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1 Formulation as a Linear Programming Problem

Let Vi = (xi, yi) for 0 ≤ i ≤ 3 be the vertices of a convex quadrilateral. The vertices are assumed to be
ordered in the counterclockwise direction. For the purposes of indexing, let V4 = V0. The edges of the
quadrilateral have directions Ei = Vi+1−Vi for 0 ≤ i ≤ 3. Inner pointing normal vectors are Ni = E⊥

i /|Ei|
where (x, y)⊥ = (−y, x).

An axis-aligned rectangle is specified by its lower left corner R0 = (u, v), a width w, and a height h. The
vertices in counterclockwise order are R0 = (u, v), R1 = (u+w, v), R2 = (u+w, v+h), and R3 = (u, v+h).
A rectangle has a fixed aspect ratio if w/h = r for a specified aspect ratio r > 0.

The problem is to select P = (u, v, w) so that the corresponding axis-aligned rectangle with aspect ratio
r is the largest such rectangle contained in the quadrilateral. The vertices of the rectangle must all lie in
the quadrilateral, so Ni · (Rj −Vi) ≥ 0 for all i and j, a total of 16 inequality constraints. The area of a
rectangle is A(w) = w2/r. We wish to maximize A(w) subject to w ≥ 0 and the previous 16 constraints.
Notice that maximizing A(w) for w ≥ 0 is equivalent to maximizing f(w) = w itself. Thus, we have the
linear programming problem:

Maximize f(w) = w subject to the constraints w ≥ 0 and Cij(u, v, w) = Ni · (Rj −Vi) ≥ 0 for
0 ≤ i ≤ 3 and 0 ≤ j ≤ 3.

If a linear programming solver requires u ≥ 0 and v ≥ 0, the quadrilateral may be translated into the first
quadrant to satisfy these conditions.

2 Reduction of Constraints

The 16 inequality constraints have a lot of redundancy. For example, if Ni = (ai, bi) with ai > 0 and bi > 0,
then Ni · (R0 −Vi) ≥ 0 automatically implies Ni · (Rj −V0) ≥ 0 for 1 ≤ j ≤ 3. The implication is clearly
shown by Figure 2.1.

Figure 2.1 Reduction of the four constraints Ni · (Rj − Vi) ≥ 0 for 0 ≤ j ≤ 3 to the single
constraint Ni · (R0 −Vi) ≥ 0.

Note that the normal vector Ni is in quadrant 1 of the plane. If Ni is in quadrant 2, then ai < 0 and bi > 0.
The constraint Ni · (R1 − Vi) ≥ 0 implies Ni · (Rj − Vi) ≥ 0 for j ∈ {0, 2, 3}. Similar reductions apply
when Ni is in quadrant 3 or in quadrant 4.
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The normal vector Ni = (1, 0) is on the boundary between quadrants 1 and 4. The four constraints
associated with Ni still reduce to a single constraint involving R0. Similar observations apply to normals
(0, 1), (−1, 0), and (0,−1). Therefore, the linear programming problem does not need all 16 inequality
constraints. It suffices to determine the quadrant that contains Ni and use the associated, single, inequality
constraint. If θi ∈ [0, 2π) is the angle formed by Ni and the positive x-axis, then the associated constraint is

Ni · (Rb2θi/πc −Vi) ≥ 0

where bzc denotes the floor of z, the largest integer smaller or equal to z. The index of R is 0 if θi ∈ [0, π/2),
is 1 if θi ∈ [π/2, π), is 2 if θi ∈ [π, 3π/2), or 3 if θi ∈ [3π/2, 2π).

The linear programming problem to maximize f(w) = w now has only 5 constraints. One of them is w ≥ 0.
The other 4 are Ni · (Rb2θi/πc −Vi) ≥ 0 for 0 ≤ i ≤ 3.

3 Existence of Infinitely Many Solutions

The fact that multiple solutions exist is shown by the following example. Suppose the quadrilateral is the
axis-aligned rectangle: V0 = (0, 0), V1 = (1, 0), V2 = (1, 1/2), and V3 = (0, 1/2). Let the aspect ratio
be r = 4/3. The limiting factor for the maximum area axis-aligned rectangle with aspect ratio 4/3 is the
height of the quadrilateral. The height of h = 1/2 for the inscribed rectangle leads to w = rh = 2/3. Many
inscribed rectangles of these dimensions exist. The centers are (c, 1/4) for 1/3 ≤ c ≤ 2/3. The lower left
corners are (u, 0) for 0 ≤ u ≤ 1/3.

4 Geometric Interpretation of the Constraints

The last example may be analyzed by considering its convex polyhedral domain defined by the constraints.
This domain is in (u, v, w) space. The maximum of f(w) = w must occur at a vertex of the domain. We
need only find a vertex of largest w. As the last example shows, there can be infinitely many points at which
w is largest, in which case at least two vertices attain largest w, which in turn implies the convex hull of all
such vertices attains largest w.

The normal vectors to the quadrilateral edges are N0 = (0, 1), N1 = (−1, 0), N2 = (0,−1), and N3 = (1, 0).
The corresponding constraints are w ≥ 0 and

0 ≤ N0 · (R1 −V0) = v

0 ≤ N1 · (R2 −V1) = −(u + w − 1)

0 ≤ N2 · (R3 −V2) = −(v + 3w/4− 1/2)

0 ≤ N3 · (R0 −V3) = u

or w ≥ 0, u ≥ 0, v ≥ 0, u + w ≤ 1, and 4v + 3w ≤ 2. Figure 4.1 shows the convex polyhedral domain.
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Figure 4.1 The convex polyhedral domain defined by w ≥ 0, u ≥ 0, v ≥ 0, u + w ≤ 1, and
4v + 3w ≤ 2. The 6 vertices are shown as black dots. The points of maximum w are (u, 0, 2/3) for
0 ≤ u ≤ 1/3.

The base of the polyhedron is the original quadrilateral and occurs when w = 0. This is generally the case
since the rectangle corner (u, v) is always a point in the quadrilateral. The polyhedron has four other faces,
each face defined by a constraint associated with a quadrilateral edge.

Generally, the convex polyhedral domain is pyramidal with 5 faces, the base being the original quadrilateral.
The other 4 faces must slant “inwards” to form the pyramid. The geometric shape of the pyramid implies
that is has either a single vertex attaining maximal w (a unique inscribed axis-aligned rectangle with specified
aspect ratio) or a line segment attaining maximal w (infinitely many inscribed axis-aligned rectangles with
specified aspect ratio). This observation allows us to construct the inscribed rectangle in a simple manner
that does not require use of a general linear programming solver.

5 An Algorithm to Construct the Inscribed Rectangle

The geometry of the convex polyhedral domain indicates the following construction. If the pyramid has
a single vertex attaining maximal w, that vertex is the common point of four faces and can be found by
solving either (1) three linear equations in three unknowns or (2) four linear equations in three unknowns,
the system necessarily having rank 3. If the pyramid has a line segment attaining maximal w, the segment
lies on the line of intersection of two planes corresponding to the equality constraints for two opposite edges
of the quadrilateral. All cases can be handled by computing the line of intersection of the planes represented
by two linear equations, then clipping that line against the planes for two other linear equations.

Specifically, the four inequality constraints defining the faces of the pyramid (not the base) are of the form
Mi ·P + di ≥ 0 for 0 ≤ i ≤ 3. The line of intersection of constraints i = 0 and i = 2 is

P(t) = t(M0 ×M2) + K0

for some point K0 on the line and for all real t. The clipping is achieved by substituting this line equation
into the other constraints,

0 ≤ M1 ·P(t) + d1 = t(M1 ·M0 ×M2) + (M1 ·K0 + d1) = α1t + β1

0 ≤ M3 ·P(t) + d3 = t(M3 ·M0 ×M2) + (M3 ·K0 + d3) = α3t + β3

The geometry of the convex polyhedral domain implies that neither α1 nor α3 is zero. The inequality
α1t + β1 ≥ 0 defines a semiinfinite t-interval I1 which is [−β1/α1,+∞) if α1 > 0 or (−∞,−β1/α1] if α1 < 0.
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A semiinfinite interval is similary defined by α3t + β3 ≥ 0, call it I3. The intersection I = I1 ∩ I3 is either
empty, a singleton, or a interval of positive and finite length. The geometry of the polyhedral domain rules
out I being a semiinfinite interval.

I is a single point when −β1/α1 = −β3/α3, in which case t = −β1/α1 and P(t) = (u(t), v(t), w(t)) provides
the inscribed rectangle. If I is an interval of positive and finite length, call it I = [t0, t1], then choose t = t0
or t = t1, whichever one produces the largest w(t) value. Once again, P(t) = (u(t), v(t), w(t)) provides the
inscribed rectangle.

If I is empty, then compute the line of intersection of constraints i = 1 and i = 3, and repeat the above
construction. This time, the t-interval is named I ′ and cannot be empty, and the appropriate value of t is
constructed to lead to maximum w(t).
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