Numerical Integration
David Eberly

Geometric Tools, LLC
http://www.geometrictools.com/

Copyright (©) 1998-2008. All Rights Reserved.

Created: March 2, 1999
Last Modified: March 2, 2008

Contents

1 Richardson Extrapolation

1.1 Trapezoid Rule o 0 e
2 Romberg Integration

3 Implementation

http://www.geometrictools.com/

1 Richardson Extrapolation

This method is very powerful. The key idea is to get high-order accuracy by using low-order formulas. It
is used in Romberg integration (which my integration code is based on), but it is also the key idea in the
adaptive Runge-Kutta differential equation solver.

Let @ be an unknown quantity which is approximated by A(h) with approximation error of order O(h?).
That is,

Q = A(h) + C1h* + O(h*) = A(h) + O(h?) (1)
for some constant C;. We can use this formula to produce a (possibly) more accurate approximation.
Replacing h by h/2 in the formula yields

h C

Q=4 (2> + gfﬂ +O(hY). (2)
Of course I used O(h?/4) = O(h?). Taking four times equation (2) and substracting equation (2), then
dividing by three yields

h
0= 4A (5) — A(h)
3

The goal is for the O(h*) terms in equations (1) and (3) to be about the same size. If so, equation (3) is
more accurate since it does not have the h? term in it.

+ O(hY). (3)

Define Aj(h) = A(h) and A2(h) = (4A1(h/2) — Ai(h))/3. Other approximations can be written in an
extrapolation table

=
=

=
&
=z

~—

S N S ST

~— ~— ~—
N
N
—~

=

b
=
N T T

N

t A~~~
NN
SN—

A (zr) Az (5)
The approximation A;(h/2%) is order O(h?) and the approximation Ay (h/2%) is order O(h*).
If the original approximation is written as
Q = A(h) + C1h* + Coh* + O(h°),

then the extrapolation table has an additional column

Av(h)

Al(%) Az (h)

A(D) A2(5) As(h)
A(s) A () A(3)

) A () As(3=)

h
—

—~
=

where

As(h) = 164, (335 Az (h)

The approximation Az(h/2%) is order O(hS).

In general the extrapolation table is an n x m lower triangular matrix T' = [T}..] where

Trc = Ac < h)
27'71

_ 4671145,1 (%) — Acfl(h)
B 4e-1 1 '

and

Ac(h)

1.1 Trapezoid Rule

An approximation for fab f(x) dx can be computed by first approximating f(x) by the linear function

r—b r—a
afbf(a>+ b—a

L(z) = f(0)

and using h[f(b) + f(a)]/2 = f; L(z)dx = f: f(x)dz. Some calculus shows that

/b Flaydr = LT 4 opn)

When f(z) > 0, the approximation is the area of a trapezoid with vertices at (a,0), (a, f(a)), (b,0), and

(b, £(b))-

The integration interval [a, b] can be divided into N subintervals over which the integration can be compos-
ited. Define h = (b — a)/N and z; = a + jh for 0 < j < N. It can be shown that

h N-1

b
[f@ydo =3 @) +2 Y f(e))+ £0)| + 002,

Note that the order of the approximation decrease by a power of one.

2 Romberg Integration

This method of integration uses the trapezoid rule to obtain preliminary approximations to the integral
followed by Richardson extrapolation to obtain improvements.

Define hy, = (b—a)/2*~! for k > 1. The trapezoidal approximations corresponding to the interval partitions
are

2k=1_1
hi

T == | fla) +2 Z fla+jhy) | + £(b)

and so

b
/ f(x)dz = Ty1 + O(h2)

for all £ > 1. The following recursion formula can be shown to hold:

2k72

2T = Th—1,1 + hi—1 Z fla+ (5 —0.5)hk_1) (4)

j=1
for k > 2.

Richardson extrapolation can be applied; that is, generate the table

/_1
YT 0 —Ti151

wi 411

for 2 < j <4. It can be shown that

b b
klim Tpa1 = / f(z)dx if and only if klim T = / f(z)dx.

The second limit typically converges much faster than the first. The idea now is to choose a value n and use
T, as an approximation to the integral.

3 Implementation

The code is shown below.

class mgclntegrate

{
public:

typedef float (*Function)(float);

mgcIntegrate () {;}

float RombergIntegral (float a, float b, Function F);
3

float mgclntegrate::
RombergIntegral (float a, float b, Function F)
{

const int order = 5;

float rom[2] [order];
float h = b-a;

// initialize T_{1,1} entry

rom[0] [0] = h*(F(a)+F(b))/2;

for (int i = 2, ipower = 1; i <= order; i++, ipower *= 2, h /= 2) {
// calculate summation in recursion formula for T_{k,1}
float sum = O;
for (int j = 1; j <= ipower; j++)
sum += F(a+h*(j-0.5));

// trapezoidal approximations
rom[1] [0] = (rom[0] [0]+h*sum)/2;

// Richardson extrapolation
for (int k = 1, kpower = 4; k < i; k++, kpower *= 4)
rom[1] [k] = (kpower*rom[1] [k-1] - rom[0] [k-1])/(kpower-1);

// save extrapolated values for next pass
for (j = 0; j < 1i; j++)
rom[0] [j] = rom[1][j];

}
return rom[0] [order-1];
¥
I have arbitrarily chosen n = 5 (as the variable integral order). The values of T;; are stored in

rom[2] [order]. Note that not all the values must be saved to build the next ones (so the first dimen-
sion of rom does not have to be order). This follows from the recursion given in equation (4).

	1 Richardson Extrapolation
	1.1 Trapezoid Rule

	2 Romberg Integration
	3 Implementation

