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1 Introduction

A Bézier curve of degree d is of the form

X(t) =

d∑
i=0

Bi(t)Pi =

d∑
i=0

cd,i(1− t)d−itiPi (1)

where Pi are control points and Bi(t) are the Bernstein polynomials with cd,i = d!/[i!(d− i)!] and t ∈ [0, 1].
Let us assume that minimally P0 and Pd are specified; that is, the endpoints of the curve are known
quantities. The other control points may be selected as necessary, depending on the situation.

The motivation for this document is that conditions are imposed whereby some, but not all, of the control
points are determined. The unknown control points are selected to minimize the bending energy,

E(P ) =

∫ 1

0

∣∣X′′(t)∣∣2 dt (2)

where P represents the collection of d + 1 control points. The indices of the n known control points are
{k0, . . . , kn−1} and the indices of the m unknown control points are {u0, . . . , um−1} with the union of the
two sets being {0, . . . , d}; necessarily n + m = d + 1.

This type of problem arose in a surface-fitting application, where samples of the form (x, y, f(x, y)) were
specified, the (x, y) pairs were connected using a Delaunay triangulation, and a globally C2 graph with local
control had to be constructed using degree 9 Bézier triangle patches. Some of the control points of the
patches were determined by the samples, but the remaining control points had to be chosen one way or
another. The choice was made to minimize bending energy of the final graph. This document shows how
the minimization of bending energy is related to degree elevation, but for curves. The extension to surface
patches is discussed in a separate document.

2 Degree Elevation

The Bézier curve of degree d is specified in Equation (1). The same curve may be represented as a Bézier
curve of degree d + 1. The idea is that 1 = (1− t) + t for all t, so the degree d curve can be multiplied by 1
using this identity. For example, consider the linear curve

X(t) = (1− t)P0 + tP1 (3)

Multiplying by (1− t) + t leads to

X(t) = [(1− t) + t] [(1− t)P0 + tP1]

= (1− t)2P0 + 2(1− t)t
(
P0+P1

2

)
+ t2P1

= (1− t)2Q0 + 2(1− t)tQ1 + t2Q2

(4)

where Q0 = P0, Q2 = P1, and Q1 = (Q0 + Q2)/2. Equation (4) is formally a quadratic Bézier curve, but
it still represents the line segment defined by Equation (3).
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Generally, the degree-elevated curve is

X(t) =

d+1∑
i=0

cd+1,i(1− t)d+1−itiQi (5)

where

Qi =
i

d + 1
Pi−1 +

(
1− i

d + 1

)
Pi (6)

for 0 ≤ i ≤ d + 1 and with the convention that P−1 = 0 and Pd+1 = 0.

3 Minimizing Bending Energy

To illustrate, consider a quadratic Bézier curve

X(t) = (1− t)2P0 + 2(1− t)tP1 + t2P2

where P0 and P2 are known but P1 must be chosen to minimize the bending energy. The first derivative of
the curve is

X′(t) = −2(1− t)P0 + 2(1− 2t)P1 + 2tP2

and the second derivative of the curve is

X′′(t) = 2 (P0 − 2P1 + P2)

The bending energy is

E =

∫ 1

0

∣∣X′′(t)∣∣2 dt = 4 |P0 − 2P1 + P2|2

The minimum is obtained when
P0 − 2P1 + P2 = 0

in which case

P1 =
P0 + P2

2

Observe that this condition shows that the curve that minimizes the bending energy is a line segment, which
is consistent with your intuition; see Equation (4).

Now consider a cubic Bézier curve

X(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3

where P0 and P3 are known but P1 and P2 must be chosen to minimize the bending energy. The first
derivative of the curve is

X′(t) = −3(1− t)2P0 + 3(1− t)(1− 3t)P1 + 3t(2− 3t)P2 + 3t2P3

and the second derivative of the curve is

X′′(t) = 6 ((1− t)P0 + (3t− 2)P1 + (1− 3t)P2 + tP3)
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Define P to be the 4× 1 column vector whose ith row is formally Pi; then

∣∣X′′(t)∣∣2 = 36
[
PT

0 PT
1 PT

2 PT
3

]


1− t

3t− 2

1− 3t

t


[

1− t 3t− 2 1− 3t t
]


P0

P1

P2

P3



= 36 PT


(1− t)2 (1− t)(3t− 2) (1− t)(1− 3t) (1− t)t

(1− t)(3t− 2) (3t− 2)2 (3t− 2)(1− 3t) (3t− 2)t

(1− t)(1− 3t) (3t− 2)(1− 3t) (1− 3t)2 (1− 3t)t

(1− t)t (3t− 2)t (1− 3t)t t2

P

The bending energy is obtained by integrating the matrix terms,

E =

∫ 1

0

∣∣X′′(t)∣∣2 dt = 6 PT


2 −3 0 1

−3 6 −3 0

0 −3 6 −3

1 0 −3 2

P = 6 PTMP

where the last equality defines the 4× 4 symmetric matrix M .

The matrix M has eigenvalues 10, 6, and 0 (multiplicity 2). The eigenspace for eigenvalue 10 is 1-dimensional
and is spanned by the unit-length eigenvector V0 = (1,−3, 3,−1)/

√
20. The eigenspace for eigenvalue

6 is 1-dimensional and is spanned by the unit-length eigenvector V1 = (1,−1,−1, 1)/2. The eigenspace
for eigenvalue 0 is 2-dimensional and is spanned by the unit-length and orthogonal eigenvectors V2 =
(1, 0,−1,−2)/

√
6 and V3 = (4, 3, 2, 1)/

√
30. The set {V0,V1,V2,V3} is right-handed and orthonormal, so

the eigenvectors may be written as the columns of a rotation matrix

R =
[
V0 V1 V2 V3

]
The symmetric matrix factors to M = RDRT, where D = Diagonal(10, 6, 0, 0).

Define 
Q0

Q1

Q2

Q3

 = Q = RTP = RT


P0

P1

P2

P3


so that the bending energy is

E = 6 PTMP = 6 PTRDRTP = 6 QTDQ = 60|Q0|2 + 36|Q1|2
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The minimum of E occurs when Q0 = 0 and Q1 = 0. Some algebra will show that

P0 − 3P1 + 3P2 −P3 = 0

P0 −P1 −P2 + P3 = 0

Notice that the coefficients of the control points in the first equation are the components of V0 and the
coefficient of the control points in the second equation are the components of V1. In a loose mathematical
description, this says that the formal vector P is orthogonal to the eigenvectors of M corresponding to the
eigenvalues 10 and 6, and in this sense P formally appears to be in the eigenspace for eigenvalue 0.

The control points P1 and P2 are the unknowns, so solving the equations leads to

P1 =
2P0 + P3

3
, P2 =

P0 + 2P3

3

A quick check will show you that for this choice of control points, the cubic Bézier curve is simply the
degree-elevated linear Bézier curve.

4 The General Problem

In the example of a cubic Bézier curve, we specified the control points P0 and P3 and showed that in
minimizing the bending energy, we had two linear equations in the two unknowns P1 and P2. As expected,
the minimum bending energy occurs when the control points are collinear.

Consider a modified problem where we specify P0, P1, and P3. The only unknown is P2. This problem
amounts to specifying the positions of the endpoints of the curve and the derivative at the first endpoint.
When P1 is not chosen to be on the line segment connecting the endpoints, the bending energy E cannot
be zero (because you have to bend the curve away from a line segment). Setting some Qi = 0 will not work
here as it did when specifying only the endpoints.

Instead, let’s permute the rows of P so that the unknown control points occur first. The matrix M must be
adjusted accordingly. Define the permutation matrix J so that

P̂ =


P2

P0

P1

P3

 =


0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1




P0

P1

P2

P3

 = JP

Define M̂ = JMJT. The bending energy is then

E

6
= P̂TM̂P̂ = P̂T

 A B

BT C

 P̂ (7)

where A is the 1 × 1 upper-left entry of M̂ , C is the 3 × 3 lower-right block of M̂ , and B is the 1 × 3
upper-right block of M̂ . Define U be the first row of P̂ (the unknown) and define K to be the last three
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rows of P̂ (the knowns), so U is 1× 1 and K is 3× 1. Equation (7) becomes

E

6
= UTAU + 2KTBTU + KTCK (8)

The binding energy is nonnegative, which implies E as a function of U is a paraboloid and has a global
minimum that occurs when its gradient is zero,

AU + BK = 0 (9)

Solve the linear system for U . When A is invertible, it is clear what the solution is. If A is not invertible,
there must be infinitely many solutions to the equation–the graph of E must be a parabolic cylinder.

In the current example,

M̂ =


6 0 −3 −3

0 2 −3 1

−3 −3 6 0

−3 1 0 2


so Equation (9) is

0 = 6P2 + (0P0 − 3P1 − 3P3)

which has solution P2 = (P1 + P3)/2. Notice that X′(1) = 3(P1 −P3)/2. The intuition is that the choice
of P2 should attempt to “straighten out” as much as possible the curve near t = 1. In this case, P2 is on
the line segment connecting P1 and P3.

This approach works even for the previous example with two knowns and two unknowns. The permutation
matrix is

J =


0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1


which leads to P̂ = (P1,P2,P0,P3), U = (P1,P2), K = (P0,P1), and

M̂ =


6 −3 −3 0

−3 6 0 −3

−3 0 2 1

0 −3 1 2


Equation (9) is  0

0

 =

 6 −3

−3 6

 P1

P2

+

 −3 0

0 −3

 P0

P3


Inverting the 2× 2 matrix A leads to the solution P1 = (2P0 + P3)/3 and P2 = (P0 + 2P3)/3.
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5 Computing Matrix M

The first derivative of the Bézier curve of Equation (1) is

X′(t) =

d∑
i=0

cd,i
[
(1− t)d−iiti−1 − (d− i)(1− t)d−1−iti

]
Pi (10)

and the second derivative is

X′′(t) =
∑d

i=0
cd,i
[
(1− t)d−ii(i− 1)ti−2 − 2(d− i)(1− t)d−1−iiti−1 + (d− i)(d− 1− i)(1− t)d−2−iti

]
Pi

=
∑d

i=0
fi(t)Pi

(11)

where the last equality defines the functions fi(t). The entry mij of the matrix M is

mij =

∫ 1

0

fi(t)fj(t) dt

The integrand consists of a summation involving 9 polynomial terms of the form tp(1− t)n for nonnegative
integer powers p and n. We need to integrate these. The integrals are values of the Beta function,

B(p + 1, n + 1) =

∫ 1

0

tp(1− t)n dt =
p!n!

(p + n + 1)!

whose formula is well known in statistics. The coefficients cd,i = d!/[(d− i)!i!], so the integration appears to
involve symbolic manipulation of a lot of factorials. However, you can set up a two-variable recursion,

B(p + 1, n + 1) =
p

p + n + 1

(p− 1)!n!

((p− 1) + n + 1)!
=

p

p + n + 1
B(p, n + 1)

and

B(p + 1, n + 1) =
n

p + n + 1

p! (n− 1)!

(p + (n− 1) + 1)!
=

n

p + n + 1
B(p + 1, n)
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