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1 Introduction

Ray tracing is a technique for rendering images from a three dimensional model
of a scene by projecting it on to a two dimensional image plane. It works by
calculating the direction of the ray that strikes each pixel of the image plane,
and tracing that ray back into the scene to determine the interaction of lights
and surfaces that produced that ray.

Raster graphics systems, such as OpenGL, use approximations and compu-
tational short cuts to allow rendering scenes in real time at the cost of image
quality. Ray tracing, on the other hand, produces higher quality images (see
Figure 1), but is too slow to be used in real time.

Since the calculations for each pixel are independent, ray tracing can be
easily parallelizable. Parallelization is one way to close the gap in execution
time between ray tracing and traditional raster graphics systems.

The algorithm we are implementing is not so sophisticated; it is little more
than the basic naive implementation. Therefore, we expect to achieve almost
perfect speedup - this is the hypothesis we will prove.

2 Ray Tracing
2.1 Algorithm

The basic ray tracing algorithm is as follows:

for every pixel in the image
calculate trajectory of ray striking that pixel
find closest intersection point of ray with scene geometry
calculate contribution of all lights at intersection point
recursively trace specularly reflected ray

end for

Finding the closest intersection of a ray with the scene is done like so:

for every object in the scene
find intersection point of ray with object



Figure 1: A ray traced image of a model of the robot area of the North CS Lab
produced by our OpenMP parallel implementation. Note the shadows cast by
objects.



if intersection is closer to image plane than current closest intersection
store new intersection point as closest
end if
end for

The recursion of the ray tracer terminates once a certain number of recur-
sions is reached, or once the contribution of the specular component (determined
by the material properties of surfaces in the scene) is below a certain threshold.

2.2 Parallelizability

The naive ray-tracing algorithm of intersecting each ray with every surface with-
out any optimization is pleasantly parallel. The iterations of the for loop in the
first block of pseudo-code above is executed in parallel. All threads need only
read the shared data structure, and the calculations for each pixel are indepen-
dent. However, some of optimizations done on the serial ray tracing algorithm
can inroduce difficulty when parallelizing.

One optimization takes advantage of similar trajectories of rays form neigh-
boring pixels in the image. When the ray from one pixel is traced, the object
it intersects and other nearby objects in the world are cached and checked first
when tracing nearby rays. Since the trajectories of these rays will be similar, it
is likely that they will intersect the same objects, and so this can allow scenes
to be rendered much faster. The downside of this technique for parallelization
is that it requires that the scene data structure be modified each time a ray is
traced to include the cached information.

Other ray tracing techniques do not simply trace a single ray for each pixel.
Instead, they initially trace rays at non-uniformly sampled positions on the im-
age plane, and adaptively trace more rays in areas with high intensity variance.
The idea is that scenes are not uniformly detailed: some areas of a scene are
uniform in color and simple in shape, and require only a few samples to ren-
der accurately. Other areas are more detailed, and require a higher number of
samples. Adaptive non-uniform sampling allows for more efficient rendering by
tracing rays densely when they strike areas of high detail while saving compu-
tation time and tracing a smaller number in areas of low detail. While this
results in an increase in the performance of serial ray tracers, it complicates
parallelization. Each ray is no longer independent of every other, since new
rays are traced based on the values returned by tracing old ones. This kind
of ray tracing is not impossible to parallelize, as Notkin and Gotsman show in
their paper ”Parallel Progressive Ray-Tracing” !, but it is not as simple as the
algorithm described above and is beyond the scope of this project.

INotkin, Irena and Gotsman, Craig. ”Parallel Progressive Ray-Tracing”. Computer
Graphics Forum, volume 16, pp. 43-55, 1997.



3 Implementation

3.1 OpenMP

Since each thread in our ray tracer needs read-only access to a large scene data
structure, out initial plan was to parallelize with OpenMP. With OpenMP, we
can keep the scene data structure in shared memory, and avoid the overhead
of distributing it to multiple processors. We can also avoid the overhead of
combining the subsection of the scene rendered by each processor into the final
image by having all threads write into different sections of the same shared
image data structure. To implement this, we place a parallel for pragma
with proper clauses outside the outer for-loop iterating over image columns
while the inner for-loop iterates over the pixels in that column - this achieves
larger grain size than parallelization of the inner loop.

In addition to implementation, however, there were several other issues that
needed to be resolved before OpenMP parallelization was complete. First, since
our ray tracer was developed using C++ and OOP and the actual ray tracing
algorithm was implemented inside a class method, the program needed to be
built with C++ compiler/linker that supported OpenMP directives inside class
methods. Although Sun C++ version 5.5 compiler installed on CS host faure
(development /initial testing workstation) had the necessary support, Sun C++
version 7.4 compiler installed on CoGrid (final experiment environment) had
not. A solution was to use CS host mraz for building, testing, and final ex-
periments. Mraz is a 8-core 64-bit Xenon-based workstation that has GCC 4.2
installed with full support for necessary OpenMP functionality.

3.2 MPI

The MPI implementation is similar to the OpenMP implementation. Columns
of pixels are divided as evenly as possible among processors. Each processor
does the computation for a sequential block of rows. This is not necessarily the
most load balanced scheme, but it is easy to implement.

Each processor separately loads its own copy of the model file from the disk.
Since this disk access is read-only, this is safe, although it may be more efficient
to have a single processor read and broadcast the data.

After each processor computes its section of the image, an MPI_Gatherv
operation is performed to aggregate the image on the first processor. The first
processor then writes the image to disk.

4 Results

4.1 Overview

We did not measure the algorithm complexity based on different input sizes.
This is because we do not expect the complexity to vary uniformly with the
number of pixels in the image. The time to trace a ray from a single pixel is a



function of the complexity of the area of the scene that that ray passes through
and the number of recursions required for that pixel. Therefore, we cannot
easily predict the the amount of computation required for any pixel.

We gathered data on how speedup varied with the number of processors for
both our OpenMP and MPI implementations. The OpenMP experiments were
run on mraz, an 8-core machine in the CS department. The MPI experiments
were run on the machines in the HP classroom. We rendered the same 64 by 64
pixel image on each of one through eight processors with the OpenMP imple-
mentation, and each of one through sixteen processors with the MPI version.
Ten trials of each program on each number of processors were run. To explore
the effects of scheduling on program performance in OpenMP, we ran five trails
each using various schedules on 8 processors. The schedules tested were static,
static,1,dynamic, and guided. For the scheduling experiments, the image size
was 128 by 64 to increase the total run time and make the differences among
scheduling types more prominent.

4.2 Data

The speedups of both implementations are shown in Figure 2. Our speed up
calculations are based on our own initially serial ray tracer and not on an op-
timized sequential ray tracer. We did not have time to set up and run timing
tests on an efficient sequential ray tracer using the same scene file. OpenMP
achieves nearly perfect speedup up to six processors, but plateaus at seven and
eight processors. This is due to the residual load on the testing machine: other
processes were running on two of the eight cores, allowing our program to fully
utilize only six cores.

The MPI version acheves moderate speedup up to sixteen processors. One
thing to note on the MPI graph are the plateaus in speedup at eight, eleven, and
thirteen processors. This is due to poor load balancing. The MPI partitioning
is static: each processor is allocated a section of rows to compute at the start
of execution. With a problem size of 64 rows and thirteen, fourteen, or fifteen
processors, eahc processor is allocated four or five rows to compute. Thus, since
some processor is computing five rows for each of these problem sizes, there is
no observable speedup. With sixteen processors, each processor is allocated four
rows, and the speedup once again increases.

The following table shows the run times for the different OpenMP scheduling
schemes on eight processors:

Schedule Runtime
static 26.9523
static,1 26.3865
dynamic  25.73104
guided 30.89894

This corroborates our earlier assertion about algorithm complexity: since
the complexity of ray tracing each pixel varies, the optimal load balancing is
achieved with dynamic scheduling with the smallest chunk sizes.
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4.3 Karp-Flatt Data Analysis

Since we have experimental data, we can use the Karp-Flatt metric to estimate
the fraction of the algorithm that must run sequentially.
Processors MPI Speedup MPI serial fraction OMP Speedup OMP serial fraction

2 2.081842 -0.03931230 2.043273 -0.021178276
3 2.671881 0.06140225 3.009054 -0.001504460
4 3.237206 0.07854448 3.974286 0.002156698

5 3.559631 0.10115999 4.933027 0.003394113

6 4.142629 0.08967112 5.745767 0.008849402

7 4.539544 0.09033418 6.436022 0.014604725

8 5.550360 0.06304971 6.328262 0.037738595

9 5.559570 0.07735378 N/A N/A

10 6.252266 0.06660223 N/A N/A

11 7.177297 0.05326104 N/A N/A

12 7.192123 0.06077200 N/A N/A

13 8.368685 0.04611751 N/A N/A

14 8.374394 0.05167406 N/A N/A

15 8.388266 0.05630087 N/A N/A

16 10.093213 0.03901491 N/A N/A

One thing to note in the above table is that there are negative values for the
serial fraction for small numbers of processors. This is caused by noise in our
data. We observed speedups of better than ideal in certain cases, which causes
the serial fraction calculation to not be meaningful. Another thing to note is
that the OpenMP version has a very low serial fraction up to six processors. This
corroborates our hypothesis that ray tracing is a pleasantly parallel algorithm.

4.4 Comparison

Our experiments show that OpenMP is the clear winner when it comes to
speedup, at least on fewer than six processors. The OpenMP implementation is
also much simpler than the MPI implementation (initial compilation problems
excepted): it is a single preprocessor directive placed around the outermost
for loop. The advantage MPI has over OpenMP is in the hardware it runs
on. OpenMP is a shared memory model of parallelization; it requires special-
ized hardware that allows multiple processors to access the same memory. In
contrast, MPI is a distributed memory model which can be implemented on
commodity hardware. Although the OpenMP implementation more efficiently
utilizes available processors, the number of processors available is typically lim-
ited. MPI systems don’t have such hard limits on the number of processors.
This can be seen in our experiments: we ran our MPI implementation on six-
teen processors (and were able to run it on more), and we achieved a speedup of
approximately ten on that many processors, higher than any speedup obtained
with OpenMP.



5 Conclusions and Future Work

There are many other meaningful experiments that could be run if we had time.
Different partitions of the computation could be tried, which might improve the
laod balancing issues we experienced with our MPI implementation. With the
OpenMP version, we could try parallelizing the inner loop (over each pixel in
a row instead of over each row) to achieve finer grain parallelism. Running the
OpenMP on a machine with more processors (such as CoGrid) would give us a
better idea of how the performance of the OpenMP implementation scales with
the number of processors.

One thing lacking from our experiments is a comparison to a highly opti-
mized sequential ray tracer. Our speed up is calculated based on the perfor-
mance of the unoptimized sequential ray tracer we had readily available. There
exist open source ray tracers, such as POV ray (http://www.povray.org/), that
we could compare to.



