6

H.264/MPEG4 Part 10

6.1 INTRODUCTION

The Moving Picture Experts Group and the Video Coding Experts Group (MPEG and
VCEG) have developed a new standard that promises to outperform the earlier MPEG-4
and H.263 standards, providing better compression of video images. The new standard is
entitled ‘Advanced Video Coding’ (AVC) and is published jointly as Part 10 of MPEG-4 and
ITU-T Recommendation H.264 [1, 3].

6.1.1 Terminology

Some of the important terminology adopted in the H.264 standard is as follows (the details of
these concepts are explained in later sections):

A field (of interlaced video) or a frame (of progressive or interlaced video) is encoded
to produce a coded picture. A coded frame has a frame number (signalled in the bitstream),
which is not necessarily related to decoding order, and each coded field of a progressive or
interlaced frame has an associated picture order count, which defines the decoding order
of fields. Previously coded pictures (reference pictures) may be used for inter prediction of
further coded pictures. Reference pictures are organised into one or two lists (sets of numbers
corresponding to reference pictures), described as list 0 and list 1.

A coded picture consists of a number of macroblocks, each containing 16 x 16 luma sam-
ples and associated chroma samples (8 x 8 Cb and 8 x 8 Cr samples in the current standard).
Within each picture, macroblocks are arranged in slices, where a slice is a set of macroblocks
in raster scan order (but not necessarily contiguous — see section 6.4.3). An [slice may contain
only I macroblock types (see below), a P slice may contain P and I macroblock types and a
B slice may contain B and I macroblock types. (There are two further slice types, SI and SP,
discussed in section 6.6.1).

I macroblocks are predicted using intra prediction from decoded samples in the current
slice. A prediction is formed either (a) for the complete macroblock or (b) for each 4 x 4 block

H.264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia.
Iain E. G. Richardson. ~ © 2003 John Wiley & Sons, Ltd. ISBN: 0-470-84837-5

160 H.264/MPEG4 PART 10

+ Dn X Entropy
Fr =f>_, T ——> Q Reorder —»f encode—'NAL

(current) X

ME

Frq F » MC Inter

(reference)

(1 or 2 previously P

ded f
encoded frames) N Cn?t?ase In}ra e
! prediction prediction
v+
, uF! D'
Fn le—] Filter |« n @J T1] Q! e
(reconstructed) +

Figure 6.1 H.264 Encoder

of luma samples (and associated chroma samples) in the macroblock. (An alternative to intra
prediction, I PCM mode, is described in section 6.4.6).

P macroblocks are predicted using inter prediction from reference picture(s). An inter
coded macroblock may be divided into macroblock partitions, i.e. blocks of size 16 x 16,
16 x 8, 8 x 16 or 8 x 8 luma samples (and associated chroma samples). If the 8 x 8 parti-
tion size is chosen, each 8 x 8 sub-macroblock may be further divided into sub-macroblock
partitions of size 8§ x 8, 8 x 4, 4 x 8 or 4 x 4 luma samples (and associated chroma sam-
ples). Each macroblock partition may be predicted from one picture in list 0. If present, every
sub-macroblock partition in a sub-macroblock is predicted from the same picture in list O.

B macroblocks are predicted using inter prediction from reference picture(s). Each mac-
roblock partition may be predicted from one or two reference pictures, one picture in list 0
and/or one picture in list 1. If present, every sub-macroblock partition in a sub-macroblock
is predicted from (the same) one or two reference pictures, one picture in list 0 and/or one
picture in list 1.

6.2 THE H.264 CODEC

In common with earlier coding standards, H.264 does not explicitly define a CODEC
(enCOder / DECoder pair) but rather defines the syntax of an encoded video bitstream together
with the method of decoding this bitstream. In practice, a compliant encoder and decoder are
likely to include the functional elements shown in Figure 6.1 and Figure 6.2. With the exception
of the deblocking filter, most of the basic functional elements (prediction, transform, quan-
tisation, entropy encoding) are present in previous standards (MPEG-1, MPEG-2, MPEG-4,
H.261, H.263) but the important changes in H.264 occur in the details of each functional
block.

The Encoder (Figure 6.1) includes two dataflow paths, a ‘forward’ path (left to right) and
a ‘reconstruction’ path (right to left). The dataflow path in the Decoder (Figure 6.2) is shown
from right to left to illustrate the similarities between Encoder and Decoder. Before examining
the detail of H.264, we will describe the main steps in encoding and decoding a frame (or field)

THE H.264 CODEC 161

Inter

Fo MC

n
(reference)

(1 or 2 previously
encoded frames) Intra

prediction

Entropy

decode NAL

[€—1 Filter [€

T [« Q Reorder [«—

n
(reconstructed)

Figure 6.2 H.264 Decoder

of video. The following description is simplified in order to provide an overview of encoding
and decoding. The term “block” is used to denote a macroblock partition or sub-macroblock
partition (inter coding) or a 16 x 16 or 4x 4 block of luma samples and associated chroma
samples (intra coding).

Encoder (forward Path)

An input frame or field F,, is processed in units of a macroblock. Each macroblock is encoded
in intra or inter mode and, for each block in the macroblock, a prediction PRED (marked ‘P’ in
Figure 6.1) is formed based on reconstructed picture samples. In Intra mode, PRED is formed
from samples in the current slice that have previously encoded, decoded and reconstructed
(uF, in the figures; note that unfiltered samples are used to form PRED). In Inter mode, PRED
is formed by motion-compensated prediction from one or two reference picture(s) selected
from the set of list O and/or list 1 reference pictures. In the figures, the reference picture is
shown as the previous encoded picture F/,_, but the prediction reference for each macroblock
partition (in inter mode) may be chosen from a selection of past or future pictures (in display
order) that have already been encoded, reconstructed and filtered.

The prediction PRED is subtracted from the current block to produce a residual
(difference) block D, that is transformed (using a block transform) and quantised to give
X, a set of quantised transform coefficients which are reordered and entropy encoded. The
entropy-encoded coefficients, together with side information required to decode each block
within the macroblock (prediction modes, quantiser parameter, motion vector information,
etc.) form the compressed bitstream which is passed to a Network Abstraction Layer (NAL)
for transmission or storage.

Encoder (Reconstruction Path)

As well as encoding and transmitting each block in a macroblock, the encoder decodes (recon-
structs) it to provide a reference for further predictions. The coefficients X are scaled (Q~!)
and inverse transformed (T~!) to produce a difference block D/ . The prediction block PRED
is added to D/, to create a reconstructed block uF, (a decoded version of the original block;
u indicates that it is unfiltered). A filter is applied to reduce the effects of blocking distortion
and the reconstructed reference picture is created from a series of blocks F,,.

Decoder
The decoder receives a compressed bitstream from the NAL and entropy decodes the data
elements to produce a set of quantised coefficients X. These are scaled and inverse transformed

162 H.264/MPEG4 PART 10

to give D/, (identical to the D), shown in the Encoder). Using the header information decoded
from the bitstream, the decoder creates a prediction block PRED, identical to the original
prediction PRED formed in the encoder. PRED is added to D), to produce uF,, which is filtered
to create each decoded block F),.

6.3 H.264 STRUCTURE

6.3.1 Profiles and Levels

H.264 defines a set of three Profiles, each supporting a particular set of coding functions and
each specifying what is required of an encoder or decoder that complies with the Profile.
The Baseline Profile supports intra and inter-coding (using I-slices and P-slices) and entropy
coding with context-adaptive variable-length codes (CAVLC). The Main Profile includes sup-
port for interlaced video, inter-coding using B-slices, inter coding using weighted prediction
and entropy coding using context-based arithmetic coding (CABAC). The Extended Profile
does not support interlaced video or CABAC but adds modes to enable efficient switching
between coded bitstreams (SP- and SI-slices) and improved error resilience (Data Partition-
ing). Potential applications of the Baseline Profile include videotelephony, videoconferencing
and wireless communications; potential applications of the Main Profile include television
broadcasting and video storage; and the Extended Profile may be particularly useful for
streaming media applications. However, each Profile has sufficient flexibility to support a
wide range of applications and so these examples of applications should not be considered
definitive.

Figure 6.3 shows the relationship between the three Profiles and the coding tools supported
by the standard. It is clear from this figure that the Baseline Profile is a subset of the Extended
Profile, but not of the Main Profile. The details of each coding tool are described in Sections
6.4, 6.5 and 6.6 (starting with the Baseline Profile tools).

Performance limits for CODECs are defined by a set of Levels, each placing limits on
parameters such as sample processing rate, picture size, coded bitrate and memory require-
ments.

6.3.2 Video Format

H.264 supports coding and decoding of 4:2:0 progressive or interlaced video! and the default
sampling format for 4:2:0 progressive frames is shown in Figure 2.11 (other sampling formats
may be signalled as Video Usability Information parameters). In the default sampling format,
chroma (Cb and Cr) samples are aligned horizontally with every 2nd luma sample and are
located vertically between two luma samples. An interlaced frame consists of two fields (a top
field and a bottom field) separated in time and with the default sampling format shown in
Figure 2.12.

! An extension to H.264 to support alternative colour sampling structures and higher sample accuracy is currently
under development.

H.264 STRUCTURE 163

Extended profile

"_-——--~~~
- ~
-

- ~ Main profile

\
’ SP and AN
4 Sl slices

B sli \\
slices \ [
Data _ X
Partitioning Weighted

CABAC
Prodiotion \ [creAC]

Interlace |

CAVLC

Slice Groups
and ASO

\
\
\
\
\
\
\
\
\
\
]
'
[}
]
[}
]
]
!
!
!

Redundant
Slices

Baseline profile

~
-~
-
Srcaa-"

Figure 6.3 H.264 Baseline, Main and Extended profiles

NAL NAL

NAL
""" header RBSP header RBSP header RBSP

Figure 6.4 Sequence of NAL units

6.3.3 Coded Data Format

H.264 makes a distinction between a Video Coding Layer (VCL) and a Network Abstraction
Layer (NAL). The output of the encoding process is VCL data (a sequence of bits representing
the coded video data) which are mapped to NAL units prior to transmission or storage. Each
NAL unit contains a Raw Byte Sequence Payload (RBSP), a set of data corresponding to
coded video data or header information. A coded video sequence is represented by a sequence
of NAL units (Figure 6.4) that can be transmitted over a packet-based network or a bitstream

transmission link or stored in a file. The purpose of separately specifying the VCL and NAL
is to distinguish between coding-specific features (at the VCL) and transport-specific features
(at the NAL). Section 6.7 describes the NAL and transport mechanisms in more detail.

6.3.4 Reference Pictures

An H.264 encoder may use one or two of a number of previously encoded pictures as a
reference for motion-compensated prediction of each inter coded macroblock or macroblock

164 H.264/MPEG4 PART 10

Table 6.1 H.264 slice modes

Slice type Description Profile(s)

I (Intra) Contains only I macroblocks (each block or All
macroblock is predicted from previously coded
data within the same slice).

P (Predicted) Contains P macroblocks (each macroblock All
or macroblock partition is predicted from one
list O reference picture) and/or I macroblocks.
B (Bi-predictive) Contains B macroblocks (each macroblock or macroblock Extended and Main
partition is predicted from a list O and/or
a list 1 reference picture) and/or I macroblocks.

SP (Switching P) Facilitates switching between coded streams; contains Extended
P and/or I macroblocks.

SI (Switching I) Facilitates switching between coded streams; contains SI ~ Extended
macroblocks (a special type of intra coded macroblock).

partition. This enables the encoder to search for the best ‘match’ for the current macroblock
partition from a wider set of pictures than just (say) the previously encoded picture.

The encoder and decoder each maintain one or two lists of reference pictures, containing
pictures that have previously been encoded and decoded (occurring before and/or after the
current picture in display order). Inter coded macroblocks and macroblock partitions in P slices
(see below) are predicted from pictures in a single list, list 0. Inter coded macroblocks and
macroblock partitions in a B slice (see below) may be predicted from two lists, list 0 and list 1.

6.3.5 Slices

A video picture is coded as one or more slices, each containing an integral number of
macroblocks from 1 (1 MB per slice) to the total number of macroblocks in a picture (1 slice
per picture) The number of macroblocks per slice need not be constant within a picture. There
is minimal inter-dependency between coded slices which can help to limit the propagation of
errors. There are five types of coded slice (Table 6.1) and a coded picture may be composed
of different types of slices. For example, a Baseline Profile coded picture may contain a
mixture of I and P slices and a Main or Extended Profile picture may contain a mixture of I,
P and B slices.

Figure 6.5 shows a simplified illustration of the syntax of a coded slice. The slice header
defines (among other things) the slice type and the coded picture that the slice ‘belongs’ to and
may contain instructions related to reference picture management (see Section 6.4.2). The slice
data consists of a series of coded macroblocks and/or an indication of skipped (not coded) mac-
roblocks. Each MB contains a series of header elements (see Table 6.2) and coded residual data.

6.3.6 Macroblocks

A macroblock contains coded data corresponding to a 16 x 16 sample region of the video
frame (16 x 16 luma samples, 8 x 8 Cb and 8 x 8 Cr samples) and contains the syntax
elements described in Table 6.2. Macroblocks are numbered (addressed) in raster scan order
within a frame.

THE BASELINE PROFILE 165

Table 6.2 Macroblock syntax elements

mb_type Determines whether the macroblock is coded in intra or inter (P or B)
mode; determines macroblock partition size (see Section 6.4.2).

mb_pred Determines intra prediction modes (intra macroblocks); determines
list 0 and/or list 1 references and differentially coded motion.
vectors for each macroblock partition (inter macroblocks, except for
inter MBs with 8 x 8 macroblock partition size).

sub_mb_pred (Inter MBs with 8 x 8 macroblock partition size only) Determines
sub-macroblock partition size for each sub-macroblock; list 0 and/or
list 1 references for each macroblock partition; differentially coded motion
vectors for each macroblock sub-partition.

coded_block_pattern Identifies which 8 x 8 blocks (luma and chroma) contain coded transform

coefficients.
mb_qgp_delta Changes the quantiser parameter (see Section 6.4.8).
residual Coded transform coefficients corresponding to the residual image samples

after prediction (see Section 6.4.8).

slice .
header slice data
MB [MB | skip_run [MB | . MB | MB
mb_type mb_pred coded residual

Figure 6.5 Slice syntax

6.4 THE BASELINE PROFILE

6.4.1 Overview

The Baseline Profile supports coded sequences containing I- and P-slices. I-slices contain
intra-coded macroblocks in which each 16 x 16 or 4 x 4 luma region and each 8 x 8 chroma
region is predicted from previously-coded samples in the same slice. P-slices may contain
intra-coded, inter-coded or skipped MBs. Inter-coded MBs in a P slice are predicted from a
number of previously coded pictures, using motion compensation with quarter-sample (luma)
motion vector accuracy.

After prediction, the residual data for each MB is transformed using a 4 x 4 integer
transform (based on the DCT) and quantised. Quantised transform coefficients are reordered
and the syntax elements are entropy coded. In the Baseline Profile, transform coefficients are
entropy coded using a context-adaptive variable length coding scheme (CAVLC) and all other

166 H.264/MPEG4 PART 10

syntax elements are coded using fixed-length or Exponential-Golomb Variable Length Codes.
Quantised coefficients are scaled, inverse transformed, reconstructed (added to the prediction
formed during encoding) and filtered with a de-blocking filter before (optionally) being stored
for possible use in reference pictures for further intra- and inter-coded macroblocks.

6.4.2 Reference Picture Management

Pictures that have previously been encoded are stored in a reference buffer (the decoded picture
buffer, DPB) in both the encoder and the decoder. The encoder and decoder maintain a list of
previously coded pictures, reference picture list O, for use in motion-compensated prediction
of inter macroblocks in P slices. For P slice prediction, list O can contain pictures before
and after the current picture in display order and may contain both short term and long term
reference pictures. By default, an encoded picture is reconstructed by the encoder and marked
as a short term picture, a recently-coded picture that is available for prediction. Short term
pictures are identified by their frame number. Long term pictures are (typically) older pictures
that may also be used for prediction and are identified by a variable LongTermPicNum. Long
term pictures remain in the DPB until explicitly removed or replaced.

When a picture is encoded and reconstructed (in the encoder) or decoded (in the de-
coder), it is placed in the decoded picture buffer and is either (a) marked as ‘unused for
reference’ (and hence not used for any further prediction), (b) marked as a short term pic-
ture, (c) marked as a long term picture or (d) simply output to the display. By default, short
term pictures in list O are ordered from the highest to the lowest PicNum (a variable derived
from the frame number) and long term pictures are ordered from the lowest to the highest
LongTermPicNum. The encoder may signal a change to the default reference picture list order.
As each new picture is added to the short term list at position 0, the indices of the remain-
ing short-term pictures are incremented. If the number of short term and long term pictures
is equal to the maximum number of reference frames, the oldest short-term picture (with
the highest index) is removed from the buffer (known as sliding window memory control).
The effect that this process is that the encoder and decoder each maintain a ‘window’ of N
short-term reference pictures, including the current picture and (N — 1) previously encoded
pictures.

Adaptive memory control commands, sent by the encoder, manage the short and long term
picture indexes. Using these commands, a short term picture may be assigned a long term frame
index, or any short term or long term picture may be marked as ‘unused for reference’.

The encoder chooses a reference picture from list 0 for encoding each macroblock
partition in an inter-coded macroblock. The choice of reference picture is signalled by an
index number, where index O corresponds to the first frame in the short term section and the
indices of the long term frames start after the last short term frame (as shown in the following
example).

Example: Reference buffer management (P-slice)

Current frame number = 250

Number of reference frames = 5

THE BASELINE PROFILE 167

Reference picture list

Operation 0 1 2 3 4
Initial state - - - - -
Encode frame 250 250 - - - -
Encode 251 251 250 - - -
Encode 252 252 251 250 - -
Encode 253 253 252 251 250 -
Assign 251 to LongTermPicNum 0 253 252 250 0 -
Encode 254 254 253 252 250 0
Assign 253 to LongTermPicNum 4 254 252 250 0 4
Encode 255 255 254 252 0 4
Assign 255 to LongTermPicNum 3 254 252 0 3 4
Encode 256 256 254 0 3 4

(Note that in the above example, 0, 3 and 4 correspond to the decoded frames 251, 255
and 253 respectively).

Instantaneous Decoder Refresh Picture

An encoder sends an IDR (Instantaneous Decoder Refresh) coded picture (made up of I- or
SI-slices) to clear the contents of the reference picture buffer. On receiving an IDR coded
picture, the decoder marks all pictures in the reference buffer as ‘unused for reference’. All
subsequent transmitted slices can be decoded without reference to any frame decoded prior
to the IDR picture. The first picture in a coded video sequence is always an IDR picture.

6.4.3 Slices

A bitstream conforming to the the Baseline Profile contains coded I and/or P slices. An I slice
contains only intra-coded macroblocks (predicted from previously coded samples in the same
slice, see Section 6.4.6) and a P slice can contain inter coded macroblocks (predicted from
samples in previously coded pictures, see Section 6.4.5), intra coded macroblocks or Skipped
macroblocks. When a Skipped macroblock is signalled in the bitstream, no further data is sent
for that macroblock. The decoder calculates a vector for the skipped macroblock (see Section
6.4.5.3) and reconstructs the macroblock using motion-compensated prediction from the first
reference picture in list 0.

An H.264 encoder may optionally insert a picture delimiter RBSP unit at the boundary
between coded pictures. This indicates the start of a new coded picture and indicates which
slice types are allowed in the following coded picture. If the picture delimiter is not used, the
decoder is expected to detect the occurrence of a new picture based on the header of the first
slice in the new picture.

Redundant coded picture
A picture marked as ‘redundant’ contains a redundant representation of part or all of a
coded picture. In normal operation, the decoder reconstructs the frame from ‘primary’

168 H.264/MPEG4 PART 10

Table 6.3 Macroblock to slice group map types

Type Name Description
0 Interleaved run_length MBs are assigned to each slice group in turn
(Figure 6.6).
1 Dispersed MBs in each slice group are dispersed throughout the picture
(Figure 6.7).
2 Foreground and All but the last slice group are defined as rectangular regions
background within the picture. The last slice group contains all MBs not contained

in any other slice group (the ‘background’). In the example in
Figure 6.8, group 1 overlaps group 0 and so MBs not already allocated
to group O are allocated to group 1.
3 Box-out A ‘box’ is created starting from the centre of the frame (with
the size controlled by encoder parameters) and containing group 0;
all other MBs are in group 1 (Figure 6.9).

4 Raster scan Group 0 contains MBs in raster scan order from the top-left and
all other MBs are in group 1 (Figure 6.9).
5 Wipe Group 0 contains MBs in vertical scan order from the top-left
and all other MBs are in group 1 (Figure 6.9).
6 Explicit A parameter, slice_group_id, is sent for each MB to indicate its slice

group (i.e. the macroblock map is entirely user-defined).

(nonredundant)’ pictures and discards any redundant pictures. However, if a primary coded
picture is damaged (e.g. due to a transmission error), the decoder may replace the damaged
area with decoded data from a redundant picture if available.

Arbitrary Slice Order (ASO)

The Baseline Profile supports Arbitrary Slice Order which means that slices in a coded frame
may follow any decoding order. ASO is defined to be in use if the first macroblock in any slice
in a decoded frame has a smaller macroblock address than the first macroblock in a previously
decoded slice in the same picture.

Slice Groups

A slice group is a subset of the macroblocks in a coded picture and may contain one or more
slices. Within each slice in a slice group, MBs are coded in raster order. If only one slice group
is used per picture, then all macroblocks in the picture are coded in raster order (unless ASO is
in use, see above). Multiple slice groups (described in previous versions of the draft standard
as Flexible Macroblock Ordering or FMO) make it possible to map the sequence of coded
MBs to the decoded picture in a number of flexible ways. The allocation of macroblocks is
determined by a macroblock to slice group map that indicates which slice group each MB
belongs to. Table 6.3 lists the different types of macroblock to slice group maps.

Example: 3 slice groups are used and the map type is ‘interleaved’ (Figure 6.6). The
coded picture consists of first, all of the macroblocks in slice group 0 (filling every 3 row of
macroblocks); second, all of the macroblocks in slice group 1; and third, all of the macroblocks
in slice group 0. Applications of multiple slice groups include error resilience, for example if
one of the slice groups in the dispersed map shown in Figure 6.7 is ‘lost’ due to errors, the
missing data may be concealed by interpolation from the remaining slice groups.

THE BASELINE PROFILE 169

N=ON|=O|N|=O

Figure 6.6 Slice groups: Interleaved map (QCIF, three slice groups)

01230123012
23 0123012230
01230123012
23 0123012230
01230123012
230123012230
01230123012
230123012230
01230123012

Figure 6.7 Slice groups: Dispersed map (QCIF, four slice groups)

Figure 6.8 Slice groups: Foreground and Background map (four slice groups)

6.4.4 Macroblock Prediction

Every coded macroblock in an H.264 slice is predicted from previously-encoded data. Samples
within an intra macroblock are predicted from samples in the current slice that have already
been encoded, decoded and reconstructed; samples in an inter macroblock are predicted from
previously-encoded.

A prediction for the current macroblock or block (a model that resembles the current
macroblock or block as closely as possible) is created from image samples that have already

170 H.264/MPEG4 PART 10

Box-out Raster Wipe
1 0 0
| —— [

(]

0

Figure 6.9 Slice groups: Box-out, Raster and Wipe maps

been encoded (either in the same slice or in a previously encoded slice). This predic-
tion is subtracted from the current macroblock or block and the result of the subtraction
(residual) is compressed and transmitted to the decoder, together with information required
for the decoder to repeat the prediction process (motion vector(s), prediction mode, etc.).
The decoder creates an identical prediction and adds this to the decoded residual or block.
The encoder bases its prediction on encoded and decoded image samples (rather than on
original video frame samples) in order to ensure that the encoder and decoder predictions are
identical.

6.4.5 Inter Prediction

Inter prediction creates a prediction model from one or more previously encoded video frames
or fields using block-based motion compensation. Important differences from earlier standards
include the support for a range of block sizes (from 16 x 16 down to 4 x 4) and fine sub-
sample motion vectors (quarter-sample resolution in the luma component). In this section we
describe the inter prediction tools available in the Baseline profile. Extensions to these tools
in the Main and Extended profiles include B-slices (Section 6.5.1) and Weighted Prediction
(Section 6.5.2).

6.4.5.1 Tree structured motion compensation

The luminance component of each macroblock (16 x 16 samples) may be split up in four ways
(Figure 6.10) and motion compensated either as one 16 x 16 macroblock partition, two 16 x 8
partitions, two 8 x 16 partitions or four 8 x 8 partitions. If the 8 x 8 mode is chosen, each of
the four 8 x 8 sub-macroblocks within the macroblock may be split in a further 4 ways (Figure
6.11), either as one 8 x 8 sub-macroblock partition, two 8 x 4 sub-macroblock partitions, two
4 x 8 sub-macroblock partitions or four 4 x 4 sub-macroblock partitions. These partitions and
sub-macroblock give rise to a large number of possible combinations within each macroblock.
This method of partitioning macroblocks into motion compensated sub-blocks of varying size
is known as tree structured motion compensation.

A separate motion vector is required for each partition or sub-macroblock. Each motion
vector must be coded and transmitted and the choice of partition(s) must be encoded in the
compressed bitstream. Choosing a large partition size (16 x 16, 16 x 8, 8 x 16) means that

THE BASELINE PROFILE 171

16 8 8
0 0 1
16 0 0 1
1 2 3
16x16 8x16 16x8 8x8

Figure 6.10 Macroblock partitions: 16 x 16,8 x 16,16 x 8,8 x 8

8 4 4
0 0 1
8 0 0 1
1 2 3
8x8 4x8 8x4 4x4

Figure 6.11 Sub-macroblock partitions: 8§ x 8,4 x 8,8 x 4,4 x 4

a small number of bits are required to signal the choice of motion vector(s) and the type of
partition but the motion compensated residual may contain a significant amount of energy
in frame areas with high detail. Choosing a small partition size (8 x 4, 4 x 4, etc.) may give
a lower-energy residual after motion compensation but requires a larger number of bits to
signal the motion vectors and choice of partition(s). The choice of partition size therefore
has a significant impact on compression performance. In general, a large partition size is
appropriate for homogeneous areas of the frame and a small partition size may be beneficial
for detailed areas.

Each chroma component in a macroblock (Cb and Cr) has half the horizontal and vertical
resolution of the luminance (luma) component. Each chroma block is partitioned in the same
way as the luma component, except that the partition sizes have exactly half the horizontal and
vertical resolution (an 8 x 16 partition in luma corresponds to a 4 x 8 partition in chroma; an
8 X 4 partition in luma corresponds to 4 x 2 in chroma and so on). The horizontal and vertical
components of each motion vector (one per partition) are halved when applied to the chroma
blocks.

Example

Figure 6.12 shows a residual frame (without motion compensation). The H.264 reference encoder
selects the ‘best’ partition size for each part of the frame, in this case the partition size that
minimises the amount of information to be sent, and the chosen partitions are shown superimposed
on the residual frame. In areas where there is little change between the frames (residual appears
grey), a 16 x 16 partition is chosen and in areas of detailed motion (residual appears black or
white), smaller partitions are more efficient.

172

H.264/MPEG4 PART 10

O O OO0 0 O0
® 6 6 06 O

©)

(a) 4x4 block in current frame

® 6 6 06 O

©)

Figure 6.12

@)
o
®
o
[

O

® 6 06 06 O
O O OO0 O0O0

©)

6.4.5.2 Motion Vectors

Residual (without MC) showing choice of block sizes

o O O
o O O
o O O
o O

o o
o O O

O O 0 0 O
O O 0 0 O
O O OO0 0O

O

O

(b) Reference block: vector (1, -1)

O O O O O

O

(c) Reference block: vector (0.75, -0.5)

Figure 6.13 Example of integer and sub-sample prediction

Each partition or sub-macroblock partition in an inter-coded macroblock is predicted from an
area of the same size in a reference picture. The offset between the two areas (the motion vector)
has quarter-sample resolution for the luma component and one-eighth-sample resolution for
the chroma components. The luma and chroma samples at sub-sample positions do not exist
in the reference picture and so it is necessary to create them using interpolation from nearby
coded samples. In Figure 6.13, a4 x 4 block in the current frame (a) is predicted from a region
of the reference picture in the neighbourhood of the current block position. If the horizontal
and vertical components of the motion vector are integers (b), the relevant samples in the

THE BASELINE PROFILE 173

A [aa| B

C | bb| D
E F G|b]|H | J
cc dd h jo] m ee ff
K L M s P Q

R Fgg| S

T [thh| U

Figure 6.14 Interpolation of luma half-pel positions

reference block actually exist (grey dots). If one or both vector components are fractional
values (c), the prediction samples (grey dots) are generated by interpolation between adjacent
samples in the reference frame (white dots).

Generating Interpolated Samples

The samples half-way between integer-position samples (‘half-pel samples’) in the luma
component of the reference picture are generated first (Figure 6.14, grey markers). Each half-
pel sample that is adjacent to two integer samples (e.g. b, h, m, s in Figure 6.14) is interpolated
from integer-position samples using a six tap Finite Impulse Response (FIR) filter with weights
(1/32,-5/32,5/8,5/8, —5/32, 1/32). For example, half-pel sample b is calculated from the
six horizontal integer samples E, F, G, H, I and J:

b = round((E — 5F 420G + 20H — 51 +J) /32)

Similarly, h is interpolated by filtering A, C, G, M, R and T. Once all of the samples horizon-
tally and vertically adjacent to integer samples have been calculated, the remaining half-pel
positions are calculated by interpolating between six horizontal or vertical half-pel samples
from the first set of operations. For example, j is generated by filtering cc, dd, h, m, ee and ff
(note that the result is the same whether j is interpolated horizontally or vertically; note also
that un-rounded versions of h and m are used to generate j). The six-tap interpolation filter
is relatively complex but produces an accurate fit to the integer-sample data and hence good
motion compensation performance.

Once all the half-pel samples are available, the samples at quarter-step (‘quarter-pel’)
positions are produced by linear interpolation (Figure 6.15). Quarter-pel positions with two
horizontally or vertically adjacent half- or integer-position samples (e.g. a, ¢, i, k and d, f, n,

174 H.264/MPEG4 PART 10

[obed e ped¥]
nbrdibedn]
]]

Figure 6.15 Interpolation of luma quarter-pel positions

HRERE

20

30

40

10 20 30 40 50 60

Figure 6.16 Luma region interpolated to quarter-pel positions

q in Figure 6.15) are linearly interpolated between these adjacent samples, for example:
a=round((G +b)/2)

The remaining quarter-pel positions (e, g, p and r in the figure) are linearly interpolated between
a pair of diagonally opposite half-pel samples. For example, e is interpolated between b and
h. Figure 6.16 shows the result of interpolating the reference region shown in Figure 3.16 with
quarter-pel resolution.

Quarter-pel resolution motion vectors in the luma component require eighth-sample
resolution vectors in the chroma components (assuming 4:2:0 sampling). Interpolated samples
are generated at eighth-sample intervals between integer samples in each chroma component
using linear interpolation (Figure 6.17). Each sub-sample position a is a linear combination

THE BASELINE PROFILE 175

A B
dy
< dx X a 8-dx >
8-dy
C v D

Figure 6.17 Interpolation of chroma eighth-sample positions

of the neighbouring integer sample positions A, B, C and D:
a =round([(8 —d,)- (8 —dy,)A+d, - (8 —d,)B+ (8 —d,)-d,C+d, -d,D]/64)

In Figure 6.17, d, is 2 and d, is 3, so that:

a = round[(30A + 10B + 18C + 6D)/64]

6.4.5.3 Motion Vector Prediction

Encoding a motion vector for each partition can cost a significant number of bits, especially if
small partition sizes are chosen. Motion vectors for neighbouring partitions are often highly
correlated and so each motion vector is predicted from vectors of nearby, previously coded
partitions. A predicted vector, MVp, is formed based on previously calculated motion vectors
and MVD, the difference between the current vector and the predicted vector, is encoded and
transmitted. The method of forming the prediction MVp depends on the motion compensation
partition size and on the availability of nearby vectors.

Let E be the current macroblock, macroblock partition or sub-macroblock partition, let
A be the partition or sub-partition immediately to the left of E, let B be the partition or sub-
partition immediately above E and let C be the partition or sub-macroblock partition above and
to the right of E. If there is more than one partition immediately to the left of E, the topmost
of these partitions is chosen as A. If there is more than one partition immediately above E, the
leftmost of these is chosen as B. Figure 6.18 illustrates the choice of neighbouring partitions
when all the partitions have the same size (16 x 16 in this case) and Figure 6.19 shows an

176 H.264/MPEG4 PART 10

Figure 6.18 Current and neighbouring partitions (same partition sizes)

4X8 16X8

8X4

16x16

Figure 6.19 Current and neighbouring partitions (different partition sizes)

example of the choice of prediction partitions when the neighbouring partitions have different
sizes from the current partition E.

1. For transmitted partitions excluding 16 x 8 and 8 x 16 partition sizes, MVp is the median
of the motion vectors for partitions A, B and C.

2. For 16 x 8 partitions, MVp for the upper 16 x 8 partition is predicted from B and MVp
for the lower 16 x 8 partition is predicted from A.

3. For 8 x 16 partitions, MVp for the left 8 x 16 partition is predicted from A and MVp for
the right 8 x 16 partition is predicted from C.

4. For skipped macroblocks, a 16 x 16 vector MVp is generated as in case (1) above (i.e. as
if the block were encoded in 16 x 16 Inter mode).

If one or more of the previously transmitted blocks shown in Figure 6.19 is not available
(e.g. if it is outside the current slice), the choice of MVp is modified accordingly. At the
decoder, the predicted vector MVp is formed in the same way and added to the decoded vector
difference MVD. In the case of a skipped macroblock, there is no decoded vector difference
and a motion-compensated macroblock is produced using MVp as the motion vector.

THE BASELINE PROFILE 177

Figure 6.20 QCIF frame

6.4.6 Intra Prediction

In intra mode a prediction block P is formed based on previously encoded and reconstructed
blocks and is subtracted from the current block prior to encoding. For the luma samples, P is
formed for each 4 x 4 block or for a 16 x 16 macroblock. There are a total of nine optional
prediction modes for each 4 x 4 luma block, four modes for a 16 x 16 luma block and four
modes for the chroma components. The encoder typically selects the prediction mode for each
block that minimises the difference between P and the block to be encoded.

Example

A QCIF video frame (Figure 6.20) is encoded in intra mode and each block or macroblock is
predicted from neighbouring, previously-encoded samples. Figure 6.21 shows the predicted luma
frame P formed by choosing the ‘best’ 4 x 4 or 16 x 16 prediction mode for each region (the
mode that minimises the amount of information to be coded).

A further intra coding mode, [_PCM, enables an encoder to transmit the values of the im-
age samples directly (without prediction or transformation). In some special cases (e.g. anoma-
lous image content and/or very low quantizer parameters), this mode may be more efficient
than the “usual’ process of intra prediction, transformation, quantization and entropy coding.
Including the I_ PCM option makes it possible to place an absolute limit on the number of bits
that may be contained in a coded macroblock without constraining decoded image quality.

6.4.6.1 4 x 4 Luma Prediction Modes

Figure 6.22 shows a4 x 4 luma block (part of the highlighted macroblock in Figure 6.20) that
is required to be predicted. The samples above and to the left (labelled A—M in Figure 6.23)

178 H.264/MPEG4 PART 10

I
Figure 6.21 Predicted luma frame formed using H.264 intra prediction

4x4 luma block to be predicted

Figure 6.22 4 x 4 luma block to be predicted

have previously been encoded and reconstructed and are therefore available in the encoder
and decoder to form a prediction reference. The samples a, b, c, .. ., p of the prediction block
P (Figure 6.23) are calculated based on the samples A—M as follows. Mode 2 (DC prediction)
is modified depending on which samples A—M have previously been coded; each of the other
modes may only be used if all of the required prediction samples are available?.

2 Note that if samples E, F, G and H have not yet been decoded, the value of sample D is copied to these positions
and they are marked as ‘available’.

THE BASELINE PROFILE

179

E[F|G[H]

—(=|al|o

(X< [—Z
S|—|o|o|>
S |—|—+|o|m
o|xlal|o|O

p

Figure 6.23 Labelling of prediction samples (4 x 4)

0 (vertical) 1 (horizontal) 2 (DC) 3 (diagonal down-left) 4 (diagonal down-right)
M[A]B[C[D[E[F[G[H| M[A[B[C[D[E[F[G[H] M[A[B[C[D[E[F[G[H] M[A]BJC]D]E[F]G[H] M[A[B[C[D[E[F[G[H]
[— T I I ™
I J I] s 7] 1l \\.\

K K——> A AN K K
] C——) [} I&
5 (vertical-right) 6 (horizontal-down) 7 (vertical-left) 8 (horizontal-up)
M[A[B[C[D[E[F[G[H| M[A[B[C[D[E[F[G[H] M[A]BJ[C[D]E[F[G[H] M[A[BJC[D[E[F[G[H]
| | | |
] z\\‘ Y // z%
K K K K
o\ T [="

Figure 6.24 4 x 4 luma prediction modes

Mode 0 (Vertical)
Mode 1 (Horizontal)
Mode 2 (DC)

Mode 3 (Diagonal
Down-Left)

Mode 4 (Diagonal
Down-Right)

Mode 5 (Vertical-Right)

Mode 6 (Horizontal-Down)

Mode 7 (Vertical-Left)

Mode 8 (Horizontal-Up)

The upper samples A, B, C, D are extrapolated vertically.

The left samples I, J, K, L are extrapolated horizontally.

All samples in P are predicted by the mean of samples A...D
andI...L.

The samples are interpolated at a 45° angle between lower-left
and upper-right.

The samples are extrapolated at a 45° angle down and to the right.

Extrapolation at an angle of approximately 26.6° to the left of
vertical (width/height = 1/2).

Extrapolation at an angle of approximately 26.6° below
horizontal.

Extrapolation (or interpolation) at an angle of approximately 26.6°
to the right of vertical.

Interpolation at an angle of approximately 26.6° above horizontal.

The arrows in Figure 6.24 indicate the direction of prediction in each mode. For modes
3-8, the predicted samples are formed from a weighted average of the prediction samples
A-M. For example, if mode 4 is selected, the top-right sample of P (labelled ‘d’ in Figure
6.23) is predicted by: round(B/4+ C/2+ D/4).

Example

The nine prediction modes (0-8) are calculated for the 4 x 4 block shown in Figure 6.22 and
the resulting prediction blocks P are shown in Figure 6.25. The Sum of Absolute Errors (SAE)
for each prediction indicates the magnitude of the prediction error. In this case, the best match to

180 H.264/MPEG4 PART 10

the actual current block is given by mode 8 (horizontal-up) because this mode gives the smallest
SAE and a visual comparison shows that the P block appears quite similar to the original 4 x 4
block.

6.4.6.2 16 x 16 Luma Prediction Modes

As an alternative to the 4 x 4 luma modes described in the previous section, the entire
16 x 16 luma component of a macroblock may be predicted in one operation. Four modes are
available, shown in diagram form in Figure 6.26:

Mode 0 (vertical) Extrapolation from upper samples (H)

Mode 1 (horizontal) Extrapolation from left samples (V)

Mode 2 (DC) Mean of upper and left-hand samples (H + V).

Mode 4 (Plane) A linear ‘plane’ function is fitted to the upper and left-hand samples H
and V. This works well in areas of smoothly-varying luminance.

Example:

Figure 6.27 shows a luminance macroblock with previously-encoded samples at the upper and
left-hand edges. The results of the four prediction modes, shown in Figure 6.28, indicate that the
best match is given by mode 3 which in this case produces a plane with a luminance gradient from
light (upper-left) to dark (lower-right). Intra 16 x 16 mode works best in homogeneous areas of
an image.

6.4.6.3 8 x 8 Chroma Prediction Modes

Each 8 x 8 chroma component of an intra coded a macroblock is predicted from previously
encoded chroma samples above and/or to the left and both chroma components always use
the same prediction mode. The four prediction modes are very similar to the 16 x 16 luma
prediction modes described in Section 6.4.6.2 and illustrated in Figure 6.26, except that the
numbering of the modes is different. The modes are DC (mode 0), horizontal (mode 1), vertical
(mode 2) and plane (mode 3).

6.4.6.4 Signalling Intra Prediction Modes

The choice of intra prediction mode for each 4 x 4 block must be signalled to the decoder and
this could potentially require a large number of bits. However, intra modes for neighbouring
4 x 4 blocks are often correlated. For example, let A, B and E be the left, upper and current
4 x 4 blocks respectively (the same labelling as Figure 6.18). If previously-encoded 4 x 4
blocks A and B are predicted using mode 1, it is probable that the best mode for block E
(current block) is also mode 1. To take advantage of this correlation, predictive coding is used
to signal 4 x 4 intra modes.

THE BASELINE PROFILE 181

0 (vertical), SAE = 317 1 (horizontal), SAE = 401 2 (DC), SAE = 317

3 (diag down/left), SAE = 350 4 (diag down/right), SAE = 466 5 (vertical/right), SAE = 419

6 (horizontal/down), SAE = 530 7 (vertical/left), SAE = 351 8 (horizontal/up), SAE = 203
Figure 6.25 Prediction blocks, luma 4 x 4

0 (vertical) 1(horizontal) 2(DC) 3 (plane)
H | H | H

H l
e — ¥ / /
: Y Mean(H+V) Y /"

Figure 6.26 Intra 16 x 16 prediction modes

182 H.264/MPEG4 PART 10

16x16 luminance block to be predicted

Figure 6.27 16 x 16 macroblock

For each current block E, the encoder and decoder calculate the most probable prediction
mode, the minimum of the prediction modes of A and B. If either of these neighbouring blocks
is not available (outside the current slice or not coded in Intra4 x4 mode), the corresponding
value A or B is set to 2 (DC prediction mode).

The encoder sends a flag for each 4 x 4 block, prev_intra4 x4_pred_mode. If the flag
is ‘1’, the most probable prediction mode is used. If the flag is ‘0’, another parameter
rem_intra4 x4 _pred_mode is sent to indicate a change of mode. If rem_intra4 x4_pred_mode
is smaller than the current most probable mode then the prediction mode is set to
rem_intra4 x4_pred_mode, otherwise the prediction mode is set to (rem_intra4 x4_pred_mode
+1). In this way, only eight values of rem_intra4 x4 _pred_mode are required (0 to 7) to signal
the current intra mode (0 to 8).

Example

Blocks A and B have been predicted using mode 3 (diagonal down-left) and 1 (hori-
zontal) respectively. The most probable mode for block E is therefore 1 (horizontal).
prev_intra4 x4_pred_mode is set to ‘0’ and so rem_intra4 x4_pred_mode is sent. Depending on
the value of rem_intra4 x4 _pred_mode, one of the eight remaining prediction modes (listed in
Table 6.4) may be chosen.

The prediction mode for luma coded in Intra-16x 16 mode or chroma coded in Intra mode is
signalled in the macroblock header and predictive coding of the mode is not used in these cases.

THE BASELINE PROFILE 183

Table 6.4 Choice of prediction mode (most probable
mode = 1)

rem_intra4 x4 _pred_mode prediction mode for block C

0 0
1 2
2 3
3 4
4 5
5 6
6 7
7 8
0 (vertical), SAE = 3985 (horizontal), SAE = 5097
2 (DC), SAE = 4991 3 (plane), SAE = 2539

Figure 6.28 Prediction blocks, intra 16 x 16

184 H.264/MPEG4 PART 10

T==" ™ €

]]]

]]]
pom—tbmmdmmmp ==y f

]]]

]]]

e e
s e i e
]]] H
]]] \

a b c d i j
16x16 luma 8x8 chroma

Figure 6.29 Edge filtering order in a macroblock

p3

p2

p1

. 0
Horizontal P

boundary
Vertical boundary q0

q1l

p3 | p2 | p1 | PO | 90 | q1 | g2 | q3 q2

a3

Figure 6.30 Samples adjacent to vertical and horizontal boundaries

6.4.7 Deblocking Filter

A filter is applied to each decoded macroblock to reduce blocking distortion. The deblocking
filter is applied after the inverse transform in the encoder (before reconstructing and storing
the macroblock for future predictions) and in the decoder (before reconstructing and display-
ing the macroblock). The filter smooths block edges, improving the appearance of decoded
frames. The filtered image is used for motion-compensated prediction of future frames and
this can improve compression performance because the filtered image is often a more faithful
reproduction of the original frame than a blocky, unfiltered image>. The default operation of the
filter is as follows; it is possible for the encoder to alter the filter strength or to disable the filter.

Filtering is applied to vertical or horizontal edges of 4 x 4 blocks in a macroblock (except
for edges on slice boundaries), in the following order.

1. Filter 4 vertical boundaries of the luma component (in order a, b, c, d in Figure 6.29).
2. Filter 4 horizontal boundaries of the luma component (in order e, f, g, h, Figure 6.29).
3. Filter 2 vertical boundaries of each chroma component (i, j).

4. Filter 2 horizontal boundaries of each chroma component (k,).

Each filtering operation affects up to three samples on either side of the boundary. Figure

6.30 shows four samples on either side of a vertical or horizontal boundary in adjacent blocks

3 Intra-coded macroblocks are filtered, but intra prediction (Section 6.4.6) is carried out using unfiltered reconstructed
macroblocks to form the prediction.

THE BASELINE PROFILE 185

p and q (p0, p1, p2, p3 and q0, q1, g2, g3). The ‘strength’ of the filter (the amount of filtering)
depends on the current quantiser, the coding modes of neighbouring blocks and the gradient
of image samples across the boundary.

Boundary Strength

The choice of filtering outcome depends on the boundary strength and on the gradient of
image samples across the boundary. The boundary strength parameter bS is chosen according
to the following rules (for coding of progressive frames):

p and/or q is intra coded and boundary is a macroblock boundary bS = 4 (strongest filtering)
p and q are intra coded and boundary is not a macroblock boundary bS =3
neither p or q is intra coded; p and q contain coded coefficients bS=2
neither p or q is intra coded; neither p or q contain coded bS=1

coefficients; p and q use different reference pictures or a
different number of reference pictures or have motion vector
values that differ by one luma sample or more
otherwise bS = 0 (no filtering)

The result of applying these rules is that the filter is stronger at places where there is
likely to be significant blocking distortion, such as the boundary of an intra coded macroblock
or a boundary between blocks that contain coded coefficients.

Filter Decision
A group of samples from the set (p2, p1, p0, q0, q1, q2) is filtered only if:

(a) BS > 0 and
(b) [p0—q0| < @ and |pl—p0| < and |q1—q0| < B.

o and B are thresholds defined in the standard; they increase with the average quantiser
parameter QP of the two blocks p and q. The effect of the filter decision is to ‘switch off” the
filter when there is a significant change (gradient) across the block boundary in the original
image. When QP is small, anything other than a very small gradient across the boundary is
likely to be due to image features (rather than blocking effects) that should be preserved and
so the thresholds « and g8 are low. When QP is larger, blocking distortion is likely to be more
significant and «, B are higher so that more boundary samples are filtered.

Example

Figure 6.31 shows the 16 x 16 luma component of a macroblock (without any blocking distortion)
with four 4 x 4 blocks a, b, ¢ and d highlighted. Assuming a medium to large value of QP, the
block boundary between a and b is likely to be filtered because the gradient across this boundary is
small. There are no significant image features to preserve and blocking distortion will be obvious
on this boundary. However, there is a significant change in luminance across the boundary between
c and d due to a horizontal image feature and so the filter is switched off to preserve this strong
feature.

186 H.264/MPEG4 PART 10

Figure 6.31 16 x 16 luma macroblock showing block edges

Filter Implementation
(a)bS € {1,2,3}
A 4-tap filter is applied with inputs p1, p0, q0 and q1, producing filtered outputs p’0 and q’0. If
[p2 — pO0] is less than threshold B, another four-tap filter is applied with inputs p2, p1, p0 and
g0, producing filtered output p’ 1 (luma only). If |2 — qO0| is less than the threshold 8, a four-tap
filter is applied with inputs g2, q1, q0 and p0, producing filtered output q’1 (luma only).
(b)bS =4
If [p2 — p0] < B and |p0 — 0| < round («/4) and this is a luma block:

p’0 is produced by five-tap filtering of p2, p1, p0, q0 and q1,

p’1 is produced by four-tap filtering of p2, p1, p0 and q0,

p’2 is produced by five-tap filtering of p3, p2, p1, p0 and q0,
else:

p’0 is produced by three-tap filtering of p1, pO and q1.

If |g2 — q0] < B and |p0 — 0| < round(«/4) and this is a luma block:
q’0 is produced by five-tap filtering of g2, q1, q0, p0 and p1,
q’1 is produced by four-tap filtering of q2, q1, q0 and p0,
q’2 is produced by five-tap filtering of q3, q2, q1, q0 and p0,
else:
q’0 is produced by three-tap filtering of q1, q0 and p1.

Example

A video clip is encoded with a fixed Quantisation Parameter of 36 (relatively high quantisation).
Figure 6.32 shows an original frame from the clip and Figure 6.33 shows the same frame after

THE BASELINE PROFILE 187

inter coding and decoding, with the loop filter disabled. Note the obvious blocking artefacts and
note also the effect of varying motion-compensation block sizes (for example, 16 x 16 blocks
in the background to the left of the picture, 4 x 4 blocks around the arm). With the loop filter
enabled (Figure 6.34) there is still some obvious distortion but most of the block edges have
disappeared or faded. Note that sharp contrast boundaries (such as the line of the arm against the
dark piano) are preserved by the filter whilst block edges in smoother regions of the picture (such
as the background to the left) are smoothed. In this example the loop filter makes only a small
contribution to compression efficiency: the encoded bitrate is around 1.5% smaller and the PSNR
around 1% larger for the sequence with the filter. However, the subjective quality of the filtered
sequence is significantly better. The coding performance gain provided by the filter depends on
the bitrate and sequence content.

Figure 6.35 and Figure 6.36 show the un-filtered and filtered frame respectively, this time
with a lower quantiser parameter (QP = 32).

6.4.8 Transform and Quantisation

H.264 uses three transforms depending on the type of residual data that is to be coded: a
Hadamard transform for the 4 x 4 array of luma DC coefficients in intra macroblocks predicted
in 16 x 16 mode, a Hadamard transform for the 2 x 2 array of chroma DC coefficients (in any
macroblock) and a DCT-based transform for all other 4 x 4 blocks in the residual data.

Data within a macroblock are transmitted in the order shown in Figure 6.47. If the
macroblock is coded in 16 x 16 Intra mode, then the block labelled ‘—1°, containing the
transformed DC coefficient of each 4 x 4 luma block, is transmitted first. Next, the luma
residual blocks 0—15 are transmitted in the order shown (the DC coefficients in a macroblock
coded in 16 x 16 Intra mode are not sent). Blocks 16 and 17 are sent, containing a 2 x 2 array
of DC coefficients from the Cb and Cr chroma components respectively and finally, chroma
residual blocks 18-25 (without DC coefficients) are sent.

6.4.8.1 4 x 4 Residual Transform and Quantisation (blocks 0-15, 18-25)

This transform operates on 4 x 4 blocks of residual data (labelled 0-15 and 18-25 in Figure
6.37) after motion-compensated prediction or Intra prediction. The H.264 transform [3] is
based on the DCT but with some fundamental differences:

1. Itis an integer transform (all operations can be carried out using integer arithmetic, without
loss of decoding accuracy).

2. It is possible to ensure zero mismatch between encoder and decoder inverse transforms
(using integer arithmetic).

3. The core part of the transform can be implemented using only additions and shifts.

4. A scaling multiplication (part of the transform) is integrated into the quantiser, reducing
the total number of multiplications.

The inverse quantisation (scaling) and inverse transform operations can be carried out
using 16-bit integer arithmetic (footnote: except in the case of certain anomalous residual
data patterns) with only a single multiply per coefficient, without any loss of accuracy.

188 H.264/MPEG4 PART 10

Figure 6.32 Original frame (violin frame 2)

Figure 6.33 Reconstructed, QP = 36 (no filter) Figure 6.34 Reconstructed, QP = 36 (with filter)

Figure 6.35 Reconstructed, QP = 32 (no filter) Figure 6.36 Reconstructed, QP = 32 (with filter)

THE BASELINE PROFILE 189

-1 (16x16 Intra 16 17
d |
v v v T T
N/
DC
0 1 4 5 19

S

/ /

20

Luma

Figure 6.37 Scanning order of residual blocks within a macroblock

Development from the 4 x 4 DCT
Recall from Chapter 3 that the 4 x 4 DCT is given by:

a a a a a b a c

Y — AXAT — b c —c —b X a c —a b ©.1)
a —a —a a a —c —a b
c —b b —c a —b a —c

where:

1 /1 1 3
a=—, b =,/ =cos (E) ¢ =,/=cos 2
2 2 8 2 8

This matrix multiplication can be factorised [3] to the following equivalent form (equation
6.2):

a®> ab a* ab

11 11 1 1 1 d 5 5
y=cxcher=||1 4 4 I X bod -l =Iilg af ’ al; ’
- I I S TS I 1 —d -1 1 a* ab a* ab

d -1 1 —d 1 -1 1 —-d ab b ab b

(6.2)

CXCT is a ‘core’ 2D transform. E is a matrix of scaling factors and the symbol ® indicates
that each element of (CXCT) is multiplied by the scaling factor in the same position in matrix
E (scalar multiplication rather than matrix multiplication). The constants a and b are as before
and d is ¢/b (approximately 0.414).

190 H.264/MPEG4 PART 10

To simplify the implementation of the transform, d is approximated by 0.5. In order to
ensure that the transform remains orthogonal, b also needs to be modified so that:

1 2 1
a=-, b=, d=-
2 5 2

The 2nd and 4th rows of matrix C and the 2nd and 4th columns of matrix CT are scaled
by a factor of two and the post-scaling matrix E is scaled down to compensate, avoiding
multiplications by half in the ‘core’ transform CXCT which could result in loss of accuracy
using integer arithmetic. The final forward transform becomes:

-, ab , abq
@ v 5
11 1 1 12 1 1 ab b* ab b
2 1 -1 =2 X 1 1 -1 =2 2 4 2 4
— T —
Y=C/XCi®Er=||] | | | 1 -1 -1 211® B ab
2 2
1 -2 2 -1 1 -2 1 -1 a - @ =
ab b* ab b?
L2 4 2 4

This transform is an approximation to the 4 x 4 DCT but because of the change to factors d
and b, the result of the new transform will not be identical to the 4 x 4 DCT.

Example

Compare the output of the 4 x 4 approximate transform with the output of a ‘true’ 4 x 4 DCT,
for input block X:
X:
j=0 1 2 3

i=0 5 11 | 8 10

1 9 8 4 12

2 1 10 | 11 | 4

3 19 6 15|17

DCT output:
35.0 —-0.079 —-1.5 1.115
—3.299 —4.768 0.443 -9.010
— T _
Y=AXA"= 55 3.029 20 4.699

—4.045 -3.010 —-9.384 —1.232

Approximate transform output:

350 —0.158 —15 1.107
—3.004 —3.900 1.107 —9.200

Y = (CXCHQE, =
(CXCH@E, 5.5 2.688 2.0 4901

—4.269 —-3.200 —-9.329 -2.100

THE BASELINE PROFILE 191

Difference between DCT and integer transform outputs:

0 0.079 0 0.008
Y_Y = —0.295 -0.868 —0.664 0.190
h 0 0341 0 —0.203

0.224 0.190 —-0.055 0.868

There is clearly a difference in the output coefficients that depend on b or d. In the context of
the H.264 CODEC, the approximate transform has almost identical compression performance
to the DCT and has a number of important advantages. The ‘core’ part of the transform,
CXCT, can be carried out with integer arithmetic using only additions, subtractions and shifts.
The dynamic range of the transform operations is such that 16-bit arithmetic may be used
throughout (except in the case of certain anomalous input patterns) since the inputs are in the
range 255. The post-scaling operation ®E requires one multiplication for every coefficient
which can be ‘absorbed’ into the quantisation process (see below).

The inverse transform is given by Equation 6.4. The H.264 standard [1] defines this
transform explicitly as a sequence of arithmetic operations:

111 = 11 11
| 2 a®> ab a*® ab X 1 1 |

L ab b* ab b 2 T3~

Y =Cl(Y @ E)C; = 2 X le | . 22

1 —— —1 1 a® ab a® ab 1 -1 =1 1

2) ab b ab b Lo,]

11— 7 3
(6.4)

This time, Y is pre-scaled by multiplying each coefficient by the appropriate weighting factor

from matrix E; . Note the factors £1/2 in the matrices C and CT which can be implemented

by aright-shift without a significant loss of accuracy because the coefficients Y are pre-scaled.
The forward and inverse transforms are orthogonal, i.e. T Y(TX) =X.

Quantisation

H.264 assumes a scalar quantiser (see Chapter 3). The mechanisms of the forward and inverse

quantisers are complicated by the requirements to (a) avoid division and/or floating point

arithmetic and (b) incorporate the post- and pre-scaling matrices E ; and E; described above.
The basic forward quantiser [3] operation is:

Z;j =round(Y;j/Qstep)

where Y;; is a coefficient of the transform described above, Qstep is a quantizer step size and
Z;; is a quantised coefficient. The rounding operation here (and throughout this section) need
not round to the nearest integer; for example, biasing the ‘round’ operation towards smaller
integers can give perceptual quality improvements.

A total of 52 values of Qstep are supported by the standard, indexed by a Quantisation
Parameter, QP (Table 6.5). Qstep doubles in size for every increment of 6 in QP. The wide
range of quantiser step sizes makes it possible for an encoder to control the tradeoff accurately
and flexibly between bit rate and quality. The values of QP can be different for luma and
chroma. Both parameters are in the range 0-51 and the default is that the chroma parameter

192 H.264/MPEG4 PART 10

Table 6.5 Quantisation step sizes in H.264 CODEC

oP 0 1 2 3 4 5 6 7 8 9 10 11 12

OStep 0.625 0.6875 08125 0875 1 1125 125 1375 1625 175 2 225 25 ..
oP 18 24 L 30 36 42 .. 48 . sl
OStep 5 10 20 40 80 160 224

QP is derived from QPy so that QPc is less that QPy for QPy > 30. A user-defined mapping
between QPy and QP¢ may be signalled in a Picture Parameter Set.

The post-scaling factor a?, ab/2 or b* /4 (equation 6.3) is incorporated into the forward
quantiser. First, the input block X is transformed to give a block of unscaled coefficients W =
CXCT. Then, each coefficient W;; is quantised and scaled in a single operation:

PF
Z,’j = round (W,'j. Q : > (65)
step

PF is a®, ab/2 or b*/4 depending on the position (i, j) (see equation 6.3):

Position PF

(0,0), (2,0), (0,2) or (2,2) a?
(1,1),(1,3), 3,1) or (3,3) b*/4
other ab/2

In order to simplify the arithmetic), the factor (PF/Qstep) is implemented in the reference
model software [4] as a multiplication by a factor MF and a right-shift, avoiding any division
operations:

MF
Z;j =round | W,

I+ Hqbits
where
MF PF
2gbits Qstep
and

gbits =15+ floor(QP/6) (6.6)
In integer arithmetic, Equation 6.6 can be implemented as follows:

|Zij| = (|W,1|MF + f)>> qbitS
sign(Z;;) = sign(W;;) 6.7)

where > > indicates a binary shift right. In the reference model software, fis 295 /3 for Intra
blocks or 29%*5 /6 for Inter blocks.

THE BASELINE PROFILE 193

Table 6.6 Multiplication factor MF

Positions Positions
oP (0,0),2,0),(2,2),(0,2) (1,1),(1,3),(3,1),(3,3) Other positions

0 13107 5243 8066

1 11916 4660 7490

2 10082 4194 6554

3 9362 3647 5825

4 8192 3355 5243

5 7282 2893 4559
Example

QP =4 and (i,j) = (0,0).
Ostep = 1.0, PF = a? = 0.25 and gbits = 15, hence 27" = 32768.

MF _ PF
Qqbits - Qstep’

MF = (32768 x 0.25)/1 = 8192

The first six values of MF (for each coefficient position) used by the H.264 reference software
encoder are given in Table 6.6. The 2nd and 3rd columns of this table (positions with factors
b*/4 and ab/2) have been modified slightly* from the results of equation 6.6.

For QP > 5, the factors MF remain unchanged but the divisor 29°** increases by a factor of
two for each increment of six in QP. For example, gbits = 16 for 6< QP < 11, gbits = 17 for
12 <QP< 17 and so on.

ReScaling
The basic scaling (or ‘inverse quantiser’) operation is:

ij = Z;jOstep (6.8)

l

The pre-scaling factor for the inverse transform (from matrix E;, containing values a?, ab and
b* depending on the coefficient position) is incorporated in this operation, together with a
constant scaling factor of 64 to avoid rounding errors:

W/ = Z;;QOstep - PF - 64 (6.9)

l]=

Wi’j is a scaled coefficient which is transformed by the core inverse transform C! WC;
(Equation 6.4). The values at the output of the inverse transform are divided by 64 to re-
move the scaling factor (this can be implemented using only an addition and a right-shift).
The H.264 standard does not specify Qstep or PF directly. Instead, the parameter V =

(Qstep.PF.64) is defined for 0 < Q P < 5 and for each coefficient position so that the scaling

41t is acceptable to modify a forward quantiser, for example in order to improve perceptual quality at the decoder,
since only the rescaling (inverse quantiser) process is standardised.

194 H.264/MPEG4 PART 10

operation becomes:

W), = Z;;Viy - 211007 (@P/9) (6.10)

Example

QP =3and(i, j) =(1,2)
Qstep = 0.875 and 21°QP/® — |

PF =ab =0.3162

V = (Qstep - PF - 64) = 0.875 x 0.3162 x 65 = 18
W, =Zi; x 18 x 1

The values of V defined in the standard for 0 < Q P < 5 are shown in Table 6.7.
The factor 2f1°0(CP/6) in Equation 6.10 causes the sclaed output increase by a factor of
two for every increment of six in QP.

6.4.9 4 x 4 Luma DC Coefficient Transform and Quantisation (16 x 16
Intra-mode Only)

If the macroblock is encoded in 16 x 16 Intra prediction mode (i.e. the entire 16 x 16
luma component is predicted from neighbouring samples), each 4 x 4 residual block is first
transformed using the ‘core’ transform described above (C fXCI;). The DC coefficient of each
4 x 4 block is then transformed again using a 4 x 4 Hadamard transform:

11 1 1 1 1 1 1
1 1 -1 -1 w 1 1 -1 -1

Yp = 1 -1 -1 1 ’ -1 -1 1|72 ©Ib
I -1 1 -1 1 -1 1 -1

W, is the block of 4 x 4 DC coefficients and Y is the block after transformation. The output
coefficients Y p;, jy are quantised to produce a block of quantised DC coefficients:

‘ZD(i,j)| = (‘YD(i,j)‘ MF(O,()) + 2f) >> (qblts =+ 1)
Sigl’l (ZD(i,j)) = Sigl’l (YD(i,j)) (612)

M F{o,0) is the multiplication factor for position (0,0) in Table 6.6 and f, gbits are defined
as before.

At the decoder, an inverse Hadamard transform is applied followed by rescaling (note
that the order is not reversed as might be expected):

1 1 1 1 11 1 1
I B T N | Zp 1 1 -1 -1
Wop = 1 -1 -1 1 1 -1 -1 1 (6.13)
1 -1 1 -1 1 -1 1 -1

THE BASELINE PROFILE 195

Table 6.7 Scaling factor V

Positions Positions
oP (0,0),2,0),(2,2),(0,2) (1,1),(1,3),(3,1),(3,3) Other positions

0 10 16 13
1 11 18 14
2 13 20 16
3 14 23 18
4 16 25 20
5 18 29 23

Decoder scaling is performed by:

Whaij) = Wong. V0,02 (QP/6) — 2 (P = 12)

Wi = [Wobi.j Vi + 277177 @FO] >~ 2 — floor(QP/6) (OP < 12)
(6.14)

V(0,00 is the scaling factor V for position (0,0) in Table 6.7. Because V) is constant
throughout the block, rescaling and inverse transformation can be applied in any order. The
specified order (inverse transform first, then scaling) is designed to maximise the dynamic
range of the inverse transform.

The rescaled DC coefficients W’ are inserted into their respective 4 x 4 blocks and each
4 x 4 block of coefficients is inverse transformed using the core DCT-based inverse transform
(CTW'C;).Ina 16 x 16 intra-coded macroblock, much of the energy is concentrated in the DC
coefficients of each 4 x 4 block which tend to be highly correlated. After this extra transform,
the energy is concentrated further into a small number of significant coefficients.

6.4.10 2 x 2 Chroma DC Coefficient Transform and Quantisation

Each 4 x 4 block in the chroma components is transformed as described in Section 6.4.8.1.
The DC coefficients of each 4 x 4 block of chroma coefficients are grouped in a 2 x 2 block
(Wp) and are further transformed prior to quantisation:

voe[l L] e

Quantisation of the 2 x 2 output block Y, is performed by:
Zoa | = (|Ypa.p| MFoo +2f) >> (gbits + 1) (6.16)
sign (Zpa.) = sign (Yo,)

M F,0) is the multiplication factor for position (0,0) in Table 6.6, f and gbits are defined as

before.
During decoding, the inverse transform is applied before scaling:

0 5 A R

196 H.264/MPEG4 PART 10

" encoder
Input Forward Posta-rs{galmg output / Rescale and .| Inverse Output
block X transform Cf quantisation decoder | pre-scaling transform Ci block X

2x2 or 4x4 12x2 or 4x4
{DC inverse
transform | transform
Chroma or Intra- Chroma or Intra-
16 Luma only 16 Luma only

Figure 6.38 Transform, quantisation, rescale and inverse transform flow diagram
Scaling is performed by:

Wiy = Woba.j)- Voo 2/ @PO=1 (f QP > 6)
Whi iy = [Wobij-Voo] >>1 (f QP <6)

The rescaled coefficients are replaced in their respective 4 x 4 blocks of chroma coefficients
which are then transformed as above (CiT W'C;). As with the Intra luma DC coefficients,
the extra transform helps to de-correlate the 2 x 2 chroma DC coefficients and improves
compression performance.

6.4.11 The Complete Transform, Quantisation, Rescaling and Inverse
Transform Process

The complete process from input residual block X to output residual block X' is described
below and illustrated in Figure 6.38.

Encoding:
1. Input: 4 x 4 residual samples: X
2. Forward ‘core’ transform: W = CfXC}
(followed by forward transform for Chroma DC or Intra-16 Luma DC coefficients).
3. Post-scaling and quantisation: Z = W.round(PF/Qstep)
(different for Chroma DC or Intra-16 Luma DC).

Decoding:
(Inverse transform for Chroma DC or Intra-16 Luma DC coefficients)

4. Decoder scaling (incorporating inverse transform pre-scaling): W’ = Z.Qstep.PF.64
(different for Chroma DC or Intra-16 Luma DC).

5. Inverse ‘core’ transform: X' = CIW'C;

Post-scaling: X" = round(X'/64)

7. Output: 4 x 4 residual samples: X"

o

Example (luma 4 x 4 residual block, Intra mode)
0P =10

THE BASELINE PROFILE

197

Input block X:
j=0 1 2 3
i=0 5 11 |8 10
1 9 8 |4 12
2 1 10 | 11 | 4
3 19 6 157

Output of ‘core’ transform W:

j=0 1 2 3
140 | -1 | =6 |7
19 | =39 |7 | -9
2 |17 |8 |31
27 | =32 | =59 | —21

MF = 8192, 3355 or 5243 (depending on the coefficient position), gbits = 16 and f is
24%its/3 Qutput of forward quantizer Z:

j=0 1 2 3
17 o | =110
-1 |=21]0 |-5
3001 |1 |2
2 | -1]=5]|-1

j=0 1 2 3
544 | 0 -32 |0
—40 | =100 | 0 —250
96 | 40 32 80
—80 | =50 | —200 | —50

198 H.264/MPEG4 PART 10

start

end

Figure 6.39 Zig-zag scan for 4 x 4 luma block (frame mode)

Output of ‘core’ inverse transform X" (after division by 64 and rounding):

j=0 1 2 3

i=0 4 13 | 8 10

6.4.12 Reordering

In the encoder, each 4 x 4 block of quantised transform coefficients is mapped to a 16-element
array in a zig-zag order (Figure 6.39). In a macroblock encoded in 16 x 16 Intra mode, the
DC coefficients (top-left) of each 4 x 4 luminance block are scanned first and these DC
coefficients form a 4 x 4 array that is scanned in the order of Figure 6.39. This leaves 15 AC
coefficients in each luma block that are scanned starting from the 2nd position in Figure 6.39.
Similarly, the 2 x 2 DC coefficients of each chroma component are first scanned (in raster
order) and then the 15 AC coefficients in each chroma 4 x 4 block are scanned starting from
the 2nd position.

6.4.13 Entropy Coding

Above the slice layer, syntax elements are encoded as fixed- or variable-length binary codes.
At the slice layer and below, elements are coded using either variable-length codes (VLCs)
or context-adaptive arithmetic coding (CABAC) depending on the entropy encoding mode.
When entropy_coding_mode is set to 0, residual block data is coded using a context-adaptive
variable length coding (CAVLC) scheme and other variable-length coded units are coded
using Exp-Golomb codes. Parameters that require to be encoded and transmitted include the
following (Table 6.8).

THE BASELINE PROFILE 199

Table 6.8 Examples of parameters to be encoded

Parameters Description
Sequence-, picture- and Headers and parameters
slice-layer syntax elements
Macroblock type mb_type Prediction method for each coded macroblock
Coded block pattern Indicates which blocks within a macroblock contain coded
coefficients
Quantiser parameter Transmitted as a delta value from the previous value of QP
Reference frame index Identify reference frame(s) for inter prediction
Motion vector Transmitted as a difference (mvd) from predicted motion vector
Residual data Coefficient data for each 4 x 4 or 2 x 2 block

Table 6.9 Exp-Golomb codewords

code_num Codeword

1
010
011

00100
00101
00110
00111
0001000
0001001

O NP W~ O

6.4.13.1 Exp-Golomb Entropy Coding

Exp-Golomb codes (Exponential Golomb codes, [5]) are variable length codes with a regular
construction. It is clear from examining the first few codewords (Table 6.9) that they are
constructed in a logical way:

[M zeros][1][INFO]

INFO is an M-bit field carrying information. The first codeword has no leading zero or trailing
INFO. Codewords 1 and 2 have a single-bit INFO field, codewords 3—6 have a two-bit INFO
field and so on. The length of each Exp-Golomb codeword is (2M 4 1) bits and each codeword
can be constructed by the encoder based on its index code_num:

M = floor(log,[code_num + 1])

INFO = code_num + 1 — 2M
A codeword can be decoded as follows:

1. Read in M leading zeros followed by 1.
2. Read M-bit INFO field.
3. code_num = 2M+ INFO - 1

(For codeword 0, INFO and M are zero.)

200 H.264/MPEG4 PART 10

A parameter k to be encoded is mapped to code_num in one of the following ways:

Mapping type Description
ue Unsigned direct mapping, code_num = k. Used for macroblock type, reference
frame index and others.
te A version of the Exp-Golomb codeword table in which short codewords are
truncated.
se Signed mapping, used for motion vector difference, delta QP and others. k is
mapped to code_num as follows (Table 6.10).
code_num = 2|K| k=<0
code_num = 2|k|— 1 k>0
me Mapped symbols, parameter k is mapped to code_num according to a table specified

in the standard. Table 6.11 lists a small part of the coded_block_
pattern table for Inter predicted macroblocks, indicating which 8 x 8 blocks in
a macroblock contain nonzero coefficients.

Table 6.10 Signed mapping se

k code_num
0 0
1 1
—1 2
2 3
-2 4
3 5

Table 6.11 Part of coded_block_pattern table

coded_block_pattern (Inter prediction) code_num

0 (no nonzero blocks)

16 (chroma DC block nonzero)

1 (top-left 8 x 8 luma block nonzero)

2 (top-right 8 x 8 luma block nonzero)

4 (lower-left 8 x 8 luma block nonzero)

8 (lower-right 8 x 8 luma block nonzero)

32 (chroma DC and AC blocks nonzero)

3 (top-left and top-right 8 x 8 luma blocks nonzero)

NNk W~ O

Each of these mappings (ue, te, se and me) is designed to produce short codewords for
frequently-occurring values and longer codewords for less common parameter values. For
example, inter macroblock type P_L0_16 x 16 (prediction of 16 x 16 luma partition from a
previous picture) is assigned code_num 0 because it occurs frequently; macroblock type P_8 x
8 (prediction of 8 x 8 luma partition from a previous picture) is assigned code_num 3 because
it occurs less frequently; the commonly-occurring motion vector difference (MVD) value of
0 maps to code_num 0 whereas the less-common MVD = —3 maps to code_num 6.

THE BASELINE PROFILE 201

6.4.13.2 Context-Based Adaptive Variable Length Coding (CAVLC)

This is the method used to encode residual, zig-zag ordered 4 x 4 (and 2 x 2) blocks of
transform coefficients. CAVLC [6] is designed to take advantage of several characteristics of
quantised 4 x 4 blocks:

1. After prediction, transformation and quantisation, blocks are typically sparse (containing
mostly zeros). CAVLC uses run-level coding to represent strings of zeros compactly.

2. The highest nonzero coefficients after the zig-zag scan are often sequences of +1 and
CAVLC signals the number of high-frequency £1 coefficients (‘Trailing Ones’) in a
compact way.

3. The number of nonzero coefficients in neighbouring blocks is correlated. The number of
coefficients is encoded using a look-up table and the choice of look-up table depends on
the number of nonzero coefficients in neighbouring blocks.

4. The level (magnitude) of nonzero coefficients tends to be larger at the start of the reordered
array (near the DC coefficient) and smaller towards the higher frequencies. CAVLC takes
advantage of this by adapting the choice of VLC look-up table for the level parameter
depending on recently-coded level magnitudes.

CAVLC encoding of a block of transform coefficients proceeds as follows:

coeff_token encodes the number of non-zero coefficients (TotalCoeff) and TrailingOnes
(one per block)

trailing_ones_sign_flag sign of TrailingOne value (one per trailing one)

level _prefix first part of code for non-zero coefficient (one per coefficient,
excluding trailing ones)

level suffix second part of code for non-zero coefficient (not always present)

total_zeros encodes the total number of zeros occurring after the first non-zero
coefficient (in zig-zag order) (one per block)

run_before encodes number of zeros preceding each non-zero coefficient

in reverse zig-zag order

1. Encode the number of coefficients and trailing ones (coeff_token)

The first VLC, coeff_token, encodes both the total number of nonzero coefficients (Total Coeffs)
and the number of trailing +1 values (TrailingOnes). TotalCoeffs can be anything from 0 (no
coefficients in the 4 x 4 block)’ to 16 (16 nonzero coefficients) and TrailingOnes can be
anything from O to 3. If there are more than three trailing 3-1s, only the last three are treated
as ‘special cases’ and any others are coded as normal coefficients.

There are four choices of look-up table to use for encoding coeff_token for a4 x 4 block,
three variable-length code tables and a fixed-length code table. The choice of table depends on
the number of nonzero coefficients in the left-hand and upper previously coded blocks (ns and
ng respectively). A parameter nC is calculated as follows. If upper and left blocks nB and nA

5 Note: coded_block_pattern (described earlier) indicates which 8 x 8 blocks in the macroblock contain nonzero
coefficients but, within a coded 8 x 8 block, there may be 4 x 4 sub-blocks that do not contain any coefficients,
hence TotalCoeff may be 0 in any 4 x 4 sub-block. In fact, this value of TotalCoeff occurs most often and is assigned
the shortest VLC.

202 H.264/MPEG4 PART 10

Table 6.12 Choice of look-up table for
coeff_token

N Table for coeff_token
0,1 Table 1
2,3 Table 2
4,5,6,7 Table 3
8 or above Table 4

are both available (i.e. in the same coded slice), nC = round((nA + nB)/2). If only the upper
is available, nC = nB; if only the left block is available, nC = nA; if neither is available,
nC = 0.

The parameter nC selects the look-up table (Table 6.12) so that the choice of VLC
adapts to the number of coded coefficients in neighbouring blocks (context adaptive). Table 1
is biased towards small numbers of coefficients such that low values of TotalCoeffs are
assigned particularly short codes and high values of TotalCoeff particularly long codes.
Table 2 is biased towards medium numbers of coefficients (TotalCoeff values around 2—4
are assigned relatively short codes), Table 3 is biased towards higher numbers of coeffi-
cients and Table 4 assigns a fixed six-bit code to every pair of TotalCoeff and TrailingOnes
values.

2. Encode the sign of each TrailingOne
For each TrailingOne (trailing 1) signalled by coeff_token, the sign is encoded with a single
bit (0 = +, 1 = —) in reverse order, starting with the highest-frequency TrailingOne.

3. Encode the levels of the remaining nonzero coefficients.

The level (sign and magnitude) of each remaining nonzero coefficient in the block is encoded in
reverse order, starting with the highest frequency and working back towards the DC coefficient.
The code for each level is made up of a prefix (level_prefix) and a suffix (level_suffix). The
length of the suffix (suffixLength) may be between 0 and 6 bits and suffixLength is adapted
depending on the magnitude of each successive coded level (‘context adaptive’). A small
value of suffixLength is appropriate for levels with low magnitudes and a larger value of
suffixLength is appropriate for levels with high magnitudes. The choice of suffixLength is
adapted as follows:

1. Initialise suffixLength to O (unless there are more than 10 nonzero coefficients and less
than three trailing ones, in which case initialise to 1).

2. Encode the highest-frequency nonzero coefficient.

3. If the magnitude of this coefficient is larger than a predefined threshold, increment suf-
fixLength. (If this is the first level to be encoded and suffixLength was initialised to 0, set
suffixLength to 2).

In this way, the choice of suffix (and hence the complete VLC) is matched to the magnitude of
the recently-encoded coefficients. The thresholds are listed in Table 6.13; the first threshold is

THE BASELINE PROFILE 203

Table 6.13 Thresholds for determining whether to
increment suffixLength

Current suffixLength ~ Threshold to increment suffixLength

0 0

1 3

2 6

3 12

4 24

5 48

6 N/A (highest suffixLength)

zero which means that suffixLength is always incremented after the first coefficient level has
been encoded.

4. Encode the total number of zeros before the last coefficient

The sum of all zeros preceding the highest nonzero coefficient in the reordered array is coded
with a VLC, total zeros. The reason for sending a separate VLC to indicate total zeros is that
many blocks contain a number of nonzero coefficients at the start of the array and (as will be
seen later) this approach means that zero-runs at the start of the array need not be encoded.

5. Encode each run of zeros.

The number of zeros preceding each nonzero coefficient (run_before) is encoded in reverse
order. A run_before parameter is encoded for each nonzero coefficient, starting with the highest
frequency, with two exceptions:

1. Ifthere are no more zeros left to encode (i.e. Y _[run_before] = total_zeros), it is not necessary
to encode any more run_before values.
2. Itis not necessary to encode run_before for the final (lowest frequency) nonzero coefficient.

The VLC for each run of zeros is chosen depending on (a) the number of zeros that have not
yet been encoded (ZerosLeft) and (b) run_before. For example, if there are only two zeros left
to encode, run_before can only take three values (0, 1 or 2) and so the VLC need not be more
than two bits long. If there are six zeros still to encode then run_before can take seven values
(0 to 6) and the VLC table needs to be correspondingly larger.

Example 1
4 x 4 block:

-1

(=) Rl Rl
(=) N Rev) Ren}

-1
1
0
0

0

Reordered block:
0,3,0,1,—1, —1,0,1,0...

204

H.264/MPEG4 PART 10

TotalCoeffs = 5 (indexed from highest frequency, 4, to lowest frequency, 0)

total_zeros = 3

TrailingOnes = 3 (in fact there are four trailing ones but only three can be encoded as a ‘special

case’)

Encoding
Element Value Code
coeff_token TotalCoeffs = 5, 0000100

TrailingOnes= 3 (use Table 1)

TrailingOne sign (4) + 0
TrailingOne sign (3) - 1
TrailingOne sign (2) - 1
Level (1) +1 (use suffixLength = 0) 1 (prefix)
Level (0) +3 (use suffixLength = 1) 001 (prefix) O (suffix)
total zeros 3 111
run_before(4) ZerosLeft = 3; run_before = 1 10
run_before(3) ZerosLeft = 2; run_before = 0 1
run_before(2) ZerosLeft = 2; run_before = 0
run_before(1) ZerosLeft = 2; run_before = 1 01

run_before(0)

ZerosLeft = 1; run_before = 1

No code required;
last coefficient.

The transmitted bitstream for this block is 000010001110010111101101.

Decoding

The output array is ‘built up’ from the decoded values as shown below. Values added to the output

array at each stage are underlined.

Code Element Value Output array

0000100 coeff_token TotalCoeffs = 5, TrailingOnes =3 Empty

0 TrailingOne sign ~ + 1

1 TrailingOne sign ~ — —1,1

1 TrailingOne sign — —-1,—-1,1

1 Level +1 (suffixLength = 0; increment 1,—-1,—-1,1
suffixLength after decoding)

0010 Level +3 (suffixLength = 1) 3,1,—-1,—-1,0,1

111 total_zeros 3 3,1,—-1,—-1,1

10 run_before 1 3,1,—-1,-1,0,1

1 run_before 0 3,1,—-1,—-1,0, 1

1 run_before 0 3,1,—-1,—-1,0,1

01 run_before 1 3,0,1,—-1,-1,0,1

The decoder has already inserted two zeros, TotalZeros is equal to 3 and so another 1 zero is

inserted before the lowest coefficient, making the final output array:

Qa 35 Os l, _15 _13 0’ 1

THE BASELINE PROFILE 205

Example 2
4 x 4 block:
21410 —1
310[01]0
-310]0]|0
0000
Reordered block:

—-2,4,3,-3,0,0,—1, ...

TotalCoeffs = 5 (indexed from highest frequency, 4, to lowest frequency, 0)
total_zeros = 2
TrailingOne = 1

Encoding:

Element Value Code

coeff_token TotalCoeffs = 5, TrailingOnes = 1 0000000110
(use Table 1)

TrailingOne sign (4) — 1

Level (3) Sent as —2 (see note 1) (suffixLength = 0; 0001 (prefix)
increment suffixLength)

Level (2) 3 (suffixLength = 1) 001 (prefix) O (suffix)

Level (1) 4 (suffixLength = 1; increment 0001 (prefix) O (suffix)
suffixLength

Level (0) —2 (suffixLength = 2) 1 (prefix) 11 (suffix)

total zeros 2 0011

run_before(4) ZerosLeft= 2; run_before= 2 00

run_before(3..0) 0 No code required

The transmitted bitstream for this block is 000000011010001001000010111001100.

Note 1: Level (3), with a value of —3, is encoded as a special case. If there are less than 3
TrailingOnes, then the first non-trailing one level cannot have a value of £1 (otherwise it
would have been encoded as a TrailingOne). To save bits, this level is incremented if negative
(decremented if positive) so that -2 maps to £1, £3 maps to =2, and so on. In this way, shorter
VLCs are used.

Note 2: After encoding level (3), the level_VLC table is incremented because the magnitude of this
level is greater than the first threshold (which is 0). After encoding level (1), with a magnitude of
4, the table number is incremented again because level (1) is greater than the second threshold
(which is 3). Note that the final level (—2) uses a different VLC from the first encoded level
(also -2).

206

H.264/MPEG4 PART 10

Decoding:
Code Element Value Output array
0000000110 coeft_token TotalCoeffs = 5, Tls=1 Empty
1 TrailingOne sign — —1
0001 Level —2 decoded as —3 -3,—-1
0010 Level +3 +3,-3,—1
00010 Level +4 +4,3,-3,-1
111 Level -2 —2,4,3,-3, -1
0011 total_zeros 2 =2,4,3,-3,-1
00 run_before 2 —-2,4,3,-3,0,0,—1

All zeros have now been decoded and so the output array is:

—-2,4,3,-3,0,0, —1
(This example illustrates how bits are saved by encoding TotalZeros: only a single zero run
(run_before) needs to be coded even though there are five nonzero coefficients.)

Example 3
4 x 4 block:
0 oO|11]0
0 0|00
1 0|00
00010
Reordered block:

0,0,0,1,0,1,0,0,0,—1

TotalCoeffs = 3 (indexed from highest frequency [2] to lowest frequency [0])

total_zeros = 7
TrailingOnes = 3

Encoding:
Element Value Code
coeff_token TotalCoeffs = 3, TrailingOnes=3 00011

use Table 1)

TrailingOne sign (2) — 1
TrailingOne sign (1) + 0
TrailingOne sign (0) + 0
total _zeros 7 011
run_before(2) ZerosLeft= 7; run_before= 3 100
run_before(1) ZerosLeft= 4; run_before= 1 10

run_before(0)

ZerosLeft= 3; run_before= 3

No code required;
last coefficient.

THE MAIN PROFILE 207

The transmitted bitstream for this block is 0001110001110010.

Decoding:
Code Element Value Output array
00011 coeff_token TotalCoeffs= 3, TrailingOnes= 3 Empty
1 TrailineOne sign - —1
0 TrailineOne sign + 1, -
0 TrailineOne sign + 1,1, -1
011 total_zeros 7 1,1, -1
100 run_before 3 1,1,0,0,0, —
10 run_before 1 1,0,1,0,0,0, —1

The decoder has inserted four zeros. total_zeros is equal to 7 and so another three zeros are
inserted before the lowest coefficient:

0,0,0,1,0,1,0,0,0, —1

6.5 THE MAIN PROFILE

Suitable application for the Main Profile include (but are not limited to) broadcast media
applications such as digital television and stored digital video. The Main Profile is almost a
superset of the Baseline Profile, except that multiple slice groups, ASO and redundant slices
(all included in the Baseline Profile) are not supported. The additional tools provided by Main
Profile are B slices (bi-predicted slices for greater coding efficiency), weighted prediction
(providing increased flexibility in creating a motion-compensated prediction block), support
for interlaced video (coding of fields as well as frames) and CABAC (an alternative entropy
coding method based on Arithmetic Coding).

6.5.1 B slices

Each macroblock partition in an inter coded macroblock in a B slice may be predicted from one
or two reference pictures, before or after the current picture in temporal order. Depending on
the reference pictures stored in the encoder and decoder (see the next section), this gives many
options for choosing the prediction references for macroblock partitions in a B macroblock
type. Figure 6.40 shows three examples: (a) one past and one future reference (similar to
B-picture prediction in earlier MPEG video standards), (b) two past references and (c) two
future references.

6.5.1.1 Reference pictures

B slices use two lists of previously-coded reference pictures, list 0 and list 1, containing short
term and long term pictures (see Section 6.4.2). These two lists can each contain past and/or

208 H.264/MPEG4 PART 10

(a) one past, one future

v N

%

B
partition

Ne—e

w
(b) two past

(c) two future

Figure 6.40 Partition prediction examples in a B macroblock type: (a) past/future, (b) past, (c) future

future coded pictures (pictures before or after the current picture in display order). The long
term pictures in each list behaves in a similar way to the description in Section 6.4.2. The
short term pictures may be past and/or future coded pictures and the default index order of
these pictures is as follows:

List 0: The closest past picture (based on picture order count) is assigned index 0, followed by
any other past pictures (increasing in picture order count), followed by any future pictures
(in increasing picture order count from the current picture).

List 1: The closest future picture is assigned index 0, followed by any other future picture (in
increasing picture order count), followed by any past picture (in increasing picture order
count).

Example

An H.264 decoder stores six short term reference pictures with picture order counts: 123, 125,
126, 128, 129, 130. The current picture is 127. All six short term reference pictures are marked
as used for reference in list O and list 1. The pictures are indexed in the list O and list 1 short term
buffers as follows (Table 6.14).

Table 6.14 Short term buffer indices (B slice
prediction) (current picture order count is 127

Index List 0 List 1
0 126 128
1 125 129
2 123 130
3 128 126
4 129 125
5 130 123

THE MAIN PROFILE 209

Table 6.15 Prediction options in B slice macroblocks

Partition Options
16 x 16 Direct, list 0, list1 or bi-predictive
16 x 8or 8 x 16 List 0, list 1 or bi-predictive (chosen separately for each partition)
8§ x8 Direct, list 0, list 1 or bi-predictive (chosen separately for each partition).
Lo Direct Lo
Bipred = Bipred

Figure 6.41 Examples of prediction modes in B slice macroblocks

The selected buffer index is sent as an Exp-Golomb codeword (see Section 6.4.13.1) and so
the most efficient choice of reference index (with the smallest codeword) is index O (i.e. the
previous coded picture in list O and the next coded picture in list 1).

6.5.1.2 Prediction Options

Macroblocks partitions in a B slice may be predicted in one of several ways, direct mode
(see Section 6.5.1.4), motion-compensated prediction from a list O reference picture, motion-
compensated prediction from a list 1 reference picture, or motion-compensated bi-predictive
prediction from list O and list 1 reference pictures (see Section 6.5.1.3). Different prediction
modes may be chosen for each partition (Table 6.15); if the 8 x 8 partition size is used, the
chosen mode for each 8 x 8 partition is applied to all sub-partitions within that partition.
Figure 6.41 shows two examples of valid prediction mode combinations. On the left, two
16 x 8 partitions use List 0 and Bi-predictive prediction respectively and on the right, four 8
x 8 partitions use Direct, List 0, List 1 and Bi-predictive prediction.

6.5.1.3 Bi-prediction

In Bi-predictive mode, a reference block (of the same size as the current partition or sub-
macroblock partition) is created from the list 0 and list 1 reference pictures. Two motion-
compensated reference areas are obtained from a list O and a list 1 picture respectively (and
hence two motion vectors are required) and each sample of the prediction block is calculated as
an average of the list 0 and list 1 prediction samples. Except when using Weighted Prediction
(see Section 6.5.2), the following equation is used:

pred(i,j) = (pred0(i,j) 4+ pred1(i,j) + 1) >> 1

Pred0(i, j) and predl(i, j) are prediction samples derived from the list O and list 1 reference
frames and pred(i, j) is a bi-predictive sample. After calculating each prediction sample, the
motion-compensated residual is formed by subtracting pred(i, j) from each sample of the
current macroblock as usual.

210 H.264/MPEG4 PART 10

Example

A macroblock is predicted in B_.Bi_16 x 16 mode (i.e. bi-prediction of the complete mac-
roblock). Figure 6.42 and Figure 6.43 show motion-compensated reference areas from list 0 and
list 1 references pictures respectively and Figure 6.44 shows the bi-prediction formed from these
two reference areas.

The list 0 and list 1 vectors in a bi-predictive macroblock or block are each predicted from
neighbouring motion vectors that have the same temporal direction. For example a vector for
the current macroblock pointing to a past frame is predicted from other neighbouring vectors
that also point to past frames.

6.5.1.4 Direct Prediction

No motion vector is transmitted for a B slice macroblock or macroblock partition encoded
in Direct mode. Instead, the decoder calculates list 0 and list 1 vectors based on previously-
coded vectors and uses these to carry out bi-predictive motion compensation of the decoded
residual samples. A skipped macroblock in a B slice is reconstructed at the decoder using
Direct prediction.

A flag in the slice header indicates whether a spatial or temporal method will be used to
calculate the vectors for direct mode macroblocks or partitions.

In spatial direct mode, list 0 and list 1 predicted vectors are calculated as follows.
Predicted list 0 and list 1 vectors are calculated using the process described in section 6.4.5.3.
If the co-located MB or partition in the first list 1 reference picture has a motion vector that
is less than +1/ luma samples in magnitude (and in some other cases), one or both of the
predicted vectors are set to zero; otherwise the predicted list O and list 1 vectors are used to
carry out bi-predictive motion compensation. In temporal direct mode, the decoder carries out
the following steps:

1. Find the list O reference picture for the co-located MB or partition in the list 1 picture. This
list O reference becomes the list O reference of the current MB or partition.

2. Find the list 0 vector, MV, for the co-located MB or partition in the list 1 picture.

3. Scale vector MV based on the picture order count ‘distance’ between the current and list 1
pictures: this is the new list 1 vector MV 1.

4. Scale vector MV based on the picture order count distance between the current and list O
pictures: this is the new list 0 vector MVO.

These modes are modified when, for example, the prediction reference macroblocks or
partitions are not available or are intra coded.

Example:

The list 1 reference for the current macroblock occurs two pictures after the current frame (Figure
6.45). The co-located MB in the list 1 reference has a vector MV(+2.5, +5) pointing to a list
0 reference picture that occurs three pictures before the current picture. The decoder calculates
MV1(—1, —2) and MVO(+1.5, +3) pointing to the list 1 and list O pictures respectively. These
vectors are derived from MV and have magnitudes proportional to the picture order count distance
to the list 0 and list 1 reference frames.

THE MAIN PROFILE 211

Figure 6.42 Reference area (list O picture) Figure 6.43 Reference area (list 1 picture)

Figure 6.44 Prediction (non-weighted)

6.5.2 Weighted Prediction

Weighted prediction is a method of modifying (scaling) the samples of motion-compensated
prediction data in a P or B slice macroblock. There are three types of weighted prediction in
H.264:

1. P slice macroblock, ‘explicit’ weighted prediction;
2. B slice macroblock, ‘explicit” weighted prediction;
3. B slice macroblock, ‘implicit” weighted prediction.

Each prediction sample predO(i, j) or pred1(i, j) is scaled by a weighting factor wy or w;
prior to motion-compensated prediction. In the ‘explicit’ types, the weighting factor(s) are

212 H.264/MPEG4 PART 10

list 1 reference list 1 reference

MV1(-1, - 2)

MV(25, 5) current
MVO0(1.5, 3)
list O reference list O reference
(a) MV from list 1 (b) Calculated MV0O and MV1

Figure 6.45 Temporal direct motion vector example

determined by the encoder and transmitted in the slice header. If ‘implicit’ prediction is used,
wo and w; are calculated based on the relative temporal positions of the list 0 and list 1
reference pictures. A larger weighting factor is applied if the reference picture is temporally
close to the current picture and a smaller factor is applied if the reference picture is temporally
further away from the current picture.

One application of weighted prediction is to allow explicit or implicit control of the
relative contributions of reference picture to the motion-compensated prediction process. For
example, weighted prediction may be effective in coding of ‘fade’ transitions (where one scene
fades into another).

6.5.3 Interlaced Video

Efficient coding of interlaced video requires tools that are optimised for compression of field
macroblocks. If field coding is supported, the type of picture (frame or field) is signalled in
the header of each slice. In macroblock-adaptive frame/field (MB-AFF) coding mode, the
choice of field or frame coding may be specified at the macroblock level. In this mode, the
current slice is processed in units of 16 luminance samples wide and 32 luminance samples
high, each of which is coded as a ‘macroblock pair’ (Figure 6.46). The encoder can choose
to encode each MB pair as (a) two frame macroblocks or (b) two field macroblocks and may
select the optimum coding mode for each region of the picture.

Coding a slice or MB pair in field mode requires modifications to a number of the
encoding and decoding steps described in Section 6.4. For example, each coded field is treated
as a separate reference picture for the purposes of P and B slice prediction, the prediction of
coding modes in intra MBs and motion vectors in inter MBs require to be modified depending
on whether adjacent MBs are coded in frame or field mode and the reordering scan shown in
Figure 6.47 replaces the zig-zag scan of Figure 6.39.

6.5.4 Context-based Adaptive Binary Arithmetic Coding (CABAC)

When the picture parameter set flag entropy_coding_mode is set to 1, an arithmetic coding
system is used to encode and decode H.264 syntax elements. Context-based Adaptive Binary

THE MAIN PROFILE 213

MB pair I EEEEE—— MB pair
—
32 32
16 16 o
(a) Frame mode (b) Field mode

Figure 6.46 Macroblock-adaptive frame/field coding

start

Figure 6.47 Reordering scan for 4 x 4 luma blocks (field mode)

Arithmetic Coding (CABAC) [7], achieves good compression performance through (a) se-
lecting probability models for each syntax element according to the element’s context, (b)
adapting probability estimates based on local statistics and (c) using arithmetic coding rather
than variable-length coding. Coding a data symbol involves the following stages:

1. Binarisation: CABAC uses Binary Arithmetic Coding which means that only binary de-
cisions (1 or 0) are encoded. A non-binary-valued symbol (e.g. a transform coefficient or
motion vector, any symbol with more than 2 possible values) is ‘binarised’ or converted
into a binary code prior to arithmetic coding. This process is similar to the process of
converting a data symbol into a variable length code (Section 6.4.13) but the binary code
is further encoded (by the arithmetic coder) prior to transmission.

Stages 2, 3 and 4 are repeated for each bit (or ‘bin’) of the binarised symbol:

2. Context model selection. A ‘context model’ is a probability model for one or more bins
of the binarised symbol and is chosen from a selection of available models depending on
the statistics of recently-coded data symbols. The context model stores the probability of
each bin being ‘1’ or ‘0’.

214 H.264/MPEG4 PART 10

3. Arithmetic encoding: An arithmetic coder encodes each bin according to the selected
probability model (see section 3.5.3). Note that there are just two sub-ranges for each bin
(corresponding to ‘0’ and ‘1’).

4. Probability update: The selected context model is updated based on the actual coded value
(e.g. if the bin value was ‘1’, the frequency count of ‘1’s is increased).

The Coding Process

We will illustrate the coding process for one example, mvd, (motion vector difference
in the x-direction, coded for each partition or sub-macroblock partition in an inter
macroblock).

1. Binarise the value mvd, - - - mvd, is mapped to the following table of uniquely-decodeable
codewords for |mvd,| < 9 (larger values of mvd, are binarised using an Exp-Golomb
codeword).

|mvdy| Binarisation (s=sign)

0
10s
110s
1110s
11110s
111110s
1111110s
11111110s
111111110s

O ANN P W~ O

The first bit of the binarised codeword is bin 1, the second bit is bin 2 and so on.
2. Choose a context model for each bin. One of three models is selected for bin 1 (Table
6.16), based on the L1 norm of two previously-coded mvd, values, e;:

er = |mvdya| + |mvdyg| where A and B are the blocks immediately to the left
and above the current block.

If e, is small, then there is a high probability that the current MVD will have a small
magnitude and, conversely, if e; is large then it is more likely that the current MVD will
have a large magnitude. A probability table (context model) is selected accordingly. The
remaining bins are coded using one of four further context models (Table 6.17).

Table 6.16 context models for bin 1

e Context model for bin 1
0<e <3 Model 0
3<e <33 Model 1

33 < ¢ Model 2

THE MAIN PROFILE 215

Table 6.17 Context models

Bin Context model

1 0, 1 or 2 depending on ¢;
2 3

3 4

4 5

5 and higher 6

6 6

3. Encode each bin. The selected context model supplies two probability estimates, the prob-
ability that the bin contains ‘1’ and the probability that the bin contains ‘0’, that determine
the two sub-ranges used by the arithmetic coder to encode the bin.

4. Update the context models. For example, if context model 2 is selected for bin 1 and the
value of bin 1 is ‘0’, the frequency count of ‘0’s is incremented so that the next time this
model is selected, the probability of an ‘0’ will be slightly higher. When the total number
of occurrences of a model exceeds a threshold value, the frequency counts for ‘0’ and ‘1’
will be scaled down, which in effect gives higher priority to recent observations.

The Context Models

Context models and binarisation schemes for each syntax element are defined in the standard.
There are nearly 400 separate context models for the various syntax elements. At the beginning
of each coded slice, the context models are initialised depending on the initial value of the
Quantisation Parameter QP (since this has a significant effect on the probability of occurrence
of the various data symbols). In addition, for coded P, SP and B slices, the encoder may choose
one of 3 sets of context model initialisation parameters at the beginning of each slice, to allow
adaptation to different types of video content [8].

The Arithmetic Coding Engine
The arithmetic decoder is described in some detail in the Standard and has three distinct
properties:

1. Probability estimation is performed by a transition process between 64 separate probability
states for ‘Least Probable Symbol’ (LPS, the least probable of the two binary decisions ‘0’
or ‘1°).

2. The range R representing the current state of the arithmetic coder (see Chapter 3) is
quantised to a small range of pre-set values before calculating the new range at each step,
making it possible to calculate the new range using a look-up table (i.e. multiplication-free).

3. A simplified encoding and decoding process (in which the context modelling part is by-
passed) is defined for data symbols with a near-uniform probability distribution.

The definition of the decoding process is designed to facilitate low-complexity implemen-
tations of arithmetic encoding and decoding. Overall, CABAC provides improved coding
efficiency compared with VLC (see Chapter 7 for performance examples).

216 H.264/MPEG4 PART 10

6.6 THE EXTENDED PROFILE

The Extended Profile (known as the X Profile in earlier versions of the draft H.264 stan-
dard) may be particularly useful for applications such as video streaming. It includes all of
the features of the Baseline Profile (i.e. it is a superset of the Baseline Profile, unlike Main
Profile), together with B-slices (Section 6.5.1), Weighted Prediction (Section 6.5.2) and ad-
ditional features to support efficient streaming over networks such as the Internet. SP and
SI slices facilitate switching between different coded streams and ‘VCR-like’ functionality
and Data Partitioned slices can provide improved performance in error-prone transmission
environments.

6.6.1 SP and SI slices

SP and ST slices are specially-coded slices that enable (among other things) efficient switching
between video streams and efficient random access for video decoders [10]. A common
requirement in a streaming application is for a video decoder to switch between one of several
encoded streams. For example, the same video material is coded at multiple bitrates for
transmission across the Internet and a decoder attempts to decode the highest-bitrate stream
it can receive but may require switching automatically to a lower-bitrate stream if the data
throughput drops.

Example

A decoder is decoding Stream A and wants to switch to decoding Stream B (Figure 6.48). For
simplicity, assume that each frame is encoded as a single slice and predicted from one reference
(the previous decoded frame). After decoding P-slices Ay and A, the decoder wants to switch to
Stream B and decode B,, B3 and so on. If all the slices in Stream B are coded as P-slices, then
the decoder will not have the correct decoded reference frame(s) required to reconstruct B, (since
B, is predicted from the decoded picture B; which does not exist in stream A). One solution is
to code frame B, as an I-slice. Because it is coded without prediction from any other frame, it
can be decoded independently of preceding frames in stream B and the decoder can therefore
switch between stream A and stream B as shown in Figure 6.49. Switching can be accommodated
by inserting an I-slice at regular intervals in the coded sequence to create ‘switching points’.
However, an I-slice is likely to contain much more coded data than a P-slice and the result is an
undesirable peak in the coded bitrate at each switching point.

SP-slices are designed to support switching between similar coded sequences (for example,
the same source sequence encoded at various bitrates) without the increased bitrate penalty
of I-slices (Figure 6.49). At the switching point (frame 2 in each sequence), there are three
SP-slices, each coded using motion compensated prediction (making them more efficient
than I-slices). SP-slice A, can be decoded using reference picture A; and SP-slice B, can
be decoded using reference picture B;. The key to the switching process is SP-slice AB,
(known as a switching SP-slice), created in such a way that it can be decoded using motion-
compensated reference picture Ay, to produce decoded frame B; (i.e. the decoder output frame
B, is identical whether decoding B followed by B, or A; followed by AB;). An extra SP-slice
is required at each switching point (and in fact another SP-slice, BA,, would be required to
switch in the other direction) but this is likely to be more efficient than encoding frames A;

THE EXTENDED PROFILE 217
P slices
’ ’ ’ ’ Stream A
— — — —
switch point
' ' ’ ' Stream B
— — — —
P slices | slice P slices

Figure 6.48 Switching streams using I-slices

P slices SP slices P slices

944~
945~

Figure 6.49 Switching streams using SP-slices

218 H.264/MPEG4 PART 10

Table 6.18 Switching from stream A to stream B using

SP-slices
Input to decoder MC reference Output of decoder
P-slice A [earlier frame] Decoded frame A
P-slice A, Decoded frame Ay Decoded frame A;
SP-slice AB, Decoded frame A; Decoded frame B,

P-slice Bs Decoded frame B, Decoded frame Bj

Frame A,

SPA2 —» T' ——> Frame A2

Frame At

Figure 6.52 Decoding SP-slice A, (simplified)

and B, as I-slices. Table 6.18 lists the steps involved when a decoder switches from stream A
to stream B.

Figure 6.50 shows a simplified diagram of the encoding process for SP-slice A,, produced
by subtracting a motion-compensated version of A/ (decoded frame A;) from frame A, and
then coding the residual. Unlike a ‘normal’ P-slice, the subtraction occurs in the transform
domain (after the block transform). SP-slice B, is encoded in the same way (Figure 6.51). A
decoder that has previously decoded frame A can decode SP-slice A, as shown in Figure 6.52.
Note that these diagrams are simplified; in practice further quantisation and rescaling steps
are required to avoid mismatch between encoder and decoder and a more detailed treatment
of the process can be found in [11].

THE EXTENDED PROFILE 219

Frame Bz
Frame A+’

Figure 6.53 Encoding SP-slice AB, (simplified)

SP AB2 VLD Q1 T'|—> Frame B2'

Frame A1’ MC T

Figure 6.54 Decoding SP-slice AB, (simplified)

SP-slice AB, is encoded as shown in Figure 6.53 (simplified). Frame B, (the frame we
are switching to) is transformed and a motion-compensated prediction is formed from
Al (the decoded frame from which we are switching). The ‘MC’ block in this dia-
gram attempts to find the best match for each MB of frame B, using decoded pic-
ture Ay as a reference. The motion-compensated prediction is transformed, then sub-
tracted from the transformed B, (i.e. in the case of a switching SP slice, subtraction takes
place in the transform domain). The residual (after subtraction) is quantized, encoded and
transmitted.

A decoder that has previously decoded A can decode SP-slice AB, to produce B)
(Figure 6.54). A/ is motion compensated (using the motion vector data encoded as part of
AB)»), transformed and added to the decoded and scaled (inverse quantized) residual, then the
result is inverse transformed to produce B),.

If streams A and B are versions of the same original sequence coded at different bi-
trates, the motion-compensated prediction of B, from A} (SP-slice AB,) should be quite
efficient. Results show that using SP-slices to switch between different versions of the
same sequence is significantly more efficient than inserting I-slices at switching points.
Another application of SP-slices is to provide random access and ‘VCR-like’ function-
alities. For example, an SP-slice and a switching SP-slice are placed at the position of
frame 10 (Figure 6.55). A decoder can fast-forward from A, directly to Ajy by (a) de-
coding Ay, then (b) decoding switching SP-slice Ag_jg to produce Ajy by prediction from
Ao.

A further type of switching slice, the SI-slice, is supported by the Extended Profile. This
is used in a similar way to a switching SP-slice, except that the prediction is formed using
the 4 x 4 Intra Prediction modes (see Section 6.4.6.1) from previously-decoded samples
of the reconstructed frame. This slice mode may be used (for example) to switch from one
sequence to a completely different sequence (in which case it will not be efficient to use motion
compensated prediction because there is no correlation between the two sequences).

220 H.264/MPEG4 PART 10

P slices SP slices

-4
tg/

Figure 6.55 Fast-forward using SP-slices

Picture
delimiter

Picture

Sequence
parameter set

parameter set

SEI

| slice

P slice Pslice | seees

Figure 6.56 Example sequence of RBSP elements

6.6.2 Data Partitioned Slices

The coded data that makes up a slice is placed in three separate Data Partitions (A, B and C),
each containing a subset of the coded slice. Partition A contains the slice header and header
data for each macroblock in the slice, Partition B contains coded residual data for Intra and SI
slice macroblocks and Partition C contains coded residual data for inter coded macroblocks
(forward and bi-directional). Each Partition can be placed in a separate NAL unit and may
therefore be transported separately.

If Partition A data is lost, it is likely to be difficult or impossible to reconstruct the slice,
hence Partition A is highly sensitive to transmission errors. Partitions B and C can (with careful
choice of coding parameters) be made to be independently decodeable and so a decoder may
(for example) decode A and B only, or A and C only, lending flexibility in an error-prone
environment.

6.7 TRANSPORT OF H.264

A coded H.264 video sequence consists of a series of NAL units, each containing an RBSP
(Table 6.19). Coded slices (including Data Partitioned slices and IDR slices) and the End of
Sequence RBSP are defined as VCL NAL units whilst all other elements are just NAL units.

An example of a typical sequence of RBSP units is shown in Figure 6.56. Each of these
units is transmitted in a separate NAL unit. The header of the NAL unit (one byte) signals the
type of RBSP unit and the RBSP data makes up the rest of the NAL unit.

TRANSPORT OF H.264 221

Table 6.19

RBSP type Description

Parameter Set ‘Global’ parameters for a sequence such as picture dimensions, video format,
macroblock allocation map (see Section 6.4.3).

Supplemental Side messages that are not essential for correct decoding of the video sequence.

Enhancement

Information

Picture Delimiter Boundary between video pictures (optional). If not present, the decoder infers
the boundary based on the frame number contained within each slice header.

Coded slice Header and data for a slice; this RBSP unit contains actual coded video data.

Data Partition Three units containing Data Partitioned slice layer data (useful for error resilient

A,BorC decoding). Partition A contains header data for all MBs in the slice, Partition

B contains intra coded data and partition C contains inter coded data.

End of sequence Indicates that the next picture (in decoding order) is an IDR picture
(see Section 6.4.2). (Not essential for correct decoding of the sequence).

End of stream Indicates that there are no further pictures in the bitstream. (Not essential for
correct decoding of the sequence).

Filler data Contains ‘dummy’ data (may be used to increase the number of bytes in the

sequence). (Not essential for correct decoding of the sequence).

Parameter sets
H.264 introduces the concept of parameter sets, each containing information that can be
applied to a large number of coded pictures. A sequence parameter set contains parameters
to be applied to a complete video sequence (a set of consecutive coded pictures). Parameters
in the sequence parameter set include an identifier (seq_parameter_set_id), limits on frame
numbers and picture order count, the number of reference frames that may be used in decoding
(including short and long term reference frames), the decoded picture width and height and
the choice of progressive or interlaced (frame or frame / field) coding. A picture parameter set
contains parameters which are applied to one or more decoded pictures within a sequence. Each
picture parameter set includes (among other parameters) an identifier (pic_parameter_set_id),
a selected seq_parameter_set_id, a flag to select VLC or CABAC entropy coding, the number
of slice groups in use (and a definition of the type of slice group map), the number of reference
pictures in list 0 and list 1 that may be used for prediction, initial quantizer parameters and a
flag indicating whether the default deblocking filter parameters are to be modified.

Typically, one or more sequence parameter set(s) and picture parameter set(s) are sent to
the decoder prior to decoding of slice headers and slice data. A coded slice header refers to a
pic_parameter_set_id and this ‘activates’ that particular picture parameter set. The ‘activated’
picture parameter set then remains active until a different picture parameter set is activated by
being referred to in another slice header. In a similar way, a picture parameter set refers to a
seq-parameter_set_id which ‘activates’ that sequence parameter set. The activated set remains
in force (i.e. its parameters are applied to all consecutive coded pictures) until a different
sequence parameter set is activated.

The parameter set mechanism enables an encoder to signal important, infrequently-
changing sequence and picture parameters separately from the coded slices themselves. The
parameter sets may be sent well ahead of the slices that refer to them, or by another transport

222 H.264/MPEG4 PART 10

mechanism (e.g. over a reliable transmission channel or even ‘hard wired’ in a decoder im-
plementation). Each coded slice may ‘call up’ the relevant picture and sequence parameters
using a single VLC (pic_parameter_set_id) in the slice header.

Transmission and Storage of NAL units

The method of transmitting NAL units is not specified in the standard but some distinction is
made between transmission over packet-based transport mechanisms (e.g. packet networks)
and transmission in a continuous data stream (e.g. circuit-switched channels). In a packet-
based network, each NAL unit may be carried in a separate packet and should be organised
into the correct sequence prior to decoding. In a circuit-switched transport environment, a start
code prefix (a uniquely-identifiable delimiter code) is placed before each NAL unit to make
a byte stream prior to transmission. This enables a decoder to search the stream to find a start
code prefix identifying the start of a NAL unit.

In a typical application, coded video is required to be transmitted or stored together
with associated audio track(s) and side information. It is possible to use a range of transport
mechanisms to achieve this, such as the Real Time Protocol and User Datagram Protocol
(RTP/UDP). An Amendment to MPEG-2 Systems specifies a mechanism for transporting
H.264 video (see Chapter 7) and ITU-T Recommendation H.241 defines procedures for using
H.264 in conjunction with H.32x multimedia terminals. Many applications require stor-
age of multiplexed video, audio and side information (e.g. streaming media playback, DVD
playback). A forthcoming Amendment to MPEG-4 Systems (Part 1) specifies how H.264
coded data and associated media streams can be stored in the ISO Media File Format (see
Chapter 7).

6.8 CONCLUSIONS

H.264 provides mechanisms for coding video that are optimised for compression efficiency
and aim to meet the needs of practical multimedia communication applications. The range
of available coding tools is more restricted than MPEG-4 Visual (due to the narrower focus
of H.264) but there are still many possible choices of coding parameters and strategies. The
success of a practical implementation of H.264 (or MPEG-4 Visual) depends on careful design
of the CODEC and effective choices of coding parameters. The next chapter examines design
issues for each of the main functional blocks of a video CODEC and compares the performance
of MPEG-4 Visual and H.264.

6.9 REFERENCES

1. ISO/IEC 14496-10 and ITU-T Rec. H.264, Advanced Video Coding, 2003.

2. T. Wiegand, G. Sullivan, G. Bjontegaard and A. Luthra, Overview of the H.264 / AVC Video Coding
Standard, IEEE Transactions on Circuits and Systems for Video Technology, to be published in
2003.

3. A. Hallapuro, M. Karczewicz and H. Malvar, Low Complexity Transform and Quantization — Part
I: Basic Implementation, JVT document JVT-B038, Geneva, February 2002.

4. H.264 Reference Software Version JM6.1d, http://bs.hhi.de/~suehring/tml/, March 2003.

REFERENCES 223

AN W

10.

11.

S. W. Golomb, Run-length encoding, IEEFE Trans. on Inf. Theory, IT-12, pp. 399—401, 1966.

G. Bjgntegaard and K. Lillevold, Context-adaptive VLC coding of coefficients, JVT document
JVT-C028, Fairfax, May 2002.

D. Marpe, G. Blittermann and T. Wiegand, Adaptive codes for H.26L, ITU-T SG16/6 document
VCEG-L13, Eibsee, Germany, January 2001.

H. Schwarz, D. Marpe and T. Wiegand, CABAC and slices, JVT document JVT-D020, Klagenfurt,
Austria, July 2002

D. Marpe, H. Schwarz and T. Wiegand, Context-Based Adaptive Binary Arithmetic Coding in the
H.264 / AVC Video Compression Standard, IEEE Transactions on Circuits and Systems for Video
Technology, to be published in 2003.

M. Karczewicz and R. Kurceren, A proposal for SP-frames, ITU-T SG16/6 document VCEG-L27,
Eibsee, Germany, January 2001.

M. Karczewicz and R. Kurceren, The SP and SI Frames Design for H.264/AVC, IEEE Transactions
on Circuits and Systems for Video Technology, to be published in 2003.

