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1 Introduction

Although we tend to work with rotation matrices in two or three dimensions, sometimes the question arises
about how to generate rotation matrices in arbitrary dimensions. This document describes a method for
computing rotation matrices using power series of matrices. The approach is one you see in an undergraduate
mathematics course on solving systems of linear differential equations with constant coefficients; for example,
see [Bra83, Chapter 3].

1.1 Power Series of Functions

The natural exponential function is introduced in Calculus, namely, exp(x) = ex, where the base is (approx-
imately) e

.= 2.718281828. The function may be written as a power series

exp(x) = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xk

k!
+ · · · =

∞∑
k=0

xk

k!
(1)

The power series is known to converge for any real number x. The formula extends to complex numbers
z = x + iy, where x and y are real numbers and i =

√
−1,

ez = ex+iy = exeiy = exp(x) (cos(y) + i sin(y)) (2)

The term exp(x) may be written as a power series using Equation (1). The trigonometric terms also have
power series representations,

sin(y) = y − y3

3!
+

y5

5!
− · · · =

∞∑
k=0

(−1)k y2k+1

(2k + 1)!
(3)

cos(y) = 1− y2

2!
+

y4

4!
− · · · =

∞∑
k=0

(−1)k y2k

(2k)!
(4)

The latter two power series also converge for any real number y.

1.2 Power Series Involving Matrices

The power series representations extend to functions whose inputs are square matrices rather than scalars,
taking us into the realm of matrix algebra; for example, see [HJ85]. That is, exp(M), cos(M), and sin(M)
are power series of the square matrix M , and they converge for all M .

In particular, we are interested in exp(M) for square matrix M . A note of caution is in order. The
scalar-valued exponential function exp(x) has various properties that do not immediately extend to the
matrix-valued function. For example, we know that

exp(a + b) = ea+b = eaeb = ebea = eb+a = exp(b + a) (5)

for any scalars a and b. This formula does not apply to all pairs of matrices A and B. The problem is that
matrix multiplication is not commutative, so reversing the order of terms exp(A) and exp(B) in the products
generally produces different values. It is true, though that

exp(A + B) = exp(A) exp(B), when AB = BA (6)
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That is, as long as A and B commute in the multiplication, the usual property of power-of-sum-equals-
product-of-powers applies.

The power series for exp(M) of a square matrix M is formally defined as

exp(M) = I + M +
M2

2!
+ · · · =

∞∑
k=0

Mk

k!
(7)

and converges for all M . The first term, I, is the identity matrix of the same size as M . The immediate
question is how one goes about computing the power series. That is one of the goals of this document and
is described next.

1.3 Reduction of the Matrix Power Series

Suppose that the n × n matrix M is diagonalizable; that is, suppose we may factor M = PDP−1, where
D = Diag(d1, . . . , dn) is a diagonal matrix and P is an invertible matrix with inverse P−1. The matrix
powers are easily shown to be Mk = PDkP−1, where Dk = Diag(dk

1 , . . . , dk
n). The power series factors as

exp(M) =
∑∞

k=0
Mk

k! =
∑∞

k=0 P Dk

k! P−1

= P
(∑∞

k=0
Dk

k!

)
P−1

= P Diag
(∑∞

k=0
dk
1

k! , . . . ,
∑∞

k=0
dk

n

k!

)
P−1

= P Diag
(
ed1 , . . . , edn

)
P−1

(8)

The expression is valid regardless of whether P and D have real-valued or complex-valued entries. For the
purpose of numerical computation, when D has a real-valued entry, dj , then exp(dj) may be computed using
any standard mathematics library. Naturally, the computation is only an approximation. When D has a
complex-valued entry, dj = xj + iyj , then Equation (2) may be used to obtain exp(dj) = exp(xj)(cos(yj) +
i sin(yj)). All of exp(xj), cos(yj), and sin(yj) may be computed using any standard mathematics library.

The problem, though, is that not all matrices M are diagonalizable. A special case that arises often is a
real-valued symmetric matrix M . Such matrices have only real-valued eigenvalues and a complete basis of
orthonormal eigenvectors. The eigenvalues are the diagonal entries of D and the corresponding eigenvectors
become the columns of P . The orthonormality of the eigenvectors guarantees that P is orthogonal, so
P−1 = PT (the transpose is the inverse). A more general result is discussed in [HS74, Chapter 6], which
applies to all matrices. A brief summary is provided here.

A real-valued matrix S that is diagonalizable is said to be semisimple. A real-valued matrix N is nilpotent
if there exists a power p ≥ 1 for which Np = 0. Generally, a real-valued matrix M may be uniquely
decomposed as M = S + N , where S is real-valued and semisimple, N is real-valued and nilpotent, and
SN = NS. Because S is diagonalizable, we may factor it is S = PDP−1, where D = Diag(d1, . . . , dn) is a
diagonal matrix and P is invertible. What this means regarding the exponential function is

exp(M) = exp(S + N) = exp(S) exp(N) = P Diag
(
ed1 , . . . , edn

)
P−1

p−1∑
k=0

Nk

k!
(9)

The key here is that the power series for exp(N) is really a finite sum because N is nilpotent. Equation (9)
shows us how to compute exp(M) for any matrix M ; in particular, the equation may be implemented on a
computer. Notice that in the special case of a symmetric matrix M , it must be that M = S and N = 0.
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The discussion here allows for complex numbers. In particular, P and D might have complex-valued entries.
Instead, we may factor the n × n matrix S = QEQ−1 as follows. Let S have r real-valued eigenvalues λ1

through λr and c real-valued eigenvalues α1 + iβ1 through αc + iβc, where n = r + c. We may construct
a basis of vectors for IRn that become the columns of the matrix Q and for which the matrix E has the
block-diagonal form

E =



λ1

. . .

λr  α1 −β1

β1 α1


· · ·  αc −βc

βc αc





(10)

The exponential of E has the block-diagonal form

exp(E) =



eλ1

. . .

eλr

eα1

 cos β1 − sinβ1

sinβ1 cos β1


· · ·

eαc

 cos βc − sinβc

sinβc cos βc





(11)

The matrix exp(M) is therefore computed using only real-valued arithmetic. The heart of the construction
relies on factoring M = S + N , computing the eigenvalues of S, and computing an orthogonal basis for IRn

from S.

1.4 The Cayley-Hamilton Theorem

This is also a useful result that allows a reduction of the power series for exp(M) to a finite sum. The
eigenvalues of an n× n matrix M are the roots to the characteristic polynomial

p(t) = det(M − tI) = p0 + p1t + · · ·+ pntn =
n∑

k=0

pktk (12)

where I is the identity matrix. The degree of p is n and the coefficients are p0 through pn = (−1)n. The
characteristic equation is p(t) = 0. The Cayley-Hamilton Theorem states that if you formally substitute M
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into the characteristic equation, you obtain equality,

0 = p(M) = p0I + p1M + · · ·+ Mn =
n∑

k=0

pkMk (13)

Multiplying this equation by powers of M and reducing everytime the largest power is a multiple of n allows
a reduction of the power series for exp(M) to

exp(M) =
∞∑

k=0

Mk

k!
=

n−1∑
k=0

ckMk (14)

for some coefficients c0 through cn−1. These coefficients are necessarily functions of the characteristic coef-
ficients pj for 0 ≤ j ≤ n but the relationships are at first glance complicated to determine in closed form.
This leads us into the topic of ordinary difference equations.

1.5 Ordinary Difference Equations

This is a topic whose theory parallels that of ordinary differential equations. It is a large topic that is not
discussed in full detail here; a summary of it is provided in [Ebe03, Appendix D]. Generally, one has a
sequence of numbers {xk}∞k=0 and a relationship that determines a term in the sequence from the previous
n terms:

xk+n = f(xk, · · · , xk+n−1), k ≥ 0 (15)

This is an explicit equation for xk+n. The equation is said to have degree n ≥ 1. The initial conditions are
user-specified x0 through xn−1. An implicit equation is

F (xk, · · · , xk+n−1, xk+n) = 0, k ≥ 0 (16)

and are generally more difficult to solve because the xk+n term might occur in such a manner as to prevent
solving for it explicitly.

The subtopic of interest here is how to solve ordinary difference equations that are linear and have constant
coefficients. The general equation of this form is written with all terms on one side of the equation as if it
were implicit, but this is still an explicit equation because we may solve for xk+n,

pnxk+n + pn−1xk+n−1 + . . . p1xk+1 + p0xk = 0 (17)

where p0 through pn are constants with pn 6= 0. Notice that the coefficients may be used to form the
characteristic polynomial described in the previous section, p(t) = p0 + p1t + · · ·+ pntn with pn = (−1)n.

The method of solution for the linear equation with constant coefficients involves computing the roots of the
characteristic equation. Let t1 through t` be the distinct roots of p(t) = 0. Let each root tj have multiplicity
mj ; necessarily, n = m1 + · · ·+m`. The Fundamental Theorem of Algebra states that the polynomial factors
into a product,

p(t) =
∏̀
j=1

(t− tj)
mj (18)

Equation (17) has mj linearly independent solutions corresponding to tj , namely,

xk = tkj , xk = ktkj , , · · · , xk = kmj−1tkj (19)
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This is the case even when tj is a complex-valued root. The general solution to Equation (17) is

xk =
∑̀
j=1

(
mj−1∑
s=0

cjsk
s

)
tkj , k ≥ n (20)

where the n coefficients cjs are determined from the initial conditions which are the user-specified values x0

through xn−1.

As it turns out, the finite difference equations and constructions apply equally as well when the xk are
matrices. In this case, the cjs of Equation (20) are themselves matrices.

1.6 Generating Rotation Matrices from Skew-Symmetric Matrices

Equation (6) shows how to exponentiate a sum of matrices. As noted, exp(A + B) = exp(A) exp(B) as long
as AB = BA. In particular, it is the case that I = exp(0) = exp(A + (−A)) = exp(A) exp(−A), where I is
the identity matrix. Thus, we have the formula for inversion of an exponential of a matrix,

exp(A)−1 = exp(−A) (21)

The transpose of a sum of matrices is the sum of the transposes of the matrices, a property that also extends
to the exponential power series. A consequence is

exp(A)T = exp
(
AT
)

(22)

Now consider a skew-symmetric matrix S. Such a matrix has the property ST = −S. Define R = exp(S).
Using Equations (21) and (22),

RT = exp(S)T = exp
(
ST
)

= exp(−S) = exp(S)−1 = R−1 (23)

Because the inverse and transpose of R are the same matrix, R must be an orthogonal matrix. Although
in the realm of advanced mathematics, it may be shown that in fact R is a rotation matrix. The essence
of the argument is that the space of orthogonal matrices has two connected components, one for which the
determinant is 1 (rotation matrices) and one for which the determinant is −1 (reflection matrices). Each
component is path connected. The curve of orthogonal matrices exp(tS) for t ∈ [0, 1] is a path connecting I
(the case t = 0) and R = exp(S) (the case t = 1), so R and I must have the same determinant, which is 1,
and R is therefore a rotation matrix.

2 Rotations Matrices in 2D

The general skew-symmetric matrix in 2D is

S = θ

 0 −1

1 0

 =

 0 −θ

θ 0

 (24)

where θ is any real-valued number. The corresponding rotation matrix is R = exp(S). The characteristic
equation for S is

0 = p(t) = det(S − tI) = t2 + θ2 (25)
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The Cayley-Hamilton Theorem guarantees that

S2 + θ2I = 0 (26)

so that S2 = −θ2I. Higher powers of S are S3 = −θ2S, S4 = −θ2S2 = θ4I, and so on. Substituting these
into the power series for exp(S) and grouping together the terms involving I and S produces

R = exp(S)

= I + S + S2

2! + S3

3! + S4

4! + S5

5! + · · ·

= I + S − θ2

2! I −
θ2

3! S + θ4

4! I + θ4

5! S − · · ·

=
(
1− θ2

2! + θ4

4! − · · ·
)

I +
(
1− θ2

3! + θ4

5! − · · ·
)

S

= cos(θ)I +
(

sin(θ)
θ

)
S

=

 cos(θ) − sin(θ)

sin(θ) cos(θ)



(27)

The rotation matrix may be computed using the eigendecomposition method of Equation (8). The eigenvalues
of S are ±iθ, where i =

√
−1. Corresponding eigenvectors are (±i, 1). The matrices D, P , and P−1 in the

decomposition are

D =

 iθ 0

0 −iθ

 , P =

 i −i

1 1

 , P−1 =
1
2i

 1 i

−1 i

 (28)

It is easily verified that S = PDP−1. The rotation matrix is computed to be

R = P exp(D)P−1

=

 i −i

1 1

 eiθ 0

0 e−iθ

 1
2i

 1 i

−1 i



=

 eiθ+e−iθ

2 − eiθ−e−iθ

2i

eiθ−e−iθ

2i
eiθ+e−iθ

2



=

 cos(θ) − sin(θ)

sin(θ) cos(θ)



(29)

where we have used the identities e±iθ = cos(θ)± i sin(θ).

The rotation matrix may also be computed using ordinary finite differences. The linear difference equation
is

Xk+2 + θ2Xk = 0, k ≥ 0

X0 = I, X1 = S
(30)
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We know from the construction that Sk = Xk. Equation (20) is

Xk = (iθ)kC0 + (−iθ)kC1 (31)

for unknown coefficient matrices C0 and C1. The initial conditions imply

I = C0 + C1

S = iθC0 − iθC1

(32)

and have the solution
C0 = I−(i/θ)S

2

C1 = I+(i/θ)S
2

(33)

The solution to the linear difference equation is

Sk = Xk = (iθ)k I − (i/θ)S
2

+ (−iθ)k I + (i/θ)S
2

(34)

When k is even, say, k = 2p, Equation (34) reduces to

S2p = (−1)pθ2pI, p ≥ 1 (35)

When k is odd, say, k = 2p + 1, Equation (34) reduces to

S2p+1 = (−1)pθ2pS, p ≥ 1 (36)

But these powers of S are exactly what we computed manually and substituted into the power series for
exp(S) to produce Equation (27).

3 Rotations Matrices in 3D

The general skew-symmetric matrix in 3D is

S = θ


0 a b

−a 0 c

−b −c 0

 (37)

where θ, a, b, and c are any real-valued numbers with a2 + b2 + c2 = 1. The corresponding rotation matrix
is R = exp(S). The characteristic equation for S is

0 = p(t) = det(S − tI) = −t3 − θ2t (38)

The Cayley-Hamilton Theorem guarantees that

− S3 − θ2S = 0 (39)
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so that S3 = −θ2S. Higher powers of S are S4 = −θ2S2, S5 = −θ2S3 = θ4S, S6 = −θ2S2, and so on.
Substituting these into the power series for exp(S) and grouping together the terms involving I, S, and S2

produces

R = exp(S)

= I + S + S2

2! + S3

3! + S4

4! + S5

5! + S6

6! + · · ·

= I + S + 1
2!S

2 − θ2

3! S −
θ2

4! S
2 + θ4

5! S + θ4

6! S
2 − · · ·

= I +
(
1− θ2

3! + θ4

5! − · · ·
)

S +
(

1
2! −

θ2

4! + θ4

6! − · · ·
)

S2

= I +
(

sin(θ)
θ

)
S +

(
1−cos(θ)

θ2

)
S2

(40)

If we define Ŝ = S/θ, then
R = I + sin(θ)Ŝ + (1− cos(θ))Ŝ2 (41)

which is Rodrigues’ Formula for a rotation matrix. The angle of rotation is θ and the axis of rotation has
unit-length direction (−c, b,−a).

The rotation matrix may also be computed using ordinary finite differences. The linear difference equation
is

Xk+3 + θ2Xk = 0, k ≥ 0

X0 = I, X1 = S, X2 = S2
(42)

We know from the construction that Sk = Xk. The roots of the characteristic equation are 1 and ±iθ.
Equation (20) is

Sk = Xk = 1kC0 + (iθ)kC1 + (−iθ)kC2 (43)

for unknown coefficient matrices C0, C1, and C2. The initial conditions imply

I = C0 + C1 + C2

S = C0 + iθC1 − iθC2

S2 = C0 − θ2C1 − θ2C2

(44)

and have the solution
C0 = S2+θ2I

1+θ2

C1 = (I−C0)−(i/θ)(S−C0)
2

C2 = (I−C0)+(i/θ)(S−C0)
2

(45)

When k is odd, say, k = 2p + 1, Equation (43) reduces to the following using Equation (45)

S2p+1 = (−1)pθ2pS, p ≥ 1 (46)

When k is even, say, k = 2p + 2, Equation (43) reduces to the following using Equation (45)

S2p+2 = (−1)pθ2pS2, p ≥ 1 (47)

But these powers of S are exactly what we computed manually and substituted into the power series for
exp(S) to produce Equation (40).
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4 Rotations Matrices in 4D

The general skew-symmetric matrix in 4D is

S = θ


0 a b d

−a 0 c e

−b −c 0 f

−d −e −f 0

 (48)

where θ, a, b, c, d, e, and f are any real-valued numbers with a2+b2+c2+d2+e2+f2 = 1. The corresponding
rotation matrix is R = exp(S). The characteristic equation for S is

0 = p(t) = det(S − tI) = t4 + θ2t2 + θ4(af − be + cd)2 = t4 + θ2t2 + θ4δ2 (49)

where δ = af − be + cd. The Cayley-Hamilton Theorem guarantees that

S4 + θ2S2 + θ4δ2 = 0 (50)

Computing closed-form expressions for powers of S is simple, much like previous dimensions, when δ = 0.
It is more difficult when δ 6= 0. Let us consider the cases separately. In both cases, we assume that θ 6= 0,
otherwise S = 0 and the rotation matrix is the identity matrix.

4.1 The Case δ = 0

Suppose that δ = af − be + cd = 0; then S4 + θ2S2 = 0. The closed-form expressions for powers of S are
easy to generate. Specifically,

S2p+2 = (−1)pθ2pS2, p ≥ 1

S2p+3 = (−1)pθ2pS3, p ≥ 1
(51)

This leads to the power series reduction

R = exp(S) = I + S +
(

1− cos(θ)
θ2

)
S2 +

(
θ − sin(θ)

θ3

)
S3 (52)

It is possible for further reduction depending on the entries of S. For example, if d = e = f = 0, we
effectively have the 3D rotation in (x, y, z) embedded in 4D; the w-component is unchanged by the rotation.
The matrix S really satisfies S3 + θ2S = 0, in which case we may replace S3 = −θ2S in Equation (52)
and obtain Equation (40). The fact that S is a “root” of a 3rd-degree polynomial when the characteristic
polynomial is 4th-degree is related to the linear algebraic concept of minimal polynomial.

Another reduction occurs, for example, when b = c = d = e = f = 0. The matrix S satisfies S2 + θ2I = 0
and Equation (52) reduces to Equation (27).
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4.2 The Case δ 6= 0

Suppose that δ = af − be + cd 6= 0. The characteristic polynomial t4 + θ2t2 + θ4δ2 is a quadratic polynomial
in t2. We may use the quadratic formula to obtain its roots,

t2 =
−θ2 ±

√
θ4 − 4θ4δ2

2
= −θ2

(
1±

√
1− 4δ2

2

)
(53)

Notice that

1− 4δ2 = (a2 + b2 + c2 + d2 + e2 + f2)− 4(af − be + cd)2

=
[
(a− f)2 + (b + e)2 + (c− d)2

] [
(a + f)2 + (b− e)2 + (c + d)2

]
= ρ2 ≥ 0

(54)

where
ρ =

√
[(a− f)2 + (b + e)2 + (c− d)2] [(a + f)2 + (b− e)2 + (c + d)2] (55)

Thus, the right-hand side of Equation (53) is real-valued. Moreover, 1 − 4δ2 < 1, so the right-hand side of
Equation (53) consists of two negative real numbers. Taking the square roots produces the t-roots for the
characteristic equation, all having zero real part,

t = ±iθ

√
1− ρ

2
=: ±iα, ±iθ

√
1 + ρ

2
=: ±iβ (56)

The values α and β are defined by these equations, both values being positive real numbers with α ≤ β.

4.2.1 The Case ρ > 0

Using the linear difference equation approach, the powers of S are

Sk = (iα)kC0 + (−iα)kC1 + (iβ)kC2 + (−iβ)kC3 (57)

where the C-matrices are determined by the initial conditions

I = C0 + C1 + C2 + C3

S = iαC0 − iαC1 + iβC2 − iβC3

S2 = −α2C0 − α2C1 − β2C2 − β2C3

S3 = −iα3C0 + iα3C1 − iβ3C2 + iβ3C3

(58)

The solution is
C0 = αβ3I−iβ3S+αβS2−iβS3

2αβ(β2−α2)

C1 = αβ3I+iβ3S+αβS2+iβS3

2αβ(β2−α2)

C2 = −α3βI+iα3S−αβS2+iαS3

2αβ(β2−α2)

C3 = −α3βI−iα3S−αβS2−iαS3

2αβ(β2−α2)

(59)
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We may use Equation (57) to compute four consecutive powers of S, namely,

S4p = α4p(S2+β2I)−β4p(S2+α2I)
β2−α2

S4p+1 = α4p(S3+β2S)−β4p(S3+α2S)
β2−α2

S4p+2 = −α4p+2(S2+β2I)−β4p+2(S2+α2I)
β2−α2

S4p+3 = −α4p+2(S3+β2S)−β4p+2(S3+α2S)
β2−α2

(60)

for p ≥ 0. The exponential of S factors to

exp(S) =
∑∞

k=0
Sk

k!

=
∑∞

p=0
S4p

(4p)! +
∑∞

p=0
S4p+1

(4p+1)! +
∑∞

p=0
S4p+2

(4p+2)! +
∑∞

p=0
S4p+3

(4p+3)!

= 1
β2−α2

[(∑∞
p=0

α4p

(4p)!

)
(S2 + β2I)−

(∑∞
p=0

β4p

(4p)!

)
(S2 + α2I)+(∑∞

p=0
α4p

(4p+1)!

)
(S3 + β2S)−

(∑∞
p=0

β4p

(4p+1)!

)
(S3 + α2S)−(∑∞

p=0
α4p+2

(4p+2)!

)
(S2 + β2I) +

(∑∞
p=0

β4p+2

(4p+2)!

)
(S2 + α2I)−(∑∞

p=0
α4p+2

(4p+3)!

)
(S3 + β2S) +

(∑∞
p=0

β4p+2

(4p+3)!

)
(S3 + α2S)

]
(61)

This expansion appears to be quite complicated, but the following identities allow us to simplify the expres-
sion. Each equation below defines the function fj(x),

f0(x) =
∑∞

p=0
x4p

(4p)! = 1
4 (ex + e−x) + 1

2 cos(x)

f1(x) =
∑∞

p=0
x4p+1

(4p+1)! = 1
4 (ex − e−x) + 1

2 sin(x)

f2(x) =
∑∞

p=0
x4p+2

(4p+2)! = 1
4 (ex + e−x)− 1

2 cos(x)

f3(x) =
∑∞

p=0
x4p+3

(4p+3)! = 1
4 (ex − e−x)− 1

2 sin(x)

(62)

Notice that f0(x) = f ′1(x), f1(x) = f ′2(x), f2(x) = f ′3(x), and f3(x) = f ′0(x). It is also easy to verify that
exp(x) = f0(x) + f1(x) + f2(x) + f3(x). Equation (61) becomes

R = exp(S) = 1
β2−α2

[
f0(α)(S2 + β2I)− f0(β)(S2 + α2I)+

f1(α)
α (S3 + β2S)− f1(β)

β (S3 + α2S)−

f2(α)(S2 + β2I) + f2(β)(S2 + α2I)−
f3(α)

α (S3 + β2S) + f3(β)
β (S3 + α2S)

]
=

(
β2 cos(α)−α2 cos(β)

β2−α2

)
I +

(
β2 sin(α)/α−α2 sin(β)/β

β2−α2

)
S+(

cos(α)−cos(β)
β2−α2

)
S2 +

(
sin(α)/α−sin(β)/β

β2−α2

)
S3

(63)

4.2.2 The Case ρ = 0

Let ρ = 0. Based on Equation (54), the only time this can happen is when (a, b, c) = ±(f,−e, d). This
condition implies a2 + b2 + c2 = 1/2 and δ2 = 1/4. The t-roots are ±iθ/

√
2, each one having multiplicity 2.
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Define α = θ/
√

2. Using the linear difference equation approach, the powers of S are

Sk = (iα)kC0 + (−iα)kC1 + k(iα)kC2 + k(−iα)kC3 (64)

where the C-matrices are determined by the initial conditions

I = C0 + C1

S = iα(C0 − C1 + C2 − C3)

S2 = −α2(C0 + C1 + 2C2 + 2C3)

S3 = −iα3(C0 − C1 + 3C2 − 3C3)

(65)

The solution is
C0 = I

2 −
3iS

2
√

2 θ
− iS3
√

2 θ3

C1 = I
2 + 3iS

2
√

2 θ
+ iS3
√

2 θ3

C2 = − I
4 + iS

2
√

2 θ
− S2

2θ2 + iS3
√

2 θ3

C3 = − I
4 −

iS
2
√

2 θ
− S2

2θ2 − iS3
√

2 θ3

(66)

We may use Equation (64) to compute four consecutive powers of S, namely,

S4p = α4pI − 4pα4p
(

I
2 + S2

2α2

)
S4p+1 = α4p+1 S

α − 4pα4p+1
(

S
2α + S3

2α3

)
S4p+2 = α4p+2 S2

α2 + 4pα4p+2
(

I
2 + S2

2α2

)
S4p+3 = α4p+3 S3

α3 + 4pα4p+3
(

S
2α + S3

2α3

) (67)

for p ≥ 0. Define Ŝ = S/α. The exponential of S factors to

exp(S) =
∑∞

k=0
Sk

k!

=
∑∞

p=0
S4p

(4p)! +
∑∞

p=0
S4p+1

(4p+1)! +
∑∞

p=0
S4p+2

(4p+2)! +
∑∞

p=0
S4p+3

(4p+3)!

=
(∑∞

p=0
α4p

(4p)!

)
I −

(∑∞
p=0

4pα4p

(4p)!

)(
I
2 + Ŝ2

2

)
+(∑∞

p=0
α4p+1

(4p+1)!

)
Ŝ −

(∑∞
p=0

4pα4p+1

(4p+1)!

)(
Ŝ
2 + Ŝ3

2

)
+(∑∞

p=0
α4p+2

(4p+2)!

)
Ŝ2 +

(∑∞
p=0

4pα4p+2

(4p+2)!

)(
I
2 + Ŝ2

2

)
+(∑∞

p=0
α4p+3

(4p+3)!

)
Ŝ3 +

(∑∞
p=0

4pα4p+3

(4p+3)!

)(
Ŝ
2 + Ŝ3

2

)
(68)

We may simplify this using the definitions for fj(x) and the following identities,

g0(x) =
∑∞

p=0
4px4p

(4p)! = xf3(x)

g1(x) =
∑∞

p=0
4px4p+1

(4p+1)! = xf0(x)− f1(x)

g2(x) =
∑∞

p=0
4px4p+2

(4p+2)! = xf1(x)− 2f2(x)

g3(x) =
∑∞

p=0
4px4p+3

(4p+3)! = xf2(x)− 3f3(x)

(69)

13



Notice that g0(x) = g′1(x), g1(x) = g′2(x), and g2(x) = g′3(x). Equation (68) becomes

R = exp(S) =
(
f0(α)− g0(α)

2 + g2(α)
2

)
I +

(
f1(α)− g1(α)

2 + g3(α)
2

)
Ŝ+(

f2(α)− g0(α)
2 + g2(α)

2

)
Ŝ2 +

(
f3(α)− g1(α)

2 + g3(α)
2

)
Ŝ3

=
(

2 cos(α)+α sin(α)
2

)
I +

(
3 sin(α)−α cos(α)

2α

)
S+(

sin(α)
2α

)
S2 +

(
sin(α)−α cos(α)

2α3

)
S3

(70)

4.3 Summary of the Formulas

We start with the skew-symmetric matrix

S = θ


0 a b d

−a 0 c e

−b −c 0 f

−d −e −f 0

 (71)

where a2 + b2 + c2 + d2 + e2 + f2 = 1. Define

δ = af − be + cd, ρ =
√

1− 4δ2, α = θ

√
1− ρ

2
, β = θ

√
1 + ρ

2
(72)

Equation (63) really is the most general formula for the rotation matrix R corresponding to a skew-symmetric
matrix S. To repeat that formula,

R =
(

β2 cos(α)−α2 cos(β)
β2−α2

)
I +

(
β2 sin(α)/α−α2 sin(β)/β

β2−α2

)
S

+
(

cos(α)−cos(β)
β2−α2

)
S2 +

(
sin(α)/α−sin(β)/β

β2−α2

)
S3

(73)

This equation was constructed for when β > α > 0. However, when α = 0, Equation(73) reduces to Equation
(52), with only the name change from θ to β,

R = I + S +
(

1−cos(β)
β2

)
S2 +

(
β−sin(β)

β3

)
S3 (74)

The evaluation of sin(α)/α at α = 0 is done in the limiting sense, limα→0 sin(α)/α = 1. Equation (70) was
for the case β = α but may be obtained also from Equation (73) in the limiting sense as β → α. l’Hôpital’s
Rule may be applied to the coefficients of I, S, S2, and S3 to obtain the coefficients in Equation (70),

R =
(

2 cos(α)+α sin(α)
2

)
I +

(
3 sin(α)−α cos(α)

2α

)
S

+
(

sin(α)
2α

)
S2 +

(
sin(α)−α cos(α)

2α3

)
S3

(75)
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4.4 Source Code for Random Generation

Here is some sample code to illustrate Equation (73) when β 6= α.

void RandomRotation4D_BetaNotEqualAlpha ()
{

double a = Mathd::SymmetricRandom(); // number is in [-1,1)
double b = Mathd::SymmetricRandom(); // number is in [-1,1)
double c = Mathd::SymmetricRandom(); // number is in [-1,1)
double d = Mathd::SymmetricRandom(); // number is in [-1,1)
double e = Mathd::SymmetricRandom(); // number is in [-1,1)
double f = Mathd::SymmetricRandom(); // number is in [-1,1)
Matrix4d S
(

0.0, a, b, d,
-a, 0.0, c, e,
-b, -c, 0.0, f,
-d, -e, -f, 0.0

);

double theta = Mathd::Sqrt(a*a + b*b + c*c + d*d + e*e + f*f);
double invLength = 1.0/theta;
a *= invLength;
b *= invLength;
c *= invLength;
d *= invLength;
e *= invLength;
f *= invLength;

double delta = a*f - b*e + c*d;
double delta2 = delta*delta;
double p = Mathd::Sqrt(1.0 - 4.0*delta2);
double alpha = theta*Mathd::Sqrt(0.5*(1.0 - p));
double beta = theta*Mathd::Sqrt(0.5*(1.0 + p));
double invDenom = 1.0/(beta*beta - alpha*alpha);
double cosa = Mathd::Cos(alpha);
double sina = Mathd::Sin(alpha);
double cosb = Mathd::Cos(beta);
double sinb = Mathd::Sin(beta);

double k0 = (beta*beta*cosa - alpha*alpha*cosb)*invDenom;
double k1 = (beta*beta*sina/alpha - alpha*alpha*sinb/beta)*invDenom;
double k2 = (cosa - cosb)*invDenom;
double k3 = (sina/alpha - sinb/beta)*invDenom;

Matrix4d I = Matrix4d::IDENTITY;
Matrix4d S2 = S*S;
Matrix4d S3 = S*S2;
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Matrix4d R = k0*I + k1*S + k2*S2 + k3*S3; // The random rotation matrix.

// Sanity checks.
Matrix4d S4 = S*S3;
double theta2 = theta*theta;
double theta4 = theta2*theta2;
Matrix4d zero0 = S4 + theta2*S2 + (theta4*delta2)*I; // = the zero matrix
double one = R.Determinant(); // = 1
Matrix4d zero1 = R.TransposeTimes(R) - I; // = the zero matrix

}

Here is some sample code to illustrate the case when β = α.

void RandomRotation4D_BetaEqualAlpha ()
{

double a = Mathd::SymmetricRandom(); // number is in [-1,1)
double b = Mathd::SymmetricRandom(); // number is in [-1,1)
double c = Mathd::SymmetricRandom(); // number is in [-1,1)
double mult = Mathd::Sqrt(0.5)/Mathd::Sqrt(a*a + b*b + c*c);
a *= mult;
b *= mult;
c *= mult;
double d = c;
double e = -b;
double f = a;
double theta = Mathd::SymmetricRandom();
Matrix4d S
(

0.0, a, b, d,
-a, 0.0, c, e,
-b, -c, 0.0, f,
-d, -e, -f, 0.0

);
S *= theta;

double lensqr = a*a + b*b + c*c + d*d + e*e + f*f; // = 1
double delta = a*f - b*e + c*d; // = 1/2
double delta2 = delta*delta; // = 1/4
double discr = 1.0 - 4.0*delta2; // = 0
double p = Mathd::Sqrt(Mathd::FAbs(discr)); // = 0
double alpha = theta*Mathd::Sqrt(0.5);
double cosa = Mathd::Cos(alpha);
double sina = Mathd::Sin(alpha);

double k0 = (2.0*cosa + alpha*sina)/2.0;
double k1 = (3.0*sina - alpha*cosa)/(2.0*alpha);
double k2 = sina/(2.0*alpha);
double k3 = (sina - alpha*cosa)/(2.0*alpha*alpha*alpha);
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Matrix4d I = Matrix4d::IDENTITY;
Matrix4d S2 = S*S;
Matrix4d S3 = S*S2;
Matrix4d R = k0*I + k1*S + k2*S2 + k3*S3; // The random rotation matrix.

// Sanity checks.
Matrix4d S4 = S*S3;
double theta2 = theta*theta;
double theta4 = theta2*theta2;
Matrix4d zero0 = S4 + theta2*S2 + (theta4*delta2)*I; // = the zero matrix
double one = R.Determinant(); // = 1
Matrix4d zero1 = R.TransposeTimes(R); // = the zero matrix

}
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