
Distance Between Two Line Segments in 3D

David Eberly
Geometric Tools, LLC
http://www.geometrictools.com/
Copyright c 1998-2008. All Rights Reserved.

Created: March 2, 1999
Last Modi�ed: November 14, 2008

Contents

1 Mathematical Formulation 2

2 Nonparallel Line Segments 2

3 Parallel Line Segments 5

4 Implementation 5

4.1 Nonparallel Line Segments . 6

4.2 Parallel Line Segments . 8

1

http://www.geometrictools.com/

1 Mathematical Formulation

The problem is to compute the minimum distance between points on two line segments L0(s) = B0 + sM0

for s 2 [0; 1], and L1(t) = B1+ tM1 for t 2 [0; 1]. The minimum distance is computed by locating the values
�s 2 [0; 1] and �t 2 [0; 1] corresponding to the two closest points on the line segments.

The squared-distance function for any two points on the line segments is Q(s; t) = jL0(s) � L1(t)j
2 for

(s; t) 2 [0; 1]2. The function is quadratic in s and t,

Q(s; t) = as2 + 2bst+ ct2 + 2ds+ 2et+ f;

where a = M0 �M0, b = �M0 �M1, c = M1 �M1, d = M0 � (B0 � B1), e = �M1 � (B0 � B1), and
f = (B0 �B1) � (B0 �B1). Quadratics are classi�ed by the sign of ac� b2. For function Q,

ac� b2 = (M0 �M0)(M1 �M1)� (M0 �M1)
2 = jM0 �M1j

2 � 0:

If ac� b2 > 0, then the two line segments are not parallel and the graph of Q is a paraboloid. If ac� b2 = 0,
then the two line segments are parallel and the graph of Q is a parabolic cylinder.

In calculus terms, the goal is to minimize Q(s; t) over the unit square [0; 1]2. Since Q is a continuously
di�erentiable function, the minimum occurs either at an interior point of the square where the gradient
rQ = 2(as+ bt+ d; bs+ ct+ e) = (0; 0) or at a point on the boundary of the square.

2 Nonparallel Line Segments

When ac�b2 > 0 the line segments are not parallel. The gradient of Q is zero only when �s = (be�cd)=(ac�b2)
and �t = (bd�ae)=(ac�b2). If (�s; �t) 2 [0; 1]2, then we have found the minimum of Q. Otherwise, the minimum
must occur on the boundary of the square. To �nd the correct boundary, consider the Figure 2.1,

2

Figure 2.1 Partitioning of the st-plane by the unit square.

The central square labeled region 0 is the domain of Q, (s; t) 2 [0; 1]2. If (�s; �t) is in region 0, then the two
closest points on the 3D line segments are interior points of those segments.

Suppose (�s; �t) is in region 1. The level curves of Q are those curves in the st-plane for which Q is a constant.
Since the graph of Q is a paraboloid, the level curves are ellipses. At the point where rQ = (0; 0), the level
curve degenerates to a single point (�s; �t). The global minimum of Q occurs there, call it Vmin. As the level
values V increase from Vmin, the corresponding ellipses are increasingly further away from (�s; �t). There is a
smallest level value V0 for which the corresponding ellipse (implicitly de�ned by Q = V0) just touches the
unit square edge s = 1 at a value t = t0 2 [0; 1]. For level values V < V0, the corresponding ellipses do not
intersect the unit square. For level values V > V0, portions of the unit square lie inside the corresponding
ellipses. In particular any points of intersection of such an ellipse with the edge must have a level value
V > V0. Therefore, Q(1; t) > Q(1; t0) for t 2 [0; 1] and t 6= t0. The point (1; t0) provides the minimum
squared-distance between two points on the 3D line segments. The point on the �rst line segment is an
endpoint and the point on the second line segment is interior to that segment. Figure 2.2 illustrates the idea
by showing various level curves.

3

Figure 2.2 Various level curves Q(s; t) = V .

An alternate way of visualizing where the minimum distance point occurs on the boundary is to intersect the
graph of Q with the plane s = 1. The curve of intersection is a parabola and is the graph of F (t) = Q(1; t) for
t 2 [0; 1]. Now the problem has been reduced by one dimension to minimizing a function F (t) for t 2 [0; 1].
The minimum of F (t) occurs either at an interior point of [0; 1], in which case F 0(t) = 0 at that point, or
at a end point t = 0 or t = 1. Figure 2.2 shows the case when the minimum occurs at an interior point. At
that point the ellipse is tangent to the line s = 1. In the end point cases, the ellipse may just touch one of
the corners of the unit square, but not necessarily tangentially.

To distinguish between the interior point and end point cases, the same partitioning idea applies in the
one-dimensional case. The interval [0; 1] partitions the real line into three intervals, t < 0, t 2 [0; 1], and
t > 1. Let F 0(t̂) = 0. If t̂ < 0, then F (t) is an increasing function for t 2 [0; 1]. The minimum restricted
to [0; 1] must occur at t = 0, in which case Q attains its minimum at (s; t) = (1; 0). If t̂ > 1, then F (t) is
a decreasing function for t 2 [0; 1]. The minimum for F occurs at t = 1 and the minimum for Q occurs at
(s; t) = (1; 1). Otherwise, t̂ 2 [0; 1], F attains its minimum at t̂, and Q attains its minimum at (s; t) = (1; t̂).

The occurrence of (�s; �t) in region 3, 5, or 7 is handled in the same way as when the global minimum is in
region 0. If (�s; �t) is in region 3, then the minimum occurs at (s0; 1) for some s0 2 [0; 1]. If (�s; �t) is in region
5, then the minimum occurs at (0; t0) for some t 2 [0; 1]. Finally, if (�s; �t) is in region 7, then the minimum
occurs at (s0; 0) for some s0 2 [0; 1]. Determining if the �rst contact point is at an interior or end point of
the appropriate interval is handled the same as discussed earlier.

If (�s; �t) is in region 2, it is possible the level curve of Q that provides �rst contact with the unit square
touches either edge s = 1 or edge t = 1. Because the global minimum occurs in region 2, the gradient at
the corner (1; 1) cannot point outside the unit square. If rQ = (Qs; Qt) where Qs and Qt are the partial
derivatives of Q, it must be that the partial derivatives cannot both be negative. The choice of edge s = 1

4

or t = 1 can be made based on the signs of Qs(1; 1) and Qt(1; 1). If Qs(1; 1) > 0, then the minimum must
occur on edge t = 1 since Q(s; 1) < Q(1; 1) for s < 1 but close to 1. Similarly, if Qt(1; 1) > 0, then the
minimum must occur on edge s = 1. Determining whether the minimum is interior to the edge or at an end
point is handled as in the case of region 1. The occurence of (�s; �t) in regions 4, 6, and 8 is handled similarly

3 Parallel Line Segments

When ac � b2 = 0, the gradient of Q is zero on an entire st-line, s = �(bt + d)=a for all t 2 IR. If any pair
(s; t) satisfying this equation is in [0; 1], then that pair leads to two points on the 3D lines that are closest.
Otherwise, the minimum must occur on the boundary of the square. Rather than solving the problem using
minimization, I take advantage of the fact that the line segments lie on parallel lines.

The origin of the �rst line is assumed to be B0 and the line direction is M0. The �rst line segment is
parameterized as B0 + sM0 for s 2 [0; 1]. The second line segment can be projected onto the �rst line. The
end point B1 can be represented as

B1 = B0 + �0M0 +U0

where U0 is a vector orthogonal to M0. The coe�cient of M0 is

�0 =
M0 � (B1 �B0)

M0 �M0

= �
d

a

where a and d are some coe�cients of Q(s; t) de�ned earlier. The other end point B1+M1 can be represented
as

B1 +M1 = B0 + �1M0 +U1

where U1 is a vector orthogonal to M0. The coe�cient of M0 is

�1 =
M0 � (M1 +B1 �B0)

M0 �M0

= �
b+ d

a

where b is also a coe�cient of Q(s; t). The problem now reduces to determining the relative position of
[min(�0; �1);max(�0; �1)] with respect to [0; 1]. If the two intervals are disjoint, then the minimum distance
occurs at end points of the two 3D line segments. If the two intervals overlap, then there are many pairs of
points at which the minimum distance is attained. In this case the implementation returns a pair of points,
an end point of one line and and an interior point of the other line.

4 Implementation

The implementation of the algorithm is designed so that at most one oating point division is used when
computing the minimum distance and corresponding closest points. Moreover, the division is deferred until
it is needed. In some cases no division is needed.

Quantities that are used throughout the code are computed �rst. In particular, the values computed are
D = B0�B1, a =M0 �M0, b = �M0 �M1, c =M1 �M1, d =M0 �D, e = �M1 �D, and f = D �D. We also
need to determine immediately whether or not the two line segments are parallel. The quadratic classi�er is
� = ac� b2 and is also computed initially. The code actually computes � = jac� b2j since it is possible for
nearly parallel lines that some oating point round-o� errors lead to a small negative quantity. Finally, � is

5

compared to a oating point tolerance value. If larger, the two line segments are nonparallel and the code
for that case is processed. If smaller, the two line segments are assumed to be parallel and the code for that
case is processed.

4.1 Nonparallel Line Segments

In the theoretical development, we computed �s = (be� cd)=� and (bd� ae)=� so that rQ(�s; �t) = (0; 0). The
location of the global minimum is then tested to see if it is in the unit square [0; 1]. If so, then we have
already determined what we need to compute minimum distance. If not, then the boundary of the unit
square must be tested. To defer the division by �, the code instead computes �s = be� cd and �t = bd�ae and
tests for containment in [0; �]2. If in that set, then the divisions are performed. If not, then the boundary
of the unit square is tested. The general outline of the conditionals for determining which region contains
(�s; �t) is

det = a*c-b*b; s = b*e-c*d; t = b*d-a*e;

if (s >= 0)

{

if (s <= det)

{

if (t >= 0) { if (t <= det) { region 0 } else { region 3 } }

else { region 7 }

}

else

{

if (t >= 0) { if (t <= det) { region 1 } else { region 2 } }

else { region 8 }

}

}

else

{

if (t >= 0) { if (t <= det) { region 5 } else { region 4 } }

else { region 6 }

}

The block of code for handling region 0 is

invDet = 1/det;

s *= invDet;

t *= invDet;

and requires a single division.

The block of code for handling region 1 is

// F(t) = Q(1,t) = (a+2*d+f)+2*(b+e)*t+(c)*t^2

// F'(t) = 2*((b+e)+c*t)

6

// F'(T) = 0 when T = -(b+e)/c

s = 1;

tmp = b+e;

if (tmp > 0) // T < 0, so minimum at t = 0

t = 0;

else if (-tmp > c) // T > 1, so minimum at t = 1

t = 1;

else // 0 <= T <= 1, so minimum at t = T

t = -tmp/c;

Notice that at most one division occurs in this block during run-time. Code blocks for regions 3, 5, and 7
are similar.

The block of code for handling region 2 is

// Q_s(1,1)/2 = a+b+d, Q_t(1,1)/2 = b+c+e

tmp = b+d;

if (-tmp < a) // Q_s(1,1) > 0

{

// F(s) = Q(s,1) = (c+2*e+f)+2*(b+d)*s+(a)*s^2

// F'(s) = 2*((b+d)+a*s), F'(S) = 0 when S = -(b+d)/a < 1

t = 1;

if (tmp > 0) // S < 0, so minimum at s = 0

s = 0;

else // 0 <= S < 1, so minimum at s = S

s = -tmp/a;

}

else // Q_s(1,1) <= 0

{

s = 1;

tmp = b+e;

if (-tmp < c) // Q_t(1,1) > 0

{

// F(t) = Q(1,t) = (a+2*d+f)+2*(b+e)*t+(c)*t^2

// F'(t) = 2*((b+e)+c*t), F'(T) = 0 when T = -(b+e)/c < 1

if (tmp > 0) // T < 0, so minimum at t = 0

t = 0

else // 0 <= T < 1, so minimum at t = T

t = -tmp/c;

}

else // Q_t(1,1) <= 0, gradient points to region 2, so minimum at t = 1

t = 1;

}

Notice that at most one division occurs in this block during run-time. Code blocks for regions 4, 6, and 8
are similar.

7

4.2 Parallel Line Segments

The �rst information to be computed is the ordering of �0 = �d=a and �(b + d)=a. Once the ordering is
known, we can compare the two s-intervals to determine minimum distance. Note that �d=a corresponds
to t = 0 and �(b+ d)=a corresponds to t = 1.

if (b > 0)

{

// compare intervals [-(b+d)/a,-d/a] to [0,1]

if (d >= 0)

// -d/a <= 0, so minimum is at s = 0, t = 0

else if (-d <= a)

// 0 < -d/a <= 1, so minimum is at s = -d/a, t = 0

else

// minimum occurs at s = 1, need to determine t (see below)

}

else

{

// compare intervals [-d/a,-(b+d)/a] to [0,1]

if (-d >= a)

// 1 <= -d/a, so minimum is at s = 1, t = 0

else if (d <= 0)

// 0 <= -d/a < 1, so minimum is at s = -d/a, t = 0

else

// minimum occurs at s = 0, need to determine t (see below)

}

When b > 0, the remaining problem is to determine on which side of s = 1 is the quantity �(b+ d)=a. I do
so by �rst �nding that value of t for which �(bt + d)=a 2 [�(b + d)=a;�d=a] corresponds to s = 1. Simply
set �(bt + d)=a = 1 and solve for t = �(a + d)=b. By the time we get to this case at run-time, we know
a+d < 0, so t > 0. If t � 1, then we can use it as is. But if t > 1, then we clip to t = 1. The block of code is

tmp = a+d;

if (-tmp >= b) t = 1; else t = -tmp/b;

Again note that the division is deferred until actually needed.

When b < 0, the remaining problem is to determine on which side of s = 0 is the quantity �(b+ d)=a. Set
�(bt + d)=a = 0 and solve for t = �d=b. By the time we get to this case at run-time, we know d > 0, so
t > 0. If t � 1, then we can use it as is. But if t > 1, then we clip to t = 1. The block of code is

if (d >= -b) t = 1; else t = -d/b;

8

	1 Mathematical Formulation
	2 Nonparallel Line Segments
	3 Parallel Line Segments
	4 Implementation
	4.1 Nonparallel Line Segments
	4.2 Parallel Line Segments

