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1 Richardson Extrapolation

This method is very powerful. The key idea is to get high-order accuracy by using low-order formulas. It
is used in Romberg integration (which my integration code is based on), but it is also the key idea in the
adaptive Runge-Kutta differential equation solver.

Let Q be an unknown quantity which is approximated by A(h) with approximation error of order O(h2).
That is,

Q = A(h) + C1h
2 + O(h4) = A(h) + O(h2) (1)

for some constant C1. We can use this formula to produce a (possibly) more accurate approximation.
Replacing h by h/2 in the formula yields

Q = A

(
h

2

)
+

C1

2
h2 + O(h4). (2)

Of course I used O(h2/4) = O(h2). Taking four times equation (2) and substracting equation (2), then
dividing by three yields

Q =
4A

(
h
2

)
−A(h)
3

+ O(h4). (3)

The goal is for the O(h4) terms in equations (1) and (3) to be about the same size. If so, equation (3) is
more accurate since it does not have the h2 term in it.

Define A1(h) = A(h) and A2(h) = (4A1(h/2) − A1(h))/3. Other approximations can be written in an
extrapolation table

A1(h)

A1

(
h
2

)
A2(h)

A1

(
h
4

)
A2

(
h
2

)
A1

(
h
8

)
A2

(
h
4

)
...

...

A1

(
h
2n

)
A2

(
h

2n−1

)
The approximation A1(h/2k) is order O(h2) and the approximation A2(h/2k) is order O(h4).

If the original approximation is written as

Q = A(h) + C1h
2 + C2h

4 + O(h6),

then the extrapolation table has an additional column
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where

A3(h) =
16A2

(
h
2

)
−A2(h)

15
.

The approximation A3(h/2k) is order O(h6).

In general the extrapolation table is an n×m lower triangular matrix T = [Trc] where

Trc = Ac

(
h

2r−1

)
and

Ac(h) =
4c−1Ac−1

(
h
2

)
−Ac−1(h)

4c−1 − 1
.

1.1 Trapezoid Rule

An approximation for
∫ b

a
f(x) dx can be computed by first approximating f(x) by the linear function

L(x) =
x− b

a− b
f(a) +

x− a

b− a
f(b)

and using h[f(b) + f(a)]/2 =
∫ b

a
L(x) dx

.=
∫ b

a
f(x) dx. Some calculus shows that∫ b

a

f(x) dx =
f(b) + f(a)

2
h + O(h3).

When f(x) > 0, the approximation is the area of a trapezoid with vertices at (a, 0), (a, f(a)), (b, 0), and
(b, f(b)).

The integration interval [a, b] can be divided into N subintervals over which the integration can be compos-
ited. Define h = (b− a)/N and xj = a + jh for 0 ≤ j ≤ N . It can be shown that

∫ b

a

f(x) dx =
h

2

f(a) + 2
N−1∑
j=1

f(xj) + f(b)

 + O(h2).

Note that the order of the approximation decrease by a power of one.

2 Romberg Integration

This method of integration uses the trapezoid rule to obtain preliminary approximations to the integral
followed by Richardson extrapolation to obtain improvements.

Define hk = (b−a)/2k−1 for k ≥ 1. The trapezoidal approximations corresponding to the interval partitions
are

Tk,1 =
hk

2

f(a) + 2

2k−1−1∑
j=1

f(a + jhk)

 + f(b)


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and so ∫ b

a

f(x) dx = Tk,1 + O(h2
k)

for all k ≥ 1. The following recursion formula can be shown to hold:

2Tk,1 = Tk−1,1 + hk−1

2k−2∑
j=1

f(a + (j − 0.5)hk−1) (4)

for k ≥ 2.

Richardson extrapolation can be applied; that is, generate the table

Ti,j =
4j−1Ti,j−1 − Ti−1,j−1

4j−1 − 1

for 2 ≤ j ≤ i. It can be shown that

lim
k→∞

Tk,1 =
∫ b

a

f(x) dx if and only if lim
k→∞

Tk,k =
∫ b

a

f(x) dx.

The second limit typically converges much faster than the first. The idea now is to choose a value n and use
Tn,n as an approximation to the integral.

3 Implementation

The code is shown below.

class mgcIntegrate
{
public:

typedef float (*Function)(float);

mgcIntegrate () {;}

float RombergIntegral (float a, float b, Function F);
};

float mgcIntegrate::
RombergIntegral (float a, float b, Function F)
{

const int order = 5;

float rom[2][order];
float h = b-a;

// initialize T_{1,1} entry
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rom[0][0] = h*(F(a)+F(b))/2;

for (int i = 2, ipower = 1; i <= order; i++, ipower *= 2, h /= 2) {
// calculate summation in recursion formula for T_{k,1}
float sum = 0;
for (int j = 1; j <= ipower; j++)

sum += F(a+h*(j-0.5));

// trapezoidal approximations
rom[1][0] = (rom[0][0]+h*sum)/2;

// Richardson extrapolation
for (int k = 1, kpower = 4; k < i; k++, kpower *= 4)

rom[1][k] = (kpower*rom[1][k-1] - rom[0][k-1])/(kpower-1);

// save extrapolated values for next pass
for (j = 0; j < i; j++)

rom[0][j] = rom[1][j];
}

return rom[0][order-1];
}

I have arbitrarily chosen n = 5 (as the variable integral order). The values of Ti,j are stored in
rom[2][order]. Note that not all the values must be saved to build the next ones (so the first dimen-
sion of rom does not have to be order). This follows from the recursion given in equation (4).
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