
Rotation Representations and Performance Issues

David Eberly
Geometric Tools, LLC
http://www.geometrictools.com/
Copyright c© 1998-2008. All Rights Reserved.

Created: January 21, 2002
Last Modified: March 1, 2008

Contents

1 Matrix Representation 3

2 Axis-Angle Representation 3

2.1 Axis-Angle to Matrix . 3

2.2 Matrix to Axis-Angle . 4

3 Quaternion Representation 5

3.1 Axis-Angle to Quaternion . 5

3.2 Quaternion to Axis-Angle . 5

3.3 Quaternion to Matrix . 6

3.4 Matrix to Quaternion . 6

4 Performance Issues 6

4.1 Memory Usage . 6

4.2 Conversion Time . 7

4.2.1 Axis-Angle to Matrix . 7

4.2.2 Matrix to Axis-Angle . 7

4.2.3 Axis-Angle to Quaternion . 7

4.2.4 Quaternion to Axis-Angle . 8

4.2.5 Quaternion to Matrix . 8

4.2.6 Matrix to Quaternion . 8

4.3 Transformation Time . 9

4.4 Composition . 10

1

http://www.geometrictools.com/

4.5 Interpolation . 11

4.5.1 Quaternion Interpolation . 11

4.5.2 Rotation Matrix Interpolation . 12

4.5.3 Axis-Angle Interpolation . 12

2

This document is a summary of representations of rotations by matrices, quaternions, or axis-angle pairs.
Conversions between the representations is provided. The document also looks at performance issues by
comparing the memory usage for each of the representations and by comparing the computation time needed
to perform various operations such as rotating a vector, composing rotations, and interpolation of rotations.

1 Matrix Representation

A 2D rotation is a tranformation of the form x1

y1

 =

 cos(θ) − sin(θ)

sin(θ) cos(θ)

 x0

y0


where θ is the angle of rotation. A 3D rotation is a 2D rotation that is applied within a specified plane
that contains the origin. Such a rotation can be represented by a 3 × 3 rotation matrix R = [R0 R1 R2]
whose columns R0, R1, and R2 form a right-handed orthonormal set. That is, |R0| = |R1| = |R2| = 1,
R0 · R1 = R0 · R2 = R1 · R2 = 0, and R0 · R1 × R2 = 1. The columns of the matrix correspond to the
final rotated values of the standard basis vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1), in that order. Given a 3× 1
vector X = [xj] and 3× 3 rotation matrix R = [rij], the rotated vector is

RX =

 2∑
j=0

rijxj

 . (1)

2 Axis-Angle Representation

If the plane of rotation has unit length normal W, then the axis-angle representation of the rotation is the
pair 〈W, θ〉. The direction of rotation is chosen so that as you look down on the plane from the side to which
W points, the rotation is counterclockwise about the origin for θ > 0. This is the same convention used for
a 2D rotation.

2.1 Axis-Angle to Matrix

If U, V, and W form a right-handed orthonormal set, then any point can be represented as X = u0U +
v0V + w0W. Rotation of X about the axis W by the angle θ produces RX = u1U + v1V + w1W. Clearly
from the geometry, w1 = w0 = W ·X. The other two components are changed as if a 2D rotation has been
applied to them, so u1 = cos(θ)u0 − sin(θ)v0 and v1 = sin(θ)u0 + cos(θ)v0. Using the right-handedness of
the orthonormal set, it is easily shown that

W×X = u0W×U + v0W×V + w0W×W = −v0U + u0V

and
W× (W×X) = −v0W×U + u0W×V = −u0U− v0V.

3

Combining these in the form shown and using the relationship between u0, v0, u1, and v1 produces

(sin θ)W×X + (1− cos θ)W× (W×X) = (−v0 sin θ − u0(1− cos θ))U + (u0 sin θ − v0(1− cos θ))V

= (u1 − u0)U + (v1 − v0)V

= RX−X.

Therefore, the rotation of X given the axis W and angle θ is

RX = X + (sin θ)W×X + (1− cos θ)W× (W×X). (2)

This can also be written in matrix form by defining the following where W = (a, b, c),

S =


0 −c b

c 0 −a

−b a 0


in which case

R = I + (sin θ)S + (1− cos θ)S2

and consequently RX = X + (sin θ)SX + (1− cos θ)S2X.

2.2 Matrix to Axis-Angle

The inverse problem is to start with the rotation matrix and extract an angle and unit-length axis. There
are multiple solutions since −W is a valid axis whenever W is and θ + 2πk is a valid solution whenever θ
is. First, the trace of a matrix is defined to be the sum of the diagonal terms. Some algebra will show that
cos θ = (Trace(R)− 1)/2, in which case

θ = cos−1((Trace(R)− 1)/2) ∈ [0, π]. (3)

Also, it is easily shown that
R−RT = (2 sin θ)S (4)

where S is a skew-symmetric matrix. The constructions below are based on the cases θ = 0, θ ∈ (0, π), and
θ = π.

If θ = 0, then any unit-length diretion vector for the axis is valid since there is no rotation.

If θ ∈ (0, π), equation (4) allows direct extraction of the axis, D = (r21 − r12, r02 − r20, r10 − r01) and
W = D/|D|.

If θ = π, equation (4) does not help with constructing the axis since R−RT = 0. In this case note that

R = I + 2S2 =


1− 2(w2

1 + w2
2) 2w0w1 2w0w2

2w0w1 1− 2(w2
0 + w2

2) 2w1w2

2w0w2 2w1w2 1− 2(w2
0 + w2

1)



4

where W = (w0, w1, w2). The idea is to extract the maximum component of the axis from the diagonal entries
of the rotation matrix. If r00 is maximum, then w0 must be the largest component in magnitude. Compute
4w2

0 = r00 − r11 − r22 + 1 and select w0 =
√

r00 − r11 − r22 + 1/2. Consequently, w1 = r01/(2w0) and w2 =
r02/(2w0). If r11 is maximum, then compute 4w2

1 = r11−r00−r22+1 and select w1 =
√

r11 − r00 − r22 + 1/2.
Consequently, w0 = r01/(2w1) and w2 = r12/(2w1). Finallly, if r22 is maximum, then compute 4w2

2 =
r22−r00−r11+1 and select w2 =

√
r22 − r00 − r11 + 1/2. Consequently, w0 = r02/(2w2) and w1 = r12/(2w2).

3 Quaternion Representation

A third representation involves unit quaternions. Only a summary is provided here. A unit quaternion is
denoted by q = w + xi + yj + zk where w, x, y, and z are real numbers and where the 4-tuple (w, x, y, z) is
unit length. The set of unit quaternions is just the unit hypersphere in IR4. The products of i, j, and k are
defined by i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, and ki = −ik = j. Observe that the products
are not commutative. The product of two unit quaternions qn = wn + xni + ynj + znk for n = 0, 1 is defined
by distributing the product over the sums, keeping in mind that the order of operands is important:

q0q1 = (w0w1 − x0x1 − y0y1 − z0z1)+

(w0x1 + x0w1 + y0z1 − z0y1)i+

(w0y1 − x0z1 + y0w1 + z0x1)j+

(w0z1 + x0y1 − y0x1 + z0w1)k.

The conjugate of q is defined by
q∗ = w − xi− yj − zk.

Observe that qq∗ = q∗q = 1 where the right-hand side 1 is the w-term of the quaternion, the x-, y-, and
z-terms being all 0.

3.1 Axis-Angle to Quaternion

If A = (x0, y0, z0) is the unit length axis of rotation and if θ is the angle of rotation, a quaternion q =
w + xi + yj + zk that represents the rotation satisfies w = cos(θ/2), x = x0 sin(θ/2), y = y0 sin(θ/2), and
z = z0 sin(θ/2).

If a vector V = (v0, v1, v2) is represented as the quaternion v̂ = v0i+v1j +v2k, and if q represents a rotation,
then the rotated vector U is represented by quaternion û = u0i + u1j + u2k where

û = qv̂q∗. (5)

It can be shown that the w-term of û must really be 0.

3.2 Quaternion to Axis-Angle

Let q = w+xi+yj+zk be a unit quaternion. If |w| = 1, then the angle is θ = 0 and any unit-length direction
vector for the axis will do since there is no rotation. If |w| < 1, the angle is obtained as θ = 2 cos−1(w) and
the axis is computed as A = (x, y, z)/

√
1− w2.

5

3.3 Quaternion to Matrix

Using the identities 2 sin2(θ/2) = 1− cos(θ) and sin(θ) = 2 sin(θ/2) cos(θ/2), it is easily shown that 2wx =
(sin θ)w0, 2wy = (sin θ)w1, 2wz = (sin θ)w2, 2x2 = (1 − cos θ)w2

0, 2xy = (1 − cos θ)w0w1, 2xz = (1 −
cos θ)w0w2, 2y2 = (1− cos θ)w2

1, 2yz = (1− cos θ)w1w2, and 2z2 = (1− cos θ)w2
2. The right-hand sides of all

these equations are terms in the expression R = I + (sin θ)S + (1− cos θ)S2. Replacing them yields

R =


1− 2y2 − 2z2 2xy − 2wz 2xz + 2wy

2xy + 2wz 1− 2x2 − 2z2 2yz − 2wx

2xz − 2wy 2yz + 2wx 1− 2x2 − 2y2

 (6)

3.4 Matrix to Quaternion

Earlier it was mentioned that cos θ = (Trace(R) − 1)/2. Using the identity 2 cos2(θ/2) = 1 + cos θ yields
w2 = cos2(θ/2) = (Trace(R) + 1)/4 or |w| =

√
Trace(R) + 1/2. If Trace(R) > 0, then |w| > 1/2, so without

loss of generality choose w to be the positive square root, w =
√

Trace(R) + 1/2. The identity R − RT =
(2 sin θ)S also yielded (r12 − r21, r20 − r02, r01 − r10) = 2 sin θ(w0, w1, w2). Finally, identities derived earlier
were 2xw = w0 sin θ, 2yw = w1 sin θ, and 2zw = w2 sin θ. Combining these leads to x = (r12 − r21)/(4w),
y = (r20 − r02)/(4w), and z = (r01 − r10)/(4w).

If Trace(R) ≤ 0, then |w| ≤ 1/2. The idea is to first extract the largest one of x, y, or z from the diagonal
terms of the rotation R in equation 6. If r00 is the maximum diagonal term, then x is larger in magnitude than
y or z. Some algebra shows that 4x2 = r00 − r11 − r22 + 1 from which is chosen x =

√
r00 − r11 − r22 + 1/2.

Consequently, w = (r12 − r21)/(4x), y = (r01 + r10)/(4x), and z = (r02 + r20)/(4x). If r11 is the maximum
diagonal term, then compute 4y2 = r11−r00−r22 +1 and choose y =

√
r11 − r00 − r22 + 1/2. Consequently,

w = (r20 − r02)/(4y), x = (r01 + r10)/(4y), and z = (r12 + r21)/(4y). Finally, if r22 is the maximum
diagonal term, then compute 4z2 = r22−r00−r11 +1 and choose z =

√
r22 − r00 − r11 + 1/2. Consequently,

w = (r01 − r10)/(4z), x = (r02 + r20)/(4z), and y = (r12 + r21)/(4z).

4 Performance Issues

A question asked quite often is “What is the best representation to use for rotations”? As with most
computer science topics, there is no answer to this question, only trade offs to consider. In the discussion,
the rotation matrix is R, the quaternion is q, and the axis-angle pair is (A, θ). Various high level operations
are compared by a count of low level operations including multiplication (M), addition or subtraction (A),
division (D), and expensive math library function evaluations (F). In an actual implementation, comparisons
(C) should also be counted because they can be even more expensive than multiplications and/or additions.
Summary tables are provided to allow you to quickly compare the performance.

4.1 Memory Usage

A rotation matrix requires 9 floats, a quaternion requires 4 floats, and an axis-angle pair requires 4 floats,
so clearly the rotation matrix will use more memory. Storing only the angle in the axis-angle formulation is

6

clearly not helpful when transforming is required since you need to know the values of sin θ and 1 − cos θ.
Evaluating the trigonometric functions is quite expensive. It is better to precompute both quantities and
store them, so in fact an axis-angle pair will require 6 floats, making the quaternion representation the
cheapest in memory usage. Table 1 is a summary of the memory usage. The axis-angle count includes 3

representation floats comments

rotation matrix 9

axis-angle 4 no precompute of sin θ or 1− cos θ

axis-angle 6 precompute of sin θ and 1− cos θ

quaternion 4

Table 1: Comparison of memory usage.

floats for the axis, 1 float for the angle θ, and 2 floats for sin θ and 1 − cos θ. Without the precomputation
of the trigonometric functions, any operation requiring the function values will be quite expensive.

4.2 Conversion Time

Applications using rotations invariably have to convert from one representation to another, so it is useful to
have measurements of costs for the conversions. The entities involved are a rotation matrix R, an axis-angle
pair (A, θ), and a quaternion q. It is assumed that the angle of rotation is in (0, π).

4.2.1 Axis-Angle to Matrix

Evaluation of σ = sin(θ) and γ = cos(θ) requires two function calls. The term 1 − γ requires 1 addition.
The skew-symmetric matrix S obtained from A requires no computation. The matrix S2 requires 6 unique
multiplications and 3 additions; sign changes are not counted. The term (1 − γ)S2 requires 6 unique
multiplications. The term σS requires 3 unique multiplications. Finally, the combination R = I +σS +(1−
γ)S2 uses 9 additions. The total cost is 13A + 15M + 2F .

4.2.2 Matrix to Axis-Angle

The extraction θ = cos−1((Trace(R)− 1)/2) requires 3 additions, 1 multiplication, and 1 function call. The
vector D = (r21 − r12, r02 − r20, r10 − r01) requires 3 additions. The normalized vector A = D/|D| requires
6 multiplications, 2 additions, 1 division, and 1 function call. The total cost is 8A + 7M + 1D + 2F .

4.2.3 Axis-Angle to Quaternion

Extracting θ = 2 cos−1(w) requires 1 function call and 1 multiplication. Constructing A = (x, y, z)/
√

1− w2

requires 4 multiplications, 1 addition, 1 division, and 1 function call. The total cost is 1A + 5M + 1D + 2F .

7

4.2.4 Quaternion to Axis-Angle

Evaluation of θ/2 uses 1 multiplication. Evalution of σ = sin(θ/2) and w = cos(θ/2) requires 2 function
calls. The products (x, y, z) = σA require 3 multiplications. The total cost is 4M + 2F .

4.2.5 Quaternion to Matrix

The conversion requires 12 multiplications. The terms tx = 2x, ty = 2y, and tz = 2z are computed. From
these the following terms are computed: twx = wtx, twy = wty, twz = wtz, txx = txx, txy = xty, txz = xtz,
tyy = tyy, tyz = ytz, and tzz = tzz. The rotation matrix entries require 12 additions: r00 = 1 − tyy − tzz,
r01 = txy − twz, r02 = txz + twy, r10 = txy + twz, r11 = 1 − txx − tzz, r12 = tyz − twx, r20 = txz − twy,
r21 = tyz + twx, and r22 = 1− txx − tyy. The total cost is 12A + 12M .

4.2.6 Matrix to Quaternion

The conversion depends on the sign of the trace of R. Computing the trace τ = Trace(R) requires 2 additions.
Suppose that τ > 0 (this comparison is 1C in cost). The calculation w =

√
τ + 1/2 requires 1 addition, 1

multiplication, and 1 function call. The expression λ = 1/(4w) requires 1 multiplication and 1 division. The
terms x = λ(r12− r21), y = λ(r20− r02), and z = λ(r01− r10) require 3 additions and 3 multiplications. The
total cost is 6A + 5M + 1D + 1F + 1C.

If τ ≤ 0, the maximum of the diagonal entries of the rotation matrix must be found. This requires two
comparisons, call this cost 2C. For the sake of argument, suppose that r00 is the maximum. The calculation
x =

√
r00 − r11 − r22 + 1/2 requires 3 additions, 1 multiplication, and 1 function call. The expression

λ = 1/(4x) requires 1 multiplicaion and 1 division. The terms w = λ(r12 − r21), y = λ(r01 + r10), and
z = λ(r02 + r20) require 3 additions and 3 multiplications. The total cost is 6A + 5M + 1D + 1F + 3C.

Table 2 is a summary of the costs of converting among the various rotation representations.

conversion A M D F C

axis-angle to matrix 13 15 2

matrix to axis-angle 8 7 1 2

axis-angle to quaternion 1 5 1 2

quaternion to axis-angle 4 2

quaternion to matrix 12 12

matrix to quaternion (τ > 0) 6 5 1 1 1

matrix to quaternion (τ ≤ 0) 6 5 1 1 3

Table 2: Comparison of operation counts for converting between representations of rotations.

8

4.3 Transformation Time

The transformation of V by a rotation matrix is the product U = RV and requires 9 multiplications and 6
additions for a total of 15 operations.

If V = (v0, v1, v2) and if V̂ = v0i + v1j + v2k is the corresponding quaternion with zero w component, then
the rotate vector U = (u0, u1, u2) is computed as Û = u0i+u1j +u2k = qV̂ q∗. Applying the general formula
for quaternion multiplication directly, the product p = qV̂ requires 16 multiplications and 12 additions. The
product pq∗ also uses the same number of operations. The total operation count is 56. However, since V̂
has no w term, p only requires 12 multiplications and 8 additions–one term is theoretically zero, so no need
to compute it. We also know that Û has no w term, so the product pq∗ only requires 12 multiplications
and 9 additions. Using these optimizations, the total operation count is 41. Observe that conversion from
quaternion q to rotation matrix R requires 12 multiplications and 12 additions. Transforming V by R takes
15 operations. Therefore, the process of converting to rotation and multiplying uses 39 operations, two less
than calculating qV̂ q∗. Purists who implement quaternion libraries and only use quaternions will sadly lose
a lot of cycles when transforming large sets of vertices.

The formula for transforming V using an axis-angle pair is

RV = V + (sin θ)A×V + (1− cos θ)A× (A×V).

As indicated earlier, sin θ and 1− cos θ should be precomputed and stored in adition to the axis and angle,
a total of 6 floats. The cross product A × V uses 6 multiplications and 3 additions. So does A × (A ×
V), assuming the cross product in the parentheses was computed first and stored in temporary memory.
Multiplying the cross products by a scalar requires 6 multiplications. Adding three vectors requires 6
additions. Therefore, we need to use 18 multiplications and 12 additions for a total of 30 operations.

Therefore, the rotational formulation yields the fastest transforming. The quaternion formulation yields the
slowest transforming for a single vector. But keep in mind that a batch transform of n vectors requires
converting the quaternion to a rotation matrix only once at a cost of 24 operations. The total operations
for transforming by quaternion is 24 + 15n. The axis-angle formulation uses 30n, so the quaternion trans-
formation is faster for two or more vectors. Table 3 is a summary of the operation counts for transforming
a single vector.

representation A M comments

rotation matrix 6 9

axis-angle 12 18

quaternion 24 32 using generic quaternion multiplies

quaternion 17 24 using specialized quaternion multiplies

quaternion 18 21 convert to matrix, then multiply

Table 3: Comparison of operation counts for transforming 1 vector.

Table 4 is a summary of the operation counts for transforming n vectors.

9

representation A M comments

rotation matrix 6n 9n

axis-angle 12n 18n

quaternion 24n 32n using generic quaternion multiplies

quaternion 17n 24n using specialized quaternion multiplies

quaternion 12+6n 12+9n convert to matrix, then multiply

Table 4: Comparison of operation counts for transforming n vector.

4.4 Composition

The product of two rotation matrices requires 27 multiplications and 18 additions for a total cost of 18A +
27M .

The product of two quaternions requires 16 multiplications and 12 additions for a total cost of 12A + 16M ,
clearly outperforming matrix multiplication. Moreover, renormalizing a quaternion to adjust for floating
point errors is cheaper than renormalizing a rotation matrix using Gram-Schmidt orthonormalization.

Composition of two axis-angle pairs is unthinkable in an application that requires computational efficiency.
One way to do the composition is to convert to matrices, multiply the matrices, then extract the axis-
angle pair. The two conversions from axis-angle to matrix cost 26A + 30M + 4F , the matrix product costs
18A + 27M , and the conversion from matrix to axis-angle costs 8A + 7M + 1D + 2F . The total cost is
52A + 64M + 1D + 6F .

Another way to do the composition of two axis-angle pairs is to convert to quaternions, multiply the
quaternions, then extract the axis-angle pair. The two conversions from axis-angle to quaternion cost
2A + 10M + 2D + 4F , the quaternion product costs 12A + 16M , and the conversion from quaternion
to axis-angle costs 4M + 2F . The total cost is 14A + 30M + 2D + 6F .

Table 5 is a summary of the operation counts for composing two rotations.

representation A M D F

rotation matrix 18 27

quaternion 12 16

axis-angle (convert to matrix) 52 64 1 6

axis-angle (convert to quaternion) 14 30 2 6

Table 5: Comparison of operation counts for composition.

10

4.5 Interpolation

4.5.1 Quaternion Interpolation

Quaternions are quite amenable to interpolation. The standard operation that is used is spherical linear
interpolation, affectionately known as slerp. Given quaternions p and q with acute angle θ between them,
slerp is defined as s(t; p, q) = p(p∗q)t for t ∈ [0, 1]. Note that s(0; p, q) = p and s(1; p, q) = q. An equivalent
definition of slerp that is more amenable to calculation is

s(t; p, q) =
sin((1− t)θ)p + sin(tθ)q

sin(θ)
.

If p and q are thought of as points on a unit circle, the formula above is a parameterization of the shortest
arc between them. If a particle travels on that curve according to the parameterization, it does so with
constant speed. Thus, any uniform sampling of t in [0, 1] produces equally spaced points on the arc.

We assume that only p, q, and t are specified. Moreover, since q and −q represent the same rotation, you
can replace q by −q if necessary to guarantee that the angle between p and q treated as 4-tuples is acute.
That is, p · q ≥ 0. As 4-tuples, p and q are unit length. The dot product is therefore p · q = cos(θ). Table 6
shows the operation counts. Any term shown on the left that includes an already computed term has only
its additional operations counted to avoid double counting operations.

term A M D F

a0 = p · q 3 4

θ = cos−1(a0) 1

1− t 1

(1− t)θ 1

tθ 1

sin(θ) 1

sin((1− t)θ) 1

sin(tθ) 1

a1 = 1/ sin(θ) 1

a2 = a1 sin((1− t)θ) 1

a3 = a1 sin(tθ) 1

a2p + a3q 4 8

total 8 16 1 4

Table 6: Operation counts for quaternion interpolation.

11

4.5.2 Rotation Matrix Interpolation

The absence of a meaningful interpolation formula that directly applies to rotation matrices is used as an
argument for the superiority of quaternions over rotation matrices. However, rotations can be interpolated
directly in a way equivalent to what slerp produces. If P and Q are rotations corresponding to quaternions
p and q, the slerp of the matrices is

S(t;P,Q) = P (PTQ)t,

the same formula that defines slerp for quaternions. The technical problem is to define what is meant by Rt

for a rotation R and real-valued t. If the rotation has axis A and angle θ, then Rt has the same rotation
axis, but the angle of rotation is tθ. The procedure for computing slerp of the rotation matrices is

1. Compute R = PTQ.

2. Extract an axis A and an angle θ from R.

3. Compute Rt by converting the axis-angle pair A, tθ.

4. Compute the S(t;P,Q) = PRt.

This algorithm requires an axis-angle extraction that involves an inverse trigonometric function call and a
square root operation, a couple of trigonometric evaluations (for tθ), and a conversion back to a rotation
matrix. This is quite a bit more expensive than computing the slerp for quaternions which requires three
trigonometric function calls. The quaternion interpolation is therefore more efficient, but a purist wishing
to avoid quaternions in an application has, indeed, a method for interpolating rotation matrices.

Table 7 shows the operation counts and uses the same format and rules as the table for quaternion interpo-
lation.

Both the quaternion and rotation matrix interpolation use 1 division and 4 function evaluations. However,
the number of additions and multiplications in the rotation matrix interpolation is excessive compared to
that of quaternion interpolation.

4.5.3 Axis-Angle Interpolation

There is no obvious and natural way to produce the same interpolation that occurs with quaternions and
rotation matrices. The only choice is to convert to one of the other representations, interpolate in that
form, then convert the interpolated result back to axis-angle form. A very expensive proposition, just as in
composition of rotations.

12

term A M D F

R = P ∗Q 18 27

a0 = 0.5(Trace(R)− 1) 4 1

θ = cos−1(a0) 1

D = (r21 − r12, r02 − r20, r10 − r01) 3

a1 = 1/|D| 2 3 1 1

A = a1D 3

tθ 1

a2 = sin(tθ) 1

a3 = 1− cos(tθ) 1 1

matrix S, no cost

S2 3 6

Rt = I + a2S + a3S
2 9 9

PRt 18 27

total 58 77 1 4

Table 7: Operation counts for rotation matrix interpolation.

13

	1 Matrix Representation
	2 Axis-Angle Representation
	2.1 Axis-Angle to Matrix
	2.2 Matrix to Axis-Angle

	3 Quaternion Representation
	3.1 Axis-Angle to Quaternion
	3.2 Quaternion to Axis-Angle
	3.3 Quaternion to Matrix
	3.4 Matrix to Quaternion

	4 Performance Issues
	4.1 Memory Usage
	4.2 Conversion Time
	4.2.1 Axis-Angle to Matrix
	4.2.2 Matrix to Axis-Angle
	4.2.3 Axis-Angle to Quaternion
	4.2.4 Quaternion to Axis-Angle
	4.2.5 Quaternion to Matrix
	4.2.6 Matrix to Quaternion

	4.3 Transformation Time
	4.4 Composition
	4.5 Interpolation
	4.5.1 Quaternion Interpolation
	4.5.2 Rotation Matrix Interpolation
	4.5.3 Axis-Angle Interpolation

