B-Spline Interpolation on Lattices

David Eberly

Geometric Tools, LLC
http://www.geometrictools.com/

Copyright (© 1998-2008. All Rights Reserved.

Created: July 15, 1999
Last Modified: March 2, 2008

Contents
1 Introduction 2
2 B-Spline Blending Matrices 3
3 Direct Implementation 5
3.1 1D Splines e e 5
3.2 2D Splines e e 6
4 Generalized and Optimized Spline Calculation 7
4.1 Multidimensional Array Layout 8
4.2 Condensing Matrix Products o 9
4.3 Eliminating Nested Loops o . 0 e e 13
4.4 Reduction of Product Tensor Loops 15
4.5 Reduction of Cache Tensor Loops 16
4.6 Reduction of Evaluation Loops L 18
5 Polynomial Construction 20
6 Avoiding Intermediate Calculations 21
7 Computing Data On-Demand 22
8 Putting It All Together 25
8.1 1D Splines o e e e 27
8.2 2D Splines e 28

http://www.geometrictools.com/

8.3 3D Splineso e e e 29

8.4 4D Splineso e e 31
8.5 N-dimensional Splines L 31
9 Timing 33

1 Introduction

It is sufficient to understand spline interpolation on 1-dimensional tabular data with uniformly spaced input
values. Spline interpolation of higher dimensional tabular data on a uniform grid becomes a tensor product
of 1-dimensional interpolating functions.

Given a table of function values {f; f\; 61 where the inputs are the uniformly spaced integers 0 <7 < N — 1,
we want to build a spline of degree D which smoothly approximates the function values. The spline should
have local control, not because we want to move the sample points around, but because an exact matching
spline requires solving large sparse matric systems to determine the spline coefficients. One must also decide
if the spline should have the convex hull property (like B-splines, but not Catmull-Rom interpolation).

Let B(z) be the spline function of a single variable z. It is defined piecewise on intervals of the form [¢,i+1)
for 1 < ¢ < N—D. The restriction on 7 avoids having to introduce boundary conditions for the interpolation,
which would require special handling. For = € [i,7 + 1), the spline is defined as

B(x) = fi—14mjx Xk ()
where the summation ranges are 0 < 7 < D and 0 < k£ < D. The polynomial vector is
X(z) = (1,(x—i),(m—i)z,...,(x—i)D).

The (D + 1) x (D + 1) blending matriz M = mjj, can be chosen for any desired interpolation scheme. For
B-splines I will provide in the next subsection an algorithm where the input is D and the output is M. The
evaluation of the B-spline for a given x involves nested summation over the appropriate indices. Derivatives
of B(x) are evaluated accordingly:

d™B(x) d™ X (x)
dz™ dx™
where 1 < m < D. For m > D, the derivatives are identically zero since B(x) is a piecewise polynomial of
degree D.

= fi—1+5Mjk

Spline interpolation for 2-dimensional tables { fij}f\if)}jif)_l are built as a tensor product. Let B(z,y) be the

spline function. It is defined piecewise on squares of the form [i,7 4+ 1) x [j,7+ 1) for 1 <i < N — D and
1<j3<M-—D. For (x,y) € [i,i+ 1) x [§,7 + 1), the spline is defined by
B(z,y) = fi—1+k,j—1+€mkrm€sxr($)ys(y)
where
X(z) = (1,(x7i),(:£ —i)? . (z fi)D)
Y(y) (17(y_])7(y_j)277(y_])D)

Evaluation of B(z,y) and its partial derivatives are straightforward as in the 1-dimensional case.

For higher dimensions, the construction is easily extended. For example, in 3 dimensions the spline function
for (m,y,z) € [iOaiO + 1) X [i17il + 1) x [i25i2 + 1) is

B(2,Y,2) = fio—14jo,ir—1+i1,ia— 1452 MjokoMjr kn Mjnks X ko () Yiey (Y) Z, (2)

where
X(@) = (1,(z—10),(x—i0)% ..., (x—i0)P)
Y(y) = (Ly—i),(y—i)?...,(y—i)P)
Z(z) = (17(2:71‘2),(2*7:2)2,...,(Z*’I:Q)D)

2 B-Spline Blending Matrices

Here is a short discussion of recursive generation of the basis functions for B-splines. The main result is the
construction of the blending matrix when the input values of the tabular data are uniformly spaced integers.
Given values {t;}1), define

1

Bt ={ "
0, otherwise

B = (2) B0+ (2) B

itd — 1t itd+1 — tit1

t € [ti,tit]

Recursively define

for d > 1. For t; = i (uniformly spaced integers), By, ;(t) = B{(t — j), so there is essentially one B-spline
basis function to compute for each d, call it By(t). Thus,

1, te€][0,1]
BO(t) = ’
0, otherwise
and
t d+2—t
By (t) = de(t) + di—l—le(t -1
where

Bat) = PP@®), tekk+1)for0<k<d
0 otherwise

where the Pék)(t) are polynomials of degree d (to be determined). The recursion now implies

PO(t) =1
and
P = P + SR, osk<a
Now let 4
RO = L3
1=0
Then

)i 1 ¢ J , i 1<)i
P(k) d'za(“ jz Z i a;kd) t::a;bgkd)t.

=0 \ j=1
The recursion for the polynomials now yields

Gkd) _ (k) b(k Ld) (d+ Z)b(k 1,d)

i i—1

for 0 <i<d+1and 0 <k <d. By convention, if an index is out of range, the term containing that index
is 0. The initial data is a(o 0) 1 (so b(()o,o) =1).

Now define " "
g () =P (t+k);

then
) d
) (4 (k.d) i [0 ka1 (k.d) i
d'Za t+k !Z Zk . a; tf.d!Zci t*.
1=0 j=t 1=0

The blending matrix M = m,; used in the B-spline tensor (of degree d) calculation is

mi; = ngij’d).
Blending matrices for some small d values are
1 -1
d=1
0 1
1 -2 1
1
d=2: 5|1 2 -2
0 0 1
1 -3 3 -1
.14 0 -6 3
1 3 3 -3
0 0 0 1

The routine BlendMatrix in the base class Spline (in file spline.c) implements the recursions described
above.

3 Direct Implementation

The direct implementations of B-splines in 1D and 2D are given here. For higher dimensions, the tensor
summations require more nested for loops. For an n-dimensional problem the calculations require 2n nested
loops. In the next subsection I'll go through a series of steps to optimize the code and remove the nested
loops. The result is reduced address calculation which yields highly optimized code in time. The cost is
increased memory usage which is used to store data in an appropriate order to gain the time decrease.

3.1 1D Splines

The spline function B(x) = f|4)—14;mjxXk(z) and its derivative B’(x) are calculated as follows.

const int degree; // degree > 0

const int dpl = degree+l;

const int dim; // dim >= degree+l

float m[dp1] [dp1]; // B-spline matrix

float dataldim]; // 1D data set

float x; // 1 <= x < dim-degree+1

// determine interval [bx,bx+1) for evaluation
int bx = floor(x);

// compute intermediate tensor (non-polynomial part of B(x))
float inter[dpil];
for (int kx = 0; kx <= degree; kx++) {
inter[kx] = 0;
for (int ix = bx-1, jx = 0; jx <= degree; ix++, jx++)
inter [kx] += datalix]*m[jx] [kx];
}

// polynomial storage for spline and its derivatives
float px[dpi]l;

//———=—= compute B(x) -----
// compute polynomial part (1,x,x72,x73,...,x {degree})
px[0] = 1;

for (kx = 1; kx <= degree; kx++)
px[kx] = pxl[kx-1]*(x-bx);

// compute final result

float result = O;

for (kx = 0; kx <= degree; kx++)
result += inter [kx]*px[kx];

//-==—- compute B’ (x) -----

// compute polynomial part (0,1,2x,3x72,...,degree*x"{degree-1})
px[0] = 0;
px[1] = 1;
for (kx = 2; kx <= degree; kx++)
poly[kx] = kx*poly[kx-1]*(x-bx);

// compute final result

float result = O;

for (kx = 0; kx <= degree; kx++)
result += inter [kx]*px[kx];

3.2 2D Splines

The spline function B(z,y) = flz|—1+4k, |y|—1+eMrMmes X (2)Y5(y) and its derivative B (x,y) are calculated
as follows.

const int degree; // degree > 0

const int dpl = degree+i;

const int xdim; // xdim >= degree+1

const int ydim; // ydim >= degree+1

float m([dp1] [dp1]; // B-spline matrix

float datalydim] [xdim]; // 2D data set

float x; // 1 <= x < xdim-degree+l
float y; // 1 <=y < ydim-degree+1

// determine interval [base0O,baseO+1)x[basel,basel+1) for evaluation
int bx = floor(x);
int by = floor(y);

// compute intermediate tensor (non-polynomial part of B(x,y))
float inter[dpi1] [dp1];
for (int ky = 0; ky <= degree; ky++)
for (int kx = 0; kx <= degree; kx++) {
inter [ky] [kx] = O;
for (int iy = by-1, jy = 0; jy <= degree; iy++, jy++)
for (int ix = bx-1, jx = 0; jx <= degree; ix++, jx++)
inter[ky] [kx] += dataliy] [ix]*m[jx] [kx]*m[jy] [ky];

// polynomial storage for spline and its derivatives
float px[dpl];
float pyl[dpl];

/== compute B(x,y) -----

// compute x polynomial part (1,x,x72,x73,...,x {degreel})
px[0] = 1;
for (kx = 1; kx <= degree; kx++)

px[kx] = pxl[kx-1]*(x-bx);

// compute y polynomial part (1,y,y"2,y"3,...,y {degree})
pyl[0] = 1;
for (ky = 1; ky <= degree; ky++)

pylkyl = pylky-1]*(y-by);

// compute final result
float result = 0;
for (ky = 0; ky <= degree; ky++)
for (kx = 0; kx <= degree; kx++)
result += inter [ky] [kx]*px [kx]*py[ky];

//====—- compute B_x(x,y) --—--
// compute x polynomial part (1,x,x72,x73,...,x"{degreel})
px[0] = 1;

for (kx = 1; kx <= degree; kx++)
px[kx] = px[kx-1]*(x-bx);

// compute y polynomial part (0,1,2x,3x72,...,degreexx"{degree-1})
py[0] = 0;

pyl1]l = 1;

for (ky = 2; ky <= degree; ky++)

py[kyl = ky*pylky-11*(y-by);

// compute final result
float result = O;
for (ky = 0; ky <= degree; ky++)
for (kx = 0; kx <= degree; kx++)
result += inter [ky] [kx]*px[kx]*py [ky];

4 Generalized and Optimized Spline Calculation

The first of my goals is to create a spline class for which the user can specify the dimension of the data
set dynamically. In the 2D example, the dimension is used statically in three ways. The first way is the
structure of the data set and the intermediate tensor as float[]J[]. The second way is the occurrence of
nested loops, two at a time. The third way is that the innermost loop of the intermediate calculation requires
multiplication by n matrix values.

The second of my goals is to optimize the spline calculations for speed. The bottleneck in the spline evaluation

is the calculation of the intermediate tensor, which in general involves 2n nested loops.

The next subsections present modifications to meet the three goals. As each modification is made, the revised
code for the 2-dimensional case is given.

4.1 Multidimensional Array Layout

An n-dimensional array can be stored in memory as a 1-dimensional array of contiguous bytes. The elements

of the array are ordered lexicographicaly. Let the data set be defined on an n-dimensional lattice L =
Z:é [0,bq) where [0,bq) = {i € ZZ : 0 < i < by} for bg > 0. That is, the data set is a function f: L — R. If

f(x) is the data value at coordinate x = (zg, 1, ...,2Zn—1), then the corresponding 1-dimensional index is

i =xo+ box1 + bobiza + - (by - bp—2)Tn_1.

The coefficient of x}, is Hg;é br, (if & = 0, the product defaults to 1). Given a 1-dimensional index i, the
corresponding coordinate can be obtained by a sequence of mod and div operations:

x = (i mod by, (i div by) mod by, ((¢ div by) div by) mod ba, .. .).

The data and intermediate tensor can be stored as 1-dimensional arrays. The relevant changes in the 2D
code are

float datal[xdim*ydim]; // £(i,j) = datali+xdimxj]

// compute intermediate tensor

float inter[dpl*dpl];

for (int ky = 0; ky <= degree; ky++)

for (int kx = 0; kx <= degree; kx++) {
float sum = O;
for (int iy = by-1, jy = 0; jy <= degree; iy++, jy++)
for (int ix = bx-1, jx = 0; jx <= degree; ix++, jx++)

sum += datalix+xdim*iy]*m[jx] [kx]*m[jy] [ky];

inter [kx+dpl*ky] = sum;

o

}

// compute B(x,y)
float result = 0;
for (ky = 0; ky <= degree; ky++)
for (kx = 0; kx <= degree; kx++)
result += inter [kx+dplxky]*px [kx]*py [ky];

A small modification to the loops can avoid the address calculation kx+dpixky. This works because of the
lexicographical ordering of inter and the ordering of the “k” loops.

// compute intermediate tensor
int iindex = 0;
for (int ky = 0; ky <= degree; ky++)

for (int kx = 0; kx <= degree; kx++) {
float sum = O;
for (int iy = by-1, jy = 0; jy <= degree; iy++, jy++)
for (int ix = bx-1, jx = 0; jx <= degree; ix++, jx++)
sum += datal[ix+xdim*iy]*m[jx] [kx]*m[jy] [ky];
inter[iindex++] = sum;

}

// compute B(x,y)
float result = 0;
iindex = 0;
for (ky = 0; ky <= degree; ky++)
for (kx = 0; kx <= degree; kx++)
result += inter[iindex]*px[kx]*py[ky];

A similar modification to avoid the address calculation ix+xdim*iy is not straightforward since the data
accessed is a subrectangle of the original data set whose columns (x) are stored in contiguous memory for
each row, but whose rows (y) are not contiguous. It is, however, not necessary to do so. The method used
to avoid a static number of matrix values m[j] [k] in the innermost loop will require the data to be cached
into a contiguous block of memory. Anticipating this, the intermediate tensor code becomes

// cache the data

float cache[dpl*dpl];

int cindex = 0;

for (int iy = by-1; iy <= by-1l+degree; iy++)

for (int ix = bx-1; ix <= bx-1+degree; ix++)
cache[cindex] = datalix+xdim*iy];

// compute intermediate tensor
int iindex = 0;
for (int ky = 0; ky <= degree; ky++)
for (int kx = 0; kx <= degree; kx++) {
float sum = 0;
cindex = 0;
for (int jy = 0; jy <= degree; jy++)
for (int jx = 0; jx <= degree; jx++)
sum += cache[cindex]*m[jx] [kx]*m[jy] [ky];
inter[iindex++] = sum;

4.2 Condensing Matrix Products

The next step is to remove the explicit matrix product m[jx] [kx] * m[jy] [ky] which forces a static de-
pendence on dimension 2. Let ig and i; be given (which is the case for a single spline evaluation). The
intermediate second-order tensor is

Ikokl = MyokoMj1ky fi071+j0 i1 —1+47j1

10

In the code we have the correspondences

symbols | variables
10 bx
11 by
10— 1+ Jo ix
i1—1+7 iy
Jo jx
J1 Jy
ko kx
k1 ky

The matrix product can be viewed abstractly as a fourth-order tensor
Pjojlkokl = Mok Mk -

For given iy and 47 (which is the case for a single spline evaluation), the cached data is a second-order tensor
Cjojl = fi071+jo i1—1+4j1-

The intermediate tensor is therefore
Ikolﬁ = Pj0j1k0k1 Cjojl'
Let J be the 1-dimensional index corresponding to the coordinate (jo,j1). If D is the degree of the spline,

then 0 < J < D? and J is mapped to the coordinate via J = jo+ D * j;. Similarly K corresponds to (ko, k1)
with 0 < K < D? and K = kg + D * k1. The intermediate tensor can be written in multiindex notation as

Iy = PjCy

where the right-hand side is a matrix P times a vector C. The intermediate code, which additionally stores
P as a 1D array, now becomes

// cache the data

float cache[dpl*dpl];

int cindex = 0;

for (int iy = by-1; iy <= by-l+degree; iy++)

for (int ix = bx-1; ix <= bx-1l+degree; ix++)
cache[cindex] = datalix+xdim*iy];

// compute product tensor (order of loops is important)
float product[dpl*dplxdpl*dpl];

int pindex = 0;

for (int k1 = 0; k1 <= degree; ki++)

for (int kO = 0; kO <= degree; kO++)

for (int j1 = 0; jl <= degree; jl++)

11

for (int jO = 0; jO <= degree; jO++)
product [pindex] = m[jO] [kO]*m[j1] [k1];

// compute intermediate tensor
const int dpl_to_2 = dplx*dpil;
for (int K = 0; K < dpil_to_2; K++) {
float sum = O;
for (int J = 0; J < dpl_to_2; J++)
sum += product [J+dpl_to_2+*K]*cache[J];
inter[K] = sum;

A minor modification can be made to remove the calculation of J+dpl_to_2*K.

pindex = 0;
for (int K = 0; K < dpil_to_2; K++) {
float sum = O;
for (int J = 0; J < dpl_to_2; J++, pindex++)
sum += product [pindex]*cache[J];
inter[K] = sum;

Note that (in general) the original 2n intermediate tensor loops are reduced to 2 loops, thereby reducing
address calculations. The cost is the increased space required to store the product tensor.

After these changes, the intermediate tensor calculation is still the bottleneck in the calculations. The
calculation time can be further reduced. The (D + 1) x (D + 1) B-spline matrix has at least D zeros (the
ones occurring in the last row). The presence of these zeros forces many of the product tensor entries to be
zero. For example,

12

dimension | degree Z€eros total | ratio
2 1 7 16 | 0.438
2 32 81 | 0.395

3 112 256 | 0.438

4 184 625 | 0.294

5 455 1296 | 0.351

3 1 37 64 | 0.578
2 386 729 | 0.529

3 2368 4096 | 0.578

4 6364 | 15625 | 0.407

5| 22267 | 46656 | 0.477

4 1 175 256 | 0.684
2 4160 6561 | 0.634

3| 44800 | 65536 | 0.684

4 | 196144 | 390625 | 0.502

A significant portion of time is spent updating the running sum in the innermost loop with zero. We can add
another fourth-order tensor (of integers) to the code. This tensor measures how many of the product tensor
entries to skip to get to the next nonzero value. That is, if P; is the product tensor stored as a 1-dimensional
array, then define the skip tensor by S; = j if P; # 0, Piy; # 0, and P, = 0 for 7 < k < ¢+ j. Note that if
P; #0 and P41 # 0, then S; = 1. If P, = 0, the value of S; is irrelevant, but I will set it to 1. The code to

calculate the skips is

// compute product tensor (order of loops is important)

int dpl_to_4 = dpl*xdpl*dpl*dpil;
float product[dpl_to_4];

int pindex = 0;

for (int k1 = 0; k1 <= degree; ki++)
for (int kO = 0; kO <= degree; kO++)
for (int j1 = 0; jl <= degree; jl++)
for (int jO = 0; jO <= degree; jO++)

product [pindex] = m[j0] [k0]#*m[j1] [k1];

// compute skip tensor

float skipldpl_to_41;

for (int i = 0; i < dpl_to_4;) {
skip[i] = 1;

for (int j = 0; j < dpl_to_4 && product[j] == 0; j++)

skip[jl++;
i=j;

13

// compute intermediate tensor (order of increment of J and I important)
for (int K = 0, I = 0; K < dpl_to_2; K++) {
float sum = O;
for (int J = 0; J < dpl_to_2; J += skip[I], I += skip[I])
sum += product[I]*cache[J];
inter[K] = sum;

The product and skip tensors can be computed at time of spline object creation.

4.3 Eliminating Nested Loops
The general idea of converting N nested loops to a single loop is described. Consider the example

int LO, L1; // specified lower bounds
int UO, Ul; // specified upper bounds, LO < U0 and L1 < Ul

// 2 nested loops

for (int i1 = L1; il < Ul; il++)

for (int i0 = LO; i0 < UO; iO++) {
// loop body goes here

}

One way to convert to a single loop is to use the conversions between 1-dimensional indices and 2-dimensional
coordinates. Using the lexicographic ordering j = (ig — Lg) + bg * (i1 — L1) where by = Uy — Ly,

// equivalent single loop
int b0 = UO-LO, bl = Ul-L1, quantity = bOx*bl;
for (int j = 0; j < quantity; j++) {

i0 = Lo + (§ % b0O);

il = L1 + (j / bO);

// loop body goes here

The general case of N loops is

const int N; // dimensions, N > 0
int L[N], U[N]; // bounds, L[d] < U[d]
int i[N]; // loop indices, L[d] <= il[d] < U[d]

// N nested loops
for (i[N-1] = L[N-1]; i[N-1] < U[N-1]; i[N-1]++)
for (i[N-2] = L[N-1]; i[N-2] < U[N-2]; i[N-2]++)

14

for (i[0] = L[0]; i[0] < U[0]; i[0]++) {
// loop body goes here
}

// equivalent single loop

int b[N];

int quantity = 1;

for (int d = 0; d < N; d++) {
b[d] = U[d]-L[d];
quantity *= bl[d];

¥

for (int j = 0; j < quantity; j++) {
int temp = j;
for (d = 0; d < N; d++) {
i[d] = L[d] + temp % b[d];
temp /= bl[d];
}

// loop body goes here

In exchange for a single loop, the execution time increases because of coordinate calcuations.

Another reduction scheme is described now. The previous one made conversions from indices to coordinates
which work for a random index. The algorithm does not take into account that the indices are processed in
the order corresponding to the lexicographical ordering of the coordinates. Consider the same example as
before,

int LO, L1; // specified lower bounds
int UO, Ul; // specified upper bounds, LO < UO and L1 < Ul

// 2 nested loops

for (int i1 = L1; il < Ul; il++)

for (int 10 = LO; i0 < UO; iO++) {
// loop body goes here

}

// equivalent single loop
int b0 = UO-LO, bl = Ul-L1, quantity = bOx*bl;
i0 = LO;
i1 = L1;
for (int j = 0; j < quantity; j++) {
// loop body goes here

if (++i0 < U0)

continue;
i0 = 0;

15

il++; // j==quantity when i1==Ul, so only j-test needed

In the general case we have the reduction

const int N; // dimensions, N > 0
int L[N], U[N]; // bounds, L[d] < U[d]
int i[N]; // loop indices, L[d] <= i[d] < U[d]

// N nested loops
for (i[N-1] = L[N-1]; i[N-1] < U[N-1]; i[N-1]++)
for (i[N-2] = L[N-2]; i[N-2] < U[N-2]; i[N-2]++)

for (i[0] = LI0J; i[0] < UL0]; 1[0]++) {
// loop body goes here
}

// equivalent single loop

int quantity = 1;

for (int d = 0; d < N; d++)
quantity *= U[d]-L[d];

for (d

=0; d < N; d++)
i[d] =

L[d];

for (int j = 0; j < quantity; j++) {
// loop body goes here

for (d = 0; d < N; d++) {
if (++il[d] < U[d])
break;
i[d]l = L[dl;

4.4 Reduction of Product Tensor Loops

The first reduction method is applied to computing the product tensor from the spline matrix. For dimension
N, 2N nested loops are required

const int N; // dimensions

int dpl_to_2N = 1;

for (int d = 0; d < N; d++)
dpl_to_2N *= dpl;

dpl_to_2N *= dpl_to_2N;

// compute product tensor (order of loops is important)

16

float product[dpl_to_2N];

int pindex = 0;

int j[IN], k[N];

for (k[N-1] 0; k[N-1] <= degree; k[N-1]++)

éor (k[0] = 0; k[0] <= degree; k[0]++)
for (jIN-1] = 0; jIN-1] <= degree; j[N-1]++)

for (j[0l = 0; j[O] <= degree; j[0]++)
product [pindex] = m[j[0]][k[0]1* ... * m[j[N-1]1][k[N-1]];

These can be reduced to

int i[2*N];
for (int j = 0; j < dpl_to_2N; j++) {
int temp = j;
for (d = 0; d < 2%N; d++) {
i[d] = temp % dpi;
temp /= dpi;
}
product[j] = 1;

for (int k = 0; k < N; k++)
product [k] *= m[i[k]] [i[k+N]];

Because of the nested loop ordering, the 2 N-dimensional coordinate i[] contains jg through jy_1 in its first
N components and kg through ky_; in its last N components.

4.5 Reduction of Cache Tensor Loops

This reduction uses the second method, but it needs a minor modification to extract the sublattice of data
points. The 2-dimensional code is

int ix = bx-1, iy
for (int cindex =
cache[cindex]

by-1, dindex = ix+xdimx*iy;
; cindex < dpl_to_2; cindex++, dindex++) {
data[dindex] ;

o

if (++ix <= bx-1+degree)
continue;

ix = bx-1;

dindex += xdim-dpl;

iy++;

The data sublattice is a rectangle of size (D + 1) x (D 4 1). When the index ix points to the last column in
a row, the next incrementing of it takes it out-of-range, so it is reset to the first column in the next row ix

17

= bx-1. At the same time the data index dindex was incremented to an out-of-range column (immediately
to the right of the data set). The addition of xdim to dindex gets you to the same out-of-range column, but
in the next row. The subtraction of dp1 from dindex gets you to the first column in that next row.

The extension of this idea to N-dimensions is

const int N; // dimensions, N > 0

int degree; // degree D of spline, D > 0

int dpi; // D+1

int dpl_to_N; // (D+1)°N

int dim[N]; // dimension sizes, dim[d] > O

int grid_min[N]; // coordinate of first data point to be processed
int grid_max([N]; // grid_max[d] = grid_min[d]+degree

int i[N];

for (int d = 0; d < N; d++)

i[d] = grid_min[d];

// compute 1-dim starting index from N-dim starting coordinate

int
for

3

dindex = i[N-1];

(d = N-2; d >= 0; d--) {
dindex *= dim[d];

dindex += i[d];

// compute data address differences, used when loop var out-of-range

int
int
for

}

for

deltal[N-1];

temp = 1;

(d=0; d < N-1; d++) {
deltal[d] = temp+*(dim[d]-dpl);
temp *= dim[d];

(int cindex = 0; cindex < dpl_to_N; cindex++, dindex++) {
cache[cindex] = datal[dindex];

for (d = 0; d < N; d++) {
if (i[d] <= grid_max[d])
break;
i[d] = grid_min[d];
dindex += deltald];

18

4.6 Reduction of Evaluation Loops

Consider the example of evaluating a B-spline in two variables. The final loops in the process are shown
below.

// intermediate tensor computations go here
// polynomial computations for px[] and py[] go here

// compute B(x,y)

float result = 0;

int iindex = 0;

for (int ky = 0; ky <= degree; ky++)

for (int kx = 0; kx <= degree; kx++)
result += inter[iindex]#*px[kx]*py[ky];

The loops can be replaced using the second reduction method:

int i0 = 0, i1 =
float result = 0;
for (int j = 0; j < dpl_to_2; j++) {

result += inter[jl*px[i0]*py[il];

0;

if (i0 <= degree)
continue;

i0 = 0;

il++;

In N dimensions, the reduction is

float poly[N] [dp1]l; // N variables, each poly of degree D+1

int i[N];
float result = 0;
for (int j = 0; j < dpl_to_N; j++) {
float temp = inter[j];
for (int d = 0; d < N; d++)
temp *= polyl[d] [i[d]];
result += temp;

for (d = 0; d < N; d++) {
if (i[d] <= degree)
break;
ifd] = 0;

19

Now consider evaluating a derivative, say B,(x,y). We evaluated the appropriate polynomial terms, but
used the same final set of loops. Note, however, that for a derivative in x of order m, the first m components
of the polynomial array are zero. Thus, the loops could be written as shown to avoid the multiplications by
Zero.

// compute "dx" partial derivatives of B(x,y) with respect to x
// and "dy" partial derivatives of B(x,y) with respect to y

float result = 0;
for (ky = dy; ky <= degree; ky++)
for (kx = dx; kx <= degree; kx++)
result += inter [ky] [kx]*px [kx]*py[ky];

In the previous example, the loop index j is used to traverse all of the intermediate tensor values. To avoid
the multiplications by zero, now j needs to skip over blocks of intermediate tensor values which would have
been the other operands of the zero multiplication. The code is

int dx, dy; // orders of differentation
// px[0] = ... = px[dx-1] = 0
// pyl0ol = ... = px[dy-1] = 0
int i0 = dx, i1 = dy;
int delta0 = dx; // amount of "skip" in the inter[] tensor

float result = 0;
for (int j = iO+dpilx*il; j < dgl_to_N; j+) {
result += inter[jl*px[i0]*py[il];

if (++i0 <= degree)

continue;
i0 = dx;
j += deltaO; // skip the first dx inter[] values in the next row
il++;

In N dimensions, the reduction is

float poly[N][dp1]l; // N variables, each poly of degree D+1

int dx[N]; // orders of differentiation for vars x0 through x_{N-1}
// polyl[dl[0] = ... = polyld] [dx[d]-1] = O

// loop indices

int i[N];

for (int d = 0; d < N; d++)
i[d] = ax[d]l;

// skip amounts for inter[] tensor

20

int deltal[N-1];

int temp = 1;

for (d = 0; d < N-1; d++) {
deltald] = temp*dx[d];
temp *= dpl;

}

// starting index

int j = i[N-1];

for (d = N-2; d >= 0; d--) {
j *= dpi;
j += ildl;

float result = O;
for (; j < dpl_to_N; j++) {
float temp = inter[j];
for (int d = 0; d < N; d++)
temp *= polyl[d] [i[d]];
result += temp;

for (d = 0; d < N; d++) {
if (i[d] <= degree)
break;
i[d] = dx[d];
j += deltald];

5 Polynomial Construction

It is sufficient to consider the 1-dimensional case since each polynomial is independent of the others. The
following table illustrates what the polynomial arrays will store. The value t = x — |z] and D is the degree
of the polynomial.

derivative order | polynomial array
0 (1, ¢, t3, 3, ..., tP)
1 (0, 1, 2t 3t?, ..., DtP—1)
2 (0, 0, 2, 6t ..., DD-1)tP=2)
D (0, 0, 0, O , D!)
D+1 (0, 0, 0, 0O, ..., 0)

21

To allow for a dynamically selected degree D, we need to construct the coeflicients for the polynomials above.
We can do so by building a (D + 1) x (D + 1) matrix, [«,.] which stores the coeflicients indicated in the
table above. The matrix is upper triangular with row index 0 < r < D + 1 indicating order of differentiation
and column index 0 < ¢ < D + 1 indicating the power of ¢ that goes with the coefficient. It is given by

1 c>r=0

[Mo(c—i) e¢>r>0

Qe =

The code implementing this is

float coeff [dp1] [dp1];
for (int r = 0; r <= degree; r++)
for (int ¢ = r; c <= degree; ct++) {
coeff[r][c] = 1;
for (i = 0; i < r; i++)
coeff[r][c] *= c-i;

The code to compute the polynomial array is

float polyl[dpil;
float t = x-floor(x);
int order = dx; // order of differentation

float temp = 1;

for (int d = order; order <= degree; d++) {
poly[d] = coeff[order] [d]*temp;
temp *= t;

6 Avoiding Intermediate Calculations

The order of calculations in the evaluation of B-splines was: compute floors of the input variables to use as
base indices, compute the intermediate tensor product, compute the polynomial terms, multiply the inter-
mediate tensor product with the polynomials and return the result. Even with the optimizations discussed
earlier, the intermediate tensor calculation is still the bottleneck. For random selection of input variables,
this tensor must always be calculated. In many applications, the evaluation of splines is localized. Given that
the spline is evaluated at x, the probability is large that the next evaluation is at y where |x — y| is smaller
than one unit distance relative to the lattice on which the data is defined. Using the locality of reference, it
is highly probable that the base indices are the same for both x and y. If we update the intermediate tensor
only when a base index changes, we could save some significant time. The code to do this is given. Variable
names are consistent with what was used earlier in this section.

22

const int N; // dimensions, N > 0

int old_base([N]; // saves the base indices from the previous evaluation
int base[N]; // current base indices, 1 <= base[d] < N-degree+l
for (int d = 0; d < N; d++)

old_base[d] = -1; // basel[d] will be different on first call
//-———= code per evaluation —-----

float x[N]; // input to spline evaluation

for (d = 0; d < N; d++)
base[d] = floor(x[d]); // compute base indices for current call
for (d = 0; d < N; d++)

if (old_base[d] != base[d]) { // base index has changed
// switch to new local grid
for (int k = 0; k < N; k++) {
old_base[k] = baselk];
grid_min[k] = basel[k]-1;
grid_max[k] = grid_min[k]+degree;

}

// compute intermediate tensor code goes here
break;

X
// compute polynomial terms code goes here

// final calculations go here (multiplication of polynomials and
// intermediate tensor)

7 Computing Data On-Demand

For some applications, the tabular data might not be completely known when the B-spline object is to
be constructed. The reason most likely is that the precalculation of the entire data set is very expensive.
In these applications it is economical to compute only those local grid points needed for evaluation. For
a N-dimensional data set, each dimension requiring K values, the total number of grid points is K.
Precalculation takes order O(K™) time. If the application only needs to analyze data lying approximately
on a curve in the data set, the time to process this localized data is order O(DK) where D is the degree of
the spline. Clearly this is a large time savings.

The user of a spline object can provide a callback function which is executed whenever tabular data have not
yet been calculated. The callback has the job of computing the tabular data. A mechanism to handle this
is as follows. Any unknown tabular data are assigned an invalid floating point number. I use MAXFLOAT for
this purpose. If for some reason the application allows MAXFLOAT as valid data, then some invalid bit pattern
for IEEE short reals should be chosen. Whenever a new local grid is entered, the spline object checks for
invalid data and executes the callback for that data. For a 2-dimensional spline class Spline2,

23

// "data" is the tabular data pointer used by "spline"
// "data" is of size xdim-by-ydim

void Spline2::EvaluateUnknownData ()

{
for (int il = grid_min[1]; il <= grid_max[1]; il++)
for (int i0 = grid_min[0]; i0 <= grid_max[0]; i0++) {
int index = iO+xmin*il;
if (datalindex] == INVALID_DATA)
datal[index] = evaluate_callback(i0,il);
X
b

Th callback function pointer is assigned to spline object member function evaluate_callback) by the user.
The method for general dimensions is

int SplineN::Index (int* i)

{
int index = i[N-1];
for (int d = N-2; d >= 0; d--) {
index *= dpl;
index += i[d];
}
return index;
}
void SplineN::EvaluateUnknownData ()
{
int i[N];
for (int d = 0; 4 < N; d++)
ild] = grid_min[d];
for (int j = 0; j < dpl_to_N; j++) {
int index = Index(i);
if (datalindex] == INVALID_DATA)
datal[index] = evaluate_callback(index);
for (d = 0; d < N; d++) {
if (++i[d] <= grid_max[d])
break;
i[d] = grid_min[d];
}
}
}

Only the code block for computing the intermediate tensor product needs the tabular data. The evaluation
code (in general dimensions) now looks like

24

// Spline provides member function pointer,
// float (*evaluate_callback) (int*)
// for storing the callback. Pointer is null unless set by user.

float x[N]; // input to spline evaluation

for (d = 0; d < N; d++)
base[d] = floor(x[d]);
for (d = 0; d < N; d++)

if (old_base[d] !'= baseld]) {
// switch to new local grid
for (int k = 0; k < N; k++) {
old_base[k] = baselk];
grid_min[k] = basel[k]-1;
grid_max[k] = grid_min[k]+degree;

3

// compute unknown data
if (evaluate_callback)
EvaluateUnknownData() ;

// compute intermediate tensor code goes here
break;

X
// compute polynomial terms code goes here

// final calculations go here (multiplication of polynomials and
// intermediate tensor)

In general, EvaluateUnknownData() checks the entire (D + 1)V set of grid points for invalid data. When
the base indices are incremented or decremented by at most 1, it is not necessary to check all values. If you
want to optimize this routine, it would go as follows. Suppose that any of the pairs of old and new base
indicies differ by at most 1. For simplicity, assume that new data members are added to the proper classes
which keep track of these differences, The function computations can be modified to

// 1D splines
int bx_diff = bx-oldbx;

void EvaluateUnknownData ()

{
int kO = bx+2*bx-_diff+1; // kO = bx-1 or bx+3
if (datal[k0] == INVALID_FLOAT)
datal[k0] = evaluate_callback(kO0);
}

// 2D splines
int bx_diff = bx-oldbx;

25

int by_diff = by-oldby;

void EvaluateUnknownData ()

{
int kO, ki;
if (bx_diff) {
k0 = bx+2*bx_diff+1; // k0 = bx-1 or bx+3
for (k1 = grid_min[1]; k1 <= grid_max[1]; ki++) {
int index = kO+xminx*kl;
if (datal[index] == INVALID_DATA)
data[index] = evaluate_callback(k0,k1);
}
}
if (by_diff) {
k1 = by+2*by_diff+1l; // k1 = by-1 or by+3
for (k0 = grid_min[0]; kO <= grid_max[0]; kO++) {
int index = kO+xminxkl1;
if (datalindex] == INVALID_DATA)
data[index] = evaluate_callback(k0,k1);
}
}
}

Note that there are still some duplicate checks, but the total number of checks is reduced from (D + 1)" to
at most n * (D + 1)"~1. Rather than checking the entire “volume” of grid points, we are only checking the
new “faces” that occur when the base indices change. The additional check occurs at the intersection of the
faces. I have not implemented this modification since in low dimensions it probably does not gain any time.

8 Putting It All Together

I have constructed the spline classes by derivation from an abstract base spline class. The base class has the
job of initializing things such as the spline blending matrix, the polynomial coefficient matrix, the product
and skip tensors for optimization, and the base indices. The class declaraion is in spline.h:

class mgcSpline

{

public:
mgcSpline (int _dimensions, int _degree, int* _dim, float* _data);
virtual “mgcSpline () ;

int Dimensions () { return dimensions; }

int Degree () { return degree; }

const float** Matrix () { return (const float**)matrix; }
float DomainMin (int 4 = 0) { return dom_min[d]; }

26

float DomainMax (int d = 0) { return dom_max[d]; }
int GridMin (int d = 0) { return grid_min[d]; }
int GridMax (int d = 0) { return grid_max[d]; }
float (*evaluate_callback) (int);

static const float INVALID_DATA;

// spline evaluation for function interpolation (no derivatives)
virtual float operator() (float* x) = 0O;

// spline evaluation, derivative counts given in dx[]
virtual float operator() (int* dx, float* x) = 0;

protected:
int dimensions; // N, number of dimensions
int degree; // D, degree of polynomial spline
int Dpi1; // D+1

int Dpl_to_N; // power(D+1,N)

int Dpl_to_2N; // power(D+1,2N)

int* dim; // dimension sizes dim[0] through dim[N-1]
float* data; // N-dimensional array of data

float* dom_min; // minimum allowed value of spline input vector
float* dom_max; // maximum allowed value of spline input vector
int* grid_min; // minimum allowed value for current local grid
int* grid_max; // maximum allowed value for current local grid

int* base; // base indices for grid of local control points
int* old_base; // old base indices for grid of local control points
float* cache; // cache for subblock of data

float* inter; // intermediate product of data with blending matrix

float** poly; // poly[N][D+1] for storing polynomials and derivatives
float** coeff; // coefficients for polynomial construction

float** matrix; // (D+1)x(D+1) blending matrix

float* product; // outer tensor product of matrix with itself N times
int* skip; // for skipping zero values of mtensor

virtual void EvaluateUnknownData () = 0;
virtual void ComputeIntermediate () = O;
void SetPolynomial (int order, float diff, float* poly);

private:
void Create ();
static int Choose (int n, int k);
static float** BlendMatrix (int deg);

// error handling

public:
static int verbose;
static unsigned error;

27

static
private:
static
static
static
static
static
static
static
static

};

void Report (ostream& ostr);

const unsigned invalid_dimensions;
const unsigned invalid_degree;

const unsigned invalid_dim;

const unsigned null_data;

const unsigned allocation_failed;
const char* messagel[];

int Number (unsigned single_error);
void Report (unsigned single_error);

The static member INVALID_DATA is initialized to MAXFLOAT in the spline source file. Method SetPolynomial
evaluates polynomial terms. Method Create does the allocation and initialization of the various arrays.
Method Choose computes the combinatorial value of “n choose k”. Method BlendMatrix computes the
blending matrix described in the theory of B-splines. The member function pointer evaluate_callback is
initialized to null by the constructor. If your application requires data to be computed on-demand, then set
this pointer to the function that generates your data. If necessary, you’ll need to map the input index to an
n-dimensional coordinate if your function is defined on coordinates. Eventually I should put in an additional
pointer to a callback that takes as input a coordinate. The evaluation operators then need to check if either
pointer is not null. The method EvaluateUnknownData, which calls the callback, also needs to be duplicated
so that one handles the index-callback, the other handles the coordinate-callback.

8.1 1D Splines

The class declaration for 1D splines is in splinel.h:

class mgcSplinel : public mgcSpline

{
public:

mgcSplinel (int _degree, int _dim, float* _data);

// spline evaluation for function interpolation (no derivatives)
float operator() (float x);
float operator() (float* x) { return (*this)(*x); }

// spline evaluation, derivative count given in dx
float operator() (int dx, float x);
float operator() (int* dx, float* x) { return (*this) (*dx,*x); }

private:
static

const int N;

void EvaluateUnknownData ();
void ComputelIntermediate ();

};

28

The static variable N conveniently stores the constant dimension 2. An example of how to use the class to
build a bicubic spline curve is given below.

int main ()

{
int degree = 3;
int dim = 100; // number of curve points to interpolate
float xdatal[100], ydata[100]; // the points, set them to whatever
mgcSplinel x(degree,dim,xdata), y(degree,dim,ydata);
// calculate a point on the bicubic spline curve
cout << "point is (" << x(50) << ’,’ << y(50) << ’)’ <, endl;
// calculate a tangent at the point
cout << "tangent is (" << x(1,50) << ’,’ << y(1,50) << ’)’ <, endl;
return O;
}

8.2 2D Splines
The class declaration for 2D splines is in spline2.h:

class mgcSpline2 : public mgcSpline

{
public:
mgcSpline2 (int _degree, int* _dim, float* _data);
int Index (int x, int y) { return x+dim[0]*y; }
// spline evaluation for function interpolation (no derivatives)
float operator() (float* x);
float operator() (float x, float y);
// spline evaluation, derivative counts given in dx[]
float operator() (int* dx, float* x);
float operator() (int dx, int dy, float x, float y);
private:
static const int N;
void EvaluateUnknownData ();
void ComputelIntermediate ();
};

29

The static variable N conveniently stores the constant dimension 2. The method Index converts 2D coordi-
nates to 1D indices. An example of using the class is shown below. This one uses the callback mechanism
to compute data on-demand.

int quantity;
float Callback (int index)
{
return exp(index/float(quantity));
}

int main ()

{
int degree = 3;
int dim[2] = { 8, 8 };
quantity = dim[0]*dim[1];

int x[2];

float* data = new float[quantity];

for (x[1] = 0; x[1] < dim[1]; =x[1]++)

for (x[0] = 0; x[0] < dim[0]; x[0]++) {
int index = x[0]+dim[0]*x[1];
datal[index] = mgcSpline::INVALID_DATA;

}

mgcSpline2 f(degree,dim,data);
f.evaluate_callback = Callback;

float rx[2];
for (x[1] = f.DomainMin(1); x[1] <= f.DomainMax(1); x[1]++) {

rx[1] = x[1];
for (x[0] = f.DomainMin(0); x[0] <= f.DomainMax(0); x[0]++) {
rx[0] = x[0];

cout << f(rx) <<’ 7;
}
cout << endl;

}

delete[] data;
return 0;

8.3 3D Splines
The class declaration for 3D splines is in spline3.h:

class mgcSpline3 : public mgcSpline
{

30

public:
mgcSpline3 (int _degree, int* _dim, float* _data);

int Index (int x, int y, int z)
{ return x+dim[0]*(y+dim[1]*z); }

// spline evaluation for function interpolation (no derivatives)
float operator() (float* x);
float operator() (float x, float y, float z);

// spline evaluation, derivative counts given in dx[]
float operator() (int* dx, float* x);
float operator() (int dx, int dy, int dz, float x, float y, float z);

private:
static const int N;

void EvaluateUnknownData ();
void Computelntermediate ();

};

The static variable N conveniently stores the constant dimension 3. The method Index converts 3D coordi-
nates to 1D indices. An example of using the class is shown below. This one precomputes the data.

int main ()

{
int dim[3] = { 8, 8, 8 };
int quantity = dim[0]*dim[1]*dim[2];
float* data = new float[quantity];
mgcSpline3 f(3,dim,data);

int x[3];

for (x[2] = 0; x[2] < dim[2]; x[2]++)

for (x[1] 0; x[1] < dim[1]; x[1]1++)

for (x[0] = 0; x[0] < dim[0]; x[0]++) {
int index = f.Index(x[0],x[1],x[2]);
datalindex] = exp(index/float(quantity));

}

int order[3] = { 1, 0, 2 }; // compute f_{xzz}(x,y,z)
float rx[3];
for (x[2] = f.DomainMin(2); x[2] <= f.DomainMax(2); x[2]++) {

rx[2] = x[2];
for (x[1] = f.DomainMin(1); x[1] <= f.DomainMax(1); x[1]++) {
rx[1] = x[1];
for (x[0] = f.DomainMin(0); x[0] <= f.DomainMax(0); x[0]++) {
rx[0] = x[0];

cout << f(order,rx) << ’ 7;

31

3

cout << endl;

}

cout << endl;

3

delete[] data;
return O;

8.4 4D Splines

The class declaration for 3D splines is in spline3.h:

class mgcSpline4 : public mgcSpline

{
public:
mgcSpline4 (int _degree, int* _dim, float* _data);
int Index (int x, int y, int z, int w)
{ return x+dim[0]*(y+dim[1]*(z+dim[2]*w)); }
// spline evaluation for function interpolation (no derivatives)
float operator() (float* x);
float operator() (float x, float y, float z, float w);
// spline evaluation, derivative counts given in dx[]
float operator() (int* dx, float* x);
float operator() (int dx, int dy, int dz, int dw, float x, float y,
float z, float w);
private:
static const int N;
void EvaluateUnknownData ();
void ComputeIntermediate ();
};

The static variable N conveniently stores the constant dimension 3. The method Index converts 4D coordi-
nates to 1D indices. I'm sure you get the idea on the examples.

8.5 N-dimensional Splines

The general spline class which allows dynamic specification of both dimension N and degree D is declared
in splinen.h:

32

class mgcSplineN : public mgcSpline

{
public:
mgcSplineN (int _dimensions, int _degree, int* _dim, float* _data);
“mgcSplineN () ;
int Index (int* 1i);
// spline evaluation for function interpolation (no derivatives)
float operator() (float* x);
// spline evaluation, derivative counts given in dx[]
float operator() (int* dx, float* x);
private:

const int N;
int* ev_i;
int* ci_loop;
int* ci_delta;
int* op_i;
int* op_j;
int* op_delta;

void EvaluateUnknownData ();
void Computelntermediate ();

// error handling
public:
static int verbose;
static unsigned error;
static void Report (ostream& ostr);
private:
static const unsigned allocation_failed;
static const char* messagel[];
static int Number (unsigned single_error);
static void Report (unsigned single_error);

};

The variable N stores the number of dimensions which is constant for a given object. The method Index
converts IN-dimensional coordinates to a 1-dimensional index. The private pointers are used as abstract loop
indices. Rather than allocate them every time a method is called, they are allocated once in the constructor.
This class is much slower than the specialized ones because of the overhead of processing abstract loop
indices.

33

9 Timing

I timed the intermediate tensor product calculations both for the direct implementation and the opti-
mized one. The only difference between a direct class and the optimized one is the body of method void
ComputeIntermediate(). The bodies in 2D are

// cache the data

static int delta0 = dim[0]-Dp1;

int loop[N];

for (int d = 0; d < N; d++)
loopl[d] = grid_min[d];

int index = Index(loop[0],loop[1]);

for (int k = 0; k < Dpil_to_N; k++, index++) {
cache[k] = datal[index];

if (++loop[0] <= grid_max[0])
continue;

loop[0] = grid_min[0];

index += deltaO;

loop[1]++;
}

// compute and save the intermediate product
for (int 1 = 0, j = 0; i < Dpl_to_N; i++) {
float sum = O;
for (k = 0; k < Dpl_to_N; k += skip[jl, j += skip[jl)
sum += product[j]l*cachel[k];
inter[i] = sum;

int iindex = O

for (int ky = 0; ky <= degree; ky++)
for (int kx = 0; kx <= degree; kx++) {
float sum = O;
for (int iy = base[1]-1, jy = 0; jy <= degree; iy++, jy++)

for (int ix = base[0]-1, jx = 0; jx <= degree; ix++, jx++)
sum += datal[ix+dim[0]*iy]#*matrix[jx] [kx]*matrix[jy] [ky];
inter[iindex++] = sum;

The bodies in 3D are

34

// cache the data
static int deltal[N-1] = { dim[0]-Dpl, dim[0]*(dim[1]1-Dp1) };
int loop[N];
for (int d = 0; d < N; d++)
loop[d] = grid_min[d];
int idx = Index(loop[0],loop[1],loop[2]);
for (int k = 0; k < Dpl_to_N; k++, idx++) {
cache[k] = datalidx];

if (++loop[0] <= grid_max[0])
continue;

loop[0] = grid_min[0];

idx += deltal0];

if (++loop[1] <= grid_max[1])
continue;

loop[1] = grid_min[1];

idx += deltal1];

loop[2]++;
}

// compute and save the intermediate product
for (int 1 = 0, j = 0; i < Dpl_to_N; i++) {
float sum = O;
for (k = 0; k < Dpl_to_N; k += skip[jl, j += skip[jl)
sum += product[j]l*cache[k];
inter[i] = sum;

//-———- Direct —————==—————— ===
int iindex = 0;
for (int kz = 0; kz <= degree; kz++)
for (int ky = 0; ky <= degree; ky++)
for (int kx = 0; kx <= degree; kx++) {
float sum =
for (int iz

N o

base[2]-1, jz = 0; jz <= degree; iz++, jz++)
for (int iy = base[l1]l-1, jy = 0; jy <= degree; iy++, jy++)
for (int ix = base[0]-1, jx = 0; jx <= degree; ixt++, jx++)
sum += datalix+dim[0]*(iy+dim[1]*iz)]*
matrix[jx] [kx]*matrix[jy] [kyl*matrix[jz] [kz];
inter[iindex++] = sum;

The bodies in 4D are

35

// fetch subblock of data to cache
static int delta[N-1] = {
dim[0]-Dp1, dim[0]*(dim[1]-Dp1), dim[0]*dim[1]*(dim[2]-Dp1)
};
int loop[N];
for (int d = 0; d < N; d++)
loop[d] = grid_min[d];
int index = Index(loop[0],loop[1],loop[2],lo0p[3]);
for (int k = 0; k < Dpl_to_N; k++, index++) {
cache[k] = datal[index];

if (++loop[0] <= grid_max[0])
continue;

loop[0] = grid_min[0];

index += deltal0];

if (++loop[1] <= grid_max[1])
continue;

loop[1] = grid_min[1];

index += deltal1];

if (++loop[2] <= grid_max[2])
continue;

loop[2] = grid_min[2];

index += deltal2];

loop[3]++;

// compute and save the intermediate product
for (int 1 = 0, j = 0; i < Dpl_to_N; i++) {
float sum = O;
for (k = 0; k < Dpl_to_N; k += skip[jl, j += skip[j1)
sum += product[j]l*cachel[k];
inter[i] = sum;

int iindex = 0

for (int kw = 0; kw <= degree; kw++)

for (int kz = 0; kz <= degree; kz++)

for (int ky = 0; ky <= degree; ky++)

for (int kx = 0; kx <= degree; kx++) {
float sum = 0;

36

for (int iw = base[3]-1, jw = 0; jw <= degree; iw++, jut++)
for (int iz = base[2]-1, jz = 0; jz degree; iz++, jz++)
for (int iy = base[1]l-1, jy = 0; jy degree; iy++, jy++)
for (int ix = base[0]-1, jx = 0; jx <= degree; ix++, jx++)
sum += datal[ix+dim[0]*(iy+dim[1]*(iz+dim[2]*iw))]*
matrix [jx] [kx]*matrix[jy] [ky]*
matrix[jz] [kz]*matrix [jw] [kw];
inter[iindex++] = sum;

ASERATEEAY
nwon

The experiment consisted of iterating ComputeIntermediate a large number of times and measuring the
execution time. The table below summarizes the results. The times are in seconds. The experiment was
performed on a Pentium 90 Mhz with 16 Megabytes of memory.

Dimension Method | Iterations Time | Speedup

2 direct | 1,000,000 | 122.098 2.85
optimized | 1,000,000 | 42.787

3 direct 10,000 | 27.682 3.97
optimized 10,000 6.975

4 direct 1,000 | 56.902 5.42
optimized 1,000 | 10.491

37

	1 Introduction
	2 B-Spline Blending Matrices
	3 Direct Implementation
	3.1 1D Splines
	3.2 2D Splines

	4 Generalized and Optimized Spline Calculation
	4.1 Multidimensional Array Layout
	4.2 Condensing Matrix Products
	4.3 Eliminating Nested Loops
	4.4 Reduction of Product Tensor Loops
	4.5 Reduction of Cache Tensor Loops
	4.6 Reduction of Evaluation Loops

	5 Polynomial Construction
	6 Avoiding Intermediate Calculations
	7 Computing Data On-Demand
	8 Putting It All Together
	8.1 1D Splines
	8.2 2D Splines
	8.3 3D Splines
	8.4 4D Splines
	8.5 N-dimensional Splines

	9 Timing

