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1 Introduction

In some applications, it is desirable to reduced the storage required by unit-length vectors. For example, a
graphics application might want to provide an array of normal vectors to a vertex shader program. Each
normal vector is naturally stored as a 3-tuple, each component a 32-bit floating-point number for a total of
96 bits. Instead, each normal vector can be compressed into 32-bit storage, 10 bits for each of 3 channels
with 2 wasted bits. There are a few ways to do this. One involves taking a component in [−1, 1] and mapping
it to an unsigned integer i with 0 ≤ i ≤ 1023. The three mapped components are stored in a 32-bit unsigned
integer with the two high-order bits unused.

void CompressVariant1 (float x, float y, float z, unsigned int& value)
{

unsigned int xc = (int)(1023.0f*(0.5f*(x + 1.0f)));
unsigned int yc = (int)(1023.0f*(0.5f*(y + 1.0f)));
unsigned int zc = (int)(1023.0f*(0.5f*(z + 1.0f)));
value = xc | (yc << 10) | (zc << 20);

}

In a shader-based graphics system that supports a vertex normal format of 10-10-10-2, the compressed
normals are automatically expanded for the vertex shader. However, if you were to write this yourself, the
following suffices; the graphics system probably does not perform the normalization that is shown here.

void DecompressVariant1 (unsigned int value, float& x, float& y, float& z)
{

unsigned int xu = (value & 0x000003FF);
unsigned int yu = (value & 0x000FFC00) >> 10;
unsigned int zu = (value & 0x3FF00000) >> 20;
x = 2.0f*xu/1023.0f - 1.0f;
y = 2.0f*yu/1023.0f - 1.0f;
z = 2.0f*zu/1023.0f - 1.0f;
float invLength = 1.0f/sqrtf(x*x + y*y + z*z);
x *= invLength;
y *= invLength;
z *= invLength;

}

An alternative is to map the normal components to 10-bit signed integers using two’s complement. Each
compressed channel i satisfies −512 ≤ i ≤ 511. For symmetry, we can require |i| ≤ 511. This is slightly more
tedious to program directly using bit masks and shifting, because we must be careful in handling the sign
bit. In C++, bit-field members allow the compiler to do this for us. The compression and decompression
code is

class Compressed
{
public:

int x : 10;
int y : 10;
int z : 10;

};

void CompressVariant2 (float x, float y, float z, Compressed& value)
{

value.x = (int)(511.0f*x);
value.y = (int)(511.0f*y);
value.z = (int)(511.0f*z);

}
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void DecompressVariant2 (Compressed value, float& x, float& y, float& z)
{

x = ((float)value.x)/511.0f;
y = ((float)value.y)/511.0f;
z = ((float)value.z)/511.0f;
float invLength = 1.0f/sqrtf(x*x + y*y + z*z);
x *= invLength;
y *= invLength;
z *= invLength;

}

Naturally, a bit-field class using unsigned integers could have been used for the first variation of compression
and decompression.

The preceding examples are simple, but they might not immediately indicate what the main issues are for
compression and decompression of unit-length vectors. These issues are:

1. The speed of compression.

2. The speed of decompression.

3. The distribution of unit-length vectors on a circle (2D), on a sphere (3D), or on a hypersphere (4D).

The importance of each issue depends on your application. For example, if your goal is to reduce the disk
storage requirements for a large set of vectors, you might not be concerned about the speed of compression.
To quickly load the vectors from disk, you would be concerned about the speed of decompression. Another
example involves sending vectors over a network, say, for a real-time game where each client needs to know
physics data from all the other clients. Most likely you want to minimize bandwidth (compressed size must
be small) and the compression and decompression must be fast.

The distribution of vectors might not be an apparent issue at first glance. However, if your vectors are
normals and used for lighting of a terrain for which the up direction is (0, 0, 1), a compression scheme that
produces a high density of normals near (1, 0, 0) but a low density near (0, 0, 1) is most likely not desirable.
More likely is that you want a fairly uniform distribution over the set of normals that your application uses.

This document describes a couple of algorithms for compressing unit-length vectors. I mentioned vectors in
2D, 3D, and 4D. The most common need for compression of unit-length vectors in 4D is for applications
that use quaternions to represent rotations and orientations.

2 Unit Vectors in 2D

The compression algorithms in this document are motivated by considering unit-length vectors in 2D. In
particular, the three main issues mentioned previously are illustrated here.

Given a unit-length vector (x, y), we will use two bits to represent which quadrant contains the vector.
Effectively, the bits are sign bits. A bit-value of 0 denotes a nonnegative number and a bit-value of 1 denotes
a negative number. For a vector (x, y), a bit-pair 00 indicates that x ≥ 0 and y ≥ 0. A bit-pair 10 indicates
that x < 0 and y ≥ 0. The remaining bits are used to compress the x-values for vectors in the first quadrant.
The x-values are obtained by decompression and the y-values are computed by y =

√
1− x2. The sign bits

are applied appropriately.
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A simple scheme is the following. The number of bits, B, is specified by the user. The x-values in [0, 1]
are discretized, producing at most N = 2B possibilities. The code shown next assumes that the two sign
bits are the high-order bits of the result. It also assumes that the number of bits for the x-component (call
these “mantissa bits”) satisfies B ≤ 30. This guarantees that the sign bits and mantissa bits fit into a 32-bit
unsigned integer. The ideas can be extended to handle more than 30 bits, but the coding will be slightly
more complicated because the bits are distributed across multiple unsigned integer members.

// The number of bits must satisfy 1 <= B <= 30.
#define B <user-specified number of bits>

const unsigned int N = (1 << (B-1));
const float Nm1 = (float)(N - 1);
const float invNm1 = 1.0f/Nm1;

class Compressed2
{
public:

unsigned int mantissa : B;
unsigned int ySign : 1;
unsigned int xSign : 1;

};

void Compress2a (float x, float y, Compressed2& value)
{

if (x >= 0.0f)
{

value.xSign = 0;
}
else
{

value.xSign = 1;
x = -x;

}

if (y >= 0.0f)
{

value.ySign = 0;
}
else
{

value.ySign = 1;
y = -y;

}

value.mantissa = (unsigned int)floorf(Nm1*x);
}

void Decompress2a (Compressed2 value, float& x, float& y)
{

x = ((float)value.mantissa)*invNm1;
y = sqrtf(1.0f - x*x);

if (value.xSign > 0)
{

x = -x;
}

if (value.ySign > 0)
{

y = -y;
}

}

Both compression and decompression are relatively fast, especially these days when the square-root and
inverse-square-root functions have been optimized to use only a small number of cycles. However, the
distribution of vectors on the arc of the circle in the first quadrant is not uniform. The density of vectors is
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high for points near (0, 1) but low for points near (1, 0). Figure 2.1 illustrates this.

Figure 2.1 The nonuniform density of vectors for the simple compression algorithm in 2D.

The x-samples are uniformly spaced along the x-axis but the circle points are nonuniformly distributed.

We can compensate by compressing instead the angle θ for which (x, y) = (cos θ, sin θ). The uniformly spaced
angle samples are θi = (1 − i/(N − 1))π/2 for 0 ≤ i ≤ N − 1. The compression and decompression code is
shown next.

const float piDivTwo = PI/2.0f;
const float twoDivPi = 2.0f/PI;

void Compress2b (float x, float y, Compressed2& value)
{

if (x >= 0.0f) { value.xSign = 0; } else { value.xSign = 1; x = -x; }
if (y >= 0.0f) { value.ySign = 0; } else { value.ySign = 1; y = -y; }
float theta = acosf(x);
value.mantissa = (unsigned int)floorf(Nm1*(1.0f - twoDivPi*theta));

}

void Decompress2b (Compressed2 value, float& x, float& y)
{

float angle = piDivTwo*(1.0f - ((float)value.mantissa)*invNm1));
x = cosf(angle);
y = sinf(angle);
if (value.xSign > 0) { x = -x; }
if (value.ySign > 0) { y = -y; }

}

Observe that Compress2b is more expensive than Compress2a and Decompress2b is more expensive than
Compress2b because of the additional trigonometric function calls. Assuming that sqrtf is faster than sinf,
you may compute y in Decompress2b instead using a square-root call.

Obtaining a uniform distribution of vectors generally comes at the cost of more expensive compression and
decompression.
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3 Unit Vectors in 3D

A simple extension of Compress2a and Decompress2a is discussed next. Let (x, y, z) be a unit-length vector.
We need three sign bits to determine which octant the point is in. We compress the (x, y) components in
the first octant to a single index i of B bits and for which 0 ≤ i ≤ M − 1 for some M > 0. A triangular
array of indices is used, as shown in Figure 3.1.

Figure 3.1 The triangular array of indices that are used for compression of (x, y).

The row of points on the x-axis has N points numbered from 0 to N −1. The adjacent row has N −1 points
numbered from N to 2(N − 1). The numbering continues for each row, terminating in the last row that has
1 point. The number of indices is

1 + 2 + ·+ (N − 1) + N =
N∑

k=1

k =
N(N + 1)

2

which explains why the last index is N(N + 1)/2− 1 in the figure. For B bits per index, choose N to be the
largest integer for which

N(N + 1)
2

< 2B

For example, to store a 96-bit floating-point unit-length vector (32 bits per channel) in a 16-bit quantity,
we need 3 bits for the signs. The remaining 13 bits are used for the mantissa, so B = 13 (2B = 8192) and
N = 127 (N(N + 1)/2 = 8128).

The triangle points cover the quarter circle, but only the indices lying inside or on the circle are used. The
distribution of the triangle points in the plane is uniform, but the distribution on the sphere is not uniform,
as in the 2-dimensional case. The points have higher density near the north pole (0, 0, 1) with decreasing
density as you move towards the equator z = 0.

The compression algorithm is relatively simple. The (x, y) component of the unit-length vector is mapped
into the triangle array as follows. Notice that the last triangle point on the x-axis occurs at

√
2. Thus, we

need to map x ∈ [0,
√

2] to the integer-valued x̄ ∈ {0, . . . , N −1}; that is, x̄ = floor((N −1)
√

0.5x). A similar
argument applies along the y-axis, so we need to map y ∈ [0,

√
2] to the integer-valued ȳ ∈ {0, . . . , N − 1}.
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In the row ȳ = 0, the index is
i0 = x̄

In the next row ȳ = 1, the indexing starts at one more than the last index in the previous row. In this case,

i1 = x̄ + N = x̄ +
1(2N + 1− 1)

2

Generally, the number of indices in rows 0 through ȳ − 1 is

N + (N − 1) + · · ·+ (N − ȳ) =
N−ȳ∑
k=0

k =
ȳ(2N + 1− ȳ)

2

The indexing in row ȳ starts with this value offset by the x̄ value,

i = x̄ +
ȳ(2N + 1− ȳ)

2
(1)

Given a x̄ and a ȳ, it is easy to compute i. Given an i, it is more difficult to extract x̄ and ȳ. One possibility
is to use a binary search on a sorted array of indices

i0 = 0, i1 = N, . . . , iN−1 = (N − 1)(N + 2)/2 = N(N + 1)/2− 1

The search produces an index ȳ for which iȳ ≤ i < iȳ+1; then x̄ = i − iȳ. Another possibility is to treat
Equation (1) as a quadratic equation in ȳ,

ȳ2 − (2N + 1)ȳ + 2i = 2x (2)

The graph in Figure 3.2 illustrates.

Figure 3.2 The graph of the left-hand side of Equation (2).
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The index ȳ is the largest integer smaller than the smallest real-valued root ŷ to y2 − (2N + 1)y + 2i = 0.
That is,

ȳ =

⌊
(2N + 1)−

√
(2N + 1)2 − 8i

2

⌋

The pseudocode is listed next, where for simplicity it is assumed that the number of bits B is no larger than
29, in which case the compressed result fits into a 32-bit unsigned integer.

// The number of bits must satisfy 1 <= B <= 29.
#define B <user-specified number of bits>
const unsigned int N = <largest value for which N(N+1)/2 is smaller than 2^B>;
const unsigned int twoNp1 = 2*N+1;
const float twoNp1Sqr = twoNp1*twoNp1;
const float factor = ((float)(N - 1))*sqrtf(0.5f);
const float invFactor = 1.0f/factor;

class Compressed3
{
public:

unsigned int mantissa : B;
unsigned int zSign : 1;
unsigned int ySign : 1;
unsigned int xSign : 1;

};

void Compress3a (float x, float y, float z, Compressed3& value)
{

if (x >= 0.0f) { value.xSign = 0; } else { value.xSign = 1; x = -x; }
if (y >= 0.0f) { value.ySign = 0; } else { value.ySign = 1; y = -y; }
if (z >= 0.0f) { value.zSign = 0; } else { value.zSign = 1; z = -z; }
unsigned int xu = (unsigned int)floorf(factor*x);
unsigned int yu = (unsigned int)floorf(factor*y);
value.mantissa = xu + yu*(twoNp1 - yu)/2;

}

void Decompress3a (Compressed3 value, float& x, float& y, float& z)
{

float discr = twoNp1Sqr - 8.0f*value.mantissa;
unsigned int yu = (unsigned int)floorf(0.5f*(twoNp1 - sqrtf(discr)));
unsigned int xu = value.mantissa - yu*(twoNp1 - yu)/2;
x = invFactor*xu;
y = invFactor*yu;
z = sqrtf(1.0f - x*x - y*y);
if (value.xSign > 0) { x = -x; }
if (value.ySign > 0) { y = -y; }
if (value.zSign > 0) { z = -z; }

}

In an attempt to obtain an approximately uniform distribution, and also to use all the indices in the triangular
array, the next algorithm is quite useful. Figure 3.3 shows the mapping of points to the triangular array.
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Figure 3.3 An approximately uniform distribution of points that uses all the available indices in
the triangle array.

There are N circular shells labeled 0 (the origin) through N − 1 (the unit circle). Shell s has s + 1 angular
samples.

Spherical coordinates for the unit-length vectors in the first octant are

x = cos θ sinφ, y = sin θ sinφ, z = cos φ

where 0 ≤ θ ≤ π/2 and 0 ≤ φ ≤ π/2. We discretize θ and φ. First, x2 + y2 = 1− z2 = 1− cos2 φ = sin2 φ, so

φ = asin(
√

x2 + y2) ∈ [0, π/2]

The circular shell index is

s = Round
(

(N − 1)
2
π

asin(
√

x2 + y2)
)
∈ {0, 1, . . . , N − 1}

where the Round function returns the nearest integer to its argument. The starting index on the shell is
s(s + 1)/2. The angular index is

a = Round
(

s
2
π

atan2(y, x)
)
∈ {0, 1, . . . , s}

where atan2(y, x) ∈ [0, π/2]. The combined index is

i = a +
s(s + 1)

2
∈ {0, 1, . . . , N(N + 1)/2− 1}

The pseudocode for compression and decompression is

// The number of bits must satisfy 1 <= B <= 29.
#define B <user-specified number of bits>
const unsigned int N = <largest value for which N(N+1)/2 is smaller than 2^B>;
const float piDivTwo = PI/2.0f;
const float twoDivPi = 2.0f/PI;
const float factor = ((float)(N - 1))*twoDivPi;
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const float invFactor = 1.0f/factor;

class Compressed3
{
public:

unsigned int mantissa : B;
unsigned int zSign : 1;
unsigned int ySign : 1;
unsigned int xSign : 1;

};

void Compress3b (float x, float y, float z, Compressed3& value)
{

if (x >= 0.0f) { value.xSign = 0; } else { value.xSign = 1; x = -x; }
if (y >= 0.0f) { value.ySign = 0; } else { value.ySign = 1; y = -y; }
if (z >= 0.0f) { value.zSign = 0; } else { value.zSign = 1; z = -z; }
unsigned int s = (unsigned int)floorf(factor*asinf(sqrtf(x*x+y*y)));
if (s > 0)
{

unsigned int a = (unsigned int)floorf(s*twoDivPi*atan2f(y,x));
value.mantissa = a + s*(s+1)/2;

}
else
{

value.mantissa = 0;
}

}

void Decompress3b (Compressed3 value, float& x, float& y, float& z)
{

float discr = 1.0f + 8.0f*value.mantissa;
unsigned int s = (unsigned int)floorf(0.5f*(-1.0f + sqrtf(discr)));
if (s > 0)
{

unsigned int a = value.mantissa - s;
float theta = piDivTwo*a/s;
float phi = invFactor*s;
float sinPhi = sinf(s);
x = cosf(theta)*sinPhi;
y = sinf(theta)*sinPhi;
z = cosf(phi);

}
else
{

x = 0;
y = 0;
z = 1;

}

if (value.xSign > 0) { x = -x; }
if (value.ySign > 0) { y = -y; }
if (value.zSign > 0) { z = -z; }

}

The extraction of s from i is similar to the previous algorithm, where we analyzed the roots of a quadratic
equation (this time in s).

4 Unit Vectors in 4D

An extension of Compress3a and Decompress3a is discussed next. Let (x, y, z, w) be a unit-length vector.
We need four sign bits to determine which hextant the point is in. We compress the (x, y, z) components in
the first hextant to a single index i of B bits and for which 0 ≤ i ≤ M − 1 for some M > 0. A tetrahedral
array of indices is used. The spherical domain of the first hextant of the hypersphere is embedded in the
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tetrahedron, much like the circular domain of the first octant of the sphere was embedded for 3-tuples; see
Figure 3.1.

Let (x̄, ȳ, z̄) be the integer-valued coordinate indices that are used in the tetrahedron index i. Along each
coordinate axis we have N tetrahedron points. The index tuples (0, 0, 0), (N − 1, 0, 0), (0, N − 1, 0), and
(0, 0, N − 1) are the tetrahedron vertices and occur at the real-valued locations (0, 0, 0), ((N − 1)/

√
3, 0, 0),

(0, (N − 1)/
√

3, 0), and (0, 0, (N − 1)/
√

3).

The triangle face of the tetrahedron in the z̄ = 0 plane has N(N + 1)/2 indices indexed by

i0 = x̄ +
ȳ[2N + 1− ȳ]

2
, x̄ + ȳ ≤ N − 1

The z̄ = 1 plane has (N − 1)(N)/2 indices indexed by

i1 = x̄ +
ȳ[2(N − 1) + 1− ȳ]

2
+

(N − 1)[2N + 1− (N − 1)]
2

+ 1, x̄ + ȳ ≤ N − 2

where the last term on the right-hand side of the i1 equation is the maximum value (plus 1) for i0. Generally,
the index for the z̄ plane is

iz̄ = x̄ +
ȳ[2(N − z̄) + 1− ȳ]

2
+

z̄−1∑
k=0

(
(N − 1− k)[2(N − k) + 1− (N − 1− k)]

2
+ 1

)
, x̄ + ȳ ≤ N − 1− z̄

This simplifies to

iz̄ = x̄ +
ȳ[2(N − z̄) + 1− ȳ]

2
+

z̄

6
(
z̄2 − 3(N + 1)z̄ + (3N2 + 6N + 2)

)
The total number of indices is the sum of the number of indices for the z̄ triangles,

N−1∑
z̄=0

(N − z̄)(N + 1− z̄)
2

=
N(N + 1)(2N + 1)

6

To have B bits of compression, choose N to be the largest integer for which

N(N + 1)(2N + 1)
6

< 2B

Compression is straightforward. As before, I assume the simplest case of storing the compressed value in a
32-bit unsigned integer. Decompression can use a binary search in the ordered array of partial sums of the
number of points in the triangle slices, similar to what was described for 3 dimensions. Alternatively, the
trick involving quadratic equations can be extended to cubic equations, but the computations involved in
finding the smallest root of a cubic polynomial is probably not worth the effort. I leave it as an exercise.
Hint: Find the largest integer z̄ smaller than the minimum root of z(z2−3(N +1)z+(3N2+6N +2))−6i = 0.
Subtract z̄(z̄2 − 3(N + 1)z̄ + (3N2 + 6N + 2))/6 from i to obtain an equation in x̄ and ȳ. Use the quadratic
equation trick to extract ȳ and x̄.

// The number of bits must satisfy 1 <= B <= 28.
#define B <user-specified number of bits>
const unsigned int N = <largest value for which N(N+1)(2N+1)/6 is smaller than 2^B>;
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const float factor = ((float)(N - 1))/sqrtf(3.0f);
const float invFactor = 1.0f/factor;
const float poly1 = 3*(N + 1);
const float poly2 = 3N*(N + 2) + 2;
const float table[N] =
{

0,
(N-1)(N-2)/2,
:
<remaining partial sums>

};

unsigned int GetZBar (unsigned int mantissa)
{

<implement a binary search in ’table’>;
}

class Compressed4
{
public:

unsigned int mantissa : B;
unsigned int wSign : 1;
unsigned int zSign : 1;
unsigned int ySign : 1;
unsigned int xSign : 1;

};

void Compress4a (float x, float y, float z, float w, Compressed4& value)
{

if (x >= 0.0f) { value.xSign = 0; } else { value.xSign = 1; x = -x; }
if (y >= 0.0f) { value.ySign = 0; } else { value.ySign = 1; y = -y; }
if (z >= 0.0f) { value.zSign = 0; } else { value.zSign = 1; z = -z; }
if (w >= 0.0f) { value.wSign = 0; } else { value.wSign = 1; w = -w; }
unsigned int xu = (unsigned int)floorf(factor*x);
unsigned int yu = (unsigned int)floorf(factor*y);
unsigned int zu = (unsigned int)floorf(factor*z);
unsigned int ycomp = yu*(2*(N-zu)+1-yu)/2;
unsigned int zcomp = zu*(zu*(zu - poly1) + poly2)/6;
value.mantissa = xu + ycomp + zcomp;

}

void Decompress3a (Compressed3 value, float& x, float& y, float& z)
{

unsigned int zu = GetZBar(value.mantissa);
unsigned int zcomp = zu*(zu*(zu - poly1) + poly2)/6;
unsigned int adjusted = value.mantissa - zcomp;
unsigned int tmp = 2*(N - zu) + 1;
float discr = tmp*tmp - 8.0f*adjusted;
unsigned int yu = (unsigned int)floorf(0.5f*(tmp - sqrtf(discr)));
unsigned int xu = adjusted - yu*(tmp - y)/2;
x = invFactor*xu;
y = invFactor*yu;
z = invFactor*zu;
w = sqrtf(1.0f - x*x - y*y - z*z);
if (value.xSign > 0) { x = -x; }
if (value.ySign > 0) { y = -y; }
if (value.zSign > 0) { z = -z; }

}

We may similarly extend the ideas from 3D to have an approximately uniform distribution of points and to
use all the tetrahedron indices. The idea is to have N spherical shells in the (x, y, z) domain. Each shell has
its set of tetrahedron indices, all such indices within a plane of the form x̄+ ȳ + z̄ = j, where 0 ≤ j ≤ N − 1.
The shell index is

s = Round
(

(N − 1)
2
π

asin(x2 + y2 + z2)
)
∈ {0, 1, . . . , N − 1}

Once you compute the closest shell for the (x, y, z) component of the unit-vector, you know the j value for
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which the three “vertices” of the shell are in the plane x̄+ ȳ+ z̄ = j. Project the closest shell point (x′, y′, z′)
onto this plane and locate the nearest triangle point t within that plane. This gives you an index s + t into
the entire tetrahedron array. Constructing this mapping is the tediuos part of the algorithm, which I leave
as an exercise for now. (Once I regain some spare time, I’ll list the implementation here.)
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