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1 Introduction

Recall that natural cubic splines are piecewise cubic polynomial and exact interpolating functions for tabu-
lated data (xi, f(xi)). The globally constructed spline has continuous second-order derivatives. The second
derivatives at the endpoints are zero (no bending at end points). It is also possible to clamp the endpoints
by specifying zero first derivatives there. The spline curve represents a thin metal rod that is constrained
not to move at the grid points.

The concept applies equally as well in two dimensions. A thin-plate spline is a physically motivated 2D inter-
polation scheme for arbitrarily spaced tabulated data (xi, yi, f(xi, yi)). These splines are the generalization
of the natural cubic splines in 1D. The spline surface represents a thin metal sheet that is constrained not to
move at the grid points. The construction is based on choosing a function that minimizes an integral that
represents the bending energy of a surface. The origins of thin-plate splines in 2D appears to be [1, 2].

In fact, the concept applies to any dimension for arbitrarily spaced tabulated data (xi, f(xi)). The method
of construction for all dimensions is presented in [3] and is based on functional analysis1.

In n dimensions, the idea of thin-plate splines is to choose a function f(x) that exactly interpolates the data
points (xi, yi), say, yi = f(xi), and that minimizes the bending energy,

E[f ] =

∫
IRn
|D2f |2 dX (1)

where D2f is the matrix of second-order partial derivatives of f and |D2f |2 is the sum of squares of the
matrix entries. The infinitesimal element of hypervolume is dX = dx1 · · · dxn, where xi are the components
of x.

It is also possible to formulate the problem with a smoothing parameter for regularization [4]. A function f
is chosen that does not necessarily exactly interpolate all the data points but that does minimize

E[f ] =

m∑
i=1

|f(xi)− yi|2 + λ

∫
IRn
|D2f |2 dX (2)

The smoothing parameter is λ > 0 and is chosen a priori. The summation makes it clear that there are m
data points.

2 The Calculus of Variations

The ideas are presented in a mathematically informal manner.

2.1 Functionals of f and f ′

To motivate the minimization, consider a functional that is an integral involving a function F that depends
on independent variable x, on a function f , and on the derivative function f ′,

E[f ] =

∫ b

a

F (x, f, f ′) dx (3)

1 Given the promise of the title, I purchased the paper from SpringerLink for 34 USD and was disappointed. It is simple
only to other research mathematicians with extensive training in functional analysis.
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For example, F (x, f, f ′) = f , in which case E[f ] =
∫ b

a
f(x) dx is just the definite integral of f for the

interval [a, b]. Another example is F (x, f, f ′) =
√

1 + (f ′)2, in which case E[f ] =
∫ b

a

√
1 + (f ′(x))2 dx is the

arclength of the graph of f for the interval.

We wish to construct f for which E[f ] of Equation (3) is a minimum. The calculus of variations allows us
to do this, a process that is the extension of directional derivatives for multivariate functions to directional
derivatives of functions whose independent inputs are themselves functions. We may example E as f varies
in the direction of another function g,

φ(t) = E[f + tg] =

∫ b

a

F (x, f + tg, f ′ + tg′) dx (4)

We assume that g does not change f at the interval endpoints, so g(a) = 0 and g(b) = 0. For each scalar t
we obtain the real number φ(t) from the integration. If f is a function that minimizes E, then we expect
φ(t) = E[f + tg] ≥ E[f ] = φ(0) for t near zero. From standard calculus, for φ(0) to be a minimum, we
expect that its derivative is zero: φ′(0) = 0. If we formally differentiate Equation (4), we obtain

φ′(t) =

∫ b

a

∂F (x, f + tg, f ′ + tg′)

∂f
g +

∂F (x, f + tg, f ′ + tg′)

∂f ′
g′ dx (5)

The integrand is an application of the chain rule to differentiate F (x, f + tg, f + tg′). Setting t to zero, we
have at a minimum,

0 = φ′(0) =

∫ b

a

∂F (x, f, f ′)

∂f
g +

∂F (x, f, f ′)

∂f ′
g′ dx (6)

The second term in the integrand involves g′(x). We can use integration by parts,
∫
u dv = uv−

∫
v du, with

u = ∂F/∂f ′ and dv = g′dx,∫ b

a

∂F

∂f ′
g′ dx =

∂F

∂f ′
g

∣∣∣∣b
a

−
∫ b

a

d

dx

(
∂F

∂f ′

)
g dx = −

∫ b

a

d

dx

(
∂F

∂f ′

)
g dx (7)

where the last equality follows from g(a) = g(b) = 0. Combining this with Equation (6), we have

0 =

∫ b

a

[
∂F

∂f
− d

dx

(
∂F

∂f ′

)]
g dx (8)

This equation is true no matter which “direction” g we choose. The only way for this to happen is if

∂F

∂f
− d

dx

(
∂F

∂f ′

)
= 0 (9)

This is referred to as the Euler-Lagrange differential equation.

As an example, let us construct the function f(x) for which the arclength integral is a minimum on the interval
[x0, x1]. Let the function values at the endpoints be y0 and y1. The integrand is F (x, f, f ′) =

√
1 + (f ′)2.

The Euler-Lagrange differential equation is

0 =
∂F

∂f
− d

dx

(
∂F

∂f ′

)
= 0− d

dx

(
f ′

[1 + (f ′)2]1/2

)
=

−f ′′

[1 + (f ′)2]3/2
(10)

The equation is satisfied when f ′′(x) = 0 for all x, which means f(x) = y0 + (y1 − y0)(x − x0)/(x1 − x0).
This is exactly what we expect—the shortest-length curve connecting two points is a line segment.
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2.2 Functionals of f , f ′, and f ′′

The same idea of a directional derivative applies when the integrand depends on the function and its first-
and second-order derivatives, F (x, f, f ′, f ′′). When computing the directional derivative, we use a function
g(x) for which g(a) = g(b) = 0 and g′(a) = g′(b) = 0. The equivalent of Equation (6) is

0 =

∫ b

a

∂F

∂f
g +

∂F

∂f ′
g′ +

∂F

∂f ′′
g′′ dx (11)

The second term in the integrand is integrated by parts once. The third term is integrated by parts twice,
and uses g(a) = g(b) = g′(a) = g′(b) = 0 to eliminate the nonintegral terms that occur. The result is

0 =

∫ b

a

[
∂F

∂f
− d

dx

(
∂F

∂f ′

)
+

d2

dx2

(
∂F

∂f ′′

)]
g dx (12)

Once again, this equation is true no matter the choice of g, and the only way that can happen is if

∂F

∂f
− d

dx

(
∂F

∂f ′

)
+

d2

dx2

(
∂F

∂f ′′

)
= 0 (13)

The introduction of f ′′ allows us to handle the bending energy integral.

2.3 Cubic Splines and Green’s Functions

The data points are (xi, yi) for 1 ≤ i ≤ m. We require that f(xi) = yi for all i. The bending energy is

E[f ] =

∫ ∞
−∞

[f ′′(x)]2 dx (14)

A complicating factor is that the integral is over the entire real line, so the calculus of variations argument
must be extended to handle this. Effectively, we need to work with distributions. In this case, think of this as
introducing Dirac delta functions into the problem. Recall that the Dirac delta function has the substitution
property φ(a) =

∫∞
−∞ φ(x)δ(x− a) dx.

In the notation for the calculus of variations, the integrand is F (x, f, f ′, f ′′) = (f ′′)2; that is, F depends
only on the second derivative of f . Equation (9) must be satisfied, f (4)(x) = 0, the fourth-order derivative
of f . If it were the case that f has a continuous fourth-order derivative, then f would have to be a cubic
polynomial. However, it is then not possible to satisfy all the conditions f(xi) = yi (unless the data points
do all lie on the same cubic graph). This requires us to treat f (4)(x) = 0 in a distributional sense—the
fourth derivative is zero for all x except at the points xi where the fourth derivative is discontinuous.

We can construct a Green’s function G(x, s) that is the solution to ∂4G/∂x4 = δ(x − s), where δ(x) is the
Dirac delta function. The classical solution is

G(x, s) = |x− s|3 (15)

although technically there is a normalizing factor 1/12. Observe that it has a derivative discontinuity at
x = s. The function f that minimizes Equation (14) is a linear combination of the G(x, s) with the s-values
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set to the xi where the derivative discontinuities must occur. Also notice that any linear polynomial is in
the kernel of E[f ] (the set of functions for which E[f ] = 0), so we need to account for this. The form of f is

f(x) =

m∑
i=1

aiG(x, xi) + b0 + b1x =

m∑
i=1

ai|x− xi|3 + b0 + b1x (16)

This equation has m + 2 unknown values, the ai and bj , but we have only m constraints f(xi) = yi.
The remaining two come from an orthogonality condition that is mentioned in [3]. Specifically, the linear
polynomial b0+b1x is in the orthogonal complement of the function space that contains the Green’s functions.
This manifests itself as

∑m
i=1 ai = 0 and

∑m
i=1 aixi = 0.

2.4 Euler-Lagrange Equations for Multivariate f

Consider functions of the form f(x1, . . . , xn). Then our F function is of the form F (x1, . . . , xn, f, fx1
, . . . , fxn

)
where fxi

= ∂f/∂xi. The equivalent of Equation (9) is

∂F

∂f
−

n∑
i=1

d

dxi

(
∂F

∂fxi

)
= 0 (17)

Second-order derivatives fxixj
= ∂2f/∂xi∂xj may also be included in F . The equivalent of Equation (13) is

∂F

∂f
−

n∑
i=1

d

dxi

(
∂F

∂fxi

)
+

n∑
i=1

n∑
j=1

d

dxi

d

dxj

(
∂F

∂fxixj

)
= 0 (18)

3 Thin-Plate Splines in n Dimensions

For the bending energy integrand F = |D2f |2, the sum of squares of second-order partial derivatives of f ,
Equation (18) is the biharmonic equation

0 = ∆2f =

n∑
i=1

n∑
j=1

f2xixj
(19)

where ∆ is the Laplacian operator, which is applied twice.

Just as for the cubic spline, f need only have fourth-order partial derivatives that are continuous almost
everywhere (except at the data points). We need a Green’s function G(x, s) that is a solution to the
biharmonic equation. The classical solution is the following, written as a radially symmetric function with
r = |x− x|,

G(r) =

 c0r
4−n ln r, n = 2 or n = 4

c1r
4−n, otherwise

(20)

where

c0 =
(−1)n/2+1

8
√
π(2− n/2)!

, c1 =
Γ(n/2− 2)

16πn/2
(21)
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As in the cubic-spline case, the constants c0 and c1 are omitted and absorbed into the computations of the
unknown coefficients of the thin-plate spline.

The minimizer f is a linear combination of the Green’s function with the argument s set to the xi of the
data points. There is also a linear polynomial term (this term is in the kernel of E[f ]). The function is

f(x) =

m∑
i=1

aiG(x,xi) +

b0 +

n∑
j=1

bjxj

 (22)

where xj is the jth component of variable x.

Define y to be the m × 1 vector whose components are the data point yi values. Define a to be the m × 1
vector whose components are the coefficients ai. Define b to be the (n + 1) × 1 vector whose components
are the bj . The constraints yi = f(xi) lead to the system of equations

y = Ma +Nb (23)

where M is the m ×m matrix whose entries are Mij = G(xi,xj) and where N is the m × (n + 1) matrix
whose rows are (1,xi). An orthogonality condition that comes from the functional analysis in [3] is NTa = 0.
The equations have solution

a = M−1(y−Nb), b = (NTM−1N)−1NTM−1y (24)

Of course, b is computed first. The minimum bending energy is aTMa. When a is zero, this quadratic form
is zero—this is the case when f is a linear function whose graph is a hyperplane (no bending of the surface).

4 Smoothed Thin-Plate Splines

The smoothed functional is mentioned in Equation (2), which mahy be rewritten as

E[f ] =

∫
IRn

(
m∑
i=1

|f(x)− yi|2δ(x− xi) + λ|D2f |2
)
dX (25)

where δ(x) is the Dirac delta function of a multivariate input.

The Euler-Lagrange differential equation for the integrand is

0 =

m∑
i=1

(f(x)− yi)δ(x− xi) + λ∆2f (26)

where ∆2 is the biharmonic operator. Using the Green’s functions mentioned previously, the solution to the
differential equation is of the form

f(x) =

m∑
i=1

yi − f(xi)

λ
G(x,xi) +

b0 +

n∑
j=1

bjxj

 =

m∑
i=1

wiG(x,xi) +

b0 +

n∑
j=1

bjxj

 (27)
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where xj is the jth component of the variable x and where wk = (yk − f(xk))/λ, in which case yk =
f(xk) + λwk. Evaluate Equation (27) at xk to obtain

yk = f(xk) + λwk =

m∑
i=1

wiG(xk,xi) +

b0 +

n∑
j=1

bjx
(k)
j

+ λwk (28)

where x
(k)
j is the jth component of xk. Writing this in vector and matrix form, we have the matrix system

y = (M + λI)w +Nb, NTw = 0 (29)

where I is the m×m identity matrix. The second equation is the same orthogonality condition mentioned
previously. The solution is the same as in Equation (24) except that M is replaced by M + λI and w is the
variable name rather than a. The minimum of the functional is λwT(M + λI)w. As λ increases, the value
is asymptotic to the discrete summation (first term) of the functional.

5 Source Code

The files Wm5IntpThinPlateSpline2.* and Wm5IntpThinPlateSpline3.* contains implementations for 2D
and 3D. A sample application that illustrates use of the code is

WildMagic5/SampleMathematics/ThinPlateSplines

In particular, the 2D sample shows how increasing λ causes the functional value to become asymptotic to
the discrete summation of the functional. In the example, it is simple to show that the discrete summation
is 16/3 = 5.3̄. The functional value for λ = 10000 is nearly equal to the summation.
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