
Fitting a Natural Spline to Samples of the Form (t, f(t))

David Eberly
Geometric Tools, LLC
http://www.geometrictools.com/
Copyright c© 1998-2008. All Rights Reserved.

Created: January 5, 2008
Last Modified: February 14, 2008

Contents

1 Introduction 2

1.1 Constraints for Free Splines . 2

1.2 Constraints for Clamped Splines . 3

1.3 Constraints for Periodic Splines . 3

2 Constructing Free Splines 3

3 Constructing Clamped Splines 5

4 Constructing Periodic Splines 6

4.1 Three Samples . 6

4.2 Four Samples . 7

4.3 The General Case . 9

5 Implementations 10

1

http://www.geometrictools.com/

1 Introduction

Consider a function f : D → IRm, whose domain is D = [tmin, tmax] and whose range consists of m-tuples with
m ≥ 1. The only information we have about the function is a set of samples, {(ti, fi)}n

i=0, where fi = f(ti)
and tmin ≤ t0 < t1 < · · · < tn−1 < tn ≤ tmax. We want to fit the function with a piecewise cubic polynomial
spline

S(t) =



S0(t), t ∈ [t0, t1]

S1(t), t ∈ [t1, t2]
...

Sn−2(t), t ∈ [tn−2, tn−1]

Sn−1(t), t ∈ [tn−1, tn]


(1)

where
Si(t) = ai + bi(t− ti) + ci(t− ti)2 + di(t− ti)3 (2)

for 0 ≤ i ≤ n − 1. Moreover, we want S(t) to be a C2 function; that is, S(t), S′(t), and S′′(t) must
be continuous functions of t on the interval [t0, tn]. Each of Si(t) is a C2 function on the open interval
(ti, ti+1), so the only points of concern to be C2 everywhere are the sample points. We have n polynomials
to determine, each having 4 unknown coefficients. Thus, we have 4n unknowns. Imposing the C2 condition
leads to linear constraints on the unknowns.

We need the polynomials, their first derivatives, and their second derivatives to match at the sample points
t1 through tn−1. Specifically,

Si(ti+1) = Si+1(ti), S′i(ti+1) = S′i+1(ti), S′′i (ti+1) = S′′i+1(ti), 0 ≤ i ≤ n− 2 (3)

This is a set of 3(n − 1) constraints on the unknowns. We also need the polynomials to pass through the
sample points, so

Si(ti) = fi, 0 ≤ i ≤ n− 1, and Sn−1(tn) = fn (4)

This is a set of n + 1 constraints on the unknowns. Equations (3) and (4) represent 4n − 2 constraints on
the 4n unknowns. We have two degrees of freedom. Three standard choices are the following.

1.1 Constraints for Free Splines

We may allow the endpoints to have whatever slope necessary by specifying the second derivatives at those
points to be zero:

S′′0 (t0) = 0, S′′n−1(tn) = 0 (5)

The resulting curve is said to be a free spline. These two constraints and the previously mentioned ones give
us 4n linear equations in 4n unknowns; that is, the coefficients of the cubic polynomials are obtained by
solving a linear system of equations. It turns out that the system is tridiagonal, so a specialized linear solver
may be used that is O(n). General linear solvers are O(n3), so the specialized solver saves computational
time for a large number of sample points.

2

1.2 Constraints for Clamped Splines

We may clamp the endpoints in the sense that we specify the first derivatives at those points:

S′0(t0) = σ0, S′n−1(tn) = σ1 (6)

for user-specified constants σ0 and σ1. The resulting curve is said to be a clamped spline. These two
constraints and the previously mentioned ones give us 4n linear equations in 4n unknowns. As for the case
of free splines, the linear system is tridiagonal and may be solved by a specialized linear solver.

1.3 Constraints for Periodic Splines

We may require that the first and last samples have the same function values, namely, that fn = f0. Moreover,
the C2 condition requires us to impose the derivative equality constraints

S′0(t0) = S′n−1(tn), S′′0 (t0) = S′′n−1(tn) (7)

The resulting curve is said to be a periodic spline. These two constraints and the previously mentioned ones
produce a system of 4n linear equations in 4n unknowns, but this system is not tridiagonal. However, the
system may be solved by a specialized linear solver that is O(n).

2 Constructing Free Splines

This section describes how to set up and solve the tridiagonal linear system of equations for the polynomial
coefficients when the endpoints are required to have zero second-order derivatives.

The ratio of differences of function values and time values occurs often in the derivation, so let us first define

qi =
fi+1 − fi

∆i
(8)

Define ∆i = ti+1 − ti for all relevant i. The conditions Si(ti+1) = Si+1(ti) and Si(ti) = fi are equivalent to

∆ibi + ∆2
i ci + ∆3

i di = fi+1 − fi (9)

The conditions S′i(ti+1) = S′i+1(ti) are equivalent to

2∆ici + 3∆2
i di = bi+1 − bi (10)

The conditions S′′i (ti+1) = S′′i+1(ti) are equivalent to

3∆idi = ci+1 − ci (11)

Substitute Equation (11) into Equations (9) and (10) to obtain

∆ibi + ∆2
i

(
ci+1 + 2ci

3

)
= fi+1 − fi (12)

and
∆i (ci+1 + ci) = bi+1 − bi (13)

3

Increment the index in Equation (12) to obtain

∆i+1bi+1 + ∆2
i+1

(
ci+2 + 2ci+1

3

)
= fi+2 − fi+1 (14)

Compute ∆i times Equation (14) and subtract from it ∆i+1 times Equation (12) to obtain

∆i∆i+1 (bi+1 − bi) + ∆i∆2
i+1

(
ci+2+2ci+1

3

)
−∆i+1∆2

i

(
ci+1+2ci

3

)
= ∆i (fi+2 − fi+1)−∆i+1 (fi+1 − fi)

(15)

Substitute Equation (13) into Equation (15), collect terms, and divide by ∆i∆i+1 to obtain

∆i+1ci+2 + 2(∆i+1 + ∆i)ci+1 + ∆ici = 3(qi+1 − qi) (16)

which is defined for 0 ≤ i ≤ n− 3. We know that the constraint S′′0 (t0) = 0 in Equation (5) implies c0 = 0.
The constraint S′′n−1(tn) in Equation (5) implies ∆n−1cn−1 + 3∆2

n−1dn−1 = 0. If we define cn = 0, this
constraint fits into the construction here and Equation (16) also holds for i = n − 2. Essentially, we are
thinking of the spline curve having one additional segment Sn(t) = fn + bn(t− tn), a line segment, so that
cn = dn = 0.

Equation (16) and boundary conditions c0 = cn = 0 may be solved by setting up a linear system

Mc = p (17)

where the (n− 1)× (n− 1) matrix M is tridiagonal, symmetric, and diagonally dominant:

M =



2(∆0 + ∆1) ∆1 0 0 0 · · · 0 0 0 0 0

∆1 2(∆1 + ∆2) ∆2 0 0 · · · 0 0 0 0 0

0 ∆2 2(∆2 + ∆3) ∆3 0 · · · 0 0 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 0 0 · · · 0 ∆n−4 2(∆n−4 + ∆n−3) ∆n−3 0

0 0 0 0 0 · · · 0 0 ∆n−3 2(∆n−3 + ∆n−2) ∆n−2
0 0 0 0 0 · · · 0 0 0 ∆n−2 2(∆n−2 + ∆n−1)

 (18)

The (n− 1)× 1 column vector c has components c1 through cn−1 and the (n− 1)× 1 column vector p has
components p1 through pn−1 where

pi = 3(qi − qi−1) (19)

The matrix M and vector p may be computed and then used as input to a linear system solver that is
specialized for tridiagonal systems. The solver computes c1 through cn−1, and we already know that c0 = 0.
The d-terms are computed from Equation (11),

di =
ci+1 − ci

3∆i
(20)

and the b-terms are computed from Equation (12),

bi = qi −∆i

(
ci+1 + 2ci

3

)
(21)

The a-terms are already known,
ai = fi (22)

4

3 Constructing Clamped Splines

This section describes how to set up and solve the tridiagonal linear system of equations for the polynomial
coefficients when the endpoints are required to have user-specified first-order derivatives.

Multiply Equation (9) by 3/∆i and subtract from it Equation (10) to obtain

3bi + ∆ici = 3qi − (bi+1 − bi) (23)

Increment the index in Equation (23) to obtain

3bi+1 + ∆i+1ci+1 = 3qi+1 − (bi+2 − bi+1) (24)

Multiply Equation (23) by ∆i+1, multiply Equation (24) by ∆i and add the two together to obtain

3(∆i+1bi + ∆ibi+1) + ∆i+1∆i(ci+1 + ci) = 3(∆i+1qi + ∆iqi+1)−∆i+1(bi+1 − bi)−∆i(bi+2 − bi+1) (25)

In the left-hand side of Equation (25), substitute Equation (13) to eliminate the c-terms. Some algebra
simplifies this to

∆ibi+1 + 2(∆i + ∆i+1)bi+1 + ∆i+1bi = 3(∆i+1qi + ∆iqi+1) (26)

which is defined for 0 ≤ i ≤ n−3. We know that the constraint S′0(t0) = σ0 in Equation (6) implies b0 = σ0.
The constraint S′n−1(tn) = σ1 in Equation (6) implies ∆n−1bn−1+2∆2

n−1cn−1+3∆3
n−1dn−1 = σ1. If we define

bn = σ1, this constraint fits into the construction here and Equation (26) also holds for i = n−2. Essentially,
we are thinking of the spline curve having one additional segment Sn(t) = fn + bn(t − tn) + cn(t − tn)2, a
parabolic arc, so that 2cn = 2∆n−1cn−1 + 6∆2

n−1dn−1 and dn = 0.

Equation (26) and boundary conditions b0 = σ0 and bn = σ1 may be solved by setting up a linear system

Nb = r (27)

where the (n− 1)× (n− 1) matrix N is tridiagonal, symmetric, and diagonally dominant:

N =



2(∆0 + ∆1) ∆0 0 0 0 · · · 0 0 0 0 0

∆2 2(∆1 + ∆2) ∆1 0 0 · · · 0 0 0 0 0

0 ∆3 2(∆2 + ∆3) ∆2 0 · · · 0 0 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 0 0 · · · 0 ∆n−3 2(∆n−4 + ∆n−3) ∆n−4 0

0 0 0 0 0 · · · 0 0 ∆n−2 2(∆n−3 + ∆n−2) ∆n−3
0 0 0 0 0 · · · 0 0 0 ∆n−1 2(∆n−2 + ∆n−1)

 (28)

The (n− 1)× 1 column vector b has components b1 through bn−1 and the (n− 1)× 1 column vector r has
components r1 through rn−1 where

r1 = 3(∆1q0 + ∆0q1)−∆1σ0

ri = 3(∆iqi−1 + ∆i−1qi), 2 ≤ i ≤ n− 2

rn−1 = 3(∆n−1qn−2 + ∆n−2qn−1)−∆n−2σ1

(29)

The matrix N and vector r may be computed and then used as input to a linear system solver that is
specialized for tridiagonal systems. The solver computes b1 through bn−1. The c-terms are computed from
Equation (23),

ci =
3qi − bi+1 − 2bi

∆i
(30)

5

and the d-terms are computed from Equation (10),

di =
bi+1 − bi − 2∆ici

3∆2
i

(31)

The a-terms are already known,
ai = fi (32)

4 Constructing Periodic Splines

This section describes how to set up and solve the linear system of equations for the polynomial coefficients
when the endpoints are required to have the same function value, same first-order derivative, and same
second-order derivative.

4.1 Three Samples

Consider the simplest case of three samples: (t0, f0), (t1, f1), and (t2, f0). The two cubic polynomials are
S0(t) = a0 + b0(t− t0) + c0(t− t0)2 + d0(t− t0)3 and S1(t) = a1 + b1(t− t1) + c1(t− t1)2 + d1(t− t1)3. The
eight constraints are

f0 = S0(t0) = S1(t2)

S′0(t0) = S′1(t2)

S′′0 (t0) = S′′1 (t2)

f1 = S0(t1) = S1(t1)

S′0(t1) = S′1(t1)

S′′0 (t1) = S′′1 (t1)

(33)

Define ∆0 = t1 − t0 and ∆1 = t2 − t1. In terms of the polynomial coefficients, the constraints are

a0 + b0∆0 + c0∆2
0 + d0∆3

0 = a1 = f1

b0 + 2c0∆0 + 3d0∆2
0 = b1

2c0 + 6d0∆0 = 2c1

a1 + b1∆1 + c1∆2
1 + d1∆3

1 = a0 = f0

b1 + 2c1∆1 + 3d1∆2
1 = b0

2c1 + 6d1∆1 = 2c0

(34)

The linear system of equations is

1 0 0 0 0 0 0 0

1 ∆0 ∆2
0 ∆3

0 −1 0 0 0

0 1 2∆0 3∆2
0 0 −1 0 0

0 0 1 3∆0 0 0 −1 0

0 0 0 0 1 0 0 0

−1 0 0 0 1 ∆1 ∆2
1 ∆3

1

0 −1 0 0 0 1 2∆1 3∆2
1

0 0 −1 0 0 0 1 3∆1





a0

b0

c0

d0

a1

b1

c1

d1



=



f0

0

0

0

f1

0

0

0



(35)

6

In block matrix form,  M0 −L

−L M1

 K0

K1

 =

 f0U

f1U

 (36)

where

Mi =


1 0 0 0

1 ∆i ∆2
i ∆3

i

0 1 2∆i 3∆2
i

0 0 1 3∆0

 , L =


0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

 , Ki =


ai

bi

ci

di

 , U =


1

0

0

0

 (37)

Notice that Mi is invertible.

The linear system may be solved by row-reducing the augmented block matrix as shown next. The matrix
I is the 4× 4 identity matrix. M0 −L f0U

−L M1 f1U

 ∼

 I −M−1
0 L f0M

−1
0 U

−L M1 f1U



∼

 I −M−1
0 L f0M

−1
0 U

0 M1 − LM−1
0 L (f1I + f0LM−1

0)U



∼

 I −M−1
0 L f0M

−1
0 U

0 I (M1 − LM−1
0 L)−1(f1I + f0LM−1

0)U



∼

 I 0 [f0M
−1
0 + M−1

0 L(M1 − LM−1
0 L)−1(f1I + f0LM−1

0)]U

0 I (M1 − LM−1
0 L)−1(f1I + f0LM−1

0)U



=

 I 0 K0

0 I K1



(38)

where
K1 = (M1 − LM−1

0 L)−1(f1I + f0LM−1
0), K0 = f0M

−1
0 U + M−1

0 LK1 (39)

4.2 Four Samples

Similar to the case of three samples, the constraints may be formulated as a block-matrix system,
M0 −L 0

0 M1 −L

−L 0 M2




K0

K1

K2

 =


f0U

f1U

f2U

 (40)

7

The linear system may be solved by row-reducing the augmented block matrix, M0 −L 0 f0U

0 M1 −L f1U

−L 0 M2 f2U

 ∼

 I −M−1
0 L 0 f0M−1

0 U

0 I −M−1
1 L f1M−1

1 U

−L 0 M2 f2U



∼

 I −M−1
0 L 0 f0M−1

0 U

0 I −M−1
1 L f1M−1

1 U

0 −LM−1
0 L M2 (f2I + f0LM−1

0)U



∼

 I −M−1
0 L 0 f0M−1

0 U

0 I −M−1
1 L f1M−1

1 U

0 0 M2 − LM−1
0 LM−1

1 L [f2I + LM−1
0 (f0I + f1LM−1

1)]U



∼

 I −M−1
0 L 0 f0M−1

0 U

0 I −M−1
1 L f1M−1

1 U

0 0 I K2



(41)

where
K2 = (M2 − LM−1

0 LM−1
1 L)−1[f2I + LM−1

0 (f0I + f1LM−1
1)]U (42)

Back substitution may now be used to compute K0 and K1. The first back substitution is
I −M−1

0 L 0 f0M
−1
0 U

0 I −M−1
1 L f1M

−1
1 U

0 0 I K2

 ∼


I −M−1
0 L 0 f0M

−1
0 U

0 I 0 K1

0 0 I K2

 (43)

where

K1 = f1M
−1
1 U + M−1

1 LK2 (44)

The second back substitution is
I −M−1

0 L 0 f0M
−1
0 U

0 I 0 K1

0 0 I K2

 ∼


I 0 0 K0

0 I 0 K1

0 0 I K2

 (45)

where

K0 = f0M
−1
0 U + M−1

0 LK1 (46)

Equations (46), (44), and (42) are the polynomial coefficients for the spline.

8

4.3 The General Case

In general, the constraints may be formulated as a block-matrix system,

M0 −L 0 0 · · · 0 0 0

0 M1 −L 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · 0 Mn−2 −L

−L 0 0 0 · · · 0 0 Mn−1




K0

K1

...

Kn−1

 =


f0U

f1U
...

fn−1U

 (47)

whose solution is obtained by row reducing the augmented block matrix

M0 −L 0 0 · · · 0 0 0 f0U

0 M1 −L 0 · · · 0 0 0 f1U
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 Mn−2 −L fn−2U

−L 0 0 0 · · · 0 0 Mn−1 fn−1U


(48)

Inverting the Mi matrices in the first n− 1 block rows leads to

I −M−1
0 L 0 0 · · · 0 0 0 f0M

−1
0 U

0 I −M−1
1 L 0 · · · 0 0 0 f1M

−1
1 U

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · 0 I −M−1
n−2L fn−2M

−1
n−2U

−L 0 0 0 · · · 0 0 Mn−1 fn−1U


(49)

Forward elimination by the first n− 1 block rows leads to

I −M−1
0 L 0 0 · · · 0 0 0 f0M

−1
0 U

0 I −M−1
1 L 0 · · · 0 0 0 f1M

−1
1 U

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · 0 I −M−1
n−2L fn−2M

−1
n−2U

0 0 0 0 · · · 0 0 P Q


(50)

where
P = Mn−1 −

(
LM−1

0 LM−1
1 · · ·LM−1

n−2

)
L (51)

and
Q =

[
fn−1I + f0LM−1

0 + f1LM−1
0 LM−1

1 + · · ·+ fn−2

(
LM−1

0 LM−1
1 · · ·LM−1

n−2

)]
U

= fn−1U + LM−1
0

[
f0U + LM−1

1 (f1U + · · ·)
] (52)

9

The last expression shows that Q may be computed efficiently in a nested manner.

Inverting P in the last row of the reduced augmented block matrix,

I −M−1
0 L 0 0 · · · 0 0 0 f0M

−1
0 U

0 I −M−1
1 L 0 · · · 0 0 0 f1M

−1
1 U

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · 0 I −M−1
n−2L fn−2M

−1
n−2U

0 0 0 0 · · · 0 0 I Kn−1


(53)

where
Kn−1 = P−1Q (54)

Back substitution may be applied n− 1 times to solve for the other coefficients. Generally, these are

Ki = fiM
−1
i U + M−1

i LKi+1, n− 2 ≥ i ≥ 0 (55)

In the calculations, we need the inverses of the Mi matrices. These are

M−1
i =


1 0 0 0

−3
∆i

3
∆i

−2 ∆i

3
∆2

i

−3
∆2

i

3
∆i

−2
−1
∆3

i

1
∆3

i

−1
∆2

i

1
∆i

 (56)

5 Implementations

See the files

GeometricTools/WildMagic4/LibFoundation/Curves/Wm4NaturalSpline1.{h,cpp}

for an implementation. A direct implementation of the method discussed here for periodic splines showed
that the algorithm is ill-conditioned. However, a standard solver for linear systems was numerically stable. I
have a TODO in the source code to look into implementing a numerically stable row-reduction method that
still has the O(n) asymptotic behavior.

10

	1 Introduction
	1.1 Constraints for Free Splines
	1.2 Constraints for Clamped Splines
	1.3 Constraints for Periodic Splines

	2 Constructing Free Splines
	3 Constructing Clamped Splines
	4 Constructing Periodic Splines
	4.1 Three Samples
	4.2 Four Samples
	4.3 The General Case

	5 Implementations

