
Stability Analysis for Systems of Differential Equations

David Eberly
Geometric Tools, LLC
http://www.geometrictools.com/
Copyright c© 1998-2008. All Rights Reserved.

Created: February 8, 2003
Last Modified: March 2, 2008

Contents

1 Introduction 2

2 Physical Stability 2

3 Numerical Stability 4

3.1 Stability for Single-Step Methods . 4

3.2 Stability for Multistep Methods . 5

3.3 Choosing a Stable Step Size . 7

4 The Simple Pendulum 7

4.1 Numerical Solution of the ODE . 8

4.2 Physical Stability for the Pendulum . 14

4.3 Numerical Stability of the ODE Solvers . 14

1

http://www.geometrictools.com/

1 Introduction

In setting up a physical simulation involving objects, a primary step is to establish the equations of motion
for the objects. These equations are formulated as a system of second-order ordinary differential equations
that may be converted to a system of first-order equations whose dependent variables are the positions and
velocities of the objects. Such a system is of the generic form

ẋ = f(t,x), t ≥ 0, x(0) = x0 (1)

where x0 is a specified initial condition for the system. The components of x are the positions and velocities
of the objects. The function f(t,x) includes the external forces and torques of the system. A computer
implementation of the physical simulation amounts to selecting a numerical method to approximate the
solution to the system of differential equations. In many cases a general-purpose solver may be used with
little thought about the step size of the solver. If the simulation appears to work properly, then so be it.
However, in other cases the simulation might not behave as expected. A numerical analysis of the method
is in order to determine if the numerical method is stable, and if so, to select an appropriate step size for
the solver.

2 Physical Stability

A solution φ(t) to the system (1) is said to be stable if every solution ψ(t) of the system close to φ(t) at
initial time t = 0 remains close for all future time. In mathematical terms, reminiscient of the definition for
a limit: For each choice of ε > 0 there is a δ > 0 such that |ψ(t)− φ(t)| < ε whenever |ψ(0)− φ(0)| < δ. If
at least one solution ψ(t) does not remain close, then φ(t) is said to be unstable. For a stable solution the
ε-δ definition says that you select the maximum amount of error ε you can tolerate between ψ(t) and φ(t).
The value δ, which depends on your choice of ε, tells you how close to φ(0) you have to start in order to
stay within that error. I refer to the stability of the system of differential equations as the physical stability
of the system, emphasizing that the system of equations is a model of the physical behavior of the objects
of the simulation.

In general the stability analysis depends greatly on the form of the function f(t,x) and may be intractable.
In the case of an autonomous system where the function does not depend explicitly on t,

ẋ = f(x), t ≥ 0, x(0) = x0 (2)

the analysis is tractable. An equilibrium solution of this system is a constant vector c for which f(c) = 0.
That is, the constant function x(t) ≡ c is a solution to the differential equation with initial condition
x(0) = c. The system may be linearized about that constant by using Taylor’s Theorem,

f(x) = f(c) + Df(c)(x− c) + R(x̄) = Df(c)(x− c) + R(x̄)

where Df(c) is the matrix of first-order partial derivatives of f(x) evaluated at c. If f = (f1, f2, . . . , fn) and
x = (x1, x2, . . . , xn), the first-derivative matrix in general is

Df(x) =

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn

∂x1

∂fn

∂x2
· · · ∂fn

∂xn

2

The remainder is R(x̄) where x̄ is some value dependent on x and c and includes the second- and higher-
order terms of the original function. The last equality occurs because f(c) = 0 by definition of equilibrium
solution. The linearized system is ẋ = Df(c)(x− c), but we can make the change of variables z = x− c and
consider instead

ż = Az, t ≥ 0, z(0) = 0 (3)

where A = Df(c).

The physical stability of the linear system (3) is determined completely by the eigenvalues of the matrix A
which are the roots to the polynomial p(λ) = det(A−λI) = 0 where I is the identity matrix. An eigenvector
v corresponding to an eigenvalue λ is a nonzero vector for which Av = λv. The eigenvalues can be real- or
complex-valued. If λ = α + ıβ is an eigenvalue, written as a complex number, the real part of λ is the real
number α.

Stability of the Linear System

1. Every solution is stable if all the eigenvalues of A have negative real part.

2. Every solution is unstable if at least one eigenvalue of A has positive real part.

3. Suppose that the eigenvalues of A all have real parts that are zero or negative. List those
eigenvalues with zero real part as λj = ıβj for 1 ≤ j ≤ `. Let the multiplicity of λj be mj ;
that is, p(λ) = (λ−λj)mj q(λ) where q(λj) 6= 0. Every solution is stable if A has mj linearly
independent eigenvectors for each λj . Otherwise, every solution is unstable.

The results have to do with what types of functional terms appear in the solution to the linear system. If
λ = α (real-valued), then the solution includes terms of the form eαt and possibly tpeαt for various positive
powers p. If λ = α + ıβ where β 6= 0 (complex-valued), then the solution includes terms of the form
eαt sin(βt), eαt cos(βt), and possibly tpeαt sin(βt) and tpeαt cos(βt) for various positive powers p. If α < 0 for
all eigenvalues, then all the functional terms approach zero in the limit as t approaches infinity. If α > 0 for
at least one of the eigenvalues, the corresponding functional terms are unbounded as t approaches infinity
and consequently cannot stay close to the equilibrium solution zero. If λ = ıβ for an eigenvalue with all
other eigenvalues satisfying α ≤ 0, the condition that the number of linearly independent eigenvectors of
λ is equal to the multiplicity of λ implies that the functional terms only include cos(βt) and sin(βt), both
bounded for increasing time and the solutions are stable. If the number of linearly independent eigenvectors
is less than the multiplicity of λ, the functional terms include a tp cos(βt) and a tp sin(β) for some p ≥ 1, in
which case the solutions become unbounded as t approaches infinity, so the solutions are unstable.

The physical stability of the equilibrium solution c of the autonomous system (2) is related to that of its
linearized system.

Stability of the Autonomous System

1. Every solution is stable if all the eigenvalues of Df(c) have negative real part.

2. Every solution is unstable if at least one eigenvalue of Df(c) has positive real part.

3. Suppose that the eigenvalues of A all have real parts that are zero or negative with at
least one eigenvalue having zero real part. Not enough information is available to conclude
whether or not the equilibrium solution is stable. (More analysis must be done.)

3

3 Numerical Stability

Physical stability of an equilibrium solution to a system of differential equations addresses the behavior of
solutions that start nearby the equilibrium solution. However, we will solve ẋ = f(x) using some numerical
method. It is important that the approximations generated by the method are themselves close to the true
solution. The concept of closeness in this context is referred to as numerical stability. In general to obtain
numerical stability, you will need to carefully choose your step size h in the numerical solvers. The end
result of our discussion will be that you can only safely do this by understanding the relationship between
numerical stability and physical stability.

3.1 Stability for Single-Step Methods

Three concepts are of interest: consistency, convergence, and stability. Local truncation error refers to the
terms we discard when generating a numerical method from something such as a Taylor expansion. For
example, Euler’s method arises from Taylor’s Theorem in representing a solution to ẋ = f(t,x) as

x(ti+1) = x(ti) + hẋ(ti) +
h2

2
(̈x)(t̄i) = x(ti) + hf(ti,x(ti)) +

h2

2
(̈x)(t̄i)

where t̄i ∈ [ti, ti+1], but whose value is generally unknown to us. We discard the second-order term to obtain
the numerical method

yi+1 = yi + hf(ti,yi)

where yi is the approximation to x(ti). The discarded term is the local truncation error for Euler’s method
and is of order O(h2). As we make h small, the local truncation error for a single iteration is small. If we
can make the local truncation errors become small for k iterations, that is a good thing for our numerical
method. That leads us to the definition shown below.

Definition. Let τi denote the local truncation error at the i-th step of the numerical method.
The method is said to be consistent with the differential equation it approximates if

lim
h→0

max
1≤i≤k

|τi| = 0

Intuitively this says that for very small step sizes, the local truncation error made at any time t
is very small.

According to this definition, Euler’s method is consistent.

In general having very small local truncation errors at any time is not enough to guarantee that yi is a good
approximation to x(ti). We need a definition about closeness.

Definition. A numerical method is said to be convergent with respect to the differential equation
if

lim
h→0

max
1≤i≤k

|x(ti)− yi| = 0

Intuitively this says that for very small step sizes, the maximum error at any time t between the
approximation and the true solution is very small.

4

A careful analysis of Euler’s method will show that it is convergent.

Our last definition is about stability itself.

Definition. A numerical method is said to be stable if small changes in the initial data for the
differential equation produce correspondingly small changes in the subsequent approximations.
In formal terms, let x0 and x1 be two initial values for the differential equation. Let yi be the
approximation to the solution x(ti;x0) where the last component indicates the initial data that
generated the solution. Let ȳi be the approximation to x(ti;x1). For each ε > 0 there is a δ > 0
sufficiently small so that |yi − ȳi| < ε whenever |x1 − x0| < δ.

This definition is a statement about continuous dependence of solutions on the initial data.

The relationship between consistency, convergence, and stability for a single-step numerical method is sum-
marized by the following result.

Theorem. Consider the initial value problem ẋ = f(t,x) for t ∈ [t0, t0 + α] with initial data
x(t0) = x0. Let a numerical method for the equation be of the form y0 = x0 and yi+1 =
yi + hφ(ti,yi, h) for i ≥ 0. If there is a value h0 > 0 such that φ(t,y, h) is continuous on the
domain

D = {(t,y, h) : t ∈ [t0, t0 + α], y ∈ IRn, h ∈ [0, h0]}

and if there exists a constant L > 0 such that

|φ(t,y, h)− φ(t, ȳ, h)| ≤ L|y− ȳ|

for all (t,y, h), (t, ȳ, h) ∈ D, called a Lipschitz condition.

1. The numerical method is stable.

2. The method is convergent if and only if it is consistent; that is, if and only if φ(t,x, 0) =
f(t,x, 0) for all t ∈ [t0, t0 + α].

3. If the local truncation errors are bounded by |τi| ≤ T (h) for some function B(h) independent
of i and for h ∈ [0, h0], then |x(ti)− yi| ≤ B(h) exp(L(ti − t0))/L.

The condition in item 2 of the conclusion is easily verified for all the single-step numerical methods you
will encounter. Notice that for Euler’s method, φ(t,y, 0) = f(t,y). The same is true for the Runge-Kutta
methods. Item 3 of the conclusions gives us an upper bound on the error of the approximation.

3.2 Stability for Multistep Methods

A stability result for multistep methods is only slightly more complicated than the one for single-step
methods. The general multistep method can be formulated as

yi+1 =
m−1∑
j=0

ajyi−j + hF(ti, h,yi+1,yi, . . . ,yi+1−m), i ≥ 0

with start-up conditions yi = bi for selected constants bi with 0 ≤ i ≤ m − 1. Since we started with
a differential equation with initial condition x(t0) = x0, we choose y0 = x0. The other start-up values

5

are generated by some single-step method. The prototypical explicit method is Adams-Bashforth and the
prototypical implicit method is Adams-Moulton.

The concepts of convergence and stability are the same as for single-step methods, but consistency requires
a slight bit more to it. The local truncation errors for a multistep method are of the form

τi+1 =
x(ti+1)−

∑m−1
j=0 x(ti−j)

h
− F(ti, h,x(ti+1), . . . ,x(ti+1−m))

The analysis of the algorithm for the m-step Adams-Bashforth method will show that the local truncation
error is τi+1 = O(hm). The m-step Adams-Moulton method has local truncation error of τi+1 = O(hm+1).
The definition for consistency of a multistep method includes the same condition we used for single-step
methods,

lim
h→0

max
1≤i≤k

|τi| = 0

so the local truncation errors go to zero as the step size becomes small, but we additionally need to make
sure that the local truncation errors for the start-up conditions become small, also.

lim
h→0

max
1≤i≤m−1

|x(ti)− bi| = 0

The result for multistep methods that is the analogy of the one I stated for single-step methods is the
following.

Theorem. Consider the initial value problem ẋ = f(t,x) for t ∈ [t0, t0 + α] with initial data
x(t0) = x0. Consider a multistep method of the form yi+1 =

∑m−1
j=0 ajyi−j+hF(ti, h,yi+1,yi, . . . ,yi+1−m)

with start-up conditions y0 = x0 and yi = bi for specified constants bi with 1 ≤ i ≤ m − 1.
Suppose that F ≡ 0 whenever f ≡ 0. Suppose that F satisfies a Lipschitz condition

|F(ti, h,yi+1, . . . ,yi+1−m)− F(ti, h, ȳi+1, . . . , ȳi+1−m| ≤ L
m∑

j=0

|yi+1−j − ȳi+1−j |

for each i with m− 1 ≤ i ≤ n. Define the polynomial p(λ) = λm −
∑m−1

j=0 ajλ
m−1−j .

1. The numerical method is stable if and only if all roots of p(λ) = 0 satisfy |λ| ≤ 1 and any
root such that |λ| = 1 must be a simple root (multiplicity is 1).

2. If the numerical method is consistent with the differential equation, the method is stable if
and only if it is convergent.

The important aspect of this theorem for practical purposes is the analysis of the roots of p(λ). Note that
the roots can be nonreal. Also note that p(1) = 0 because of the way the aj were defined for multistep
methods. Thus, λ = 1 is always a root and has magnitude |λ| = 1. If λ = 1 is the only root of magnitude 1,
all other roots satisfying |λ| < 1, then the numerical method is said to be strongly stable. If more than one
root has magnitude one, the others satisfying |λ| < 1, the numerical method is said to be weakly stable. If
any root has magnitude |λ| > 1, the numerical method is said to be unstable.

6

3.3 Choosing a Stable Step Size

In fact we can go one step further. The analysis of the roots of p(λ) when using the linearized system instead
of the original autonomous system allows us to decide what step sizes h lead to stability, an important issue
for solving the equations on a computer.

Assuming an equilibrium solution of x(t) ≡ 0, the linearized equation is ẋ = Ax where A is an n×n matrix
of constants occuring in the expansion f(x) = Ax+R. Let us assume that the eigenvalues of A all have real
parts negative so that the equilibrium solution is physically stable. For each eigenvalue λ of A, consider what
is called the modal equation, ẋ = λx. An m-step method (m ≥ 1) is applied to the modal equation. The
resulting difference equation is linear and has a characteristic polynomial of the type p(z) whose coefficients
involve the eigenvalue λ and the step size h. The polynomial includes the linear contribution from the
function F that appears in the multistep method. The condition of |z| ≤ 1 for all roots and unit-magnitude
roots being simple are required for a stable method. This imposes a constraint on how we can choose h. The
best way to illustrate this is with an example.

4 The Simple Pendulum

A simple pendulum consists of a particle of mass m attached to one end of a wire of length L of negligible
mass. The other end of the wire is attached to a joint at position P. The joint is assumed to be frictionless.
The only force acting on the particle is gravity. The magnitude of that force is assumed to be a constant.
Figure 4.1 illustrates the problem.

Figure 4.1 A simple pendulum.

The pendulum moves only within the plane. The angle formed by the wire and the vertical is θ(t). The angle
has a positive value when the wire is to the right of vertical. The position of the particle is x(t) = P+LN(t)
where N(t) = (sin(θ(t)),− cos(θ(t))). The acceleration due to gravity points downwards and is labeled as
−g in the figure. The value g > 0 is assumed to be constant.

The particle is constrained to move along a circular path. The tangent vector T(t) = (cos(θ(t)), sin(θ(t)))
and normal vector N(t) at x(t), as shown in the figure, form a pair of coordinate axes at the point. The

7

particle cannot move in the normal direction, so the equation of motion involves forces only in the tangential
direction. The decomposition of the gravitational acceleration in terms of the tangent and normal is

−g = −g sin(θ)T + g cos(θ)N.

The velocity and acceleration of the particle are

ẋ = L
dN
dt

= Lθ̇T and ẍ = L(θ̈T− θ̇N).

Equating the tangential forces, Newton’s law states

mẍ ·T = −mg ·T

which simplifies to
θ̈ = − g

L
sin(θ). (4)

This is a second-order nonlinear ordinary differential equation. The initial value problem requires choosing
θ(0) and θ′(0). It is not possible to construct a solution in closed form, so numerical methods must be
applied to solve this.

If the initial angle is close to zero, then θ(t) remains close to zero. Using the approximation sin θ
.= θ for

small angles, equation (4) is approximated by

θ̈ = − g

L
θ.

This equation is linear and does have a closed-form solution,

θ(t) = θ(0) cos
(√

g

L
t

)
+

√
L

g
θ′(0) sin

(√
g

L
t

)
.

The motion is sinusoidal and is referred to as simple harmonic motion. The solution to equation (4) must
be periodic, but it is not simple harmonic motion.

4.1 Numerical Solution of the ODE

Equation (4) can be converted to a first-order nonlinear system by setting u(t) = θ′(t). The system is

θ′(t) = u(t), u′(t) = −c sin(θ(t)), t ≥ 0

where c =
√

g/L and where θ(0) and u(0) are user-specified inputs.

Without any analysis, let us just try Euler’s method to solve the equation. Euler’s method uses a forward
difference to approximate a derivative:

dx(t)
dt

.=
x(t + h)− x(t)

h
.

The differential equation dx/dt = f(t,x) is approximated as x(t + h) .= x(t) + hf(t,x(t)). If yi is the
approximation to x(ti) where t0 is the initial time, y0 = x0 is the initial condition, h is the step size, and
ti = t0 + ih for i ≥ 0, then Euler’s method is

yi+1 = yi + hf(ti,yi), i ≥ 0.

8

For the problem at hand, yi = (θi, ui) and the iteration equations are

θi+1 = θi + hui, ui+1 = ui − hc sin θi, i ≥ 0

with θ0 and u0 known initial values. The value h > 0 is a small step in time t. The following code implements
Euler’s method and generates the sequence of n samples θi for 0 ≤ i < n for specified initial conditions and
step size.

float* ExplicitEuler (float c, float theta0, float u0, float h, int n)
{

float* theta = new float[n];
theta[0] = theta0;
for (int i = 1; i < n; i++)
{

float theta1 = theta0 + h*u0;
float u1 = u0 - h*c*sin(theta0);
theta0 = theta1;
u0 = u1;
theta[i] = theta0;

}
return theta;

}

void Test ()
{

int n = 256;
float c = 1.0f, theta0 = 0.1f, u0 = 1.0f, h = 0.1f;
float* theta = ExplicitEuler(c,theta0,u0,h,n);
// use the output...

}

Figure 4.2 shows a plot of the output of the numerical method.

9

Figure 4.2 Euler’s method applied to the simple pendulum problem. The image shows a plot of
the pendulum angles over time.

Observe that the angles are becoming unbounded over time, contrary to how the physical solution should
behave. The true solution should be periodic implying that the maximum angles are all the same and the
minimum angles are all the same. Also, the time between two consecutive zeros should be a constant. The
results should make you question whether choosing Euler’s method without analysis was a good thing to do.

Euler’s method is an explicit method. The next iterate is explicitly defined in terms of the previous iterates
and time. Explicit methods tend to be conditionally stable-small steps sizes are required. Implicit methods
tend to have better stability properties. Let’s try an implicit Euler method and see what happens. The
implicit method uses a backward difference to approximate a derivative:

dx(t)
dt

.=
x(t)− x(t− h)

h
.

The differential equation dx/dt = f(t,x) is approximated as x(t) .= x(t − h) + hf(t,x(t)). Using the same
notation as in the application of the explicit Euler’s method, the iteration scheme is

yi+1 = yi + hf(ti+1,yk+1), i ≥ 0.

Observe that yi+1 occurs on both sides of the equation, so it is an implicit term; generally it is not possible
to solve for it explicitly. Having known values for yi, h, and ti+1, we can formulate the problem instead as
computing a vector z for which

G(z) = 0

where G(z) = yi + hF(ti+1, z)− z That is, z is a root of the function G. Newton’s method can be applied
to approximate a root.

For the problem at hand, yi = (θi, ui) and the iteration equations are

θi+1 = θi + hui+1, ui+1 = ui − hc sin θi+1, i ≥ 0

10

Rather than implementing Newton’s method directly for two equations in two unknowns, we can combine
the equations by substituting the ui+1 equation into the first and rearranging terms,

θi+1 + ch2 sin θi+1 − (θi + hui) = 0.

Define g(z) = z + ch2 sin z − (θi + hui). The next iterate θi+1 is a root to g(z) = 0. Given an initial guess
z0, the Newton iterates are

zm+1 = zm − g(zm)
g′(zm)

, m ≥ 0.

A reasonable initial guess is z0 = θi. The code for the implicit Euler’s method is

float* ImplicitEuler (float c, float theta0, float u0, float h, int n)
{

const int maxIterations = 32; // can be increased if needed
float a0 = c*h, a1 = h*a0;

float* theta = new float[n];
theta[0] = theta0;
for (int i = 1; i < n; i++)
{

float a2 = theta0 + h*u0;
float theta1 = theta0;
for (int j = 0; j < maxIterations; j++)
{

float g = theta1 + a1*sin(fX1) - a2;
float gderiv = 1.0f + a1*cos(fX1);
theta1 -= g/gderiv;

}
float u1 = u0 - a0*sin(theta1);
theta0 = theta1;
u0 = u1;
theta[i] = theta0;

}
return theta;

}

void Test ()
{

int n = 256;
float c = 1.0f, theta0 = 0.1f, u0 = 1.0f, h = 0.1f;
float* theta = ImplicitEuler(c,theta0,u0,h,n);
// use the output...

}

For simplicity, no convergence or stopping criterion is used in the inner loop that constructs the Newton’s
iterates; the loop just runs a fixed number of times. A more sophisticated loop with an eye towards minimizing
inner loop cycles may certainly be tried. Figure 4.3 shows a plot of the output of the numerical method.

11

Figure 4.3 Implicit Euler’s method applied to the simple pendulum problem. The image shows a
plot of the pendulum angles over time.

Now the angles are dampened over time, contrary to how the physical solution should behave, although in
this case someone observing the numerical pendulum behavior might think the physical system has friction
at the joint causing the oscillations to dampen. The time between two consecutive zeros in the Euler’s
method was significantly increasing over time. In the implicit Euler’s method, the time between zeros is only
gradually decreasing.

Finally, we try the Runge-Kutta fourth-order solver. The code is shown below. The input to the function is
an array of two values, p[0] that corresponds to θ and p[1] that corresponds to u = θ′.

float Function0 (float* p)
{

return p[1];
}

float Function1 (float* p)
{

const float c = 1.0f; // c = g/L in the model
return -c*sin(p[0]);

}

float* RungeKutta (float c, float theta0, float u0, float h, int n)
{

const int dim = 2;
ODE::AutoFunction F[2] = { Function0, Function1 };
RK4 solver(dim,h,F);

float in[2] = { theta0, u0 }, out[2];
float* theta = new float[n];
theta[0] = theta0;
for (int k = 1; k < n; k++)
{

kSolver.Update(in,out);
in[0] = out[0];
in[1] = out[1];
theta[i] = in[0];

12

}
return theta;

}

void Test ()
{

int n = 256;
float c = 1.0f, theta0 = 0.1f, u0 = 1.0f, h = 0.1f;
float* theta = RungeKutta(c,theta0,u0,h,n);
// use the output...

}

Figure 4.4 shows a plot of the output of the numerical method.

Figure 4.4 Runge-Kutta fourth-order method applied to the simple pendulum problem. The image
shows a plot of the pendulum angles over time.

The results appear to indicate that this method is stable. The zeros of θ(t) are evenly spaced and the four
maximum values, in order of increasing time are 1.05289, 1.05117, 1.05285, and 1.05249. The four minimum
values are −1.05232, −1.05291, −1.05221, −1.05293. The table below compares the times obtained for the
zeros of θ(t).

explicit time difference implicit time difference Runke-Kutta time difference

3.22 −− 3.15 −− 3.17 −−

6.76 3.54 6.45 3.30 6.55 3.38

10.45 3.69 9.70 3.25 7.92 3.37

14.40 3.95 12.93 3.23 13.30 3.38

18.79 4.39 16.13 3.20 16.67 3.37

24.16 5.37 22.51 3.18 20.05 3.38

23,42 3.37

13

4.2 Physical Stability for the Pendulum

The stability analysis of the simple pendulum problem will be done in a slightly more general form. The
work required to understand the general form is no more than that of its special case. The initial value
differential equation to be analyzed is

θ̈ + bθ̇ + c sin(θ) = 0, θ(0) = θ0, θ̇(0) = θ̇0, t ≥ 0

where b ≥ 0 and c > 0 are known constants. The special case b = 0 corresponds to the simple pendulum
problem. A choice of b > 0 is an attempt to add viscous friction to the system; the frictional force is
proportional to the angular speed at the joint of the pendulum. The equation has two equilibrium solutions,
θ(t) ≡ 0 (the pendulum hangs straight down and is at rest) and θ(t) ≡ π (the pendulum stands straight up
and is at rest, albeit unquite rest). At θ(t) ≡ 0 the linearized equation is

θ̈ + bθ̇ + cθ = 0.

The corresponding characteristic equation is λ2 + bλ + c = 0. At θ(t) ≡ π the linearized equation is

θ̈ + bθ̇ + c(π − θ) = 0.

The corresponding characteristic equation to the homogeneous equation is λ2 + bλ− c = 0. An equilibrium
solution is stable whenever the roots to its characteristic equation have only negative real parts. If both real
parts are zero, you get marginal stability (as will be shown for the simple pendulum problem). If at least
one root has positive real part, the solution is unstable. For b > 0, θ(t) ≡ 0 is a stable solution since the
roots to its characteristic equation are

λ =
−b±

√
b2 − 4c

2
.

Both roots are negative real numbers when b2 ≥ 4c or are complex with negative real parts when b2 < 4c.
Regardless of choice of b, θ(t) ≡ π is unstable since the roots to its characteristic equation are

λ =
−b±

√
b2 + 4c

2
.

Both roots are real-valued, but one is positive and one is negative.

4.3 Numerical Stability of the ODE Solvers

In this subsection let us look at the numerical stability of the various numerical methods relative to the
equilibrium solution (θ(t), u(t)) ≡ (0, 0). The eigenvalues for the matrix in the linearized system are λ =
(−b±

√
b2 − 4c)/2 where b ≥ 0. The modal equation is ẋ = λx.

Apply Euler’s method to the modal equation,

xi+1 = xi + hλxi = (1 + hλ)xi

The characteristic polynomial is
p(z) = z − (1 + hλ)

and has a single root z = 1 + λh. For stability we need |1 + λh| ≤ 1.

14

The implicit Euler’s method for the modal equation is

xi+1 = xi + hλxi+1

The characteristic polynomial is
p(z) = (1− hλ)z − 1

and has a single root z = 1/(1− hλ). For stability we need |1− λh| ≥ 1.

The Runge-Kutta fourth-order method to solve ẋ = f(t,x) in general is

k1 = hf(ti,yi)

k2 = hf(ti + h/2,yi + k1/2)

k3 = hf(ti + h/2,yi + k2/2)

k4 = hf(ti + h,yi + k3)

yi+1 = yi + (k1 + 2k2 + 2k3 + k4)/6

The linearized equation uses f(t,x) = λx. In this case,

k1 = hλyi

k2 = hλ(1 + hλ/2)yi

k3 = hλ(1 + (hλ/2)(1 + hλ/2))yi

k4 = hλ(1 + hλ(1 + (hλ/2)(1 + hλ/2)))yi

These combine to form

yi+1 =
[
1 + (hλ) +

1
2
(hλ)2 +

1
6
(hλ)3 +

1
24

(hλ)4
]

yi = q(hλ)yi

The characteristic polynomial is
p(z) = z − q(hλ)

and has a single root z = q(hλ). For stability we need |q(hλ)| ≤ 1.

Figure 4.5 shows the regions in the complex plane defined by the inequality constraints.

Figure 4.5 Left: The region for stability of the explicit Euler’s method, |1 + λh| ≤ 1. Middle: The
region for stability of the implicit Euler’s method, |1 − λh| ≥ 1. Right: The region for stability of
the Runge-Kutta fourth-order method.

15

The roots λ to the characteristic equation can be complex-valued which is why we are sketching the inequality
regions in the complex plane. Also, the real parts must be nonnegative for stability (or marginal stability),
so the regions to the left of the imaginary axis are the only ones of interest.

Now we are in a position to specify what the step size h > 0 must be in order that the methods be stable
near the equilibrium solution θ(t) ≡ 0 for b = 0 and c = 1 as we chose in the numerical experiments. The
eigenvalues are λ = ±ı. The choice of h must guarantee that |hλ| is inside the gray regions shown in Figure
4.5. Notice the ±hı are on the imaginary axes. For Euler’s method, no imaginary axis points are inside the
gray circle except zero (in which case h = 0), so this method is always unstable no matter how you choose
your step size. For the implicit Euler’s method, any choice of h leads to ±hı being in the gray region. The
method is stable, but unfortunately not very accurate. For the Runge-Kutta method, the figure does not
clearly show it, but the boundary of the gray region on the right is slightly to the right of the imaginary
axis except at the origin which is on the boundary. An evaluation for h = 0.1, the choice we made in the
numerical experiments, |q(±0.1ı)| .= 0.999999986 < 1. Thus, the Runge-Kutta method is stable. And it
turns out to be quite accurate.

16

	1 Introduction
	2 Physical Stability
	3 Numerical Stability
	3.1 Stability for Single-Step Methods
	3.2 Stability for Multistep Methods
	3.3 Choosing a Stable Step Size

	4 The Simple Pendulum
	4.1 Numerical Solution of the ODE
	4.2 Physical Stability for the Pendulum
	4.3 Numerical Stability of the ODE Solvers

