

Tutorial: The H.264 Advanced Video Compression Standard

By: Sriram Sethuraman Ittiam Systems (Pvt.) Ltd., Bangalore

IEEE Multimedia Compression Workshop October 27, 2005 Bangalore

world's most preferred DSP IP supplier 2004

DSP Professionals Survey by Forward Concepts

Overview

- Motivation comparison against other standards
- AVC in the market
- Standards history & Tools progression
- > AVC Coding Tools how they work
- Fidelity Range Extension (FREXT) tools
- Profiles & Levels
- SEI and VUI
- JM Brief description
- Implementation aspects
- Carriage of AVC (MPEG-2 TS / RTP)
- Storage of AVC (File format)
- Scalable Video Coding
- References

AVC in the market

- > 50+ companies that have already announced products
- > Span a broad range of product categories
 - DVB Broadcasting (HD/SD)
 - ⇒ Harmonic, Tandberg
 - ✤ Digital Multimedia Broadcast (DMB) or ISDBT
 - Several companies in Korea, Japan
 - ✤ IPTV/VoD
 - ⇒ Skystream, Minerva
 - ✤ Portable media player
 - Sony PSP, Apple's video iPod
 - ♦ ASICs
 - ⇒ Broadcom, Conexant, Sigma Designs, ST Micro
 - ✤ STBs
 - ➡ Pace, Scientific Atlanta, Amino, Sentivision, Ateme, etc.
 - Video conferencing systems
 - ⇒ Polycom
 - DSP IP
 - ➡ Ittiam, Ateme, Ingenient, Sentivision, etc.
 - ✤ RTL IP
 - ⇒ Sciworx, Amphion, etc.
 - PC based
 - ⇒ QuickTime 7, Main Concept, Elecard
 - ✤ Analysis tools
 - → Tektronix (Vprov), Interra
 - 3

H.264 – Compression Advantage

Presented at the IEEE Multimedia Compression Workshop, Bangalore, October 27, 20
 © Ittiam Systems Pvt. Ltd., 2003-2005. All Rights Reserved.

Video Coding Standards - History

> ITU-T H.261 (1990)

- ISO 11172-2 (MPEG-1, 1993)
- ITU-T H.262 /ISO 13818-2 (MPEG-2, 1995)
- ITU-T H.263 (1996)
- > ITU-T H.263+ (1998)
- ISO 14496-2 (MPEG-4, 1999)
- ITU-T H.263++ (2000)
- ITU-T H.264 / ISO 14496-10 (2003)
- ITU-T H.264 FREXT (2004)
- Corrigendum and amendments (2005)

H.264 Tutorial – Presented at the IEEE Multimedia Compression Workshop, Bangalore, October 27, 2005. © Ittiam Systems Pvt. Ltd., 2003-2005. All Rights Reserved.

VCEG vs. MPEG

VCEG (Video Coding Experts Group)

✤ ITU-T SG16Q6

Focus on video coding for communication

H.324, H.323 umbrella standards for systems

MPEG (Moving Picture Experts Group)

ISO/IEC/JTC1/SC29/WG11

Focus on video coding for entertainment

Specifies carriage of media in Systems specifications

> H.264 is a joint standard

♦ ITU-T H.264

♦ ISO/IEC 14496-10

6

Standards vs. Applications

▶ H.261

- Video telephony
- > MPEG-1
 - CD-ROM
- MPEG-2
 - DTV, DVD, Studio
- ➢ H.263, +, ++
 - Video telephony, security, MMS
- > MPEG-4
 - Streaming, security, network camera
- ▶ H.264
 - Video telephony, streaming, storage (HD-DVD/BD-ROM), Digital Cinema

7

Coding Tools Progression

- Motion Compensated Transform Coding of a macroblock
- Intra coding
 - DC prediction
 - Improved intra prediction (AC/DC prediction)
- Inter coding
 - Half/Quarter pixel accurate motion compensation
 - Bidirectional motion compensation
 - Variable block size motion compensation
 - Unrestricted motion compensation
- Loop filter
 - Simple in-block smoothing
 - ✤ Deblocking filter
- Interlaced coding tools
- > 2D/3D VLCs
- Error resilience tools (Resync, Data partitioning, RVLC)
- Scalability (Spatial/Temporal/SNR/FGS)

8

H.264 - Features

- 4x4 block sizes
- Integer transform
 - * No mismatch between encoder and decoder
- Low complexity, wider range quantization
- Spatial intra prediction
 - ✤ Compression efficiency on par with JPEG-2000
- Enhanced temporal prediction
 - Variable block size motion compensation
 - Multiple reference frames
 - ✤ Multi-hypothesis MC
 - Anti-aliased sub-pixel motion compensation
 - ⇒ Quarter pel accurate luma/One-eight pel accurate chroma MC
 - ✤ Weighted prediction
- Efficient entropy coding
 - ✤ Content adaptive VLC
 - Context adaptive binary arithmetic coding (CABAC)
- Content and quantizer adaptive in-loop deblocking filter
- Picture adaptive and MB-adaptive Frame/Field coding

H.264 Tutorial – Presented at the IEEE Multimedia Compression Workshop, Bangalore, October 27, 2005. © Ittiam Systems Pvt. Ltd., 2003-2005. All Rights Reserved.

Coding Structure

- Coding mode: 4:2:0 YCbCr
- Sequence
 - Access Unit
 - Coded Picture loosely defined
 - ➡ Complementary field picture pair
- > Slices

12

- ➡ Predictions suppressed across slice boundaries
- ⇒ I, P, B slices
 - B-Pic can have I/P/B slices
 - B-Pic can be used as a reference picture
- ➡ Macroblock pairs (only used in MBAFF)
- ➡ Macroblock (16x16 spatial area)
 - o 16x16 Y, 8x8 Cb, 8x8 Cr
- ➡ Blocks (8x8)
 - Raster scan within blocks
 - Sub-blocks (4x4)
 - Scan pattern within sub-blocks

SPS and PPS

Sequence Parameter Set

- ⇒ Profile and level
- ⇒ Chroma format
- ⇒ Width and height
- ⇒ Bit-depth
- ⇒ Picture order count (POC) type
- ⇒ Progressive only coding
 - 8x8 inference
- Maximum number of reference pictures

- Picture Parameter Set
 - ➡ Entropy coding type
 - ⇒ Slice group info
 - ⇒ Num. of active references
 - ⇒ Weighted prediction ON/OFF
 - Type of weighted prediction
 - ⇒ Picture quantizer
 - ⇒ Deblocking filter control
 - ➡ Constrained intra-pred use
 - ⇒ Custom quantization matrices

- ⇒ Cropping parameters
- Can be sent in bitstream or sent out of band or can be pre-agreed
- ✤ IDs for SPS and PPS
 - ⇒ Which PPS belongs to which SPS; which slice belongs to a given PPS
- ♦ Up to 32 SPSs and 256 PPSs are supported at a time

H.264 Tutorial – Presented at the IEEE Multimedia Compression Workshop, Bangalore, October 27, 2005. © Ittiam Systems Pvt. Ltd., 2003-2005. All Rights Reserved.

Intra Prediction

- Predicted spatially from reconstructed pixels of causal neighbors
 - ✤ DPCM at a block level
- Several modes
 - Four 16x16 block prediction modes for luma
 - \Rightarrow H, V, DC, Plane fit (from left, top, and top-left pixels) \rightarrow
 - Nine 4x4 sub-block prediction modes for luma
 - ➡ Interpolate or extend reconstructed causal neighbor pixels
 - Various orientations to take care off different textures
 - Uses left, top, top-left, and top-right pixels
- Chroma prediction (4 8x8 modes similar to 16x16 luma modes)
- Increased coding efficiency
 - Mode signalling overhead vs. Texture coding bits
 - Performance of intra coding close to JPEG-2000
- Increased complexity
- Pipeline complications

Transform & Quantization

- Integer approximation to DCT kernel
 - No mismatch
 - 16-bit intermediate precision
- Second level Hadamard transform of DC
 - ♦ 4x4 DC block for 16x16 Intra-predicted MBs
 - 2x2 DC block for chroma
- Low complexity, wider range quantization
 - Quant with only multiplications and shifts
 - ✤ 52 quantization steps
 - 6 steps lead to doubling of quantization scale factor
 - ⇒ this fact is used in scaling and inverse scaling
 - ⇒ Transform normalization combined with quantization

DCT factorization

$$Y = (CXC^{T}) \otimes E =$$

$$\begin{pmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & d & -d & -1 \\ 1 & -1 & -1 & 1 \\ d & -1 & 1 & -d \end{bmatrix} \begin{bmatrix} x_{00} & x_{01} & x_{02} & x_{03} \\ x_{10} & x_{11} & x_{12} & x_{13} \\ x_{20} & x_{21} & x_{22} & x_{23} \\ x_{30} & x_{31} & x_{32} & x_{33} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & d \\ 1 & d & -1 & -1 \\ 1 & -d & -1 & 1 \\ 1 & -1 & 1 & -d \end{bmatrix} \otimes \begin{bmatrix} a^{2} & ab & a^{2} & ab \\ ab & b^{2} & ab & b^{2} \\ a^{2} & ab & a^{2} & ab \\ ab & b^{2} & ab & b^{2} \end{bmatrix}$$

$$a = \frac{1}{2} \qquad \qquad d = c/b = sqrt(2) - 1$$

$$b = \sqrt{1/2} \times cos(p/8)$$

$$c = \sqrt{1/2} \times cos(3p/8)$$

- By choosing d=1/2 instead of 0.4412, the transform can be done with only shifts/adds.
- To maintain orthogonality, adjust b and c (b=2, c=1).
- Combine E matrix with quantization

Transforms

Forward Transform Matrix

- Orthogonal bases
- Not orthonormal
 - Norms absorbed while quantizing
- Shifts and adds only
- Small values ensure that intermediate values are within 16-bits

Inverse Transform Matrix

- Modified transpose of forward transform to keep dynamic range low
- Sign preserving right shift to compute 0.5
- Norms absorbed while inverse quantizing

H.264 Tutorial – Presented at the IEEE Multimedia Compression Workshop, Bangalore, October 27, 2005. © Ittiam Systems Pvt. Ltd., 2003-2005. All Rights Reserved.

Quantization & Inverse Quantization

- > Only 6(*3) entries in quant and dequant tables
 - Corresponding to QP%6 and 3 norm values
- > Quantization:
- > Dequantization:

20

♦ (QF(i,j)*R(QP%6,i,j)) >> (6 - (QP/6))

- Total of 1 16 motion vectors per MB
- > Each 8x8 can in turn be sub-divided into one of the above partition types
- > Reduces residual to be coded considerably by adapting to underlying to motion
- > In conjunction with unrestricted MC, picture boundary MBs are better compensated

Multiple Reference MC

- > Not just from the most recent past/future reference pictures
- Motion induced aliasing
- Short term buffer
 - ✤ Good to handle uncovered background/periodic motion
- Long term buffer
 - ✤ Good to handle scene changes
- Memory Management Control Operation (MMCO)
 - ✤ Insertion, deletion, promoting to long term, resetting, etc.
- > Up to 15 reference frames at a given time
- Signaled at a partition level refIdx
 - Sub 8x8 come from the same refPic
- Can re-order references for each slice
 - Most preferred reference will have the least cost for refIdx
- Error resilience
- B-pictures can be used as references
- P-pictures need not be used as references

Multi-hypothesis MC

Extension to bi-directional prediction in MPEG-2/MPEG-4

- Bi-prediction
- Two references can
 - ✤ Both be in the past
 - ⇒ No extra latency
 - ✤ Both be in the future
 - One in the past and the other can be in the future
- Non-reference picture
 - Not linked to picture type
 - Bi-pred pictures can be reference pictures

Weighted MC

- Pixel values can be weighted during MC prediction
 - Not just 0.5, 0.5 averaging for B-pictures
 - Weights (multiplicative gain) and offsets (additive gain) for Y/Cb/Cr sent in slice header
 - Even P-pictures can have weighting
- Useful in handling fades, dissolves, aperture change in camera, lighting changes etc.
- > Default, explicit, and implicit types for B-slices
 - Default 0.5, 0.5 weighting
 - Explicit Weights and offsets sent in bitstream
 - Implicit Weighting based on distances to reference pictures

- A, B, C, D Neighboring pixels w.r.t top-left pixel of current partition
 - ♦ A left
 - 💠 В Тор
 - ♦ C Partition width apart to the top
 - D Top-left
- Get MVs of the partitions to which these pixels belong
- If only one of the neighbor's refIdx matches that of current partition, use that MV alone.
- Most other cases median(A,B,C)
 - D is used only if C is unavailable

Refldx of neighboring partition needs to be equal to the refldx of current partition

Fractional Pel Motion Compensation

- > Motion aliasing error highest at half pixel positions
- > Anti-aliasing filter to reduce aliasing effect
 - 6-tap filter for half sample interpolation
 - Not restricted to current macroblock
 - ✤ Need a 22x22 area for each MB
- Bilinear interpolation between nearest full and half sample values for quarter samples
- Chroma samples interpolated bi-linearly
 - ♦ Quarter sample accurate luma MV results in 1/8th sample accurate chroma MVs
- > Chroma MV taken on a partition by partition basis
 - No MV averaging (as used in MPEG-4)

27

P-Skip

- > mbType is INTER16x16
- > refIdx is L0[0]
- > MV is (0,0)
 - If A or B is not available (or)
 - ✤ If at least one neighbor out of A, B has a (0,0)MV
- Else, MV is set as the predicted MV
- Cbp is set to zero
 - No coded residuals

B-Direct & B-Skip

- > Spatial Direct
 - ✤ Inherits partitions from spatially co-located L1[0] MB
 - ✤ Inherits (0,0) MV for partitions that have (0,0) MV in co-located
 - Other partitions take the spatially predicted MV for Inter16x16
 - Prediction utilization inherited from neighbors A, B, C
 - RefIdx in L0 and/or L1 obtained as MinPositive(refIdx(A,B,C))
- Femporal Direct
 - Inherits partitions from spatially co-located L1[0] MB
 - MV of each partition w.r.t its reference is scaled by distance to B-pic
 - Always Bi-pred (between co-located partition's reference and L1[0])
- Direct_8x8 inference
 - Flagged (or) true always for interlaced
- Direct16x16 Direct mode for the entire MB
- Direct8x8 Direct mode for only an 8x8 block
- B-Skip Direct16x16 and Cbp=0

Variable length Coding

Single VLC for most syntax elements	1
Exponential Colomb codes	010
	011
⇒ Easy to parse	00100
Optimal for one/two-sided geometric pdfs	00101
	00110
⇒ No need for tables	00111

- Signed values by mapping 0,1,-1,2,-2,... to above
- Cbp coded by mapping the codes in a table according to empirical ordering of Cbp

Syntax elements covered

* mbType, sub_mbType, MVD, refIdx, cbp, dquant, etc.

Context-adaptive VLC for residual coding

- Uses causal neighbor's number of non-zero coefficients as context for current number of non-zero coefficients
 - Selection among multiple VLC tables based on context
 - Average symbol length is reduced
- Coeff_token (total_coeff, trailing_ones)
- Sign of trailing ones
- Coeffs coded as (prefix, suffix) from the last nzCoeff in scan order
 - Prefix is a pure prefix code (from 0 to 15)
 - Suffix is FLC
 - Two levels of escape code (that have longer levelSuffixSize)
 - SuffixLength adapted to previously decoded coeff's level (7 levels)
- TotalZeros coded first using a TotalCoeff context based table
- Runs before a nzCoeff coded using zerosLeft context based table

Arithmetic Coding - Basics

- Huffman codes cannot reach the entropy of the source when probability of a symbol is greater than 0.5
 - Other work-arounds exist (such as joint coding of symbols)
 - ⇒ Not always easy to do this
- Arithmetic coding
 - Repeatedly partition an interval based on the symbol probability
 - From only the knowledge of the interval
 - (and the bitstream syntax and an identical probability update mechanism between the enc and dec)
 - ⇒ the symbols can be decoded
 - ✤ L low end of the interval
 - ♦ R Range of the interval
 - Fixed point implementation use b bits to represent L and R
 - ✤ Initially, L=0 and R=2^{b-1}

Basic Encoding Process

- > A symbol occurs (h l) times out of t
 - * Allot probability range [l/t, h/t) to this symbol
 - t is the sum of frequency counts of all symbols
 - ⇒ Represented in (b-2) bits
- > When this symbol needs to be encoded,
 - $L = L + R^{*}/t$ Move low-end to start of new interval
 - $R = R^{*}(h I)/t$ Update interval by probability of the symbol
 - Update occurrence counts
 - ♦ Renormalize to maintain $2^{b-2} < R <= 2^{b-1}$
 - \Rightarrow While R<= 2^{b-2}
 - If L+R <= 2^{b-1}, output 0 (followed by bits_outstanding 1s)
 - If L >= 2^{b-1}, subtract 2^{b-1} output 1 (followed by bits_outstanding 0s)
 - Else, subtract 2^{b-2} from L, increment bits_outstanding
 - Expand L and R by 2

Basic Decoding Process

> At the decoder,

- Read into V, b-bits from the bitstream
- From V and t, compute T = ((V L + 1)*t 1)/R
- Divide up the current interval according to the symbol probabilities
- See as to in which of the new intervals does T fall
 - ⇒ The symbol corresponding to this interval is the decoded symbol
- Update L and R to this interval
- Renormalize L and R (just like the encoder); in addition
 - \Rightarrow While R<= 2^{b-2}
 - If L >= 2^{b-1}, subtract 2^{b-1} from V
 - Else if L+R is in the mid segment, subtract 2^{b-2} from V
 - Expand L, R and V by 2
 - Shift in a new bit into V

Symbols encoded are always binary

 $\mathbf{\bullet} \, p_{\scriptscriptstyle LPS} \text{ and } p_{\scriptscriptstyle MPS} = (1 - p_{\scriptscriptstyle LPS})$

Interval [L, L+R) is subdivided into

♦ [L, L+R-R* p_{LPS}) and [L+R-R* p_{LPS} ,L+R)

The search complexity to find which symbol corresponds to the interval goes down

• If V > (R-R* p_{LPS}), then LPS; else MPS.

Binarization

> Why?

- Reduces complexity of the arithmetic coder compared
- Context can be modeled at a sub-symbol level
- Higher order modeling can be employed for the higher density regions of the pdf

> How?

- Best might have been Huffman coding; but results in higher complexity
- 4 types of common binarization
 - \Rightarrow Unary String of 1s followed by a 0
 - ➡ Truncated Unary Trailing 0 is suppressed
 - \Rightarrow EGk Unary (up to k-bits) + exp-Golomb of rest
 - ⇒ FLC
 - \Rightarrow Combinations of above:
 - UEGk Trunc unary up to Cutoff + EGk E.g. MVD , absCoeff
- A few custom binarizing schemes
 - ➡ E.g. mb_type, sub_mb_type

H.264 Tutorial - Presented at the IEEE Multimedia Compression Workshop, Bangalore, October 27, 2005. © Ittiam Systems Pvt. Ltd., 2003-2005. All Rights Reserved.

- E.g.: refIdx
- E.g: Chroma IntraPredModes

Bin Context Models

- Based on past symbols encountered, choose a context modeling function to get conditional prob. of each symbol given this function over a neighborhood
- Adapt spatially
- > Types
 - Based on left and top neighbor's corresponding bins
 - Based on the previously coded bin
 - Used for coding mb_type, sub_mb_type
 - Based on position in the scan order
 - Based on number of coeffs of a particular level encountered
- > 398 contexts in the standard
 - Multiple context values for a particular syntax element's bin
 - ➡ Context Index table
 - ➡ Context Index Offset starting index for the context of an SE's bin
 - ➡ Context Index Inc a particular value of the context for the SE's bin

Examples

> Mb_skip

- Context function: !mb_skip(left) + !mb_skip(top)
 - \Rightarrow Possible values: 0, 1, 2
 - ⇒ Correspond to ctxIdx 11-13 for P-slices and 24-26 for B-slices

> MVD

- First bin contexts are based on
 - \Rightarrow f = |mvdx(left)| + |mvdx(top)|
 - ⇒ f < 3, 3 <= f <= 32, f > 32
 - 3 contexts each for horiz. and vert.

Encoding Process

- Range is quantized to 4 values
 - ✤ 2 significant bits of the range
- > 64 probabilities for LPS are supported from 0.5 down to 3/160
 - Next_prob ~= 0.95 * prev_prob
- R*p_{LPS} can be computed using a 256 entry table
- For each ctxIdx
 - 6-bit stateIdx corresponding to probability(LPS)
 - ✤ 1-bit to represent value of LPS
- > If MPS is encountered, stateIdx is incremented
- If LPS is encountered
 - ✤ a state transition empirical look-up table (64-entry) is used
- > If already is at state 0, LPS and MPS are interchanged
- Based on actual bin value, update L and R. Renormalize as needed.

40

Initialization & Termination

Initialization

- ✤ Based on slice level QP
 - ⇒ Empirically derived parameters m and n
 - ⇒ stateIdx of each ctxIdx as a function of QP, m, and n
 - ⇒ Set MPS or LPS for each ctxIdx
 - ⇒ Allows quicker adaptation
- Cabac_init_idc 0/1/2
 - Another way to select better initializations at a slice level
 - ⇒ Signaled in the bitstream
- Fermination
 - End of slice flag assigned a non-adapting state index
 - Always produces the same pattern at the end of a slice
 - Flush happens when end_of_slice flag is true or I_PCM is encountered

In-loop Deblocking filter

- Aimed at reducing blocking at 4x4 sub-block boundaries
 Introduced due to block-based transform followed by quantization
- > In loop filter improves motion compensation performance at low bit-rates
- Strength of filtering is adapted based on
 - ✤ Quantization step size
 - Coding mode (intra/inter)
 - ✤ Inter-MB edge or intra-MB edge
 - Number of nonzero coeffs
 - Motion vectors and reference indices
 - Mixed Frame/Field mode edge
- Signal adaptive filtering with quantizer adaptive thresholds
 - Block boundary difference threshold (alpha)
 - ⇒ To not accidentally smooth true edges
 - Differences at pixels on either side of block boundary pixels threshold (beta)
 - ⇒ To not smooth texture
 - Limit corrections applied by a quantizer dependent threshold

H.264 Tutorial – Presented at the IEEE Multimedia Compression Workshop, Bangalore, October 27, 2005. © Ittiam Systems Pvt. Ltd., 2003-2005. All Rights Reserved.

Deblocking filter details

➢ BS = 4

- Strongest filtering for I-MB edges
- ♦ 4 or 5-tap filter with heavy smoothing
- ➢ BS = 1, 2, 3
 - Similar filtering
 - ➡ Uses 4 pixels
 - ⇒ Clipping amount depends on the BS
- > Chroma filtering alters fewer pixels
- Vertical edges are deblocked first in an MB
 - ✤ Followed by horizontal edges
- Several conditions to determine BS
- > Several conditions within filtering to produce minimal signal distortion
- > At low quantizers, introduce no correction
- > Level of filtering can be controlled through QP offsets at PPS level

Interlaced coding

- Field picture coding support
 - Mix of Frame and field pictures is allowed
 - ✤ Unpaired field picture
 - Complementary field pair
- Macroblock adaptive frame field coding (MB-AFF)
 - Mix of Field pictures and MB-AFF pictures is allowed
 - MB-pair 32x16 area that share a field/frame MB-pair coding decision
 - Each MB pair can be coded as either 2 frame MBs or 2 field MBs
 - ➡ Frame MB Frame MC + Frame transform
 - ➡ Field MB Field MC + Field transform
- No change in the encoding loop
 - Except for a field scan (instead of zig-zag)
- All other coding tools are extended to support PAFF and MB-AFF
 - Neighbor calculations for different predictions
 - Co-located neighbor calculation for direct mode
 - ✤ Deblocking filter
 - Context modeling for CABAC
 - ✤ DPB management
 - ✤ Reference list creation

Error Resilience

- > NAL Network Adaptation Layer
 - Standardized to communicate
 - ⇒ Whether a particular picture is a reference picture
 - Provide a relative importance that can be used by the network layer for unequal protection or for dropping
 - A forbidden bit that should be zero normally, but can be set by network to indicate errors

> Slices

- Independently decodable no prediction across
- Deblocking can be conditionally turned off across slice boundaries
- Intra prediction can be constrained to not use inter MB data
- Slices are not restricted to any geometry
- Slice groups ability to code a set of macroblocks in a flexible manner
 - ⇒ Can be used for concealment
- Arbitrary slice order used to reduce delay due to out-of-order packet sequencing
- Redundant slices primary picture and redundant pictures
 - If primary slice is not received, lower quality redundant slices can be used

Data Partitioning

- Partition A
 - Slice headers
 - All MB level headers including intraPred modes, MVs and refIdx
- Partition B
 - ✤ I or SI macroblock residuals
- Partition C
 - ♦ P and B macroblock residuals
- Slice_id to find the corresponding partitions
- > A is required for B and C to be decoded
- > If only A is received, most predictions can be done
- Unequal protection of A, B, C

46

Switching Pictures

47

Switching Pictures

> SI and SP pictures

- designed to suit multiple bit-rate streaming
- Supports Fast forward or fast-rewind
- Can be used to improve error resilience
- $\boldsymbol{\diamond}$ SI is the intra version that matches SP
- Principle behind
 - Match reconstructions of P2 and SP12
 - Transform the reconstructed P2 block
 - Perform MC for SP picture from stream1
 - Perform Forward Transform and quantization
 - Subtract the transformed reconstruction and transmit the difference

Fidelity Range Extension

Features

- Beyond 8 bits per pixel-component
 - All dynamic ranges suitably modified
 - ⇒ Quantization steps extended
- Beyond YCbCr 4:2:0 format -> 4:2:2, 4:4:4
 - ⇒ Higher number of chroma blocks
 - ⇒ Chroma intra prediction modes extended
 - ⇒ Chroma DC transform modified to support 2x4 and 4x4
- Auxiliary picture support
 - ⇒ Alpha layer, disparity map, etc. with luma-only coding support
- High fidelity coding, including lossless
 - ➡ Transform bypass and no quantization loss
 - ▷ Prediction (intra/inter) and entropy coding are still used
- Ability to use RGB color space
 - ⇒ Reduce color transform errors
 - Solution ⇒ Only perform residual coding in a modified YCgCo color space
 - No rounding errors
 - No need to increase pixel precision
 - But can be done only with 4:4:4
- Backward compatibility

H.264 Tutorial – Presented at the IEEE Multimedia Compression Workshop, Bangalore, October 27, 2005. © Ittiam Systems Pvt. Ltd., 2003-2005. All Rights Reserved.

Fidelity Range Extension

Adaptive block sized transforms	8 8 8	8 8 8 8 8
A 9x9 or 4x4 size - solectable on an MP by MP basis		3 - 3 - 6 - 10 - 12
SX8 OF 4X4 SIZE - SELECTABLE OF ALL MD DY MD DASIS		-6 6 12 3 -10
8x8 low complexity, multiplication free integer transform introduced	8 -8 -8	8 8 -8 -8 8 10 10 -3 12 -6
Scans for 8x8 size introduced	4 -8 8	-4 -4 8 -8 4
⇒ Again norms are different	3 -6 10	-12 12 -10 6 -3
 Adjusted with quantization o 6x6 matrix 		6 10 13 16 18 23 25 27 10 11 16 18 23 25 27
Intra prediction on 8x8 blocks	6 13 20 28	10 11 10 18 23 23 27 29 13 16 18 23 25 27 29 31
9 modes like in Intra4v4	13 20 28 32	16 18 23 25 27 29 31 33
	20 28 32 37	18 23 25 27 29 31 33 36
An intermediate reference sample smoothing step is used	$20 \ 28 \ 32 \ 37 \ 42$	23 25 27 29 31 33 36 38 25 27 29 21 22 26 26 10
 [1 2 1] or [3 1] filters 	Default Intra4x4	25 27 29 31 33 36 38 40 27 29 31 33 36 38 40 42
Quantization matrix support	Scaling matrix	Default Intra8x8 Scaling matrix
➡ For 4x4 and 8x8		9 13 15 17 19 21 22 24
Default or downloadable at sequence level	10 14 20 24	13 13 17 19 21 22 24 25
Default or downloadable at picture lovel	14 20 24 27	15 17 19 21 22 24 25 27
	20 24 27 30	17 19 21 22 24 25 27 28
Separate for intra, inter, luma and chroma	24 27 30 34	19 21 22 24 25 27 28 30
Separate quantizers for Cb and Cr	Default Inter4v4	21 22 24 25 27 28 30 32 22 24 25 27 28 30 32
	Scaling matrix	22 24 25 27 28 30 32 33 24 25 27 28 20 22 22 25
		Default Inter8x8 Scaling matrix
50		— — — —

Coding Tools in Profiles

Tools\Profiles	Baseline	Main	Extended	High	High 10	High 4:2:2	High 4:4:4
Intra Prediction	Х	Х	Х	Х	Х	Х	Х
4x4 Transform	Х	Х	Х	Х	X	Х	Х
Segmented MC	Х	Х	Х	Х	X	Х	Х
Multiple reference MC	Х	Х	Х	Х	X	Х	Х
Unrestricted MC	Х	Х	X	Х	X	Х	Х
Luma Quarter pel	Х	Х	Х	Х	X	Х	Х
Chroma 1/8 th pel MC							
CAVLC	Х	Х	X	Х	X	Х	Х
In-loop Deblocking	Х	х	Х	Х	х	Х	Х
Slice Groups (FMO/ASO)	х		X				
Redundant Slices	Х		X				
Multi-hypothesis MC		Х	Х	Х	X	Х	Х
САВАС		Х		Х	X	Х	Х
MB-AFF		Х	Х	Х	X	Х	Х
PAFF		Х	Х	Х	X	Х	Х
Weighted MC		х	Х	Х	Х	Х	Х
Data partitioning			Х				
Spare pictures			Х				

51

Coding Tools in FREXT Profiles

Tools\Profiles	High	High 10	High 4:2:2	High 4:4:4
8x8/4x4 adaptive transform	х	х	х	х
Intra 8x8 Prediction in luma	х	х	Х	х
Quantization matrix	х	х	Х	х
Cb and Cr QP – Independent	х	х	Х	х
Auxiliary picture (monochrome)	х	X	Х	Х
Up to 10-bit samples		х	Х	х
4:2:2 support			Х	Х
4:4:4 support				х
Up to 12-bit samples				Х
Residual color transform				х
Lossless coding				х

H.264 Tutorial – Presented at the IEEE Multimedia Compression Workshop, Bangalore, October 27, 2005. © Ittiam Systems Pvt. Ltd., 2003-2005. All Rights Reserved.

Profiles vs. Applications

- Baseline
 - ✤ IP videophone
 - Mobile video phones
 - Simple streaming
 - ♦ DMB, DVB-H
- > Main
 - ✤ Broadcast
 - ♦ VOD
 - PVR
- Extended
 - Streaming

- > High-8
 - ✤ BD-ROM
 - ♦ HD-DVD
 - ♦ Broadcast
- High-10
 - Prosumer
- High422
 - Editing
 - Studio
- High444
 - Digital Cinema
 - Archival

53

Levels

- To limit the resources needed to decode according to the desired maximum decoding resolution
 - ✤ Resources
 - ⇒ Bits
 - Bit-rate
 - ⇒ Memory
 - Decoded Picture buffer, Coded picture buffer
 - ➡ Processing
 - Maximum number of MBs per second
 - Maximum frame rate per second
 - MBs in picture to number of slices in picture ratio limitation
 - Maximum number of motion vectors per MB (or pair of MBs)
 - Minimum compression ratio
 - Direct 8x8 inference
 - Minimum block size for bi-pred

QCIF to beyond HD (levels 1 to 5, sub-levels as well)

H.264 Tutorial – Presented at the IEEE Multimedia Compression Workshop, Bangalore, October 27, 2005. © Ittiam Systems Pvt. Ltd., 2003-2005. All Rights Reserved.

SEI

- Supplementary Enhancement Information
 - To convey information to improve display, buffering, provide additional information synchronized with the pictures
 - ➡ Initial buffering period
 - ⇒ Picture timing message
 - CPB removal delay
 - DPB output delay
 - Picture structure
 - o Frame or field
 - o Field or frame repeat with which field first
 - ⇒ Recovery point
 - To support random access
 - Indicate independence from prior decoded pictures
 - Broken link to indicate splicing
 - ⇒ Film grain synthesis
 - Different model to synthesize and add back film grain at the decoder
 - ⇒ Stereo video information
 - Which field/frame is intended for which eye
 - ⇒ Registered or unregistered user data
 - ⇒ Freezing display, releasing frozen display
 - ⇒ Subsequence information (layered coding) average frame-rate/bit-rate, etc.

H.264 Tutorial – Presented at the IEEE Multimedia Compression Workshop, Bangalore, October 27, 2005. © Ittiam Systems Pvt. Ltd., 2003-2005. All Rights Reserved.

Video Usage Information

- Used to specify
 - video format properties
 - ⇒ Type of video (NTSC/PAL, etc.)
 - ⇒ Chroma sample position
 - ⇒ Timing info and time ticks information (or) fixed frame-rate operation
 - ⇒ Aspect ratio information
 - ➡ Restrictions on bitstream
 - Max mvx, mvy
 - Unrestricted MC
 - Max number of re-ordered frames
 - Max DPB
 - ♦ HRD parameters
 - ⇒ Bit-rate
 - ⇒ Buffer size (CPB)
 - ⇒ CBR operation

Joint Model

- > Reference implementation standardized in WG11
 - Decoder implements almost all features
 - ✤ Encoder
 - ⇒ Exercises most of the important coding tools
 - ⇒ Provides an elaborate list of control parameters
 - to enable or disable each tool at a fine granularity
 - ➡ Offers a rate-distortion optimized implementation
 - Exhaustively considers all possible modes
 - Codes with each mode to get output distortion and number of bits at a given quantizer
 - Picks the best mode using rate constrained minimization of distortion
 - ⇒ Offers several fast computation options
 - Motion estimation
 - Intra mode selection
 - ➡ Provides a CBR rate control implementation
 - ⇒ Serves as a reference for what is the best quality possible using H.264
 - ⇒ Good description of the reference algorithms exists (Doc:)
- Currently at v10.1

57

Can be downloaded from http://bs.hhi.de/~suehring/tml/download/

Decoder Implementation Aspects

- 8x8 and 4x4 intra prediction modes require reconstruction of current block before moving to the next block
 - ➡ Parallel processing on multiple intra blocks is not possible
- Shift and Add only based transform and quantization will help on low-end processors, but not on high end DSPs that already have multiple single cycle MACs
- Multiple reference pictures, segmented MC, and sub-pixel MC using pixels outside the block result in a very high memory bandwidth requirement and short burst sizes
 - ⇒ 2 directions x 16 partitions/MB x (9x9 area per partition) -> 10 frames
- Deblocking costs a good percentage of total decoder MCPS
 - ➡ Boundary strength calculation for B-slices is quite expensive
 - Across luma, chroma, vertical, horizontal and BS, 8 different deblocking filters need to be implemented
 - ➡ In Baseline profile, deblocking has to be done at the end of the picture
- CABAC processing is quite serial in nature and it is very hard to use much instruction level parallelism also
 - ⇒ Cycles increase linearly with increasing bit-rate

58

- ➡ Worst case compression ratio and number of bins per picture can be very high
- Neighbor availability checks and neighbor calculations for the various predictions add a lot of cycles
 - ➡ MB-AFF results in a lot of conditions to be checked to get spatial and co-located neighbors
- The code size, overall, will be quite high with all the conditional processing and requires careful tuning on cache based processors

Carriage of AVC content over RTP

▶ RFC 3984

- Defines
 - ➡ Marker bit setting guidelines
 - ⇒ Fragmentation guidelines
 - Start bit, End bit, and fragmentation type
 - ⇒ Aggregation guidelines
 - Single Time and Multiple Time Aggregation packets to reduce packet level overheads
 - NAL unit size (16-bits) is used to parse out the individual NAL units
 - ⇒ SEI Pic timing vs. RTP timestamp usage
 - ⇒ Interleaving facility through Decoding Order Number (DON)
 - ⇒ Leverages the 8-bit NAL unit header byte
 - NAL_ref_idc is used to set priority (0/1/2/3)
 - Some reserved values are used to signal fragmentation and aggregation
 - ⇒ Defines MIME settings and SDP configuration parameters

FEC as per RFC 2733 can be performed using the fragmented units

H.264 Tutorial – Presented at the IEEE Multimedia Compression Workshop, Bangalore, October 27, 2005. © Ittiam Systems Pvt. Ltd., 2003-2005. All Rights Reserved.

Carriage of AVC over MPEG-2 TS or MPEG-4 Systems

- Stream type support has been added in MPEG-2
- ObjectType support added in MPEG-4
- Elementary stream can be encapsulated using PES header
 - Used mostly in Broadcast encoders
 - Annex B byte stream format is used to facilitate NAL parsing
 - ⇒ Specifies start codes for NALs
- MPEG-4 Sync Layer can also be used as the first level of encapsulation
 - ♦ Used in DMB

AVC File Format

> ISO/IEC 14496-15

- Extends 14496-12 (ISO base media file format) and 14496-14 (MP4)
 - ➡ Based on the QuickTime file format
 - ➡ MOVIE atom and MOVIE data atom
 - Data is stored as is in MOVIE data atom
 - All metadata to manipulate the data is stored in MOVIE atom
- * avc1 FOURCC
- Parameter set elementary stream
- Video elementary stream
- SI/SP act as shadow sync
- Alternate tracks are used to keep multiple bit-rate streams
- Subsequence description (from SEI) added
- Hint tracks altered slightly to denote only non-reference pictures as discardable (which used to be B-pictures in MP4)

Scalable Video Coding Extension

- Ongoing work in JVT
 - Currently on Working Draft 3
 - ➡ WD4 will be published soon
 - JSVM Joint Scalable Video Model
 - ⇒ Software reference implementation
 - Types of scalability targeted
 - ⇒ Temporal
 - E.g.: 10fps to 30fps
 - Non-reference pictures offer temporal scalability
 - Hierarchical B-pictures use of reference B-pictures
 - Motion compensated temporal filtering (MCTF) based
 - ⇒ Spatial
 - Scale from lower to higher spatial resolution
 - Can use lower spatial resolution layer picture for prediction
 Dyadic or non-dyadic
 - ⇒ SNR
 - Coarse grain successive quantization and encoding of residuals
 - Fine grain bit-plane arithmetic coding
 - ➡ Combinations of all the three

H.264 Tutorial – Presented at the IEEE Multimedia Compression Workshop, Bangalore, October 27, 2005. © Ittiam Systems Pvt. Ltd., 2003-2005. All Rights Reserved.

MCTF

- > Lifting based implementation
 - Fast Wavelet Decomposition
 - Prediction and update steps
 - Perfect reconstruction on synthesis is guaranteed
 - ⇒ Even with a non-linear prediction/update step
 - Use motion compensation as the operation
 - Prediction uses
 - ⇒ Uni-pred MC to align reference to current
 - Equivalent to a Haar filter
 - ⇒ bi-pred MC to align reference to current
 - equivalent to a 3/5 bi-orthogonal filter)
 - Update step aligns the residual error to the reference co-ordinate
 - ⇒ Through backward mapping of motion vectors
 - ⇒ Find all MVs that point into a 4x4 block in current from the references
 - ✤ Low-pass version
 - ➡ Reference altered with smoothing from current on the motion trajectory
 - ✤ High-pass version
 - ⇒ prediction residuals

Iterative MCTF based Temporal Scalability

Enh Layer 4
$$L_{0}^{4}$$
 L_{1}^{4} L_{2}^{4} L_{3}^{4} L_{4}^{4} L_{5}^{4} L_{6}^{4} L_{7}^{4} L_{8}^{4} L_{9}^{4} L_{10}^{4} L_{11}^{4}
Enh Layer 3 H_{0}^{3} L_{1}^{3} H_{2}^{3} L_{3}^{3} H_{3}^{3} L_{2}^{3} L_{2}^{3} H_{3}^{3} L_{2}^{3} L_{2}^{3} H_{3}^{3} H_{3}^{3} L_{2}^{3} H_{3}^{3} H

No additional information is sent for the update step

 $\mathbf{\mathbf{\hat{v}}}$

 \bullet

64

Normalization in decomposition absorbed in the quantization step

H.264 Tutorial – Presented at the IEEE Multimedia Compression Workshop, Bangalore, October 27, 2005. © Ittiam Systems Pvt. Ltd., 2003-2005. All Rights Reserved. Ittiam

Spatial Scalability

- Base Layer is H.264 conformant
- Pyramidal representation
 - ♦ QCIF -> CIF -> 4CIF
- > Each spatial scalable layer can have its own MCTF decomposition
- From a lower spatial resolution layer
 - Re-use MB partitioning and MVs with suitable upscaling
 - Up-sample residuals and use for prediction
 - Up-sample Intra MBs and use for prediction

SNR Scalability

Coarse SNR Scalability

- Residual error is re-quantized and transmitted
- New slice type introduced to code only residuals
- By coding the enhancement layer at QP-6 of base layer, effect of cascaded quantization is minimal

► FGS

- Apply transform once
- Reduce quantizer by one step size progressively and code
- ✤ Uses CAVLC or CABAC
 - First code all coeffs that have been zero so far from base layer to the last enhancement layer encountered
 - ⇒ Then code coeffs that have been non-zero earlier

Pointers & References

- Good overview of most coding tools
 - IEEE Transactions on Circuits and Systems for Video Technology, Special Issue on H.264, July 2003
 - Gary J. Sullivan, et. al, "The H.264/AVC Advanced Video Coding Standard: Overview and Introduction to the Fidelity Range Extensions", SPIE Conference on Applications of Digital Image Processing XXVII, August 2004.
 - White papers from http://www.vcodex.com/h264.html
- H.264 Standard (Pre-published version)
 - http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-H.264
- > JVT Contribution Documents from the beginning of JVT
 - http://ftp3.itu.ch/av-arch/jvt-site/
 - Contains Working drafts of SVC
- > Email reflector
 - http://mailman.rwth-aachen.de/mailman/listinfo/jvt-experts
- Reference software
 - http://iphome.hhi.de/suehring/tml/download/
- Books

67

H.264 and MPEG-4 Video Compression, Iain E G Richardson, John Wiley & Sons, September 2003, ISBN 0-470-84837-5.

Closing Remarks

- > AVC provides significant coding gain over previous standards
- Implementation complexity is significantly high
 - ✤ Decoders 2-3x as complex as MPEG-4 decoders
 - Encoders Rich set of picture level and MB level modes
- Carriage of AVC and storage of AVC has been standardized
- Significant adoption level in the market
- Licensing issue is still not very clear
 - VIA and MPEG-LA do not cover all patents
- Faces competition from
 - ♦ SMPTE VC-1 (or WMV9) and AVS
- Scalable extensions are already underway

68

