
Bratislava, 30 Mar 2006Tomas Plachetka, Comenius University, Bratislava 1

Parallel Ray Tracing

See T. Plachetka: Event-Driven Message Passing and Parallel

Simulation of Global Illumination, Chapter 4

http://ubdata.upb.de/ediss/17/2003/plachetk/disserta.pdf

Bratislava, 30 Mar 2006Tomas Plachetka, Comenius University, Bratislava 2

Global illumination [Kajiya 1986]

∫
Ω

′′′−+= ωθωωωωωω dxRTLxBSDFxLxL e)cos()),',((),',(),(),(

∫
Ω

+= ωθωωωωωω dxRTWxBSDFxWxW e)cos()),,((),',()',()',(

Object geometry (set of surface points x)

Object materials: BSDF(x,ω’,ω)

Light sources: Le(x,ω)

Measuring sensors in camera: We(x,ω’)

Radiance L(x,ω) at least for all points x and directions ω which contribute to

the response of some camera sensor

Potential W(x,ω) at least for all light surface points x and all directions ω.

RT(x,ω) denotes the ray

tracing operation which

returns the first surface point

from point x in direction ω

Bratislava, 30 Mar 2006Tomas Plachetka, Comenius University, Bratislava 3

Global illumination [Kajiya 1986]

Paper

(x))),',(),',(),',((,(
ambientrefractedreflecteddirect

iiii LxLxLxLxL ωωωω ℜ=)

∫ −)),,((lightlightediff xRTLm ωω

)),,((specspecspec xRTLm ωω−+

)),,((transmtransmtransm xRTLm ωω−+

ωθωω dxRTLxmdiff cos),),(()(∫ −+

=

)ω,(xL

Eye
(camera)

Output image

Light source

Glass

Metal

These terms

are further

simplified in

ray tracing

Bratislava, 30 Mar 2006Tomas Plachetka, Comenius University, Bratislava 4

Global illumination [Kajiya 1986]

Paper

(x))),',(),',(),',((,(
ambientrefractedreflecteddirect

iiii LxLxLxLxL ωωωω ℜ=)

)),,((specspecspec xRTLm ωω−+

)),,((transmtransmtransm xRTLm ωω−+

=

)ω,(xL

Eye
(camera)

Output image

Light source

Glass

Metal

These terms

are further

simplified in

ray tracing

),),((lightlightediff xRTLm ωω∑ −

ambientconst+

Bratislava, 30 Mar 2006Tomas Plachetka, Comenius University, Bratislava 5

Introduction to ray tracing

How ray tracing works [Whitted, 1979]
We start with a 3D scene and a camera. What does the camera see?

The blue objects below are specularly reflective but not transparent (opaque mirror-like).

The grey object below is both transparent and specularly reflective (glass-like).

Eye
(camera)

Virtual screen
(raster image)

Light source
We send a ray from the eye through each pixel

on the virtual screen to compute the colour of

the pixel. Where does the light travelling along

this ray to the eye come from?

OK, now we know where from. Let´s see

whether this point is directly illuminated.This

one is.
But some light could also have been reflected or

refracted by this object. Where does this light

come from?

Are those new points directly illuminated? Not
both are, only one is. The other light ray is
blocked by another object.
What about multiple reflection or refraction? We
trace (recursively) the reflected and refracted
rays until they do not hit any object in our scene.
Finally we add energy contributions of all rays to
get the colour of the screen pixel.

Bratislava, 30 Mar 2006Tomas Plachetka, Comenius University, Bratislava 6

Complexity of ray tracing

...

...

...

eye

eye rays

ray-object intersections

reflected and refracted rays

ray-object intersections

reflected and refracted rays

ray-object intersections

recursion limit
... ...

Complexity of ray tracing: number of rays, number of intersections tests.

Estimation: #Rays = #Eye_Rays * N
D - 1

/ (N - 1) * (1 + #Lights)

D is the recursion depth

N is the average number of rays spawned by a ray-object intersection

Example: #Rays = 640 x 480 x 1.2
5
/ (1.2 - 1) * (1 + 20) ≅ 80,260,000

......

Bratislava, 30 Mar 2006Tomas Plachetka, Comenius University, Bratislava 7

Sequential speedup techniques

The most of the of ray tracing time (90%) is spent in computing
ray-object intersections.

(Sequential) speedup techniques

• Faster ray-object intersections

• intersection code optimisations

• bounding volumes

• bounding volume hierarchies (building BSP trees or octrees
from the bounding volumes in the pre-processing phase)

If a simple bounding volume
(e.g. a cube) is not intersected,
it is not necessary to intersect a
more complex shape

• Tracing fewer rays

• adaptive recursion depth control

• vista buffer (saving eye rays by projecting bounding volumes
onto the virtual screen in the pre-processing phase)

• light buffers (saving illumination rays by projecting objects onto
a cube around a light source in the pre-processing phase)

• Exploitation of ray coherence

• Tracing more rays at once (tracing cones or cylinders, etc.)

Bratislava, 30 Mar 2006Tomas Plachetka, Comenius University, Bratislava 8

Parallel ray tracing, previous work
Screen subdivision techniques

Idea: eye rays are independent, therefore can be computed in parallel
without a need of communication between processors

+ easy to implement, sequential speedup techniques can be directly applied

- load balancing, replication of the scene, antialiasing

Object space subdivision techniques

Idea: geometrical distribution of objects onto processors, rays or objects are
exchanged between processors

+ no scene replication

- difficult to implement, problems with using the sequential speedup
techniques, load balancing

Functional decomposition techniques

Idea: decomposition of the ray tracing algorithm into subtasks like “ray-
object intersection”, “shading” etc. which can be implemented in the
client-server way

+ modularity, combination with the previous techniques

- difficult to implement, problems with using the sequential speedup
techniques, load balancing

Bratislava, 30 Mar 2006Tomas Plachetka, Comenius University, Bratislava 9

Parallel ray tracing, previous work

Functional decomposition techniques

[Scherson, Caspary, 1988]

• Hierarchical bounding volumes

• Storing the upper part of the tree in every processor; distributing lower parts.

• 2 kinds of tasks on every processor: 1.intersection of a ray with the upper part of the
tree; 2.intersection of a ray with the lower part of the tree.

• Idea: the first task will not be running on a processor if workload on the processor is
heavy.

• When a ray is to be processed, any processor can take care about the ray. It
performs the task 1, then sends a task 2 to the appropriate processor.

• Problem: choosing the level dividing the tree into the upper and lower parts.

LEVEL

TASK 1

TASK 2

Lower part (distributed)

Upper part (replicated)[Lefer, 1994]

• A similar approach with more
task types

• Implementation on Meiko
transputer machine with 8
processors

• Speedup 5.5 - 7 with 8
processors

Bratislava, 30 Mar 2006Tomas Plachetka, Comenius University, Bratislava 10

Parallel ray tracing, previous work

Object space subdivision techniques

[Dippé, Svensen, 1984]

• An algorithm and a parallel computer architecture (3D grid) which fit well together.

• Idea of the algorithm: subdividing the 3D space geometrically into 3D sub-regions
(parallelpipeids, general “cubes”, tetrahedra); mapping 1 sub-region onto 1 processor;
exchanging rays between processors.

• Motivation: a mathematical model showing an expected speedup of O(S
2/3
) over the

“classical” algorithm (S being the number of sub-regions; the complexity measure was
number of ray-object intersections). A sequential testing of all objects against the ray
is understood under the “classical” algorithm. No object hierarchy is considered.

• Suggestion for tackling the problem of work imbalance: moving sub-region
boundaries.

• Many non-trivial problems, no implementation.

[Cleary, Wywill, Birtwistle, Vatti, 1986]

• The idea of parallelization similar to [Dippé, Svensen, 1984].

• Extended theoretical analysis: T = TR + TP, where is TR the time taken to compute
the longest ray and TP is the time taken by the busiest processor; exact analysis for
an empty scene.

• No implementation, no object hierarchy is considered.

Bratislava, 30 Mar 2006Tomas Plachetka, Comenius University, Bratislava 11

Parallel ray tracing, previous work

Object space subdivision techniques (continued)

[Priol, Boutatouch, 1988]

• A similar algorithm as in previous papers. Improvement: using pyramidal shapes for
regions (by doing so it is guaranteed that the primary rays never leave their initial
regions).

• Implementation on an iPSC Hypercube, however, no measurements reported.

[Kobayashi, Nakamura, Shigei, 1988]

• An efficient mapping of 3D sub-regions onto the hypercube. The distance on the
hypercube is proportional to the size of the sub-regions.

[Jevans, 1989]

• Idea: an optimistic firing of rays into neighbouring voxel processors before actually
computing intersections in the current voxel (and cancelling the rays which should not
have been fired).

[Pitot, 1993]

• Implementation of Cleary’s algorithm and experiments on a transputer machine.

• Static load distribution (meta-voxels mapped onto processors, subdividing meta-
voxels into voxels on all processors).

Bratislava, 30 Mar 2006Tomas Plachetka, Comenius University, Bratislava 12

Parallel ray tracing, previous work

[Badouel, Boutatouch, Priol, 1994]

• Experiments with data-oriented parallelization (object space subdivision):

• The algorithm depends on empirical choices (size of the sampling grid, etc.)

• Several regions may share the same object (repeated ray-object computation
occur).

• Processors with light sources are overloaded.

• Experiments with control-oriented parallelization (image space subdivision):

• Work stealing in a logical processor ring; object cache (inspired by Paddon and
Green).

[Pitot, 1993] Object space subdivision

0

4

8

12

16

20

24

28

32

36

0 6 12 18 24 30 36

Number of processors

S
p
e
e
d
u
p

Linear speedup

Speedup

[Pitot, 1993] Object space subdivision

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 6 12 18 24 30 36

Number of processors

E
ff
ic
ie
n
c
y

Object space subdivision techniques (continued)

Bratislava, 30 Mar 2006Tomas Plachetka, Comenius University, Bratislava 13

Parallel ray tracing, previous work

[Keates, Hubbold, 1995]

• Experiments with Kendal Square Research Machine (KSR1)

• Distributed memory, virtual shared memory supported by hardware, pthread
programming model.

• A very good characteristics: efficiency 75% on 200 processors, 70% on 230
processors.

Object space subdivision techniques (continued)

Data oriented parallelization

(object space partitioning),

[Badouel, Bouatouch, Priol, 1994]

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1
1,1

0 8 16 24 32

Number of processors

E
ff
ic
ie
n
c
y

Efficiency, Rings2

Efficiency, Rings3

Efficiency, Rings4

Control oriented parallelization

(image space partitioning)

[Badouel, Bouatouch, Priol, 1994]

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1
1,1

0 20 40 60 80

Number of processors

E
ff
ic
ie
n
c
y

Efficiency, Rings2

Efficiency, Rings3

Efficiency, Rings4

Bratislava, 30 Mar 2006Tomas Plachetka, Comenius University, Bratislava 14

Parallel ray tracing, previous work

Screen subdivision techniques

[Green, Paddon, 1989]

A virtual memory management system (on every worker processor)

• Resident object set (always in local memory)

• Object cache (used during the computation for storing non-resident objects in order
to minimize the communication)

• Additional processors with enough memory acting as object database server(s)

The resident object sets are determined by tracing a very low resolution picture in the
pre-processing phase.

Implementation: a simple ray tracer (4-vertex polygons, octree object hierarchy), up to
10 T800 Transputers, LRU cache, static load balancing.

if (cached object needed) {

if (the object is in permanent database or in the local cache)

return(object)

else {

send request to the processor owning the object()

wait for the object()

return(object)

}

}

Bratislava, 30 Mar 2006Tomas Plachetka, Comenius University, Bratislava 15

POV||Ray: Persistence Of Vision Parallel Ray Tracer

Dynamic load balancing

Screen subdivision Data parallelism

• Caching mesh objects only; bounding box
hierarchy is kept intact, only data (vertices, normals,
etc.) are distributed.

• Checking for the local presence of the data and
eventual fetching the missing data from another
processor occurs only in one place in the source
code (intersection calculations).

• Pre-computing information needed later during the
lighting calculations and associating it with the
intersection point (normal, mapped bitmap colour,
etc).

• A call-back mechanism is used for answering
OBJECT_REQ messages. These messages can be
processed directly in an application-independent
thread.

• LRU caching strategy was selected as the best one
(previous experiments also with other strategies,
LRU_COUNTER, RANDOM, AGING).

(Plachetka, 2003)

Bratislava, 30 Mar 2006Tomas Plachetka, Comenius University, Bratislava 16

POV||Ray: Persistence Of Vision Parallel Ray Tracer

Motivations for a data-parallel implementation:

• No limit on the maximum scene size.

• By large scenes, in order to avoid swapping on processors, the total local memory
should be limited.

Solution: central memory management, dynamic (run-time) cache size adjustment.

Program Code,

Frame Buffer,

Bounding Box Hierarchy,

Lights, Light Buffers,

Materials, etc.

Permanent Object

Database

Object Cache

Real Memory

Swap Memory

Program Code,

Frame Buffer,

Bounding Box Hierarchy,

Lights, Light Buffers,

Materials, etc.

Permanent Object

Database

Object Cache

Not used Not used

Network

Bratislava, 30 Mar 2006Tomas Plachetka, Comenius University, Bratislava 17

POV||Ray: Persistence Of Vision Parallel Ray Tracer

Processors Linear speedup Speedup, no AA Efficiency, no AA Speedup, AA 4x4 Efficiency, AA 4x4

1 1 1,00 1,00 1,00 1,00

2 2 2,00 1,00 2,03 1,02

4 4 4,00 1,00 4,08 1,02

8 8 7,97 1,00 8,03 1,00

16 16 15,79 0,99 15,47 0,97

24 24 22,66 0,94 22,28 0,93

32 32 29,54 0,92 28,99 0,91

40 40 34,26 0,86 34,34 0,86

48 48 41,19 0,86 38,03 0,79

HAUS6 (100% memory, warm start)

0

4

8

12

16

20

24

28

32

36

40

44

48

0 8 16 24 32 40 48

Number of workers

S
p
e
e
d
u
p Linear speedup

Speedup, no AA

Speedup, AA 4x4

HAUS6 (100% memory, warm start)

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

1,10

0 8 16 24 32 40 48

Number of workers

E
ff
ic
ie
n
c
y

Efficiency, no AA

Efficiency, AA 4x4

hpcLine: HAUS6 (Arcon), 614 objects (72,621 triangles), 22 point lights (640x480)

Bratislava, 30 Mar 2006Tomas Plachetka, Comenius University, Bratislava 18

POV||Ray: Persistence Of Vision Parallel Ray Tracer

HAUS6 (data parallel)

0

4

8

12

16

20

24

28

32

36

40

44

48

0 8 16 24 32 40 48

Number of workers

S
p
e
e
d
u
p

Linear speedup

Time, 100% memory

(warm start)

Time, 20% memory

(cold start)

Time, 10% memory

(cold start)

Time, 5% memory

(cold start)

HAUS6 (data parallel)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

0 8 16 24 32 40 48

Number of workers

E
ff
ic
ie
n
c
y

Time, 100% memory

(warm start)

Time, 20% memory

(cold start)

Time, 10% memory

(cold start)

Time, 5% memory

(cold start)

hpcLine: HAUS6 (Arcon), 614 objects (72,621 triangles), 22 point lights (640x480)

• Total object requests: ~50,000,000

Processors Obects exchanged Bytes exchanged Exchange time (s) Cache hit ratio

16 2.723 11.383.104 5,5 0,9999

24 2.172 8.262.024 4,5 1,0000

32 2.457 9.686.632 5,9 1,0000

40 3.062 12.043.576 7,8 0,9999

48 3.625 14.044.532 9,3 0,9999

20% memory

• Cold start, 48 workers, 100%
memory: 3392 objects exchanged
(~13 MB)

Procs Objects exchanged Bytes exchanged Exchange time (s) Cache hit ratio

16 N/A N/A N/A N/A

24 713.562 inf 2.104,2 0,9860

32 501.686 2.111.045.688 1.926,0 0,9902

40 426.791 1.798.978.892 1.819,7 0,9917

48 357.778 1.517.580.352 1.466,9 0,9930

10% memory

Procs Objects exchanged Bytes exchanged Exchange time (s) Cache hit ratio

16 N/A N/A N/A N/A

24 9.764.151 inf 25.200,7 0,7671

32 7.244.288 inf 24.465,3 0,8357

40 5.539.805 inf 24.880,1 0,8799

48 5.054.140 inf 25.732,2 0,8921

5% memory

Bratislava, 30 Mar 2006Tomas Plachetka, Comenius University, Bratislava 19

POV||Ray: Persistence Of Vision Parallel Ray Tracer

•Screen parallelisation can work with a distributed object database.

•Almost all sequential parallelisation techniques can be reused!

•Object distribution can be treated as an independent problem

•A good screen parallelisation (process farming) algorithm and its tuning can

be found in [Plachetka 2004, Tuning of Algorithms…],

http://www.dcs.fmph.uniba.sk/~plachetk/PUBLICATIONS/egpgv04.pdf

