
AdaBoost and the Super Bowl of Classifiers

A Tutorial Introduction to Adaptive Boosting

Raúl Rojas
Computer Science Department

Freie Universität Berlin
Christmas 2009

Abstract

This note provides a gentle introduction to the AdaBoost algorithm
used for generating strong classifiers out of weak classifiers. The mathe-
matical derivation of the algorithm has been reduced to the bare essentials.

1 Motivation

Assume that you are working on a two-class pattern recognition problem for
which you are given a large pool of classifiers (which we call experts). You want
to submit a still better classifier for a pattern recognition competition, the Super
Bowl of Classifiers. Therefore, you want to put together a “dream team” of
experts – let’s say a combination of eleven classifiers extracted from the pool. For
a given pattern xi each expert classifier kj can emit an opinion kj(xi) ∈ {−1, 1}
and the final decision of the committee K of experts is sign(C(xi)), the sign of
the weighted sum of expert opinions, where

C(xi) = α1k1(xi) + α2k2(xi) + · · ·+ α11k11(xi),

and k1, k2, . . . , k11 denote the eleven experts selected from the pool of classifiers.
The constants α1, α2, . . . , α11 are the weights we assign to the opinion of each
expert in the committee. Remember that every expert kj just answers “yes”
(+1) or “no” (−1) to a classification problem. The arrangement discussed here
is a linear combination of classifiers followed by a nonlinear decision (the sign
function).

The AdaBoost (adaptive boosting) algorithm was proposed in 1995 by Yoav
Freund and Robert Shapire as a general method for generating a strong classifier
out of a set of weak classifiers [1], [3]. AdaBoost works even when the classifiers
come from a continuum of potential classifiers (such as neural networks, linear
discriminants, etc.) However, for the sake of simplicity, let us assume that the

1



pool of experts is finite, that it contains L classifiers, and that it is provided as
input to AdaBoost. This is the case, for example, with the well-known method
of face recognition introduced by Viola and Jones [2].

2 Scouting

If we want to go to the classifiers competition we have to take care of: a) scouting
prospective team members, b) drafting them, and c) assigning a weight to their
contribution to the team.

Scouting is done by testing the classifiers in the pool using a training set T
of N multidimensional data points xi. For each point xi we have a label yi = 1
or yi = −1. We test and rank all classifiers in the expert pool by charging a
cost eβ any time a classifier fails (a miss), and a cost e−β every time a classifier
provides the right label (a success or “hit”). We require β > 0 so that misses are
penalized more heavily than hits. It might seem strange to penalize a hit with
non-zero cost, but as long as the penalty of success is smaller than the penalty for
a miss (e−β < eβ) everything is fine (see Problem 1). This kind of error function
different from the usual squared Euclidian distance to the classification target
is called an exponential loss function. AdaBoost uses exponential error loss as
error criterion.

When we test the L classifiers in the pool, we build a matrix S (S for
scouting) in which we record the misses (with a 1) and hits (with a zero) of each
classifier. Row i in the matrix is reserved for the data point xi. Column j is
reserved for the j-th classifier in the pool:

Classifiers

1 2 · · · L
x1 0 1 · · · 1
x2 0 0 · · · 1
x3 1 1 · · · 0
...

...
...

...
xN 0 0 · · · 0

In the example above, the first classifier succeeds with the data points x1, x2
and xN . It fails with the data point x3. It is easy to read from the table for
which data points the other classifiers fail or succeed.

The main idea of AdaBoost is to proceed systematically by extracting one
classifier from the pool in each of M iterations. The elements in the data set
are weighted according to their current relevance (or urgency) at each iteration.
At the beginning, all elements are assigned the same weight (just 1, or 1/N if
we want to have a total sum of 1 for all weights). As the drafting progresses,
the more difficult examples, that is, those where the committee still performs
badly, are assigned larger and larger weights. The drafting process concentrates

2



in selecting new classifiers for the committee focusing on those which can help
with the still misclassified examples. It would be superfluous to draft a classifier
which always, or almost always, produces the same opinion as a classifier already
drafted. If we wanted to draft a classifier twice, we could just as well duplicate
its weight. The best “team players” are those which can provide new insights
to the committee. Classifiers being drafted should complement each other in an
optimal way. Not everybody can be the quarterback.

3 Drafting

In each iteration we need to rank all classifiers, so that we can select the current
best out of the pool. At the m-th iteration we have already included m − 1
classifiers in the committee and we want to draft the next one. The current
linear combination of classifiers is

C(m−1)(xi) = α1k1(xi) + α2k2(xi) + · · ·+ αm−1km−1(xi)

and we want to extend it to

Cm(xi) = C(m−1)(xi) + αmkm(xi).

At the first iteration (m = 1), C(m−1) is the zero function. We define the total
cost, or total error, of the extended classifier as the exponential loss

E =

N∑
i=1

e−yi(C(m−1)(xi)+αmkm(xi))

where αm and km are yet to be determined in an optimal way. Since our
intention is to draft km we rewrite the above expression as

E =

N∑
i=1

w
(m)
i e−yiαmkm(xi)) (1)

where
w

(m)
i = e−yiC(m−1)(xi) (2)

for i = 1, . . . , N . In the first iteration w
(1)
i = 1 for i = 1, . . . , N . During later

iterations, the vector w(m) represents the weight assigned to each data point in
the training set at iteration m. We can split the sum in Eq. 1 into two sums

E =
∑

yi=km(xi)

w
(m)
i e−αm +

∑
yi 6=km(xi)

w
(m)
i eαm

This means that the total cost is the weighted cost of all hits plus the weighted
cost of all misses. Writing the first summand as Wce

−αm and the second as
Wee

αm , we simplify the notation to

E = Wce
−αm +Wee

αm (3)

3



For the selection of km the exact value of αm > 0 is irrelevant, since for a
fixed αm minimizing E is equivalent to minimizing eαmE and because

eαmE = Wc +Wee
2αm

Since e2αm > 1, we can rewrite the above expression as

eαmE = (Wc +We) +We(e
2αm − 1)

Now, (Wc + We) is the total sum W of the weights of all data points, that
is, a constant in the current iteration. The right hand side of the equation
is minimized when at the m-th iteration we pick the classifier with the lowest
total cost We (that is the lowest rate of weighted error). Intuitively this makes
sense, the next draftee, km, should be the one with the lowest penalty given the
current set of weights.

4 Weighting

Having picked the m-th member of the committee we need to determine its
weight αm. From Eq. 3 we immediately see that

dE

dαm
= −Wce

−αm +Wee
αm

Equating this expression to zero and multiplying by eαm we obtain

−Wc +Wee
2αm = 0

The optimal αm is thus:

αm =
1

2
ln

(
Wc

We

)
Remembering that W is the total sum of weights, we can rewrite the expression
above as

αm =
1

2
ln

(
W −We

We

)
=

1

2
ln

(
1− em

em

)
Where em = We/W , is the percentage rate of error given the weights of the
data points.

5 Pseudocode

Given a training set T of data points xi and their labels yi in a two class problem

(+1,-1), we assign initial weights w
(1)
i = 1 to all data points xi. We want to draft

a committee of M classifiers from a pool of classifiers. We perform M iterations.
At each iteration we call W the sum of weights of all data points, and We the

4



sum of weights of those data points where the classifier being considered yields
the wrong label.

AdaBoost
For m = 1 to M

1. Select and extract from the pool of classifiers the classifier km which min-
imizes

We =
∑

yi 6=km(xi)

w
(m)
i

2. Set the weight αm of the classifier to

αm =
1

2
ln

(
1− em

em

)
where em = We/W

3. Update the weights of the data points for the next iteration. If km(xi) is
a miss, set

w
(m+1)
i = w

(m)
i eαm = w

(m)
i

√
1− em
em

otherwise

w
(m+1)
i = w

(m)
i e−αm = w

(m)
i

√
em

1− em

Some comments about this pseudocode formulation of AdaBoost are perti-
nent. The pool of classifiers in Step 1 can be substituted by a family of classifiers,
one of whose members is trained to minimize the error function given the current
weights. That is, the pool of classifiers does not need to be given in advance, it
only needs to ideally exist. If indeed a finite set of classifiers is given, we only
need to test the classifiers once for each data point. The scouting matrix S can
be reused at each iteration, multiplying the transposed vector of weights w(m)

with S in order to determine We for each classifier in the pool.
Regarding the weights, it is possible to reformulate the weight update step

so that only misses lead to a weight modification (see Problem 3).
Note that the weight vector w(m) is constructed iteratively. It could be

recomputed completely at every iteration according to Eq. 2, but the iterative
construction is more efficient and simple to implement.

Note also, that a classifier which does not perform better than chance (i.e.,
for which em = 1/2) receives a weight of zero. A perfect classifier (em = 0) would
receive an infinite weight, since it would be the only committee member that
we need. A perfect liar (em = 1) would receive a negative infinite weight. We
just reverse its decision every time and draft it as the only committee member.

5



6 Problems

1. Show that if we assign cost a to misses and cost b to hits, where a > b > 0,
we can rewrite such costs as a = cd and b = c−d for constants c and d. That
is, exponential loss costs of the type eαm and e−αm do not compromise
generality.

2. Show that normalizing the weights of the data points at each iteration is
irrelevant

3. If we leave the weights of hits unchanged, show how to correctly update
the weights of misclassified data points.

4. Define a two-class problem in the plane (for example, a circle of points
inside a square) and build a strong classifier out of a pool of randomly
generated linear discriminants of the type sign(ax1 + bx2 + c).

5. Read the code of the implementation of the Viola-Jones algorithm in the
OpenCV library.

References

[1] Y. Freund, and R. Shapire, “A decision-theoretic generalization of on-line
learning and an application to boosting”, Proceedings of the Second European
Conference on Computational Learning Theory, 1995, pp. 23–37.

[2] Paul A. Viola, Michael J. Jones, “Robust Real-Time Face Detection”, ICCV
2001, Vol. 2, pp. 747.

[3] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning,
Springer-Verlag, New York, 2001.

6


