta-variable initialised to 0 (10.3). The loop
(12.2) iterates over all member (and inherited member) variables of the derived
class, and (12.3) skips static member variables. Within the loop (12.4), invocation
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of the marshal meta-function for the data-type of each member variable causes
emission of member-specific marshalling code. The member variable name is
passed as a parameter to a type-specific implementation such as:

auto declaration unsigned long::marshal(expression name) //13.0
{

byte_count += 4; //13.1
public virtual size_t marshal(uchar data[]) const //2.2
{

*p++ = ($name >> 24) & 0xFF; //2.6
*p++ = ($name >> 16) & 0xFF;
*p++ = ($name >> 8) & 0xFF;
*p++ = $name & 0xFF;

}
private $(Scope)(uchar data[]) //5.1
{

{ //5.3
unsigned long temp = *p++;
temp = (temp << 8) | *p++;
temp = (temp << 8) | *p++;
temp = (temp << 8) | *p++;
$name = temp;

}
}

}

Meta-functions can be defined for built-in types as well as user defined types. The
above declaration for the unsigned long ‘class’ supports the marshalling of
unsigned long member variables. The formal parameter name is replaced
throughout the body before the body is interpreted in the invoking context, that of
the derived message class. The update of the byte_count (13.1) therefore
maintains the counter of the derived message class, and the two declarations (2.2,
5.1) provide additional code for the body region of the derived message class
routines. The member variable iteration is in declaration order, and the ordering
of function body contributions is preserved, so the final ordering of the many
contributions is well-defined. The contributed code (2.6, 5.3) just performs the
very simple operations appropriate to the data type.

A similar isomorphic meta-function for short is needed to complete the example
(2.7, 5.4), and further routines for every other primitive data type. Nested data
types can be resolved by a nested iteration, which can be specified as a general-
purpose meta-function, passing the nested member name to the nested call,
necessitating the use of expression rather than name or identifier for the
parameter type.

auto declaration Marshal::marshal(expression name)
{

auto for (iterator i = $all_variables(); i; ++i)
auto if (!i->is_static())

$i->type().marshal(${name}.$i->id());
};

The general purpose meta-function can be installed by meta-inheritance for use
in a nested type

struct NestedDataType : auto Marshal { /* ... */ };

This declares Marshal as an additional base class of the NestedDataType, but
only at (meta-)compile time. The meta-names of Marshal are therefore visible to
the derived class, providing the required resolution of
NestedDataType::marshal().

This example shows how application code can be generated in response to the
actual application declarations. The code is fully under the programmer’s control.
The programmer can freely choose an alternate implementation using data tables
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to describe each message rather than monolithic functions. Inheritance of
messages can be exploited to trade size for speed, by changing compile-time
iterations to serve only the local member variables, and changing the run-time
code to invoke base class methods for inherited members. More sophisticated
code can be provided to support swizzling of pointer types for database
applications.

The generated code is portable, since all members are referred to by name. The
example code for unsigned long::marshal has a portability problem for
processors with a greater than 32 bit unsigned long, but this is a limitation of the
example solution, not of the approach.

7.4.2 Monitor7

The ability to use FOG to separate different programming concerns is
demonstrated by application of a synchronisation monitor to a stack. One line of
glue code is necessary to weave the otherwise independent functionality of
monitor and stack.

Application Aspect

We first define a simple stack class.

template <class T>
class Stack
{

$NoCopy();
$NoAssign();

private:
T *_elements;
size_t _capacity; // Allocated size of _elements[]
size_t _tally; // Used size of _elements[]

public:
Stack() : _elements(0), _capacity(0), _tally(0) {}
~Stack() { /* ... */ }
bool is_empty() const volatile { return _tally == 0; }
T pop() { /* ... */ }
void push(const T&) { /* ... */ }
T top() const { return _elements[_tally-1]; }

};

The const qualifier is used conventionally to indicate that no change occurs.
Concurrent readers are therefore permissible, but concurrent writing should not be
permitted once a monitor aspect has been added.

The volatile qualifier is used to indicate that access may occur without the use
of a lock, allowing interleaved reading and writing by other threads8.

The Monitor Aspect (run-time)

The monitor functionality is provided by a Monitor class, whose detailed
implementation is not relevant to this example.

7. A version of this example, that was tested using the multi-pass implementation of
FOG, appears in a position paper for the AOP workshop at ECOOP’99 [Willink99c].
The version here resolves reverse and multiple inheritance conflicts. This version
has been adapted to use the revised syntax of derivation rules as a part of an object-
statement-clause.
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class Monitor
{

friend class Monitor::ReadOnlyLock;
friend class Monitor::ReadWriteLock;

private:
void acquire_exclusive() { /* ... */ }
void acquire_shared() { /* ... */ }
void release() { /* ... */ }

};

acquire_exclusive and acquire_shared block until exclusive or shared access
is available to the resource(s) managed by the monitor. release terminates the
resource reservation.

Reservation of the monitored resource is managed by a pair of nested lock
classes, ReadOnlyLock and ReadWriteLock. They differ only in whether
acquire_shared or acquire_exclusive is invoked.

class Monitor::ReadOnlyLock
{
private:

Monitor& _monitor;
public:

ReadOnlyLock(Monitor& aMonitor)
: _monitor(aMonitor) { _monitor.acquire_shared(); }

~ReadOnlyLock() { _monitor.release(); }
};

A lock class invokes acquire_shared to acquire the resource during construction
and ensures its release from the destructor, whose invocation C++ guarantees.

Aspect composition

The Stack application code above is written independently of the synchronisation
code. The presence of the volatile keyword is an optional optimisation.

The monitor aspect is added to the application aspect by providing additional
declarations that are woven into the application code.

using "monitor.fog";

template <class T>
class Stack
{

$Monitor::install(); // Invoke meta-function
};

8. The qualification of is_empty() as volatile as well as const therefore goes
beyond conventional practice, but is safe because the implementation involves a
single read, whereas top() involves at least two reads.

Qualification of is_empty() as volatile is of limited utility, since the return
accurately reflects a state that existed but that state may no longer exist when the
calling code interprets the result. It would seem that the volatile qualification is
redundant since calling code must establish a lock to encompass both
a !is_empty() and a subsequent pop(). However, the volatile qualification is
useful when is_empty() is invoked within a polling loop that can recover on the
next iteration. The presence of volatile avoids incurring locking costs for such
a loop.

The usage is consistent because volatile indicates that concurrent change may
occur and so inhibits any optimisation that could reorder the sequence of memory
accesses.
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The Monitor Aspect (compile-time)

The remainder of the code for this example forms part of the monitor.fog include
file. There are two relatively independent code injections to be performed to install
the monitor. Class declarations must be updated to incorporate an instance of
Monitor, and function declarations must be updated to establish locks.

Direct installation of an instance of Monitor is relatively straightforward and could
be achieved by just adding a member variable. However, making the meta-function
work in a more general purpose fashion is harder. There are five problems to be
resolved:

• Monitor::install may be invoked more than once on the same class

• Monitor::install may be invoked later for a derived class

• Monitor::install may be invoked later for a base class

• Monitor::install may be invoked later for more than one base class

• Monitor::install may be invoked for a derived monitor

There must be only one synchronisation monitor in each object, so multiples must
be suppressed, retaining only the one monitor in the least derived class. If a
monitor is multiply inherited, virtual inheritance must be used to share it. If
multiple monitors use different implementation classes, we will generate a
compiler diagnostic.

Since virtual inheritance must be used to resolve the multiple inheritance problem,
it is convenient to implement the more conventional monitor by non-virtual multiple
inheritance rather than as a member variable. Resolving multiple inheritance then
just requires composing the virtual keyword on the simpler and much commoner
inheritance.

Resolving the uniqueness problem when the invocation order of
Monitor::install cannot be known requires splitting the structural problem into
two passes. A third pass is required to update the functions. These three passes
are performed in turn during the semantic analysis phase, meta-construction
phase and meta-destruction phase.

Pass 1, Semantic analysis phase

The first pass is executed directly by the during semantic analysis of the
$Monitor::install() meta-function invocation.

It sets flag variables indicating the class requirements, and arranges for the
second phase to occur later.

auto const class Monitor::needs_monitor = 0; //1

auto declaration Monitor::install() //2
{

class $Scope : auto $Dynamic {}; //3
auto const class needs_monitor = $Dynamic; //4

}

//1 declares a meta-variable in the Monitor class whose 0 (nil) initialisation flags that
a Monitor class does not need Monitor functionality inserted into it.

//2 declares the compile-time meta-function invoked by the application glue code.

//3 adds the Monitor class (as a meta-base class of Stack).

template <class T> class Stack : auto Monitor { ... };

$Scope is not a formal and so resolves to the prevailing scope in the invocation
context.
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$Dynamic is a built-in formal that resolves to actual definition scope, typically
Monitor, but DerivedFromMonitor if Monitor::install is invoked as
DerivedFromMonitor::install.

class DerivedFromMonitor : public Monitor
{

//...
};

//...
$DerivedFromMonitor::install();

Installation of Monitor as a meta-base-class provides an inherited meta-
constructor and meta-destructor for Stack, and so ensures that the second and
third passes are executed for Stack (and all its derived classes).

//4 declares the Stack::needs_monitor meta-variable with a non-0 value to signal
that Monitor functionality is required. The value of Dynamic is used as the non-0
value, so that in combination with the const, any attempt to install a different class
of monitor will be caught. Re-installation of the same monitor class is allowed.

Pass 2, Meta-construction phase

The first pass sets the needs_monitor flag non-0 in all classes that are specified
as requiring monitor functionality, and arranges for the meta-constructor to be
invoked. Invocation in the first pass occurs in an unpredictable order. Invocation
during the meta-construction phase occurs in a least derived first order, which can
be exploited to install the monitor in the least derived alternative. Resolution of the
multiple inheritance conflict requires a further pass, which is implemented by
performing an iteration over the multiple bases.

auto Monitor::Monitor()
{

auto if (needs_monitor) //1
{

auto class baseMonitors[] = $find(has_monitor); //2
auto if (baseMonitors.size() == 0) //3
{

class $Scope : public $needs_monitor {};
auto const class has_monitor = $Scope;

}
else if (baseMonitors.size() == 1) //4
{

auto const class needs_monitor = $baseMonitors[0];
}
else //5
{

auto for (iterator m = $baseMonitors; m; ++m)
{

class $*m : virtual $needs_monitor {};
auto const class needs_monitor = $*m;

}
}

}
}

//1 Execution of the meta-construction code is guarded by a test for a non-0 flag,
thereby inhibiting installation of monitor functionality in monitor classes.

//2 std::find returns an exposed list of all visible declarations of the has_monitor
flag, which is used to identify the location(s) where monitor functionality is already
installed.

//3 If there are no definitions visible, this must be a least-derived requirement and so
the monitor class is specified as a public base class, composing with the existing
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specification as a meta-base class. The has_monitor flag is defined to indicate
the location of the monitor functionality.

//4 If there is exactly one definition visible, then the inherited functionality is adequate
and no further functionality is required in this class. (Re-)declaration of the
derived needs_monitor provokes an error message if conflicting monitor classes
are in use.

//5 If there is more than one definition visible, then a multiple inheritance conflict must
be resolved. The iteration loops over all definitions and redefines the base-class
to use virtual inheritance, and detects conflicting monitor classing.

Pass 3, Meta-destruction phase

The final phase of monitor installation should occur after any concurrent meta-
programming has defined additional member functions, so that all member
functions may have locking code inserted.

auto Monitor::~Monitor()
{

auto if (needs_monitor) // 1
{

auto for (iterator f = $functions(); f; ++f) // 2
{

auto if (f->is_static()) // 3
;

else if (f->is_volatile()) // 4
;

else if (f->is_const()) // 5
{

$f->specifier()
:{

entry { ReadOnlyLock aLock(*this); }
};

}
else // 6
{

$f->specifier()
:{

entry { ReadWriteLock aLock(*this); }
};

}
}
auto if (friends().size() != 0) // 7

$std::error("friend of monitored " $Scope " detected.");
}

}

//1 Once again functionality is guarded to prevent operation on monitor classes.

//2 The loop over all functions uses the decl-specifiers to determine whether monitor
code needs inserting.

//3 static member functions are not associated with any object and so have nothing
to monitor access to.

//4 volatile is recognised as a requirement to bypass locking.

//5 const member functions require a shared lock, which is provided by specifying an
entry code segment for the function whose full name is returned by
function::signature().

//6 Similarly non-const member functions require an exclusive lock.

//7 Finally the problem of friend functions and classes subverting the protection is
resolved in a very heavy handed fashion by banning friends. (Direct access by
friends must be changed to use access functions into which locks can be inserted



Examples Meta-compilation for C++

29-June-2001 Page 251

automatically. It very hard and probably impossible to analyze all code associated
with a friend class or function to guarantee that it does not violate access
constraints.)

Function Weaving

FOG performs function weaving by concatenating the code from multiple function
bodies, within the five named regions entry, pre, body, post and exit (see
Section 4.4.8). The entry region precedes the default body region and so the
above meta-program generates the additional contribution

template <class T>
T Stack::top() const // from the meta-destructor
:{

entry { ReadOnlyLock aLock(_monitor); };
};

to be woven with the application function:

template <class T>
T Stack::top() const // from application aspect

{ return _elements[_tally-1]; }

to generate the final C++ result:

template <class T>
T Stack::top() const
{
#line ...

ReadOnlyLock aLock(_monitor);
#line ...

return _elements[_tally-1];
}

References

Monitor and Stack are fundamental concepts and consequently staples for
numerous articles in many Computer Science fields.

[Stroud95] used OpenC++ version 1 to implement atomic data types by
intercepting method calls at run-time.

[Hedin97b] considered the monitor from an Aspect Oriented perspective, and
introduced an attribute extension language to enable a preprocessing stage to
validate that the requisite coding constraints had been observed. In this example
we use introspection to synthesise the required code directly.

[Bjarnason97] advocates an extensible language, so that the required monitor
protocol can be incorporated into the extended language. Language extension
involves manipulation of syntax trees, and it is not clear how practical this is for a
language with as challenging a syntax as C++.

7.5 A Real Example - BURG

FOG grew out of work to improve productivity in a different field of compilation
technology.

It is difficult to apply high level programming concepts to Digital Signal Processors
because of the very poor quality of the available compilers [Willink97b]. This is in
part due to lack of awareness of the need for better support and partly due to the
extreme difficulty of matching the performance of hand-crafted assembler on
rather challenging architectures. Research therefore started to apply modern Very
Long Instruction Word (VLIW) scheduling concepts, using an intermediate
representation supporting data parallelism [Muchnick93]. The intermediate
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representation was extended to support user-characterised types [Willink97a], as
part of a relatively general purpose compiler framework.

One of the activities of a compiler involves selection of appropriate machine
instructions (such as ADD or MOVE) to implement the program, usually
represented by a tree of Abstract Syntax Tree nodes [Aho86]. An effective
approach to solving this problem involves a Bottom-Up Rewrite System
[Proebsting95], which searches the tree from the leaves upwards identifying the
lowest cost solution that has each node covered exactly once by a machine
instruction. The tree may then be rewritten in terms of the selected machine
instructions. In order to support multiple target architectures, alternative
instruction sets must be covered. Implementation of this diversity is assisted by
the use of a Bottom-Up Rewrite Generator to transform a description of each
machine instruction into the form needed for an efficient tree search. An example
of this form of generator is lburg that forms part of the lcc C compiler [Fraser95].

lburg is a compact C program comprising just three files:

• lburg.c has 690 lines and 4652 tokens

• lburg.h has 66 lines and 259 tokens

• gram.y is a 19 rule, 37 state yacc parser grammar

(token counts are non-comment, non-whitespace preprocessor tokens.)

lburg supports single dispatch architectures (such as SPARC). An enhanced
version was required in order to support less conventional processor
architectures, and so a highly Object Oriented C++ rewrite was undertaken using
reference counting and smart pointers to share common partial instructions. The
resulting program was substantially larger, due to the extra declarations for
encapsulated C++ classes, rather than the original free access to structure
elements, and due to the added functionality. Preprocessor macros were used
extensively to factor out common declarations.

A further revision to exploit FOG without any other change to functionality forms
the basis of the comparison for this example. An implementation based on the use
of preprocessor macros is compared with an implementation using meta-
functions, meta-variables and derivation rules.

The benefit of using FOG for the 10 non-yacc modules are presented in Table 7.1.

The pre-FOG version comprises sources that compact .cxx and .hxx into a

module
.xx .fog

% reduction
lines tokens tokens

Burg 1420 8301 7681 9.3

BurgCodeScope 496 2901 2496 14.0

BurgEntry 98 383 227 40.8

BurgNonTerm 204 849 679 20.0

BurgParserValue 78 276 248 10.1

BurgRule 361 1903 1583 16.8

BurgSharedRules 86 327 171 47.7

BurgSubExpr 428 2545 2062 19.0

BurgTerm 163 651 483 25.8

BurgTree 386 2111 1821 13.7

total 3720 20247 17451 14.0

Table 7.1 Token size reduction through use of FOG
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single .xx file. Raw (comment and blank included) line counts are presented for
these. The post-FOG version comprises a single .fog file per module. (The
counts exclude re-usable preprocess/meta-function definitions).

Use of (the multi-pass implementation of) FOG reduced the token count by 14%,
from 20250 to 17500. The per-module reduction varied between 9% and 48%. The
larger reductions occur in small classes, where the benefits of derivation rules and
simplification of interface and implementation declarations are most apparent.

A reduction in token count is an easily measured reduction in programming effort.
Less easily measured are the more aesthetic improvements of better modularity,
improved expression of programming intent, and automatic compliance with
programming protocols. A pair of short before/after extracts are therefore provided
for readers to make their own judgements. The code is complete save for the
removal of 4 functions whose lexical structure exactly duplicates functions that
remain. Code for this example is chosen because it is shortest, and so
demonstrates the changes more clearly. Providing the large number of unaffected
function body lines from a more typical module would not provide extra insight.
The definitions of the preprocessor macros or meta-functions is not shown. The
two are of comparable lexical size, the meta-function has a higher token count
through the use of $ operators and meta-type names, but a lower token count
through the use of more appropriate facilities. The meta-functions are modular
through having fewer interdependencies than the preprocessor macros, and more
readable through the use of more conventional structuring and the elimination of
back-slash continuation lines.

The original preprocessor macros are almost completely eliminated. The
CUSTOM_RTTI support is provided automatically by derivation. The remaining 6
macros supporting smart pointers are all subsumed by
MapOfSmartPointerSpecialisations. Other meta-functions such as
Mutate just implement simple idioms.

Original interface file:

#ifndef ENTRY_HXX
#define ENTRY_HXX
#include <Burg.h>
#include <Id.hxx> // A smart string class
#include <Object.hxx>
#include <ReferenceCount.hxx>
#include <SmartPointer.H>

class Entry : public Object
{

CUSTOM_RTTI_WITH_1_BASE_DECLARATION(Entry, Object)
REFERENCE_COUNT_DECLARATION(Entry)
NULL_OBJECT_DECLARATION(Entry)

private:
const Burg& _burg;
const IdHandle _id; // Handle for a smart string

private:
Entry(const Entry&); // No copy
Entry& operator=(const Entry&); // No assign

protected:
Entry();
Entry(Burg& aBurg, const Id& anId);
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public:
const Burg& burg() const { return _burg; }
const Id& id() const { return *_id; }
virtual Term *is_term();
const Term *is_term() const

{ return ((Entry *)this)->is_term(); }
virtual void mark_reachable();
virtual ostream& print_this(ostream& s) const;

};
#endif

Original implementation file

#include <Entry.hxx>
#include <Burg.hxx>
#include <MapOfSmartPointer.H>

CUSTOM_RTTI_WITH_1_BASE_IMPLEMENTATION(Entry, Object)
REFERENCE_COUNT_IMPLEMENTATION(Entry)
NULL_OBJECT_IMPLEMENTATION(Entry)
SMART_POINTER_IMPLEMENTATION(Entry)
MAP_OF_SMART_POINTER_IMPLEMENTATION(Entry)

Entry::Entry()
: _burg(Burg::null_object()) {}

Entry::Entry(Burg& aBurg, const Id& anId)
: _burg(aBurg), _id(anId) { aBurg.add_entry(*this); }

Term *Entry::is_term() { return 0; }
void Entry::mark_reachable() {}
ostream& Entry::print_this(ostream& s) const { return s << _id; }

Revised FOG code, with use of FOG extensions italicised

using "Burg.fog"; // Improved form of #include.

class Entry : public Object
{

using/interface "Burg.h";// Need a #include <Burg.h>
$NoCopy(); // Section 7.1.2
$NoAssign(); // Section 7.1.2
$Mutate(); // Section 7.1.3

private:
const Burg& _burg = Burg::null_object();
const IdHandle _id;

protected:
!inline Entry() {} // Uses default initialiser value

public:
const Burg& burg() const { return _burg; }
const Id& id() const { return *_id; }
virtual Term *is_term() { return 0; }
const Term *is_term() const { return mutate().is_term(); }
virtual void mark_reachable() {}
virtual ostream& print_this(ostream& s) const

{ return s << _id; }
};

$MapOfSmartPointerSpecialisations(Entry);

protected Entry::Entry(Burg& aBurg, const Id& anId)
: _burg(aBurg), _id(anId) { aBurg.add_entry(*this); }
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7.6 Summary

We have shown a number of examples that steadily progress from apparently
trivial one-liners through usage of extended declarations and on to meta-
programming. We have concluded with an example that begins to show FOG in
use for a real application. The examples show that FOG can capture repeated
practice well and so avoid redundant source text and the consequent maintenance
risks. The final example highlights the modest proportion of real code that is
repetitive. FOG apparently does little to reduce the programming burden of
straight application code.

Unfortunately more extensive usage remains an area for further work. Many more
lines of code must be adapted to exploit FOG to determine how beneficial FOG is.
More programmers must use FOG to determine how easy FOG is to use and learn.
More usage is required to stress the enhanced syntax and identify areas in need
of revision. Extensive usage is needed to build up appropriate standard coding
styles and meta-library support. In the same way that C++ provides many
programming opportunities that were not available in C, FOG provides
opportunities not available in C++. Perhaps one of these opportunities may
identify a way of creating more compact abstractions for the straight application
code.
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0 8 Summary

The many achievements of FOG will now be reviewed before highlighting what
remains to be done, and the limitations upon what can sensibly be done. The
relevance to other languages will then be discussed before finally concluding with
a brief summary of how the problems with C++ described in the introduction have
been resolved.

Novelty

There are few ideas in software engineering that are totally new. Most are the
result of a revision or combination of prior work. The functionality of FOG
combines concepts from many areas, adapting them to fit the philosophical,
semantic and syntactic constraints of the C++ language. The combination is
certainly novel.

8.1 Parsing

8.1.1 Context-free syntactical C++ parsing

Processing C++ declarations before their semantics have been determined
necessitates context-free parsing. A clear distinction between syntax and
semantics is not normally made because C++ is perceived to be inherently
context-dependent requiring lexical, syntactic and semantic analyses to be tightly
coupled and consequently blurring the distinctions between these concepts. The
official “(informative)” grammar provides a mixture of lexical, syntactic and a few
semantic rules. The main body of the standard does not always distinguish
whether described constraints are syntactic or semantic. Tradition therefore
perpetuates the perception that parsing must be difficult.

FOG draws a pragmatic distinction between syntax and semantics. Syntax is what
can be analysed by an LALR(1) parser such as yacc. Semantics is what has to be
analysed later.

Examination of the C++ grammar shows that syntactic analysis without type
information causes only a minor ambiguity for expressions using casts. The
ambiguity is entirely deterministic and readily deferred for resolution at the post-
yacc semantic level.

Accurate syntactic analysis without template information is impossible. However,
an iteration through all alternatives of a template < / arithmetic < ambiguity can be
performed to determine a consistent, but not necessarily correct, syntactic
analysis. Instrumentation of practical programs shows that approximately 1% of
statements contain a template ambiguity, and that for approximately 1% of those
statements, the consistent parse is incorrect. A syntactically consistent parse is
therefore possible without template information, subject to the requirement that
the semantic processing must repair the incorrect parse for approximately 0.01%
of statements.

8.1.2 Back-tracking in yacc

LALR parsers such as yacc have no overt support for back-tracking unlike their LL
counterparts. Ambiguity problems that cannot be resolved within the grammar
need assistance from a separate lookahead parser. Implementation of back-
tracking within yacc, using the error token to rewind, proves to be fairly
straightforward enabling lookahead parsing to be performed within yacc. The
ambiguity between arithmetic and template interpretation of an < exploits this
back-tracking technique to perform a binary search to identify a syntactically
consistent parse.
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8.1.3 Superset grammar

Traditional C++ grammar implementations attempt to maximise the semantic
resolution of the yacc grammar, since this minimises subsequent coding. This is
also motivated by the need to incorporate a large amount of semantic intelligence
to resolve recursive declaration/expression ambiguities accurately.

Context-free parsing makes resolution of declaration/expression ambiguities
impossible. The ambiguity must be deferred for semantic resolution rather than
attempt to resolve it syntactically.

The superset FOG grammar recognises that the declaration/expression ambiguity
derives from the fundamental C language design: declarations should mimic their
usage in expressions. The ambiguity is therefore not a series of inconvenient
barriers to be surmounted, but rather a series of partially overlapping sub-
syntaxes. Generalisation of declaration and expression and a few other
productions are used to perform context-free parsing in the superset grammar.

8.1.4 Semantic analysis restricted to semantics

Removal of semantic considerations from the syntactic analysis considerably
simplifies the grammar, but requires additional semantic processing. However, this
processing is making the same decisions as before, but in the controlled context
of an AST rather than the difficult partial environment during parsing.

Appendix F.3.1.1 describes how the resolution of the declaration/expression and
related conflicts at the semantic level involves a straightforward but not quite trivial
dataflow algorithm propagating a bit-mask of satisfied semantic hypotheses from
the leaves of the AST to the root, where any residual ambiguity can be resolved
by applying the defined ambiguity resolution rules. The propagation makes use of
type information, tree structure and associated semantic constraints in
determining whether a hypothesis such as is-parameter-declaration is satisfied.

Deferring the ambiguity aids error diagnosis as well. An error during syntactic
processing indicates that the syntactic analysis has failed to understand the token
sequence and as a result an error recovery mechanism must be invoked to
resynchronize. Since analysis failed, it is often difficult to make a better error
diagnosis than “syntax error near line x”. The more general syntax to defer the
ambiguity accepts many sentences corresponding to simple typographical
programming errors with the result that the syntactical analysis does not lose
synchronisation, and so a more appropriate error diagnostic can be produced.

8.1.5 Extended regular expressions

Demonstrating that the superset grammar covered the existing syntax required
analysis of the C++ grammar. An extended form of regular expression was
introduced to describe sentences of C++ enabling the traditional ambiguities to be
deduced and the superset justified.

8.2 C++ Extensions

8.2.1 Meta-programming

Meta-programming has been introduced, and as a result the C preprocessor
rendered redundant, through the use of features that integrate with, rather than
conflict with, the language.

Meta-variables and meta-functions supplant object-like and function-like macros,
and benefit from the consistent availability of argument and return types and
definition within a class hierarchy.

Meta-statements replace conditionalisation, supporting loops as well.
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An invited substitution mechanism avoids the hazards of imposed substitution with
the preprocessor and provides a simple solution to the problem of lexical
concatenation.

8.2.2 Composition rather than One Definition Rule

The C++ One Definition Rule requires complete declarations to occur in a single
place. This prevents code being organised by algorithm rather than by data. FOG
eliminates this restriction so that multiple declarations are combined to give a
composite meaning. This supports weaving of declarations together for Aspect
Oriented Programming, or elaboration of declarations by meta-programming.

8.2.3 Minor extensions

Some minor enhancements to C++ are introduced to provide greater consistency
when declarations are composed.

8.2.4 Derivation rules

Derivation rules are perhaps just a little bit of syntactic sugar to simplify meta-
programming. However many realistic problems involve a policy that has to be
observed by classes within an inheritance hierarchy. This requirement is captured
directly by derivation rules. Related work on automatic generation of code appears
to concentrate more on resolution of composition conflicts.

8.2.5 Syntax macros

The illusion of a language extension can be created by a syntax macro, so that
users may introduce new keywords such as synchronised or persistent.

8.3 Detailed Language Issues

8.3.1 Scoped preprocessing

Macros and preprocessing are a neglected, perhaps scorned, field in software
engineering. Little work has been done and no work that considers macros within
the hierarchical context of C++. Resolution of macro-names within a prevailing
scope, with the consequent benefits that can accrue from isomorphism and
inheritance is new in FOG.

8.3.2 Deferred substitution

Resolution of names within the correct name-space at the correct-time is a
traditional concern of language designers and consequently programmers. The
functional argument (FUNARG) problem in Lisp demonstrates the problems of
avoiding name capture. The distinction between ‘ and & substitution operators in
VAX/VMS DCL show the need to control resolution time. FOG applies related
concepts to substitution within meta-programs through the $ and @ operators.

8.3.3 Polymorphic syntax

Syntax macros are traditionally syntax-driven: the known syntactical requirements
of the macro (a meta-function or meta-variable in FOG) are used to guide the
syntactic analysis. This introduces two semantic context-dependencies to the
syntactic analysis.

Exploiting the known syntactical requirements may require semantic analysis to
determine what is required by the particular usage. The superset grammar unifies
many C++ constructs and the approach is extended to define the tree-statement
production that encompasses almost the entire C++ grammar, enabling a syntax-
independent and consequently context-free parse of meta-function arguments and
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meta-variable initializers. Syntactic analysis of each meta-function and meta-
variable usage is therefore context-free in FOG.

Defining the macro in the first place requires semantic analysis of the definition,
albeit a degenerate semantic analysis such as the extra-lingual #define for the C
preprocessor. FOG also uses a syntax for syntax macro definitions for which a
premature semantic analysis can be activated during syntactical analysis.

Syntactic analysis of the use of a syntax macro requires dynamic changes to the
table of reserved words and a data-dependency upon the number but not type of
parameters.

This is only novel within the context of C++. In a language with a clean syntax a
generic parse should be trivial, but still worth implementing to remove context-
dependency.

8.3.4 Literal source

Meta-code surrounds ordinary statements and declarations so that there is no
need for special syntax or procedures to define source syntax literals.

The source syntax is its own literal (overlined).

auto statement switchBody = { default: return 0; };
auto switchBody += case 1: { flags++; return 1; };

There is no need for any insight into the structure of the internal ASTs or their
support functions.

The entire function body is returned:

auto declaration declare_pointer_classes(identifier aClass)
{

class $aClass;
typedef PointerTo<$aClass> ${aClass}Pointer;
typedef PointerTo<const $aClass> ${aClass}ConstPointer;

}

8.3.5 Potential and Actual

Meta-programming is traditionally practised in Smalltalk and Lisp-like languages,
where meta-programming occurs at run-time re-using functionality necessary to
establish an Object Oriented execution environment. More recently meta-
programming has been possible in Java at run-time and rather more interestingly
and uniquely at load-time.

Compile-time (or static) meta-programming is not widely used since it is only
available in research languages such as OpenC++ or MPC++. These languages
support programmed manipulation of the declaration pool.

Existing approaches therefore deal with actual declarations. FOG with its
syntactic support for source literals introduces the distinction between potential
declarations and actual declarations, allowing meta-programs to operate
consistently on declarations with determined or undetermined scopes.

8.4 Further Work

The first version of FOG currently available on the net used the multi-pass
grammar approach. The more stream-lined and efficient approach supported by
the superset grammar is also available, but requires considerable further
development.

FOG is currently written in C++ using a trivial custom preprocessor that just splits
interface and implementation from a single file and performs code synthesis only
for include files and their guards. The source code for FOG should be revised to
exploit FOG functionality, and thereby demonstrate and test the use of FOG more
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convincingly. A measurement of the lexical source size reduction should show how
beneficial FOG is for large programs with deep inheritance hierarchies.

C++ is a large language, which FOG should as a minimum parse and emit
unchanged. FOG has a useful degree of functionality in many areas, however
practical experience with interesting small examples tends to encounter
unimplemented or misimplemented functionality with respect to the current state
of the implementation.

Meta-library

Use in a diverse range of applications needs to be assessed and a meta-library of
common utilities developed.

Join discipline

The original multi-pass implementation did not analyze function bodies, and so
function body composition was performed by lexical concatenation without regard
to even syntactical validity. The full super-set parse, combined with the use of
token lists to maintain ASTs, can ensure semantic validity at the language level.
However the more challenging issue of establishing or enforcing programming
practices that ensure integrity of programming intent remains to be addressed.

Use of self-evident semantics at syntactical level

Section 4.2.3 identified the need for a possible variant of the $ trigger to allow the
known semantic type of the argument to be exploited.

Composition of exceptions

Section 4.4.8 identified a possible policy for composition of exception specifications
and function-try-blocks.

Meta-programming phases

Section 4.6 identified the inadequacy of the meta-construction, meta-main and
meta-destruction compilation stages.

Syntax macros

Section 4.7 described a partially implemented proposal for syntax macros, and
identified severe limitations for the case of multi-argument syntax macros.

Expression AST traversal

The built-in meta-functions described in this thesis support meta-programming of
declarations. Further meta-functions could be added to support meta-
programming of expressions thereby providing the ability to peek and poke in
arbitrary fashion just like OpenC++. Further research is needed to determine
whether it is merely necessary to support arbitrary user access, or whether a more
disciplined form of support can be identified.

8.5 Limitations

FOG operates as a translator to C++ and so necessarily precedes C++
compilation. FOG cannot operate on actual compilation results, only upon
predictions of those results. This has two consequences.

It is not guaranteed that FOG sees the final state of declarations. In a multi-
session compilation, a class may appear to be a leaf class in one session, but
further derived classes may exist in other sessions. Decisions predicated on leaf-
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ness will therefore be in error. A complete fix of this problem requires global
knowledge. Detection of the anomaly can be resolved as described in
Section 6.5.8 through the use of a checksum to express the non-global knowledge
of a meta-compilation session.

Template instantiation occurs during or after compilation. It is therefore difficult for
FOG to know which parameter combinations will be used, or to detect which
member functions will actually be required. In the general case where FOG is used
to prepare library code, FOG cannot know what the instantiations will be. It is
therefore impossible for meta-programs to manipulate template instantiations
usefully. Meta-programming in FOG is limited to manipulation of template
declarations.

Since templates create contexts in which FOG cannot know what type is in use,
and so restricts the amount of meta-programming that can be reliably performed.
This problem can only be resolved by integration of meta-compilation with normal
compilation, so that meta-compilation is performed on instantiated as well as
declared templates.

Syntax macros provide a limited mechanism for introducing language extensions,
however it is difficult to do better within the confines of the poorly structured C++
syntax.

Most programmers have an, at least initial, dislike of the compact and idiomatic
style of the C and C++ syntax. Experienced C and C++ programmers come to like
it. FOG adds further extensions in the style of C++ and so provides more to
confuse or dislike. It remains to be seen whether real programmers learn to find
the extensions acceptable and natural.

8.6 Other Languages

Although the work described in this thesis is primarily concerned with resolving
deficiencies in the use of C++, the work is of greater applicability, mainly to
languages that involve significant compilation activity such as Eiffel, Ada or Java.
Introduction of extra compilation stages is inappropriate for languages such as
Smalltalk or CLOS where object structure is defined at run-time.

The distinction between potential and actual declarations, the concept of
derivation rules and a flexible substitution based upon tree-literals combined with
a lexical concatenation are not specific to C++, although some of the detailed
syntactical issues are. Implementation of these concepts in other languages is
likely to be a little simpler, since few other modern languages have quite such a
challenging syntax as C++.

The observation that the One Definition Rule is a major hurdle to implementation
of patterns and Aspect Oriented Programming is again applicable to all languages.
Language designers should endeavour to support interleaved declarations.

Programming involves repetition at many levels, and programmers naturally seek
to factor the repetition into some parameterisable reusable construct, which may
be a loop, subroutine, class, template, macro, file or library. Omission of any of
these capabilities simplifies a language, but limits the programmer’s or the
program’s efficiency. Some form of macro to perform lexical processing and meta-
programming is therefore beneficial to all languages, although the precise syntax
must be carefully chosen to fit within the traditional style of each language.

8.7 Resolution of Goals

The introductory discussion highlighted problems that arise with C++. The way in
which these are resolved in FOG will be summarised.

Cpp should be replaced rather than eliminated.
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Object-like and function-like macros are replaced by meta-variables and meta-
functions.

Substitution by imposition is replaced by a substitution invited by $ or @.

## and # are replaced by adjacent lexical element concatenation.

Conditional processing is replaced by meta-programming.

Compile-time programming is necessary to configure declarations.
Introspection is useful for simple applications.
Reflection is almost essential for sophisticated applications.

Meta-programs can manipulate declarations.

Patterns and AOP require weaving.
The One Definition Rule must be circumvented.
Interleaved declarations should be allowed.

The One Definition Rule has been relaxed to allow declarations to be introduced
outside the confines of class braces. This supports interleaved declarations and
weaving within classes. Multiple contributions to the same declaration are
composed, supporting weaving of individual declarations.

Lexical redundancy should be eliminated.

The need for distinct interface and implementations has been removed.

Derived code can reuse inherited declarations.

Predictable code should be provided automatically.

Derivation rules support automatic generation of derived code.

Meta-programs can generate code for more specialised applications.

A concept should be instantiated by a single invocation.

Invocation of a meta-function can provide complete instantiation, exploiting
composition to inject code as appropriate.
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0 9 Glossary

9.1 Acronyms

AI Artificial Intelligence

ANSI American National Standards Institute

AO(P) Aspect-Oriented (Programming)

ARM Annotated Reference Manual [Ellis90]

AST Abstract Syntax Tree

BNF Backus-Naur Form

BURG Bottom-Up Rewrite Generator

CAD Computer Aided Design

CFG Context-Free Grammar

Cpp C preprocessor

CRC Cyclic Redundancy Check

DFA Deterministic Finite Automaton

DSP Digital Signal Processor/Processing

FFT Fast Fourier Transform

FOG Flexible Object Generator (in this thesis)
Fragmented Object Generator (in [Gourhant90])

GNU GNU is Not Unix

GoF Gang of Four book [Gamma95]

GP Generative Programming

GUI Graphical User Interface

LALR(k) Look-Ahead parsing based on Left-to-right scanning of the input, with
Right-most derivation in reverse, using k input symbols of lookahead.

LL(k) Parsing based on Left-to-right scanning of the input, with Left-most
derivation, using k input symbols of lookahead

LR(k) Parsing based on Left-to-right scanning of the input, with Right-most
derivation in reverse, using k input symbols of lookahead

MOP MetaObject Protocol

NFA Non-deterministic Finite Automaton

ODR One Definition Rule (§3.2)

OO(P) Object-Oriented (Programming)

RTTI Run-Time Type Information

SO(P) Subject-Oriented (Programming)

UML Unified Modeling Language

VLIW Very Long Instruction Word

yacc yet another compiler compiler
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9.2 Terms

grammar The composite syntactical definition of a language, comprising many
(production) rules and one distinguished non-terminal.

isomorphic Having the same shape. A set of classes that exhibit compatible
interfaces, usually for the purposes of satisfying the requirements of a
template parameter, are isomorphic. Isomorphic classes need not
share a common base class.

lexeme Synonym for terminal or token.

lexical analysis Analysis determining a lexeme or token from a source character
sequence.

meta- Prefix denoting reification of a run-time concept at compile-time.

base meta-class Meta-class from which another meta-class inherits.

meta-class Class that describes a class.

namespace The specific form of name-space established by a C++ namespace.

name-space Any context in which names may be resolved.

non-terminal (token) A term in a production rule defined by the left-hand side of one (or
more) production rules.

polymorphic Having many shapes. A class hierarchy should specialise a common
base class with respect to which the classes exhibit polymorphism.

production (rule) Rule describing the grammatical equivalence of a left-hand side non-
terminal with a sequence of right-hand side terminals and non-
terminals. Multiple rules sharing a common left-hand side are often
loosely referred to as a single production.

reduction (rule) Synonym for production (rule).

reflect(ion) Inspection and modification of a program by itself.

root class The least derived class in an inheritance hierarchy.

root scope The least derived scope associated with a derivation rule.

rule See production (rule).

semantic analysis Analysis determining whether a (syntactically valid) sentence satisfies
semantic constraints.

sentence A sequence of source tokens generally satisfying some syntax.

syntactical analysis Analysis determining whether and in what way a source sentence
satisfies a grammar.

syntax A specific subset of a grammar.

terminal (token) An element in a production rule directly corresponding to a product of
lexical analysis.

token See terminal.
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0 A FOG Grammar changes

This summary of the FOG syntax follows the example of Appendix A of the
[C++96] standard. It is intended to be an aid to comprehension, identifying all
changes in a way that is easily compared to C++. Completely unchanged grammar
productions are omitted, changed rules and terms are indicated by a strike-
through for removal and underline for addition.

A.1 Keywords

typedef-name:
identifier

namespace-name:
original-namespace-name
namespace-alias

original-namespace-name:
identifier

namespace-alias:
identifier

class-name:
identifier
template-id

enum-name:
identifier

template-name:
identifier

punctuation: one of
{ } [ ] ( ) ; : ? :: . .*

+ - * / % ^ & | ~ ! = < >

+= -= *= /= %= ^= &= |= <<=>>=

<< >> == != <= >= && || ++ -- , -> ->* ...

reserved-words are not identifiers.

reserved-word: one of
and and_eq asm auto
bitand bitor bool break
case catch char class
compl const const_cast continue
default delete do double
dynamic_cast else enum explicit
export extern false float
for friend goto if
inline int long mutable
namespace new not not_eq
operator or or_eq private
protected public register reinterpret_cast
return short signed sizeof
static static_cast struct switch
template this throw true
try typedef typeid typename
unsigned using virtual void
volatile wchar_t while xor
xor_eq

non-reserved-words are identifiers.

non-reserved-word: one of
derived emit entry exit
file frozen guard implementation
include interface noguard noimplementation
path pool post pre
prefix pure suffix utility

meta-type-names are reserved-words or identifiers.
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meta-type-name:
intrinsic-meta-type-name
actual-meta-type-name
potential-meta-type-name

intrinsic-meta-type-name: one of
array_modifier assignment_expression
character class_key
constant_expression cv_qualifier
decl_specifier declaration
expression function_modifier
handler identifier
initializer_clause iterator
keyword meta_type
modifier name
number pointer_modifier
punctuation reference_modifier
reserved scoped_modifier
statement string
template_argument token
tree_literal using_directive

potential-meta-type-name: one of
base_specifier built_in_type_specifier
class_specifier elaborated_type_specifier
enum_specifier file_dependency_specifier
file_placement_specifier enumerator_definition
exception_specification filespace_specifier
function_specifier linkage_specification
meta_class_specifier meta_function_specifier
meta_parameter_specifier meta_variable_specifier
namespace_definition namespace_alias_definition
object_specifier object_statement
parameter_specifier scope_specifier
specifier template_parameter_specifier
templated_parameter_specifier type_parameter_specifier
type_specifier typedef_specifier
using_declaration value_parameter_specifier
variable_specifier

actual-meta-type-name: one of // 1

base built_in
class entity
enum enumerator
exception filespace
function linkage
meta_class meta_function
meta_parameter meta_variable
namespace namespace_alias
object parameter
scope struct
template_parameter type
typedef typename
union using
variable

A.2 Lexical conventions

A.2.1 Phase 6 Concatenation Grammar

text-literalpp:
character-literalpp
identifierpp // Including all reserved words
number-literalpp
string-literalpp
tree-literalpp // a $ or @ expression

character-literalcat:
character-literalpp
character-literalcat text-literalpp

1. Some meta-type names are also reserved words. The usage as a meta-type name
augments usage as a reserved word.
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identifiercat:
identifierpp
identifiercat text-literalpp

number-literalcat:
number-literalpp
number-literalcat text-literalpp

string-literalcat:
string-literalpp
string-literalcat text-literalpp
string-literalcat whitespaceopt string-literalpp

tree-literalcat:
tree-literalpp
tree-literalcat text-literalpp

‘anything-else’cat:
‘anything-else’pp

tree-literalpp:
at-literal
dollar-literal
syntax-macro-literal // See Section 4.7

at-literal:
@ tree-expression
@ { tree-expression }

dollar-literal:
$ tree-expression
$ { tree-expression }
$ dollar-literal

A.2.2 Phase 7 Tokenization Grammar

‘discard’: // Token is discarded
whitespace

‘reserved-word’:
identifiercat // If identifiercat is a reserved word

‘punctuation’:
‘punctuation’pp

character-literal:
character-literalcat

floating-literal:
number-literalcat // If number-literalcat is floating point

integer-literal:
number-literalcat // If number-literalcat is fixed point

string-literal:
string-literalcat

meta-type-name: // If identifiercat is a meta-type name
identifiercat // (and not a reserved word)

‘non-reserved-word’:
identifiercat // If identifiercat is a non-reserved word

identifier:
other-identifier:

identifiercat // If identifiercat is anything else

tree-literal:
tree-literalcat
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A.3 Basic concepts

A.4 Expressions

identifier:
other-identifier
meta-type-name
non-reserved-word
tree-literal

id:
identifier
identifier < template-argument-list > // 2

template identifier < template-argument-list >

nested-id:
id
id :: nested-id

scoped-id:
::opt nested-id

special-function-id:
~ id
conversion-function-id
operator-function-id

nested-special-function-id:
special-function-id
id :: nested-function-special-id

scoped-special-function-id:
::opt nested-special-function-id

primary-expression:
literal
this
:: identifier
:: operator-function-id
:: qualified-id
( expression )
id-expression
declarator-id

A.5 Statements

statement:
control-statement
expression-statement
compound-statement
declaration-statement
try-block
auto control-statement
auto meta-expression-statement

control-statement: // 3

labeled-statement
selection-statement
iteration-statement
jump-statement

2. Resolution of the identifier < context-dependency is discussed in Section 5.8.2.

3. New non-terminal but no changed functionality
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A.6 Declarations

declaration:
block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition
namespace-declaration
accessibility-specifier
compound-declaration
meta-control-declaration
auto meta-control-declaration
meta-expression-statement
auto meta-expression-statement
auto meta-class-declaration
auto meta-function-definition
auto meta-variable-declaration
syntax-macro-definition
include-declaration
file-dependency-declaration
file-placement-declaration
filespace-declaration

block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration // 4

using-directive

compound-declaration:
{ declaration-seqopt }

simple-declaration:
decl-specifier-seqopt init-declarator-listopt ;

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef
access-specifier
using

storage-class-specifier:
auto // 5

register
static
extern
mutable

static: // 3

static
! static

function-specifier:
inline
! inline
inline / implementation
inline / interface
virtual
! virtual
virtual / pure
explicit

4. using-declaration is generalised and covered by simple-declaration

5. Compatibility can be retained by allowing auto within a function-body.
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type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
cv-qualifier

simple-type-specifier:
::opt nested-name-specifieropt type-name scoped-id
built-in-type-specifier // 6

built-in-type-specifier:
char
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

elaborated-type-specifier:
class-key ::opt nested-name-specifieropt identifier scoped-id
enum ::opt nested-name-specifieropt identifier scoped-id
typename ::opt nested-name-specifieropt identifier scoped-id
typename ::opt nested-name-specifieropt identifier < template-argument-list >

enum-specifier:
enum identifieropt scoped-idopt { enumerator-listopt }

namespace-declaration:
namespace scoped-id ;

namespace-definition:
named-namespace-definition
unnamed-namespace-definition
namespace scoped-idopt { namespace-body }

named-namespace-definition:
original-namespace-definition
extension-namespace-definition

original-namespace-definition:
namespace identifier { namespace-body }

extension-namespace-definition:
namespace original-namespace-name { namespace-body }

unnamed-namespace-definition:
namespace { namespace-body }

using-declaration: // 4

using typenameopt ::opt nested-name-specifier unqualified-id ;
using :: unqualified-id ;

linkage-specification:
extern string-literal { declaration-seqopt }
extern string-literal declaration

A.7 Declarators

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

6. The built-in types are split off to a distinct non-terminal.
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init-declarator: // 7

declarator pure-specifieropt object-statements-clauseopt
declarator initializeropt object-statements-clauseopt
identifieropt : constant-expression object-statements-clauseopt

cv-qualifier:
const
volatile

declarator-id:
::opt id-expression
::opt nested-name-specifieropt type-name
scoped-id
scoped-special-function-id

function-definition:
decl-specifier-seqopt declarator pure-specifieropt ctor-initializeropt function-body
decl-specifier-seqopt declarator pure-specifieropt function-try-block

initializer:
= initializer-clause
( expression-list )

initializer-clause:
assignment-expression
[ constant-expression ] assignment-expression
{ initializer-list ,opt }
{ }

A.8 Classes

class-head:
class-key identifieropt scoped-idopt base-clauseopt
class-key nested-name-specifier identifier base-clauseopt

class-specifier:
class-head { member-specificationopt declaration-seqopt }

accessibility-specifier:
access-specifier :

member-specification:
member-declaration member-specificationopt
access-specifier : member-specificationopt

member-declaration:
decl-specifier-seqopt member-declarator-listopt ;
function-definition ;opt
qualified-id ;
using-declaration
template-declaration

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator: // 7

declarator pure-specifieropt
declarator constant-initializeropt
identifieropt : constant-expression

pure-specifier:
= 0

constant-initializer:
= constant-expression

7. The distinction between init-declarator and member-declarator is removed. The ambigu-
ity of a bit-field with a labeled-statement is resolved to the label.
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A.9 Derived Classes

base-specifier:
::opt nested-name-specifieropt class-name
virtual access-specifieropt ::opt nested-name-specifieropt class-name
access-specifier virtualopt ::opt nested-name-specifieropt class-name
scoped-id
built-in-type-id
virtual base-specifier // 8

! virtual base-specifier
access-specifier base-specifier // 8

auto base-specifier

built-in-type-id:
built-in-type-specifier
built-in-type-id built-in-type-specifier

A.10 Special member functions

mem-initializer-id:
::opt nested-name-specifieropt class-name
identifier
scoped-id

A.11 Overloading

A.12 Templates

template-declaration:
exportopt usingopt template < template-parameter-list > declaration

explicit-specialization:
usingopt template < > declaration

A.13 Exception Handling

A.14 Tree Literals

primary-tree-expression:
meta-scoped-id
( tree-expression )

postfix-tree-expression:
primary-tree-expression
postfix-tree-expression ( tree-argument-listopt )
postfix-tree-expression [ expression ]
postfix-tree-expression . scoped-id
postfix-tree-expression -> scoped-id

tree-expression:
postfix-tree-expression
* tree-expression

tree-argument-list:
tree-argument // 9

tree-argument-list , tree-argument

tree-argument:
tree-statement
unterminated-tree-argument

tree-statement:
terminated-tree-argument
unterminated-tree-argumentopt ;

compound-tree-statement: // 10

{ tree-statement-seqopt }

8. A more general rather than changed syntax.

9. Ambiguities are resolved semantically by left to right maximisation of the length of
each tree-argument with respect to its required syntax.
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tree-statement-seq:
tree-statement
tree-statement-seq tree-statement

terminated-tree-argument: // 11

asm-definition
compound-tree-statement
control-statement
declaration-statement
explicit-instantiation
explicit-specialization
expression-statement
file-dependency-declaration
file-placement-declaration
filespace-declaration
function-definition
include-declaration
linkage-specification
namespace-alias-definition
namespace-declaration
namespace-definition
template-declaration
using-declaration
using-directive
auto meta-class-declaration
auto meta-control-declaration
auto meta-expression-statement
auto meta-function-definition
auto meta-variable-declaration

unterminated-tree-argument: // 11

access-specifier
accessibility-specifier
base-specifier
built-in-type-id
class-specifier
condition
cv-qualifier
decl-specifier
enum-specifier
enumerator-definition
expression
filespace-specifier
function-try-block
handler-seq
initializer-clause
mem-initializer
parameter-declaration
reserved-word // 12

simple-type-parameter
storage-class-specifier
template-argument
template-parameter
type-parameter
auto meta-class-specifier

A.15 Object statements

object-statements-clause:
: { object-statement-seqopt }

10. An ambiguity arising from a try-block at the end of a statement followed by a handler-
seq is resolved by maximising the length of the left-hand (try-block) element.

11. The presentation of these productions has huge ambiguities. They demonstrate
some of the variety of C++ grammar that can be parsed in a context-free fashion.
Very little cannot be. See Appendix C for an actual implementation that avoids the
ambiguities.

12. do; is presumed to start an iteration-statement. operator, is presumed to be a de-
clarator-id.
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object-statement-seq:
object-statement
object-statement-seqopt object-statement

object-statement:
;
initializer ;
function-used-block
file-dependency-declaration
file-placement-declaration
filespace-declaration
meta-control-declaration
auto meta-control-declaration
auto meta-expression-statement
auto meta-function-definition
auto meta-variable-declaration
derived-clause object-statement
derived-clause : { object-statement-seqopt }

function-used-block:
ctor-initializer ;
ctor-initializeropt function-body
function-try-block
using file-id-list function-used-block
segment function-used-block

segment:
entry
pre
body
post
exit

derived-clause:
derived ( meta-conditional-expression )

A.16 Meta-Programming

A.16.1 Meta-names

meta-id:
id
meta-type
auto

meta-nested-id:
meta-id
~ meta-id
meta-id :: meta-nested-id

meta-scoped-id:
::opt meta-nested-id

A.16.2 Meta-classes

meta-class-id:
meta-id
meta-id :: meta-class-id

meta-class-specifier:
meta-class-key meta-class-id
meta-class-key meta-class-id base-specifier-clauseopt { declaration-seqopt }

meta-class-declaration:
meta-class-specifier ;

meta-class-key:
class-key
namespace
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A.16.3 Meta-types

meta-type:
meta-type-name
built-in-type-id
meta-class-key
enum
typedef
typename
using

exposed-tree:
[ ]

A.16.4 Meta-variables

meta-variable-declaration:
staticopt constopt meta-type meta-scoped-id exposed-treeopt = tree-statement
staticopt constopt meta-type meta-scoped-id exposed-treeopt object-statements-clause
staticopt constopt meta-type ( meta-scoped-id ) exposed-treeopt = tree-statement
staticopt constopt meta-type ( meta-scoped-id ) exposed-treeopt object-statements-clause

A.16.5 Meta-functions, Meta-constructors and Meta-destructors

meta-nested-constructor-id:
meta-id
meta-id :: meta-nested-constructor-id

meta-scoped-constructor-id:
::opt meta-nested-constructor-id

meta-nested-destructor-id:
~ meta-id
meta-id :: meta-nested-destructor-id

meta-scoped-destructor-id:
::opt meta-nested-destructor-id

meta-function-definition:
staticopt t meta-type meta-scoped-id ( meta-parameter-listopt ) exposed-treeopt

compound-tree-statement
staticopt tmeta-type meta-scoped-id ( meta-parameter-listopt ) exposed-treeopt

object-statements-clause
meta-scoped-constructor-id ( ) compound-tree-statement
meta-scoped-constructor-id ( ) object-statements-clause
meta-scoped-destructor-id ( ) compound-tree-statement
meta-scoped-destructor-id ( ) object-statements-clause

meta-parameter-list:
meta-parameter
meta-parameter-list , meta-parameter

meta-parameter:
meta-type identifier exposed-treeopt
meta-type identifier exposed-treeopt = tree-argument

A.16.6 Meta-statements

meta-control-declaration:
case constant-expression : declaration
default : declaration
do declaration while ( expression ) ;
for ( for-init-statement conditionopt ; expressionopt ) declaration
if ( condition ) declaration
if ( condition ) declaration else declaration
switch ( expression ) declaration
while ( condition ) declaration
jump-statement
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A.16.7 Meta-expressions

meta-primary-expression:
literal
this
meta-scoped-id
meta-type meta-nested-id
( tree-argument-listopt )

meta-postfix-expression:
meta-primary-expression
meta-postfix-expression ( tree-argument-listopt )
meta-postfix-expression [ expressionopt ]
meta-postfix-expression . declarator-id
meta-postfix-expression -> declarator-id
meta-postfix-expression ++
meta-postfix-expression --

meta-unary-expression:
meta-postfix-expression
++ meta-unary-expression
-- meta-unary-expression
* meta-unary-expression
+ meta-unary-expression
- meta-unary-expression
! meta-unary-expression
~ meta-unary-expression
sizeof unary-expression

meta-multiplicative-expression:
meta-unary-expression
meta-multiplicative-expression * meta-unary-expression
meta-multiplicative-expression / meta-unary-expression
meta-multiplicative-expression % meta-unary-expression

meta-additive-expression:
meta-multiplicative-expression
meta-additive-expression + meta-multiplicative-expression
meta-additive-expression - meta-multiplicative-expression

meta-shift-expression:
meta-additive-expression
meta-shift-expression << meta-additive-expression
meta-shift-expression >> meta-additive-expression

meta-relational-expression:
meta-shift-expression
meta-relational-expression < meta-shift-expression
meta-relational-expression > meta-shift-expression
meta-relational-expression <= meta-shift-expression
meta-relational-expression >= meta-shift-expression

meta-equality-expression:
meta-relational-expression
meta-equality-expression == meta-relational-expression
meta-equality-expression != meta-relational-expression

meta-and-expression:
meta-equality-expression
meta-and-expression & meta-equality-expression

meta-exclusive-or-expression:
meta-and-expression
meta-exclusive-or-expression ^ meta-and-expression

meta-inclusive-or-expression:
meta-exclusive-or-expression
meta-inclusive-or-expression | meta-exclusive-or-expression

meta-logical-and-expression:
meta-inclusive-or-expression
meta-logical-and-expression && meta-inclusive-or-expression

meta-logical-or-expression:
meta-logical-and-expression
meta-logical-or-expression || meta-logical-and-expression

meta-conditional-expression:
meta-logical-or-expression
meta-logical-or-expression ? meta-conditional-expression : meta-conditional-expression
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meta-expression-statement:
meta-conditional-expression ;
meta-logical-or-expression assignment-operator tree-statement

A.17 Syntax macros

syntax-macro-definition:
explicit auto meta-type identifier ( syntax-macro-parameter-listopt ) exposed-treeopt

compound-tree-statement

syntax-macro-parameter-list:
syntax-macro-parameter
syntax-macro-parameter-list , syntax-macro-parameter

syntax-macro-parameter:
meta-type identifier exposed-treeopt
identifier
reserved-word
punctuation

A.18 Files

string-expression:
string-literal
tree-literal

include-declaration:
using slash-includeopt slash-utilityopt string-expression ;

slash-include:
/ include

slash-utility:
/ utility

utility:
emit
pool
utility
frozen

file-dependency-declaration:
using / implementation =opt file-specifier ;
using / interface =opt file-specifier ;

file-placement-declaration:
export / implementation =opt file-specifier ;
export / interface =opt file-specifier ;
export / noimplementation ;
export / utility ;

file-specifier:
file-name
file-entity
file-entity / implementation
file-entity / interface

file-name:
string-literal
file-name / interface
file-name / implementation
file-name / template
file-name / utility
file-name / guard = string-expression
file-name / noguard
file-name / path = string-expression
file-name / prefix = string-expression
file-name / suffix = string-expression

file-entity:
declarator-id
elaborated-type-specifier
namespace scoped-id

filespace-specifier:
namespace / file file-name compound-declaration
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filespace-declaration:
filespace-specifier ;
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B C++ Grammar

The complete C++ grammar implemented using the superset approach outlined
for FOG is presented in this appendix.

The presented grammar has been derived automatically from FogParser.y by a
sed script to

• remove FOG specific grammar

• remove irrelevant action rules

• simplify relevant action rules

• remove implementation specific $ clutter

The resulting text is acceptable to yacc and has 0 unresolved conflicts.

It is available from

http://www.ee.surrey.ac.uk/Research/CSRG/fog/CxxGrammar.y



M
e

ta
-co

m
p

ila
tio

n
 fo

r C
+

+
C

+
+

 G
ra

m
m

a
r

P
a

g
e

 2
9

4
M

a
rch

 4
, 2

0
0

2

/* This is a yacc-able parser for the entire ISO C++ grammar with no unresolved conflicts. */
/* The parse is SYNTACTICALLY consistent and requires no template or type name assistance.
 * The grammar in the C++ standard notes that its grammar is a superset of the true
 * grammar requiring semantic constraints to resolve ambiguities. This grammar is a really big
 * superset unifying expressions and declarations, eliminating the type/non-type distinction,
 * and iterating to find a consistent solution to the template/arith,metoic < ambiguity.
 * As a result the grammar is much simpler, but requires the missing semantic constraints to be
 * performed in a subsequent semantic pass, which is of course where they belong. This grammar will
 * support conversion of C++ tokens into an Abstract Syntax Tree. A lot of further work is required to
 * make that tree useful.
 *
 * The principles behind this grammar are described in my thesis on Meta-Compilation for C++, which
 * may be found via http://www.computing.surrey.ac.uk/research/dsrg/fog/FogThesis.html.
 *
 *  Author:         E.D.Willink             Ed.Willink@rrl.co.uk
 *  Date:           15-Jun-2001
 */
/*
 * The lexer (and/or a preprocessor) is expected to identify the following
 *
 *  Punctuation:
 */
%type <keyword> ‘+’ ‘-’ ‘*’ ‘/’ ‘%’ ‘^’ ‘&’ ‘|’ ‘~’ ‘!’ ‘<‘  ‘>’ ‘=’ ‘:’ ‘[‘ ‘]’ ‘{‘ ‘}’ ‘(‘ ‘)’
%type <keyword> ‘?’ ‘.’ ‘\’’ ‘\”’ ‘\\’ ‘@’ ‘$’ ‘;’ ‘,’
/*
 *  Punctuation sequences
 */
%term <keyword> ARROW ARROW_STAR DEC EQ GE INC LE LOG_AND LOG_OR NE SHL SHR
%term <keyword> ASS_ADD ASS_AND ASS_DIV ASS_MOD ASS_MUL ASS_OR ASS_SHL ASS_SHR ASS_SUB ASS_XOR
%term <keyword> DOT_STAR ELLIPSIS SCOPE
/*
 *  Reserved words
 */
%term <access_specifier> PRIVATE PROTECTED PUBLIC
%term <built_in_id> BOOL CHAR DOUBLE FLOAT INT LONG SHORT SIGNED UNSIGNED VOID WCHAR_T
%term <class_key> CLASS ENUM NAMESPACE STRUCT TYPENAME UNION
%term <cv_qualifiers> CONST VOLATILE
%term <decl_specifier_id> AUTO EXPLICIT EXPORT EXTERN FRIEND INLINE MUTABLE REGISTER STATIC TEMPLATE TYPEDEF USING VIRTUAL
%term <keyword> ASM BREAK CASE CATCH CONST_CAST CONTINUE DEFAULT DELETE DO DYNAMIC_CAST
%term <keyword> ELSE FALSE FOR GOTO IF NEW OPERATOR REINTERPRET_CAST RETURN
%term <keyword> SIZEOF STATIC_CAST SWITCH THIS THROW TRUE TRY TYPEID WHILE
/*
 *  Parametric values.
 */
%term <character_literal> CharacterLiteral
%term <floating_literal> FloatingLiteral
%term <identifier> Identifier
%term <integer_literal> IntegerLiteral
%term <number_literal> NumberLiteral
%term <string_literal> StringLiteral
/*
 *  The lexer need not treat ‘0’ as distinct from IntegerLiteral in the hope that pure-specifier can
 *  be distinguished, It isn’t. Semantic rescue from = constant-expression is necessary.
 *
 *  The lexer is not required to distinguish template or type names, although a slight simplification to the
 *  grammar and elaboration of the action rules could make good use of template name information.
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 *
 *  In return for not needing to use semantic information, the lexer must support back-tracking, which
 *  is easily achieved by a simple linear buffer, a reference implementation of which may be found in the
 *  accompanying CxxParsing.cxx. Back-tracking is used to support:
 *
 *  Binary search for a consistent parse of the template/arithmetic ambiguity.
 *      start_search() initialises the search
 *      advance_search() iterates the search
 *      end_search() cleans up after a search
 *      template_test() maintains context during a search
 *
 *  Lookahead to resolve the inheritance/anonymous bit-field similarity
 *      mark() saves the starting context
 *      unmark() pops it
 *      rewind_colon() restores the context and forces the missing :
 *
 *  Lookahead to resolve type 1 function parameter ambiguities
 *      mark_type1() potentially marks the starting position
 *      mark() marks the pre { position
 *      remark() rewinds to the starting position
 *      unmark() pops the starting position
 *
 *  Note that lookaheads may nest.
 */

/*
 *  The parsing philosophy is unusual. The major ambiguities are resolved by creating a unified superset
 *  grammar rather than non-overlapping subgrammars. Thus the grammar for parameter-declaration covers an
 *  assignment-expression. Minor ambiguities whose resolution by supersetting would create more
 *  ambiguities are resolved the normal way with partitioned subgrammars.
 *  This eliminates the traditional expression/declaration and constructor/parenthesised declarator
 *  ambiguities at the syntactic level. A subsequent semantic level has to sort the problems out.
 *  The generality introduces four bogus ambiguities and defers the cast ambiguity for resolution
 *  once semantic information is available.
 *
 *  The C++ grammar comprises 561 rules and uses 897 states in yacc, with 0 unresolved conflicts.
 *  23 conflicts from 10 ambiguities are resolved by 8 %prec’s, so that yacc and bison report 0 conflicts.
 *
 *  The ambiguities are:
 *  1) dangling else resolved to inner-most if
 *      1 conflict in 1 state on else
 *  2) < as start-template or less-than
 *      1 conflict in 1 states on <
 *  3) a :: b :: c resolved to favour a::b::c rather than a::b ::c or a ::b::c
 *      1 conflicts in 1 state for ::
 *  4) pointer operators maximised at end of conversion id/new in preference to binary operators
 *      2 conflicts in 4 states on * and &
 *  5a) (a)@b resolved to favour binary a@b rather than cast unary (a)(@b)
 *  5b) (a)(b) resolved to favour cast rather than call
 *      8 conflicts in 1 state for the 8 prefix operators: 6 unaries and ( and [.
 *  6) enum name { resolved to enum-specifier rather than function
 *      1 conflict in 1 state on {
 *  7) class name { resolved to class-specifier rather than function
 *      1 conflict in 1 state on {
 *  8) extern “C” resolved to linkage-specification rather than declaration
 *      1 conflict in 1 state on StringLiteral



M
e

ta
-co

m
p

ila
tio

n
 fo

r C
+

+
C

+
+

 G
ra

m
m

a
r

P
a

g
e

 2
9

6
M

a
rch

 4
, 2

0
0

2

 *  9) class X : forced to go through base-clause look-ahead
 *      1 conflict in 1 state on :
 *  10) id : forced to label_statement rather than constructor_head
 *      0 conflicts - but causes a double state for 2)
 *  of which
 *      1 is a fundamental C conflict - always correctly resolved
 *          can be removed - see the Java spec
 *      2, 3, 4 are fundamental C++ conflicts
 *          2 always consistently resolved by iteration
 *          3 always correctly resolved
 *          4 always correctly resolved
 *      5 is a result of not using type information - deferred for semantic repair
 *      6,7 are caused by parsing over-generous superset - always correctly resolved
 *      8 is caused by parsing over-generous superset - always correctly resolved
 *          can be removed at the expense of 7 rules and 5 states.
 *      9 is a look-ahead trick - always correctly resolved
 *          could be removed by marking one token sooner
 *      10 is caused by parsing over-generous superset - always correctly resolved
 *
 *  The hard problem of distinguishing
 *      class A { class B : C, D, E {           -- A::B privately inherits C, D and E
 *      class A { class B : C, D, E ;           -- C is width of anon bit-field
 *  is resolved by using a lookahead that assumes inheritance and rewinds for the bit-field.
 *
 *  The potential shift-reduce conflict on > is resolved by flattening part of the expression grammar
 *  to know when the next > is template end or arithmetic >.
 *
 *  The grammar is SYNTACTICALLY context-free with respect to type. No semantic assistance is required
 *  during syntactic analysis. However the cast ambiguity is deferred and must be recovered
 *  after syntactic analysis of a statement has completed.
 *
 *  The grammar is SYNTACTICALLY context-free with respect to template-names. This is achieved by
 *  organising a binary search over all possible template/arithmetic ambiguities with respect to
 *  the enclosing statement. This is potentially exponentially inefficient but well-behaved in practice.
 *  Approximately 1% of statements trigger a search and approximately 1% of those are misparsed,
 *  requiring the semantic analysis to check and correct once template information is available.
 *  1.5 parse attempts are required on average per ambiguous statement.
 *
 *  The grammar supports type I function declarations at severe impediment to efficiency. A lookahead
 *  has to be performed after almost every non-statement close parenthesis. A one-line plus corollary
 *  change to postfix_expression is commented and strongly recommended to make this grammar as
 *  efficient as the rather large number of reduction levels permits.
 *
 *  Error recovery occurs mostly at the statement/declaration level. Recovery also occurs at
 *  the list-element level where this poses no hazard to statement/declaration level recovery.
 *  Note that since error propagation interacts with the lookaheads for template iteration or
 *  type 1 function arguments, introduction of finer grained error recovery may repair a false
 *  parse and so cause a misparse.
 *
 *  The following syntactic analysis errors occur, but are correctable semantically:
 *  (cast)unary-op expr         is parsed as (parenthesised)binary-op expr
 *      The semantic test should look for a binary/call with a (type) as its left child.
 *  (parenthesised)(arguments)  is parsed as (cast)(parenthesised)
 *      The semantic test should look for a cast with a non-type as its left child.
 *  template < and arithmetic < may be cross-parsed (unless semnatic help is provided)
 *      approximately 0.01% are misparsed, and must be sorted out - not easy.
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 *
 *  The syntactic analysis defers the following ambiguities for semantic resolution:
 *  declaration/expression is parsed as a unified concept
 *      Use type and context to complete the parse.
 *  ~class-name                 is parsed as unary~ name
 *      The semantic test should look for ~ with a type as its child.
 *  delete[] expr               is parsed as delete []expr
 *      The semantic test should look for delete with a [] cast of its child.
 *  operator new/delete[]       are parsed as array of operator new/delete
 *      The semantic test should look for array of operator new/delete
 *      or activate the two extra commented rules in operator
 *  template of an explicit_instantiation is buried deep in the tree
 *      dig it out
 *  pure-specifier and constant-initializer are covered by assignment-expression
 *      just another of the deferred declaration/expression ambiguities
 *  sizeof and typeid don’t distinguish type/value syntaxes
 *      probably makes life polymorphically easier
 */
%nonassoc SHIFT_THERE
%nonassoc SCOPE ELSE INC DEC ‘+’ ‘-’ ‘*’ ‘&’ ‘[‘ ‘{‘ ‘<‘ ‘:’ StringLiteral
%nonassoc REDUCE_HERE_MOSTLY
%nonassoc ‘(‘
/*%nonassoc REDUCE_HERE */

%start translation_unit
%%

/*
 *  The %prec resolves a conflict in identifier_word : which is forced to be a shift of a label for
 *  a labeled-statement rather than a reduction for the name of a bit-field or generalised constructor.
 *  This is pretty dubious syntactically but correct for all semantic possibilities.
 *  The shift is only activated when the ambiguity exists at the start of a statement. In this context
 *  a bit-field declaration or constructor definition are not allowed.
 */
identifier_word:                    Identifier
identifier:                         identifier_word                     %prec SHIFT_THERE
/*
 *  The %prec resolves the 14.2-3 ambiguity:
 *  Identifier ‘<‘ is forced to go through the is-it-a-template-name test
 *  All names absorb TEMPLATE with the name, so that no template_test is performed for them.
 *  This requires all potential declarations within an expression to perpetuate this policy
 *  and thereby guarantee the ultimate coverage of explicit_instantiation.
 */
id:                                 identifier                          %prec SHIFT_THERE       /* Force < through test */
    |                               identifier template_test ‘+’ template_argument_list ‘>’
    |                               identifier template_test ‘+’ ‘>’                            { ERRMSG(“Empty template-argument-list”); }
    |                               identifier template_test ‘-’                                /* requeued < follows */
    |                               template_id
template_test:                      ‘<‘             /* Queue ‘+’ or ‘-’ < as follow on */       { template_test(); }
global_scope:                       SCOPE                                                       { IS_DEFAULT; }
    |                               TEMPLATE global_scope                                       { IS_TEMPLATE; }
id_scope:                           id SCOPE
/*
 *  A :: B :: C; is ambiguous How much is type and how much name ?
 *  The %prec maximises the (type) length which is the 7.1-2 semantic constraint.
 */
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nested_id:                          id                                  %prec SHIFT_THERE       /* Maximise length */
    |                               id_scope nested_id
scoped_id:                          nested_id
    |                               global_scope nested_id

/*
 *  destructor_id has to be held back to avoid a conflict with a one’s complement as per 5.3.1-9,
 *  It gets put back only when scoped or in a declarator_id, which is only used as an explicit member name.
 *  Declarations of an unscoped destructor are always parsed as a one’s complement.
 */
destructor_id:                      ‘~’ id
    |                               TEMPLATE destructor_id
special_function_id:                conversion_function_id
    |                               operator_function_id
    |                               TEMPLATE special_function_id
nested_special_function_id:         special_function_id
    |                               id_scope destructor_id
    |                               id_scope nested_special_function_id
scoped_special_function_id:         nested_special_function_id
    |                               global_scope nested_special_function_id

/* declarator-id is all names in all scopes, except reserved words */
declarator_id:                      scoped_id
    |                               scoped_special_function_id
    |                               destructor_id

/*  The standard defines pseudo-destructors in terms of type-name, which is class/enum/typedef, of which
 *  class-name is covered by a normal destructor. pseudo-destructors are supposed to support ~int() in
 *  templates, so the grammar here covers built-in names. Other names are covered by the lack of
 *  identifier/type discrimination.
 */
built_in_type_id:                   built_in_type_specifier
    |                               built_in_type_id built_in_type_specifier
pseudo_destructor_id:               built_in_type_id SCOPE ‘~’ built_in_type_id
    |                               ‘~’ built_in_type_id
    |                               TEMPLATE pseudo_destructor_id
nested_pseudo_destructor_id:        pseudo_destructor_id
    |                               id_scope nested_pseudo_destructor_id
scoped_pseudo_destructor_id:        nested_pseudo_destructor_id
    |                               global_scope scoped_pseudo_destructor_id

/*---------------------------------------------------------------------------------------------------
 * A.2 Lexical conventions
 *---------------------------------------------------------------------------------------------------*/
/*
 *  String concatenation is a phase 6, not phase 7 activity so does not really belong in the grammar.
 *  However it may be convenient to have it here to make this grammar fully functional.
 *  Unfortunately it introduces a conflict with the generalised parsing of extern “C” which
 *  is correctly resolved to maximise the string length as the token source should do anyway.
 */
string:                             StringLiteral
/*string:                           StringLiteral                           %prec SHIFT_THERE */
/*  |                               StringLiteral string  -- Perverse order avoids conflicts -- */
literal:                            IntegerLiteral
    |                               CharacterLiteral
    |                               FloatingLiteral
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    |                               string
    |                               boolean_literal
boolean_literal:                    FALSE
    |                               TRUE

/*---------------------------------------------------------------------------------------------------
 * A.3 Basic concepts
 *---------------------------------------------------------------------------------------------------*/
translation_unit:                   declaration_seq.opt

/*---------------------------------------------------------------------------------------------------
 * A.4 Expressions
 *---------------------------------------------------------------------------------------------------
 *  primary_expression covers an arbitrary sequence of all names with the exception of an unscoped destructor,
 *  which is parsed as its unary expression which is the correct disambiguation (when ambiguous).
 *  This eliminates the traditional A(B) meaning A B ambiguity, since we never have to tack an A onto
 *  the front of something that might start with (. The name length got maximised ab initio. The downside
 *  is that semantic interpretation must split the names up again.
 *
 *  Unification of the declaration and expression syntax means that unary and binary pointer declarator operators:
 *      int * * name
 *  are parsed as binary and unary arithmetic operators (int) * (*name). Since type information is not used
 *  ambiguities resulting from a cast
 *      (cast)*(value)
 *  are resolved to favour the binary rather than the cast unary to ease AST clean-up.
 *  The cast-call ambiguity must be resolved to the cast to ensure that (a)(b)c can be parsed.
 *
 *  The problem of the functional cast ambiguity
 *      name(arg)
 *  as call or declaration is avoided by maximising the name within the parsing kernel. So
 *  primary_id_expression picks up
 *      extern long int const var = 5;
 *  as an assignment to the syntax parsed as “extern long int const var”. The presence of two names is
 *  parsed so that “extern long into const” is distinguished from “var” considerably simplifying subsequent
 *  semantic resolution.
 *
 *  The generalised name is a concatenation of potential type-names (scoped identifiers or built-in sequences)
 *  plus optionally one of the special names such as an operator-function-id, conversion-function-id or
 *  destructor as the final name.
 */
primary_expression:                 literal
    |                               THIS
    |                               suffix_decl_specified_ids
/*  |                               SCOPE identifier                                        -- covered by suffix_decl_specified_ids */
/*  |                               SCOPE operator_function_id                              -- covered by suffix_decl_specified_ids */
/*  |                               SCOPE qualified_id                                      -- covered by suffix_decl_specified_ids */
    |                               abstract_expression           %prec REDUCE_HERE_MOSTLY  /* Prefer binary to unary ops, cast to call */
/*  |                               id_expression                                           -- covered by suffix_decl_specified_ids */

/*
 *  Abstract-expression covers the () and [] of abstract-declarators.
 */
abstract_expression:                parenthesis_clause
    |                               ‘[‘ expression.opt ‘]’
    |                               TEMPLATE parenthesis_clause
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/*  Type I function parameters are ambiguous with respect to the generalised name, so we have to do a lookahead following
 *  any function-like parentheses. This unfortunately hits normal code, so kill the -- lines and add the ++ lines for efficiency.
 *  Supporting Type I code under the superset causes perhaps 25% of lookahead parsing. Sometimes complete class definitions
 *  get traversed since they are valid generalised type I parameters!
 */
type1_parameters:       /*----*/    parameter_declaration_list ‘;’
    |                   /*----*/    type1_parameters parameter_declaration_list ‘;’
mark_type1:                         /* empty */                                             { mark_type1(); yyclearin; }
postfix_expression:                 primary_expression
/*  |                   /++++++/    postfix_expression parenthesis_clause */
    |                   /*----*/    postfix_expression parenthesis_clause mark_type1 ‘-’
    |                   /*----*/    postfix_expression parenthesis_clause mark_type1 ‘+’ type1_parameters mark ‘{‘ error
                        /*----*/                    { yyerrok; yyclearin; remark_type1(); unmark(); unmark(); }
    |                   /*----*/    postfix_expression parenthesis_clause mark_type1 ‘+’ type1_parameters mark error
                        /*----*/                    { yyerrok; yyclearin; remark_type1(); unmark(); unmark(); }
    |                   /*----*/    postfix_expression parenthesis_clause mark_type1 ‘+’ error
                        /*----*/                    { yyerrok; yyclearin; remark_type1(); unmark(); }
    |                               postfix_expression ‘[‘ expression.opt ‘]’
/*  |                               destructor_id ‘[‘ expression.opt ‘]’                    -- not semantically valid */
/*  |                               destructor_id parenthesis_clause                        -- omitted to resolve known ambiguity */
/*  |                               simple_type_specifier ‘(‘ expression_list.opt ‘)’       -- simple_type_specifier is a primary_expression */
    |                               postfix_expression ‘.’ declarator_id
/*  |                               postfix_expression ‘.’ TEMPLATE declarator_id           -- TEMPLATE absorbed into declarator_id. */
    |                               postfix_expression ‘.’ scoped_pseudo_destructor_id
    |                               postfix_expression ARROW declarator_id
/*  |                               postfix_expression ARROW TEMPLATE declarator_id         -- TEMPLATE absorbed into declarator_id. */
    |                               postfix_expression ARROW scoped_pseudo_destructor_id
    |                               postfix_expression INC
    |                               postfix_expression DEC
    |                               DYNAMIC_CAST ‘<‘ type_id ‘>’ ‘(‘ expression ‘)’
    |                               STATIC_CAST ‘<‘ type_id ‘>’ ‘(‘ expression ‘)’
    |                               REINTERPRET_CAST ‘<‘ type_id ‘>’ ‘(‘ expression ‘)’
    |                               CONST_CAST ‘<‘ type_id ‘>’ ‘(‘ expression ‘)’
    |                               TYPEID parameters_clause
/*  |                               TYPEID ‘(‘ expression ‘)’                               -- covered by parameters_clause */
/*  |                               TYPEID ‘(‘ type_id ‘)’                                  -- covered by parameters_clause */
expression_list.opt:                /* empty */
    |                               expression_list
expression_list:                    assignment_expression
    |                               expression_list ‘,’ assignment_expression

unary_expression:                   postfix_expression
    |                               INC cast_expression
    |                               DEC cast_expression
    |                               ptr_operator cast_expression
/*  |                               ‘*’ cast_expression                                     -- covered by ptr_operator */
/*  |                               ‘&’ cast_expression                                     -- covered by ptr_operator */
/*  |                               decl_specifier_seq ‘*’ cast_expression                  -- covered by binary operator */
/*  |                               decl_specifier_seq ‘&’ cast_expression                  -- covered by binary operator */
    |                               suffix_decl_specified_scope star_ptr_operator cast_expression   /* covers e.g int ::type::* const t = 4 */

    |                               ‘+’ cast_expression
    |                               ‘-’ cast_expression
    |                               ‘!’ cast_expression
    |                               ‘~’ cast_expression
    |                               SIZEOF unary_expression
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/*  |                               SIZEOF ‘(‘ type_id ‘)’                                  -- covered by unary_expression */
    |                               new_expression
    |                               global_scope new_expression
    |                               delete_expression
    |                               global_scope delete_expression
/*  |                               DELETE ‘[‘ ‘]’ cast_expression       -- covered by DELETE cast_expression since cast_expression covers ... */
/*  |                               SCOPE DELETE ‘[‘ ‘]’ cast_expression //  ... abstract_expression cast_expression and so [] cast_expression */

delete_expression:                  DELETE cast_expression                                  /* also covers DELETE[] cast_expression */

new_expression:                     NEW new_type_id new_initializer.opt
    |                               NEW parameters_clause new_type_id new_initializer.opt
    |                               NEW parameters_clause
/*  |                               NEW ‘(‘ type-id ‘)’                                     -- covered by parameters_clause */
    |                               NEW parameters_clause parameters_clause new_initializer.opt
/*  |                               NEW ‘(‘ type-id ‘)’ new_initializer                     -- covered by parameters_clause parameters_clause */
/*  |                               NEW parameters_clause ‘(‘ type-id ‘)’                   -- covered by parameters_clause parameters_clause */
                                                                                /* ptr_operator_seq.opt production reused to save a %prec */
new_type_id:                        type_specifier ptr_operator_seq.opt
    |                               type_specifier new_declarator
    |                               type_specifier new_type_id
new_declarator:                     ptr_operator new_declarator
    |                               direct_new_declarator
direct_new_declarator:              ‘[‘ expression ‘]’
    |                               direct_new_declarator ‘[‘ constant_expression ‘]’
new_initializer.opt:                /* empty */
    |                               ‘(‘ expression_list.opt ‘)’

/*  cast-expression is generalised to support a [] as well as a () prefix. This covers the omission of DELETE[] which when
 *  followed by a parenthesised expression was ambiguous. It also covers the gcc indexed array initialisation for free.
 */
cast_expression:                    unary_expression
    |                               abstract_expression cast_expression
/*  |                               ‘(‘ type_id ‘)’ cast_expression                             -- covered by abstract_expression */

pm_expression:                      cast_expression
    |                               pm_expression DOT_STAR cast_expression
    |                               pm_expression ARROW_STAR cast_expression
multiplicative_expression:          pm_expression
    |                               multiplicative_expression star_ptr_operator pm_expression
    |                               multiplicative_expression ‘/’ pm_expression
    |                               multiplicative_expression ‘%’ pm_expression
additive_expression:                multiplicative_expression
    |                               additive_expression ‘+’ multiplicative_expression
    |                               additive_expression ‘-’ multiplicative_expression
shift_expression:                   additive_expression
    |                               shift_expression SHL additive_expression
    |                               shift_expression SHR additive_expression
relational_expression:              shift_expression
    |                               relational_expression ‘<‘ shift_expression
    |                               relational_expression ‘>’ shift_expression
    |                               relational_expression LE shift_expression
    |                               relational_expression GE shift_expression
equality_expression:                relational_expression
    |                               equality_expression EQ relational_expression
    |                               equality_expression NE relational_expression
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and_expression:                     equality_expression
    |                               and_expression ‘&’ equality_expression
exclusive_or_expression:            and_expression
    |                               exclusive_or_expression ‘^’ and_expression
inclusive_or_expression:            exclusive_or_expression
    |                               inclusive_or_expression ‘|’ exclusive_or_expression
logical_and_expression:             inclusive_or_expression
    |                               logical_and_expression LOG_AND inclusive_or_expression
logical_or_expression:              logical_and_expression
    |                               logical_or_expression LOG_OR logical_and_expression
conditional_expression:             logical_or_expression
    |                               logical_or_expression ‘?’ expression ‘:’ assignment_expression

/*  assignment-expression is generalised to cover the simple assignment of a braced initializer in order to contribute to the
 *  coverage of parameter-declaration and init-declaration.
 */
assignment_expression:              conditional_expression
    |                               logical_or_expression assignment_operator assignment_expression
    |                               logical_or_expression ‘=’ braced_initializer
    |                               throw_expression
assignment_operator:                ‘=’ | ASS_ADD | ASS_AND | ASS_DIV | ASS_MOD | ASS_MUL | ASS_OR | ASS_SHL | ASS_SHR | ASS_SUB | ASS_XOR

/*  expression is widely used and usually single-element, so the reductions are arranged so that a
 *  single-element expression is returned as is. Multi-element expressions are parsed as a list that
 *  may then behave polymorphically as an element or be compacted to an element. */
expression.opt:                     /* empty */
    |                               expression
expression:                         assignment_expression
    |                               expression_list ‘,’ assignment_expression
constant_expression:                conditional_expression

/*  The grammar is repeated for when the parser stack knows that the next > must end a template.
 */
templated_relational_expression:    shift_expression
    |                               templated_relational_expression ‘<‘ shift_expression
    |                               templated_relational_expression LE shift_expression
    |                               templated_relational_expression GE shift_expression
templated_equality_expression:      templated_relational_expression
    |                               templated_equality_expression EQ templated_relational_expression
    |                               templated_equality_expression NE templated_relational_expression
templated_and_expression:           templated_equality_expression
    |                               templated_and_expression ‘&’ templated_equality_expression
templated_exclusive_or_expression:  templated_and_expression
    |                               templated_exclusive_or_expression ‘^’ templated_and_expression

templated_inclusive_or_expression:  templated_exclusive_or_expression
    |                               templated_inclusive_or_expression ‘|’ templated_exclusive_or_expression

templated_logical_and_expression:   templated_inclusive_or_expression
    |                               templated_logical_and_expression LOG_AND templated_inclusive_or_expression

templated_logical_or_expression:    templated_logical_and_expression
    |                               templated_logical_or_expression LOG_OR templated_logical_and_expression

templated_conditional_expression:   templated_logical_or_expression
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    |                               templated_logical_or_expression ‘?’ templated_expression ‘:’ templated_assignment_expression

templated_assignment_expression:    templated_conditional_expression
    |                               templated_logical_or_expression assignment_operator templated_assignment_expression

    |                               templated_throw_expression
templated_expression:               templated_assignment_expression
    |                               templated_expression_list ‘,’ templated_assignment_expression

templated_expression_list:          templated_assignment_expression
    |                               templated_expression_list ‘,’ templated_assignment_expression

/*---------------------------------------------------------------------------------------------------
 * A.5 Statements
 *---------------------------------------------------------------------------------------------------
 *  Parsing statements is easy once simple_declaration has been generalised to cover expression_statement.
 */
looping_statement:                  start_search looped_statement                               { end_search(); }
looped_statement:                   statement
    |                               advance_search ‘+’ looped_statement
    |                               advance_search ‘-’
statement:                          control_statement
/*  |                               expression_statement                                        -- covered by declaration_statement */
    |                               compound_statement
    |                               declaration_statement
    |                               try_block
control_statement:                  labeled_statement
    |                               selection_statement
    |                               iteration_statement
    |                               jump_statement
labeled_statement:                  identifier_word ‘:’ looping_statement
    |                               CASE constant_expression ‘:’ looping_statement
    |                               DEFAULT ‘:’ looping_statement
/*expression_statement:             expression.opt ‘;’                                          -- covered by declaration_statement */
compound_statement:                 ‘{‘ statement_seq.opt ‘}’
    |                               ‘{‘ statement_seq.opt looping_statement ‘#’ bang error ‘}’  { UNBANG(“Bad statement-seq.”); }
statement_seq.opt:                  /* empty */
    |                               statement_seq.opt looping_statement
    |                               statement_seq.opt looping_statement ‘#’ bang error ‘;’      { UNBANG(“Bad statement.”); }
/*
 *  The dangling else conflict is resolved to the innermost if.
 */
selection_statement:                IF ‘(‘ condition ‘)’ looping_statement    %prec SHIFT_THERE
    |                               IF ‘(‘ condition ‘)’ looping_statement ELSE looping_statement
    |                               SWITCH ‘(‘ condition ‘)’ looping_statement
condition.opt:                      /* empty */
    |                               condition
condition:                          parameter_declaration_list
/*  |                               expression                                                  -- covered by parameter_declaration_list */
/*  |                               type_specifier_seq declarator ‘=’ assignment_expression     -- covered by parameter_declaration_list */
iteration_statement:                WHILE ‘(‘ condition ‘)’ looping_statement
    |                               DO looping_statement WHILE ‘(‘ expression ‘)’ ‘;’
    |                               FOR ‘(‘ for_init_statement condition.opt ‘;’ expression.opt ‘)’ looping_statement

for_init_statement:                 simple_declaration
/*  |                               expression_statement                                        -- covered by simple_declaration */
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jump_statement:                     BREAK ‘;’
    |                               CONTINUE ‘;’
    |                               RETURN expression.opt ‘;’
    |                               GOTO identifier ‘;’
declaration_statement:              block_declaration

/*---------------------------------------------------------------------------------------------------
 * A.6 Declarations
 *---------------------------------------------------------------------------------------------------*/
compound_declaration:               ‘{‘ nest declaration_seq.opt ‘}’                            { unnest(); }
    |                               ‘{‘ nest declaration_seq.opt util looping_declaration ‘#’ bang error ‘}’
                                                                                                { unnest(); UNBANG(“Bad declaration-seq.”); }
declaration_seq.opt:                /* empty */
    |                               declaration_seq.opt util looping_declaration
    |                               declaration_seq.opt util looping_declaration ‘#’ bang error ‘;’ { UNBANG(“Bad declaration.”); }
looping_declaration:                start_search1 looped_declaration                            { end_search(); }
looped_declaration:                 declaration
    |                               advance_search ‘+’ looped_declaration
    |                               advance_search ‘-’
declaration:                        block_declaration
    |                               function_definition
    |                               template_declaration
/*  |                               explicit_instantiation                                      -- covered by relevant declarations */
    |                               explicit_specialization
    |                               specialised_declaration
specialised_declaration:            linkage_specification
    |                               namespace_definition
    |                               TEMPLATE specialised_declaration
block_declaration:                  simple_declaration
    |                               specialised_block_declaration
specialised_block_declaration:      asm_definition
    |                               namespace_alias_definition
    |                               using_declaration
    |                               using_directive
    |                               TEMPLATE specialised_block_declaration
simple_declaration:                 ‘;’
    |                               init_declaration ‘;’
    |                               init_declarations ‘;’
    |                               decl_specifier_prefix simple_declaration

/*  A decl-specifier following a ptr_operator provokes a shift-reduce conflict for
 *      * const name
 *  which is resolved in favour of the pointer, and implemented by providing versions
 *  of decl-specifier guaranteed not to start with a cv_qualifier.
 *
 *  decl-specifiers are implemented type-centrically. That is the semantic constraint
 *  that there must be a type is exploited to impose structure, but actually eliminate
 *  very little syntax. built-in types are multi-name and so need a different policy.
 *
 *  non-type decl-specifiers are bound to the left-most type in a decl-specifier-seq,
 *  by parsing from the right and attaching suffixes to the right-hand type. Finally
 *  residual prefixes attach to the left.
 */
suffix_built_in_decl_specifier.raw: built_in_type_specifier
    |                               suffix_built_in_decl_specifier.raw built_in_type_specifier
    |                               suffix_built_in_decl_specifier.raw decl_specifier_suffix
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suffix_built_in_decl_specifier:     suffix_built_in_decl_specifier.raw
    |                               TEMPLATE suffix_built_in_decl_specifier
suffix_named_decl_specifier:        scoped_id
    |                               elaborate_type_specifier
    |                               suffix_named_decl_specifier decl_specifier_suffix
suffix_named_decl_specifier.bi:     suffix_named_decl_specifier
    |                               suffix_named_decl_specifier suffix_built_in_decl_specifier.raw
suffix_named_decl_specifiers:       suffix_named_decl_specifier.bi
    |                               suffix_named_decl_specifiers suffix_named_decl_specifier.bi
suffix_named_decl_specifiers.sf:    scoped_special_function_id          /* operators etc */
    |                               suffix_named_decl_specifiers
    |                               suffix_named_decl_specifiers scoped_special_function_id
suffix_decl_specified_ids:          suffix_built_in_decl_specifier
    |                               suffix_built_in_decl_specifier suffix_named_decl_specifiers.sf
    |                               suffix_named_decl_specifiers.sf
suffix_decl_specified_scope:        suffix_named_decl_specifiers SCOPE
    |                               suffix_built_in_decl_specifier suffix_named_decl_specifiers SCOPE
    |                               suffix_built_in_decl_specifier SCOPE

decl_specifier_affix:               storage_class_specifier
    |                               function_specifier
    |                               FRIEND
    |                               TYPEDEF
    |                               cv_qualifier

decl_specifier_suffix:              decl_specifier_affix

decl_specifier_prefix:              decl_specifier_affix
    |                               TEMPLATE decl_specifier_prefix

storage_class_specifier:            REGISTER | STATIC | MUTABLE
    |                               EXTERN                  %prec SHIFT_THERE                   /* Prefer linkage specification */
    |                               AUTO

function_specifier:                 EXPLICIT
    |                               INLINE
    |                               VIRTUAL

type_specifier:                     simple_type_specifier
    |                               elaborate_type_specifier
    |                               cv_qualifier

elaborate_type_specifier:           class_specifier
    |                               enum_specifier
    |                               elaborated_type_specifier
    |                               TEMPLATE elaborate_type_specifier
simple_type_specifier:              scoped_id
    |                               built_in_type_specifier
built_in_type_specifier:            CHAR | WCHAR_T | BOOL | SHORT | INT | LONG | SIGNED | UNSIGNED | FLOAT | DOUBLE | VOID

/*
 *  The over-general use of declaration_expression to cover decl-specifier-seq.opt declarator in a function-definition means that
 *      class X { };
 *  could be a function-definition or a class-specifier.
 *      enum X { };
 *  could be a function-definition or an enum-specifier.
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 *  The function-definition is not syntactically valid so resolving the false conflict in favour of the
 *  elaborated_type_specifier is correct.
 */
elaborated_type_specifier:          elaborated_class_specifier
    |                               elaborated_enum_specifier
    |                               TYPENAME scoped_id

elaborated_enum_specifier:          ENUM scoped_id               %prec SHIFT_THERE
enum_specifier:                     ENUM scoped_id enumerator_clause
    |                               ENUM enumerator_clause
enumerator_clause:                  ‘{‘ enumerator_list_ecarb
    |                               ‘{‘ enumerator_list enumerator_list_ecarb
    |                               ‘{‘ enumerator_list ‘,’ enumerator_definition_ecarb
enumerator_list_ecarb:              ‘}’
    |                               bang error ‘}’                                              { UNBANG(“Bad enumerator-list.”); }
enumerator_definition_ecarb:        ‘}’
    |                               bang error ‘}’                                              { UNBANG(“Bad enumerator-definition.”); }
enumerator_definition_filler:       /* empty */
    |                               bang error ‘,’                                              { UNBANG(“Bad enumerator-definition.”); }
enumerator_list_head:               enumerator_definition_filler
    |                               enumerator_list ‘,’ enumerator_definition_filler
enumerator_list:                    enumerator_list_head enumerator_definition
enumerator_definition:              enumerator
    |                               enumerator ‘=’ constant_expression
enumerator:                         identifier

namespace_definition:               NAMESPACE scoped_id compound_declaration
    |                               NAMESPACE compound_declaration
namespace_alias_definition:         NAMESPACE scoped_id ‘=’ scoped_id ‘;’

using_declaration:                  USING declarator_id ‘;’
    |                               USING TYPENAME declarator_id ‘;’

using_directive:                    USING NAMESPACE scoped_id ‘;’
asm_definition:                     ASM ‘(‘ string ‘)’ ‘;’
linkage_specification:              EXTERN string looping_declaration
    |                               EXTERN string compound_declaration

/*---------------------------------------------------------------------------------------------------
 * A.7 Declarators
 *---------------------------------------------------------------------------------------------------*/
/*init-declarator is named init_declaration to reflect the embedded decl-specifier-seq.opt*/
init_declarations:                  assignment_expression ‘,’ init_declaration
    |                               init_declarations ‘,’ init_declaration
init_declaration:                   assignment_expression
/*  |                               assignment_expression ‘=’ initializer_clause                -- covered by assignment_expression */
/*  |                               assignment_expression ‘(‘ expression_list ‘)’               -- covered by another set of call arguments */

/*declarator:                                                                                   -- covered by assignment_expression */
/*direct_declarator:                                                                            -- covered by postfix_expression */

star_ptr_operator:                  ‘*’
    |                               star_ptr_operator cv_qualifier
nested_ptr_operator:                star_ptr_operator
    |                               id_scope nested_ptr_operator
ptr_operator:                       ‘&’
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    |                               nested_ptr_operator
    |                               global_scope nested_ptr_operator
ptr_operator_seq:                   ptr_operator
    |                               ptr_operator ptr_operator_seq
/* Independently coded to localise the shift-reduce conflict: sharing just needs another %prec */
ptr_operator_seq.opt:               /* empty */                         %prec SHIFT_THERE       /* Maximise type length */
    |                               ptr_operator ptr_operator_seq.opt

cv_qualifier_seq.opt:               /* empty */
    |                               cv_qualifier_seq.opt cv_qualifier
cv_qualifier:                       CONST | VOLATILE /* | CvQualifier */

/*type_id                                                                                       -- also covered by parameter declaration */
type_id:                            type_specifier abstract_declarator.opt
    |                               type_specifier type_id

/*abstract_declarator:                                                                          -- also covered by parameter declaration */
abstract_declarator.opt:            /* empty */
    |                               ptr_operator abstract_declarator.opt
    |                               direct_abstract_declarator
direct_abstract_declarator.opt:     /* empty */
    |                               direct_abstract_declarator
direct_abstract_declarator:         direct_abstract_declarator.opt parenthesis_clause
    |                               direct_abstract_declarator.opt ‘[‘ ‘]’
    |                               direct_abstract_declarator.opt ‘[‘ constant_expression ‘]’
/*  |                               ‘(‘ abstract_declarator ‘)’                                 -- covered by parenthesis_clause */

parenthesis_clause:                 parameters_clause cv_qualifier_seq.opt
    |                               parameters_clause cv_qualifier_seq.opt exception_specification
parameters_clause:                  ‘(‘ parameter_declaration_clause ‘)’
/* parameter_declaration_clause also covers init_declaration, type_id, declarator and abstract_declarator. */
parameter_declaration_clause:       /* empty */
    |                               parameter_declaration_list
    |                               parameter_declaration_list ELLIPSIS
parameter_declaration_list:         parameter_declaration
    |                               parameter_declaration_list ‘,’ parameter_declaration

/* A typed abstract qualifier such as
 *      Class * ...
 * looks like a multiply, so pointers are parsed as their binary operation equivalents that
 * ultimately terminate with a degenerate right hand term.
 */
abstract_pointer_declaration:       ptr_operator_seq
    |                               multiplicative_expression star_ptr_operator ptr_operator_seq.opt
abstract_parameter_declaration:     abstract_pointer_declaration
    |                               and_expression ‘&’
    |                               and_expression ‘&’ abstract_pointer_declaration
special_parameter_declaration:      abstract_parameter_declaration
    |                               abstract_parameter_declaration ‘=’ assignment_expression
    |                               ELLIPSIS
parameter_declaration:              assignment_expression
    |                               special_parameter_declaration
    |                               decl_specifier_prefix parameter_declaration

/*  The grammar is repeated for use within template <>
 */



M
e

ta
-co

m
p

ila
tio

n
 fo

r C
+

+
C

+
+

 G
ra

m
m

a
r

P
a

g
e

 3
0

8
M

a
rch

 4
, 2

0
0

2

templated_parameter_declaration:    templated_assignment_expression
    |                               templated_abstract_declaration
    |                               templated_abstract_declaration ‘=’ templated_assignment_expression

    |                               decl_specifier_prefix templated_parameter_declaration
templated_abstract_declaration:     abstract_pointer_declaration
    |                               templated_and_expression ‘&’
    |                               templated_and_expression ‘&’ abstract_pointer_declaration

/*  function_definition includes constructor, destructor, implicit int definitions too.
 *  A local destructor is successfully parsed as a function-declaration but the ~ was treated as a unary operator.
 *  constructor_head is the prefix ambiguity between a constructor and a member-init-list starting with a bit-field.
 */
function_definition:        ctor_definition
    |                       func_definition
func_definition:            assignment_expression function_try_block
    |                       assignment_expression function_body
    |                       decl_specifier_prefix func_definition
ctor_definition:            constructor_head function_try_block
    |                       constructor_head function_body
    |                       decl_specifier_prefix ctor_definition
constructor_head:           bit_field_init_declaration
    |                       constructor_head ‘,’ assignment_expression
function_try_block:         TRY function_block handler_seq
function_block:             ctor_initializer.opt function_body
function_body:              compound_statement

/*  An = initializer looks like an extended assignment_expression.
 *  An () initializer looks like a function call.
 *  initializer is therefore flattened into its generalised customers.
 *initializer:              ‘=’ initializer_clause                                      -- flattened into caller
 *  |                       ‘(‘ expression_list ‘)’                                     -- flattened into caller */
initializer_clause:         assignment_expression
    |                       braced_initializer
braced_initializer:         ‘{‘ initializer_list ‘}’
    |                       ‘{‘ initializer_list ‘,’ ‘}’
    |                       ‘{‘ ‘}’
    |                       ‘{‘ looping_initializer_clause ‘#’ bang error ‘}’           { UNBANG(“Bad initializer_clause.”); }
    |                       ‘{‘ initializer_list ‘,’ looping_initializer_clause ‘#’ bang error ‘}’
                                                                                        { UNBANG(“Bad initializer_clause.”); }
initializer_list:           looping_initializer_clause
    |                       initializer_list ‘,’ looping_initializer_clause
looping_initializer_clause: start_search looped_initializer_clause                      { end_search(); }
looped_initializer_clause:  initializer_clause
    |                       advance_search ‘+’ looped_initializer_clause
    |                       advance_search ‘-’

/*---------------------------------------------------------------------------------------------------
 * A.8 Classes
 *---------------------------------------------------------------------------------------------------
 *
 *  An anonymous bit-field declaration may look very like inheritance:
 *      class A : B = 3;
 *      class A : B ;
 *  The two usages are too distant to try to create and enforce a common prefix so we have to resort to
 *  a parser hack by backtracking. Inheritance is much the most likely so we mark the input stream context
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 *  and try to parse a base-clause. If we successfully reach a { the base-clause is ok and inheritance was
 *  the correct choice so we unmark and continue. If we fail to find the { an error token causes back-tracking
 *  to the alternative parse in elaborated_class_specifier which regenerates the : and declares unconditional success.
 */
colon_mark:                 ‘:’                                                         { mark(); }
elaborated_class_specifier: class_key scoped_id                    %prec SHIFT_THERE
    |                       class_key scoped_id colon_mark error                        { rewind_colon(); }
class_specifier_head:       class_key scoped_id colon_mark base_specifier_list ‘{‘      { unmark(); }
    |                       class_key ‘:’ base_specifier_list ‘{‘
    |                       class_key scoped_id ‘{‘
    |                       class_key ‘{‘
class_key:                  CLASS | STRUCT | UNION
class_specifier:            class_specifier_head member_specification.opt ‘}’
    |                       class_specifier_head member_specification.opt util looping_member_declaration ‘#’ bang error ‘}’
                                            { UNBANG(“Bad member_specification.opt.”); }
member_specification.opt:   /* empty */
    |                       member_specification.opt util looping_member_declaration
    |                       member_specification.opt util looping_member_declaration ‘#’ bang error ‘;’
                                                                                                { UNBANG(“Bad member-declaration.”); }
looping_member_declaration: start_search looped_member_declaration                      { end_search(); }
looped_member_declaration:  member_declaration
    |                       advance_search ‘+’ looped_member_declaration
    |                       advance_search ‘-’
member_declaration:         accessibility_specifier
    |                       simple_member_declaration
    |                       function_definition
/*  |                       function_definition ‘;’                                     -- trailing ; covered by null declaration */
/*  |                       qualified_id ‘;’                                            -- covered by simple_member_declaration */
    |                       using_declaration
    |                       template_declaration

/*  The generality of constructor names (there need be no parenthesised argument list) means that that
 *          name : f(g), h(i)
 *  could be the start of a constructor or the start of an anonymous bit-field. An ambiguity is avoided by
 *  parsing the ctor-initializer of a function_definition as a bit-field.
 */
simple_member_declaration:  ‘;’
    |                       assignment_expression ‘;’
    |                       constructor_head ‘;’
    |                       member_init_declarations ‘;’
    |                       decl_specifier_prefix simple_member_declaration
member_init_declarations:   assignment_expression ‘,’ member_init_declaration
    |                       constructor_head ‘,’ bit_field_init_declaration
    |                       member_init_declarations ‘,’ member_init_declaration
member_init_declaration:    assignment_expression
/*  |                       assignment_expression ‘=’ initializer_clause                -- covered by assignment_expression */
/*  |                       assignment_expression ‘(‘ expression_list ‘)’               -- covered by another set of call arguments */
    |                       bit_field_init_declaration
accessibility_specifier:    access_specifier ‘:’
bit_field_declaration:      assignment_expression ‘:’ bit_field_width
    |                       ‘:’ bit_field_width
bit_field_width:            logical_or_expression
/*  |                       logical_or_expression ‘?’ expression ‘:’ assignment_expression  -- has SR conflict w.r.t later = */
    |                       logical_or_expression ‘?’ bit_field_width ‘:’ bit_field_width
bit_field_init_declaration: bit_field_declaration
    |                       bit_field_declaration ‘=’ initializer_clause
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/*---------------------------------------------------------------------------------------------------
 * A.9 Derived classes
 *---------------------------------------------------------------------------------------------------*/
/*base_clause:              ‘:’ base_specifier_list                                     -- flattened */
base_specifier_list:        base_specifier
    |                       base_specifier_list ‘,’ base_specifier
base_specifier:             scoped_id
    |                       access_specifier base_specifier
    |                       VIRTUAL base_specifier
access_specifier:           PRIVATE | PROTECTED | PUBLIC

/*---------------------------------------------------------------------------------------------------
 * A.10 Special member functions
 *---------------------------------------------------------------------------------------------------*/
conversion_function_id:     OPERATOR conversion_type_id
conversion_type_id:         type_specifier ptr_operator_seq.opt
    |                       type_specifier conversion_type_id
/*
 *  Ctor-initialisers can look like a bit field declaration, given the generalisation of names:
 *      Class(Type) : m1(1), m2(2) { }
 *      NonClass(bit_field) : int(2), second_variable, ...
 *  The grammar below is used within a function_try_block or function_definition.
 *  See simple_member_declaration for use in normal member function_definition.
 */
ctor_initializer.opt:       /* empty */
    |                       ctor_initializer
ctor_initializer:           ‘:’ mem_initializer_list
    |                       ‘:’ mem_initializer_list bang error                         { UNBANG(“Bad ctor-initializer.”); }
mem_initializer_list:       mem_initializer
    |                       mem_initializer_list_head mem_initializer
mem_initializer_list_head:  mem_initializer_list ‘,’
    |                       mem_initializer_list bang error ‘,’                         { UNBANG(“Bad mem-initializer.”); }
mem_initializer:            mem_initializer_id ‘(‘ expression_list.opt ‘)’
mem_initializer_id:         scoped_id

/*---------------------------------------------------------------------------------------------------
 * A.11 Overloading
 *---------------------------------------------------------------------------------------------------*/
operator_function_id:       OPERATOR operator
/*
 *  It is not clear from the ANSI standard whether spaces are permitted in delete[]. If not then it can
 *  be recognised and returned as DELETE_ARRAY by the lexer. Assuming spaces are permitted there is an
 *  ambiguity created by the over generalised nature of expressions. operator new is a valid delarator-id
 *  which we may have an undimensioned array of. Semantic rubbish, but syntactically valid. Since the
 *  array form is covered by the declarator consideration we can exclude the operator here. The need
 *  for a semantic rescue can be eliminated at the expense of a couple of shift-reduce conflicts by
 *  removing the comments on the next four lines.
 */
operator:             /*++++*/      NEW
    |                 /*++++*/      DELETE
/*  |                 / ---- /      NEW                 %prec SHIFT_THERE
/*  |                 / ---- /      DELETE              %prec SHIFT_THERE
/*  |                 / ---- /      NEW ‘[‘ ‘]’                                                 -- Covered by array of OPERATOR NEW */
/*  |                 / ---- /      DELETE ‘[‘ ‘]’                                              -- Covered by array of OPERATOR DELETE */
    |                               ‘+’
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    |                               ‘-’
    |                               ‘*’
    |                               ‘/’
    |                               ‘%’
    |                               ‘^’
    |                               ‘&’
    |                               ‘|’
    |                               ‘~’
    |                               ‘!’
    |                               ‘=’
    |                               ‘<‘
    |                               ‘>’
    |                               ASS_ADD
    |                               ASS_SUB
    |                               ASS_MUL
    |                               ASS_DIV
    |                               ASS_MOD
    |                               ASS_XOR
    |                               ASS_AND
    |                               ASS_OR
    |                               SHL
    |                               SHR
    |                               ASS_SHR
    |                               ASS_SHL
    |                               EQ
    |                               NE
    |                               LE
    |                               GE
    |                               LOG_AND
    |                               LOG_OR
    |                               INC
    |                               DEC
    |                               ‘,’
    |                               ARROW_STAR
    |                               ARROW
    |                               ‘(‘ ‘)’
    |                               ‘[‘ ‘]’

/*---------------------------------------------------------------------------------------------------
 * A.12 Templates
 *---------------------------------------------------------------------------------------------------*/
template_declaration:               template_parameter_clause declaration
    |                               EXPORT template_declaration
template_parameter_clause:          TEMPLATE ‘<‘ template_parameter_list ‘>’
template_parameter_list:            template_parameter
    |                               template_parameter_list ‘,’ template_parameter
template_parameter:                 simple_type_parameter
    |                               simple_type_parameter ‘=’ type_id
    |                               templated_type_parameter
    |                               templated_type_parameter ‘=’ identifier
    |                               templated_parameter_declaration
    |                               bang error                                                  { UNBANG(“Bad template-parameter.”); }
simple_type_parameter:              CLASS
/*  |                               CLASS identifier                                            -- covered by parameter_declaration */
    |                               TYPENAME
/*  |                               TYPENAME identifier                                         -- covered by parameter_declaration */
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templated_type_parameter:           template_parameter_clause CLASS
    |                               template_parameter_clause CLASS identifier
template_id:                        TEMPLATE identifier ‘<‘ template_argument_list ‘>’
    |                               TEMPLATE template_id
/*
 *  template-argument is evaluated using a templated...expression so that > resolves to end of template.
 */
template_argument_list:             template_argument
    |                               template_argument_list ‘,’ template_argument
template_argument:                  templated_parameter_declaration
/*  |                               type_id                                                     -- covered by templated_parameter_declaration */
/*  |                               template_name                                               -- covered by templated_parameter_declaration */
/*  |                               error                                                       -- must allow template failure to re-search */

/*
 *  Generalised naming makes identifier a valid declaration, so TEMPLATE identifier is too.
 *  The TEMPLATE prefix is therefore folded into all names, parenthesis_clause and decl_specifier_prefix.
 */
/*explicit_instantiation:           TEMPLATE declaration */
explicit_specialization:            TEMPLATE ‘<‘ ‘>’ declaration

/*---------------------------------------------------------------------------------------------------
 * A.13 Exception Handling
 *---------------------------------------------------------------------------------------------------*/
try_block:                          TRY compound_statement handler_seq
/*function_try_block:                                                                           -- moved near function_block */
handler_seq:                        handler
    |                               handler handler_seq
handler:                            CATCH ‘(‘ exception_declaration ‘)’ compound_statement
exception_declaration:              parameter_declaration
/*                                  ELLIPSIS                                                    -- covered by parameter_declaration */
throw_expression:                   THROW
    |                               THROW assignment_expression
templated_throw_expression:         THROW
    |                               THROW templated_assignment_expression
exception_specification:            THROW ‘(‘ ‘)’
    |                               THROW ‘(‘ type_id_list ‘)’
type_id_list:                       type_id
    |                               type_id_list ‘,’ type_id

/*---------------------------------------------------------------------------------------------------
 * Back-tracking and context support
 *---------------------------------------------------------------------------------------------------*/
advance_search:                     error               { yyerrok; yyclearin; advance_search(); } /* Rewind and queue ‘+’ or ‘-’ ‘#’ */
bang:                               /* empty */         { BANG(); }   /* set flag to suppress “parse error” */
mark:                               /* empty */         { mark(); }        /* Push lookahead and input token stream context onto a stack */
nest:                               /* empty */         { nest(); }        /* Push a declaration nesting depth onto the parse stack */
start_search:                       /* empty */         { start_search(false); }    /* Create/reset binary search context */
start_search1:                      /* empty */         { start_search(true); }     /* Create/reset binary search context */
util:                               /* empty */           /* Get current utility mode */
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C FOG Grammar

The complete FOG grammar implemented using the superset approach outlined
for FOG is presented in this appendix.

The presented grammar has been derived automatically from FogParser.y by a
sed script to

• remove C++ specific grammar

• remove irrelevant action rules

• simplify relevant action rules

• remove implementation specific $ clutter

The resulting text is acceptable to yacc and has 0 unresolved conflicts.

It is available from

http://www.ee.surrey.ac.uk/Research/CSRG/fog/FogGrammar.y
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/* This is a yacc-able parser for the entire FOG grammar with no unresolved conflicts. */
/* The parse is SYNTACTICALLY consistent and requires no template or type name assistance.
 * The grammar in the C++ standard notes that its grammar is a superset of the true
 * grammar requiring semantic constraints to resolve ambiguities. This grammar is a really big
 * superset unifying expressions and declarations, eliminating the type/non-type distinction,
 * and iterating to find a consistent solution to the template/arith,metoic < ambiguity.
 * As a result the grammar is much simpler, but requires the missing semantic constraints to be
 * performed in a subsequent semantic pass, which is of course where they belong. This grammar will
 * support conversion of C++ tokens into an Abstract Syntax Tree. A lot of further work is required to
 * make that tree useful.
 *
 * The principles behind this grammar are described in my thesis on Meta-Compilation for C++, which
 * may be found via http://www.computing.surrey.ac.uk/research/dsrg/fog/FogThesis.html.
 *
 *  Author:         E.D.Willink             Ed.Willink@rrl.co.uk
 *  Date:           15-Jun-2001
 */
/*
 * The lexer (and/or a preprocessor) is expected to identify the following
 *
 *  Punctuation:
 */
%type <keyword> ‘+’ ‘-’ ‘*’ ‘/’ ‘%’ ‘^’ ‘&’ ‘|’ ‘~’ ‘!’ ‘<‘  ‘>’ ‘=’ ‘:’ ‘[‘ ‘]’ ‘{‘ ‘}’ ‘(‘ ‘)’
%type <keyword> ‘?’ ‘.’ ‘\’’ ‘\”’ ‘\\’ ‘@’ ‘$’ ‘;’ ‘,’
/*
 *  Punctuation sequences
 */
%term <keyword> ARROW ARROW_STAR DEC EQ GE INC LE LOG_AND LOG_OR NE SHL SHR
%term <keyword> ASS_ADD ASS_AND ASS_DIV ASS_MOD ASS_MUL ASS_OR ASS_SHL ASS_SHR ASS_SUB ASS_XOR
%term <keyword> DOT_STAR ELLIPSIS SCOPE
/*
 *  Reserved words
 */
%term <access_specifier> PRIVATE PROTECTED PUBLIC
%term <built_in_id> BOOL CHAR DOUBLE FLOAT INT LONG SHORT SIGNED UNSIGNED VOID WCHAR_T
%term <class_key> CLASS ENUM NAMESPACE STRUCT TYPENAME UNION
%term <cv_qualifiers> CONST VOLATILE
%term <decl_specifier_id> AUTO EXPLICIT EXPORT EXTERN FRIEND INLINE MUTABLE REGISTER STATIC TEMPLATE TYPEDEF USING VIRTUAL
%term <keyword> ASM BREAK CASE CATCH CONST_CAST CONTINUE DEFAULT DELETE DO DYNAMIC_CAST
%term <keyword> ELSE FALSE FOR GOTO IF NEW OPERATOR REINTERPRET_CAST RETURN
%term <keyword> SIZEOF STATIC_CAST SWITCH THIS THROW TRUE TRY TYPEID WHILE
/*
 *  Parametric values.
 */
%term <character_literal> CharacterLiteral
%term <floating_literal> FloatingLiteral
%term <identifier> Identifier
%term <integer_literal> IntegerLiteral
%term <number_literal> NumberLiteral
%term <string_literal> StringLiteral
/*
 *  FOG non-reserved word identifier extensions
 */
%term <built_in_id> BuiltInTypeSpecifier
%term <meta_type> MetaType
%term <name> TreeLiteral
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%term <name> DERIVED FILE GUARD IMPLEMENTATION INCLUDE INTERFACE
%term <name> NOGUARD NOIMPLEMENTATION OVERLOAD PATH
%term <name> PREFIX PURE SUFFIX
%term <segment> BODY ENTRY EXIT POST PRE
%term <utility> EMIT FROZEN POOL UTILITY
/*
 *  The lexer need not treat ‘0’ as distinct from IntegerLiteral in the hope that pure-specifier can
 *  be distinguished, It isn’t. Semantic rescue from = constant-expression is necessary.
 *
 *  The lexer is not required to distinguish template or type names, although a slight simplification to the
 *  grammar and elaboration of the action rules could make good use of template name information.
 *
 *  In return for not needing to use semantic information, the lexer must support back-tracking, which
 *  is easily achieved by a simple linear buffer, a reference implementation of which may be found in the
 *  accompanying CxxParsing.cxx. Back-tracking is used to support:
 *
 *  Binary search for a consistent parse of the template/arithmetic ambiguity.
 *      start_search() initialises the search
 *      advance_search() iterates the search
 *      end_search() cleans up after a search
 *      template_test() maintains context during a search
 *
 *  Lookahead to resolve the inheritance/anonymous bit-field similarity
 *      mark() saves the starting context
 *      unmark() pops it
 *      rewind_colon() restores the context and forces the missing :
 *
 *  Lookahead to resolve type 1 function parameter ambiguities
 *      mark_type1() potentially marks the starting position
 *      mark() marks the pre { position
 *      remark() rewinds to the starting position
 *      unmark() pops the starting position
 *
 *  Note that lookaheads may nest.
 */

/*
 *  The parsing philosophy is unusual. The major ambiguities are resolved by creating a unified superset
 *  grammar rather than non-overlapping subgrammars. Thus the grammar for parameter-declaration covers an
 *  assignment-expression. Minor ambiguities whose resolution by supersetting would create more
 *  ambiguities are resolved the normal way with partitioned subgrammars.
 *  This eliminates the traditional expression/declaration and constructor/parenthesised declarator
 *  ambiguities at the syntactic level. A subsequent semantic level has to sort the problems out.
 *  The generality introduces four bogus ambiguities and defers the cast ambiguity for resolution
 *  once semantic information is available.
 *
 *  The FOG grammar comprises 958 rules and uses 1585 states in yacc, with 0 unresolved conflicts.
 *  31 conflicts from 15 ambiguities are resolved by 15 %prec’s, so that yacc and bison report 0 conflicts.
 *
 *  The ambiguities are:
 *  1) dangling else resolved to inner-most if
 *      1 in 2 states on else
 *  2) < as start-template or less-than
 *      1 conflict in 1 states on <
 *  3) a :: b :: c resolved to favour a::b::c rather than a::b ::c or a ::b::c
 *      1 conflicts in 1 state for ::
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 *  4) pointer operators maximised at end of conversion id/new in preference to binary operators
 *      2 conflicts in 4 states on * and &
 *  5a) (a)@b resolved to favour binary a@b rather than cast unary (a)(@b)
 *  5b) (a)(b) resolved to favour cast rather than call
 *      8 conflicts in 1 state for the 8 prefix operators: 6 unaries and ( and [.
 *  6) enum name { resolved to enum-specifier rather than function
 *      1 conflict in 1 state on {
 *  7) class name { resolved to class-specifier rather than function
 *      1 conflict in 1 state on {
 *  8) extern “C” resolved to linkage-specification rather than declaration
 *      1 conflict in 1 state on StringLiteral
 *  9) class X : forced to go through base-clause look-ahead
 *      1 conflict in 1 state on :
 *  10) id : forced to label_statement rather than constructor_head
 *      1 conflict in 1 state on :
 *  11) access-specifier : forced to access-declaration rather than anon bit-field
 *      1 conflict in 1 state on :
 *  12) inline/ and virtual/ forced to switch rather than divide treatment
 *      1 conflict in 2 states on /
 *  13) using StringLiteral forced to include_declaration not simple_declaration
 *      1 conflict in 1 states on StringLiteral
 *  14) handler_seq maximised avoiding ambiguity in compound_tree_statement
 *      1 conflict in 1 states on catch
 *  15) built_in_type_id maximised resolving ambiguity for auto unsigned int :: a
 *      1 conflict in 1 states on BuiltInTypeSpecifier
 *  of which
 *      1 is a fundamental C conflict - always correctly resolved
 *          can be removed - see the Java spec
 *      2, 3, 4 are fundamental C++ conflicts
 *          2 always consistently resolved by iteration
 *          3 always correctly resolved
 *          4 always correctly resolved
 *      5 is a result of not using type information - deferred for semantic repair
 *      6,7 are caused by parsing over-generous superset - always correctly resolved
 *      8 is caused by parsing over-generous superset - always correctly resolved
 *          can be removed at the expense of 7 rules and 5 states.
 *      9 is a look-ahead trick - always correctly resolved
 *          could be removed by marking one token sooner
 *      10 is caused by parsing over-generous superset - always correctly resolved
 *      11 is caused by parsing over-generous superset - always correctly resolved
 *      12 is caused by parsing over-generous superset - always correctly resolved
 *      13 is caused by parsing over-generous superset - always correctly resolved
 *      14 is a genuine conflict - always correctly resolved by definition
 *          more enthusiastic parsing of the } or ; statement end could fix this
 *      15 is a fundamental FOG conflict comparable to 3
 *          always correctly resolved
 *
 *  The hard problem of distinguishing
 *      class A { class B : C, D, E {           -- A::B privately inherits C, D and E
 *      class A { class B : C, D, E ;           -- C is width of anon bit-field
 *  is resolved by using a lookahead that assumes inheritance and rewinds for the bit-field.
 *
 *  The potential shift-reduce conflict on > is resolved by flattening part of the expression grammar
 *  to know when the next > is template end or arithmetic >.
 *
 *  The grammar is SYNTACTICALLY context-free with respect to type. No semantic assistance is required
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 *  during syntactic analysis. However the cast ambiguity is deferred and must be recovered
 *  after syntactic analysis of a statement has completed.
 *
 *  The grammar is SYNTACTICALLY context-free with respect to template-names. This is achieved by
 *  organising a binary search over all possible template/arithmetic ambiguities with respect to
 *  the enclosing statement. This is potentially exponentially inefficient but well-behaved in practice.
 *  Approximately 1% of statements trigger a search and approximately 1% of those are misparsed,
 *  requiring the semantic analysis to check and correct once template information is available.
 *  1.5 parse attempts are required on average per ambiguous statement.
 *
 *  The grammar supports type I function declarations at severe impediment to efficiency. A lookahead
 *  has to be performed after almost every non-statement close parenthesis. A one-line plus corollary
 *  change to postfix_expression is commented and strongly recommended to make this grammar as
 *  efficient as the rather large number of reduction levels permits.
 *
 *  Error recovery occurs mostly at the statement/declaration level. Recovery also occurs at
 *  the list-element level where this poses no hazard to statement/declaration level recovery.
 *  Note that since error propagation interacts with the lookaheads for template iteration or
 *  type 1 function arguments, introduction of finer grained error recovery may repair a false
 *  parse and so cause a misparse.
 *
 *  The following syntactic analysis errors occur, but are correctable semantically:
 *  (cast)unary-op expr         is parsed as (parenthesised)binary-op expr
 *      The semantic test should look for a binary/call with a (type) as its left child.
 *  (parenthesised)(arguments)  is parsed as (cast)(parenthesised)
 *      The semantic test should look for a cast with a non-type as its left child.
 *  template < and arithmetic < may be cross-parsed (unless semnatic help is provided)
 *      approximately 0.01% are misparsed, and must be sorted out - not easy.
 *
 *  The syntactic analysis defers the following ambiguities for semantic resolution:
 *  declaration/expression is parsed as a unified concept
 *      Use type and context to complete the parse.
 *  ~class-name                 is parsed as unary~ name
 *      The semantic test should look for ~ with a type as its child.
 *  delete[] expr               is parsed as delete []expr
 *      The semantic test should look for delete with a [] cast of its child.
 *  operator new/delete[]       are parsed as array of operator new/delete
 *      The semantic test should look for array of operator new/delete
 *      or activate the two extra commented rules in operator
 *  template of an explicit_instantiation is buried deep in the tree
 *      dig it out
 *  pure-specifier and constant-initializer are covered by assignment-expression
 *      just another of the deferred declaration/expression ambiguities
 *  sizeof and typeid don’t distinguish type/value syntaxes
 *      probably makes life polymorphically easier
 */
%nonassoc SHIFT_THERE
%nonassoc SCOPE ELSE INC DEC ‘+’ ‘-’ ‘*’ ‘&’ ‘[‘ ‘{‘ ‘<‘ ‘:’ StringLiteral
 ‘/’ CATCH BuiltInTypeSpecifier
%nonassoc REDUCE_HERE_MOSTLY
%nonassoc ‘(‘
/*%nonassoc REDUCE_HERE */

%start translation_unit
%%
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/*
 *  The %prec resolves a conflict in identifier_word : which is forced to be a shift of a label for
 *  a labeled-statement rather than a reduction for the name of a bit-field or generalised constructor.
 *  This is pretty dubious syntactically but correct for all semantic possibilities.
 *  The shift is only activated when the ambiguity exists at the start of a statement. In this context
 *  a bit-field declaration or constructor definition are not allowed.
 */
identifier_word:                    Identifier
    |                               MetaType
    |                               DERIVED | FILE | GUARD | IMPLEMENTATION
    |                               INCLUDE | INTERFACE | NOGUARD | NOIMPLEMENTATION
    |                               OVERLOAD | PATH | PREFIX | PURE | SUFFIX
    |                               segment
    |                               utility
identifier:                         identifier_word                     %prec SHIFT_THERE
    |                               TreeLiteral
/*
 *  The %prec resolves the 14.2-3 ambiguity:
 *  Identifier ‘<‘ is forced to go through the is-it-a-template-name test
 *  All names absorb TEMPLATE with the name, so that no template_test is performed for them.
 *  This requires all potential declarations within an expression to perpetuate this policy
 *  and thereby guarantee the ultimate coverage of explicit_instantiation.
 */
id:                                 identifier                          %prec SHIFT_THERE       /* Force < through test */
    |                               identifier template_test ‘+’ template_argument_list ‘>’
    |                               identifier template_test ‘+’ ‘>’                            { ERRMSG(“Empty template-argument-list”); }
    |                               identifier template_test ‘-’                                /* requeued < follows */
    |                               template_id
template_test:                      ‘<‘             /* Queue ‘+’ or ‘-’ < as follow on */       { template_test(); }
global_scope:                       SCOPE                                                       { IS_DEFAULT; }
    |                               TEMPLATE global_scope                                       { IS_TEMPLATE; }
id_scope:                           id SCOPE
/*
 *  A :: B :: C; is ambiguous How much is type and how much name ?
 *  The %prec maximises the (type) length which is the 7.1-2 semantic constraint.
 */
nested_id:                          id                                  %prec SHIFT_THERE       /* Maximise length */
    |                               id_scope nested_id
scoped_id:                          nested_id
    |                               global_scope nested_id

/*
 *  destructor_id has to be held back to avoid a conflict with a one’s complement as per 5.3.1-9,
 *  It gets put back only when scoped or in a declarator_id, which is only used as an explicit member name.
 *  Declarations of an unscoped destructor are always parsed as a one’s complement.
 */
destructor_id:                      ‘~’ id
    |                               TEMPLATE destructor_id
special_function_id:                conversion_function_id
    |                               operator_function_id
    |                               TEMPLATE special_function_id
nested_special_function_id:         special_function_id
    |                               id_scope destructor_id
    |                               id_scope nested_special_function_id
scoped_special_function_id:         nested_special_function_id
    |                               global_scope nested_special_function_id
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/* declarator-id is all names in all scopes, except reserved words */
declarator_id:                      scoped_id
    |                               scoped_special_function_id
    |                               destructor_id

/*  The standard defines pseudo-destructors in terms of type-name, which is class/enum/typedef, of which
 *  class-name is covered by a normal destructor. pseudo-destructors are supposed to support ~int() in
 *  templates, so the grammar here covers built-in names. Other names are covered by the lack of
 *  identifier/type discrimination.
 */
built_in_type_id:                   built_in_type_specifier
    |                               built_in_type_id built_in_type_specifier
pseudo_destructor_id:               built_in_type_id SCOPE ‘~’ built_in_type_id
    |                               ‘~’ built_in_type_id
    |                               TEMPLATE pseudo_destructor_id
nested_pseudo_destructor_id:        pseudo_destructor_id
    |                               id_scope nested_pseudo_destructor_id
scoped_pseudo_destructor_id:        nested_pseudo_destructor_id
    |                               global_scope scoped_pseudo_destructor_id

/*---------------------------------------------------------------------------------------------------
 * A.2 Lexical conventions
 *---------------------------------------------------------------------------------------------------*/
/*
 *  String concatenation is a phase 6, not phase 7 activity so does not really belong in the grammar.
 *  However it may be convenient to have it here to make this grammar fully functional.
 *  Unfortunately it introduces a conflict with the generalised parsing of extern “C” which
 *  is correctly resolved to maximise the string length as the token source should do anyway.
 */
string:                             StringLiteral
/*string:                           StringLiteral                           %prec SHIFT_THERE */
/*  |                               StringLiteral string  -- Perverse order avoids conflicts -- */
literal:                            IntegerLiteral
    |                               CharacterLiteral
    |                               FloatingLiteral
    |                               string
    |                               boolean_literal
    |                               NumberLiteral
string_expr:                        string
    |                               TreeLiteral
boolean_literal:                    FALSE
    |                               TRUE

/*---------------------------------------------------------------------------------------------------
 * A.3 Basic concepts
 *---------------------------------------------------------------------------------------------------*/
translation_unit:                   declaration_seq.opt
/* expression grammar */
    |                               ‘$’ tree_expression                                         { YYACCEPT; }
    |                               ‘$’ ‘{‘ tree_expression ecarb                               { YYACCEPT; }
    |                               ‘$’ bang error                                              { UNBANG(“Bad tree-expression.”); YYABORT; }
    |                               ‘$’ ‘{‘ bang error ecarb                                    { UNBANG(“Bad tree-expression}.”); YYABORT; }

/*---------------------------------------------------------------------------------------------------
 * A.4 Expressions
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 *---------------------------------------------------------------------------------------------------
 *  primary_expression covers an arbitrary sequence of all names with the exception of an unscoped destructor,
 *  which is parsed as its unary expression which is the correct disambiguation (when ambiguous).
 *  This eliminates the traditional A(B) meaning A B ambiguity, since we never have to tack an A onto
 *  the front of something that might start with (. The name length got maximised ab initio. The downside
 *  is that semantic interpretation must split the names up again.
 *
 *  Unification of the declaration and expression syntax means that unary and binary pointer declarator operators:
 *      int * * name
 *  are parsed as binary and unary arithmetic operators (int) * (*name). Since type information is not used
 *  ambiguities resulting from a cast
 *      (cast)*(value)
 *  are resolved to favour the binary rather than the cast unary to ease AST clean-up.
 *  The cast-call ambiguity must be resolved to the cast to ensure that (a)(b)c can be parsed.
 *
 *  The problem of the functional cast ambiguity
 *      name(arg)
 *  as call or declaration is avoided by maximising the name within the parsing kernel. So
 *  primary_id_expression picks up
 *      extern long int const var = 5;
 *  as an assignment to the syntax parsed as “extern long int const var”. The presence of two names is
 *  parsed so that “extern long into const” is distinguished from “var” considerably simplifying subsequent
 *  semantic resolution.
 *
 *  The generalised name is a concatenation of potential type-names (scoped identifiers or built-in sequences)
 *  plus optionally one of the special names such as an operator-function-id, conversion-function-id or
 *  destructor as the final name.
 */
primary_expression:                 literal
    |                               THIS
    |                               suffix_decl_specified_ids
/*  |                               SCOPE identifier                                        -- covered by suffix_decl_specified_ids */
/*  |                               SCOPE operator_function_id                              -- covered by suffix_decl_specified_ids */
/*  |                               SCOPE qualified_id                                      -- covered by suffix_decl_specified_ids */
    |                               abstract_expression           %prec REDUCE_HERE_MOSTLY  /* Prefer binary to unary ops, cast to call */
/*  |                               id_expression                                           -- covered by suffix_decl_specified_ids */

/*
 *  Abstract-expression covers the () and [] of abstract-declarators.
 */
abstract_expression:                parenthesis_clause
    |                               ‘[‘ expression.opt ‘]’
    |                               TEMPLATE parenthesis_clause

/*  Type I function parameters are ambiguous with respect to the generalised name, so we have to do a lookahead following
 *  any function-like parentheses. This unfortunately hits normal code, so kill the -- lines and add the ++ lines for efficiency.
 *  Supporting Type I code under the superset causes perhaps 25% of lookahead parsing. Sometimes complete class definitions
 *  get traversed since they are valid generalised type I parameters!
 */
type1_parameters:       /*----*/    parameter_declaration_list ‘;’
    |                   /*----*/    type1_parameters parameter_declaration_list ‘;’
mark_type1:                         /* empty */                                             { mark_type1(); yyclearin; }
postfix_expression:                 primary_expression
/*  |                   /++++++/    postfix_expression parenthesis_clause */
    |                   /*----*/    postfix_expression parenthesis_clause mark_type1 ‘-’
    |                   /*----*/    postfix_expression parenthesis_clause mark_type1 ‘+’ type1_parameters mark ‘{‘ error
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                        /*----*/                    { yyerrok; yyclearin; remark_type1(); unmark(); unmark(); }
    |                   /*----*/    postfix_expression parenthesis_clause mark_type1 ‘+’ type1_parameters mark error
                        /*----*/                    { yyerrok; yyclearin; remark_type1(); unmark(); unmark(); }
    |                   /*----*/    postfix_expression parenthesis_clause mark_type1 ‘+’ error
                        /*----*/                    { yyerrok; yyclearin; remark_type1(); unmark(); }
    |                               postfix_expression ‘[‘ expression.opt ‘]’
/*  |                               destructor_id ‘[‘ expression.opt ‘]’                    -- not semantically valid */
/*  |                               destructor_id parenthesis_clause                        -- omitted to resolve known ambiguity */
/*  |                               simple_type_specifier ‘(‘ expression_list.opt ‘)’       -- simple_type_specifier is a primary_expression */
    |                               postfix_expression ‘.’ declarator_id
/*  |                               postfix_expression ‘.’ TEMPLATE declarator_id           -- TEMPLATE absorbed into declarator_id. */
    |                               postfix_expression ‘.’ scoped_pseudo_destructor_id
    |                               postfix_expression ARROW declarator_id
/*  |                               postfix_expression ARROW TEMPLATE declarator_id         -- TEMPLATE absorbed into declarator_id. */
    |                               postfix_expression ARROW scoped_pseudo_destructor_id
    |                               postfix_expression INC
    |                               postfix_expression DEC
    |                               DYNAMIC_CAST ‘<‘ type_id ‘>’ ‘(‘ expression ‘)’
    |                               STATIC_CAST ‘<‘ type_id ‘>’ ‘(‘ expression ‘)’
    |                               REINTERPRET_CAST ‘<‘ type_id ‘>’ ‘(‘ expression ‘)’
    |                               CONST_CAST ‘<‘ type_id ‘>’ ‘(‘ expression ‘)’
    |                               TYPEID parameters_clause
/*  |                               TYPEID ‘(‘ expression ‘)’                               -- covered by parameters_clause */
/*  |                               TYPEID ‘(‘ type_id ‘)’                                  -- covered by parameters_clause */
expression_list.opt:                /* empty */
    |                               expression_list
expression_list:                    assignment_expression
    |                               expression_list ‘,’ assignment_expression

unary_expression:                   postfix_expression
    |                               INC cast_expression
    |                               DEC cast_expression
    |                               ptr_operator cast_expression
/*  |                               ‘*’ cast_expression                                     -- covered by ptr_operator */
/*  |                               ‘&’ cast_expression                                     -- covered by ptr_operator */
/*  |                               decl_specifier_seq ‘*’ cast_expression                  -- covered by binary operator */
/*  |                               decl_specifier_seq ‘&’ cast_expression                  -- covered by binary operator */
    |                               suffix_decl_specified_scope star_ptr_operator cast_expression   /* covers e.g int ::type::* const t = 4 */

    |                               ‘+’ cast_expression
    |                               ‘-’ cast_expression
    |                               ‘!’ cast_expression
    |                               ‘~’ cast_expression
    |                               SIZEOF unary_expression
/*  |                               SIZEOF ‘(‘ type_id ‘)’                                  -- covered by unary_expression */
    |                               new_expression
    |                               global_scope new_expression
    |                               delete_expression
    |                               global_scope delete_expression
/*  |                               DELETE ‘[‘ ‘]’ cast_expression       -- covered by DELETE cast_expression since cast_expression covers ... */
/*  |                               SCOPE DELETE ‘[‘ ‘]’ cast_expression //  ... abstract_expression cast_expression and so [] cast_expression */

delete_expression:                  DELETE cast_expression                                  /* also covers DELETE[] cast_expression */

new_expression:                     NEW new_type_id new_initializer.opt
    |                               NEW parameters_clause new_type_id new_initializer.opt
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    |                               NEW parameters_clause
/*  |                               NEW ‘(‘ type-id ‘)’                                     -- covered by parameters_clause */
    |                               NEW parameters_clause parameters_clause new_initializer.opt
/*  |                               NEW ‘(‘ type-id ‘)’ new_initializer                     -- covered by parameters_clause parameters_clause */
/*  |                               NEW parameters_clause ‘(‘ type-id ‘)’                   -- covered by parameters_clause parameters_clause */
                                                                                /* ptr_operator_seq.opt production reused to save a %prec */
new_type_id:                        type_specifier ptr_operator_seq.opt
    |                               type_specifier new_declarator
    |                               type_specifier new_type_id
new_declarator:                     ptr_operator new_declarator
    |                               direct_new_declarator
direct_new_declarator:              ‘[‘ expression ‘]’
    |                               direct_new_declarator ‘[‘ constant_expression ‘]’
new_initializer.opt:                /* empty */
    |                               ‘(‘ expression_list.opt ‘)’

/*  cast-expression is generalised to support a [] as well as a () prefix. This covers the omission of DELETE[] which when
 *  followed by a parenthesised expression was ambiguous. It also covers the gcc indexed array initialisation for free.
 */
cast_expression:                    unary_expression
    |                               abstract_expression cast_expression
/*  |                               ‘(‘ type_id ‘)’ cast_expression                             -- covered by abstract_expression */

pm_expression:                      cast_expression
    |                               pm_expression DOT_STAR cast_expression
    |                               pm_expression ARROW_STAR cast_expression
multiplicative_expression:          pm_expression
    |                               multiplicative_expression star_ptr_operator pm_expression
    |                               multiplicative_expression ‘/’ pm_expression
    |                               multiplicative_expression ‘%’ pm_expression
additive_expression:                multiplicative_expression
    |                               additive_expression ‘+’ multiplicative_expression
    |                               additive_expression ‘-’ multiplicative_expression
shift_expression:                   additive_expression
    |                               shift_expression SHL additive_expression
    |                               shift_expression SHR additive_expression
relational_expression:              shift_expression
    |                               relational_expression ‘<‘ shift_expression
    |                               relational_expression ‘>’ shift_expression
    |                               relational_expression LE shift_expression
    |                               relational_expression GE shift_expression
equality_expression:                relational_expression
    |                               equality_expression EQ relational_expression
    |                               equality_expression NE relational_expression
and_expression:                     equality_expression
    |                               and_expression ‘&’ equality_expression
exclusive_or_expression:            and_expression
    |                               exclusive_or_expression ‘^’ and_expression
inclusive_or_expression:            exclusive_or_expression
    |                               inclusive_or_expression ‘|’ exclusive_or_expression
logical_and_expression:             inclusive_or_expression
    |                               logical_and_expression LOG_AND inclusive_or_expression
logical_or_expression:              logical_and_expression
    |                               logical_or_expression LOG_OR logical_and_expression
conditional_expression:             logical_or_expression
    |                               logical_or_expression ‘?’ expression ‘:’ assignment_expression
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/*  assignment-expression is generalised to cover the simple assignment of a braced initializer in order to contribute to the
 *  coverage of parameter-declaration and init-declaration.
 */
assignment_expression:              conditional_expression
    |                               logical_or_expression assignment_operator assignment_expression
    |                               logical_or_expression ‘=’ braced_initializer
    |                               throw_expression
assignment_operator:                ‘=’ | ASS_ADD | ASS_AND | ASS_DIV | ASS_MOD | ASS_MUL | ASS_OR | ASS_SHL | ASS_SHR | ASS_SUB | ASS_XOR

/*  expression is widely used and usually single-element, so the reductions are arranged so that a
 *  single-element expression is returned as is. Multi-element expressions are parsed as a list that
 *  may then behave polymorphically as an element or be compacted to an element. */
expression.opt:                     /* empty */
    |                               expression
expression:                         assignment_expression
    |                               expression_list ‘,’ assignment_expression
constant_expression:                conditional_expression

/*  The grammar is repeated for when the parser stack knows that the next > must end a template.
 */
templated_relational_expression:    shift_expression
    |                               templated_relational_expression ‘<‘ shift_expression
    |                               templated_relational_expression LE shift_expression
    |                               templated_relational_expression GE shift_expression
templated_equality_expression:      templated_relational_expression
    |                               templated_equality_expression EQ templated_relational_expression
    |                               templated_equality_expression NE templated_relational_expression
templated_and_expression:           templated_equality_expression
    |                               templated_and_expression ‘&’ templated_equality_expression
templated_exclusive_or_expression:  templated_and_expression
    |                               templated_exclusive_or_expression ‘^’ templated_and_expression

templated_inclusive_or_expression:  templated_exclusive_or_expression
    |                               templated_inclusive_or_expression ‘|’ templated_exclusive_or_expression

templated_logical_and_expression:   templated_inclusive_or_expression
    |                               templated_logical_and_expression LOG_AND templated_inclusive_or_expression

templated_logical_or_expression:    templated_logical_and_expression
    |                               templated_logical_or_expression LOG_OR templated_logical_and_expression

templated_conditional_expression:   templated_logical_or_expression
    |                               templated_logical_or_expression ‘?’ templated_expression ‘:’ templated_assignment_expression

templated_assignment_expression:    templated_conditional_expression
    |                               templated_logical_or_expression assignment_operator templated_assignment_expression

    |                               templated_throw_expression
templated_expression:               templated_assignment_expression
    |                               templated_expression_list ‘,’ templated_assignment_expression

templated_expression_list:          templated_assignment_expression
    |                               templated_expression_list ‘,’ templated_assignment_expression
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/*---------------------------------------------------------------------------------------------------
 * A.5 Statements
 *---------------------------------------------------------------------------------------------------
 *  Parsing statements is easy once simple_declaration has been generalised to cover expression_statement.
 */
looping_statement:                  start_search looped_statement                               { end_search(); }
looped_statement:                   statement
    |                               advance_search ‘+’ looped_statement
    |                               advance_search ‘-’
statement:                          control_statement
/*  |                               expression_statement                                        -- covered by declaration_statement */
    |                               compound_statement
    |                               declaration_statement
    |                               try_block
    |                               AUTO control_statement
    |                               AUTO meta_expression_statement
control_statement:                  labeled_statement
    |                               selection_statement
    |                               iteration_statement
    |                               jump_statement
labeled_statement:                  identifier_word ‘:’ looping_statement
    |                               CASE constant_expression ‘:’ looping_statement
    |                               DEFAULT ‘:’ looping_statement
/*expression_statement:             expression.opt ‘;’                                          -- covered by declaration_statement */
compound_statement:                 ‘{‘ statement_seq.opt ‘}’
    |                               ‘{‘ statement_seq.opt looping_statement ‘#’ bang error ‘}’  { UNBANG(“Bad statement-seq.”); }
statement_seq.opt:                  /* empty */
    |                               statement_seq.opt looping_statement
    |                               statement_seq.opt looping_statement ‘#’ bang error ‘;’      { UNBANG(“Bad statement.”); }
/*
 *  The dangling else conflict is resolved to the innermost if.
 */
selection_statement:                IF ‘(‘ condition ‘)’ looping_statement    %prec SHIFT_THERE
    |                               IF ‘(‘ condition ‘)’ looping_statement ELSE looping_statement
    |                               SWITCH ‘(‘ condition ‘)’ looping_statement
condition.opt:                      /* empty */
    |                               condition
condition:                          parameter_declaration_list
/*  |                               expression                                                  -- covered by parameter_declaration_list */
/*  |                               type_specifier_seq declarator ‘=’ assignment_expression     -- covered by parameter_declaration_list */
iteration_statement:                WHILE ‘(‘ condition ‘)’ looping_statement
    |                               DO looping_statement WHILE ‘(‘ expression ‘)’ ‘;’
    |                               FOR ‘(‘ for_init_statement condition.opt ‘;’ expression.opt ‘)’ looping_statement

for_init_statement:                 simple_declaration
/*  |                               expression_statement                                        -- covered by simple_declaration */
jump_statement:                     BREAK ‘;’
    |                               CONTINUE ‘;’
    |                               RETURN expression.opt ‘;’
    |                               GOTO identifier ‘;’
declaration_statement:              block_declaration

/*---------------------------------------------------------------------------------------------------
 * A.6 Declarations
 *---------------------------------------------------------------------------------------------------*/
compound_declaration:               ‘{‘ nest declaration_seq.opt ‘}’                            { unnest(); }
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    |                               ‘{‘ nest declaration_seq.opt util looping_declaration ‘#’ bang error ‘}’
                                                                                                { unnest(); UNBANG(“Bad declaration-seq.”); }
declaration_seq.opt:                /* empty */
    |                               declaration_seq.opt util looping_declaration
    |                               declaration_seq.opt util looping_declaration ‘#’ bang error ‘;’ { UNBANG(“Bad declaration.”); }
looping_declaration:                start_search1 looped_declaration                            { end_search(); }
looped_declaration:                 declaration
    |                               advance_search ‘+’ looped_declaration
    |                               advance_search ‘-’
lined_declaration:                  line declaration
declaration:                        block_declaration
    |                               function_definition
    |                               template_declaration
/*  |                               explicit_instantiation                                      -- covered by relevant declarations */
    |                               explicit_specialization
    |                               specialised_declaration
    |                               accessibility_specifier
    |                               compound_declaration
    |                               meta_control_statement
    |                               AUTO meta_control_statement
    |                               AUTO meta_class_specifier semi
    |                               AUTO meta_expression_statement
    |                               AUTO meta_function_definition
    |                               syntax_macro_definition
    |                               include_declaration semi
    |                               file_dependency_declaration
    |                               file_placement_declaration
    |                               filespace_specifier semi
specialised_declaration:            linkage_specification
    |                               namespace_declaration
    |                               namespace_definition
    |                               TEMPLATE specialised_declaration
block_declaration:                  simple_declaration
    |                               specialised_block_declaration
specialised_block_declaration:      asm_definition
    |                               namespace_alias_definition
/*  |                               using_declaration                                           -- covered by simple_declaration */
    |                               using_directive
    |                               TEMPLATE specialised_block_declaration
simple_declaration:                 ‘;’
    |                               init_declaration ‘;’
    |                               constructor_head ‘,’ assignment_expression ‘;’
    |                               init_declarations ‘;’
    |                               decl_specifier_prefix simple_declaration

/*  A decl-specifier following a ptr_operator provokes a shift-reduce conflict for
 *      * const name
 *  which is resolved in favour of the pointer, and implemented by providing versions
 *  of decl-specifier guaranteed not to start with a cv_qualifier.
 *
 *  decl-specifiers are implemented type-centrically. That is the semantic constraint
 *  that there must be a type is exploited to impose structure, but actually eliminate
 *  very little syntax. built-in types are multi-name and so need a different policy.
 *
 *  non-type decl-specifiers are bound to the left-most type in a decl-specifier-seq,
 *  by parsing from the right and attaching suffixes to the right-hand type. Finally
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 *  residual prefixes attach to the left.
 */
suffix_built_in_decl_specifier.raw: built_in_type_specifier
    |                               suffix_built_in_decl_specifier.raw built_in_type_specifier
    |                               suffix_built_in_decl_specifier.raw decl_specifier_suffix
suffix_built_in_decl_specifier:     suffix_built_in_decl_specifier.raw
    |                               TEMPLATE suffix_built_in_decl_specifier
suffix_named_decl_specifier:        scoped_id
    |                               elaborate_type_specifier
    |                               suffix_named_decl_specifier decl_specifier_suffix
suffix_named_decl_specifier.bi:     suffix_named_decl_specifier
    |                               suffix_named_decl_specifier suffix_built_in_decl_specifier.raw
suffix_named_decl_specifiers:       suffix_named_decl_specifier.bi
    |                               suffix_named_decl_specifiers suffix_named_decl_specifier.bi
suffix_named_decl_specifiers.sf:    scoped_special_function_id          /* operators etc */
    |                               suffix_named_decl_specifiers
    |                               suffix_named_decl_specifiers scoped_special_function_id
suffix_decl_specified_ids:          suffix_built_in_decl_specifier
    |                               suffix_built_in_decl_specifier suffix_named_decl_specifiers.sf
    |                               suffix_named_decl_specifiers.sf
suffix_decl_specified_scope:        suffix_named_decl_specifiers SCOPE
    |                               suffix_built_in_decl_specifier suffix_named_decl_specifiers SCOPE
    |                               suffix_built_in_decl_specifier SCOPE

decl_specifier_affix:               storage_class_specifier
    |                               function_specifier
    |                               FRIEND
    |                               TYPEDEF
    |                               cv_qualifier
/*  The bogus conflict between public: as an anonymous bit-field and member-specification is resolved to the member-specification.*/
    |                               access_specifier            %prec SHIFT_THERE
/*  using-declaration is generalised to cover a much more general concept of re-use, so using treated like typedef.
 *  Unfortunately this gives the same conflict on string as for linkage_specification, so the %prec forces using followed
 *  by a string to be treated as an include rather than a declaration. */
    |                               USING                       %prec SHIFT_THERE

decl_specifier_suffix:              decl_specifier_affix
    |                               AUTO

decl_specifier_prefix:              decl_specifier_affix
    |                               TEMPLATE decl_specifier_prefix

storage_class_specifier:            REGISTER | STATIC | MUTABLE
    |                               EXTERN                  %prec SHIFT_THERE                   /* Prefer linkage specification */
    |                               ‘!’ STATIC

function_specifier:                 EXPLICIT
    |                               INLINE                  %prec SHIFT_THERE                   /* Prefer INLINE / IMPLEMENTATION */
    |                               VIRTUAL                 %prec SHIFT_THERE                   /* Prefer VIRTUAL / PURE */
    |                               ‘!’ INLINE
    |                               INLINE ‘/’ IMPLEMENTATION
    |                               INLINE ‘/’ INTERFACE
    |                               ‘!’ VIRTUAL
    |                               VIRTUAL ‘/’ PURE

type_specifier:                     simple_type_specifier
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    |                               elaborate_type_specifier
    |                               cv_qualifier
/* The following augment type_specifier rather than cv_qualifier to avoid a conflict on ! between
 *      a * ! const b     and    a * ! b    which requires a 2-token lookahead to resolve. */
    |                               ‘!’ CONST
    |                               ‘!’ VOLATILE

elaborate_type_specifier:           class_specifier
    |                               enum_specifier
    |                               elaborated_type_specifier
    |                               TEMPLATE elaborate_type_specifier
simple_type_specifier:              scoped_id
    |                               built_in_type_specifier
built_in_type_specifier:            BuiltInTypeSpecifier

/*
 *  The over-general use of declaration_expression to cover decl-specifier-seq.opt declarator in a function-definition means that
 *      class X { };
 *  could be a function-definition or a class-specifier.
 *      enum X { };
 *  could be a function-definition or an enum-specifier.
 *  The function-definition is not syntactically valid so resolving the false conflict in favour of the
 *  elaborated_type_specifier is correct.
 */
elaborated_type_specifier:          elaborated_class_specifier
    |                               elaborated_enum_specifier
    |                               TYPENAME scoped_id

elaborated_enum_specifier:          ENUM scoped_id               %prec SHIFT_THERE
enum_specifier:                     ENUM scoped_id enumerator_clause
    |                               ENUM enumerator_clause
enumerator_clause:                  ‘{‘ enumerator_list_ecarb
    |                               ‘{‘ enumerator_list enumerator_list_ecarb
    |                               ‘{‘ enumerator_list ‘,’ enumerator_definition_ecarb
enumerator_list_ecarb:              ‘}’
    |                               bang error ‘}’                                              { UNBANG(“Bad enumerator-list.”); }
enumerator_definition_ecarb:        ‘}’
    |                               bang error ‘}’                                              { UNBANG(“Bad enumerator-definition.”); }
enumerator_definition_filler:       /* empty */
    |                               bang error ‘,’                                              { UNBANG(“Bad enumerator-definition.”); }
enumerator_list_head:               enumerator_definition_filler
    |                               enumerator_list ‘,’ enumerator_definition_filler
enumerator_list:                    enumerator_list_head enumerator_definition
enumerator_definition:              enumerator
    |                               enumerator ‘=’ constant_expression
enumerator:                         identifier

namespace_definition:               NAMESPACE scoped_id compound_declaration
    |                               NAMESPACE compound_declaration
namespace_alias_definition:         NAMESPACE scoped_id ‘=’ scoped_id ‘;’
namespace_declaration:              NAMESPACE scoped_id ‘;’

using_directive:                    USING NAMESPACE scoped_id ‘;’
asm_definition:                     ASM ‘(‘ string ‘)’ ‘;’
linkage_specification:              EXTERN string looping_declaration
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/*   |                              EXTERN string compound_declaration                          -- covered by declaration */

/*---------------------------------------------------------------------------------------------------
 * A.7 Declarators
 *---------------------------------------------------------------------------------------------------*/
/*init-declarator is named init_declaration to reflect the embedded decl-specifier-seq.opt*/
init_declarations:                  assignment_expression ‘,’ init_declaration
    |                               init_declarations ‘,’ init_declaration
    |                               init_object_declaration ‘,’ init_declaration
    |                               constructor_head ‘,’ bit_field_init_declaration
    |                               constructor_head ‘,’ init_object_declaration
init_declaration:                   assignment_expression
/*  |                               assignment_expression ‘=’ initializer_clause                -- covered by assignment_expression */
/*  |                               assignment_expression ‘(‘ expression_list ‘)’               -- covered by another set of call arguments */
    |                               bit_field_init_declaration
    |                               init_object_declaration
init_object_declaration:            assignment_expression object_statements_clause
    |                               bit_field_init_declaration object_statements_clause

/*declarator:                                                                                   -- covered by assignment_expression */
/*direct_declarator:                                                                            -- covered by postfix_expression */

star_ptr_operator:                  ‘*’
    |                               star_ptr_operator cv_qualifier
nested_ptr_operator:                star_ptr_operator
    |                               id_scope nested_ptr_operator
ptr_operator:                       ‘&’
    |                               nested_ptr_operator
    |                               global_scope nested_ptr_operator
ptr_operator_seq:                   ptr_operator
    |                               ptr_operator ptr_operator_seq
/* Independently coded to localise the shift-reduce conflict: sharing just needs another %prec */
ptr_operator_seq.opt:               /* empty */                         %prec SHIFT_THERE       /* Maximise type length */
    |                               ptr_operator ptr_operator_seq.opt

cv_qualifier_seq.opt:               /* empty */
    |                               cv_qualifier_seq.opt cv_qualifier
cv_qualifier:                       CONST | VOLATILE /* | CvQualifier */

/*type_id                                                                                       -- also covered by parameter declaration */
type_id:                            type_specifier abstract_declarator.opt
    |                               type_specifier type_id

/*abstract_declarator:                                                                          -- also covered by parameter declaration */
abstract_declarator.opt:            /* empty */
    |                               ptr_operator abstract_declarator.opt
    |                               direct_abstract_declarator
direct_abstract_declarator.opt:     /* empty */
    |                               direct_abstract_declarator
direct_abstract_declarator:         direct_abstract_declarator.opt parenthesis_clause
    |                               direct_abstract_declarator.opt ‘[‘ ‘]’
    |                               direct_abstract_declarator.opt ‘[‘ constant_expression ‘]’
/*  |                               ‘(‘ abstract_declarator ‘)’                                 -- covered by parenthesis_clause */

parenthesis_clause:                 parameters_clause cv_qualifier_seq.opt
    |                               parameters_clause cv_qualifier_seq.opt exception_specification
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parameters_clause:                  ‘(‘ parameter_declaration_clause ‘)’
/* parameter_declaration_clause also covers init_declaration, type_id, declarator and abstract_declarator. */
parameter_declaration_clause:       /* empty */
    |                               parameter_declaration_list
    |                               parameter_declaration_list ELLIPSIS
parameter_declaration_list:         parameter_declaration
    |                               parameter_declaration_list ‘,’ parameter_declaration

/* A typed abstract qualifier such as
 *      Class * ...
 * looks like a multiply, so pointers are parsed as their binary operation equivalents that
 * ultimately terminate with a degenerate right hand term.
 */
abstract_pointer_declaration:       ptr_operator_seq
    |                               multiplicative_expression star_ptr_operator ptr_operator_seq.opt
abstract_parameter_declaration:     abstract_pointer_declaration
    |                               and_expression ‘&’
    |                               and_expression ‘&’ abstract_pointer_declaration
special_parameter_declaration:      abstract_parameter_declaration
    |                               abstract_parameter_declaration ‘=’ assignment_expression
    |                               ELLIPSIS
parameter_declaration:              assignment_expression
    |                               special_parameter_declaration
    |                               decl_specifier_prefix parameter_declaration

/*  The grammar is repeated for use within template <>
 */
templated_parameter_declaration:    templated_assignment_expression
    |                               templated_abstract_declaration
    |                               templated_abstract_declaration ‘=’ templated_assignment_expression

    |                               decl_specifier_prefix templated_parameter_declaration
templated_abstract_declaration:     abstract_pointer_declaration
    |                               templated_and_expression ‘&’
    |                               templated_and_expression ‘&’ abstract_pointer_declaration

/*  function_definition includes constructor, destructor, implicit int definitions too.
 *  A local destructor is successfully parsed as a function-declaration but the ~ was treated as a unary operator.
 *  constructor_head is the prefix ambiguity between a constructor and a member-init-list starting with a bit-field.
 */
function_definition:        ctor_definition
    |                       func_definition
func_definition:            assignment_expression function_try_block
    |                       assignment_expression function_body
    |                       decl_specifier_prefix func_definition
ctor_definition:            constructor_head function_try_block
    |                       constructor_head function_body
    |                       decl_specifier_prefix ctor_definition
constructor_head:           bit_field_init_declaration
    |                       constructor_head ‘,’ assignment_expression
function_try_block:         TRY function_block handler_seq
function_block:             ctor_initializer.opt function_body
function_body:              compound_statement

/*  An = initializer looks like an extended assignment_expression.
 *  An () initializer looks like a function call.
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 *  initializer is therefore flattened into its generalised customers.
 *initializer:              ‘=’ initializer_clause                                      -- flattened into caller
 *  |                       ‘(‘ expression_list ‘)’                                     -- flattened into caller */
initializer_clause:         assignment_expression
    |                       braced_initializer
braced_initializer:         ‘{‘ initializer_list ‘}’
    |                       ‘{‘ initializer_list ‘,’ ‘}’
    |                       ‘{‘ ‘}’
    |                       ‘{‘ looping_initializer_clause ‘#’ bang error ‘}’           { UNBANG(“Bad initializer_clause.”); }
    |                       ‘{‘ initializer_list ‘,’ looping_initializer_clause ‘#’ bang error ‘}’
                                                                                        { UNBANG(“Bad initializer_clause.”); }
initializer_list:           looping_initializer_clause
    |                       initializer_list ‘,’ looping_initializer_clause
looping_initializer_clause: start_search looped_initializer_clause                      { end_search(); }
looped_initializer_clause:  initializer_clause
    |                       advance_search ‘+’ looped_initializer_clause
    |                       advance_search ‘-’

/*---------------------------------------------------------------------------------------------------
 * A.8 Classes
 *---------------------------------------------------------------------------------------------------
 *
 *  An anonymous bit-field declaration may look very like inheritance:
 *      class A : B = 3;
 *      class A : B ;
 *  The two usages are too distant to try to create and enforce a common prefix so we have to resort to
 *  a parser hack by backtracking. Inheritance is much the most likely so we mark the input stream context
 *  and try to parse a base-clause. If we successfully reach a { the base-clause is ok and inheritance was
 *  the correct choice so we unmark and continue. If we fail to find the { an error token causes back-tracking
 *  to the alternative parse in elaborated_class_specifier which regenerates the : and declares unconditional success.
 */
colon_mark:                 ‘:’                                                         { mark(); }
elaborated_class_specifier: class_key scoped_id                    %prec SHIFT_THERE
    |                       class_key scoped_id colon_mark error                        { rewind_colon(); }
class_specifier_head:       class_key scoped_id colon_mark base_specifier_list ‘{‘      { unmark(); }
    |                       class_key ‘:’ base_specifier_list ‘{‘
    |                       class_key scoped_id ‘{‘
    |                       class_key ‘{‘
class_key:                  CLASS | STRUCT | UNION
class_specifier:            class_specifier_head nest declaration_seq.opt ‘}’           { unnest(); }
    |                       class_specifier_head nest declaration_seq.opt util looping_declaration ‘#’ bang error ‘}’
                                            { unnest(); UNBANG(“Bad member_specification.opt.”); }
accessibility_specifier:    access_specifier ‘:’
bit_field_declaration:      assignment_expression ‘:’ bit_field_width
    |                       ‘:’ bit_field_width
bit_field_width:            logical_or_expression
/*  |                       logical_or_expression ‘?’ expression ‘:’ assignment_expression  -- has SR conflict w.r.t later = */
    |                       logical_or_expression ‘?’ bit_field_width ‘:’ bit_field_width
bit_field_init_declaration: bit_field_declaration
    |                       bit_field_declaration ‘=’ initializer_clause

/*---------------------------------------------------------------------------------------------------
 * A.9 Derived classes
 *---------------------------------------------------------------------------------------------------*/
/*base_clause:              ‘:’ base_specifier_list                                     -- flattened */
base_specifier_list:        base_specifier
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    |                       base_specifier_list ‘,’ base_specifier
base_specifier:             scoped_id
    |                       access_specifier base_specifier
    |                       VIRTUAL base_specifier
    |                       ‘!’ VIRTUAL base_specifier
    |                       AUTO base_specifier
    |                       built_in_type_id
access_specifier:           PRIVATE | PROTECTED | PUBLIC

/*---------------------------------------------------------------------------------------------------
 * A.10 Special member functions
 *---------------------------------------------------------------------------------------------------*/
conversion_function_id:     OPERATOR conversion_type_id
conversion_type_id:         type_specifier ptr_operator_seq.opt
    |                       type_specifier conversion_type_id
/*
 *  Ctor-initialisers can look like a bit field declaration, given the generalisation of names:
 *      Class(Type) : m1(1), m2(2) { }
 *      NonClass(bit_field) : int(2), second_variable, ...
 *  The grammar below is used within a function_try_block or function_definition.
 *  See simple_member_declaration for use in normal member function_definition.
 */
ctor_initializer.opt:       /* empty */
    |                       ctor_initializer
ctor_initializer:           ‘:’ mem_initializer_list
    |                       ‘:’ mem_initializer_list bang error                         { UNBANG(“Bad ctor-initializer.”); }
mem_initializer_list:       mem_initializer
    |                       mem_initializer_list_head mem_initializer
mem_initializer_list_head:  mem_initializer_list ‘,’
    |                       mem_initializer_list bang error ‘,’                         { UNBANG(“Bad mem-initializer.”); }
mem_initializer:            mem_initializer_id ‘(‘ expression_list.opt ‘)’
mem_initializer_id:         scoped_id

/*---------------------------------------------------------------------------------------------------
 * A.11 Overloading
 *---------------------------------------------------------------------------------------------------*/
operator_function_id:       OPERATOR operator
/*
 *  It is not clear from the ANSI standard whether spaces are permitted in delete[]. If not then it can
 *  be recognised and returned as DELETE_ARRAY by the lexer. Assuming spaces are permitted there is an
 *  ambiguity created by the over generalised nature of expressions. operator new is a valid delarator-id
 *  which we may have an undimensioned array of. Semantic rubbish, but syntactically valid. Since the
 *  array form is covered by the declarator consideration we can exclude the operator here. The need
 *  for a semantic rescue can be eliminated at the expense of a couple of shift-reduce conflicts by
 *  removing the comments on the next four lines.
 */
operator:             /*++++*/      NEW
    |                 /*++++*/      DELETE
/*  |                 / ---- /      NEW                 %prec SHIFT_THERE
/*  |                 / ---- /      DELETE              %prec SHIFT_THERE
/*  |                 / ---- /      NEW ‘[‘ ‘]’                                                 -- Covered by array of OPERATOR NEW */
/*  |                 / ---- /      DELETE ‘[‘ ‘]’                                              -- Covered by array of OPERATOR DELETE */
    |                               ‘+’
    |                               ‘-’
    |                               ‘*’
    |                               ‘/’
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    |                               ‘%’
    |                               ‘^’
    |                               ‘&’
    |                               ‘|’
    |                               ‘~’
    |                               ‘!’
    |                               ‘=’
    |                               ‘<‘
    |                               ‘>’
    |                               ASS_ADD
    |                               ASS_SUB
    |                               ASS_MUL
    |                               ASS_DIV
    |                               ASS_MOD
    |                               ASS_XOR
    |                               ASS_AND
    |                               ASS_OR
    |                               SHL
    |                               SHR
    |                               ASS_SHR
    |                               ASS_SHL
    |                               EQ
    |                               NE
    |                               LE
    |                               GE
    |                               LOG_AND
    |                               LOG_OR
    |                               INC
    |                               DEC
    |                               ‘,’
    |                               ARROW_STAR
    |                               ARROW
    |                               ‘(‘ ‘)’
    |                               ‘[‘ ‘]’

/*---------------------------------------------------------------------------------------------------
 * A.12 Templates
 *---------------------------------------------------------------------------------------------------*/
template_declaration:               template_parameter_clause declaration
    |                               EXPORT template_declaration
/*  This extension is only defined for USING, but we need to use decl_specifier_prefix to avoid conflicts. */
    |                               decl_specifier_prefix template_declaration
template_parameter_clause:          TEMPLATE ‘<‘ template_parameter_list ‘>’
template_parameter_list:            template_parameter
    |                               template_parameter_list ‘,’ template_parameter
template_parameter:                 simple_type_parameter
    |                               simple_type_parameter ‘=’ type_id
    |                               templated_type_parameter
    |                               templated_type_parameter ‘=’ identifier
    |                               templated_parameter_declaration
    |                               bang error                                                  { UNBANG(“Bad template-parameter.”); }
simple_type_parameter:              CLASS
/*  |                               CLASS identifier                                            -- covered by parameter_declaration */
    |                               TYPENAME
/*  |                               TYPENAME identifier                                         -- covered by parameter_declaration */
templated_type_parameter:           template_parameter_clause CLASS
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    |                               template_parameter_clause CLASS identifier
template_id:                        TEMPLATE identifier ‘<‘ template_argument_list ‘>’
    |                               TEMPLATE template_id
/*
 *  template-argument is evaluated using a templated...expression so that > resolves to end of template.
 */
template_argument_list:             template_argument
    |                               template_argument_list ‘,’ template_argument
template_argument:                  templated_parameter_declaration
/*  |                               type_id                                                     -- covered by templated_parameter_declaration */
/*  |                               template_name                                               -- covered by templated_parameter_declaration */
/*  |                               error                                                       -- must allow template failure to re-search */

/*
 *  Generalised naming makes identifier a valid declaration, so TEMPLATE identifier is too.
 *  The TEMPLATE prefix is therefore folded into all names, parenthesis_clause and decl_specifier_prefix.
 */
/*explicit_instantiation:           TEMPLATE declaration */
explicit_specialization:            TEMPLATE ‘<‘ ‘>’ declaration
/*  This extension is only defined for USING, but we need to use decl_specifier_prefix to avoid conflicts. */
    |                               decl_specifier_prefix explicit_specialization

/*---------------------------------------------------------------------------------------------------
 * A.13 Exception Handling
 *---------------------------------------------------------------------------------------------------*/
try_block:                          TRY compound_statement handler_seq
/*function_try_block:                                                                           -- moved near function_block */
/* A handler_seq may follow a try_block in a compound_tree_statement such as:
 *      if (a) try { } catch(a) {} catch(b) {} catch(c) {} ...
 *  we resolve the conflict by maximising the handler sequence. */
handler_seq:                        handler                                 %prec SHIFT_THERE   /* Maximise length */
    |                               handler handler_seq
handler:                            CATCH ‘(‘ exception_declaration ‘)’ compound_statement
exception_declaration:              parameter_declaration
/*                                  ELLIPSIS                                                    -- covered by parameter_declaration */
throw_expression:                   THROW
    |                               THROW assignment_expression
templated_throw_expression:         THROW
    |                               THROW templated_assignment_expression
exception_specification:            THROW ‘(‘ ‘)’
    |                               THROW ‘(‘ type_id_list ‘)’
type_id_list:                       type_id
    |                               type_id_list ‘,’ type_id

/*---------------------------------------------------------------------------------------------------
 * A.14 Tree literals
 *---------------------------------------------------------------------------------------------------*/
primary_tree_expression:            meta_scoped_id
    |                               ‘(‘ tree_expression ‘)’
postfix_tree_expression:            primary_tree_expression
    |                               postfix_tree_expression ‘[‘ ‘]’
    |                               postfix_tree_expression ‘[‘ constant_expression ‘]’
    |                               postfix_tree_expression ‘(‘ tree_argument_list.opt ‘)’
    |                               postfix_tree_expression ‘.’ scoped_id
    |                               postfix_tree_expression ARROW scoped_id
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tree_expression:                    postfix_tree_expression
    |                               ‘*’ tree_expression

/* tree_argument_list.opt are carefully coded to avoid conflicts between the components of a constructor_head at the start of a function_definition
 * and the equivalent discrete elements. There is no need to resolve a conflict on “,”!, which is fortunate because it couldn’t work. */
tree_argument_list.opt:             tree_arguments.head
    |                               tree_arguments.head ‘,’ tree_argument_list.opt
    |                               tree_argument.ctors
tree_argument.ctors:                constructor_head
    |                               decl_specifier_prefix tree_argument.ctors
tree_arguments.head:                /* empty */
    |                               tree_argument.most
    |                               assignment_expression
    |                               func_definition
    |                               tree_argument.ctors_comma_most
tree_argument.ctors_comma_most:     constructor_head ‘,’ tree_argument.most
    |                               decl_specifier_prefix tree_argument.ctors_comma_most
tree_argument.most:                 terminated_tree_argument
    |                               ctor_definition
    |                               unterminated_tree_argument.most
    |                               unterminated_tree_argument.most ‘;’
    |                               tree_argument.misc
    |                               tree_argument.misc ‘;’
tree_argument.misc:                 decl_specifier_prefix
/*  |                               assignment_expression                                       -- separated out */
/*  |                               bit_field_init_declaration                                  -- separated out into tree_argument.ctors */
/*  |                               function_definition                                         -- split into ctor/func_definition */
    |                               init_object_declaration
    |                               special_parameter_declaration
    |                               decl_specifier_prefix assignment_expression
    |                               decl_specifier_prefix tree_argument.misc

looping_unterminated_tree_argument: start_search looped_unterminated_tree_argument              { end_search(); }
looped_unterminated_tree_argument:  unterminated_tree_argument
    |                               advance_search ‘+’ looped_unterminated_tree_argument
/*  |                               advance_search ‘-’ */
/* Omission of the preceding line which causes two reduce/reduce conflicts is justified provided the
 * looped_unterminated_tree_argument rules are only used within a compound_tree_statement, where the alternate
 * looping search for a tree_statement precedes and dominates this search. Since the cascaded advance_search ‘-’
 * is only used to terminate a total failure of the search for a plausible template/arithmetic syntax, it doesn’t
 * matter, apart from minor error reporting niceties, whether it is the statement or unterminated argument search
 * that is deemed to have failed.
 */
looping_tree_statement:             start_search looped_tree_statement                          { end_search(); }
looped_tree_statement:              tree_statement
    |                               advance_search ‘+’ looped_tree_statement
    |                               advance_search ‘-’
tree_statement:                     ‘;’
    |                               terminated_tree_argument
    |                               unterminated_tree_argument ‘;’
    |                               function_definition
compound_tree_statement:            ‘{‘ tree_statement_seq.opt ‘}’
    |                               ‘{‘ tree_statement_seq.opt looping_unterminated_tree_argument ‘}’
    |                               ‘{‘ tree_statement_seq.opt looping_unterminated_tree_argument ‘#’ bang error ‘}’
                                                                                { UNBANG(“Bad compound-tree-statement.”); }
    |                               ‘{‘ tree_statement_seq.opt looping_tree_statement ‘#’ bang error ‘}’
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                                                                                { UNBANG(“Bad compound-tree-statement.”); }
tree_statement_seq.opt:             /* empty */
    |                               tree_statement_seq.opt looping_tree_statement
    |                               tree_statement_seq.opt looping_tree_statement ‘#’ bang error ‘;’
                                                                                { UNBANG(“Bad tree-statement.”); }

/*  Terminated syntax has an unambiguous end and does not need a ; as a meta-variable initializer. */
terminated_tree_argument:           asm_definition
    |                               compound_tree_statement
/*  |                               declaration_statement ‘;’                   -- covered by simple_tree_declaration ; */
/*  |                               explicit_instantiation                      -- covered by simple_tree_declaration ; */
    |                               explicit_specialization
/*  |                               expression_statement ‘;’                    -- covered by simple_tree_declaration ; */
    |                               file_dependency_declaration
    |                               file_placement_declaration
    |                               include_declaration semi
    |                               iteration_statement
/*  |                               jump_statement                              -- covered by BREAK ; */
    |                               labeled_statement
    |                               linkage_specification
    |                               namespace_alias_definition
    |                               namespace_declaration
    |                               namespace_definition
/*  |                               parameter_declaration ‘;’                   -- covered by simple_tree_declaration ; */
    |                               selection_statement
    |                               template_declaration
    |                               using_directive
    |                               AUTO meta_control_statement
    |                               AUTO meta_expression_statement
    |                               AUTO meta_function_definition
    |                               OPERATOR ‘;’

/*  Unterminated syntax has no obvious end and/or must have a ; as a meta-variable initializer. */
unterminated_tree_argument:         unterminated_tree_argument.most
    |                               simple_tree_declaration
unterminated_tree_argument.most:    accessibility_specifier
/*  |                               access_specifier                            -- covered by decl_specifier_affix */
/*  |                               base_specifier                              -- covered by simple_tree_declaration */
/*  |                               built_in_type_specifier                     -- covered by simple_tree_declaration */
/*  |                               class_specifier                             -- covered by simple_tree_declaration */
/*  |                               condition                                   -- covered by simple_tree_declaration */
/*  |                               cv_qualifier                                -- covered by simple_tree_declaration */
/*  |                               decl_specifier                              -- covered by simple_tree_declaration */
/*  |                               enum_specifier                              -- covered by simple_tree_declaration */
/*  |                               enumerator_definition                       -- covered by simple_tree_declaration */
/*  |                               exception_declaration                       -- covered by simple_tree_declaration */
/*  |                               exception_specification                     -- covered by simple_tree_declaration */
    |                               filespace_specifier
/*  |                               function_definition                         -- not part of .most */
    |                               function_try_block
    |                               handler_seq
/*  |                               initializer_clause                          -- covered by simple_tree_declaration, compound_statement */
/*  |                               mem_initializer                             -- covered by simple_tree_declaration */
    |                               AUTO meta_class_specifier
/*  |                               operator                                    -- mostly covered by token.punct */
/*  |                               parameter_declaration                       -- not part of .most */
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/*  |                               simple_tree_declaration                     -- not part of .most */
    |                               simple_type_parameter
/*  |                               storage_class_specifier                     -- covered by simple_tree_declaration */
/*  |                               template_argument                           -- covered by simple_tree_declaration */
/*  |                               template_parameter                          -- covered by simple_tree_declaration */
/*  |                               try_block                                   -- covered by function_try_block */
/*  |                               type_id                                     -- covered by simple_tree_declaration */
/*  |                               type_parameter                              -- covered by simple_tree_declaration, template_declaration */
    |                               reserved_id
    |                               token.punct
    |                               AUTO
/*  |                               CATCH                                       -- awkward function-definition at end of terminated  */
/*  |                               CLASS                                       -- covered by simple_type_parameter */
/*  |                               DO                                          -- DO ; awkward */
    |                               ENUM
    |                               NAMESPACE
/*  |                               OPERATOR                                    -- OPERATOR , awkward */
    |                               STRUCT
    |                               TEMPLATE
/*  |                               THROW                                       -- covered by throw-expression */
/*  |                               TYPENAME                                    -- covered by simple_type_parameter */
    |                               UNION
/*  |                               ‘*’ | ‘&’ | ELLIPSIS                        -- covered by simple_tree_declaration */
/*  |                               ‘#’                                         -- used as error iteration flag */
/*  |                               ‘,’ | ‘{‘ | ‘}’ | ‘(‘ | ‘)’ | ‘;’           -- awkward - major punctuation */
/*  |                               ‘/’                                         -- awkward looks like switch */
reserved_id:                        ASM | BREAK | CASE | CONST_CAST | CONTINUE | DEFAULT | DELETE | DYNAMIC_CAST | ELSE | FOR
    |                               GOTO | IF | NEW | REINTERPRET_CAST | RETURN | SIZEOF | STATIC_CAST | SWITCH | TRY | TYPEID | WHILE
    |                               EXPORT
token.punct:                        SCOPE | SHL | SHR | EQ | NE | LE | GE | LOG_AND | LOG_OR | INC | DEC | ARROW | ARROW_STAR | DOT_STAR
    |                               ASS_ADD | ASS_AND | ASS_DIV | ASS_MOD | ASS_MUL | ASS_OR | ASS_SHL | ASS_SHR | ASS_SUB | ASS_XOR
    |                               ‘[‘ | ‘]’ | ‘:’ | ‘?’ | ‘.’
    |                               ‘+’ | ‘-’ | ‘%’ | ‘^’ | ‘|’ | ‘~’ | ‘!’ | ‘=’ | ‘<‘ | ‘>’
    |                               ‘\’’ | ‘\”’ | ‘\\’
    |                               ‘@’ | ‘$’

simple_tree_declaration:            decl_specifier_prefix
    |                               init_declaration
    |                               constructor_head ‘,’ assignment_expression
    |                               init_declarations
    |                               special_parameter_declaration
    |                               decl_specifier_prefix simple_tree_declaration

/*---------------------------------------------------------------------------------------------------
 * A.15 Object statements
 *---------------------------------------------------------------------------------------------------*/
object_statements_clause:           ‘:’ ‘{‘ object_statement_seq.opt ‘}’
    |                               ‘:’ ‘{‘ object_statement_seq.opt looping_object_statement ‘#’ bang error ‘}’
                                                                                { UNBANG(“Bad object-statements-clause.”);}
object_statement_seq.opt:           /* empty */
    |                               object_statement_seq.opt looping_object_statement
    |                               object_statement_seq.opt looping_object_statement ‘#’ bang error ‘;’
                                                                                { UNBANG(“Bad object-statement.”); }
looping_object_statement:           start_search looped_object_statement                        { end_search(); }
looped_object_statement:            object_statement
    |                               advance_search ‘+’ looped_object_statement
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    |                               advance_search ‘-’
object_statement:                   ‘;’
    |                               function_used_block
    |                               ‘=’ initializer_clause ‘;’
    |                               ‘(‘ expression_list ‘)’ ‘;’
    |                               file_dependency_declaration
    |                               file_placement_declaration
    |                               filespace_specifier semi
    |                               meta_control_statement
    |                               AUTO meta_control_statement
    |                               AUTO meta_expression_statement
    |                               AUTO meta_function_definition
    |                               derived_clause object_statement
    |                               derived_clause ‘:’ ‘{‘ object_statement_seq.opt ‘}’
function_used_block:                function_block
    |                               function_try_block
    |                               ctor_initializer ‘;’
    |                               USING file_id_list function_used_block
    |                               segment function_used_block
segment:                            BODY
    |                               ENTRY
    |                               EXIT
    |                               POST
    |                               PRE

/*---------------------------------------------------------------------------------------------------
 * A.16 Derivation rules
 *---------------------------------------------------------------------------------------------------*/
derived_clause:                     DERIVED ‘(‘ meta_conditional_expression ‘)’

/*---------------------------------------------------------------------------------------------------
 * A 17.1 meta-names
 *---------------------------------------------------------------------------------------------------*/
meta_id:                            id
    |                               meta_simple_type
    |                               AUTO
meta_scope:                         meta_id SCOPE
meta_nested_id:                     meta_id
    |                               meta_scope ‘~’ meta_id
    |                               meta_scope meta_nested_id
meta_scoped_id:                     meta_nested_id
    |                               global_scope meta_nested_id

/*---------------------------------------------------------------------------------------------------
 * A 17.2 meta-classes
 *---------------------------------------------------------------------------------------------------*/
meta_class_specifier:               meta_class_key meta_nested_id compound_declaration
    |                               meta_class_key meta_nested_id ‘:’ base_specifier_list compound_declaration

/*---------------------------------------------------------------------------------------------------
 * A 17.3 meta-types
 *---------------------------------------------------------------------------------------------------
 *  The MetaType names are not reserved words so form part of identifier and consequently scoped_id */
/* The %prec maximises the length of e.g. unsigned int when followed by e.g int::a */
meta_class_key:                     class_key
    |                               NAMESPACE
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meta_non_class_key:                 ENUM
    |                               TYPEDEF
    |                               TYPENAME
    |                               USING
    |                               built_in_type_id                %prec SHIFT_THERE
meta_simple_type:                   meta_class_key
    |                               meta_non_class_key
meta_type:                          MetaType
    |                               meta_simple_type

/*---------------------------------------------------------------------------------------------------
 * A 17.4 meta-variables
 *---------------------------------------------------------------------------------------------------*/
/*meta_variable_declaration:                                                                    -- covered by meta_expression_statement */

/*---------------------------------------------------------------------------------------------------
 * A 17.5 meta-functions, meta-constructors and meta-destructors
 *---------------------------------------------------------------------------------------------------*/
/*          meta_postfix_expression covers the function name, tree_argument_list.opt covers the parameter list */
/*          meta_postfix_expression also covers the function name(tree_argument_list.opt) for exposed list */
meta_function_definition:           meta_postfix_expression ‘(‘ tree_argument_list.opt ‘)’ compound_tree_statement
    |                               meta_postfix_expression ‘[‘ ‘]’ compound_tree_statement
    |                               ‘~’ meta_postfix_expression ‘(‘ tree_argument_list.opt ‘)’ compound_tree_statement
    |                               CONST meta_function_definition
    |                               STATIC meta_function_definition
    |                               ‘!’ STATIC meta_function_definition
/*  |                               meta_postfix_expression ‘(‘ tree_argument_list.opt ‘)’ object_statements_clause
                                                                                                -- covered by meta_expression_statement */

/*---------------------------------------------------------------------------------------------------
 * A 17.6 meta-statements
 *---------------------------------------------------------------------------------------------------*/
meta_control_statement:             line meta_control_statement1
meta_control_statement1:            CASE constant_expression ‘:’ lined_declaration
    |                               DEFAULT ‘:’ lined_declaration
    |                               DO lined_declaration WHILE ‘(‘ expression ‘)’ semi
    |                               IF ‘(‘ condition ‘)’ lined_declaration     %prec SHIFT_THERE
    |                               IF ‘(‘ condition ‘)’ lined_declaration ELSE lined_declaration
    |                               SWITCH ‘(‘ expression ‘)’ lined_declaration
    |                               WHILE ‘(‘ condition ‘)’ lined_declaration
    |                               FOR ‘(‘ for_init_statement condition.opt ‘;’ expression.opt ‘)’ lined_declaration

    |                               jump_statement

/*---------------------------------------------------------------------------------------------------
 * A 17.7 meta-expressions
 *---------------------------------------------------------------------------------------------------*/
meta_primary_head:                  meta_scoped_id
    |                               MetaType meta_nested_id
    |                               meta_non_class_key meta_nested_id
meta_primary_id:                    meta_primary_head
    |                               meta_class_key meta_nested_id
meta_primary_expression:            literal
    |                               THIS
    |                               meta_primary_id
    |                               ‘(‘ tree_argument_list.opt ‘)’
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meta_postfix_expression:            meta_primary_expression
    |                               meta_postfix_expression ‘(‘ tree_argument_list.opt ‘)’
    |                               meta_postfix_expression ‘[‘ ‘]’
    |                               meta_postfix_expression ‘[‘ expression ‘]’
    |                               meta_postfix_expression ‘.’ declarator_id
    |                               meta_postfix_expression ARROW declarator_id
    |                               meta_postfix_expression INC
    |                               meta_postfix_expression DEC
meta_unary_expression:              meta_postfix_expression
    |                               INC meta_cast_expression
    |                               DEC meta_cast_expression
    |                               star_ptr_operator meta_cast_expression
    |                               ‘&’ meta_cast_expression
    |                               ‘+’ meta_cast_expression
    |                               ‘-’ meta_cast_expression
    |                               ‘!’ meta_cast_expression
    |                               ‘~’ meta_cast_expression
    |                               SIZEOF unary_expression
meta_cast_expression:               meta_unary_expression
meta_pm_expression:                 meta_cast_expression
meta_multiplicative_expression:     meta_pm_expression
    |                               meta_multiplicative_expression star_ptr_operator meta_pm_expression
    |                               meta_multiplicative_expression ‘/’ meta_pm_expression
    |                               meta_multiplicative_expression ‘%’ meta_pm_expression
meta_additive_expression:           meta_multiplicative_expression
    |                               meta_additive_expression ‘+’ meta_multiplicative_expression
    |                               meta_additive_expression ‘-’ meta_multiplicative_expression
meta_shift_expression:              meta_additive_expression
    |                               meta_shift_expression SHL meta_additive_expression
    |                               meta_shift_expression SHR meta_additive_expression
meta_relational_expression:         meta_shift_expression
    |                               meta_relational_expression ‘<‘ meta_shift_expression
    |                               meta_relational_expression ‘>’ meta_shift_expression
    |                               meta_relational_expression LE meta_shift_expression
    |                               meta_relational_expression GE meta_shift_expression
meta_equality_expression:           meta_relational_expression
    |                               meta_equality_expression EQ meta_relational_expression
    |                               meta_equality_expression NE meta_relational_expression
meta_and_expression:                meta_equality_expression
    |                               meta_and_expression ‘&’ meta_equality_expression
meta_exclusive_or_expression:       meta_and_expression
    |                               meta_exclusive_or_expression ‘^’ meta_and_expression
meta_inclusive_or_expression:       meta_exclusive_or_expression
    |                               meta_inclusive_or_expression ‘|’ meta_exclusive_or_expression
meta_logical_and_expression:        meta_inclusive_or_expression
    |                               meta_logical_and_expression LOG_AND meta_inclusive_or_expression
meta_logical_or_expression:         meta_logical_and_expression
    |                               meta_logical_or_expression LOG_OR meta_logical_and_expression
meta_conditional_expression:        meta_logical_or_expression
    |                               meta_logical_or_expression ‘?’ meta_conditional_expression ‘:’ meta_conditional_expression

meta_expression_statement:          meta_conditional_expression semi
    |                               meta_primary_head object_statements_clause semi
    |                               meta_class_key meta_nested_id object_statements_clause semi
    |                               meta_postfix_expression ‘(‘ tree_argument_list.opt ‘)’ object_statements_clause semi
    |                               meta_postfix_expression ‘[‘ ‘]’ object_statements_clause semi



M
e

ta
-co

m
p

ila
tio

n
 fo

r C
+

+
F

O
G

 G
ra

m
m

a
r

P
a

g
e

 3
4

0
M

a
rch

 4
, 2

0
0

2

    |                               meta_postfix_expression ‘[‘ expression ‘]’ object_statements_clause semi

    |                               meta_logical_or_expression assignment_operator line tree_statement
    |                               CONST meta_expression_statement
    |                               STATIC meta_expression_statement
    |                               ‘!’ STATIC meta_expression_statement

/*---------------------------------------------------------------------------------------------------
 * A 18 Syntax macros
 *---------------------------------------------------------------------------------------------------*/
syntax_macro_definition:            EXPLICIT AUTO meta_type identifier ‘(‘ syntax_macro_parameter_list ‘)’ compound_tree_statement

    |                               EXPLICIT AUTO meta_type identifier ‘(‘ syntax_macro_parameter_list ‘)’ ‘[‘ ‘]’ compound_tree_statement

    |                               EXPLICIT AUTO meta_type identifier ‘(‘ ‘)’ compound_tree_statement

    |                               EXPLICIT AUTO meta_type identifier  ‘(‘ ‘)’ ‘[‘ ‘]’ compound_tree_statement

syntax_macro_parameter_list:        syntax_macro_parameter
    |                               syntax_macro_parameter_list ‘,’ syntax_macro_parameter
syntax_macro_parameter:             meta_type identifier
    |                               meta_type identifier ‘[‘ ‘]’
    |                               identifier
    |                               reserved_id
    |                               token.punct
    |                               ‘;’
    |                               ‘,’
    |                               ‘{‘
    |                               ‘}’
    |                               ‘(‘
    |                               ‘)’
    |                               bang error                                                  { UNBANG(“bad syntax-macro-parameter.”); }

/*---------------------------------------------------------------------------------------------------
 * A 19 files
 *---------------------------------------------------------------------------------------------------*/
include_declaration:                USING string
    |                               USING ‘/’ INCLUDE string_expr
    |                               USING ‘/’ INCLUDE ‘/’ utility string_expr
    |                               USING ‘/’ utility string_expr
utility:                            EMIT
    |                               FROZEN
    |                               POOL
    |                               UTILITY

file_dependency_declaration:        using_implementation semi
    |                               using_interface semi
using_implementation:               USING ‘/’ IMPLEMENTATION file_use
    |                               USING ‘/’ IMPLEMENTATION ‘=’ file_use
using_interface:                    USING ‘/’ INTERFACE file_use
    |                               USING ‘/’ INTERFACE ‘=’ file_use
file_use:                           file_id
    |                               file_entity

file_placement_declaration:         export_implementation semi
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    |                               export_interface semi
    |                               EXPORT ‘/’ NOIMPLEMENTATION semi
    |                               EXPORT ‘/’ UTILITY semi
export_implementation:              EXPORT ‘/’ IMPLEMENTATION implementation_file
    |                               EXPORT ‘/’ IMPLEMENTATION ‘=’ implementation_file
export_interface:                   EXPORT ‘/’ INTERFACE interface_file
    |                               EXPORT ‘/’ INTERFACE ‘=’ interface_file
implementation_file:                file_id
    |                               file_entity
interface_file:                     file_id
    |                               file_entity

file_name:                          string
    |                               file_name ‘/’ INTERFACE
    |                               file_name ‘/’ IMPLEMENTATION
    |                               file_name ‘/’ TEMPLATE
    |                               file_name ‘/’ utility
    |                               file_name ‘/’ GUARD ‘=’ string_expr
    |                               file_name ‘/’ NOGUARD
    |                               file_name ‘/’ PATH ‘=’ string_expr
    |                               file_name ‘/’ PREFIX ‘=’ string_expr
    |                               file_name ‘/’ SUFFIX ‘=’ string_expr
file_entity:                        declarator_id
    |                               elaborated_type_specifier
    |                               NAMESPACE scoped_id
file_id:                            file_name
    |                               file_entity ‘/’ IMPLEMENTATION
    |                               file_entity ‘/’ INTERFACE
file_id_list:                       file_id
    |                               file_id_list ‘,’ file_id

filespace_specifier:                NAMESPACE ‘/’ FILE file_name compound_declaration

/*---------------------------------------------------------------------------------------------------
 * Error hnadling aids
 *---------------------------------------------------------------------------------------------------*/
ecarb:                              ‘}’
    |                               bang error ‘}’                                              { UNBANG(“Extra text ignored before ‘}’.”); }
    |                               bang error ‘)’                                              { UNBANG(“Missing ‘}’.”); }
semi:                               ‘;’
    |                               bang error ‘;’                                              { UNBANG(“Extra text ignored before ‘;’.”);}

/*---------------------------------------------------------------------------------------------------
 * Back-tracking and context support
 *---------------------------------------------------------------------------------------------------*/
advance_search:                     error               { yyerrok; yyclearin; advance_search(); } /* Rewind and queue ‘+’ or ‘-’ ‘#’ */
bang:                               /* empty */         { BANG(); }   /* set flag to suppress “parse error” */
line:                               /* empty */                   /* Get current line context */
mark:                               /* empty */         { mark(); }        /* Push lookahead and input token stream context onto a stack */
nest:                               /* empty */         { nest(); }        /* Push a declaration nesting depth onto the parse stack */
start_search:                       /* empty */         { start_search(false); }    /* Create/reset binary search context */
start_search1:                      /* empty */         { start_search(true); }     /* Create/reset binary search context */
util:                               /* empty */           /* Get current utility mode */
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0 D Command Line

The FOG command line is

fog <tokens> <files>

<files> is one or more input files, conventionally using the extension .fog.

- may be used to indicate that the standard input be used as an input file.

<tokens> is any combination of the following, with or without spacing between a
token such as -I and a subsequent text argument denoted as *.

D.1 Miscellaneous options

-help Display usage help.
-q Suppress the program identification message.

D.2 Preprocessor options

-D* Define a preprocessor macro value.
-I*
-i* Source include file path(s) (defaults to current directory).

D.3 Variant C++ options

-long_long_type Treat long long as built-in (Sun C++ language extension).
-mbc# Bytes in a multi-byte character(4).
-no_access Diagnose access declarations (ARM C++ compatibility).
-no_bool_type Do not treat bool as built-in (ARM C++ compatibility).
-no_namespace Treat namespace as a synonym for class.
-no_specialisation_prefix Do not require template<> for specialisation (ARM C++

compatibility).
-no_using Emit using-declarations as access-declarations (ARM C++

compatibility).
-no_wchar_t_type Do not treat wchar_t as built-in (ARM C++ compatibility).

D.4 Generated C++ options

-anon_prefix* Prefix for “anonymous” names (default is _anon_).
-c++ Behave more like a C++ compiler.
-comment_line_numbers Enclose #line numbers as comments in emitted files.
-extern_prefix* Prefix for extern linkage names (default is _extern_).
-no_line_numbers Omit #line numbers from emitted files.
-nobanner Suppress emitted comment banners (to ease regression

testing).
-t# Columns per tab in source files (default 8).
-template_parameter_prefix Prefix for normalised template parameter names (default is

"_").
-unnest Emit nested classes after rather than within enclosing class.

D.5 Output file options

-cd* Emitted implementation file directory path.
-cp* Emitted implementation file prefix.
-cs* Emitted implementation file suffix.
-ctd* Emitted template implementation file directory path.
-ctp* Emitted template implementation file prefix.
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-cts* Emitted template implementation file suffix.
-f Force file emission (bypass redundancy comparisons).
-global* (File)name of the global namespace.
-hd* Emitted interface file directory path.
-hp* Emitted interface file prefix.
-hs* Emitted interface file suffix.
-htd* Emitted template interface file directory path.
-htp* Emitted template interface file prefix.
-hts* Emitted template interface file suffix.
-log* Log file name (duplicates standard error).
-max_errors# maximum number of errors before program termination

(100).
-max_warnings# maximum number of warnings before program termination

(0).
-nc Notify emitted file names that are created.
-ne Notify emitted file names that are suppressed through

equivalence.
-o* File name for make dependencies between source and

emitted files.

D.6 Diagnostic options

-readonly Just read source files to gather token count statistics.
-statistics Emit program performance statistics.
-z2h Display each token passed between lexer and hash parser.
-z2l Display each token passed between lexer and locate parser.
-z2m Display each token passed between lexer and main parser.
-z2r Display each token passed between lexer and replace

parser.
-z2s Display each token passed between lexer and substitute

parser.
-za Display changes to the activity status of declarations.
-zd Delete all objects rigorously on exit (for testing with purify).
-zf Display file name as each entity is (re)positioned.
-zi Display each input and macro line.
-zl Display the behaviour of the lexer.
-zp Display changes to the purity status.
-zs Display changes to the default parser scope.
-zt Display each token passed between lexer and main parser.
-zu Display changes to the composed entity and parser default

utility.
-zx Display full hex address of each object in diagnostics.
-zy Display yacc parser progress.
-zz Repeat certain failed invocations after generating an error to

aid debug.

D.7 Predefined macros

#define __STDC__ 0

#define __cplusplus 0
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0 E Built-In Functionality

This appendix describes the built-in functionality, or more accurately the potential
built-in functionality of FOG, since only about half of what is described has
actually been implemented and because usage of FOG for a variety of practical
applications will probably reveal requirements for further built-in support.

E.1 Built-in Meta-classes

E.1.1 auto

All meta-classes (and meta-namespaces) ultimately inherit from the ::auto meta-
class, which has no functionality. Its positioning at the root enables meta-program
code to affect all classes by composition with its initially empty meta-constructor
or meta-destructor. For instance:

auto auto::~auto()
{

std::diagnostic(@This);
}

generates a diagnostic message for every meta-class in an application, since the
meta-destructor of the root meta-class is inherited by and consequently executed
during meta-destruction of every meta-class including those for built-in types.

E.2 Built-in Meta-namespaces

E.2.1 std

A variety of generic support facilities are provided by built-in meta-functions.
These built-in functions are incorporated as part of the std meta-namespace. This
avoids cluttering the global meta-namespace directly, or indirectly through
introduction of a new namespace. The std meta-namespace already exists and is
otherwise empty since C++ reserves std for language support but has no meta-
functionality.

auto bool std::ambiguous(expression aName)
auto bool std::defined(expression aName)

These two meta-functions test for the presence and multi-presence of
declarations. They return non-zero if the expression is ambiguous (has multiple
definitions) or is defined (has at least one definition).

These meta-functions may be used as predicates to avoid errors in subsequent
code. They take no account of whether a declaration is enabled or not. Thus a
declaration for use only in leaf classes is regarded as defined at the root class and
all its derived classes, even though the declaration is disabled at non-leaves.

auto token std::find(expression aName) []

Returns a possibly empty list of all declarations visible in the meta-name-space

auto void std::diagnostic(string aString)
auto void std::error(string aString)
auto void std::warning(string aString)

These meta-functions provide the only method for communication between a
meta-program and the programmer. The string argument is emitted to standard out
(and any log-file) classified as either a diagnostic warning or error message.

Warning messages are prefixed by “WARNING --” and increment the overall
warning count.

Error messages are prefixed by “ERROR --” and increment the overall error count.

Obviously an extension to support meta-streams and std::cerr would be more
powerful.
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auto string std::get_cpp(string aString)

An almost universally available preprocessor extension is the ability to pass macro
definitions with an invoking command line such as

cc -DDEBUG_LEVEL=4 ...

FOG also supports -D as a command line option (see Appendix D).

FOG provides access to the preprocessor definition namespace via the get_cpp
built-in meta-function, which takes the name to be looked up in the Cpp name-
space as an argument and returns its value.

auto int debugLevel = $std::get_cpp("DEBUG_LEVEL");
auto if (debugLevel > 4 ) /* ... */;

auto string std::get_env(string aString)

Definitions may be acquired from the programming environment by using
std::get_env, which just invokes the POSIX getenv routine.

const char *logName = $std::get_env("LOGNAME");

auto string std::date()
auto string std::file()
auto string std::time()

These functions return the current date, file and time and replace the ANSI C
preprocessor symbols __DATE__, __FILE__ and __TIME__.

auto token std::parse(string aString)
auto token std::parse_tokens(token someTokens[])
auto token std::tokenize(string aString) []

The parse meta-function provides necessary support for character- and token-
level substitution. It performs lexical and syntactical analysis of aString to return
the equivalent syntax tree.

parse is equivalent to successive calls of tokenize and then parse_tokens, to
perform lexical and syntactic analysis respectively.It is not clear how much, if any
of this functionality is necessary or even desirable.

E.3 Built-in Meta-variables

The following meta-variables are built-in (to the token meta-type and so inherited
by all meta-types).

Namespace

Identifies the current namespace, which is necessary to ensure that declarations
occurring nominally within one class can be rescoped to be placed elsewhere.

class ThisClass
{

class NestedClass {};
class ${Namespace}::SiblingClass {};

};

This works whether ThisClass is a class in the traditional unnamed global
namespace or a class in a named namespace.

When invoked directly within a namespace, Namespace identifies the namespace,
not its enclosing namespace.

OuterNamespace

OuterNamespace differs from Namespace when invoked for a namespace by
returning the immediately enclosing namespace, if there is one or the global
namespace otherwise.

Thus ${Namespace}::${OuterNamespace} first locates the current namespace
and then locates its immediately enclosing namespace. Eventually after sufficient
iterations OuterNamespace always returns the global namespace.
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It is an error to traverse potential declarations beyond their defined ancestry.

OuterScope

Similarly OuterScope differs from Scope when invoked for a scope (class, struct,
union) by returning the immediately enclosing scope, if there is one or the
namespace otherwise.

Thus ${Scope}::${OuterScope} first locates the current scope and then locates
its immediately enclosing scope. Eventually after sufficient iterations OuterScope
always returns the namespace.

It is an error to traverse potential declarations beyond their defined ancestry.

Scope

Identifies the current scope, which may be a class, filespace, linkage, namespace,
struct or union.

When invoked directly within a scope, Scope identifies the scope, not its enclosing
scope.

Super

Super identifies the primary base class. It is a short form for (and much more
efficient than) Scope::bases()[0].

Use of Super for a class without a base-class is an error. The base-class
determined by Super ignores base classes declared using auto, and so is not
exactly equivalent to Scope::bases()[0], which could resolve a base meta-
class.

class Y : auto X1, public X2
{

// Super is X2
// bases()[0] is X1

};

This

This identifies the current declarative region which is the same as Scope, when
invoked within the context of a class or namespace. However, when invoked within
the context of a variable or function, This refers to the variable or function, and
provides access to object-scoped meta-declarations in preference to occluded
meta-declarations from the class scope.

E.4 Built-in Meta-functions

The inheritance relationships between the built-in meta-types are described in
Section 4.1.2 and shown below using indentation.

token
expression

character
number

double
signed

unsigned
bool

string
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token
expression

name
keyword

decl_specifier
cv_qualifier

identifier
meta_type

class_key
reserved

using_directive
initializer_clause
template_argument

token
declaration/statement

expression_statement
specifier

base_specifier
enumerator_definition
file_dependency_specifier
file_placement_specifier
namespace_alias_definition
object_specifier

function_specifier
meta_function_specifier
meta_parameter_specifier
meta_variable_specifier
parameter_specifier
template_parameter_specifier

templatde_parameter_specifier
type_parameter_specifier
value_parameter_specifier

typedef_specifier
using_declaration
variable_specifier

scope_specifier
filespace_specifier
linkage_specification
meta_class_specifier
namespace_definition
type_specifier

built_in_type_specifier
class_specifier
elaborated_type_specifier
enum_specifier

token
entity

base
enumerator
namespace_alias
object

exception
function
meta_function
meta_parameter
meta_variable
parameter
typedef
using
variable
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token
entity

scope
filespace
linkage
meta_class
namespace
type

built_in
class
enum
struct
typename
union

token
object_statement
exception_specification
handler
iterator
modifier

array_modifier
function_modifier
pointer_modifier
reference_modifier
scoped_modifier

void
punctuation
tree_literal

All meta-types inherit from token, where

• polymorphism between scalars and lists is established

• default implementations of all built-in functions provided

• meta-type type testing predicates are implemented

The built-in meta-functions are described in the following sections, with the
description at the lowest level in the inheritance hierarchy at which use of the
meta-function is meaningful. Use below that level for a predicate testing meta-
function just returns false. For other meta-functions an error message is
generated.

E.4.1 array_modifier

E.4.2 base and base_specifier

auto class base::base()
auto class_specifier base_specifier::base()
auto bool base::is_auto()
auto bool base_specifier::is_auto()
auto bool base::is_private()
auto bool base_specifier::is_private()
auto bool base::is_protected()
auto bool base_specifier::is_public()
auto bool base::is_public()
auto bool base_specifier::is_public()
auto bool base::is_virtual()
auto bool base_specifier::is_virtual()
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E.4.3 built_in and built_in_type_specifier

E.4.4 character

auto character::operator character()
auto character::operator identifier()
auto character::operator number()
auto character::operator string()

E.4.5 class and class_specifier

E.4.6 class_key

E.4.7 cv_qualifier

E.4.8 decl_specifier

E.4.9 declaration

see statement

E.4.10 elaborated_type_specifier

auto class_key elaborated_type_specifier::class_key() []
auto bool elaborated_type_specifier::is_auto()
auto bool elaborated_type_specifier::is_class()
auto bool elaborated_type_specifier::is_namespace()
auto bool elaborated_type_specifier::is_struct()
auto bool elaborated_type_specifier::is_typename()
auto bool elaborated_type_specifier::is_union()

E.4.11 entity and specifier

auto string entity::implementation_file()
auto string specifier::implementation_file()
auto string entity::interface_file()
auto string specifier::interface_file()

E.4.12 enum and enum_specifier

auto enumerator enum::enumerators() []
auto enumerator_definition enum_specifier::enumerators() []

E.4.13 enumerator and enumerator_definition

auto number enumerator::value()
auto expression enumerator_definition::value()

E.4.14 exception and exception_declaration

E.4.15 exception_specification

E.4.16 expression

auto expression expression::value()
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E.4.17 filespace and filespace_specifier

E.4.18 function, function_modifier and function_specifier

auto exception function::exceptions() []
auto exception_declaration function_modifier::exceptions() []
auto exception_declaration function_specifier::exceptions() []
auto parameter function::parameters() []
auto parameter_specifier function_modifier::parameters() []
auto parameter_specifier function_specifier::parameters() []
auto function_specifier function::signature() []
auto function_specifier function_modifier::signature() []
auto function_specifier function_specifier::signature() []

E.4.19 handler

E.4.20 identifier

auto identifier::operator character()

auto identifier::operator identifier()

auto identifier::operator number()

returns the result of a text to numeric conversion, which usually involves an error
message.

auto identifier::operator string()

E.4.21 iterator

A typical idiomatic use of an iterator is shown in the following example

auto for (iterator i = $MyClass::variables(); i; ++i)
auto if (!i->is_static())

const char *MyClass::names[] = { ""$i->name() };
const char *MyClass::names[] = { 0 };

in which composition of array elements is used to build a null terminated list of the
names of the member variables of MyClass.

Note that an iterator maintains a copy of the identities of the elements of the
iteration domain, but not of their contents. Therefore addition of an addition base
class during a traversal of base classes will not be detected by the iteration.
Modification of an iteration element prior to traversal does affect the iteration.

auto iterator::iterator()

constructs an iterator already out-of-domain.

auto iterator::iterator(token [])

constructs an iterator to iterate over and from the start of the exposed list. The
identities of the elements in the list are copied.

auto iterator::iterator(iterator)

constructs a copy of an iterator, which involves a copy of the identities of the
elements in the iteration domain and of the position within the domain.

auto void iterator::operator=(token [])

assigns an iterator to iterate over and from the start of the exposed list. The
identities of the elements in the list are copied.

auto void iterator::operator=(iterator)

assigns a copy of an iterator, which involves a copy of the identities of the
elements in the iteration domain and of the position within the domain.

auto iterator::operator number()

returns true as long as the iterator remains within the iteration domain
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auto void iterator::operator++()

advances the iterator through the iteration domain, setting out-of-domain once the
top edge passed.

auto void iterator::operator--()

rewinds an iterator one step back through the iteration domain, setting out-of-
domain once the bottom edge passed.

auto token iterator::operator->()

returns the current element in the iteration domain, generating an error if out of
domain.

auto token iterator::operator*()

returns the current element in the iteration domain, generating an error if out of
domain.

E.4.22 keyword

E.4.23 linkage and linkage_specification

auto string linkage::value()
auto string linkage_specification::value()

E.4.24 meta_class and meta_class_specifier

E.4.25 meta_function and meta_function_specifier

auto meta_parameter meta_function::meta_parameters() []
auto meta_parameter_specifier

meta_function_specifier::meta_parameters() []

E.4.26 meta_parameter and meta_parameter_specifier

E.4.27 meta_type

E.4.28 meta_variable and meta_variable_specifier

auto token meta_variable::value()
auto token meta_variable_specifier::value()

E.4.29 modifier

auto bool modifier::is_array_modifier()
auto bool modifier::is_const()
auto bool modifier::is_function_modifier()
auto bool modifier::is_pointer_modifier()
auto bool modifier::is_reference_modifier()
auto bool modifier::is_scoped_modifier()
auto bool modifier::is_volatile()

E.4.30 name

auto name name::full_name()
auto name name::name()

E.4.31 namespace and namespace_definition

E.4.32 namespace_alias and namespace_alias_definition

auto namespace namespace_alias::value()
auto name namespace_alias_definition::value()
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E.4.33 number

auto number::operator character()
auto number::operator identifier()
auto number::operator number()
auto number::operator string()

E.4.34 object and object_specifier

auto bool object::is_const()
auto bool object_specifier::is_const()
auto bool object::is_static()
auto bool object_specifier::is_static()
auto bool object::is_volatile()
auto bool object_specifier::is_volatile()
auto meta_function object::meta_functions() []
auto meta_function_specifier object_specifier::meta_functions() []

returns the immediate list of member meta-functions

auto meta_variable object::meta_variables() []
auto meta_variable_specifier object_specifier::meta_variables() []

returns the immediate list of member meta-variables

auto modifier object::modifiers() []
auto modifier object_specifier::modifiers() []

returns the list of declarator modifiers

auto type object::type()
auto type_specifier object_specifier::type()

E.4.35 object_statement

auto bool object_statement::is_boundary()
auto bool object_statement::is_leaf()
auto bool object_statement::is_pure()
auto bool object_statement::is_root()

E.4.36 parameter and parameter_specifier

E.4.37 pointer_modifier

E.4.38 punctuation

E.4.39 reference_modifier

E.4.40 reserved

E.4.41 scope and scope_specifier

auto base scope::all_bases() []
auto base_specifier scope_specifier::all_bases() []

returns the transitive list of base-specifiers (including meta-bases)

auto scope scope::all_classes() []
auto scope_specifier scope_specifier::all_classes() []

returns the transitive list of nested classes

auto function scope::all_functions() []
auto function_specifier scope_specifier::all_functions() []

returns the transitive list of member functions

auto type scope::all_types() []
auto type_specifier scope_specifier::all_types() []

returns the transitive list of member types
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auto typedef scope::all_typedefs() []
auto typedef_specifier scope_specifier::all_typedefs() []

returns the transitive list of member typedefs

auto variable scope::all_variables() []
auto variable_specifier scope_specifier::all_variables() []

returns the transitive list of member variables

auto base scope::bases() []
auto base_specifier scope_specifier::bases() []

returns the immediate list of base-specifiers (including meta-bases)

auto class_key scope::class_key() []
auto class_key scope_specifier::class_key() []
auto scope scope::classes() []
auto scope_specifier scope_specifier::classes() []

returns the immediate list of nested classes

auto entity scope::friends() []
auto specifier scope_specifier::friends() []
auto function scope::functions() []
auto function_specifier scope_specifier::functions() []

returns the immediate list of member functions

auto bool scope::is_auto()
auto bool scope_specifier::is_auto()
auto bool scope::is_boundary()

returns true if there is a pure-virtual function in an immediate base class but no
pure-virtual in this class

auto bool scope::is_class()
auto bool scope_specifier::is_class()
auto bool scope::is_leaf()

returns true if there are no derived classes

auto bool scope::is_pure()

returns true if there is a pure-virtual function

auto bool scope::is_struct()
auto bool scope_specifier::is_struct()
auto bool scope::is_union()
auto bool scope_specifier::is_union()
auto typedef scope::typedefs() []
auto typedef_specifier scope_specifier::typedefs() []

returns the immediate list of member typedefs

auto type scope::types() []
auto type_specifier scope_specifier::types() []

returns the immediate list of member types

auto variable scope::variables() []
auto variable_specifier scope_specifier::variables() []

returns the immediate list of member variables

E.4.42 scoped_modifier

E.4.43 specifier

E.4.44 statement

E.4.45 string

Identical strings are represented by the same metaobject, so content comparison
is performed by operator== and operator!=.
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auto string::operator character()
auto string::operator identifier()
auto string::operator number()
auto string::operator string()

E.4.46 template_parameter and template_parameter_specifier

E.4.47 token

The token meta-type provides a default implementation for all built-in meta-
functions. Predicate meta-functions such as is_virtual() that return a bool
value are implemented to return false. All other meta-functions generate an error
message.

auto entity token::find_entity(expression anExpression) []

returns all visible entities (names or types)

auto object token::find_name(expression anExpression) []

returns all visible names

auto type token::find_type(expression anExpression) []

returns all visible types)

auto token token::get(expression anExpression)

returns the meta-declaration visible in the meta-name-space, generating an error
if undefined or ambiguous.

auto entity token::get_entity(expression anExpression)

returns the visible entity (name or type), generating an error if undefined or
ambiguous.

auto object token::get_name(expression anExpression)

returns the visible name, generating an error if undefined or ambiguous.

auto type token::get_type(expression anExpression)

returns the visible type, generating an error if undefined or ambiguous.

auto bool token::is_exposed()

returns true if token comprises an exposed list.

auto bool token::is_list()

returns true if token comprises an encapsulated or exposed list.

auto bool token::is_meta_type()

returns true if token is at least as specialised as meta_type.

auto unsigned token::length()

returns the number of elements in an encapsulated or exposed list.

auto meta_type token::meta_type()

returns the describing meta-type.

auto token token::sub_list(unsigned start, signed length) []

returns an exposed list comprising the abs(length) elements from start to
start+length exclusive, generating an error if any element out-of range.

auto token token::operator[](unsigned index)

returns the index element, generating an error if out-of range.

auto token token::operator+(token tokens[]) []

return a new list comprising tokens appended to this list.

auto void token::operator+=(token tokens[]) []

appends tokens.
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E.4.48 type and type_specifier

E.4.49 typedef and typedef_specifier

auto type typedef::value()
auto type_specifier typedef_specifier::value()

E.4.50 typename

E.4.51 using and using_declaration

E.4.52 using_directive

E.4.53 variable and variable_specifier

auto expression variable::value()
auto expression variable_specifier::value()

E.4.54 void

The void meta-type is used for invalid and zero values.
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0 F Implementation

The presentations of the FOG extensions to C++ in Chapter 3, their semantics in
Chapter 4, and a novel parsing approach in Chapter 5 are all fairly substantial and
so a number secondary issues are relegated to this appendix.

A brief discussion of the difficulties of enhancing C++ syntax is followed by a
description of some syntax extensions that were considered and why they were
not implemented.

We then describe how the superset grammar approach resolves specific C++
parsing difficulties and outline the activities needed during the semantic
processing necessary to recover lost syntactic resolution.

Finally the syntax extensions to support file palcement and include file
dependencies are presented.

F.1 Syntax Implementation

Providing additional syntax in C++ without introducing new reserved words or
totally esoteric meanings for punctuation is rather difficult, since most simple
syntax using non-reserved words is covered by a simple-declaration.

The multi-pass implementation used set rather than export, and use rather than
using for the file syntaxes. This caused no ambiguity at the declaration level since
/ cannot appear except as an initializer in a declaration.

set / implementation = "file" ;

The above of course is a syntactically valid expression, and a little provocative
given the presence of set as a template name in the Standard Template Library.

Migration to the superset grammar resulted in a generalised parser being used for
declarations and so set became difficult to disambiguate syntactically. The syntax
was therefore changed to its current form. export and using are not so very far
away from the intended meanings of specify-output-file, and specify-input-
dependency.

Overloading reserved words is undesirable and confusing as exemplified by the
many meanings of static. The reuse of auto to mean meta is equally
unsatisfactory. Other new overloadings are relatively clear, since the reserved
word is followed by a switch.

F.1.1 !const and !volatile

Provision of !static for more explicit control of composition suggests
that !const and !volatile should also be provided. However the situation is not
quite the same. const and volatile form part of a function signature and so
there is no possibility that composition should ever interpret a missing const as
const. A missing const always means !const. This reasoning makes !const
unnecessary but does not preclude its provision as a documentation aid.

Provision of !const causes implementation problems too, since an ambiguity
arises in a generalised parse between

(type) ! a // Cast of complement
(type) ! const // Very degenerate parameter-declaration-clause and cv-qualifiers

Two tokens of lookahead are required to resolve the ambiguity.

Supporting !const as an extension of type-specifier rather than cv-qualifier solves
this problem allowing usage everywhere except following parameter-declaration-
clauses. However this support was a little irregular and since the sole purpose was
as a documentation aid, it was decided to omit !const and !volatile.



Meta-compilation for C++ Implementation

Page 358 29-June-2001

F.1.2 Member variable delegation

Larger objects may be built from smaller objects using inheritance or aggregation.
Inheritance has the convenient property that the entire interface of the base object
is visible as part of the larger object, whereas aggregation makes none of the
interface available. The implementor is faced with an all or nothing choice for
delegation.

A re-using-declaration that mentions a member-variable could be interpreted as a
directive to support delegation so that:

class Proxy
{

Client *_member_variable;
using _member_variable;

};

automatically synthesises delegation routines such as

int f(double b) { return _member_variable->f(b); }

for every accessible function of _member_variable. More selective synthesis
could be achieved by naming functions

using _member_variable->f;

A further extension was considered whereby the client could group a number of
functions to establish a view:

class Client
{

namespace/view ProxyView
{

int f(double b);
};

};

so that all functions identified as part of the ProxyView would automatically be
delegated by:

using _member_variable->ProxyView;

This extension then ensures that addition of a further function to
Client::ProxyView automatically adds a delegating function to the Proxy.

This is useful, but vulnerable to practical considerations:

• it may be desirable to handle null tests in the delegation routines

• it may be necessary to add *this as an extra argument during delegation

Customized formatting of the synthesised routine is not easily handled by a
standardised approach. Customized formatting is available via meta-programming
and so the concept of using a member variable and delimiting part of an interface
through a view is no longer supported. The effect can be achieved by:

class Client
{

int f(double b);
int g(double b);
void g();
auto declaration ProxyView[] = { f, g(double) };

};

class Proxy : auto Client
{

Client *_member_variable;
};
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auto Proxy::Proxy()
{

$delegate(_member_variable, Client::ProxyView);
};

An appropriate implementation of delegate can then be written or accessed from
a meta-library to iterate over the declarations in Client::ProxyView to
synthesize delegation routines via _member_variable.

[ The meta-inheritance of Proxy from Client establishes a meta-compilation
order dependency so that meta-construction of Client occurs before Proxy,
ensuring that any member-functions declared by Client’s meta-constructor exist
before Proxy’s meta-constructor synthesises its delegation functions. ]

This example is far from bomb-proof; functions added to Client during meta-main
execution or by later meta-constructors will not receive delegate treatment. An
implementation proof against arbitrary composition requires Client to provide a
meta-function to register contributions to ProxyView, and to register classes
interested in viewing the contents of ProxyView. The registration function can
notify registered viewers when any change occurs, and the meta-destructor for the
client can verify that no functions have appeared without passing through the
registration function. This approach is reliable but slow and it is readily supported
by standard meta-functions from a meta-library. Alternative metaobject protocols
such as those available with CLOS or OpenC++ provide more direct hooks. FOG
could support the option for a user-definable meta-function:

auto declaration Client::add_function(declaration);

which would be invoked for each addition and return a possibly modified
declaration or even a completely different set of declarations. The modest
complexity and inefficiency of detecting, maintaining and invoking such functions
does not seem to be justified for simple applications.

F.1.3 Pattern names

AspectJ [Lopes98] supports the addition of code to all functions whose name
matches some pattern, which is very useful for adding tracing code, since an
“entering function x” diagnostic is easily attached to everything. It is not clear
whether a more partial pattern match is useful without imposing a potentially
awkward lexical convention on function names just to satisfy the pattern match.

Support for pattern matching in AspectJ is relatively easy since it is Java-based
and so there is no overloading and the * character is free for use in patterns.
Direct adoption of the same policy in FOG would not be possible since overloads
need resolution and * is used for pointers. The problem of pattern syntax is
soluble by expressing pattern names as strings. Thus

void "print*"(ostream&, "*")

might select all functions whose name starts with print, that return void and
have an ostream& as a first parameter.

An alternative solution is available by meta-programming. A pattern-matching
routine filters the set of all member function names and invokes a customised
meta-function for each of the filtered names. Much of this functionality can be
provided by a meta-library, and would be considerably assisted by a built-in meta-
function to support an elemental pattern match.

auto::~auto()
{

$std::map(customMetaFunction,
$std::filter($functions(), "print*"));

}
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for which std::map() and std::filter() represent to-be-implemented
components of a meta-library, functions() is built-in to FOG.
customMetaFunction performs the per-function meta-programming, and might
also be a standard meta-library component. Invocation from the meta-destructor
of auto ensures that the custom functionality is applied to all classes.

This an area for further research. It would appear that most of the solution lies in
the domain of a meta-library rather than fundamental FOG functionality.

F.1.4 #line directive

The #line directive is not used in source programs generated by human beings.
It provides a very simple but useful mechanism for automatic source code
generators to ensure that compilers and debuggers refer to the original source
lines rather than some scrambled intermediate. #line performs this role
adequately and needs no replacement, although an extension with a more cryptic
free format spelling could be considered to free the # token once Cpp has been
discontinued. The line-literal would be discarded along with whitespace in
translation phase 7.

line-literal:
~ { line-context-seq }

line-context-seq:
line-context
line-context-seq line-context

line-context:
domainopt file-lineopt line-number

domain:
identifier

file-line:
string-literal

line-number:
decimal-literal

The optional domain supports definition of line numbers for more than one source
domain, with the list of contexts supporting multiple contexts. For instance code
passed first through yacc++ and then cfront needs to report both yacc input and
yacc output line numbers, so that an enhanced cfront might include a line-literal
such as

~{"Grammar.y" 21 cxx "yacc.tab.c" 127}

The first domain is unspecified and defaults to source. With this information,
enhanced debugging systems and their users can select the appropriate file upon
which to perform source-level debugging.

F.2 Resolution of parsing difficulties

This section reviews the specific problems that arise in parsing C++ and shows
how they are resolved using the multi-pass or superset grammar approach.

F.2.1 Context-free problems

The C++ (and C) grammar violates the requirement for a context-free grammar,
since “New context-dependent keywords are introduced into a program by
typedef, namespace, class, enumeration and template declarations” (§A.1-1).

When an identifier is encountered, semantic information is needed, since there is
a context-dependency on type names and on template names.

typedef-name: identifier

namespace-name: original-namespace-name
namespace-alias
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original-namespace-name: identifier

namespace-alias: identifier

class-name: identifier
template-id

enum-name: identifier

template-name: identifier

template-id: template-name < template-argument-list >

If the grammar defined by the standard is to be followed very closely, semantic
information is apparently needed to classify identifiers into one of

• class-name

• enum-name

• identifier (anything else)

• namespace-alias

• original-namespace-name

• template-name

• typedef-name

However quite what constitutes context-dependency in the grammar depends on
how much the grammar is intended to specify. A complete grammar might include
all the language constraints on definition/reference ordering, template
instantiation and function overloading. From such a strict perspective almost all
languages are context-dependent (at least when implemented using a first order
grammar).

When a grammar is solely concerned with the conversion of a token stream into
an Abstract Syntax Tree to support a subsequent semantic analysis, the
requirements on the grammar are much less stringent. In Section 5.7.1 it was
shown that type information was not necessary. In Section 5.6.2 it was shown that
a lack of template name information could also be accommodated, although the
consequent complexity might not justify that approach.

The context-dependencies are therefore reviewed from the less ambitious
standpoint of AST creation.

F.2.1.1 #include anomaly

The arguments of the Cpp #include directive use non-standard forms. In the

#include "string"

form, there is no recognition of escape sequences. And in the

#include <file>

form, the angle brackets act as string delimiters, rather than template delimiters
or arithmetic operators.

Resolution

This context-dependence is readily resolved within the lexical analysis processing
by switching the lexer into an alternate state starting at the recognition of a
#include and continuing to the end of the line. While in this alternate state a
different tokenization policy is adopted,
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F.2.1.2 Type information

A full semantic interpretation of a C++ program obviously requires a knowledge of
the types. Unfortunately this information is also needed for a complete syntactic
disambiguation of

• declaration/expression ambiguity (Section F.2.5.1)

• parenthesised-call/cast-parenthesis ambiguity (Section F.2.5.2)

• parenthesised-binary/cast-unary ambiguity (Section F.2.5.2)

• call/functional-cast ambiguity (Section F.2.5.3)

• new placement/initializer ambiguity (Section F.2.5.5)

• sizeof type/value ambiguity (Section F.2.5.6)

• typeid type/value ambiguity (Section F.2.5.7)

• template argument type/value ambiguity (Section F.2.5.8)

F.2.1.3 < as template-start or greater than (§14.2-3)

A misparse resulting from the lack of template context is difficult to resolve
because the two meanings of < and > do not result in localised errors to the tree
structure. The arithmetic operators are infix binary operators and have no
requirements for associated punctuation, whereas the template brackets must be
paired.

A problem arises for an expression such as

V < W < X > ( Y ) > ( Z )

which, in C, would be four unambiguous comparisons. However in C++, there are
alternate meanings depending upon which of V or W are template names.

Correct determination of template names requires that names be resolved in the
correct scope and may require a template to be instantiated.

a->b<int>::c<...

a in current scope.

b in scope of a.

c in scope of b<int>.

Resolution

Correcting a template misparse is an inconvenient but not a particularly difficult
AST rearrangement. Although a back-tracking search for a syntactically consistent
interpretation is of exponential complexity, the implementation and results
presented in Section 5.8.2 show that this does not arise in practice.

F.2.1.4 > as template-end or greater than (§14.2-3)

Within a template, the meaning of an unnested > changes to close the template
rather than perform an arithmetic operation. This is not a context-dependency,
since the interpretation is dependent on the preceding parse context. The parser
knows whether it is in a template and so the grammar can be written to resolve the
conflict.

Resolution

The expression rules with higher precedence than > are duplicated to omit the
arithmetic > behaviour. This duplicated behaviour is used whenever parsing within
a template. As a result the parser keeps track of in/out of template context and
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distinguishes between > nested within parentheses or brackets as part of its
normal operation. The cost is about 25 extra rules.

F.2.1.5 Meta-types

The use of meta-types in Section 3.1.5.5 introduces a form of context dependency.
In the declaration

auto expression e = a + b & c;

the syntax used following the = is determined by the expression meta-type. This
dependency could be eliminated by flattening the grammar to support each meta-
type individually in every relevant rule.

However when the same dependency exists in parsing a function argument

auto bool meta_function(expression e) { ... }

if (meta_function(a + b & c))

it appears that the semantic knowledge of the meta-type of the meta-function
parameter must influence the syntactic parsing.

Resolution (multi-pass)

The multi-pass implementation of FOG was syntax-driven, using the meta-type of
a meta-function or meta-variable to guide the parse. This only required loose
coupling between syntactic and semantic processing, since meta-function and
meta-variable definitions can change only at the end of a statement or declaration.

Resolution (superset)

The superset implementation of FOG parses for generic syntax elements, and so
syntactic and semantic processing are isolated and there is no meta-type context
dependency.

F.2.2 Trivial Ambiguities

The C++ grammar “accepts a superset of valid C++ constructs” (§A-1). Two simple
examples of the ambiguities that arise from the overlap between subgrammars are
described below.

F.2.2.1 Empty statement

In the syntax for a statement:

statement:
expression-statement
simple-declaration // As part of a declaration-statement
...

expression-statement:
expressionopt ;

simple-declaration:
decl-specifier-seqopt init-declarator-listopt ;

both expression-statement and simple-declaration provide a cover for the empty
statement comprising just a semicolon. The ambiguity is trivial, but must be
eliminated in order to create an unambiguous grammar for an automated parser
tool.

F.2.2.2 Template parameter

In the syntax for template parameters
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template-parameter:
type-parameter
parameter-declaration

class name

is valid as both a type-parameter and a parameter-declaration.

F.2.3 Syntactic Ambiguities

[Roskind91] identified the major C++ ambiguities that existed prior to templates.
This section provides an update to the list and shows how each can be resolved
using a superset parse. This section describes only those ambiguities that are
syntactically ambiguous. The next two sections discuss further apparent
ambiguities: one that is not ambiguous at all, and others that may be deferred for
resolution after syntactic analysis.

F.2.3.1 Dangling else (§6.4.1)

The dangling else ambiguity arises in languages with no end of if marker:

if (a)
if (b)

... ;
else // else (!a) or (!b) ?

... ;

The ambiguity is resolved by definition to the inner-most if, requiring the parser
to shift the else on to the parser stack and to continue parsing the if (b)
statement, rather than reducing the stack, completing the if (b) statement, and
continuing the if (a) statement.

Resolution

Resolution of the dangling else ambiguity is implemented by using a %prec rule.

selection_statement:
"if" '(' condition ')' statement %prec SHIFT_THERE

| "if" '(' condition ')' statement "else" statement
| "switch" '(' condition ')' statement

The SHIFT_THERE precedence specified for the reduction of the shorter rule is
lower than that of the else token and so the shift of the else is favoured.

F.2.3.2 < as template-start or less than (§14.2-3)

[Roskind91] does not report this ambiguity because he did not implement
templates.

The template-name problem is a context-dependency and has been described in
Section F.2.1.3.

F.2.3.3 Multiply nested scope (§7.1-2)

[Roskind91] does not report this ambiguity because he did not implement arbitrary
scope nesting.

There is an ambiguity between

A::B ::C

and

A ::B::C

and

A::B::C
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which is resolved by language definition to favour the longest possible
decl-specifier-seq as the type.

Resolution

A single %prec rule in the FOG grammar resolves the conflict that arises from this
ambiguity.

id_scope: id "::"

nested_id: id %prec SHIFT_THERE
| id_scope nested_id

scoped_id: nested_id
| "::" nested_id

F.2.3.4 new-type-id (§5.3.4-2), conversion-function-id (§12.3.2-4)

The name of a new-type-id in a new-expression

new-expression:
::opt new new-placementopt new-type-id new-initializeropt
::opt new new-placementopt ( type-id ) new-initializeropt

new-type-id:
type-specifier-seq new-declaratoropt

new-declarator:
ptr-operator new-declaratoropt
direct-new-declarator

direct-new-declarator:
[ expression ]
direct-new-declarator [ constant-expression ]

and of a conversion-function-id

conversion-function-id:
operator conversion-type-id

conversion-type-id:
type-specifier-seq conversion-declaratoropt

conversion-declarator:
ptr-operator conversion-declaratoropt

may each end in a * or &, which can cause an ambiguity with respect to a
subsequent expression.

new int ** * p; // (new (int **)) * (p)
// (new (int *)) * (*p)
// (new (int)) * (**p)

&operator int ** + p;

Each is resolved by definition to maximise the length of the type name.

Resolution

A %prec resolves the ambiguity in accordance with the language specification,
using the one production ptr_operator_seq.opt to implement conversion-
declaratoropt and part of new-declaratoropt.

ptr_operator_seq.opt:
/* empty */ %prec SHIFT_THERE  /* Maximise type length */

| ptr_operator ptr_operator_seq.opt

F.2.3.5 Array of operator ambiguity

operator new and operator new[] (and operator delete and operator
delete[]) are valid declarator-ids. It is unclear whether

int operator new [ ];
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declares an array or a scalar.

Resolution

The ambiguity is removed by

• excluding operator new[] and operator delete[] from the grammar

• accepting a missing array dimension in an expression

Semantic processing identifies the array form from the parsed array of scalar form.

Alternatively, unnecessary semantic effort can be avoided by retaining the array
forms and using two %precs to resolve the two consequent shift-reduce conflicts.

F.2.4 Deep Ambiguities

There are some C++ constructs that require a significant amount of lookahead to
determine which of two alternative syntaxes is in use.

F.2.4.1 Bit-field or Inheritance

[Roskind91] identifies an ambiguity following

class A { class B :

which could form part of an anonymous bit field

const int C = 3;
class A { class B : C, D, E = 5; };

// C is a bit-field width, D,E are variables

or a base class

class C {};
class D {};
class E {};
class A { class B : C, D, E {}; };

// A::B inherits privately from C, D and E

class A is not really part of the ambiguity. It just serves to avoid the semantic
quibble that there are no bit-fields at global scope. There is in fact no ambiguity
anyway, because the inheritance declaration must eventually lead on to an open
brace whereas the bit-field can never be followed by an open brace.

The problem is the need to lookahead through an arbitrary long comma-separated
list of names until some keyword (such as public) or punctuation (such as *)
clarifies the name list, or until eventually the trailing punctuation resolves the
ambiguity.

Resolution

The superset grammar assumes that class A : is the start of a class declaration,
and back-tracks to the : if the base-specifier-list is not terminated by a {. This incurs
only a very minor performance loss, since the use of redundantly qualified
anonymous bit-fields is surely rare, and so back-tracking may never occur in
practice.

class_specifier:
class_key scoped_id '{' member_specification.opt '}'

| class_key scoped_id ':' mark base_specifier_list
'{' unmark member_specification.opt '}'

| class_key '{' member_specification.opt '}'
| class_key ':' base_specifier_list

'{' member_specification.opt '}'
| "template" class_specifier
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elaborated_type_specifier:
class_key scoped_id ':' mark error { rewind_colon(); }

| class_key scoped_id %prec SHIFT_THERE
| "enum" scoped_id %prec SHIFT_THERE
| "typename" scoped_id
| "template" elaborated_type_specifier

The %prec on class_key scoped_id resolves two conflicts. It forces a
following : to go through the inheritance lookahead test, and suppresses the
spurious interpretation as a function-name when followed by a { (Section F.2.6.2).

Attempting to resolve this problem by parsing for a shared prefix with a more
generalised expression syntax proves to be rather difficult, since the
generalisation to share a prefix allows the constructor initializer list to provide a
third alternative. This construct also ends in a { and so

class A : name {};

would satisfy the generalised syntax of both constructor and class inheritance.
Generalising the syntax further is not possible since a constructor takes a list of
statements whereas a class takes a list of declarations. A statement and a
declaration cannot be unified since the syntax for the label of a goto statement is
highly ambiguous with respect to an anonymous bit field (see Appendix F.2.7.2).

F.2.4.2 Type I functions

The original form of C function declarations is not normally supported by C++
compilers. The syntax presents challenges in avoiding conflicts, and does not tie
in well with the generalised name solution of the superset.

Resolution

The grammars in Appendix B and Appendix C implement Type I function
declarations but only at a severe (25%) cost to the parsing efficiency. To avoid
ambiguities, a lookahead parse is performed following almost any closing
parenthesis not at statement level. The severe inefficiencies most commonly
follow typedefed pointers to functions:

typedef A (*B)(C);

for which (C) is a valid generalised first parameter, and it is only after parsing
many subsequent declarations, which may include complete class definitions, that
the missing function-body is eventually detected.

Initiating a lookahead search after every close parenthesis interacts very badly
with the initiation of binary searches to resolve template ambiguities. It is
advisable to constrain the generality by maintaining a type I enabled flag and type
I active flag so that type I lookahead is initiated less often and so that incompatible
syntaxes (such as templates) terminate the lookahead more rapidly.

F.2.5 Semantic Ambiguities

The traditional parsing approach needs to resolve semantics during syntactic
analysis and so encounters ambiguities that need type information. These
ambiguities are all deferred until the semantic analysis by the superset parse.

F.2.5.1 Declaration/Expression ambiguity (§6.8)

Section 5.5.3.2 discussed the ambiguity whereby

T(a);
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could be:

• an expression-statement invoking the function or constructor T with argument a

• a declaration of a variable of type T and redundantly parenthesised name a

Resolution

The superset grammar eliminates the ambiguity but requires semantic processing
to resolve type-dependent problems identified in Section F.2.1.2 and
Section F.2.6.

[ The multi-pass FOG parser resolved the ambiguity by parsing declarations in the
first pass and expressions in the second pass. Statements within functions were
not parsed and so no semantic corrections were required. ]

F.2.5.2 Parenthesised-call / cast-parenthesis
parenthesised-binary / cast-unary ambiguity

A full semantic interpretation of a C++ program obviously requires a knowledge of
the types. Unfortunately this information is also needed for a correct syntactic
interpretation of an expression using a C cast followed by a unary operator or call.

(T)-5 // This is a cast if T is a type
(t)-5 // This is a subtraction if t is not a type

(T)(5) // This is a cast if T is a type
(t)(5) // This is a function call if t is not a type

Resolution for binary operator

Without type information, the above cases cannot be distinguished. At most one
of the two possibilities can be parsed correctly. The misparse must be detected
later and corrected. The superset grammar misparses the unary operator as the
binary operator, since the subsequent semantic correction to change a binary
operator into a cast is simpler than changing a unary into a binary:

• The change from binary requires replacing the binary node by a cast node
and inserting a unary operator on the leading child node. This involves only
the erroneous node and its children.

• A change from unary to cast would require inserting a cast node in the
parent hierarchy of the erroneous node, and parent traversal is not
normally supported by tree algorithms.

Preferring the binary operation is probably slightly more efficient. The use of C
casts is discouraged in C++ and so the need to make a correction to a cast should
be rare.

The misparse resulting from the lack of type information is tractable because the
incorrect parse results in a small easily resolved error in the parse tree.

Resolution for parenthesis

When a possible cast is followed by a parenthesised expression, the resolution
has to be in the opposite direction, favouring the cast, since the presumption of a
function-call would preclude the possibility of a subsequent non-parenthesised
term:

(a)(b)(c)(d)e(f)(g)(h);

[The multi-pass implementation of FOG used back-tracking to resolve ambiguities.
The cast ambiguity was resolved by establishing a mark following any open
parenthesis and then attempting to parse a cast. If the cast failed a nested
expression was parsed. This use of back-tracking was inefficient, required a
syntax rearrangement to isolate the leading parenthesis and resolved the
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ambiguity in the opposite direction. Since expressions were only used within the
context of declarations, inadequacies were not significant.]

F.2.5.3 Call/functional-cast ambiguity

As described in Section 5.7.1.4, the functional-cast is totally subsumed by a call
and so has been eliminated from the superset grammar.

F.2.5.4 Destructor name/one’s complement ambiguity (§5.3.1-9)

An unqualified destructor name cannot appear in an expression because of the
ambiguity with a complement operator.

~ X (); // This is ~(X()) even if X is a class

Unqualified destructors are therefore omitted from the superset parse.

Resolution

The missing unqualified destructor name in a declaration must be recovered from
its complement expression form. The semantic processing must check all
complement nodes to detect the misparse.

F.2.5.5 new-placement/new-initializer ambiguity

Type information is needed to distinguish between an omitted new-placement and an
omitted new-initializer when

new (a)(b)

is parsed against

new-expression:
::opt new new-placementopt new-type-id new-initializeropt
::opt new new-placementopt ( type-id ) new-initializeropt

new-placement:
( expression-list )

new-initializer:
( expression-listopt )

Resolution

The parser creates an AST node with two child expressions for the ambiguous
case. Semantic processing determines that if the first child is a type, then the new-
placement has been omitted, or alternately if non-type that the new-initializer defaults.

[The multi-pass implementation of FOG parsed for new-placement present on a first
pass and absent on a second.]

F.2.5.6 sizeof ambiguity

Type information is required to distinguish the overlap between the sizeof a value
and of a type. The syntactic ambiguity resulting from the lack of type information
may be resolved by recognising that the generalised syntax accepts a
parenthesised parameter-declaration as a unary-expression. The syntax for
parenthesised type-id is therefore covered by the syntax accepted as a unary-
expression.

unary-expression:
...
sizeof unary-expression
sizeof ( type-id )
...
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Resolution

The parser creates an AST node with a child expression. Semantic processing
determines which syntax is in use.

[The multi-pass implementation of FOG used two passes to parse the two
alternatives without changing the grammar.]

F.2.5.7 typeid ambiguity

Type information is required to distinguish the overlap between the typeid of a
value and that of a type. In the absence of type information, the superset parse of
expression and type-id is available as a parameter-declaration-clause.

postfix-expression:
...
typeid ( expression )
typeid ( type-id )
typeid ( parameter-declaration-clause )
...

Resolution

The parser creates an AST node with a child expression. Semantic processing
determines which syntax is in use.

[The multi-pass implementation of FOG used two passes to parse the two
alternatives without changing the grammar.]

F.2.5.8 Template argument type/value ambiguity

The appropriate template specialisation cannot be selected without knowledge of
inheritance.

Successful parsing of the arguments of a template require type information to
distinguish type and value parameters.

Resolution

Templates do not need to be specialised during the primary parse. An AST node
describing the template-argument-list is created which the subsequent semantic
processing elaborates.

A superset grammar that covers

template-argument:
assignment-expression
type-id
template-id

can be used to create AST nodes during the syntax analysis that can be
interpreted later once type information is available. The generalised parameter-
declaration covers template-argument.

[The multi-pass implementation of FOG used two passes to attempt value and
type parsing. Value and type were tried independently for each argument of a
multi-argument template resulting in exponential complexity.]

F.2.6 New C++ ambiguities

A strict superset of the declaration and expression syntaxes should introduce no
new ambiguities. However parsing is eased by taking a rather larger superset. In
particular a very general policy is adopted for names. As a result some new
ambiguities are created.
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F.2.6.1 ctor-initializer or Named Bit-field

The generalised name makes

name

valid as the declarator in a function-definition with the result that there is deep
ambiguity between

type name : m(i), n(j), p(l) {} // A constructor

type name : m(i), n(j), p(l); // A bit-field, and variables

Resolution

The superset grammar uses a shared prefix for the two cases, so that no decision
is made until the disambiguating punctuation is reached. Use of a shared prefix
requires considerable generalisation, tolerating assignment-expressions as each
ctor-initializer, and an assignment-expression rather than an identifier as the bit-field
name.

All valid syntaxes are parsed correctly. Many invalid syntaxes are accepted and
need diagnosis at the semantic level.

The shared prefix appears as constructor_head in the grammar of Appendix B.
The prefix causes greater problems in the implementation of tree_statement,
since, as described at the end of Section 3.1.1.6, there is an ambiguity between
the use of a comma to separate multiple components of a single element, and its
use to separate multiple elements. The implementation in Appendix C is carefully
structured to avoid shift-reduce conflicts.

F.2.6.2 class-specifier or enum-specifier as function-definition name

The generalised name makes

enum X

valid as the declarator in a function-definition with the result that

enum X {};

is accepted as both an enum-specifier and function-definition.

Resolution

The resolution of the bit-field or inheritance ambiguity (Appendix F.2.4.1) has the
beneficial side effect of solving this ambiguity for

class X {};

The ambiguity for enum produces a shift-reduce conflict, which is resolved in
favour of the only valid possibility: the enum-specifier. No semantic repair is
necessary.

Elaboration of the grammar to be more restrictive on function names might be
possible for C++, although there is a risk of introducing conflicts between function-
definitions and simple-declarations. Such elaboration is not possible in FOG where the
extended re-using-declaration syntax accepts function names without parentheses.

F.2.6.3 delete[] ambiguity

Introduction of the abstract array declarator [] as part of a primary-expression
creates an ambiguity in

delete[](p)
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between

• the intended array operation

• deletion of an abstract array of functions.

Resolution

The array form is removed from the grammar and supported by generalising a cast
expression to accept a bracketed as well as a parenthesised prefix. The resulting
bracketed cast ambiguities are resolved in exactly the same way as parenthesised
cast ambiguities, save for the benefit that the resolution is correct except for the
array delete which must be detected semantically.

cast_expression: unary_expression
| abstract_expression cast_expression

abstract_expression:parenthesis_clause
| '[' expression.opt ']'

parenthesis_clause:parameters_clause cv_qualifier_seq.opt
exception_specification.opt

Generalisation of the cast also covers the gcc indexed array initializer extension
described in Section 3.1.4.2.

F.2.6.4 linkage-specification ambiguity

The generalised name parsing supports interpretation of

extern "C";

as a conventional declaration since a string-literal satisfies the syntax of a
generalised name.

Resolution

This is a false ambiguity resolved by unconditional treatment of the keyword
extern followed by a string-literal as the pre-amble for a linkage-specification.

F.2.7 Extra FOG ambiguities

The presentation of the FOG extensions in Chapter 3 identified many of the
ambiguities associated with the extensions and parsing approaches to avoid them.
All ambiguities that cannot easily be avoided are identified in this section.

F.2.7.1 built-in-type-id maximised

The lack of distinction between meta-type-names and meta-names leads to two
ambiguities when a meta-name follows a meta-type as in a meta-variable-declaration.

auto short long :: int :: a = 0;

This could be

• a meta-declaration of ::a with meta-type short long::int

• a meta-declaration of ::int::a with meta-type short long

• a meta-declaration of long::int::a with meta-type short

• a meta-expression assigning to short long::int::a

Resolution

These ambiguities are resolved by two of the C++ disambiguation principles:
maximise to the left, and prefer declarations to expressions.
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The elemental meta-type-name is therefore maximised syntactically as short
long even though this is a semantic error. The entire name is maximised as short
long::int::a to select the expression interpretation.

F.2.7.2 label preferred to anonymous bit-field

There is an ambiguity between a label and bit-field:

label: int(value); // label then simple-declaration
type : int(value); // anonymous bit field

which does not arise in C++ since labels and bit-fields are syntactically exclusive.
Syntax generalisation in FOG removes this exclusivity introducing a parsing
conflict.

Resolution

The conflict is resolved to preserve C++ syntax, by preferring the label
interpretation as part of a statement. The same %prec that forces an identifier <
to be shifted for a template test also forces a shift to prefer a labeled-statement
whenever a labeled-statement is a syntactic option.

id: identifier %prec SHIFT_THERE
...

labeled_statement: identifier ':' looping_statement
...

F.2.7.3 handler-seq maximised

The generic syntax parsing for a tree statement supports a handler-seq following a
try-block.

void f() try {} catch (a) {} catch (b) {} catch (c) {}

leading to an ambiguity as to where the function ends and a subsequent handler-seq
begins.

Resolution

The ambiguity is resolved by definition to maximise the length of the left hand
syntax element.

handler_seq: handler %prec SHIFT_THERE
| handler handler_seq

F.2.7.4 access-specifier

The false ambiguity resulting from the generalised name interpretation of

public : x(y);

as an implicit int anonymous bit-field was discussed in Section 3.1.3.2.

Resolution

The ambiguity is resolved by a %prec to favour the accessibility-specifier.

decl_specifier_affix:               ...
| access_specifier %prec SHIFT_THERE

accessibility_specifier: access_specifier ':'

F.2.7.5 inline/ and virtual/ cannot be expressions

The false ambiguities resulting from the generalised name parsing of

name1 inline / interface ( name2 ) ;
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were discussed in Sections 3.1.3.5 and 3.1.3.6.

Resolution

The ambiguities are resolved by %precs to favour the switch.

function_specifier: "explicit"
| "inline" %prec SHIFT_THERE
| "virtual" %prec SHIFT_THERE
| '!' "inline"
| "inline" '/' "implementation"
| "inline" '/' "interface"
| '!' "virtual"
| "virtual" '/' "pure"

F.2.7.6 using string-literal is not an expression

A false ambiguity arises from the generalised name interpretation of

using "string";

as a re-using-declaration since a string-literal satisfies the generalised syntax of a
name and a re-using-declaration is parsed as a generalised declaration or
expression.

Resolution

The ambiguity is resolved by treating the keyword using followed by a string-literal
as an include-declaration unconditionally.

decl_specifier_affix: ...
| "using" %prec SHIFT_THERE

include_declaration: "using" string
...

F.3 Semantic checks

The syntactic analysis tolerates a very generalised syntax that merges
declarations and expressions and requires no knowledge of template or type
names. The analysis builds an Abstract Syntax Tree that must then be processed
to incorporate semantic information.

The semantic processing comprises four parts; resolution of syntax ambiguities,
correction of misparses, validation of semantics and implementation. Each part is
naturally performed in a distinct pass over the AST adding little to the substantial
amount of processing needed for a complex language such as C++.

The origin of most of the deferred ambiguities has been described in Sections
F.2.5, F.2.6 and F.2.7. Their resolution during semantic analysis is considerably
eased by operation on the AST where the whole of the construct to be analysed
is available, whereas the more conventional approach must struggle with
constraints of parser lookahead and shift-reduce conflicts. Both approaches
ultimately require the same decision code.

F.3.1 Resolution

A conventional C++ parse uses semantic information to resolve most if not all
ambiguities during the syntax parse. The superset parse uses a generalised
syntax to avoid semantic leakage. As a result the parse is incomplete and requires
ambiguities deferred from the syntactic analysis to be resolved during semantic
analysis. The most significant ambiguity is the declaration/expression ambiguity,
but there are a number of other minor type related problems to resolve.
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F.3.1.1 Declaration/Expression (§6.8)

The usage of the same AST nodes for declarations and expressions must be
resolved. The superset grammar parses declarations as a slightly generalised
expression, and so when appropriate, the declaration must be determined from an
expression tree. The context in which a tree is used sometimes determines
whether a declaration or expression is required. For instance, an initializer for a
default argument can only be an expression. In most situations, such as a
statement within a function, an ambiguity must be resolved.

Some aspects of the ambiguity can and must be resolved be resolved by an
accurate syntax check. For instance * const can only occur in a declaration,
whereas && can only occur in an expression. Further aspects can be resolved
when type information is available as it is for actual declarations. The syntax
resolution for an actual declaration can therefore perform a strong check, whereas
only a weak check can be performed for a potential declaration.

Resolution occurs by a dataflow propagation of a set of boolean flags that indicate
whether the AST satisfies a number of syntactic hypotheses. These hypotheses
are propagated from the leaves to the root, applying the constraints applicable at
each node so that the syntaxes satisfied by the tree can be determined.

The current partially functional implementation propagates a bit vector of 217
hypotheses ranging from EPSILON, IDENTIFIER, CLASS_NAME,
ELABORATED_TYPE_SPECIFIER, via PARAMETER_DECLARATOR and
PARAMETER_DECLARATION_CLAUSE, to BIT_FIELD_DECLARATION or
META_FUNCTION_DECLARATION.

Maintenance of these hypotheses at the 20 or so interesting tree nodes is
relatively straightforward since few hypotheses propagate through each node
type. Most operator nodes propagate only the BASIC_EXPRESSION hypothesis.
Unary operators such as & * and ~ that have meaning in declarators also
propagate the various DECLARATOR hypotheses. Tree nodes for the binary
operators * and & resolve their alternate parse for a left-hand type and right-hand
declarator. Tree nodes involving parentheses are where the conventional
ambiguities are resolved and where there is some implementation complexity, but
only in the number of ifs that map incoming to outgoing hypotheses.

The overall operation of the tree nodes of course restores the grammar which was
folded into the expression grammar; there are separate hypotheses for
DECLARATOR and DIRECT_DECLARATOR. However, because of the very
different semantic constraints associated with different names, it is necessary to
maintain independent hypotheses for ABSTRACT, CONVERSION, FUNCTION,
PURE_FUNCTION, INIT, META, PARAMETER or BIT_FIELD DECLARATIONs and
DECLARATORs and sometimes DIRECT_DECLARATORs, DECLARATION_IDs
and DECLARATOR_IDs. It is not appropriate to merge all DECLARATOR
hypotheses as a single parameterised hypothesis, since each hypothesis is
potentially independent and propagated up the tree in parallel. Sharing state
between hypotheses could cause cross-talk and therefore fail to achieve sufficient
precision to resolve very finely balanced declaration/expression ambiguities
correctly.

The same propagation algorithm is used for weak and strong hypotheses. The
difference lies at the leaves. For a strong determination, an identifier node is
assessed to determine whether the identifier satisfies each of a class, enum
namespace, typedef and template hypothesis. For a weak determination, all
hypotheses are satisfied, since there is no context to contradict the hypothesis.
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All hypotheses are propagated in parallel, and so a single pass over the tree
identifies all satisfied syntaxes. Ambiguity resolution amongst those of interest
determines whether to

• correct misparses in the expression metaobject

• create a potential declaration specifier metaobject

The corrections that may be required are outlined in Appendix F.3.2. Creation of
a potential declaration specifier involves a further tree traversal towards the
naming node where the appropriate metaobject can be created, and then
decorated as it is returned through intervening nodes.

F.3.1.2 new-placement/new-initializer ambiguity

See Section F.2.5.5.

F.3.1.3 sizeof and typeid ambiguity

The reuse of the same AST nodes for types and values probably simplifies the
implementation.

F.3.1.4 pure-specifier

The

pure-specifier:
= 0

syntax is covered by

constant-initializer:
= constant-expression

so that if even the lexer distinguishes the lexeme '0' from the number 0, there is
little possibility of identifying the distinction in a generalised parse.

Resolution

The superset parse does not resolve pure-specifiers or even constant-initializer. The
semantic pass must identify each from the more general assignment-expression,
taking care to distinguish character streams such as 00 or 0x0 from 0.

F.3.1.5 explicit-instantiation

The generalised name binds template close to the name, rather than as a prefix
to a declaration. Semantic processing must therefore locate the keyword deeper in
the AST than might be expected. explicit-instantiation does not appear as a distinct
production.

F.3.1.6 Implicit int

[Roskind91] questions the enthusiasm with which compilers have stopped
supporting the deprecated implicit int for C functions with no declared return
type.

Resolution

The purely syntactic superset parse does not distinguish implicit int from a
constructor. Implicit int is therefore parsed successfully. The semantic pass may
easily distinguish implicit int from a constructor, since a constructor has a name
that matches its scope. Any other name is implicit int.
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F.3.2 Correction

Misparses resulting from incorrect assumptions during the syntactic analysis must
be corrected, or accounted for during subsequent processing.

F.3.2.1 Template/arithmetic ambiguity

The binary search to identify a consistent syntax for the template or arithmetic
interpretation of identifier followed by < identifies the wrong syntax for
approximately 0.01% of statements (Section 5.8.2). These errors must be
corrected. Detection of the errors just requires the semantic test that should have
been performed during lexical analysis to be performed upon the AST. If the test
result is inconsistent with the tree structure, then the tree must be rearranged.
This is not particularly easy, since the two interpretations have distinctly different
tree structures, and rearrangements of nodes associated with arithmetic operators
must account for arithmetic precedences. The complexity is reduced a little by the
use of generic syntax elements, and so there is no difference between the sub-
tree for an expression and that for a template-argument. There is no
template_argument meta-type.

F.3.2.2 Parenthesised-call / cast-parenthesis
parenthesised-binary / cast-unary ambiguity

Semantic correction of the AST is required where a binary operator that is also a
unary operator has a type as its first child. This indicates that the binary operator
should be replaced by a C-style cast, and that the equivalent unary operator be
applied to the first term in the tree headed by the second child.

The reverse correction occurs where the parenthesised function name in a
function call was misparsed as a cast. An apparent cast to a non-type should be
corrected to a parenthesised function call.

F.3.2.3 Call/functional-cast ambiguity

A function call invoking a non-class type is recognised as a functional-cast.

A function call invoking a class type is recognised as a constructor.

F.3.2.4 Destructor name/one’s complement ambiguity (§5.3.1-9)

A function call to a complemented class-name in a declaration is detected as a
destructor declaration.

F.3.2.5 Array of operator ambiguity

Arrays of operator new or operator delete are recognised as the array forms
operator new[] and operator delete[].

F.3.2.6 delete[] ambiguity

An [] prefix following a delete operator is recognised as denoting delete[].

F.3.3 Validation

The syntax generalisations to establish a simple superset grammar accept many
nonsensical constructs.

double root2 = static sqrt(2) const throw();// declaration clutter
void b extern = int a char; // unlimited generality
A::A() : this(0), 5+7, ~3, int(...) {} // expression/name clutter
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The form of each generalised expression and declaration must be carefully
validated to diagnose the numerous anomalies that should normally be trapped by
syntax analysis.

This has advantages in terms of error diagnosis. Because the syntax accepts so
much, there is a good chance that many common semantic errors will survive the
syntactic analysis, build a plausible tree, at which point the difference from a
closely matching possibility can be reported. An accurate syntax parse is liable to
encounter the ubiquitous unclassified “parse error” more often, or require extra
elaboration in the grammar to cover probable user errors.

F.3.4 Implementation

The semantic analysis of the AST for each parsed statement must update the
symbol table to keep track of the enlarged program and make any additional
declarations accessible to subsequent statements.

For some unpleasant statements such as typedefs containing more than one
declarator, or function parameter lists, the semantic analysis update must perform
the symbol table updates so that names introduced early in the statement have
appropriate visibility later in the same statement. Achieving this during syntactic
analysis, and before expression/declaration ambiguities have been resolved,
requires very careful coding of the symbol table update to reflect the tentative
semantic analysis of an incomplete syntactic analysis.

Again these are exactly the same decisions that need to be performed by any
accurate C++ compiler, however their implementation is eased by operation in the
context of the AST rather than within the straitjacket imposed by avoiding conflicts
while looking infinitely far ahead in the parser grammar.

F.4 File Syntaxes

Additional syntax supports

• include declarations (replacing #include)

• specification of and allocation to output file names

• specification of generated include file dependencies for scopes

• specification of generated include file dependencies for code

This syntax contributes four new categories of declaration, only three of which are
supported as parts of classes. Include declarations are only valid at global scope.
The integration of these declarations with the main grammar is described in
Section 3.1.5. The syntax to support function-specific and function-body-specific
declarations is described in Section 3.1.4.7.

F.4.1 Target File Names

The names of target files are used in two ways.

• to create the file in the file system

• to reference the file in a generated #include directive

These two names need not be exactly the same. The name used to create the file
must be complete and specified with respect to the current user directory. Names
appearing in generated #include directives need only be resolvable by the
subsequent compiler, with respect to a potentially different current working
directory and using a search list of include file paths.

The file name used to refer to a file in a generated #include directive is composed
from 3 parts

prefix name suffix

The name is normally that of a class or namespace.
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The way in which prefix and suffix components are determined is
summarised in Table F.1.

The suffix is normally one of .cxx, .hxx, .C, .H depending upon whether the
file is associated with the implementation or interface of a non-template or
template class. These defaults may be changed by defining the corresponding
environment variable. This default setting may in turn be overridden by a
command line token. Finer-grained settings can be supplied using the appropriate
switch in the source code syntax of a file-name.

The prefix may be used to locate nested include files such as sys/stdlib.h.
The prefix has no default, but may be given a value from an environment
variable, command line option or source code switch. For template prefixes (and
paths) the environment variable option is determined first from a template-specific
name, and if that is undefined the non-template name is used.

When files are created, a further path prefix may be added. If no prefix has been
defined then the file is created as

prefix name suffix

otherwise the file is created as

path separator prefix name suffix

where path is the specified path, and separator is a file system dependent
joining character. Only / is implemented, which is suitable for any file system with
a C interface.

component file template default environment variable
command

-line
token

source
 code
switch

path interface Fog::interface_path -hd /path

template Fog::template_interface_path
Fog::interface_path

-htd

imple-
menta-

tion

Fog::implementation_path -cd

template Fog::template_implementation_path
Fog::implementation_path

-ctd

prefix interface Fog::interface_prefix -hp /prefix

template Fog::template_interface_prefix
Fog::interface_prefix

-htp

imple-
menta-

tion

Fog::implementation_prefix -cp

template Fog::template_implementation_prefix
Fog::implementation_prefix

-ctp

suffix interface .hxx Fog::interface_suffix -hs /suffix

template .H Fog::template_interface_suffix -hts

imple-
menta-

tion

.cxx Fog::implementation_suffix -cs

template .C Fog::template_implementation_suffix -cts

Table F.1 File Name Component Contributions
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F.4.2 Target File Identities

When the name of a file is specified, it may be qualified to override the default
naming or structuring policies.

file-name:
string-literal
file-name / interface
file-name / implementation
file-name / template
file-name / utility
file-name / guard = string-literal
file-name / noguard
file-name / path = string-literal
file-name / prefix = string-literal
file-name / suffix = string-literal

The file name is specified as a normal string (or concatenation yielding a string),
rather than the subtly different syntax for a string in a #include directive. File
names containing escape sequences must therefore be appropriately escaped.

It is assumed that the string-literal incorporates prefix, name and suffix
components, unless /interface or /implementation is specified, in which case
the string-literal should comprise just the name component.

/interface
/implementation

Specify that a prefix and a suffix should be applied to the name using values
determined in accordance with Table F.1.

/template

Specifies the use of the template, rather than non-template, policy for any path,
prefix or suffix.

/utility

Specifies a utility level of an output file. Only /utility (or /frozen) is
meaningful, as a further assurance that a file should not be emitted.

/guard = string-literal

Specifies the spelling of the include file guard, overriding the default derived from
the file name and its suffix.

/noguard

Specifies that there should be no include file guard in the target file.

/path = string-literal

specifies the path to be prefixed to the name when creating the file. If neither
/interface nor /implementation is used, the implementation rather than
interface path is used in accordance with Table F.1.

/prefix = string-literal
/suffix = string-literal

specify an override for the prefix and/or suffix parts of the file name, but are
only used if one of /interface or /implementation has been used to specify an
algorithmic contribution to the name.

F.4.3 Target File Placement

The target file for a particular scope may be changed by a file-placement-declaration.
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file-placement-declaration:
export / implementation =opt file-specifier ;
export / interface =opt file-specifier ;
export / noimplementation ;

file-specifier:
file-name
file-entity
file-entity / implementation
file-entity / interface

file-entity:
declarator-id
elaborated-type-specifier
namespace scoped-id

export/implementation specifies that the implementation (non-inline function
bodies and initialised variables) should be located in file-specifier. Similarly
export/interface specifies that the interface should be located in file-specifier.

Each file-specifier may be a file-name (the qualified name of a file) or file-entity (the
name of some declared entity). In the case of a file-entity, the required file is either
the implementation or the interface file to which the declarations of the entity are
emitted. An explicit distinction is made by use of /implementation or
/interface to qualify the entity name. An implicit distinction is made in the
absence of an explicit qualifier, by using the implementation or /interface
qualifying the export keyword.

The default placement recursively locates declarations with their enclosing class.
Top level classes and namespaces are located in a file named from the declaration
name. This policy may be overridden to support

• arbitrary placement

class Base
{

export/implementation "Bases.cxx"; // emit implementation to Bases.cxx
export/interface "Bases.hxx"; // emit interface to Bases.hxx

};

• placement of a derived class with its base:

class Derived : public Base
{

export/implementation Base; // emit implementation with
// implementation of Base

export/interface Base; // emit interface with interface of Base
};

• placement of a local class entirely within an implementation file:

class Local
{

export/implementation Base; // emit implementation with
// implementation of Base

export/interface Base/implementation; // emit interface with
// implementation of Base

};

export/noimplementation specifies that there should be no implementation, as
is often intended to be the case for private constructors and assignment operators.
Specification of export/noimplementation ensures that any violation of this
intent as a result of composition is detected.

F.4.4 File-spaces

A file-space is a set of declarations grouped in order to share file placement. A
file-space therefore supports placement of selected declarations in a specific pair
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of implementation and interface files. A file-space is not a declarative region, and
so declarations appearing within a file-space form part of the enclosing scope.

filespace-specifier:
namespace / file file-name compound-declaration

filespace-declaration:
filespace-specifier ;

The implementation and interface files are determined on the assumption that file-
name constitutes a suitable name for application of prefix and suffix components
in accordance with Table F.1. Since both interface and implementation file names
are determined algorithmically, the use of /interface or /implementation on
the file-name is redundant. A file-placement-declaration may be used to change one of
both of the file names. The interface file is only used for namespaces and function
definitions inlined in the interface, since the declarations of a class must
necessarily occur within the one class: they cannot be partitioned across multiple
interface files.

In

class A
{

namespace/file "FirstRegion"
{

// ...
};

namespace/file "SecondRegion"
{

export/implementation B;
// ...

};
};

declarations within FirstRegion form part of class A and are typically emitted to
A.hxx, FirstRegion.hxx and FirstRegion.cxx. Declarations within
SecondRegion are similarly part of class A, but are typically emitted to A.hxx,
SecondRegion.hxx and B.cxx.

File-spaces may be used to compose a file structure upon the global namespace
or upon C source, and to place explicit-instantiations.

F.4.5 Target File Dependencies

Files emitted by FOG have include file guards around declarations and file
inclusions that are arranged to ensure that C++ requirements for forward
references are satisfied. Include file references and forward declarations are
generated by analysis, and as a result are often tighter (better) than those
produced by hand.

The current implementation of FOG performs a very limited analysis of function
bodies, so FOG may miss dependencies. A perfect analysis could not guarantee
to catch all dependencies, given the inadequate type information available for
template arguments of templates that remain uninstantiated.

Target file dependency declarations are therefore provided to allow missed
declarations to be specified.

file-dependency-declaration:
using / implementation =opt file-specifier ;
using / interface =opt file-specifier ;

These concepts correspond to “uses (for interface)” and “uses (for
implementation)” in [Booch91]. However, whereas a full model requires all
dependencies to be specified, FOG only requires the specification of those that it
fails to deduce.
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A dependency declaration may be used as a class member-declaration to specify a
dependency for all declarations within the class

class Base
{

using/implementation "stdlib.h"; // Entire implementation uses stdlib.h
using/interface string; // Interface uses string

};

Class level specification is very heavy handed, providing little indication of where
the dependency is triggered and poor support for declarations originating from
algorithm-centric source code. This may provoke spurious includes to be
generated if the class implementation is spread into many files. FOF therefore
supports declaration level specification of dependencies:

As an object-statement to restrict the dependency to a single function, irrespective of
its derivation context

class Base
{

public void f()
:{ // N.B. Start of function scope not body.

using/implementation iostream;
{ ... }; // Base::f implementation uses iostream

};
};

or as part of a function-used-block to further restrict the dependency to the derivation
contexts in which the associated function-body is used.

class Base
{

public void f()
:{ // N.B. Start of function scope not body.

using iostream { ... }; // Function contribution uses iostream
};

};

F.4.6 File inclusion

A replacement syntax for #include is provided by overloading the using keyword
and recognising that using followed by a string has no meaning in C++.

include-declaration:
using slash-includeopt slash-utilityopt string-literal ;

slash-include:
/ include

slash-utility:
/ utility

utility:
pool
emit
utility
frozen

The utility indicates whether the declaration belongs to a frozen free-standing
external class utility, to a pool of declarations, or whether the declaration is to be
emitted. The default behaviour is for all declarations arising from #include files
to be treated as frozen utility declarations that must not be changed or re-emitted.

The replacement syntax for #include provides qualifiers to select the nature of
included declarations. The replacement syntax is only valid as a global-scope
declaration.

Inclusion only occurs upon the first encounter, and so include file guards are
unnecessary.
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using "file.h"; // Include file.h preserving prevailing utility
using/utility "string.h"; // Include string.h as utility declarations
using/pool "shared.h"; // Include shared.h as pooled declarations

The utility or pool attributes apply throughout the included file and its nested
inclusions. The prevailing mode is restored after the include completes.

Declarations read while in utility mode provide information that enables FOG to
correctly analyse and emit the wanted code, but do not directly cause emission of
the utility code. However, utility classes may indirectly contribute to emitted code
by providing derivation rules or meta-programs that do contribute to classes that
are emitted. Any attempt to change the functionality of utility classes can be
diagnosed and rejected.

The new include syntax is restricted to top-level declarations, unlike the #include
directive which could potentially appear in the middle of an expression. The
rationale behind this is a corollary of adopting an include-just-once policy to avoid
the need for include file guards. This implies that a new-style include cannot
contribute to multiple scopes and so should not contribute to any. Every included
declaration should be part of the global name-space. Perhaps a little of the old
behaviour should be restored by introducing using/reinclude as part of any
declaration or statement.
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semantic-level substitution 99
semantics 83
sentence 266
separator 379
set 357
shared prefix 371
SHIFT_THERE 364
signature

re-use 52
simple-declaration 49, 52, 56, 92, 102, 357,

363
simple-type-parameter 40, 287
simple-type-specifier 44, 284
single stepping 211
sizeof 71, 290, 369, 376
slash-include 291, 383
slash-utility 291, 383
Smalltalk 3, 130, 220, 260, 262
SmartPointerMember 225
SO 265
SOM 130
SOP 265
source file

protection 210
source-level debugging 360
special-function-id 44, 282
specifier 65, 88, 92, 280, 376
Standard Template Library 222, 357
statement 65, 68, 88, 91, 95, 280, 363
statement-seq 60
Static 108, 117
static 47, 66, 67, 123, 208, 283, 289, 357
StaticFlyweight 221
std

ambiguous 73, 345
date 73, 346
defined 73, 345
diagnostic 73, 80, 345
error 73, 80, 345
file 73, 346
filter 360
find 73, 345
get_cpp 73, 113, 195, 346
get_env 73, 346
map 360
meta-namespace 73, 345
no_alias 80
parse 99, 145, 346
parse_tokens 346
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time 73, 346
tokenize 346
type_info 130
warning 73, 80, 345

storage-class-specifier 40, 47, 60, 103, 283,
287

strike-through 8
string 65, 91, 280, 383
stringizing 78
string-literal 35, 36, 91, 280, 281, 372, 374
strongly typed 87
Stroustrup 215, 220
struct 66, 280
structural hierarchy 105
substitution 33, 96, 108

character-based 77
syntax-based 77
token-based 77
unwanted 76

suffix 202, 291, 379, 380
Super 216, 217, 347
superset grammar 19, 47, 99, 100, 128, 259,

360, 363, 366, 367, 369, 370, 371,
374, 377

switch 69, 289
SynchronisedEnum 236
synchronized 138
synonym 95
syntactical analysis 266
syntactical type 86
syntax 266
syntax generalisation 88, 377
syntax macro 138, 260, 261, 291
syntax predicate 87
syntax-level substitution 77, 96, 98
syntax-macro overloading 140
syntax-macro-definition 121, 140, 291
syntax-macro-parameter 140, 291
syntax-macro-parameter-list 140, 291

T
-t 211
tab spacing 211
target file 378
template 2, 44, 282, 291, 380

instantiation 202, 207, 262
meta-programming 18
specialization 54, 202, 207

template parameter 108
template_argument 65, 280
template_parameter 66, 92, 280
template_parameter_specifier 65, 92, 280
template-argument 40, 91, 287, 370, 377
template-argument-list 44, 282, 361, 370
templated_parameter_specifier 65, 280
template-declaration 40, 287
template-id 361
template-name 361, 364

template-parameter 40, 92, 287, 364
temporary meta-object 90
terminal 7, 266
terminated-tree-argument 40, 287
text-literal 35, 280
This 347
this 70, 290
Tiemann 216
time 73, 346
token 33, 65, 77, 266, 280

function_structure 128
tokenization 33, 34, 281

grammar 34, 36
token-level substitution 77, 96, 98
traits 235
translation-unit 60
translator 18
tree 91
tree_literal 65, 280
tree_statement 371
tree-argument 39, 67, 286, 289
tree-argument-list 39, 286
tree-expression 39, 286
tree-literal 33, 35, 37, 38, 70, 96, 100, 280,

281
tree-literal as identifier 102
tree-statement 39, 60, 66, 286, 289
tree-statement-seq 39, 287
trigger word 139
trigraph 35
try-block 91, 373
type 66, 92, 280
type constructor 92
type I function declaration 367
type safety 87
type_info 135
type_parameter_specifier 65, 280
type_specifier 65, 92, 280
typedef 54, 65, 66, 92, 123, 208, 216, 280,

289
typedef_specifier 65, 92, 280
typedef-name 360
type-id 365, 370
typeid 130, 135, 370, 376
typename 45, 65, 66, 92, 280, 284, 289
type-narrowing 87
type-parameter 40, 287, 364
type-specifier 284

U
UML 27, 88, 265
unary-expressio 369
unary-operator 103
underline 8
union 66, 280
unnamed-namespace-definition 45, 284
unresolved reference 85
unterminated-tree-argument 40, 287
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usage dependency graph 205
user-defined

meta-type 65
type 63, 64

using 8, 44, 51, 56, 65, 66, 74, 92, 123, 280,
284, 288, 289, 291, 357, 374, 382,
383

template 54
using_declaration 65, 92, 280
using_directive 65, 280
using-declaration 8, 40, 44, 51, 92, 284, 287
using-directive 40, 91, 121, 287
utility 74, 203, 204, 291, 380, 383

inheritance 204

V
value composition 123
value_parameter_specifier 65, 280
variable 66, 92, 135, 208, 280
variable composition 123
variable_specifier 65, 92, 280
variable-statement-scope 55
view 358
virtual 49, 125, 283

constructor 220
meta-inheritance 135

Visitor 233
VLIW 265
volatile 285

W
warning 73, 345
weaving 3, 242
while 69, 289
white-space 33, 38
whitespace 35
WholePart 230
wide string 33, 35
wide-character 35
wide-string 35
worklist 208

Y
yacc 2, 145, 146, 197, 252, 257, 265, 344,

360


