ARM NEON™ 't
Instruction Set and Why
You Should Care 'L

The future’s so bright, | gotta
wear shades?

Mike Anderson \

- Chief Scientist
Embedded Linux The PTR Group, Inc.
Conference

http://www.theptrgroup.com

What We Will Talk About

#Parallelism in computing

#The evolution of ARM SIMD instructions
#What is NEON™?
#NEON™ Architecture Overview Me
#Developing Code for NEON™
#Example Performance Improvements
#Summary

Copyright 2011, The PTR Group, Inc. \K PTR
e,

Parallelism In Computing

+# The ability to execute operations
in parallel allows us to achieve
more than simple clock speed
improvements

Flynn’s Taxonomy describes
various flavors of parallelism
» SISD:
Single Instruction/Single Data
- Traditional scalar processors
» SIMD:
Single Instruction/Multiple Data 8o
. Vector processors (data parallelism)
» MIMD:
Multiple Instruction/Multiple Data

- Multi-core processors (thread
parallelism)

SF-ELC11-NEON-3 Copyright 2011, The PTR Group, Inc. \K DT
—t

Source: ARS Technica

Data Parallelism

#SIMD computing is well suited to a wide
variety of algorithms
» FIR, FFT, dot product, multiply/accumulate
(MAC), color conversion and more
#The idea is to load up multiple pieces of
data and perform an operation across all
of the data at once
» Examples include x86 MMX/SSE, XScale
WMMX, and ARM NEON™
#SIMD operation requires some thought to
be able to “vectorize” the code

SF-ELC11-NEON-4 Copyright 2011, The PTR Group, Inc. \K DT
—t

Evolution of ARM Instructions

#The ARMV5TE introduced “enhanced DSP
extensions”

» 2-3x DSP performance boost over entry ARMv5

- Load and store instructions for pairs of registers with
new addressing modes

- Single-cycle 32x16 and 16x16 multiply/accumulate
(MAC) features

- CLZ instruction to boost divide and normalization
speed

- Saturation extension to eX|st|ng instructions
#Targeted at applications such as audio
CODECs, networking, etc. that required a
mix of DSP and control

SF-ELC11-NEON-5 Copyright 2011, The PTR Group, Inc. \K DT
—t

The ARM Architecture and SIMD

#The SIMD capabilities were first introduced
to ARM with the ARMv6 architecture

» ARM11 had a simple SIMD unit in coordination
with the VFPv2 floating-point unit
#60+ new SIMD instructions
» 32x32 fractional MAC
» Concurrent 8/16-bit operations

» Concurrent computation of 2x16-bit or 4x8-bit
operands

» Dual 16x16 multiply-add/subtract

#2x ARMV5TE performance for media
applications

SF-ELC11-NEON-6 Copyright 2011, The PTR Group, Inc. \K DT
—t

ARMv7 and NEON™

#The NEON™ unit is billed as a
“media engine” within the
ARM core

» Separate register file and
10-stage execution pipeline
from ARM core

» Optional as is the VFPv3 floating point unit
» Targets media acceleration, signal processing
and graphics
#Over 100 SIMD instruction tyCFes available in
both ARM and Thumb-2 mode

» Instructions run intermixed with standard ARM
instructions

» Supports integer and floating point operations
SF-ELC11-NEON-7 Copyright 2011, The PTR Group, Inc. \K PTR]

ARM Cortex A9

CoreSight
Debug Access Port

Profiling Monitor Block

Branch
Monitor

Instruction queue
and
Dispatch

Instruction
queue
Prediction
queue

Auto-prefetcher

—

Load-Store Unit uTLB
Program

Store Buffer
quad-slot with forwarding m Tl.r!:(i:te

Data Cache

Branch Prediction

Fast-loop
mode

Instruction
cache

Global History Buffer
BR-Target Addr Cache
Return Stack

Source: ARM

SF-ELC11-NEON-8 Copyright 2011, The PTR Group, Inc. \K PTR]
—

What is NEON™?

#Neon™ is a “packed SIMD” processing unit
» 32, 64-bit wide registers
- Dual-view as 16, 128-bit registers
» Registers are treated as vectors of elements
of the same data type
#Supports both signed and unsigned 8, 16,
32 and 64-bit integers and 32-bit IEEE
754 single precision floats

#Instructions perform the same operation
in all lanes

SF-ELC11-NEON-9 Copyright 2011, The PTR Group, Inc. \K DT
—t

Operand Flow

+#1-2 source registers and a destination
register

» Allows for mixing of double and quad-word
operands and destinations

127 112111 95 79 47 3231 1615 [
az| | | | | | | vector
Source Vectors

o [T
Y.V vy v.s
| N e e

127
Destination Vector —> Q0 | | | | | | |

VADD.I16 Q0, Q1, Q2

SF-ELC11-NEON-10 Copyright 2011, The PTR Group, Inc. \K DT
—t

NEON™ QOperations

+# SIMD instructions supported by vectorizing
compiler, intrinsic functions or in-line assembly
4 Instructions include:
» 1,2,4-byte load/store across vectors

» Add/subtract with saturation, halving and rounding
- MIN, MAX, NEG, MOV, ABS, ABD

» Multiplication (MUL, MLA, MLS and more)

» Shifts with saturation, rounding

» Compares and selection

» Logical operators

» Bit fields, shuffles (ZIP, UZIP)

» Reciprocal estimate/step, Square root estimates
» And many more...

SF-ELC11-NEON-11 Copyright 2011, The PTR Group, Inc. \K DT
—t

Promotion/Demotion

¥ NEON™ can use both register views in the same
instruction

» Allows promotion/demotion of elements within a single
operation

W e

*Operatlons can be long, narrow or wide
» Long operations promote elements to double the
precision

- E.g., VMULL, VADDL 16x16->32

» Narrow operations demote like narrowing
- E.g., VADDHN

» Wide operations promote the 2nd operand (16+32-> 32)
- E.g., VADD, VSUB

rce: ARM

SF-ELC11-NEON-12 Copyright 2011, The PTR Group, Inc. \K DT
—t

Pair-wise Operations

#NEON™ supports pair-wise operations
that work on adjacent registers and
perform operations like reductions

» ADD, MIN, MAX

e

Source: ARM

Source: ARM

SF-ELC11-NEON-13 Copyright 2011, The PTR Group, Inc. \K DT
—t

Load/Store Operations

#Many different memory access patterns
can be achieved with a single instruction

s#-Understands structure loads and
unaligned transfers

» Minimizes the need for padding typically
found in structures
#Can load from/store to RAM, registers,
immediate values

SF-ELC11-NEON-14 Copyright 2011, The PTR Group, Inc. \K DT
—t

Developing Code for NEON™ #1

+# There are several ways to develop code that uses
the NEON™ unit

+# Use a vectorizing compiler

» The compiler will look for code that can be
vectorized automatically
- Success requires you to code your algorithms to help the
compiler vectorize
- E.g., Force operations in groups of four

void add_ints(int * _ restrict pa, int * _ restrict pb, unsigned
int n, int x)
{
unsigned int i;
for(i = 0; 1 < (n & ~3); i++)
pali]l = pb[i] + x;

}
¥ To enable vectorization you must add
-mfpu=neon -ftree-vectorize to gcc

) arm-none-linux-gnueabi-gcc -mfpu=neon -ftree-vectorize -c vectorized.c

SF-ELC11-NEON-15 Copyright 2011, The PTR Group, Inc. \K DT
—t

Developing Code for NEON™ #2

#Another approach is to use the NEON™
intrinsic operators

» Translates to NEON™ assembler operations

#include <arm_neon.h>
uint32x4_t double_elements (uint32x4_t input)
{
return (vaddq_u32 (input, input));
}

#To compile with gcc:

> arm-none-linux-gnueabi-gcc -mfpu=neon intrinsic.c
#A complete list of supported intrinsics can
be found at:

» http://gcc.gnu.org/onlinedocs/gcc/ARM-NEON-
Intrinsics.htmI#ARM-NEON-Intrinsics

SF-ELC11-NEON-16 Copyright 2011, The PTR Group, Inc. \K DT
—t

Developing Code for NEON™ #3

+#If you’re really hard-core, you can write in
assembly:

.text

.arm

.global double elements
double elements:

vadd.i32 q0,q0,q0

bx 1r

.end

#Then, assemble with gas:

) arm-none-linux-gnueabi-as -mfpu=neon asm.s

#O0r, take the way of the
weak and use an
optimized library

Source: ount
SF-ELC11-NEON-17 Copyright 2011, The PTR Group, Inc. \K DT
—t

Neon™ Optimized Libraries

#The OpenMAX DL library from the Khronos
Group is a NEON™ optimized, royalty-free
library for AV CODEC acceleration

» http://www.khronos.org/openmax/

#Supports:

» MPEG-4 and H.264 baseline

» JPEG, Colorspace conversion, rotates, scaling,
composting

» MP3, AAC
» FIR, IR, FFT, Dot Product
#Code samples and library available from ARM
site (https://silver.arm.com/browse/0X000)
» Requires registration and login

SF-ELC11-NEON-18 Copyright 2011, The PTR Group, Inc. \K DT
—t

Relative Performance Metrics

#The use of NEON™ shows 1.6-2.5x
performance boost over ARM11 in
complex video CODEC (MPEG4)

¥#Audio processing FFT (used in AAC, voice
recognition, etc.)

» ARMT11 (v6 SIMD) 15.2us
» ARM Cortex A8 (v7 NEON) 3.8us
» Both were hand-tuned assembly

#FFT in ffmpeg is 12x faster on Cortex-A8
in hand-tuned asm

SF-ELC11-NEON-19 Copyright 2011, The PTR Group, Inc. \K DT
—t

Open Source with NEON™

There are several OSS projects that are NEON™
enabled including:
» BlueZ Linux Bluetooth stack
- NEON™ sbc audio encoder

» ffmpeg - libavcodec

- NEON™video: MPEG-2, MPEG-4 ASP, H.264 (AVC), VC-1,
VP3, Theora

- NEON™ audio: AAC, Vorbis, WMA
» Android Skia library
- S32A_D565_Opaque is 5x faster w/ NEON™
» Eigen2 C++ vector math linear algebra library
» X264 - GPL H.264 encoder for video conferencing

» Pixman (part of cairo 2D graphics library)
- Compositing/alpha blending 8x faster w/ NEON™

SF-ELC11-NEON-20 Copyright 2011, The PTR Group, Inc. \K DT
—t

10

Power Efficiency of NEON™

NEON™ unit is approximately the same mW/MHz
as integer core

» Power savings from lower MHz and/or removing
special-purpose media accelerators

Example YouTube HQ video (480x270 H.264 @
30fps§)
» ffmpeg player on 500MHz Cortex-A8 decoding to
YUV420
» 64fps video only
- 234MHz average
» 60fps including AAC-LC audio
- 250MHz average

+# Beagle C4 is roughly 1TmW/MHz including memory
accesses

SF-ELC11-NEON-21 Copyright 2011, The PTR Group, Inc.

N ~mT=

Summary

#For the right application, the NEON™ unit
can yield 2-8x performance boost
#Using pre-optimized libraries reduces the
development headaches while yielding
good results
» Strong 3'd party ecosystem of library vendors

#Hand-coding assembler or using NEON™
intrinsics requires experimentation to get
the instruction mix right

» Always dump assembly output and examine

SF-ELC11-NEON-22 Copyright 2011, The PTR Group, Inc.

N _~mT=

11

