
Polyline Reduction

David Eberly
Geometric Tools, LLC
http://www.geometrictools.com/
Copyright c© 1998-2008. All Rights Reserved.

Created: April 15, 2001
Last Modified: February 9, 2008

Contents

1 Introduction 2

2 A Simple Algorithm 2

3 A Fast Algorithm 2

4 An Illustration 3

4.1 Initialization of the Heap . 4

4.2 Remove and Update Operations . 9

5 Dynamic Change in Level of Detail 16

6 Reordering Vertices 17

1

http://www.geometrictools.com/

1 Introduction

This document describes a method for reducing the number of vertices in a polyline {Xi}ni=0 by removing
one vertex at a time based on weights assigned to the vertices. A vertex weight is a measure of variation
of the polyline at the specified vertex. A simple measure of weight wi for vertex Xi is based on the three
consecutive vertices Xi−1, Xi, and Xi+1,

wi =
Distance2(Xi,Segment(Xi−1,Xi+1))

Length2(Segment(Xi−1,Xi+1))
(1)

where Segment(U,V) denotes the line segment from U to V. The vertex that is removed is the one
corresponding to the minimum weight. Observe that if the minimum weight is zero, then Xi is already a
point on Segment(Xi−1,Xi+1). Removing zero weight points first is ideal for polyline reduction.

Special handling is required at the end points X0 and XN . The easiest thing to do is assign w0 = wn =∞;
that is, the end points are never removed. The polyline is reduced a vertex at a time until only two vertices
remain, the end points. However, it is possible that Xn = X0 in which case the polyline is closed. Assigning
infinite weight to X0 leads to that point always occurring in a reduction. Instead, the weight formula can be
applied to every vertex in a closed polyline with the understanding that the indices are selected modulo n.

Other definitions for vertex weights may be used. For example, a larger neighborhood of Xi might be used.
Or an interpolating polynomial curve could be used to assign the curvature of that curve to each vertex. The
choices are many, but the algorithm for determining the order of removal of the vertices can be developed
independently of the weight definition.

The algorithm considered here just removes vertices, one at a time. The vertices of the reduced polyline form
a subset of the vertices of the original polyline. This is convenient, but not necessary. If Xi provides the
minimum weight of all vertices, it is possible to replace the triple 〈Xi−1,Xi,Xi+1〉 by the pair 〈Yi−1,Yi+1〉
where Yi−1 and Yi+1 are quantities derived from the original triple, and possibly from other nearby vertices.

2 A Simple Algorithm

The simplest algorithm for reduction is a recursive one. Given a polyline P = {Xi}ni=0, compute the weights
{wi}ni=0. Search the weights for the minimum weight wk. Remove Xk from P to obtain the polyline P ′ that
has n − 1 vertices. Repeat the algorithm on P ′. This is an O(n2) algorithm since the first pass processes
n vertices, the second pass processes n − 1 vertices, and so on, so the total number of processed vertices is
n + (n− 1) + . . . + 3 = n(n + 1)/2− 3.

3 A Fast Algorithm

A faster algorithm is called for. All n weights are calculated on the first pass. When a vertex Xi is removed
from P , only the weights for Xi−1 and Xi+1 are affected. The calculation of all weights for the vertices of
P ′ involves many redundant computations. Moreover, if only a couple of weights change, it is not necessary
to search the entire sequence of weights for the minimum value. A heap data structure can be used that
supports an O(1) lookup. If the heap is implemented as a complete binary tree, the minimum occurs at
the root of the tree. When the minimum is removed, an O(log n) update of the binary tree is required to

2

convert it back to a heap. The initial construction of the heap requires a comparison sort of the weights, an
O(n log n) operation.

The fast reduction requires an additional operation that is not part of the classic heap data structure. The
heap is initially reconstructed in O(n log n) time. The minimum value is removed and the binary tree is
reorganized to form a heap in O(log n) time. The vertex removal causes a change in two weights in the heap.
Once those weights are changed, the binary tree will no longer represent a heap. If we can remove the two
old weights from the heap, we could then add the two new weights. Unfortunately, the classic heap data
structure does not support removing an element from any location other than the root. As it turns out, if a
weight is changed in the heap, the corresponding node in the binary tree can be either propagated towards
the root of the tree or towards the leaves of the tree, depending on how the weight compares to the weights
of its parent or child nodes. Since the propagation can be performed without changing the tree structure,
this update operation is also O(log n). If the changed weight is smaller than its parent weight, the node is
swapped with its parent node, thereby preserving the heap property. If the changed weight is larger than
its children’s weights, the node is swapper with the the child node of largest weight, thereby preserving the
heap property.

Now we encounter the next complication. If a weight at an internal heap node changes, we need to know
where that node is located to perform the O(log n) update. If we had to search the binary tree for the
changed node, that operation is O(n), a linear search. The only property of a minimum heap is that the
weights of the two children of a node are smaller or equal to the weight of the node itself. That is not
enough information for a search query to decide which child should be visited during the tree traversal, a
necessary piece of information to reduce to search to O(log n). The solution to this problem is to create
a data structure for each vertex in the polyline. Assuming that the binary tree of the heap is stored in a
contiguous array, the vertex data structure must store the index to the heap node that represents the vertex.
That index is changed whenever a heap element is propagated to its parent or to a child.

4 An Illustration

An example is given here for a 16-sided polygon with vertices Xk = Ak(cos(2πk/16), sin(2πk/16)) for 0 ≤
k < 16 where the amplitudes were randomly generated as A0 = 75.0626, A1 = 103.1793, A2 = 84.6652,
A3 = 115.4370, A4 = 104.2505, A5 = 98.9937, A6 = 92.5146, A7 = 119.7981, A8 = 116.1420, A9 = 112.3302,
A10 = 83.7054, A11 = 117.9472, A12 = 110.5251, A13 = 100.6768, A14 = 90.1997, and A15 = 75.7492. Figure
4.1 shows the polygon with labeled vertices.

3

Figure 4.1 Initial 16-sided polygon.

The min heap is stored as an array of 16 records. Each record is of the form

HeapRecord
{

int V; // vertex index
int H; // heap index
float W; // vertex weight (depends on neighboring vertices)
HeapRecord* L; // points to record of left vertex neighbor
HeapRecord* R; // points to record of right vertex neighbor

}

The vertex index and doubly linked list structure represent the polyline itself. As vertices are removed, the
list is updated to reflect the new topology. The weight is the numeric value on which the heap is sorted.
As mentioned earlier, the heap index allows for an O(1) lookup of the heap records whose weights change
because of a vertex removal. Without this index, an O(n) search on the vertex indices in the heap would be
necessary to locate the heap records to change.

4.1 Initialization of the Heap

The heap records are initialized with the data from the original vertices. The vertex index and heap index
are the same for this initialization. Figure 4.2 shows the heap array after initialization. The heap indices,
the vertex indices, and the weights are shown. The weight of vertex Xi is calculated using equation (1)
where the left neighbor is X(i−1)mod 16 and the right neighbor is X(i+1)mod 16.

4

Figure 4.2 Initial values in the heap array.

To be a min heap, each node Hi in the binary tree must have a weight that is smaller or equal to the weights
of its child nodes H2i+1 and H2i+2. The heap array must be sorted so that the min heap property at each
record is satisfied. This can be done in a nonrecursive manner by processing the parent nodes from the
bottom of the tree towards the root of the tree. The first parent in the heap is located. In this example,
H7 is the first parent to process. Its only child, H15, has a smaller value, so H7 and H15 must be swapped.
Figure 4.3 shows the state of the heap array after the swap.

Figure 4.3 The heap array after swapping H7 and H15 in Figure 4.2.

The next parent to process is H6. The weight at H6 is smaller than the weights of its two children, so no
swapping is necessary. The same is true for the parent nodes H5 and H4. Node H3 has a weight that is
larger than both its children’s weights. A swap is performed with the child that has smallest weight, in this
case H3 and H7 are swapped. Figure 4.4 shows the state of the heap array after the swap.

5

Figure 4.4 The heap array after swapping H3 and H7 in Figure 4.3.

Before the swap, the subtree at the child is already guaranteed itself to be a min heap. After the swap,
the worst case is that the weight needs to be propagated down a linear path in the subtree. Any further
swaps are always with the child of minimum weight. In the example an additional swap must occur, this
time between H7 and H15. After the swap, the processing at H3 is finished (for now) and the subtree at H3

is itself a min heap. Figure 4.5 shows the state of the heap array after the swap of H7 and H15.

Figure 4.5 The heap array after swapping H7 and H15 in Figure 4.4.

The next parent to process is H2. The weight at H2 is larger than the minimum weight occurring at child
H6, so these two nodes must be swapped. Figure 4.6 shows the state of the heap array after the swap.

6

Figure 4.6 The heap array after swapping H2 and H6 in Figure 4.5.

Another swap must occur, now between H6 and the minimum weight child H13. Figure 4.7 shows the state
of the heap array after the swap.

Figure 4.7 The heap array after swapping H6 and H13 in Figure 4.6.

The next parent to process is H1. The weight at H1 is larger than the minimum weight occurring at child
H3, so these two nodes must be swapped. Figure 4.8 shows the state of the heap array after the swap.

7

Figure 4.8 The heap array after swapping H1 and H3 in Figure 4.7.

Another swap must occur, now between H3 and the minimum weight child H8. Figure 4.9 shows the state
of the heap array after the swap.

Figure 4.9 The heap array after swapping H3 and H8 in Figure 4.8.

The last parent to process is H0. The weight at H0 is larger than the minimum weight occurring at child
H1, so these two nodes must be swapped. Figure 4.10 shows the state of the heap array after the swap.

8

Figure 4.10 The heap array after swapping H0 and H1 in Figure 4.9.

Another swap must occur, now between H1 and the minimum weight child H4, but no other swaps are
necessary in that subtree. Figure 4.11 shows the state of the heap array after the swap.

Figure 4.11 The heap array after swapping H1 and H4 in Figure 4.10.

Now the heap array does represent a min heap since the children weights at each node are smaller or equal
to the parent weights.

4.2 Remove and Update Operations

The vertex with minimum weight is the first to be removed from the polyline. The root of the heap
corresponds to this vertex, so the root is removed from the heap. The vertex to be removed is V15. To
maintain a complete binary tree, the last item in the heap array is placed at the root location. Figure 4.12
shows the state of the heap array after moving the last record to the root position.

9

Figure 4.12 The heap array after removing the contents of H0 and moving the contents of H15 to
H0.

The array does not satisfy the min heap property since the root weight is larger than the minimum child
weight. The root node H0 must be swapped with H1, the child of minimum weight. The swapping is repeated
as long as the minimum weight child has smaller weight than the node under consideration. In this example,
H1 and H4 are swapped, then H4 and H9 are swapped. Figure 4.13 shows the state of the heap after the
three swaps.

Figure 4.13 The heap after swapping H0 with H1, H1 with H4, and H4 with H9.

This is the typical operation for removing the minimum element from the heap. However, in the polyline
application, there is more work to be done. The weights of vertices V14 and V0 depended on V15. The right
neighbor of V14 was V15, but is now V0. The left neighbor of V0 was V15, but is now V14. The weights of V14

and V0 must be recalculated because of the change of neighbors. The old weight for V14 is 187.79 and the
new weight is 164.52. The old weight for V0 is 52.65 and the new weight is 52.77. Neither change leads to
an invalid heap, so no update of the heap array is necessary. Figure 4.14 shows the state of the heap after
the two weight changes.

10

Figure 4.14 The heap after changing the weights on V0 and V14. The new weights are shown in
gray.

Figure 4.15 shows the polygon of Figure 4.1 and the polygon with V15 removed.

Figure 4.15 Left: The polygon of Figure 4.1. Right: The polygon with V15 removed.

The next vertex to be removed is V4. The contents of the last heap node H14 are moved to the root, resulting
in an invalid heap. Two swaps must occur, H0 with H1 and H1 with H3. Figure 4.16 shows the state of the
heap after these changes.

11

Figure 4.16 The heap after moving H14 to H0, then swapping H0 with H1 and H1 with H3.

The adjacent vertices whose weights must be updated are V3 and V5. For V3, the old weight is 1435.54 and
the new weight is 1492.74. This does not invalidate the heap at node H9. For V5, the old weight is 120.11
and the new weight is 157.11. This change invalidates the heap at node H5. Nodes H5 and H12 must be
swapped to restore the heap. Figure 4.17 shows the state of the heap after the two weight changes and the
swap.

Figure 4.17 The heap after changing the weights on V3 and V5 and swapping H5 and H12. The
new weights are shown in gray.

Figure 4.18 shows the right polygon of Figure 4.15 and the polygon with V4 removed.

12

Figure 4.18 Left: The right polygon of Figure 4.15. Right: The polygon with V4 removed.

The next vertex to be removed is V0. The contents of the last heap node H13 are moved to the root, resulting
in an invalid heap. Two swaps must occur, H0 with H2 and H2 with H6. Figure 4.19 shows the state of the
heap after these changes.

Figure 4.19 The heap after moving H13 to H0, then swapping H0 with H2 and H2 with H6.

The adjacent vertices whose weights must be updated are V1 and V14. The left neighbor is processed first in
the implementation. For V14, the old weight is 164.52 and the new weight is 65.80. The heap is invalid since
the parent node H1 has a weight that is larger than the weight at H3. Two swaps must occur, H3 with H1

and H1 with H0. For V1, the old weight is 2258.57 and the new weight is 791.10, but the heap is still valid.
Figure 4.20 shows the state of the heap after the weight change and the swaps.

13

Figure 4.20 The heap after changing the weight on V14 and swapping H3 with H1 and H1 with
H0, then changing the weight on V1. The new weights are shown in gray.

Figure 4.21 shows the right polygon of Figure 4.18 and the polygon with V0 removed.

Figure 4.21 Left: The right polygon of Figure 4.18. Right: The polygon with V0 removed.

The process is similar for the remaining vertices, removed in the order V14, V6, V5, V8, V12, V2, V13, V10,
V9, and V1. Vertices V7, V3, and V11 are the remaining ones. Figure 4.22 shows the corresponding reduced
polygons. Collapses occur from left to right, top to bottom.

14

Figure 4.22 The remaining vertex collapses. The order is top to bottom in rows, and left to right
in each row.

collapse V14 collapse V6 collapse V5

collapse V8 collapse V12 collapse V2

collapse V13 collapse V10

collapse V9 collapse V1

15

5 Dynamic Change in Level of Detail

The vertex collapses can be computed according to the algorithm presented earlier. An application might
not want to only decrease the level of detail by vertex collapses, but increase it on demand. To support this,
the edge connectivity must be stored with the polyline. The connectivity data structure will change based
on the given addition or removal of a vertex.

An array of edge indices is used to represent the connectivity. The initial connectivity for an open polyline
of n vertices is an array of 2n−2 indices grouped in pairs as 〈0, 1〉, 〈1, 2〉, . . . , 〈n−2, n−1〉. A closed polyline
has one additional pair, 〈n− 1, 0〉. If vertex Vi is removed, the pair of edges 〈i− 1, i〉 and 〈i, i + 1〉 must be
replaced by a single edge 〈i − 1, i + 1〉. The change in level of detail amounts to inserting, removing, and
modifying the elements of an array. An array is not well suited for such operations.

Instead, the initial array of edge indices should be sorted so that the last edge in the array is the first one
removed by a collapse operation. If the indices of the collapsed vertices are sorted as c0, . . . cn−1 where the
last vertex in the array is the first one removed by a collapse operation, then the initial edge array should be

〈c0, c0 + 1〉, 〈c1, c1 + 1〉, . . . 〈cn−1, cn−1 + 1〉 = 〈e0, . . . e2n−1〉

where the index sum i + 1 is computed modulo n to handle both open and closed polylines. To remove the
vertex with index cn−1, the last edge 〈e2n−2, e2n−1〉 is simply ignored. In an implementation, an index to the
last edge in the array is maintained. When the level of detail decreases, that index is decremented. When
the level increase, the index is incremented. The removal of the edge indicates that the vertex with index
cn−1 is no longer in the polyline. That same index occurs earlier in the edge array and must be replaced by
the second index of the edge. In the current example, e2n−2 = cn−1 and e2n−1 = cn−1 +1. A search is made
in the edge array for the index emn−1 that is also equal to cn−1, then emn−1 ← e2n−1. The mapping mn−1

should be stored in order to increase the level of detail by restoring the original value of emn−1 to cn−1.

The algorithm is iterative. To remove the vertex with index ck, observe that e2k = ck and e2k+1 = ck + 1.
The edge quantity is decreased by one. A search is made in 〈e0, . . . , e2k−1 for the index emk

that is equal to
ck, then replace emk

← e2k+1. Adding the vertex with index ck back into the polyline is accomplished by
replacing emk

← ck. The iteration stops when k = 1 for open polylines so that the final line segment is not
collapsed to a single point. The iteration stops when k = 5 for closed polylines so that the smallest level of
detail is a triangle that is never collapsed to a line segment.

Example. Consider the example shown previously that consisted of a 16-sided polygon. The vertex indices
ordered from last removed to first removed are 3, 11, 7, 1, 9, 10, 13, 2, 12, 8, 5, 6, 14, 0, 4, 15. The initial edge
array is

〈3, 4〉〈11, 12〉〈7, 8〉〈1, 2〉〈9, 10〉〈10, 11〉〈13, 14〉〈2, 3〉〈12, 13〉〈8, 9〉〈5, 6〉〈6, 7〉〈14, 15〉〈0, 1〉〈4, 5〉〈15, 0〉

and the edge quantity is Qe = 16. The vertex quantity is Qv = 16. The removal of V15 is accomplished by
decrementing Qv = 15 and Qe = 15. The last edge 〈15, 0〉 is ignored (iterations over the edges use Qe as the
upper bound for the loop index). A search is made in the first 15 edges for index 15 and is found at e[25]
(in the edge 〈14, 15〉). That index is replaced by e[25] = 0 where 0 is the second index of the removed edge
〈15, 0〉. The mapping index is m15 = 25. The following table lists the vertex collapses, the mapping indices,
and the edge array (only through the valid number of edges):

16

vertex map edges

15 25 〈3, 4〉〈11, 12〉〈7, 8〉〈1, 2〉〈9, 10〉〈10, 11〉〈13, 14〉〈2, 3〉〈12, 13〉〈8, 9〉〈5, 6〉〈6, 7〉〈14, 0〉〈0, 1〉〈4, 5〉

4 1 〈3, 5〉〈11, 12〉〈7, 8〉〈1, 2〉〈9, 10〉〈10, 11〉〈13, 14〉〈2, 3〉〈12, 13〉〈8, 9〉〈5, 6〉〈6, 7〉〈14, 0〉〈0, 1〉

0 25 〈3, 5〉〈11, 12〉〈7, 8〉〈1, 2〉〈9, 10〉〈10, 11〉〈13, 14〉〈2, 3〉〈12, 13〉〈8, 9〉〈5, 6〉〈6, 7〉〈14, 1〉

14 13 〈3, 5〉〈11, 12〉〈7, 8〉〈1, 2〉〈9, 10〉〈10, 11〉〈13, 1〉〈2, 3〉〈12, 13〉〈8, 9〉〈5, 6〉〈6, 7〉

6 21 〈3, 5〉〈11, 12〉〈7, 8〉〈1, 2〉〈9, 10〉〈10, 11〉〈13, 1〉〈2, 3〉〈12, 13〉〈8, 9〉〈5, 7〉

5 1 〈3, 7〉〈11, 12〉〈7, 8〉〈1, 2〉〈9, 10〉〈10, 11〉〈13, 1〉〈2, 3〉〈12, 13〉〈8, 9〉

8 5 〈3, 7〉〈11, 12〉〈7, 9〉〈1, 2〉〈9, 10〉〈10, 11〉〈13, 1〉〈2, 3〉〈12, 13〉

12 3 〈3, 7〉〈11, 13〉〈7, 9〉〈1, 2〉〈9, 10〉〈10, 11〉〈13, 1〉〈2, 3〉

2 7 〈3, 7〉〈11, 13〉〈7, 9〉〈1, 3〉〈9, 10〉〈10, 11〉〈13, 1〉

13 3 〈3, 7〉〈11, 1〉〈7, 9〉〈1, 3〉〈9, 10〉〈10, 11〉

10 9 〈3, 7〉〈11, 1〉〈7, 9〉〈1, 3〉〈9, 11〉

9 5 〈3, 7〉〈11, 1〉〈7, 11〉〈1, 3〉

1 3 〈3, 7〉〈11, 3〉〈7, 11〉

Given the final triangle after all collapses, to restore vertex V9 we need to increment Qv to 4, increment Qe

to 4, and set e[5] = 9 where 5 is the mapping index associated with V9.

6 Reordering Vertices

In an application that wants to rigidly transform the polyline, it might be useful to have the vertices at any
level of detail stored as a packed array. This supports any optimized code for batch transforming a contiguous
block of vertices. The collapse indices (c0, c1, . . . , cn−1) represent a permutation of (0, 1, . . . , n − 1). The
vertices themselves can be reordered using this permutation. Subsequently, the edge indices themselves must
be converted properly. The reindexing requires the inverse permutation, (d0, d1, . . . , dn−1) where dci = i.
The mapping index does not change since the edge reindexing does not change the order of items in the edge
array. If Ui are the reordered vertices, then Ui = Vci

. If an edge is E = 〈ei, ej〉, then the reindexed edge is
F = 〈dei

, dej
〉.

Example. The inverse permutation for

c = (3, 11, 7, 1, 9, 10, 13, 2, 12, 8, 5, 6, 14, 0, 4, 15)

is
d = (13, 3, 7, 0, 14, 10, 11, 2, 9, 4, 5, 1, 8, 6, 12, 15).

The initial edge array is

〈0, 14〉〈1, 8〉〈2, 9〉〈3, 7〉〈4, 5〉〈5, 1〉〈6, 12〉〈7, 0〉〈8, 6〉〈9, 4〉〈10, 11〉〈11, 2〉〈12, 15〉〈13, 3〉〈14, 10〉〈15, 13〉.

The vertex collapse table from the last example is reindexed to

17

vertex map edges

15 25 〈0, 14〉〈1, 8〉〈2, 9〉〈3, 7〉〈4, 5〉〈5, 1〉〈6, 12〉〈7, 0〉〈8, 6〉〈9, 4〉〈10, 11〉〈11, 2〉〈12, 13〉〈13, 3〉〈14, 10〉

14 1 〈0, 10〉〈1, 8〉〈2, 9〉〈3, 7〉〈4, 5〉〈5, 1〉〈6, 12〉〈7, 0〉〈8, 6〉〈9, 4〉〈10, 11〉〈11, 2〉〈12, 13〉〈13, 3〉

13 25 〈0, 10〉〈1, 8〉〈2, 9〉〈3, 7〉〈4, 5〉〈5, 1〉〈6, 12〉〈7, 0〉〈8, 6〉〈9, 4〉〈10, 11〉〈11, 2〉〈12, 3〉

12 13 〈0, 10〉〈1, 8〉〈2, 9〉〈3, 7〉〈4, 5〉〈5, 1〉〈6, 3〉〈7, 0〉〈8, 6〉〈9, 4〉〈10, 11〉〈11, 2〉

11 21 〈0, 10〉〈1, 8〉〈2, 9〉〈3, 7〉〈4, 5〉〈5, 1〉〈6, 3〉〈7, 0〉〈8, 6〉〈9, 4〉〈10, 2〉

10 1 〈0, 2〉〈1, 8〉〈2, 9〉〈3, 7〉〈4, 5〉〈5, 1〉〈6, 3〉〈7, 0〉〈8, 6〉〈9, 4〉

9 5 〈0, 2〉〈1, 8〉〈2, 4〉〈3, 7〉〈4, 5〉〈5, 1〉〈6, 3〉〈7, 0〉〈8, 6〉

8 3 〈0, 2〉〈1, 6〉〈2, 4〉〈3, 7〉〈4, 5〉〈5, 1〉〈6, 3〉〈7, 0〉

7 7 〈0, 2〉〈1, 6〉〈2, 4〉〈3, 0〉〈4, 5〉〈5, 1〉〈6, 3〉

6 3 〈0, 2〉〈1, 3〉〈2, 4〉〈3, 0〉〈4, 5〉〈5, 1〉

5 9 〈0, 2〉〈1, 3〉〈2, 4〉〈3, 0〉〈4, 1〉

4 5 〈0, 2〉〈1, 3〉〈2, 1〉〈3, 0〉

3 3 〈0, 2〉〈1, 0〉〈2, 1〉

18

	1 Introduction
	2 A Simple Algorithm
	3 A Fast Algorithm
	4 An Illustration
	4.1 Initialization of the Heap
	4.2 Remove and Update Operations

	5 Dynamic Change in Level of Detail
	6 Reordering Vertices

