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1 Introduction

Let the triangle have vertices Pi for 0 ≤ i ≤ 2. The cone has vertex V, axis direction vector A, and angle θ
between axis and outer edge. In most applications, the cone is acute, that is, θ ∈ (0, π/2). This document
assumes that, in fact, the cone is acute, so cos θ > 0. The cone consists of those points X for which the angle
between X−V and A is θ. Algebraically the condition is

A ·
(

X−V
|X−V|

)
= cos θ.

Figure 1.1 shows a 2D representation of the cone. The shaded portion indicates the inside of the cone, a
region represented algebraically by replacing = in the above equation with ≥.

Figure 1.1 An acute cone. The inside region is shaded.

To avoid the square root calculation |X − V|, the cone equation may be squared to obtain the quadratic
equation

(A · (X−V))2 = (cos2 θ)|X−V|2.

However, the set of point satisfying this equation is a double cone. The original cone is on the side of the
plane A · (X−V) = 0 to which A points. The quadratic equation defines the original cone and its reflection
through the plane. Specifically, if X is a solution to the quadratic equation, then its reflection through the
vertex, 2V−X, is also a solution. Figure 1.2 shows the double cone.
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Figure 1.2 An acute double cone. The inside region is shaded.

To eliminate the reflected cone, any solutions to the quadratic equation must also satisfy A·(X−V) ≥ 0. Also,
the quadratic equation can be written as a quadratic form, (X−V)TM(X−V) = 0 where M = (AAT−γ2I)
and γ = cos θ. Therefore, X is a point on the acute cone whenever

(X−V)TM(X−V) = 0 and A · (X−V) ≥ 0.

2 Test Intersection

Testing if a triangle and cone intersect, and not having to compute points of intersection, is useful for a
couple of graphics applications. For example, a spot light illuminates only those triangles in a scene that
are within the cone of the light. It is useful to know if the vertex colors of a triangle’s vertices need to be
modified due to the effects of the light. In most graphics applications, if some of the triangle is illuminated,
then all the vertex colors are calculated. It is not important to know the subregion of the triangle that is
in the cone (a result determined by a find query). Another example is for culling of triangles from a view
frustum that is bounded by a cone for the purposes of rapid culling.

If a triangle intersects a cone, it must do so either at a vertex, an edge point, or an interior triangle point.
The algorithm described here is designed to provide early exits using a testing order of vertex-in-cone,
edge-intersects-cone, and triangle-intersects cone. This order is a good one for an application where a lot
of triangles tend to be fully inside the cone. Other orders may be used depending on how an application
structures its world data.

To test if P0 is inside the cone, it is enough to test if the point is on the cone side of the plane A ·(X−V) ≥ 0
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and if the point is inside the double cone. Although the test can be structured as

D0 = triangle.P0 - cone.V;
AdD0 = Dot(cone.A,D0);
D0dD0 = Dot(D0,D0);
if ( AdD0 >= 0 and AdD0*AdD0 >= cone.CosSqr*D0dD0 )

triangle.P0 is inside cone;

if all the triangle vertices are outside the single cone, it will be important in the edge-cone intersection tests
to know on which side of the plane A · (X −V) = 0 the vertices are. The vertex test is better structured
as shown below. The term outside cone refers to the quantity being outside the single cone, not the double
cone (a point could be outside the original single cone, but inside that cone’s reflection).

D0 = triangle.P0 - cone.V;
AdD0 = Dot(cone.A,D0);
if ( AdD0 >= 0 )
{

D0dD0 = Dot(D0,D0);
if ( AdD0*AdD0 >= cone.CosSqr*D0dD0 )
{

triangle.P0 is inside cone;
}
else
{

triangle.P0 is outside cone, but on cone side of plane;
}

}
else
{

triangle.P0 is outside cone, but on opposite side of plane;
}

All three vertices of the triangle are tested in this manner.

If all three vertices are outside the cone, the next step is to test if the edges of the triangle intersect the
cone. Consider the edge X(t) = P0 + tE0 where E0 = P1 − P0 and t ∈ [0, 1]. The edge intersects the
single cone if A · (X(t) − V) ≥ 0 and (A · (X(t) − V))2 − γ2|X(t) − V|2 = 0 for some t ∈ [0, 1]. The
second condition is a quadratic equation, Q(t) = c2t

2 + 2c1t + c0 = 0 where c2 = (A · E0)2 − γ2|E0|2,
c1 = (A ·E0)(A ·∆0)− γ2E0 ·∆0, and c0 = (A ·∆0)2 − γ2|∆0|2 where ∆0 = P0 −V. The domain of Q(t)
for which a root is sought depends on which side of the plane the vertices lie.

If both P0 and P1 are on the opposite side of the plane, then the edge cannot intersect the single cone. If
both P0 and P1 are on the cone side of the plane, then the full edge must be considered, so we need to
determine if Q(t) = 0 for some t ∈ [0, 1]. Moreover, the test should be fast since we do not need to know
where the intersection occurs, just that there is one. Since the two vertices are outside the cone and occur
when t = 0 and t = 1, we already know that Q(0) < 0 and Q(1) < 0. In order for the quadratic to have a
root somewhere in [0, 1], it is necessary that the graph be concave. For if it were convex, the graph would
lie below the line segment connecting the points (0, Q(0)) and (1, Q(1)). This line segment never intersects
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the axis Q = 0. Thus, the concavity condition is c2 < 0. Additionally, the t-value for the local maximum
must occur in [0, 1]. This value is t̂ = −c1/c2. We could compute t̂ directly by doing the division. However,
the division can be avoided. The test 0 ≤ t̂ ≤ 1 is equivalent to the test 0 ≤ c1 ≤ −c2 since c2 < 0. The
final condition for there to be a root is that Q(t̂) ≥ 0. This happens when the discriminant for the quadratic
is nonnegative: c2

1 − c0c2 ≥ 0. In summary, when P0 and P1 are both on the cone side of the plane, the
corresponding edge intersects the cone when

c2 < 0 and 0 ≤ c1 ≤ −c2 and c2
1 ≥ c0c2.

If P0 is on the cone side and P1 is on the opposite side, the domain of Q can be reduced to [0, t̃] where P0+t̃E0

is the point of intersection between the edge and the plane. The parameter value is t̃ = −(A ·∆0)/(A ·E0).
If this point is V and it is the only intersection of the edge with the cone, at first glance the algorithm
given here does not appear to handle this case because it assumes that Q < 0 at the end points of the edge
segment corresponding to [0, t̃]. It appears that Q(t̃) = 0 and c2 ≥ 0 are consistent to allow an intersection.
However, the geometry of the situation indicates the line containing the edge never intersects the cone. This
can only happen if Q(t) ≤ 0, so it must be the case that c2 < 0 occurs. Now we analyze when Q has roots
on the interval [0, t̃]. As before, c2 < 0 is a necessary condition since Q(0) < 0 and Q(t̃) < 0. The t-value for
the local maximum must be in the domain, 0 ≤ t̂ ≤ t̃. To avoid the divisions, this is rewritten as 0 ≤ c1 and
c2(A ·∆0) ≤ c1(A ·E0). The condition that the discriminant of the quadratic be nonnegative still holds. In
summary, when P0 is on the cone side and P1 is on the opposite side, the corresponding edge intersects the
cone when

c2 < 0 and 0 ≤ c1 and c2(A ·∆0) ≤ c1(A ·E0) and c2
1 ≥ c0c2.

Finally, if P1 is on the cone side and P0 is on the opposite side, the domain for Q is reduced to [t̃, 1]. Once
again the graph must be concave, the discriminant of the quadratic must be nonnegative, and t̂ ∈ [t̃, 1]. The
edge intersects the cone when

c2 < 0 and c1 ≤ −c2 and c2(A ·∆0) ≤ c1(A ·E0) and c2
1 ≥ c0c2.

All three edges of the triangle are tested in this manner.

If all three edges are outside the cone, it is still possible that the triangle and cone intersect. If they do,
the curve of intersection is an ellipse that is interior to the triangle. Moreover, the axis of the cone must
intersect the triangle at the center of that ellipse. It is enough to show this intersection occurs by computing
the intersection of the cone axis with the plane of the triangle and showing that point is inside the triangle.
Of course this test does not need to be applied when all three vertices are on the opposite side of the plane,
another early exit since it is known by this time on which side of the plane the vertices lie.

A triangle normal is N = E0×E1. The point of intersection between cone axis V+sA and plane N·(X−P0) =
0, if it exists, occurs when s = (N·∆0)/(N·A). The point of intersection can be written in planar coordinates
as

V + sA = P0 + t0E0 + t1E1

or
(N ·∆0)A− (N ·A)∆0 = t0(N ·A)E0 + t1(N ·A)E1.

Define U = (N ·∆0)A− (N ·A)∆0. To solve for t0, cross the equation on the right with E1, then dot with
N. Similarly solve for t1 by crossing on the right with E0 and dotting with N. The result is

t0(N ·A)|N|2 = N ·U×E1 and t1(N ·A)|N|2 = −N ·U×E0.
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To be inside the triangle it is necessary that t0 ≥ 0, t1 ≥ 0, and t0+t1 ≤ 1. The comparisons can be performed
without the divisions, but require two cases depending on sign of N ·A. In the code, the quantities N, N ·A,
N ·∆0, U, and N×U are computed. If N ·A ≥ 0, then the point is inside the triangle when N×U ·E0 ≤ 0,
N×U ·E1 ≥ 0, and N×UE2 ≤ (N ·A)|N|2. The inequalities in these three tests are reversed in the case
N ·A ≤ 0.

3 Find Intersection

The analysis in the previous section can be extended to actually partition the triangle into the component
inside the cone and the component outside. The curve of separation will be a quadratic curve, possibly a
line segment. If the triangle is represented as X(s, t) = P0 + sE0 + tE1 for s ≥ 0, t ≥ 0, and s + t ≤ 1, the
points of intersetion of the single cone and triangle are determined by

A · (X(s, t)−V) ≥ 0 and (A · (X(s, t)−V))2 − γ2|X(s, t)|2 = 0.

If any portion of the triangle satisifes the linear inequality, this trims down the triangle domain to a subset:
the entire triangle, a subtriangle, or a subquadrilateral. On that subdomain the problem is to determine
where the quadratic function is zero. Thus, the problem reduces to finding the intersection in 2D of a triangle
or quadrilateral with a quadratic object. Locating the zeros amounts to actually finding the roots of Q(t)
for the edges of the triangle discussed in the previous section, and/or determining the ellipse of intersection
if the cone passes through the triangle interior.
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