
POCO C++ Libraries 
Introduction and Overview



"Without a good library, most 
interesting tasks are hard to do in C++;

but given a good library, almost any 
task can be made easy."

Bjarne Stroustrup
(designer and original implementor of C++)



The POCO C++ Libraries are...

> a collection of C++ class libraries, similar in concept to the Java 
Class Library, the .NET Framework or Apple's Cocoa; 

> focused on "internet-age" network-centric applications;

> written in efficient, modern ANSI/ISO Standard C++ and based 
on the C++ Standard Library/STL;

> highly portable and available on many different platforms;

> Open Source, licensed under the Boost Software License,

> and thus completely free for both commercial and non-
commercial use.



POCO C++ Libraries Overview

POSIX, WIN32, other (RT)OS API

Foundation

XML

C++ and C Standard Libraries

Ap
pl

ic
at

io
n

Crypto

Util

NetSSL

Data

SQ
Li

te

O
D

BC

M
yS

Q
L

Zip

Net

Tools & Utilities



Features

> Any and DynamicAny classes

> Cache framework

> Cryptography (cryptographic hashes, encryption based on 
OpenSSL)

> Date and Time classes

> Events (signal/slot mechanism) and notifications framework

> FTP client for transferring files

> Filesystem classes for platform-independent path manipulation, 
directory listing and globing

> HTML form handling



Features (cont'd)
> HTTP server and client (also secure), C++ Server Page Compiler

> Logging framework

> Multithreading: basic threads and synchronization and advanced 
facilities (thread pool, active objects, work queues, etc.)

> POP3 client for receiving mail

> Platform Abstraction: write once, compile and run on multiple 
platforms

> Processes and IPC

> Reactor framework

> Regular expressions (based on PCRE)



Features (cont'd)

> SMTP client for sending mail 

> SQL database access (SQLite, MySQL, ODBC)

> SSL/TLS support based on OpenSSL

> Shared library and class loading

> Smart pointers and memory management (buffer, pool)

> Sockets and raw sockets

> Stream classes for Base64 and HexBinary encoding/decoding, 
compression (zlib), line ending conversion, reading/writing to 
memory, etc.



Features (cont'd)

> String formatting and string utilities

> TCP server framework (multithreaded)

> Text encodings and conversions

> Tuples

> URI handling

> UTF-8 and Unicode support

> UUID handling and generation

> XML parsing (SAX2 and DOM) and XML generation

> Zip file manipulation



POCO Objectives and Mission

> POCO is a powerful, yet easy to use platform to build your 
applications upon

> POCO allows you to build highly portable applications 
(write once – compile and run anywhere) 

> POCO is modular and scalable from embedded to enterprise 
applications (you only pay for what you use)

> POCO provides consistent, comprehensive and comprehensible 
programming interfaces

> POCO is written in fast, efficient C++



Objectives and Mission (cont'd)

> POCO favors simplicity over complexity 
("as simple as possible, but not simpler") 

> POCO aims for consistency in design, coding style and 
documentation

> POCO emphasizes source code quality, in terms of readability, 
comprehensiveness, consistency, style and testability

> POCO aims to make C++ programming fun again



Guiding Principles

> Strong focus on code quality, style, consistency and code 
readability –all code must satisfy our coding styleguide
(and it works – we frequently get compliments on our code quality)

> Strong focus on tests (automated unit tests with high coverage)

> Favor pragmatic and elegant design over "solving all the worlds 
problems" (if we can satisfy 95 % of all use cases with an elegant 
solution, and the remaining 5 % would require an overly complex 
design, we focus on the 95 %)

> Build on top of solid foundations – use existing proven C libraries 
(e.g., expat, zlib, PCRE, SQLite) where it makes sense



History

> Summer 2004: Günter Obiltschnig started development

> February 2005: First release on SourceForge 
(Release 0.91 under Sleepycat license)

> May 2005: First contributions by Aleksandar Fabijanic

> January 2006: Release 1.0

> March 2006: Release 1.1

> July 2006: Moved to Boost license, POCO Community Website

> August 2006: Release 1.2

> May 2007: Release 1.3

> July 2010: Stable Release 1.3.7, 
about 20 contributors, used in 100s of projects



Supported Platforms

> Microsoft Windows

> Linux

> Mac OS X

> HP-UX, Solaris, AIX*

> Embedded Linux (uClibc, glibc)

> iOS

> Windows Embedded CE

> QNX

* requires patches



POCO Usage Examples

> building automation middleware and devices

> industrial automation and industrial equipment

> traffic control systems

> healthcare applications

> measurement, data acquisition and test systems

> consumer electronics/home automation

> smart metering

> air traffic management systems

> VoIP

> ticketing and entrance-control systems

> shrink-wrapped applications



Some Companies using POCO

> 454 Life Sciences (Roche)
using POCO in a new high-speed genome sequencer

> ACTIA Automotive
using POCO and OSP in automotive diagnostic systems

> Appcelerator Titanium
using POCO in its platform for Web-based desktop applications 

> CACE Technologies
using POCO in its Pilot product for network monitoring/analysis

> CodeLathe Tonido
using POCO in its Tonido web application platform and device



Some Companies using POCO (cont'd)

> Comact Optimisation
using POCO in sawmill equipment running under QNX Echo360 
(EchoSystem)
using POCO in a distributed learning platform

> HORIBA
using POCO in automotive test systems

> Novonics Corporation
using POCO in a distributed simulation library used by US DoD 
and DHS customers

> Nucor Steel
using POCO in beam mill automation applications



Some Companies using POCO (cont'd)

> Schneider Electric Buildings Business (TAC)
using POCO in new building automation platform (running on 
Embedded Linux devices and Windows/Linux servers)

> StreamUnlimited
using POCO in embedded applications for TV set-top boxes

> Starticket
using POCO in a ticketing/entrance control system running on an 
embedded Linux (OpenEmbedded on XScale) platform



POCO – Scalability Embedded

> POCO is well-suited for embedded systems running under 
Embedded Linux, Windows Embedded CE or QNX.

> POCO-based applications (using the built-in web server) run on 
75 MHz ARM9-based Linux systems (uClibc) with 8 MB RAM and 
4 MB Flash (e.g. Digi Connect ME 9210).

> A typical POCO-based application using the
web server from the Net library has a statically
linked size of 2 MB and uses about 2 – 3 MB of RAM.

> Typical mid-ranged embedded platforms (32 – 64 MB RAM, 16 – 
64 MB Flash, 180 MHz ARM9) provide plenty of resources even for 
more complex applications (using OSP and Remoting).



POCO and Embedded – Code Size

> POCO (including SSL/Crypto) libraries use less than 4 MB of Flash 
storage (compressed jffs2 or squashfs).

> The RAM overhead for such an application is below 8 MB.

guenter@cis-digiel:~/ws/poco-1.3$ ls -l lib/Linux/armv5tejl/*.so.*
-rwxr-xr-x 1 guenter guenter  103752 2009-03-03 19:12 lib/Linux/armv5tejl/libPocoCrypto.so.6
-rwxr-xr-x 1 guenter guenter 1582720 2009-03-03 18:43 lib/Linux/armv5tejl/libPocoFoundation.so.6
-rwxr-xr-x 1 guenter guenter  907192 2009-03-03 18:47 lib/Linux/armv5tejl/libPocoNet.so.6
-rwxr-xr-x 1 guenter guenter  293960 2009-03-03 19:11 lib/Linux/armv5tejl/libPocoNetSSL.so.6
-rwxr-xr-x 1 guenter guenter  281048 2009-03-03 18:45 lib/Linux/armv5tejl/libPocoUtil.so.6
-rwxr-xr-x 1 guenter guenter  577588 2009-03-03 18:44 lib/Linux/armv5tejl/libPocoXML.so.6
-rwxr-xr-x 1 guenter guenter  353312 2009-03-03 18:54 lib/Linux/armv5tejl/libPocoZip.so.6



POCO Benefits & Features
> Comprehensive, complete and mature C++ frameworks that save 

lots of work and help bringing the product to market sooner. 

> Easy learning curve through intuitive, consistent and 
comprehensible programming interfaces, lots of sample code 
and good documentation.

> Native C++ code performance (no VM overhead, etc.), 
low memory requirements.

> Platform independence: write once – compile and run everywhere. 

> In many cases, a large part of an application (everything that 
does not need access to specific hardware) can be tested and 
debugged on the development host.

> An application can be easily ported to a new platform.



Copyright © 2006-2010 by Applied Informatics Software Engineering GmbH.
Some rights reserved.

www.appinf.com | info@appinf.com
T +43 4253 32596 | F +43 4253 32096


