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1 Discussion

A standard problem in computer graphics is to take a texture stored as a rectangular bitmap and apply it to
a rectangular face of a polyhedron which has been rendered using perspective projection. The texture itself
needs to conform to the perspective projection. Since the polyhedron face is a convex quadrilateral in the
viewing plane, the problem reduces to mapping points from the texture rectangle to the quadrilateral. More
generally, we show how to map points between any two convex quadrilaterals using perspective projection.
Let the planar vertices of the source quadrilateral be labeled in counterclockwise order as p00, p10, p11, and
p01. Similarly let the planar vertices of the target quadrilateral be labeled as q00, q10, q11, and q01.

Consider the problem as a perspective projection from three dimensions to two dimensions. Assume the
viewing plane is z = 0 and the eye point is E = (e0, e1, e2) where e2 6= 0. The perspective projection of a
point r = (x, y, z) to the viewing plane is the point r0 = (x0, y0, 0) which lies on the ray emanating from E
and containing r. The linear relationship is r0 = (1−t)E+tr where t = e2/(e2−z), x0 = (e2x−e0z)/(e2−z),
and y0 = (e2y − e1z)/(e2 − z).

Embed the quadrilateral vertices in the viewing plane as Pij = (pij−p00, 0) and Qij = (qij−q00, 0). Rotate
the vertices Qij so that they lie in a plane defined by N · (x, y, z) = 0. Let the rotated points be denoted
Rij , so N ·Rij = 0 for all i and j. The problem is to select E and N so that each pair Rij and Pij lie on
the same ray. Once selected, the general transformation between R and P is known. Figure 1.1 shows the
projection of one quadrilateral onto another.

Figure 1.1 Projection of one quadrilateral onto another.

Applying the inverse rotation to R to obtain Q and extracting the first two components yields the perspective
projection from p in the source quadrilateral to q in the target quadrilateral. The mathematical details are
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given below.

Perspective projection requires that Rij = (1 − tij)E + tijPij for some tij . Since the points lie on the
specified plane, 0 = N ·Rij = (N · E) + tijN · (Pij − E). Solving this equation for tij and replacing in the
projection equation yields

Rij =
(N ·E)Pij − (N ·Pij)

N · (E−Pij)
.

Since Q10 and Q01 are linearly independent vectors, we can write Q11 = αQ10 + βQ01. Convexity of the
quadrilateral implies α > 0, β > 0, and α + β > 1. The same relationship holds for the rotated points Rij .
Similarly, P11 = γP10 + δP01 where γ > 0, δ > 0, and γ + δ > 1. Thus,

αR10 + βR01 = R11

= (N·E)P11−(N·P11)E
N·(E−P11)

= (N·E)(γP10+δP01E)−(N·(γP10+δP01))

N·(E−γP10−δP01)

= γ[(N·E)P10−(N·P10)E]+δ[(N·E)P01−(N·P01)E]

N·(E−γP10−δP01)

= γN·(E−P10)

N·(E−γP10−δP01)
R10 + δN·(E−P01)

N·(E−γP10−δP01)
R01.

By linear independence of R10 and R01 it follows that

α =
γN · (E−P10)

N · (E− γP10 − δP01)
and β =

δN · (E−P01)
N · (E− γP10 − δP01)

. (1)

Rearranging terms yields

N · [α(E− γP10 − δP01)− γ(E−P10)] = 0,

N · [β(E− γP10 − δP01)− δ(E−P01)] = 0

which implies N is orthogonal to the two listed vectors. The cross products of the two vectors may be used
for N.

N = [α(E− γP10 − δP01)− γ(E−P10)]× [β(E− γP10 − δP01)− δ(E−P01)].

The perspective transformations involve only dot products of the normal with various vectors. Some algebraic
manipulations yield

N ·P10 = δ(γ − α + αδ − βγ)∆e2,

N ·P01 = δ(δ − β + βγ − αδ)∆e2,

N ·E = γδ(1− α− β)∆e2,

N · (E−P10) = αδ(1− γ − δ)∆e2,

N · (E−P01) = βγ(1− γ − δ)∆e2,

where ∆ 6= 0 is defined by P10 ×P01 = (0, 0,∆).

Finally, we construct the mapping. Let R = uR10 + vR01 be a point in the rotated quadrilateral which is
projected onto a point P = xP10 + yP01 in the view plane quadrilateral. The conditions for containment
in the quadrilaterals are obtained by the point-in-polygon tests: u ≥ 0, v ≥ 0, (1 − β)u + α(v − 1) ≤ 0,
β(u−1)+(1−α)v ≤ 0 and x ≥ 0, y ≥ 0, (1−δ)x+γ(y−1) ≤ 0, δ(x−1)+(1−γ)y ≤ 0. The construction that
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led to equation (1) may be repeated, but with α, β, γ, δ, and R11 replace by u, v, x, y, and R, respectively,
to obtain

u(x, y) =
αδ(1− γ − δ)x

γδ(1− α− β) + δ(α− γ + βγ − αδ)x + γ(β − δ − βγ + αδ)y

and

v(x, y) =
βγ(1− γ − δ)y

γδ(1− α− β) + δ(α− γ + βγ − αδ)x + γ(β − δ − βγ + αδ)y
.

Rotating the plane containing the Rij back to z = 0 and translating to the original coordinates of the
quadrilaterals yields the perspective transformation

q = [1− u(x, y)− v(x, y)]q00 + u(x, y)q10 + v(x, y)q01

where p = (1−x−y)p00 +xp10 +yp01 with x ≥ 0, y ≥ 0, (1−δ)x+γ(y−1) ≤ 0, and δ(x−1)+(1−γ)y ≤ 0.
Note that both p and q are barycentric combinations of vertices of triangles.

Intuitively, perspective transformations map lines to lines. They also map conic sections to conic sections.
The proof is straightforward. Let the perspective transformation be u = (a0 + a1x + a2y)/(c0 + c1x + c2y)
and v = (b0 + b1x + b2y)/(c0 + c1x + c2y). The inverse transformation is of the same form, so it suffices to
show a conic section in uv coordinates satisfying Au2 + Buv + Cv2 + Du + Ev +F = 0 is mapped to a conic
section in xy coordinates satisfying Āx2 + B̄xy + C̄y2 + D̄x + Ēy + F̄ = 0. Substituting the formulas for u
and v into the quadratic equation, multiplying by (c0 + c1x + c2y)2, expanding the products, and grouping
the appropriate terms yields a quadratic in x and y. The left image in Figure 1.2 shows a square containing
several conic sections. The top curve is a parabola, the left and right curves are hyperbolas, the center curve
is a circle, and the bottom curve is an ellipse. The grid consists of straight lines. The right image in Figure
1.2 shows a perspective mapping of these conic sections.

Figure 1.2 Projection of conic sections in a square to conic sections in a quadrilateral.
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The implementation of the perspective mapping has a slight modification from what was described earlier.
Solving q− q00 = α(q10 − q00) + β(q01 − q00) requires setting up the matrix system (q10 − q00) · (q10 − q00) (q10 − q00) · (q01 − q00)

(q01 − q00) · (q10 − q00) (q01 − q00) · (q01 − q00)

 α

β

 =

 (q10 − q00) · (q− q00)

(q01 − q00) · (q− q00)


where the coefficient matrix M is symmetric. Numerical problems may arise in solving this system by in-
verting M . The first problem to deal with is the magnitude of the vertex values. These values can be large,
especially if they are given in terms of pixel coordinates on a raster of large size. The perspective transforma-
tion is invariant to uniform magnification of the quadrilaterals. The code normalizes each quadrilateral by
scaling using the lengths of p11 −p00 and q11 − q00. If all of the vertices are extremely small in magnitude,
then the normalization itself may have problems. In this case the calling routine is notified (via a returned
boolean flag) that the quadrilateral is too small.

The second problem to deal with is the magnitude of det(M). The determinant must be positive since
q10 − q00 and q01 − q00 are linearly independent. However, for needlelike quadrilaterals, the determinant
can be nearly zero and will cause numerical problems if the system is solved directly. Rather than inverting
M , we multiply by the adjoint matrix and avoid the division by det(M). The problem must be dealt with for
each matrix system. Define ∆p to be the determinant of the matrix for the source quadrilateral and define
∆q to be the determinant of the matrix for the target quadrilateral. Finally, define α′ = ∆qα, β′ = ∆qβ,
γ′ = ∆pγ, and δ′ = ∆pδ. The perspective mapping is

u(x, y) =
α′δ′(∆p − γ′ − δ′)x

γ′δ′(∆q − α′ − β′) + δ′(∆pα′ −∆qγ′ + β′γ′ − α′δ′)x + γ′(∆pβ′ −∆qδ′ − β′γ′ + α′δ′)y

and

v(x, y) =
β′γ′(∆p − γ′ − δ′)y

γ′δ′(∆q − α′ − β′) + δ′(∆pα′ −∆qγ′ + β′γ′ − α′δ′)x + γ′(∆pβ′ −∆qδ′ − β′γ′ + α′δ′)y
.

Note that this requires a slight modification of the point-in-quadrilateral conditions. For source point p, the
tests become x ≥ 0, y ≥ 0, (∆p − δ)x + γ(y − 1) ≤ 0, and δ(x− 1) + (∆p − γ)y ≤ 0.

The code is given below:

/* points in the plane */
typedef struct { double x, y; } Point2;

/* barycentric coordinates for planar points */
typedef struct { double b00, b10, b01; } Bary2;

/* convex quadrilateral, points in counterclockwise order */
typedef struct { Point2 v00, v10, v11, v01; } Quad;

/* map, u = a*x/(c00+c10*x+c01*y), v = b*y/(c00+c10*x+c01*y) */
typedef struct
{

double pDet, qDet;
double alpha, beta, gamma, delta;
double a, b, c00, c10, c01;

}
PerspectiveMap;
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int QuadToQuad (Quad p, Quad q, PerspectiveMap* map)
{

static double tolerance = 1e-05; /* user-selectable */

Point2 e10, e01, e11;
double length, m00, m01, m11, r0, r1;
PerspectiveMap map;

/* assert: src and trg are convex quads, counterclockwise order */

/* compute the sides and diagonal of the source quadrilateral */
e10.x = p.v10.x-p.v00.x;
e10.y = p.v10.y-p.v00.y;
e01.x = p.v01.x-p.v00.x;
e01.y = p.v01.y-p.v00.y;
e11.x = p.v11.x-p.v00.x;
e11.y = p.v11.y-p.v00.y;

/* normalize the source quadrilateral */
length = sqrt(e11.x*e11.x+e11.y*e11.y);
if ( length < tolerance )

return 0;
e11.x /= length;
e11.y /= length;
e10.x /= length;
e10.y /= length;
e01.x /= length;
e01.y /= length;

/* solve for gamma and delta of the source quadrilateral */
m00 = e10.x*e10.x+e10.y*e10.y;
m01 = e10.x*e01.x+e10.y*e01.y;
m11 = e01.x*e01.x+e01.y*e01.y;
r0 = e10.x*e11.x+e10.y*e11.y;
r1 = e01.x*e11.x+e01.y*e11.y;
map->pDet = m00*m11-m01*m01;

/* assert: map.pDet > 0 for convex quad */
map->gamma = m11*r0-m01*r1;
map->delta = m00*r1-m01*r0;

/* compute the sides and diagonal of the target quadrilateral */
e10.x = q.v10.x-q.v00.x;
e10.y = q.v10.y-q.v00.y;
e01.x = q.v01.x-q.v00.x;
e01.y = q.v01.y-q.v00.y;
e11.x = q.v11.x-q.v00.x;
e11.y = q.v11.y-q.v00.y;
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/* normalize the target quadrilateral */
length = sqrt(e11.x*e11.x+e11.y*e11.y);
if ( length < tolerance )

return 0;
e11.x /= length;
e11.y /= length;
e10.x /= length;
e10.y /= length;
e01.x /= length;
e01.y /= length;

/* solve for alpha and beta of the target quadrilateral */
m00 = e10.x*e10.x+e10.y*e10.y;
m01 = e10.x*e01.x+e10.y*e01.y;
m11 = e01.x*e01.x+e01.y*e01.y;
r0 = e10.x*e11.x+e10.y*e11.y;
r1 = e01.x*e11.x+e01.y*e11.y;
map->qDet = m00*m11-m01*m01;

/* assert: map.qDet > 0 for convex quad */
map->alpha = m11*r0-m01*r1;
map->beta = m00*r1-m01*r0;

/* transformation which maps src points to trg points */
map->a = map->alpha*map->delta*(map->pDet-map->gamma-map->delta);
map->b = map->beta*map->gamma*(map->pDet-map->gamma-map->delta);
map->c00 = map->gamma*map->delta*(map->qDet-map->alpha-map->beta);
map->c10 = map->delta*(map->pDet*map->alpha-map->qDet*map->gamma

+map->beta*map->gamma-map->alpha*map->delta);
map->c01 = map->gamma*(map->pDet*map->beta-map->qDet*map->delta

-map->beta*map->gamma+map->alpha*map->delta);

return 1;
}

Bary2 Evaluate (PerspectiveMap* map, Bary2 src)
{

/* assert: input point is in source quadrilateral
src.b10 >= 0,
src.b01 >= 0,
(map->pDet-map->delta)*src.b10+map->gamma*(src.b01-1) <= 0,
map->delta*(src.b10-1)+(map->pDet-map->gamma)*src.b01 <= 0 */

Bary2 trg;
double denom;

denom = map->c00+src.b10*map->c10+src.b01*map->c01;
trg.b10 = src.b10*map->a/denom;
trg.b01 = src.b01*map->b/denom;
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trg.b00 = 1.0-trg.b10-trg.b01;

/* assert: output point is in target quadrilateral
trg.b10 >= 0,
trg.b01 >= 0,
(map->qDet-map->beta)*trg.b10+map->alpha*(trg.b01-1) <= 0,
map->beta*(trg.b10-1)+(map->qDet-map->alpha)*trg.b01 <= 0 */

return trg;
}

The following application shows how text is mapped to a quadrilateral to give the impression of scrolling
from near to far (as is done in a number of science fiction films). For applications that require faster texture
mapping (but lower quality output), see Section 14.4 for a scan line algorithm which uses spatial coherence,
the property that lines are mapped to lines, and linear interpolation to reduce the number of lookups in the
texture map. Figure 1.3 shows the original text stored in a rectangular grid. This rectangle is the target
quadrilateral of the process.

Figure 1.3 Original text in a texture map.

Figure 1.4 shows the mapping to a quadrilateral. For each pixel in the source quadrilateral, the perspective
map is applied, the target point is truncated to the nearest pixel coordinates, and the texture is looked up
in the target rectangle. Notice the aliasing effects caused by the discretization.
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Figure 1.4 Perspectively mapped text with no anti-aliasing.

Figure 1.5 shows the same mapping, but instead of truncating the target point to nearest pixel, a bilinear
interpolation is applied to provide anti-aliasing.
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Figure 1.5 Perspectively mapped text with anti-aliasing.

The code which produces these images is given below. The images are gray-scale, but the same ideas can be
applied to color images by applying the lookup/interpolation in each of the separate channels in whatever
color space the user desires.

typedef struct
{

int R; /* number of rows in the image */
int C; /* number of columns in the image */
double** pixel;

/* Gray-scale values, stored as pixel[y][x] where y is row
number and x is column number. Image coordinates are
left-handed. */

}
Image;
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void ScrolledText (Image* text, Image* scroll)
{

/* assert: memory has been allocated for both images, the
texture map has been initialized. */

Quad sq, tq;
PerspectiveMap map;
int x, y;
int yLeft; /* conversion between left-hand image coordinates and

right-hand quadrilateral coords */

/* define the source quad (the scrolled text) */
sq.v00.x = 0.0;
sq.v00.y = 0.0;
sq.v10.x = scroll.C-1;
sq.v10.y = 0.0;
sq.v01.x = 3*scroll.C/8;
sq.v01.y = scroll.R-1;
sq.v11.x = 3*scroll.C/4;
sq.v11.y = scroll.R-1;

/* define the target quad (the original text) */
tq.v00.x = 0.0;
tq.v00.y = 0.0;
tq.v10.x = text.C-1;
tq.v10.y = 0.0;
tq.v01.x = 0.0;
tq.v01.y = text.R-1;
tq.v11.x = text.C-1;
tq.v11.y = text.R-1;

/* construct the perspective map */
QuadToQuad(sq,tq,&map);

/* process each scan line of the output image */
for (y = 0, yLeft = scroll.R-1; y < scroll.R; y++, yLeft--)
{

int x0, x1;
double xdif, ydif, u, v;

/* find left edge of quad */
x0 = 0;
while ( -x0*sq.v01.y+y*sq.v01.x > 0 )

x0++;

/* find right edge of quad */
xdif = sq.v10.x-sq.v11.x;
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ydif = sq.v11.y-sq.v10.y;
x1 = scroll.C-1;
while ( (x1-sq.v10.x)*ydif+y*xdif > 0 )

x1--;

/* process each pixel in scan line of quad */
for (x = x0; x <= x1; x++)
{

Bary2 src, trg;

/* source pixel in barycentric coordinates */
src.b01 = y/(scroll.R-1.0);
src.b10 = (x-sq.v01.x*src.b01)/(scroll.C-1.0);
src.b00 = 1.0-src.b10-src.b01;

Evaluate(map,src,trg);

/* target pixel in barycentric coordinates */
u = trg.b00*tq.v00.x+trg.b10*tq.v10.x+trg.b01*tq.v01.x;
v = trg.b00*tq.v00.y+trg.b10*tq.v10.y+trg.b01*tq.v01.y;

/* clip to text rectangle, allow room for bi-interp */
if ( 1 <= u && u < text.C-1 && 1 <= v && v < text.R-1 )
{

int u0, v0;
double t00, t10, t01, t11, du, dv, omdu, omdv;

/* truncate to nearest pixel */
u0 = int(floor(u));
v0 = int(floor(v));

/* direct lookup shows aliasing effects
scroll.pixel[yLeft][x] = texture[v0][u0];
*/

/* anti-aliasing via bilinear interpolation */
t00 = texture[v0][u0];
t10 = texture[v0][u0+1];
t01 = texture[v0+1][u0];
t11 = texture[v0+1][u0+1];
du = u-u0;
dv = v-v0;
omdu = 1-du;
omdv = 1-dv;
scroll[yLeft][x] = omdu*omdv*t00+omdu*dv*t01

+du*omdv*t10+du*dv*t11;
}

}
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