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1 Introduction

A smooth curve in IR2 is a 1D manifold of codimension 1 and is characterized by its curvature (modulo
rigid motions). A smooth curve in IR3 is a 1D manifold (codimension 2) and is characterized by a curvature
function and a torsion function. A smooth surface in IR3 is a 2D manifold (codimension 1) and is characterized
by its metric and curvature tensors. Such a surface has two principal curvature functions associated with it.

The problem is to generalize these notions to manifolds in IR4. Measurements for curves (manifolds of codi-
mension 3) are similar to those for curves in IR3. Measurements for hypersurfaces (manifolds of codimension
1) are similar to those for surfaces in IR3. Measurements for 2D manifolds (codimension 2) are a mixture of
the ideas for curves and surfaces.

2 Curves in IR2

3 Curves in IR3

Let x(s) be a smooth curve in IR3 where s is the arc length parameter. The derivative vector dx/ds must
always be unit length. The Frenet-Serret formulas are

dx
ds

= T,
dT
ds

= κN,
dN
ds

= −κT + τB
dB
ds

= −τN (1)

where N is a unit normal and B = T ×N. The function κ is the curvature and measures how the curve
bends within the plane spanned by T and N. The function τ is the torsion and measures how the curve
bends out of the plane in the direction of B. Curvature and torsion are easily extracted as

κ(s) = N · dT
ds
, τ(s) = B · dN

ds
.

If y(t) is a smooth curve where t is not necessarily the arc length parameter, then a more complicated set
of equations arise. Arc length s and t are related by s′ = ds/dt = |y′(t)| where the prime symbol indicates
differentiation with respect to t. Thus,

y′ = s′T. (2)

Differentiate with respect to t and use the Frenet-Serret equations to obtain

y′′ = (s′)2κN + s′′T. (3)

Differentiate again, group terms, and use the Frenet-Serret equations to obtain

y′′′ = [s′′′ − κ2(s′)3]T + [(s′)3(dκ/ds) + 3s′s′′κ]N + [(s′)3κτ ]B. (4)

The curvature is

κ(t) =
N · y′′

(s′)2
= ±|y

′ × y′′|
|y′|3

where the sign depends on the orientation of the normal to the tangent. The torsion is

τ(t) =
B · y′′′

(s′)3κ
=

y′ · y′′ × y′′′

|y′ × y′′|2
.
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4 Surfaces in IR3

5 Curves in IR4

6 Hypersurfaces in IR4

7 Manifolds of Codimension 2 in IR4

7.1 Measurement by Sections

To compute curvature at a point on a surface in IR3, a tangential direction was selected and the plane
containing the tangent and the surface normal was intersected with the surface. The surface curvature in
the tangential direction is the curvature of the intersection curve.

The same idea can be applied to a manifold of codimension 2, x : IR2 → IR4, say x = x(u). At a point p
on the manifold, let T1 and T2 be two orthonormal tangent vectors and let N and B be two orthonormal
normal vectors. Let T be any unit length tangent direction. The affine hyperplane at p and spanned by T,
N, and B intersects the manifold in a curve. This curve may be represented by y(s) = x(u(s)) where s is
the arc length parameter. While p = y(0), and T, N, and B are vectors at p, in the following discussion I
will be loose with the notation and use the same names for the tangents and normals for any s.

While living in IR4, the curve is restricted to a 3D space, so its bitorsion is zero. Effectively the 3D Frenet-
Serret equations apply even though the vectors in the formula live in IR4. The curve satisfies

dy
ds

= T,
dT
ds

= κN,
dN
ds

= −κT + τN,
dB
ds

= −τN,

where κ is curvature and τ is torsion. Define v = du/ds, a = dv/ds, and ψ = da/ds. Differentiating y(s)
yields

dyi

ds = xi,jvj

d2yi

ds2 = xi,jaj + xi,jkvjvk

d3yi

ds3 = xi,jψj + 3xi,jkvjak + xi,jk`vjvkv`.

Once again being loose with the notation, we can write these as

dy
ds = (Dx)v

d2y
ds2 = (Dx)a + (D2x)v2

d3y
ds3 = (Dx)ψ + 3(D2x)va + (D3x)v3.

7.2 Curvature

Since T is unit length, we have
1 = TtT = vt(DxtDx)v = vtGv
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where G is the 2 × 2 metric tensor for the manifold. Also, T = (Dx)v implies v = (DxtDx)−1DxtT
and [I − Dx(DxtDx)−1Dxt]T = 0. The matrix I − Dx(DxtDx)−1Dxt is a projection operator onto the
2-dimensional normal space at each point on the manifold.

Define Q = (D2x)v2 = xi,jkvjvk, a vector of quadratic forms in v. Then κN = (Dx)a + Q. Note
that the columns of Dx are tangent vectors to the manifold, so 0 = κDxtN = (DxtDx)a + DxtQ, and
a = −(DxtDx)−1DxtQ. Thus,

κN = [I −Dx(DxtDx)−1Dxt]Q

The projection of Q onto the normal space has no B component, so BtQ = 0. This also follows directly
from 0 = κBtN = Bt(Dx)a + BtQ = BtQ since B is orthogonal to the columns of Dx which are tangent
vectors. Now we have

κ = κNtN = Nt(Dx)a + NtQ = NtQ

since N is orthogonal to the columns of Dx. Also,

κ2 = κNtQ = Qt[I −Dx(DxtDx)−1Dxt]Q.

As a function of v, κ2 is continuous on the ellipse vtGv = 1, a compact set, so it attains a minimum and
a maximum on that set. Let w be a unit length vector and define v = w/

√
wtGw; then vtGv = 1. The

squared curvature is therefore

κ2 =
[(D2x)w2]t[I −Dx(DxtDx)−1Dxt][(D2x)w2]

[wt(DxtDx)w]2
. (5)

Extrema are computed using standard calculus methods applied to κ2 as a function of θ ∈ [0, 2π] where
w = (cos θ, sin θ).

7.3 Torsion

The equation BtQ = 0 implies BtdQ/ds + QtdB/ds = 0. Using the Frenet-Serret equations yields
BtdQ/ds = −QtdB/ds = τκ.

Differentiating the equation d2y/ds2 = κN and using the Frenet-Serret equations yields

d3y
ds

= κ
dN
ds

+
dκ

ds
N = −κ2T + τκB +

dκ

ds
N.

Using the original equation for the third derivative, we have

−κ2T + τκB +
dκ

ds
N = (Dx)ψ + 3(D2x)va + (D3x)v3.

Therefore,

τκ = Bt(Dx)ψ + 3Bt(D2x)va + Bt(D3x)v3

= 3Bt(D2x)va + Bt(D3x)v3.

From the definition Q = (D2x)v2, taking a derivative yields

τκ = Bt dQ
ds

= 2Bt(D2x)va + Bt(D3x)v3.
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The first equality in this equation comes from the derivation in the first paragraph of this section.

Subtracting the two displayed formulas yields Bt(D2x)va = 0. Therefore, τκ = Bt(D3x)v3. The remaining
problem is to replace B by an equivalent vector which depends only on x and its derivatives.

Let ξ1 = xi,1 and ξ2 = xi,2, the two columns of Dx. Define T1 = ξ1/|ξ1| and T2 = ξ2 − (Tt
1ξ2)T1. These

two vectors and N are orthonormal tangent vectors, so B is the generalized cross product of the vectors,
Bi = eijk`T1jT2kN`, say B = Cross (T1,T2,N). Multiplying by κ and using the formula for N in terms of
Q, we have

τ =
Cross (T1,T2, [I −Dx(DxtDx)−1Dxt]Q)t(D3x)v3

κ2
.

In terms of the unit length vector w,

τ =
Cross (T1,T2, [I −Dx(DxtDx)−1Dxt](D2x)w2)t(D3x)w3

κ2[wt(DxtDx)w]5/2
(6)

This can also be optimized by standard calculus techniques where τ is treated as a function of θ ∈ [0, 2π]
where w = (cos θ, sin θ).

Example. Consider the manifold x(u, v) = (u, v, f(u, v), g(u, v)) where f , g, fu, fv, gu, and gv are all zero
at (u, v) = (0, 0). The orthonormal tangents are T1 = (1, 0, 0, 0) and T2 = (0, 1, 0, 0). The metric tensor
G is the 2 × 2 identity matrix and the projection matrix I − Dx(DxtDx)−1Dxt = diag (0, 0, 1, 1). Define
Qf = (D2f)v2, Qg = (D2g)v2, Cf = (D3f)v3, and Cg = (D3g)v3. At (0, 0) the curvature is

κ2 = (Qf)2 + (Qg)2

and the torsion is
τ =

Qf Cg −Qg Cf

(Qf)2 + (Qg)2
.

5


	1 Introduction
	2 Curves in IR2
	3 Curves in IR3
	4 Surfaces in IR3
	5 Curves in IR4
	6 Hypersurfaces in IR4
	7 Manifolds of Codimension 2 in IR4
	7.1 Measurement by Sections
	7.2 Curvature
	7.3 Torsion


