Medial-Based Morphing for 2D Binary Objects

David Eberly

Geometric Tools, LLC
http://www.geometrictools.com/

Copyright (©) 1998-2008. All Rights Reserved.

Created: September 25, 2000
Last Modified: March 2, 2008

Contents

1 Introduction

2 Differential Geometry of Curves

3 Curvature-Based Interpolation of Curves
4 Medial Axes

5 Boundary Information

6 Implementation
6.1 CoreBase Class. ot e
6.1.1 Numerical Differentiation Lo o
6.1.2 Numerical Integration e
6.1.3 Inverting Normalized Arc Length o
6.1.4 Other Methods e
6.2 Core_Continuous Class i e
6.3 CoreInterpolant Class o e
6.4 Drawing the Cores e e e e e
6.5 Test Driver e e e
6.6 Planned Modifications

7 Source Code
T.1 coren ..o e

10
11
11
11
12
13
13

14

http://www.geometrictools.com/

COTC.C v v v e e e e e e e e e e e e e e s e 16

coredraw.l . .. L e e e e e e e e e e 23
COTEATAW.C . v v v v v e e e e e e e e e e e e e e e e e e e 24
INEEIP.C o v v o o e e e e e e e e e e e 26

1 Introduction

The following development gives an algorithm for morphing 2D binary objects by computing the medial axes
for the objects and interpolating the axes by averaging their curvatures.

2 Differential Geometry of Curves

Let (z(q),y(q)) be a parameterized curve for q 6 [a, b]. Let s be the arc length measured along the curve
from initial position (z(a),y(a)) to a point (z ; then

M ()

The total length of the curve is L = s(b). The speed at which a particle travels along the curve is

ds _ [(dx* (dy\®
dg —\ \dg dg)
Define normalized arc length to be p = s/L where p € [0,1]. This allows us to compare two curves using a

common parameter. Note that p depends on ¢, say p = f(q) where f is invertible, so ¢ = f~!(p). Thus,
every curve can be reparameterized by normalized arc length:

(2(q),y(q)) = (o f(p),yo [(p) = (Z(p), U(p))-

The curvature of curve (z(q),y(q)) is defined as

Let &(p) = ko f~1(g). Since curvature is intrinsic to the curve, the same formula holds for curvature in

terms of parameter p:
dz d’y _ dy i’z

_ dp dp? dp dp?
7 _ P ap p ap

7 <(3§)2+ (32)2)3/2'

If (z(s),y(s)) is a paremeterization by arc length s, then the tangent vector T(s) = (2'(s),y’(s)) has unit
length. Let N(s) be a unit normal whose orientation to T(s) is constant. The Frenet-Serret formulas relate
tangent and normal by J N

T

T k(s)N and i —k(s)T,
where £(s) is the curvature. If the parameterization is by normalized arc length p where L is the total length
of the curve, then

3 Curvature-Based Interpolation of Curves

Let (2:(¢i),vi(g;)) be parameterized curves for ¢; € [a;, b;] for i = 0,1. Let L; denote the arc lengths of the
curves. The curves can be reparameterized by normalized arc length p where

dmz dyz ?
p= filq) = / \/ qu dqi> dg;.

The curves are then represented by

(i(4i), yi(a)) = (zi o £ (p),wi 0 f7 1 (0) = (2i(D), 5:(P))-

Let xi(g;) = R;(p) denote the curvatures of the curves.

A key idea in the morphing algorithm is the construction of a curve if its curvature function is specified
together with an initial location and orientation. That is, if &(p) for p € [0,1] is known, and if an initial
parameter pg € [0, 1] is selected together with initial location (g, ¢1) and initial direction (dp, d;), then the
curve is uniquely determined as the solution to the Frenet-Serret differential equations

& o= Z(po) = lo
% = v, y(po) = 41
fTZ = —Lk(p)v, u(po) =do
g—; = Li(pu, v(po) =dy

where T = (u,v) and N = (—v, u).

We will interpolate our two initial curves by taking an average of their curvatures and solving this system
of equations. The interpolation parameter is ¢ € [0,1]. The interpolated curve at time ¢ will have curvature

Fe(p) = (1 — t)Fo(p) + tR1(p).
A simple choice for initial location is the average of the starting locations on the original two curves
(Lo, £1) = (1 = t)(zo(ao), yo(ao)) + t(z1(a1), y1(ar)).

Similarly the initial direction is the average

(do,d1) = (1 —t) (dJUO(GO)’ dyo(ao)) L <dx1(a1)’ dyl(a1)> .

dqo dqo dq, dq:

Other choices for initial location and direction can depend on the particular application. For example, if the
curves have associated density functions, then the average of the centers of mass could be used. To compute
the center of mass for a single curve (z(q),y(q)) for q € [a,b] with density r(s), let L be the length of the
curve. The arc length for the center is

_ Sy sr()ds _ f) s(r(s(a)s' (o) dg

Jir(syds — [Vr(s(q))s'(q) dg

4 Medial Axes

Let B C R? be a connected and compact set. The symmetry azis transform or medial axis of B is the set
of triples (z,y,r) such that

e the maximal disk contained in B centered at (x,y) with radius r > 0 intersects the boundary of B,
0B, in at least two points, or
e the maximal disk contained in B centered at (x,y) has radius r = 0.

Such points (z,y) are called medial points. The radii r are measures of how wide the object is at medial
points. A medial point is

e an end point if its maximal disk is tangent to B in exactly one point (or in a continuum of points
forming a circular arc),
e a normal point if its maximal disk is tangent to 0B in exactly two points,
e a branch point if its maximal disk is tangent to B in three or more points,
e a filament point if its maximal disk has radius 0.
The medial points can be divided into curvilinear segments by separating the axis at branch points. Each
segment can be parameterized and used in an interpolation. The following picture illustrates medial axes

for an object with a polygonal boundary. For polygonal objects, the medial axes consist of straight line
segments or parabolic arcs (caused by concave vertices). Figure 4.1 shows the medial axes for a sawtooth

polygon.

Figure 4.1 Medial axis for a sawtooth polygon.

5 Boundary Information

The following discussion deals with an object B whose medial axis is a single curvilinear segment. Let the
axis be parametrized by arc length, say (x(s),y(s)), with corresponding radius function r(s), where s € [0, L].
Let the maximal disks be denoted D(s) = D(x(s),r(s)). The medial axis is

Medial(B) = | J (x(s),y(s),7(s))
s€[0,L]

and the set B is reconstructed by
B= []J D(s).
s€[0,L]

In this sense, Medial(B) may be considered a compressed representation of B.

The tangent and normal vectors for the medial axis are

i
T ds

The tangent vector defines the angle «a, called the axis angle, measured with respect to the positive z-axis.

For a curve which is parametrized by arc length, we know that dT/ds = k(s)N where k(s) is the curvature

of the curve. For the medial axis, the curvature is therefore given by k(s) = ‘é—i.

= (cos(a),sin(e)) and N = (—sin(a), cos(a)).

Let T (s) and Tg(s) denote the tangent vectors to the left and right boundaries of the object where the
maximal disk D(s) touches. Intuitively, T(s) bisects the angle between these two boundary tangents. Let
the half-angle be denoted by 3(s), called the object angle. Let y(s) be the induced parameterization of the
left boundary. Figure 5.1 illustrates.

Figure 5.1 The relationship of boundary curves to the medial axis.

=}
—

=]

+ —

The radius function is given by r2 = |x — y|?. Taking derivatives, we have

dr dx dy\

where the last equality holds since dy/ds is tangent to the boundary and x — y is normal to the boundary
implying that their dot product is zero.

The projection of x —y onto T has length (x —y) - T. Using the smaller right-triangle indicated in the
figure, we have

. X — -T
sin(f) = %
The last two displayed equations imply
d
= = sin(B(s)).

We had shown that da/ds is the curvature of the medial axis. Using an analogy, we define the object
curvature as —df/ds. The minus sign is a convention to make a positive object curvature correspond to a
convex boundary. Using the second derivative of the radius function, one can show that

g —d*r/ds?
ds /1= (dr/ds)?’
so the medial axis information allows us to compute the object curvature.

Note that the tangent and normal vectors to the left boundary are
T = (cos(a + B),sin(a+ 3)) and Ny = (—sin(a + 8), cos(a + 3)).
We want to determine the boundary curvature. We can write the left boundary as
y(s) =x(s) +r(s)NL(s).

However, the parametrization for y is not necessarily one of arc length. Suppose that y(t) is an arc length
parametrization; then

dy(t) dy(s)ds

and,

D~ Trdl 4 ing

%TL = (cosfB)TL + (—sinf)Np —r(a + B)TL 1+ 7N

= [cosf—r(a+p)Tr,
SO .) y
t e
o (2202).
Finally, . |
HL(t):d7a+%fa+/67 a+p

dt "t dt/ds cosf—r(a+ B)

6 Implementation

I have implemented the interpolation using C++ classes. These are found in the files core.h and core.c.
The class representing the original curves to be interpolated is named Core_Continuous. An object of this
class is created from functions and a parameter interval for the parameterized curve. The class representing
an interpolated curve is named Core_Interpolant. An object of this class is typically created from two
objects of class Core_Continuous and a morphing time. However, in order to allow for more general settings
where one might want to interpolate the interpolants, I have created an abstract base class Core Base to
take advantage of the polymorphism allowed by C++.

6.1 Core_Base Class

I found it convenient to save the interval [a,b] endpoints as data members ca and cb. I also have a data
member clength which stores the total length of the curve. The interpolation requires numerical differenti-
ation, numerical integration, and root finding. Each numerical method has some user-selected parameters.
These are stored in the data members cb_ode maxiter, cb_integral_order, and cb_invlen_param.

6.1.1 Numerical Differentiation

The numerical differentiation is used to solve the Frenet-Serret system of equations. The method to do this
is

void ode_solve (float pO, float pl, Vector &pos, Vector &dir);

where p0 and p1l are in the interval [0, 1] with pO being the starting parameter for the system. The initial
position is pos and the initial direction is dir, both of type Vector which is a struct of two floats, x and y.

The routine is a 4-step Runge-Kutta algorithm. You can look up the theory in any standard numerical
analysis text book. At each step you will notice that the right-hand sides of the assignments are exactly the
values of the right-hand sides in the Frenet-Serret system. The solution vector (x,y,u,v) is represented by
1D arrays with 4 elements. For example,

xder[0] = clength#*xin[2]; // x> =Lu
xder[1] = clength#*xin[3]; //y> =Lv
xder[2] = -clength*curv*xin[3]; // uw = -L K(p) v
xder[3] = clength*curv*xin[2]; // v’ =L K(p) u

The number of iterations of the solver is user-defined and is stored in data member cb_ode maxiter. This
can be set by the method ode_maxiter (int i) immediately after a core object is constructed. The default
number of iterations is (arbitrarily) 100.

The output of the solver consists of the final position pos and the final direction dir.

6.1.2 Numerical Integration

The numerical integration is used to compute the arc length via integration. It is also used in the center of
mass calculations when these are required for an initial position. The integration method is

void integral (float a, float b, float (Core_Base::*f)(float));

where a and b are the limits of integration and f is a pointer to the function to be integrated. One of the
deficiencies of C++ is the lack of a mechanism to allow class member functions to be passed to routines
without specifying the class type. A member function always has an implicit first parameter which is a
pointer to the calling object. As a result the member function could not be passed to a generic routine such
as

void integral (float a, float b, float (xf) (float));

since strict type checking shows that float (*f)(float) and float (*f) (object-pointer,float) are
distinct signatures.

I require integration in both classes Core_Continuous and Core_Interpolant. To avoid implementing
integration in each class, the abstract base class Core_Base allows me to implement the algorithm once.
But now all functions to be integrated must be members of the base class. In particular, for center of mass
calculations the methods

float mass_integrand (float q);
float moment_integrand (float q);

are declared in the base class even though the center of mass calculations are performed in the derived
classes. Also, routines to calculate length and speed are needed by the mass and moment integrands, so
these also must be declared. At first it seems like the abstract base class knows nothing of how the derived
classes will compute length and speed. Fortunately, C++ allows virtual functions whose pointer values are
properly initialized to the derived classes functions when these derived classes are constructed. Moreover,
I have made most of the base class methods pure virtual functions (syntactically done by placing = 0 after
the method), for example,

virtual float speed (float q) = 0;
virtual float length (float q) = 0;

Pure virtual functions must be implemented in any derived class. The presence of pure virtual functions also
prevents an explicit construction of an object of class Core Base.

The numerical integration routine is a Romberg routine whose order is specified by the user. The order is
stored as data member cb_integral_order and can be set by the method integral order (int i). The
default order is (arbitrarily) 5. The theory of Romberg integration routines can be found in any standard
numerical analysis text book. The return value of the routine is the approximate integral value.

6.1.3 Inverting Normalized Arc Length

For a curve (z(q),y(¢)) with ¢ € [a,b], I defined normalized arc length as

=i [(E) () <o

Many of the calculations involve selecting a p value and finding the corresponding ¢ value. For example, the
curvatures of the interpolated core were defined by

K(p) = (1 = t)ko(p) + thi(p) = (1 —)k o fo(qo) + tr o fi(qr).

Given ap € [0, 1], to find &(p) required two inversions to compute qg € [ag, bo] and q; € [a1, b1]. The inversions
are numerically calculated by root finding using a standard Newton’s algorithm. The class method is

float invlen (float p);

and is implemented in the base class.

Some exceptions are trapped by the initial inversion code:

if (clength == 0.0) return 0.0;
if (p <= 0.0) return ca;
if (p > 1.0) return cb;

The first exception does not occur when interpolating two curves. However, I have made the code general
enough to allow mapping a curve to a single point which has zero length. The inversion always returns ¢ = 0
even though the single point is given by (z(q),y(q)) = (zo,yo) for all ¢ € [a,b]. (I allow a < b for singleton
points.) The second and third exceptions handle the problems when the input p value is computed with
some small numerical errors, in which case p is theoretically 0 (1) but evaluates to 0 — € (1 + ¢€) for small
e>0.

In theory the inversion always has a unique solution. That is, if p = f(q), then ¢ = f~!(p) for exactly one
g. The function for Newton’s method is F'(¢) = f(q) — p for a specified p. Since f'(q) € (0,1) for ¢ € (a,b),
the sequence of theoretical iterates is guaranteed to converge. But just in case of some numerical errors, I
have a limit on the number of iterations. This limit is stored in data member cb_invlen maxiter and can
be set by method invlen maxiter (int i). The default value is (arbitrarily) 50.

The root finding is straightforward. The initial iterate is the midpoint of the ¢ domain, ¢o = (a +b)/2. The
iterates are defined by
F(gn)

, n>
F'(qn)

In the code I simply compute F(g,) and compare it to a tolerance. If smaller than the tolerance, the current
q value is returned as the inverted value; otherwise I update the ¢ value and repeat the test. The tolerance is
stored in data member cb_invlen_tolerance and can be set by method invlen tolerance (float toler).
The default value is 1e-06.

dn+1 = Q4n +

10

6.1.4 Other Methods

I have provided a couple of methods for reading the data members. The methods to read the ¢ domain
endpoints are

float max_q (O { return ca; }
float min_q () { return cb; }

and the method
float curve_length () { return clength; }

reads the total length of the curve. Note that clength must be initialized by the derived classes.

The remaining methods are all pure virtual functions and must be implemented by each derived class. Note
that the input float variables to the routines are labeled q if the routine requires the original parameter values
or labeled p if the routine requires normalized arc length values. The method names are self-explanatory.
The radius function is the one mentioned in the medial axis construction.

6.2 Core_Continuous Class

The class Core_Continuous requires the user to specify the parameterization of the curve, including its first
and second derivatives. These derivatives are used for calculation of speed, length, and curvature. The user
also specifies the radius function.

The constructor saves pointers to the functions and saves them as data members cx[3], cy[3] for location
and derivatives, and as cradius for the radius function. The total length of the curve is computed and
stored in clength (part of the base class).

Position, direction, radius, and speed are computed in the straightforward way (evaluation of the functions
passed by the user). Length is computed by calling the integration routine. Curvature is also computed in
a straightforward way. The only problem arises when speed is 0, in which case curvature must be computed
as a limit. I avoid the technical problems here for now and just return zero curvature when speed is zero
(which is a possible error).

The mass is calculated in the straightforward way by integration. The p value at which the center of mass
occurs if also computed in a straightforward way, except when the core is a single point. For single points
return p = 0.5 to indicate that the center of mass occurs at the “center” of the curve (which happens to be
the single point). This assignment makes sense if you consider the morphing of a single point with a straight
line. (Try it yourself!)

6.3 Core_Interpolant Class

The class Core_Interpolant requires the user to pass two other cores. I use the polymorphism of C++ in
that the input types are class Core_Base. This allows the user to pass objects of type Class_Continuous,
Class_Interpolant, or of any other derived class. Of course, if an interpolated object is passed, the

11

interpolations become nested and probably slow in calculating. The user must also pass the morphing time
te0,1].

The constructor saves the morphing time as member ctime and saves references to the cores as ccore0 and
ccorel for future use. The length of the interpolated curve is computed as the average of the core lengths
and stored in clength (part of the base class).

The initial p value is saved as member cinit_param and has default value 0. It can be changed by method
initial parameter (float p) immediately after creation of an object. The initial position is stored as
cinit_pos and has default as the average of the initial points of the two cores. This can also be changed,
using method initial position (Vector pos). The initial direction is stored as cinit_dir and has default
value as the average value (in the sense of rotations) of the initial directions of the two cores. Note that the
initial angle between the direction vectors dir0 and dirl is given by

cs_angle = dir0.x*dirl.x+dir0.y*dirl.y; // dir0 "dot" diri
sn_angle = dir0.x*dirl.y-dirl.x*dirO.y; // length(dir0O "cross" dirl)
angle = ctime*atan2(sn_angle,cs_angle);

The return value of atan?2 is in the interval [—7, 7], so the initial angle always amounts to a rotation away
from dir0 towards dir1l.

The radius, curvature, and p value for the center of mass are computed as linear interpolations of the
corresponding original core values. Speed and length are also linear interpolations, but note that the original
core speed and length functions require ¢ values rather than p values, so the inversion routines must be called
first to compute from p to g values.

6.4 Drawing the Cores

I have a class, CoreDraw, which allows me to draw cores as white curves on a black background in an image.
The code is found in coredraw.h and coredraw.c. The class uses my image library for image manipulation.
In particular, it uses 2-dimensional images of short integers, called Image_SHORT. You can replace the image
handling by any of your own code which manipulates 2-dimensional arrays.

The constructor takes as input a bounding box in which the core will occur. You should make sure the
box is big enough, perhaps by analyzing what you think your cores will look like during construction. The
parameter meshsize is the number of steps taken while drawing the core. Between each pair of consecutive
mesh points on the core, I use Bresenham’s line drawing algorithm to approximate the core. The larger the
mesh size, the better the approximation to the core. The input values are stored in data members.

The image to be drawn in is cd_im and is a 256 x 256 image of short ints (you really only need a bit image
here). The image size is defined in the source file. You can change it, but need to recompile. Another
parameter could be passed to the constructor to allow the user to specify the image size, or a method could
be built to change this size.

Method CoreDraw& clear() sets all pixels to 0 in the image. The returned reference value just allows you
to call the methods all in the same statement (see the sample main driver). The method void save (char
xfilename) saves the drawn image to the selected file.

The method

12

CoreDraw& draw (Core_Base& core);

maps the float bounding box to an integral one in the image. The normalized arc length p is sampled
uniformly. At the two sampled values the core positions are computed and a “line” is drawn between the
positions. A Bresenham’s algorithm is used, but instead of drawing single pixels, disks are drawn of the
appropriate radius. Method

void line(long x0, long yO, long rO, long x1, long yl, long rl);

takes as input two core points and corresponding radii (in integral coordinates) and draws this line of disks
connecting them. The radius for each drawn disk is an interpolated radius of the input radii. The disks are
drawn by

void disk (long xc, long yc, long radius);

where xc and yc are the coordinates for the disk center and radius is the integral radius for the disk. This
routine uses Bresenham'’s circle drawing algorithm for solid disks.

6.5 Test Driver

The test driver (interp.c) has two morphing examples. The first example morphs the counterclockwise
spiral (z(q),y(q)) = (gcosq,gsing), q¢ € [0,57/2] to its reflection through the y-axis. The radius function
is constant for this example. The morphing takes the first spiral, unwinds it into a straight line (halfway
through the process), and then rewinds it into the reflected spiral.

The second example takes a Y-shaped object consisting of a semicircle and a straight line segment and morphs
it into a horizontal line segment. The Y-shaped object has constant radius function, but the horizontal line
segment has a linearly varying radius, so the object looks like a cone with cap. Note that the two object
have topologically different axes. I map the line segment in the Y-shaped object to a single point on the
horizontal line. Thus, I morph two times, a curve to curve, then a curve to point.

6.6 Planned Modifications

I intend on building a class Core_Spline which takes as input two lists of points. Each point list will be
internally fitted with a spline curve. The curves and their derivatives take the place of the function pointers
passed to Core_Continuous. Thus, the user can simply specify a list of points and not have to construct a
parametrization explicitly.

If this interpolation scheme becomes popular, then a user-interface is needed to allow registration of two
(possibly) topologically distinct medial axes.

The ideas here apply to medial curves for 3D objects, which is a restricted generalization of medial axes.
Now one must average curvatures and torsions. The Frenet-Serret formulas for 3D are given by

T 0 &(s) 0 T
N | =] —k(s) 0 7(s) N
B’ 0 —7(s) 0 B

where 7(s) is the torsion of the curve and where B = T x N. This system has a unique solution when x(s)
and 7(s) are specified and initial position, tangent, and normal are given.

The ideas also generalize to medial surfaces (the natural extension of medial axes). But now one must
average the two principal curvature functions and the angles between the principal direction vectors.

7 Source Code

7.1 core.h

#ifndef CORE_H
#define CORE_H

#include <math.h>

typedef float (*Function)(float);
typedef struct { float x, y; } Vector;

class Core_Base

{

protected:
float ca, cb; // parameterization defined on [ca,cb]
float clength; // total length of curve
int cb_ode_maxiter, cb_integral_order, cb_invlen_maxiter;
float cb_invlen_tolerance;

void ode_solve (float pO, float pl, Vector &pos, Vector &dir);
float integral (float a, float b, float (Core_Base::*f) (float));
float mass_integrand (float q) {
float p = length(q)/clength;
return radius(p)*speed(q);
}
float moment_integrand (float q) {
float p = length(q)/clength;
return length(q)*radius(p)*speed(q) ;
}
public:
Core_Base (float a, float b) {
ca = a;
cb = b;
clength = 0;
cb_ode_maxiter = 100;
cb_integral_order = 5;
cb_invlen_maxiter = 50;
= 1e-06;

cb_invlen_tolerance

14

}
Core_Base (Core_Base &cb) { *this = cb; }

void ode_maxiter (int i) { cb_ode_maxiter = i; }

void integral_order (int i) { cb_integral_order = i; }

void invlen_maxiter (int i) { cb_invlen_maxiter = i; }

void invlen_tolerance (float tol) { cb_invlen_tolerance = tol; }
float invlen (float p);

float min_q () { return ca; }
float max_q () { return cb;
float curve_length () { return clength; }

virtual float speed (float q) = 0;
virtual float length (float q) = 0;

virtual Vector position (float p) = O;
virtual Vector direction (float p) = O;
virtual float radius (float p) = 0;

virtual float curvature (float p) = O;

virtual float mass () = 0;
virtual float mass_normal_arclength () = 0;

}
Y e R S
class Core_Continuous : public Core_Base
{
private:
// core specified by (x(q),y(q),radius(q)) for q in [a,b]
Function cx[3]; // x(@, x’(q, x"(q@
Function cy[3]; /]y, y (@, y"(q
Function cradius; // radius(q)
// p : [a,b] -> [0,1] by p = length(a,q)/length(a,b)
public:

Core_Continuous () : Core_Base(0,0) {;}
Core_Continuous (float a, float b, Function xjet[], Function yjet([],
Function radiusjet);

float speed (float q);
float length (float q);

Vector position (float p);
Vector direction (float P
float radius (float p);

float curvature (float p);

float mass ();
float mass_normal_arclength ();

15

class Core_Interpolant : public Core_Base
{
private:

float ctime;

Core_Base &ccore0O, &ccorel;

float cinit_param;
Vector cinit_pos, cinit_dir;
public:
Core_Interpolant (float time, Core_Base &core0O, Core_Base &corel);

void initial_parameter (float p);
void initial_position (Vector pos);
void initial_direction (Vector dir);

float speed (float q);
float length (float q);

Vector position (float p);
Vector direction (float p);
float radius (float p);

float curvature (float p);

float mass ();
float mass_normal_arclength ();

#endif

7.2 core.c

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "core.h"

//
void Core_Base::
ode_solve (float pO, float pl, Vector &pos, Vector &dir)
{
float rstep = (pl-p0)/cb_ode_maxiter, rstep2 = rstep/2, rstep6 = rstep/6;
float xder[4], xt[4], xtder[4], xmder([4];

float xin[4] = { pos.x, pos.y, dir.x, dir.y }, xout[4];

16

float p = pO;
for (int iter = 0; iter < cb_ode_maxiter; iter++, p += rstep) {
// first step
float curv = curvature(p+rstep2);
xder[0] = clength*xin[2];
xder[1] = clength*xin[3];
xder[2] = -clength*curv*xin[3];
xder[3] = clength*curv*xin[2];
for (int i = 0; 1 < 4; i++)
xt[i] = xin[i] + rstep2+*xder[i];

// second step
xtder [0] = clength*xt[2];
xtder[1] = clength*xt[3];
xtder[2] = -clength*curvxxt[3];
xtder [3] = clength*curv*xt[2];
for (i = 0; i < 4; i++)
xt[i] = xin[i] + rstep2+*xtder[i];

// third step

xmder [0] = clength*xt[2];

xmder [1] = clength*xt[3];

xmder [2] = -clength*curvxxt[3];

xmder [3] = clength*curv*xt[2];

for (i = 0; i < 4; i++) {
xt[i] = xin[i] + rstep*xzmder[i];
xmder [i] += xtder[i];

3

// fourth step
curv = curvature(ptrstep);
xtder[0] = clength*xt[2];
xtder[1] = clength*xt[3];
xtder[2] = -clength*curvxxt[3];
xtder[3] = clength*curv*xt[2];
for (i = 0; 1 < 4; i++)
xout[i] = xin[i] + rstepb*(xder[i]+xtder[i]+2*xmder[i]);

// re-initialize for next pass
for (i = 0; i < 4; i++)
xin[i] = xoutl[i];

}

pos.x = xin[0];
pos.y = xin[1];
dir.x = xin[2];
dir.y = xin[3];

17

float Core_Base::
integral (float a, float b, float (Core_Base::*f)(float))
{

float *rom[2];

rom[0] = new float[cb_integral_order];

rom[1] = new float[cb_integral_order];

float h = b-a;

rom[0] [0] = h*((this->*f) (a)+(this->*f) (b))/2;
for (int i=2,ipower=1; i <= cb_integral_order; i++, ipower *= 2, h /= 2) {
float sum = O;
for (int j = 1; j <= ipower; j++)
sum += (this->*f) (a+h*(j-0.5));

rom[1] [0] = (rom[0] [0]+h*sum)/2;
for (int k = 1, kpower = 4; k < i; k++, kpower *= 4)
rom[1] [k] = (kpower*rom[1] [k-1] - rom[0] [k-1])/(kpower-1);

for (j = 0; j < 1i; j++)
rom[0] [j] = rom[1][j];

¥

float result = rom[0] [cb_integral_order-1];
delete[] rom[1];

delete[] rom[0];

return result;

float Core_Base::

invlen (float p)

{
if (clength == 0.0) return 0.0;
if (p <= 0.0) return ca;
if (p>= 1.0) return cb;

float q = (ca+cb)/2; // initial guess
for (int 1 = 0; i < cb_invlen_maxiter; i++) {
float difference = length(q)/clength-p;
if (fabs(difference) < cb_invlen_tolerance)
return q;

q —= clengthxdifference/speed(q);
}

printf ("exceeded maximum iterations in method ’param’\n");
exit(-1);
return O;

18

}

//

Core_Continuous::

Core_Continuous (float a, float b, Function xjet[], Function yjetl[],
Function radiusjet) : Core_Base(a,b)

{
for (int 1 = 0; i <= 2; i++) {
cx[i] = xjetl[il;
cylil = yjet[il;
}
cradius = radiusjet;
clength = length(cb);
}
[/ e

Vector Core_Continuous::
position (float p)

{
float g = invlen(p);
float x0 = cx[01(q), yO = cy[0](q);
Vector pos = { x0, yO };
return pos;
}
[m

Vector Core_Continuous::
direction (float p)

{
float q = invlen(p);
float x1 = cx[1]1(q), y1 = cy[11(q), len = sqrt(xl*xl+yl*yl);
if (len >0) {
x1 /= len;
y1l /= len;
3
Vector dir = { x1, yl1 };
return dir;
}
e

float Core_Continuous::
radius (float p)

{
float gq = invlen(p);
return cradius(q);
}
F e R S

float Core_Continuous::

speed (float q)

{
float x1 = cx[1]1(q), y1 = cyl[1]1(q), sp = sqrt(xl*xl+yl*yl);
return sp;

19

float Core_Continuous::
length (float q)
{

return integral(ca,q,&Core_Base::speed);

float Core_Continuous::
curvature (float p)

{
float q = invlen(p);
float x1 = cx[1]1(q), x2 = cx[2]1(q), y1 = cy[1]1(q), y2 = cy[2]1(q);
float denom = pow(xl*x1l+yl*yl,1.5);
if (denom > 0)
return (x1*y2-y1*x2)/denom;
else
return 0; // could be nonzero in the limit
}
[
float Core_Continuous::
mass ()
{
return integral(ca,cb,&Core_Base::mass_integrand);
}
Y A

float Core_Continuous::
mass_normal_arclength ()

{
float p;
if (clength > 0) {
float tmoment = integral(ca,cb,&Core_Base::moment_integrand) ;
float tmass = integral(ca,cb,&Core_Base: :mass_integrand);
p = tmoment/(clength*tmass);
}
else // for singleton points, assume mass is "midway"
p = 0.5;
return p;
}
//

Core_Interpolant::
Core_Interpolant (float time, Core_Base &core0O, Core_Base &corel)
: Core_Base(0,1), ccoreO(core0), ccorel(corel)
{
ctime = time;
clength = (1-ctime)*ccorel.curve_length()+ctime*ccorel.curve_length();

20

// initial p parameter
cinit_param = O;

// initial position

Vector posO = ccore0.position(0), posl = ccorel.position(0);
cinit_pos.x = (l-ctime)*pos0.x+ctime*posl.x;

cinit_pos.y = (l-ctime)*pos0.y+ctime*posl.y;

// initial direction

Vector dir0 = ccoreO.direction(0), dirl = ccorel.direction(0);
float cs_angle = dir0O.x*dirl.x+dir0O.y*dirl.y;

float sn_angle = dir0O.x*dirl.y-dirl.x*dir0.y;

float angle = ctime*atan2(sn_angle,cs_angle);

cs_angle = cos(angle);

sn_angle = sin(angle);

cinit_dir.x = cs_angle*dir0.x-sn_angle*dir0.y;

cinit_dir.y = sn_anglex*dir(O.x+cs_angle*dir0O.y;

void Core_Interpolant::
initial_parameter (float p)

{
if (0<=p&& p<=1)
cinit_param = p;
else
cinit_param = 0.0;
}
= m

void Core_Interpolant::
initial_position (Vector pos)
{

cinit_pos = pos;

void Core_Interpolant::
initial_direction (Vector dir)

{
float len = sqrt(dir.x*dir.x+dir.y*dir.y);
if (len > 0) {
dir.x /= len;
dir.y /= len;
¥
cinit_dir = dir;
}
[/ o

Vector Core_Interpolant::
position (float p)

21

if (p == cinit_param)
return cinit_pos;

Vector pos = cinit_pos, dir = cinit_dir;
ode_solve(cinit_param,p,pos,dir);
return pos;

Vector Core_Interpolant::
direction (float p)
{
if (p == cinit_param)
return cinit_dir;

Vector pos = cinit_pos, dir = cinit_dir;
ode_solve(cinit_param,p,pos,dir);
float len = sqrt(dir.x*dir.x+dir.y*dir.y);
if (len > 0) {

dir.x /= len;

dir.y /= len;

return dir;

float Core_Interpolant::
radius (float p)
{

return (l-ctime)*ccore0.radius(p)+ctimexccorel.radius(p);

float Core_Interpolant::
speed (float p)

{
float q0 = ccore0.invlen(p), ql = ccorel.invlen(p);
return (l-ctime)*ccore0.speed(q0)+ctimexccorel.speed(ql);
}
[

float Core_Interpolant::
length (float p)

{
float q0 = ccore0.invlen(p), gl = ccorel.invlen(p);
float result = (1-ctime)*ccore0.length(q0)+ctime*ccorel.length(ql);
return result;
}
it

float Core_Interpolant::

22

curvature (float p)

{

return (l-ctime)*ccore0.curvature(p)+ctime*ccorel.curvature(p);
}
/)=
float Core_Interpolant::
mass ()
{

return (1-ctime)*ccore0O.mass()+ctime*ccorel.mass();
}
/===

float Core_Interpolant::
mass_normal_arclength ()

{
float mna0 = ccoreO.mass_normal_arclength();
float mnal = ccorel.mass_normal_arclength();
return (1-ctime)*mnaO+ctime*mnal;

}

//

7.3 coredraw.h

#ifndef COREDRAW_H
#define COREDRAW_H

#include "core.h"
#include "images.h"

class CoreDraw
{
private:
float cd_xmin, cd_ymin, cd_xmax, cd_ymax;
float cd_xrange, cd_yrange;
int cd_meshsize;
Image_SHORT cd_im;

void disk (long xc, long yc, long radius);
void line (long x0, long yO, long rO, long x1, long yl, long rl);
public:
CoreDraw(float xmin, float ymin, float xmax, float ymax, int meshsize=10);

CoreDraw& draw (Core_Base &core);
CoreDraw& clear ();
void save (char *filename);

};

#endif

23

7.4 coredraw.c

#include "coredraw.h"
static Message msg("coredraw.cpp");

#define IMSIZE 256L
#define IMSIZEM (IMSIZE-1)

//

CoreDraw: :

CoreDraw (float xmin, float ymin, float xmax, float ymax, int meshsize)
cd_im(Coordinate(2,IMSIZE))

{
if ((cd_xmin = xmin) >= (cd_xmax = xmax))
msg.fatal("CoreDraw - xmin < xmax is required");
if ((cd_ymin = ymin) >= (cd_ymax = ymax))
msg.fatal("CoreDraw - ymin < ymax is required");
if ((cd_meshsize = meshsize) < 2)
msg.fatal("CoreDraw - mesh size must be at least 2");
cd_xrange = cd_xmax — cd_xmin;
cd_yrange = cd_ymax — cd_ymin;
}
[o

void CoreDraw::
disk (long xc, long yc, long radius)
{
// Bresenham’s circle drawing algorithm with horizontal line fill
for (long x = 0, y = radius, decision = 3-2*y; x <= y; x++) {
for (long i = -x; i <= x; i++) {
cd_im(xc+i,yc+y) = OxFF;
cd_im(xc+i,yc-y) OxFF;

}

for (i = -y; 1 <= y; i++) {
cd_im(xc+i,yc+x) = OxFF;
cd_im(xc+i,yc-x) = OxFF;

}

if (decision >= 0) {
decision += 4x*(x-y)+6;
y——s

}

else
decision += 4xx+2;

void CoreDraw::

24

line (long x0, long yO, long rO, long x1, long yl, long rl)
{
// Bresenham’s line drawing algorithm with disks drawn instead of pixels
long dx = x1-x0, dy = yl1-yO0;
if (dx == 0 && dy == 0) {
disk(x0,y0,r0);
return;
}
long sx = 2%((dx > 0)) - 1, sy = 2x((dy > 0)) - 1;
long ax = 2*(dx = labs(dx)), ay = 2x(dy = labs(dy));

if (dx >=dy) {
for (long dec = ay-dx, x = x0, y = yO; ; dec += ay, x += sx) {
long radius = labs((rO*(x1-x)+rix*(x-x0))/dx);
disk(x,y,radius);
if ((x ==x1)
break;
if (dec >= 0) {
dec -= ax;
y += 8y;

else {
for (long dec = ax-dy, x = x0, y = y0; ; dec += ax, y += sy) {
long radius = labs((rO*(yl-y)+rix(y-y0))/dy);
disk(x,y,radius);
if (y==y1)
break;
if (dec >=0) {
dec -= ay;
X += 8X;

CoreDraw& CoreDraw::

draw (Core_Base &core)

{
Vector point = core.position(0);
long x0 = (long) (IMSIZEM*(point.x-cd_xmin)/cd_xrange);
long yO = (long) (IMSIZEM*(point.y-cd_ymin)/cd_yrange) ;
long rO = (long) (IMSIZEM*(core.radius(0)/cd_xrange));

for (int i = 1; i <= cd_meshsize; i++) {
float p = i/(float)cd_meshsize;

25

point = core.position(p);

long x1 = (long) (IMSIZEM*(point.x-cd_xmin)/cd_xrange);
long y1 = (long) (IMSIZEM*(point.y-cd_ymin)/cd_yrange);
long r1 = (long) (IMSIZEM*(core.radius(p)/cd_xrange)) ;

line(x0,y0,r0,x1,y1,rl);

x0 = x1;
yo = yi;
r0 = ri;
}
return *this;
}
/= e
CoreDraw& CoreDraw::
clear ()
{
cd_im = 0;
return *this;
¥
/==

void CoreDraw::
save (char *filename)
{

cd_im.save(filename);

7.5 interp.c

#include <stdio.h>
#include "images.h"
#include "core.h"
#include "coredraw.h"

float pi = 4.0*atan(1.0);

#if 1

// ————- object 0 = counterclockwise spiral

float a0 = 0, b0 = 5xpi/2;

float X0 (float q) { return g*cos(q); }

float YO (float q) { return g*sin(q); }

float X0d (float q) { return -g*sin(qg)+cos(q); }
float Y0d (float q) { return g*cos(q)+sin(q);
float X0dd (float q) { return -q*cos(q)-2*sin(q); }
float Y0dd (float q) { return -g*sin(q)+2*cos(q); }
float RO (float q) { return 0.5; }

26

// —==—= object 1 =

clockwise spiral

float al = 0, bl = 5xpi/2;

float X1 (float q) { return -g*cos(q); }
float Y1 (float q) { return g*sin(q); }

float X1d (float q) { return g*sin(q)-cos(q); }
float Yid (float q) { return g*cos(q)+sin(q); }
float X1dd (float q) { return g*cos(q)+2*sin(q); }
float Yidd (float q) { return -q*sin(q)+2*cos(q); }
float R1 (float q) { return 0.5; }

#endif

#if O

// ————- object 0 -—-——-

// core 0

float a00 = 0, b00 = 1;

float X00 (float q) { return cos(pixq*q); }
float YOO (float q) { return sin(pix*q*q); }

float X00d (float q) { return -2*pixq*sin(pi*q*q); }
float Y00d (float q) { return 2xpix*q*cos(pi*q*q); }

float X00dd (float q) { float A = pixqgxq;
float Y00dd (float q) { float A = pi*qg*q;
float ROO (float q) { return 0.1; }

// core 1
float a01 = 1, b0l =

1.5;

float X01 (float q) { return O; }
float Y01 (float q) { return q; }
float X01d (float q) { return 0; }
float Y01d (float q) { return 1; }

float X01dd (float q) { return 0; }
float Y01dd (float q) { return 0; }
float RO1 (float q) { return 0.1; }

/] ——=-- object 1 --——-

// core O

float al0 = -1, bl0
float X10 (float q)
float Y10 (float q)

float X104 (float q) { return -1; }

{
{

1
return -q; }
return 0; }

float Y10d (float q) { return O; }

float X10dd (float q) { return 0; }
float Y10dd (float q) { return 0; }

return -2*pix*(2*A*cos(A)+sin(A)); }
return -2*pi*(2xA*sin(A)-cos(A)); }

float R10 (float q) { return 0.02+0.09%(g+1); }

// core 1
float all = 0, bll =

0;

float X11 (float q) { return 0; }
float Y11 (float q) { return 0; }
float X11d (float q) { return 0; %

27

float Y11d (float q) { return O; }
float X11dd (float q) { return 0; }
float Y11dd (float q) { return 0; }
float R11 (float q) { return 0.11; }
#endif

//

main ()

{

#if 1
Function XOjet[] { X0, X0d, X0dd };
Function YOjet[] = { YO, YOd, YOdd };
Core_Continuous c0(a0,b0,X0jet,Y0jet,R0);

Function X1jet[] { X1, Xid, X1dd 7};
Function Yijet[] = { Y1, Yid, Yidd };
Core_Continuous cl(al,bl,X1jet,Y1ljet,R1);

// draw cores

CoreDraw cd(-32,-32,32,32,50);
const int N = 16;

char filename[128];

// core t =0
printf ("core %f\n", (float)0.0);
cd.draw(c0) .save("core0.im") ;

// cores t = i/N, 1 <= t <= N-1

for (int 1 = 1; i < N; i++) {
float t = i/(float)N;
printf("core %f\n",t);
Core_Interpolant ci(t,c0,cl);
sprintf (filename, "core)d.im",i);
cd.clear() .draw(ci) .save(filename) ;

// core t =1

printf ("core %f\n", (float)1.0);

sprintf (filename, "core’d.im" ,N) ;

cd.clear() .draw(cl) .save(filename) ;
#endif

#if O
Function X00jet[] { X00, X00d, X0044 };
Function Y0O0jet[] { YO0, Y00d, Y00dd };
Core_Continuous c00(a00,b00,X00jet,Y00jet,R00);

Function XO01ljet[] = { X01, X01d, X01dd };

28

Function YOljet[] = { Y01, YO1d, Y01dd };
Core_Continuous c01(a01,b01,X01jet,Y01jet,R01);

Function X10jet[] { X10, X104, X10dd };
Function Y10jet[] = { Y10, Y10d, Y10dd };
Core_Continuous c10(al0,b10,X10jet,Y10jet,R10);

Function X11jet[] { X11, X11d, X11d4d };
Function Yiljet[] { Y11, Y11d, Y1144 };
Core_Continuous cl11(all,bll,X1ljet,Y11jet,R11);

// draw cores

CoreDraw cd(-2,-2,2,2,25);
const int N = 16;

char filename[128];

// core t =0
printf ("core %f\n", (float)0.0);
cd.draw(c00) .draw(c01) .save("core0.im");

// cores t = i/N, 1 <= t <= N-1

for (int 1 = 1; i < N; i++) {
float t = i/(float)N;
printf("core %f\n",t);
Core_Interpolant ciO(t,c00,c10);

ciO.initial_parameter(0.5);
Vector ipos = { 0.0, 1-t };
ciO.initial_position(ipos);
Vector idir = { -1.0, 0.0 };
ciO.initial_direction(idir);

Core_Interpolant cil(t,c01,c11);

sprintf (filename, "core)d.im",i);
cd.clear() .draw(ciO) .draw(cil) .save(filename) ;

3

// core t =1

printf ("core %f\n", (float)1.0);

sprintf (filename, "cored.im" ,N);

cd.clear() .draw(c10) .draw(c1l) .save(filename) ;
#endif

return O;

29

	1 Introduction
	2 Differential Geometry of Curves
	3 Curvature-Based Interpolation of Curves
	4 Medial Axes
	5 Boundary Information
	6 Implementation
	6.1 Core_Base Class
	6.1.1 Numerical Differentiation
	6.1.2 Numerical Integration
	6.1.3 Inverting Normalized Arc Length
	6.1.4 Other Methods

	6.2 Core_Continuous Class
	6.3 Core_Interpolant Class
	6.4 Drawing the Cores
	6.5 Test Driver
	6.6 Planned Modifications

	7 Source Code
	7.1 core.h
	7.2 core.c
	7.3 coredraw.h
	7.4 coredraw.c
	7.5 interp.c

