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1 Introduction

Wavelets are a mathematical tool for hierarchically decomposing
functions. They allow a function to be described in terms of a coarse
overall shape, plus details that range from broad to narrow. Regard-
less of whether the function of interest is an image, a curve, or a sur-
face, wavelets offer an elegant technique for representing the levels
of detail present. This primer is intended to provide people working
in computer graphics with some intuition for what wavelets are, as
well as to present the mathematical foundations necessary for study-
ing and using them. In Part 1, we discuss the simple case of Haar
wavelets in one and two dimensions, and show how they can be used
for image compression. In Part 2, we will present the mathematical
theory of multiresolution analysis, then develop spline wavelets and
describe their use in multiresolution curve and surface editing.

Although wavelets have their roots in approximation theory [5] and
signal processing [13], they have recently been applied to many
problems in computer graphics. These graphics applications in-
clude image editing [1], image compression [6], and image query-
ing [10]; automatic level-of-detail control for editing and render-
ing curves and surfaces [7, 8, 12]; surface reconstruction from con-
tours [14]; and fast methods for solving simulation problems in ani-
mation [11] and global illumination [3, 4, 9, 15]. For a discussion of
wavelets that goes beyond the scope of this primer, we refer readers
to our forthcoming monograph [16].

We set the stage here by first presenting the simplest form of
wavelets, the Haar basis. We cover one-dimensional wavelet trans-
forms and basis functions, and show how these tools can be used to
compress the representation of a piecewise-constant function. Then
we discuss two-dimensional generalizations of the Haar basis, and
demonstrate how to apply these wavelets to image compression.

Because linear algebra is central to the mathematics of wavelets, we
briefly review important concepts in Appendix A.

2 Wavelets in one dimension

The Haar basis is the simplest wavelet basis. We will first discuss
how a one-dimensional function can be decomposed using Haar
wavelets, and then describe the actual basis functions. Finally, we
show how using the Haar wavelet decomposition leads to a straight-
forward technique for compressing a one-dimensional function.

2.1 One-dimensional Haar wavelet transform

To get a sense for how wavelets work, let’s start with a simple exam-
ple. Suppose we are given a one-dimensional “image” with a reso-
lution of four pixels, having values�
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We can represent this image in the Haar basis by computing a
wavelet transform. To do this, we first average the pixels together,
pairwise, to get the new lower resolution image with pixel values�

8 4
�

Clearly, some information has been lost in this averaging process.
To recover the original four pixel values from the two averaged val-
ues, we need to store some detail coefficients, which capture the
missing information. In our example, we will choose 1 for the first
detail coefficient, since the average we computed is 1 less than 9
and 1 more than 7. This single number allows us to recover the first
two pixels of our original four-pixel image. Similarly, the second
detail coefficient is �1, since 4 + (�1) = 3 and 4� (�1) = 5.

Thus, we have decomposed the original image into a lower resolu-
tion (two-pixel) version and a pair of detail coefficients. Repeating
this process recursively on the averages gives the full decomposi-
tion:

Resolution Averages Detail coefficients
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Finally, we will define the wavelet transform (also called the wavelet
decomposition) of the original four-pixel image to be the single co-
efficient representing the overall average of the original image, fol-
lowed by the detail coefficients in order of increasing resolution.
Thus, for the one-dimensional Haar basis, the wavelet transform of
our original four-pixel image is given by�

6 2 1 �1
�

The way we computed the wavelet transform, by recursively aver-
aging and differencing coefficients, is called afilter bank—a process
we will generalize to other types of wavelets in Part 2 of our tuto-
rial. Note that no information has been gained or lost by this process.
The original image had four coefficients, and so does the transform.
Also note that, given the transform, we can reconstruct the image to
any resolution by recursively adding and subtracting the detail co-
efficients from the lower resolution versions.

Storing the image’s wavelet transform, rather than the image itself,
has a number of advantages. One advantage of the wavelet trans-
form is that often a large number of the detail coefficients turn out
to be very small in magnitude, as in the example of Figure 1. Trun-
cating, or removing, these small coefficients from the representa-
tion introduces only small errors in the reconstructed image, giving
a form of “lossy” image compression. We will discuss this particu-
lar application of wavelets in Section 2.3, after we present the one-
dimensional Haar basis functions.



V4 approximation

V3 approximation W3 detail coefficients

V2 approximation W2 detail coefficients

V1 approximation W1 detail coefficients

V0 approximation W0 detail coefficient

Figure 1 A sequence of decreasing-resolution approximations to a
function (left), along with the detail coefficients required to recapture
the finest approximation (right). Note that in regions where the true
function is close to being flat, a piecewise-constant approximation
works well, so the corresponding detail coefficients are relatively
small.

2.2 One-dimensional Haar wavelet basis functions

We have shown how one-dimensional images can be treated as se-
quences of coefficients. Alternatively, we can think of images as
piecewise-constant functions on the half-open interval [0, 1). To do
so, we will use the concept of a vector space from linear algebra.
A one-pixel image is just a function that is constant over the entire
interval [0, 1). We’ll let V0 be the vector space of all these func-
tions. A two-pixel image has two constant pieces over the inter-
vals [0, 1=2) and [1=2, 1). We’ll call the space containing all these
functions V1. If we continue in this manner, the space Vj will in-
clude all piecewise-constant functions defined on the interval [0, 1)
with constant pieces over each of 2j equal subintervals.

We can now think of every one-dimensional image with 2j pixels as
an element, or vector, in Vj. Note that because these vectors are all
functions defined on the unit interval, every vector inVj is also con-
tained in Vj+1. For example, we can always describe a piecewise-
constant function with two intervals as a piecewise-constant func-
tion with four intervals, with each interval in the first function cor-
responding to a pair of intervals in the second. Thus, the spacesVj

are nested; that is,

V0 � V1 � V2 � � � �

The mathematical theory of multiresolution analysis requires this
nested set of spaces Vj. We will consider this topic more thoroughly
in Part 2.

Now we need to define a basis for each vector space Vj. The basis
functions for the spaces Vj are called scaling functions, and are usu-
ally denoted by the symbol�. A simple basis for Vj is given by the
set of scaled and translated “box” functions:

�j
i(x) := �(2jx � i), i = 0, : : : , 2j � 1,

where

�(x) :=

�
1 for 0 � x < 1
0 otherwise.

As an example, Figure 2 shows the four box functions forming a ba-
sis for V2.

The next step is to choose an inner product defined on the vector
spaces Vj. The “standard” inner product,

hf j gi :=

Z 1

0

f (x) g(x) dx,

for two elements f , g 2 Vj will do quite well for our running ex-
ample. We can now define a new vector spaceWj as the orthogonal
complement of Vj in Vj+1. In other words, we will let Wj be the space
of all functions in Vj+1 that are orthogonal to all functions inVj under
the chosen inner product. Informally, we can think of the wavelets
in Wj as a means for representing the parts of a function inVj+1 that
cannot be represented in Vj.

A collection of linearly independent functions j
i(x) spanning Wj are

called wavelets. These basis functions have two important proper-
ties:

1. The basis functions j
i of Wj, together with the basis functions�j

i

of Vj, form a basis for Vj+1.

2. Every basis function  j
i of Wj is orthogonal to every basis func-

tion �j
i of Vj under the chosen inner product.1

Thus, the “detail coefficients” of Section 2.1 are really coefficients
of the wavelet basis functions.

The wavelets corresponding to the box basis are known as theHaar
wavelets, given by

 j
i(x) :=  (2jx � i), i = 0, : : : , 2j � 1,

where

 (x) :=

(
1 for 0 � x < 1=2

�1 for 1=2 � x < 1
0 otherwise.

Figure 3 shows the two Haar wavelets spanning W1.

Before going on, let’s run through our example from Section 2.1
again, but now applying these more sophisticated ideas.

We begin by expressing our original imageI(x) as a linear combi-
nation of the box basis functions in V2:

I(x) = c2
0 �

2
0(x) + c2

1 �
2
1(x) + c2

2 �
2
2(x) + c2

3 �
2
3(x).

1Some authors refer to functions with these properties aspre-wavelets,
reserving the term “wavelet” for functions j

i that are also orthogonal to each
other.
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Figure 2 The box basis for V2.
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Figure 3 The Haar wavelets for W1.

A more graphical representation is

I(x) = 9 �

+ 7 �

+ 3 �

+ 5 �

Note that the coefficients c2
0, : : : , c2

3 are just the four original pixel
values [9 7 3 5].

We can rewrite the expression for I(x) in terms of basis functions
in V1 and W1, using pairwise averaging and differencing:

I(x) = c1
0 �

1
0(x) + c1

1 �
1
1(x) + d1

0  
1
0(x) + d1

1  
1
1(x)

= 8 �

+ 4 �

+ 1 �

+ �1 �

These four coefficients should look familiar as well.

Finally, we’ll rewrite I(x) as a sum of basis functions in V0, W0,
and W1:

I(x) = c0
0 �

0
0(x) + d0

0  
0
0(x) + d1

0  
1
0(x) + d1

1  
1
1(x)

= 6 �

+ 2 �

+ 1 �

+ �1 �

Once again, these four coefficients are the Haar wavelet transform
of the original image. The four functions shown above constitute
the Haar basis for V2. Instead of using the usual four box functions,
we can use �0

0, 0
0 , 1

0 , and  1
1 to represent the overall average, the

broad detail, and the two types of finer detail possible in a function
in V2. The Haar basis for Vj with j > 2 includes these functions as
well as narrower translates of the wavelet (x).

Orthogonality

The Haar basis possesses an important property known as orthog-
onality, which is not always shared by other wavelet bases. An or-
thogonal basis is one in which all of the basis functions, in this case
�0

0, 0
0 , 1

0 , 1
1, : : :, are orthogonal to one another. Note that orthogo-

nality is stronger than the minimum requirement for wavelets that j
i

be orthogonal to all scaling functions at the same resolution level j.

Normalization

Another property that is sometimes desirable is normalization. A
basis function u(x) is normalized if hu j ui = 1. We can normalize
the Haar basis by replacing our earlier definitions with

�j
i(x) := 2j=2 �(2jx � i)

 j
i(x) := 2j=2  (2jx � i),

where the constant factor of 2j=2 is chosen to satisfy hu j ui = 1 for
the standard inner product. With these modified definitions, the new
normalized coefficients are obtained by multiplying each old coef-
ficient with superscript j by 2�j=2. Thus, in the example from the
previous section, the unnormalized coefficients [6 2 1�1] become
the normalized coefficients�

6 2 1p
2

�1p
2

�
As an alternative to first computing the unnormalized coefficients
and then normalizing them, we can include normalization in the de-
composition algorithm. The following two pseudocode procedures
accomplish this normalized decomposition:

procedure DecompositionStep(C: array [1. . h] of reals)
for i 1 to h=2 do

C0[i] (C[2i� 1] + C[2i])=
p

2
C0[h=2 + i] (C[2i� 1]� C[2i])=

p
2

end for
C C0

end procedure

procedure Decomposition(C: array [1. . h] of reals)
C C=

p
h (normalize input coefficients)

while h > 1 do
DecompositionStep(C[1. . h])
h h=2

end while
end procedure

Now we can work with an orthonormal basis, meaning one that is
both orthogonal and normalized. Using an orthonormal basis turns
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out to be handy when compressing a function or an image, which
we describe next.

2.3 Application I: Compression

The goal of compression is to express an initial set of data using
some smaller set of data, either with or without loss of information.
For instance, suppose we are given a function f (x) expressed as a
weighted sum of basis functions u1(x), : : : , um(x):

f (x) =
mX

i=1

ci ui(x).

The data set in this case consists of the coefficients c1, : : : , cm. We
would like to find a function approximating f (x) but requiring fewer
coefficients, perhaps by using a different basis. That is, given a user-
specified error tolerance � (for lossless compression, � = 0), we are
looking for

f̃ (x) =
m̃X

i=1

c̃i ũi(x)

such that m̃ < m and kf (x) � f̃ (x)k � � for some norm. In general,
you could attempt to construct a set of basis functionsũ1, : : : , ũm̃ that
would provide a good approximation with few coefficients. We will
focus instead on the simpler problem of finding a good approxima-
tion in a fixed basis.

One form of the compression problem is to order the coeffi-
cients c1, : : : , cm so that for every m̃ < m, the first m̃ elements of
the sequence give the best approximation f̃ (x) to f (x) as measured
in the L2 norm. As we show here, the solution to this problem is
straightforward if the basis is orthonormal, as is the case with the
normalized Haar basis.

Let � be a permutation of 1, : : : , m, and let f̃ (x) be a function that
uses the coefficients corresponding to the firstm̃ numbers of the per-
mutation �:

f̃ (x) =
m̃X

i=1

c�(i) u�(i).

The square of the L2 error in this approximation isf (x) � f̃ (x)
2

2
= hf (x) � f̃ (x) j f (x) � f̃ (x)i

=

* mX
i=m̃+1

c�(i) u�(i)

mX
j=m̃+1

c�(j) u�(j)

+

=
mX

i=m̃+1

mX
j=m̃+1

c�(i) c�(j) hu�(i) j u�(j)i

=
mX

i=m̃+1

(c�(i))
2

The last step follows from the assumption that the basis is orthonor-
mal, so hui j uji = �ij. We conclude that to minimize this error
for any given m̃, the best choice for � is the permutation that sorts
the coefficients in order of decreasing magnitude; that is, � satis-
fies jc�(1)j � � � � � jc�(m)j.

Figure 1 demonstrated how a one-dimensional function could be
transformed into coefficients representing the function’s overall av-
erage and various resolutions of detail. Now we repeat the process,
this time using normalized Haar basis functions. We can apply L2

16 out of 16 coefficients 14 out of 16 coefficients

12 out of 16 coefficients 10 out of 16 coefficients

8 out of 16 coefficients 6 out of 16 coefficients

4 out of 16 coefficients 2 out of 16 coefficients

Figure 4 Coarse approximations to a function obtained using L2

compression: detail coefficients are removed in order of increasing
magnitude.

compression to the resulting coefficients simply by removing or ig-
noring the coefficients with smallest magnitude. By varying the
amount of compression, we obtain a sequence of approximations to
the original function, as shown in Figure 4.

3 Wavelets in two dimensions

In preparation for image compression, we need to generalize Haar
wavelets to two dimensions. First, we will consider how to perform
a wavelet decomposition of the pixel values in a two-dimensional
image. We then describe the scaling functions and wavelets that
form a two-dimensional wavelet basis.

3.1 Two-dimensional Haar wavelet transforms

There are two ways we can use wavelets to transform the pixel val-
ues within an image. Each is a generalization to two dimensions of
the one-dimensional wavelet transform described in Section 2.1.

To obtain the standard decomposition [2] of an image, we first apply
the one-dimensional wavelet transform to each row of pixel values.
This operation gives us an average value along with detail coeffi-
cients for each row. Next, we treat these transformed rows as if they
were themselves an image and apply the one-dimensional transform
to each column. The resulting values are all detail coefficients ex-
cept for a single overall average coefficient. The algorithm below
computes the standard decomposition. Figure 5 illustrates each step
of its operation.

procedure StandardDecomposition(C: array [1. . h, 1. . w] of reals)
for row 1 to h do

Decomposition(C[row, 1. . w])
end for
for col 1 to w do

Decomposition(C[1. . h, col])
end for

end procedure

The second type of two-dimensional wavelet transform, called the
nonstandard decomposition, alternates between operations on rows
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transform rows

?

transform
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Figure 5 Standard decomposition of an image.

and columns. First, we perform one step of horizontal pairwise aver-
aging and differencing on the pixel values in each row of the image.
Next, we apply vertical pairwise averaging and differencing to each
column of the result. To complete the transformation, we repeat this
process recursively only on the quadrant containing averages in both
directions. Figure 6 shows all the steps involved in the nonstandard
decomposition procedure below.

procedure NonstandardDecomposition(C: array [1. . h, 1. . h] of reals)
C C=h (normalize input coefficients)
while h > 1 do

for row 1 to h do
DecompositionStep(C[row, 1. . h])

end for
for col 1 to h do

DecompositionStep(C[1. . h, col])
end for
h h=2

end while
end procedure

3.2 Two-dimensional Haar basis functions

The two methods of decomposing a two-dimensional image yield
coefficients that correspond to two different sets of basis functions.
The standard decomposition of an image gives coefficients for a ba-
sis formed by the standard construction [2] of a two-dimensional
basis. Similarly, the nonstandard decomposition gives coefficients
for the nonstandard construction of basis functions.

The standard construction of a two-dimensional wavelet basis con-
sists of all possible tensor products of one-dimensional basis func-
tions. For example, when we start with the one-dimensional Haar
basis for V2, we get the two-dimensional basis for V2 shown in Fig-
ure 7. Note that if we apply the standard construction to an orthonor-
mal basis in one dimension, we get an orthonormal basis in two di-
mensions.

The nonstandard construction of a two-dimensional basis proceeds

. . .

-
transform rows

?

transform
columns

Figure 6 Nonstandard decomposition of an image.

by first defining a two-dimensional scaling function,

��(x, y) := �(x)�(y),

and three wavelet functions,

� (x, y) := �(x) (y)

 �(x, y) :=  (x)�(y)

  (x, y) :=  (x) (y).

We now denote levels of scaling with a superscriptj (as we did in the
one-dimensional case) and horizontal and vertical translations with
a pair of subscripts k and `. The nonstandard basis consists of a sin-
gle coarse scaling function ��0

0,0(x, y):=��(x, y) along with scales
and translates of the three wavelet functions� ,  �, and   :

� j
k`(x, y) := 2j� (2jx � k, 2jy � `)

 �j
k`(x, y) := 2j �(2jx � k, 2jy � `)

  j
k`(x, y) := 2j  (2jx � k, 2jy � `).

The constant 2j normalizes the wavelets to give an orthonormal ba-
sis. The nonstandard construction results in the basis for V2 shown
in Figure 8.

We have presented both the standard and nonstandard approaches
to wavelet transforms and basis functions because both have advan-
tages. The standard decomposition of an image is appealing be-
cause it simply requires performing one-dimensional transforms on
all rows and then on all columns. On the other hand, it is slightly
more efficient to compute the nonstandard decomposition. For an
m � m image, the standard decomposition requires 4(m2 � m) as-
signment operations, while the nonstandard decomposition requires
only 8

3 (m2 � 1) assignment operations.

Another consideration is the support of each basis function, mean-
ing the portion of each function’s domain where that function is non-
zero. All nonstandard Haar basis functions have square supports,
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 1
1(x) �0

0(y) 1
0(x)�0

0(y) 0
0(x)�0

0(y)�0
0(x)�0

0(y)

 1
1(x) 0

0(y) 1
0(x) 0

0(y) 0
0(x) 0

0(y)�0
0(x) 0

0(y)

 1
1(x) 1

0(y) 1
0(x) 1

0(y) 0
0(x) 1

0(y)�0
0(x) 1

0(y)

 1
1(x) 1

1(y) 1
0(x) 1

1(y) 0
0(x) 1

1(y)�0
0(x) 1

1(y)

Figure 7 Standard construction of a two-dimensional Haar wavelet
basis for V2. In the unnormalized case, functions are +1 where plus
signs appear,�1 where minus signs appear, and 0 in gray regions.

while some standard basis functions have nonsquare supports. De-
pending upon the application, one of these choices may be prefer-
able to the other.

3.3 Application II: Image compression

We defined compression in Section 2.3 as the representation of a
function using fewer basis function coefficients than were origi-
nally given. The method we discussed for one-dimensional func-
tions applies equally well to images, which we treat as the coeffi-
cients corresponding to a two-dimensional piecewise-constant ba-
sis. The approach presented here is only introductory; for a more
complete treatment of wavelet image compression, see the article
by DeVore et al. [6].

We can summarize wavelet image compression using the L2 norm
in three steps:

1. Compute coefficients c1, : : : , cm representing an image in a nor-
malized two-dimensional Haar basis.

2. Sort the coefficients in order of decreasing magnitude to produce
the sequence c�(1), : : : , c�(m).

3. Starting with m̃ = m, find the smallest m̃ for whichPm
i=m̃+1(c�(i))2 � �2, where � is the allowable L2 error.

The first step is accomplished by applying either of the two-
dimensional Haar wavelet transforms described in Section 3.1, be-
ing sure to use normalized basis functions. Any standard sorting
technique will work for the second step. However, for large images
sorting becomes exceedingly slow.

The pseudocode below outlines a more efficient method that uses
a binary search strategy to find a threshold below which coefficient
sizes are deemed negligible. The procedure takes as input a one-
dimensional array of coefficients C (with each coefficient corre-
sponding to a two-dimensional basis function) and an error toler-
ance �. For each guess at a threshold � , the algorithm computes the
square of the L2 error that would result from discarding coefficients
smaller in magnitude than � . This squared error s is compared to �2

at each iteration to decide whether the binary search should continue
in the upper or lower half of the current interval. The algorithm halts
when the current interval is so narrow that the number of coefficients

  1
1,1(x, y)  1

0,1(x, y)

  1
1,0(x, y)  1

0,0(x, y)

� 1
1,1(x, y)� 1

0,1(x, y)

� 1
1,0(x, y)� 1

0,0(x, y)

 �1
1,1(x, y) �1

0,1(x, y)

 �1
1,0(x, y) �1

0,0(x, y)

  0
0,0(x, y)� 0

0,0(x, y)

 �0
0,0(x, y)��0

0,0(x, y)

Figure 8 Nonstandard construction of a two-dimensional Haar
wavelet basis for V2.

to be discarded no longer changes.

procedure Compress(C: array [1. . m] of reals; �: real)
�min  min f jC[i]j g
�max  max f jC[i]j g
do
�  (�min + �max)=2
s 0
for i 1 to m do

if jC[i]j < � then s s + (C[i])2

end for
if s < �2 then �min  � else �max  �

until �min � �max

for i 1 to m do
if jC[i]j < � then C[i] 0

end for
end procedure

This binary search algorithm was used to produce the images in
Figure 9. These images demonstrate the high compression ratios
wavelets offer, as well as some of the artifacts they introduce.

DeVore et al. [6] suggest that the L1 norm is best suited to the
task of image compression. Here is a pseudocode fragment for a
“greedy” L1 compression scheme:

for each pixel (x, y) do
�[x, y] 0

end for
for i 1 to m do
�0  � + error from discarding C[i]
if
P

x,y
j�0[x, y]j < � then

discard coefficient C[i]
�  �0

end if
end for

Note that this algorithm’s results depend on the order in which coef-
ficients are visited. Different images (and degrees of compression)
may be obtained from varying this order—for example, by start-
ing with the finest scale coefficients, rather than the smallest coef-
ficients. You could also run a more sophisticated constrained op-
timization procedure to select the minimum number of coefficients
subject to the error bound.
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(a) (b) (c) (d)

Figure 9 L2 wavelet image compression: The original image (a) can be represented using (b) 19% of its wavelet coefficients, with 5% relativeL2

error; (c) 3% of its coefficients, with 10% relativeL2 error; and (d) 1% of its coefficients, with 15% relativeL2 error.

4 Conclusion

We have described Haar wavelets in one and two dimensions as well
as how to use them for compressing functions and images. Part 2
of this primer will continue this exposition by presenting the math-
ematical framework of multiresolution analysis. We will also de-
velop a class of wavelets based on endpoint-interpolating B-splines,
and describe how to use them for multiresolution curve and surface
editing.

Acknowledgments

We wish to thank Ronen Barzel, Steven Gortler, Michael Shantzis,
and the anonymous reviewers for many helpful comments. This
work was supported by NSF Presidential and National Young In-
vestigator awards (CCR-8957323 and CCR-9357790), by an NSF
Graduate Research Fellowship, by the University of Washington
Royalty Research Fund (65-9731), and by industrial gifts from
Adobe, Aldus, Microsoft, and Xerox.

References

[1] Deborah Berman, Jason Bartell, and David Salesin. Multires-
olution painting and compositing. In Proceedings of SIG-
GRAPH 94, pages 85–90. ACM, New York, 1994.

[2] G. Beylkin, R. Coifman, and V. Rokhlin. Fast wavelet trans-
forms and numerical algorithms I. Communications on Pure
and Applied Mathematics, 44(2):141–183, March 1991.

[3] Per H. Christensen, Dani Lischinski, Eric J. Stollnitz, and
David H. Salesin. Clustering for glossy global illumination.
ACM Transactions on Graphics, 1996 (to appear).

[4] Per H. Christensen, Eric J. Stollnitz, David H. Salesin, and
Tony D. DeRose. Wavelet radiance. In G. Sakas, P. Shirley,
and S. Müller, editors, Photorealistic Rendering Techniques,
pages 295–309. Springer-Verlag, Berlin, 1995.

[5] Ingrid Daubechies. Orthonormal bases of compactly sup-
ported wavelets. Communications on Pure and Applied Math-
ematics, 41(7):909–996, October 1988.

[6] R. DeVore, B. Jawerth, and B. Lucier. Image compression
through wavelet transform coding. IEEE Transactions on In-
formation Theory, 38(2):719–746, March 1992.

[7] Adam Finkelstein and David H. Salesin. Multiresolution
curves. In Proceedings of SIGGRAPH 94, pages 261–268.
ACM, New York, 1994.

[8] Steven J. Gortler and Michael F. Cohen. Hierarchical and vari-
ational geometric modeling with wavelets. In Proceedings of
the 1995 Symposium on Interactive 3D Graphics, pages 35–
42. ACM, New York, 1995.

[9] Steven J. Gortler, Peter Schröder, Michael F. Cohen, and Pat
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A Linear algebra review

The mathematics of wavelets rely heavily on fundamental ideas
from linear algebra. This appendix reviews a few important ideas.

A.1 Vector spaces

The starting point for linear algebra is the notion of a vector space.
A vector space (over the reals) can be loosely defined as a collec-
tion V of elements where

1. For all a, b 2 IR and for all u, v 2 V, au + bv 2 V.

2. There exists a unique element 0 2 V such that

� for all u 2 V, 0u = 0, and

� for all u 2 V, 0 + u = u.

3. Other axioms (omitted here) hold true, most of which are neces-
sary to guarantee that multiplication and addition behave as ex-
pected.

The elements of a vector space V are called vectors, and the el-
ement 0 is called the zero vector. The vectors may be geometric
vectors, or they may be functions, as is the case when discussing
wavelets and multiresolution analysis.

A.2 Bases and dimension

A collection of vectors u1, u2, : : : in a vector space V are said to be
linearly independent if

c1u1 + c2u2 + � � � = 0 if and only if c1 = c2 = � � � = 0.

A collection u1, u2, : : : 2 V of linearly independent vectors is abasis
for V if every v 2 V can be written as

v =
X

i

ci ui

for some real numbers c1, c2, : : : . The vectors in a basis for V are
said to span V. Intuitively speaking, linear independence means that
the vectors are not redundant, and a basis consists of a minimal com-
plete set of vectors.

If a basis for V has a finite number of elements u1, : : : , um, then V
is finite-dimensional and its dimension is m. Otherwise, V is said to
be infinite-dimensional.

Example: IR3 is a three-dimensional space, and e1 =
(1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) is a basis for it.

Example: The set of all functions continuous on [0, 1] is
an infinite-dimensional vector space. We’ll call this space
C[0, 1].

A.3 Inner products and orthogonality

When dealing with geometric vectors from the vector space IR3, the
“dot product” operation has a number of uses. The generalization of
the dot product to arbitrary vector spaces is called an inner product.
Formally, an inner product h� j �i on a vector space V is any map from
V � V to IR that is

1. symmetric: hu j vi = hv j ui,

2. bilinear: hau + bv jwi = ahu jwi + bhv jwi, and

3. positive definite: hu j ui > 0 for all u 6= 0.

A vector space together with an inner product is called, not surpris-
ingly, an inner product space.

Example: It is straightforward to show that the dot product
on IR3 defined by

h(a1, a2, a3) j (b1, b2, b3)i := a1b1 + a2b2 + a3b3 (1)

satisfies the requirements of an inner product.

Example: The following “standard” inner product on
C[0, 1] plays a central role in most formulations of multires-
olution analysis:

hf j gi :=

Z 1

0

f (x) g(x) dx.

The standard inner product can also be generalized to include
a positive weight function w(x):

hf j gi :=

Z 1

0

w(x) f (x) g(x) dx.

One of the most important uses of the inner product is to formalize
the idea of orthogonality. Two vectors u, v in an inner product space
are said to be orthogonal if hu j vi = 0. It is not difficult to show
that a collection u1, u2, : : : of mutually orthogonal vectors must be
linearly independent, suggesting that orthogonality is a strong form
of linear independence. An orthogonal basis is one consisting of
mutually orthogonal vectors.

A.4 Norms and normalization

A norm is a function that measures the length of vectors. In a finite-
dimensional vector space, we typically use the normkuk:=hu j ui1=2.
If we are working with a function space such asC[0, 1], we ordinar-
ily use one of the Lp norms, defined as

kukp :=

�Z 1

0

ju(x)jp dx

�1=p

In the limit as p tends to infinity, we get what is known as the max-
norm:

kuk1 := max
x2[0,1]

ju(x)j.

Even more frequently used is theL2 norm, which can also be written
as kuk2 = hu j ui1=2 if we are using the standard inner product.

A vector u with kuk = 1 is said to be normalized. If we have an
orthogonal basis composed of vectors that are normalized in theL2

norm, the basis is called orthonormal. Stated concisely, a basis
u1, u2, : : : is orthonormal if

hui j uji = �ij,

where �ij is called the Kronecker delta and is defined to be 1 if i = j,
and 0 otherwise.

Example: The vectors e1 = (1, 0, 0), e2 = (0, 1, 0), e3 =
(0, 0, 1) form an orthonormal basis for the inner product space
IR3 endowed with the dot product of Equation (1).
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Wavelets for Computer Graphics: A Primer
Part 2y

Eric J. Stollnitz Tony D. DeRose David H. Salesin

University of Washington

1 Introduction

Wavelets are a mathematical tool for hierarchically decomposing
functions. They allow a function to be described in terms of a coarse
overall shape, plus details that range from broad to narrow. Regard-
less of whether the function of interest is an image, a curve, or a
surface, wavelets provide an elegant technique for representing the
levels of detail present.

In Part 1 of this primer we discussed the simple case of Haar
wavelets in one and two dimensions, and showed how they can be
used for image compression. In Part 2, we present the mathematical
theory of multiresolution analysis, then develop bounded-interval
spline wavelets and describe their use in multiresolution curve and
surface editing.

2 Multiresolution analysis

The Haar wavelets we discussed in Part 1 are just one of many bases
that can be used to treat functions in a hierarchical fashion. In this
section, we develop a mathematical framework known asmultires-
olution analysis for studying wavelets [2, 11]. Our examples will
continue to focus on the Haar basis, but the more general mathe-
matical notation used here will come in handy for discussing other
wavelet bases in later sections.

Multiresolution analysis relies on many results from linear algebra.
Some readers may wish to consult the appendix in Part 1 for a brief
review.

As discussed in Part 1, the starting point for multiresolution analysis
is a nested set of vector spaces

V0 � V1 � V2 � � � �

As j increases, the resolution of functions in Vj increases. The basis
functions for the space Vj are known as scaling functions.

The next step in multiresolution analysis is to definewavelet spaces.
For each j, we define Wj as the orthogonal complement of Vj in Vj+1.
This means that Wj includes all the functions in Vj+1 that are orthog-
onal to all those in Vj under some chosen inner product. The func-
tions we choose as a basis for Wj are called wavelets.

2.1 A matrix formulation for refinement

The rest of our discussion of multiresolution analysis will focus on
wavelets defined on a bounded domain, although we will also refer
to wavelets on the unbounded real line wherever appropriate. In the
bounded case, each spaceVj has a finite basis, allowing us to use ma-
trix notation in much of what follows, as did Lounsbery et al. [10]
and Quak and Weyrich [13].

yEric J. Stollnitz, Tony D. DeRose, and David H. Salesin. Wavelets for com-
puter graphics: A primer, part 2. IEEE Computer Graphics and Applica-
tions, 15(4):75–85, July 1995.

It is often convenient to put the different scaling functions�j
i(x) for

a given level j together into a single row matrix,

�
j(x) := [�j

0(x) � � � �j
mj�1

(x)],

where mj is the dimension of Vj. We can do the same for the
wavelets:

	
j(x) := [ j

0(x) � � �  j
nj�1

(x)],

where nj is the dimension of Wj. Because Wj is the orthogonal com-
plement of Vj in Vj+1, the dimensions of these spaces satisfy mj+1 =
mj + nj.

The condition that the subspacesVj be nested is equivalent to requir-
ing that the scaling functions berefinable. That is, for all j = 1, 2, : : :
there must exist a matrix of constants Pj such that

�
j�1(x) = �

j(x) Pj. (1)

In other words, each scaling function at level j�1 must be express-
ible as a linear combination of “finer” scaling functions at level j.
Note that since Vj and Vj�1 have dimensions mj and mj�1, respec-
tively, Pj is an mj � mj�1 matrix (taller than it is wide).

Since the wavelet space Wj�1 is by definition also a subspace of Vj,
we can write the wavelets	j�1(x) as linear combinations of the scal-
ing functions�j(x). This means there is an mj �nj�1 matrix of con-
stants Qj satisfying

	
j�1(x) = �

j(x) Qj. (2)

Example: In the Haar basis, at a particular level j there
are mj = 2j scaling functions and nj = 2j wavelets. Thus,
there must be refinement matrices describing how the two
scaling functions in V1 and the two wavelets in W1 can be
made from the four scaling functions in V2:

P2 =

2
64

1 0
1 0
0 1
0 1

3
75 and Q2 =

2
64

1 0
�1 0

0 1
0 �1

3
75

Remark: In the case of wavelets constructed on the un-
bounded real line, the columns of Pj are shifted versions
of one another, as are the columns of Qj. One column
therefore characterizes each matrix, so Pj and Qj are com-
pletely determined by sequences (: : : , p�1, p0, p1, : : :) and
(: : : , q�1, q0, q1, : : :), which also do not depend on j. Equa-
tions (1) and (2) therefore often appear in the literature as ex-
pressions of the form

�(x) =
X

i

pi �(2x � i)

 (x) =
X

i

qi �(2x � i).



These equations are referred to as two-scale relations for
scaling functions and wavelets, respectively.

Note that equations (1) and (2) can be expressed as a single equation
using block-matrix notation:�

�
j�1

	
j�1
�

= �
j
�

Pj Qj
�
. (3)

Example: Substituting the matrices from the previous ex-
ample into Equation (3) along with the appropriate basis
functions gives

[�1
0 �1

1  1
0  1

1] = [�2
0 �2

1 �2
2 �2

3]

2
64

1 0 1 0
1 0 �1 0
0 1 0 1
0 1 0 �1

3
75

It is important to realize that once we have chosen scaling func-
tions and their refinement matrices Pj, the wavelet matrices Qj are
somewhat constrained (though not completely determined). In fact,
since all functions in �j�1(x) must be orthogonal to all functions
in 	j�1(x), we know h�j�1

k j j�1
`

i = 0 for all k and `.

To deal with all these inner products simultaneously, let’s define
some new notation for a matrix of inner products. We will denote
by [h�j�1 j	j�1i] the matrix whose (k, `) entry is h�j�1

k j j�1
`

i.
Armed with this notation, we can rewrite the orthogonality condi-
tion on the wavelets as

[h�j�1 j	j�1i] = 0. (4)

Substituting Equation (2) into Equation (4) yields

[h�j�1 j�ji] Qj = 0. (5)

A matrix equation with a right-hand side of zero like this one is
known as a homogeneous system of equations. The set of all pos-
sible solutions is called the null space of [h�j�1 j�ji], and the
columns of Qj must form a basis for this space. There are a multitude
of bases for the null space of a matrix, implying that there are many
different wavelet bases for a given wavelet spaceWj. Ordinarily, we
uniquely determine the Qj matrices by imposing further constraints
in addition to the orthogonality requirement given above. For exam-
ple, the Haar wavelet matrices can be found by requiring the least
number of consecutive nonzero entries in each column.

The literature on wavelets includes various terminologies for or-
thogonality. Some authors refer to a collection of functions that are
orthogonal to scaling functions but not to each other aspre-wavelets,
reserving the term “wavelets” for functions that are orthogonal to
each other as well. Another common approach is to differentiate be-
tween an orthogonal wavelet basis, in which all functions are mu-
tually orthogonal, and a semi-orthogonal wavelet basis, in which
the wavelets are orthogonal to the scaling functions but not to each
other. The Haar basis is an example of an orthogonal wavelet basis,
while the spline wavelets we will describe in Section 3 are examples
of semi-orthogonal wavelet bases.

Finally, it is sometimes desirable to define wavelets that are not quite
orthogonal to scaling functions in order to have wavelets with small
supports. This last alternative might be termed a non-orthogonal
wavelet basis, and we will mention an example when we describe
multiresolution surfaces in Section 4.3.

2.2 The filter bank

The previous section showed how scaling functions and wavelets
could be related by matrices. In this section, we show how matrix

notation can also be used for the decomposition process outlined in
Section 2.1 of Part 1.

Consider a function in some approximation spaceVj. Let’s assume
we have the coefficients of this function in terms of some scaling
function basis. We can write these coefficients as a column matrix
of values Cj = [cj

0 � � � cj
mj�1

]
T
. The coefficients cj

i could, for ex-
ample, be thought of as pixel colors, or alternatively, as the x- or
y-coordinates of a curve’s control points in IR2.

Suppose we wish to create a low-resolution versionCj�1 of Cj with
a smaller number of coefficients mj�1. The standard approach for
creating the mj�1 values of Cj�1 is to use some form of linear filter-
ing and down-sampling on the mj entries of Cj. This process can be
expressed as a matrix equation

Cj�1 = Aj Cj (6)

where Aj is an mj�1 � mj matrix of constants (wider than it is tall).

Since Cj�1 contains fewer entries than Cj, this filtering process
clearly loses some amount of detail. For many choices of Aj, it is
possible to capture the lost detail as another column matrix Dj�1,
computed by

Dj�1 = Bj Cj (7)

where Bj is an nj�1�mj matrix of constants related toAj. The pair of
matrices Aj and Bj are called analysis filters. The process of splitting
the coefficients Cj into a low-resolution versionCj�1 and detail Dj�1

is called analysis or decomposition.

If Aj and Bj are chosen appropriately, then the original coefficients
Cj can be recovered from Cj�1 and Dj�1 by using the matrices Pj

and Qj from the previous section:

Cj = Pj Cj�1 + Qj Dj�1. (8)

Recovering Cj from Cj�1 and Dj�1 is called synthesis or reconstruc-
tion. In this context, Pj and Qj are called synthesis filters.

Example: In the unnormalized Haar basis, the matrices A2

and B2 are given by:

A2 =
1
2

�
1 1 0 0
0 0 1 1

�

B2 =
1
2

�
1 �1 0 0
0 0 1 �1

�
These matrices represent the averaging and differencing op-
erations described in Section 2.1 of Part 1.

Remark: Once again, the matrices for wavelets constructed
on the unbounded real line have a simple structure: The rows
of Aj are shifted versions of each other, as are the rows ofBj.
The analysis Equations (6) and (7) often appear in the litera-
ture as

cj�1
k =

X
`

a`�2k cj
`

dj�1
k =

X
`

b`�2k cj
`

where the sequences (: : : , a�1, a0, a1, : : :) and
(: : : , b�1, b0, b1, : : :) are the entries in a row of Aj and Bj,
respectively. Similarly, Equation (8) for reconstruction often
appears as

cj
k =

X
`

�
pk�2` cj�1

`
+ qk�2` dj�1

`

�
.
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Figure 1 The filter bank.

Note that the procedure for splitting Cj into a low-resolution
part Cj�1 and a detail part Dj�1 can be applied recursively to the
low-resolution version Cj�1. Thus, the original coefficients can be
expressed as a hierarchy of lower-resolution versions C0, : : : , Cj�1

and details D0, : : : , Dj�1, as shown in Figure 1. This recursive pro-
cess is known as a filter bank.

Since the original coefficients Cj can be recovered from the se-
quence C0, D0, D1, : : :, Dj�1, we can think of this sequence as a
transform of the original coefficients, known as awavelet transform.
Note that the total size of the transform C0, D0, D1, : : :, Dj�1 is the
same as that of the original version Cj, so no extra storage is re-
quired. (However, the wavelet coefficients may require more bits
to retain the accuracy of the original values.)

In general, the analysis filters Aj and Bj are not necessarily trans-
posed multiples of the synthesis filters, as was the case for the Haar
basis. Rather, Aj and Bj are formed by the matrices satisfying the
relation �

�
j�1

	
j�1
� � Aj

Bj

�
= �

j. (9)

Note that
�

Pj Qj
�

and

�
Aj

Bj

�
are both square matrices. Thus,

combining Equations (3) and (9) gives�
Aj

Bj

�
=
�

Pj Qj
��1

(10)

Although we have not yet gotten specific about how to choose ma-
trices Aj, Bj, Pj, and Qj, it should be clear from Equation (10) that
the two matrices in that equation must at least be invertible.

2.3 Designing a multiresolution analysis

The multiresolution analysis framework presented above is very
general. In practice you often have the freedom to design a multires-
olution analysis specifically suited to a particular application. The
steps involved are

1. Select the scaling functions�j(x) for each j = 0, 1, : : : .
This choice determines the nested approximation spaces Vj, the
synthesis filters Pj, and the smoothness—that is, the number of
continuous derivatives—of the analysis.

2. Select an inner product defined on the functions in V0, V1, : : : .
This choice determines the L2 norm and the orthogonal comple-
ment spaces Wj. Although the standard inner product is the com-
mon choice, in general the inner product should be chosen to cap-
ture a measure of error that is meaningful in the context of the
application.

3. Select a set of wavelets	j(x) that span Wj for each j = 0, 1, : : : .
This choice determines the synthesis filtersQj. Together, the syn-
thesis filters Pj and Qj determine the analysis filters Aj and Bj by
Equation (10).

It is generally desirable to construct the wavelets to form an orthog-
onal basis for Wj and to have small support (the support of a func-
tion f (x) is the set of points x where f (x) 6= 0). However, orthogonal-
ity often comes at the expense of increased supports, so a tradeoff

must be made. In the case of the spline wavelets presented in the
next section, the wavelets are constructed to have minimal support,
but they are not orthogonal to one another (except for the piecewise-
constant case). Wavelets that are both locally supported and mutu-
ally orthogonal (other than Haar wavelets) were thought to be im-
possible until Daubechies’ ground-breaking work showing that cer-
tain families of spaces Vj actually do admit mutually orthogonal
wavelets of small support [5].

3 Spline wavelets

Until now, the only specific wavelet basis we have considered is the
Haar basis. Haar basis functions have a number of advantages, in-
cluding

� simplicity,

� orthogonality,

� very small supports,

� nonoverlapping scaling functions (at a given level), and

� nonoverlapping wavelets (at a given level),

which make them useful in many applications. However, despite
these advantages, the Haar basis is a poor choice for applications
such as curve editing [8] and animation [9] because of its lack of
continuity.

There are a variety of ways to construct wavelets with k continu-
ous derivatives. One such class of wavelets can be constructed from
piecewise-polynomial splines. These spline wavelets have been de-
veloped to a large extent by Chui and colleagues [3, 4]. The Haar ba-
sis is in fact the simplest instance of spline wavelets, resulting when
the polynomial degree is set to zero.

In the following, we briefly sketch the ideas behind the construc-
tion of endpoint-interpolating B-spline wavelets. Finkelstein and
Salesin [8] developed a collection of wavelets for the cubic case,
and Chui and Quak [4] presented constructions for arbitrary degree.
Although the derivations for arbitrary degree are too involved to
present here, we give the synthesis filters for the piecewise-constant
(Haar), linear, quadratic, and cubic cases in Appendix A. The next
three sections parallel the three steps described in Section 2.3 for
designing a multiresolution analysis.

3.1 B-spline scaling functions

Our first step is to define the scaling functions for a nested set of
function spaces. We’ll start with the general definition of B-splines,
then specify how to make uniformly spaced, endpoint-interpolating
B-splines from these. (More detailed derivations of these and other
splines appear in a number of standard texts [1, 7].)

Given positive integers d and k, with k � d, and a collection of
non-decreasing valuesx0, : : : , xk+d+1 called knots, the nonuniform B-
spline basis functions of degree d are defined recursively as follows.
For i = 0, : : : , k, and for r = 1, : : : , d, let

N0
i (x) :=

�
1 if xi � x < xi+1

0 otherwise

Nr
i (x) :=

x � xi

xi+r � xi
Nr�1

i (x) +
xi+r+1 � x

xi+r+1 � xi+1
Nr�1

i+1 (x).

(Note: The fractions in these equations are taken to be 0 when their
denominators are 0.)

The endpoint-interpolating B-splines of degree d on [0, 1] result
when the first and last d + 1 knots are set to 0 and 1, respectively. In
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Figure 2 B-spline scaling functions for V1(d) with degree d =
0, 1, 2, and 3.

this case, the functions Nd
0(x), : : : , Nd

k (x) form a basis for the space
of piecewise-polynomials of degree d with d�1 continuous deriva-
tives and breakpoints at the interior knots xd+1 < xd+2 < � � � < xk.

To make uniformly spaced B-splines, we choose k = 2j + d � 1
and xd+1, : : : , xk to produce 2j equally spaced interior intervals. This
construction gives 2j + d B-spline basis functions for a particular
degree d and level j. We will use these functions as the endpoint-
interpolating B-spline scaling functions. Figure 2 shows examples
of these functions at level j = 1 (two interior intervals) for various
degrees d. Note that the basis functions defined here are not normal-
ized in the L2 norm.

If Vj(d) denotes the space spanned by the B-spline scaling functions
of degree d with 2j uniform intervals, it is not difficult to show that
the spaces V0(d), V1(d), : : : are nested as required by multiresolution
analysis.

The rich theory of B-splines can be used to develop expressions for
the entries of the refinement matrix Pj (see Chui and Quak [4] or
Quak and Weyrich [13] for details). The columns of Pj are sparse,
reflecting the fact that the B-spline basis functions are locally sup-
ported. The first and last d columns of Pj are relatively compli-
cated, but the remaining (interior) columns are shifted versions of
column d + 1. Moreover, the entries of these interior columns are,
up to a common factor of 1=2d , given by binomial coefficients.

Example: In the case of cubic splines (d = 3), the matrix Pj

for j � 3 has the form

Pj =
1
8

2
666666666666666666664

8
4 4

6 2
3
2

11
2 1
4 4
1 6 1

4 4
1 6

4 �

1 � 1
� 4

6 1
4 4
1 11

2
3
2

2 6
4 4

8

3
777777777777777777775

where blank entries are taken to be zero, and the dots indi-
cate that the previous column is repeated, shifted down by
two rows each time.

3.2 Inner product

The second step of designing a multiresolution analysis is the choice
of an inner product. We’ll simply use the standard inner product
here:

hf j gi :=

Z 1

0

f (x) g(x) dx.

3.3 B-spline wavelets

To complete our development of a multiresolution analysis based on
B-splines, we need to find basis functions for the spacesWj that are
orthogonal complements to the spacesVj. As shown in Section 2.1,
the wavelets are determined by matrices Qj satisfying Equation (5),
which we repeat here for convenience:

[h�j�1 j�ji] Qj = 0. (11)

Since this is a homogeneous system of linear equations, there is
not a unique solution. We must therefore impose additional condi-
tions. To get wavelets with small supports, for example, we require
each column of Qj to have a minimal number of consecutive non-
zeros. This constraint imposes a banded structure on Qj similar to
that of Pj. For each column q of Qj, Equation (11) leads to a small
homogeneous system that we solve for the non-zero entries in q.
The matrices that result and the corresponding B-spline wavelets are
shown in Appendix A

Finkelstein and Salesin [8] took this approach to construct cubic B-
spline wavelets. Chui and Quak [4] derived slightly different spline
wavelets using derivative and interpolation properties of B-splines.
Note that both approaches result in semi-orthogonal wavelet bases:
The wavelets are orthogonal to scaling functions at the same level,
but not to each other, except in the piecewise-constant case.

3.4 B-spline filter bank

At this point, we have completed the steps in designing a multires-
olution analysis. However, to use spline wavelets, we must im-
plement a filter bank procedure incorporating the analysis filtersAj

and Bj. These matrices allow us to determine Cj�1 and Dj�1 from Cj

using matrix multiplication as in Equations (6) and (7). As dis-
cussed earlier in Section 2, the analysis filters are uniquely deter-
mined by the inverse relation in Equation (10):�

Aj

Bj

�
=
�

Pj Qj
��1

However, as Quak and Weyrich [13] point out, when implementing
the filter bank procedure for spline wavelets, it is generally not a
good idea to form the filters Aj and Bj explicitly. Although Pj and Qj

are sparse, having onlyO(d) entries per column, Aj and Bj are in gen-
eral dense, so matrix–vector multiplication would require quadratic
instead of linear time.

Fortunately, there is a better approach. The idea is to computeCj�1

and Dj�1 from Cj by solving the sparse linear system

�
Pj Qj

�� Cj�1

Dj�1

�
= Cj.

In order to solve this system for

�
Cj�1

Dj�1

�
, we first make the ma-

trix
�

Pj Qj
�

into a banded matrix simply by interspersing the
columns of Pj and Qj. The resulting banded system can then be
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(a) (b) (c) (d)

Figure 3 Changing a curve’s overall sweep without affecting its
character. Given the original curve (a), the system extracts the over-
all sweep (b). If the user modifies the sweep (c), the system can re-
apply the detail (d).

1
2

3
4

Figure 4 The middle of the dark curve is pulled, using editing at var-
ious levels of smoothing j. A change in a control point in C1 has a
very broad effect, while a change in a control point inC4 has a nar-
row effect.

solved in linear time using LU decomposition [12]. Thus we can
compute the entire filter bank operation without ever forming and
using Aj or Bj explicitly.

4 Application III: Multiresolution curves and surfaces

We presented two applications of wavelets in Part 1: compression of
one-dimensional signals and compression of two-dimensional im-
ages. Our third application of wavelets in computer graphics is
curve design and editing, as described in detail by Finkelstein and
Salesin [8]. Their multiresolution curves are built from a wavelet
basis for endpoint-interpolating cubic B-splines, which we dis-
cussed in the previous section.

Multiresolution curves conveniently support a variety of opera-
tions:

� changing a curve’s overall “sweep” while maintaining its fine de-
tails, or “character” (Figures 3 and 4);

� changing a curve’s “character” without affecting its overall
“sweep” (Figure 5);

� editing a curve at any continuous level of detail, allowing an ar-
bitrary portion of the curve to be affected through direct manipu-
lation;

� smoothing at continuous levels to remove undesirable features
from a curve;

� approximating or “fitting” a curve within a guaranteed maximum
error tolerance, for scan conversion and other applications.

Here we’ll describe briefly just the first two of these operations,
which fall out quite naturally from the multiresolution representa-
tion.

4.1 Editing the sweep of the curve

Editing the sweep of a curve at an integer level of the wavelet
transform is simple. Let CJ be the control points of the original
curve f J(t), let Cj be a low-resolution version of CJ , and let Ĉ

j
be

an edited version of Cj, given by Ĉ
j

= Cj + �Cj. The edited ver-
sion of the highest resolution curve Ĉ

J
= CJ +�CJ can be computed

Figure 5 Changing the character of a curve without affecting its sweep.

through synthesis:

Ĉ
J

= CJ + �CJ

= CJ + PJ PJ�1 � � �Pj+1
�Cj.

Note that editing the sweep of the curve at lower levels of smooth-
ing j affects larger portions of the high-resolution curve f J(t). At the
lowest level, when j = 0, the entire curve is affected. At the highest
level, when j = J, only the narrow portion influenced by one original
control point is affected. The kind of flexibility that this multireso-
lution editing allows is suggested in Figures 3 and 4.

4.2 Editing the character of the curve

Multiresolution curves also naturally support changes in the char-
acter of a curve, without affecting its overall sweep. Let CJ be the
control points of a curve, and letC0, D0, : : :, DJ�1 denote its wavelet
transform. Editing the character of the curve is simply a matter of re-
placing the existing set of detail coefficientsDj, : : : , DJ�1 with some
new set D̂

j
, : : : , D̂

J�1
, and reconstructing. To avoid coordinate-

system artifacts, all detail coefficients are expressed in terms of the
curve’s local tangent and normal, rather than the x and y directions.

Figure 5 demonstrates how the character of curves in an illustration
can be modified with various detail styles. (The interactive illus-
tration system used to create this figure was described by Salisbury
et al. [14].)

4.3 Multiresolution surfaces

Multiresolution editing can be extended to surfaces by using ten-
sor products of B-spline scaling functions and wavelets. Either
the standard construction or the nonstandard construction described
in Part 1 for Haar basis functions can be used to form a two-
dimensional basis from a one-dimensional B-spline basis. We can
then edit surfaces using the same operations described for curves.
For example, Figure 6 shows a bicubic tensor-product B-spline sur-
face after altering its sweep at different levels of detail.

We can further generalize multiresolution analysis to surfaces of
arbitrary topology by defining wavelets based on subdivision sur-
faces, as described by Lounsbery et al. [10]. Their nonorthogonal
wavelet basis, in combination with the work of Eck et al. [6], al-
lows any polyhedral object to be decomposed into scaling function
and wavelet coefficients. Then a compression scheme similar to the
one presented for images in Section 3.3 of Part 1 can be used to dis-
play the object at various levels of detail simply by leaving out small
wavelet coefficients during reconstruction. An example of this tech-
nique is shown in Figure 7.

5 Conclusion

Our primer has only touched on a few of the many uses for wavelets
in computer graphics. We hope this introduction to the topic has ex-
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(a) (b) (c) (d)

Figure 6 Surface manipulation at different levels of detail: The original surface (a) is changed at a narrow scale (b), an intermediate scale (c),
and a broad scale (d).

(a) (b) (c)

Figure 7 Surface approximation using subdivision surface wavelets: (a) the original surface, (b) an intermediate approximation, and (c) a coarse
approximation.

plained enough of the fundamentals for interested readers to explore
both the construction of wavelets and their application to problems
in graphics and beyond. We present a more thorough discussion in
a forthcoming monograph [15].
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A Details on endpoint-interpolating B-spline wavelets

This appendix presents the matrices required to apply endpoint-
interpolating B-spline wavelets of low degree. (The Matlab code
used to generate these matrices is available from the authors upon
request.) These concrete examples should serve to elucidate the
ideas presented in Section 3. To emphasize the sparse structure of
the matrices, zeros have been omitted. Diagonal dots indicate that
the previous column is to be repeated the appropriate number of
times, shifted down by two rows for each column. The P matrices
have entries relating the unnormalized scaling functions defined in
Section 3, while the Q matrices have entries defining normalized,
minimally supported wavelets. Columns of the Q matrices that are
not represented exactly with integers are given to six decimal places.

A.1 Haar wavelets

The B-spline wavelet basis of degree 0 is simply the Haar basis de-
scribed in Section 2 of Part 1. Some examples of the Haar basis scal-
ing functions and wavelets are depicted in Figure 8. The synthesis
matrices Pj and Qj are

Pj =

2
64

1
1

1
1 �

�
� 1

1

3
75 Qj =

p
2j
2

2
64

1
�1

1
�1 �

�
� 1
�1

3
75

Figure 8 Piecewise-constant B-spline scaling functions and
wavelets for j = 3.

A.2 Endpoint-interpolating linear B-spline wavelets

Figure 9 shows a few typical scaling functions and wavelets for
linear B-splines. The synthesis matrices Pj and Qj for endpoint-
interpolating linear B-spline wavelets are

P1 = 1
2

h
2
1 1

2

i

P2 = 1
2

"
2
1 1

2
1 1

2

# Pj�3 = 1
2

2
666664

2
1 1

2
1 1

2
1 �

�
� 1

2
1 1

2

3
777775

Q1 = p
3

h
�1

1
�1

i
Q2 =

q
3
64

"
�12

11 1
�6 �6

1 11
�12

#

Qj�3 =
q

2j

72

2
66666664

�11. 022704
10. 104145 1
�5. 511352 �6

0. 918559 10 1
�6 �6

1 10
�6 �

1 � 1
� �6

10 0. 918559
�6 �5. 511352

1 10. 104145
�11. 022704

3
77777775

Figure 9 Linear B-spline scaling functions and wavelets forj = 3.
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A.3 Endpoint-interpolating quadratic B-spline wavelets

Figure 10 shows some quadratic B-spline scaling functions and wavelets. The synthesis matricesPj and Qj for the quadratic case are

P1 = 1
2

�
2
1 1

1 1
2

�
P2 = 1

4

2
4 4

2 2
3 1
1 3

2 2
4

3
5 Pj�3 = 1

4

2
66666664

4
2 2

3 1
1 3

3 1
1 3

3 �
1 � 1

� 3
3 1
1 3

2 2
4

3
77777775

Q1 =
q

5
4

�
�2

3
�3

2

�
Q2 =

q
3

4936

2
4 �144

177 21
�109 �53

53 109
�21 �177

144

3
5 Q3 =

q
1

713568

2
66664

�4283. 828550
5208. 746077 780

�3099. 909150 �1949 �11
1300. 002166 3481 319
�253. 384964 �3362 �1618 �8. 737413

8. 737413 1618 3362 253. 384964
�319 �3481 �1300. 002166

11 1949 3099. 909150
�780 �5208. 746077

4283. 828550

3
77775

Qj�4 =
q

3 � 2j

136088

2
666666666664

�381. 872771
464. 322574 69. 531439

�276. 334798 �173. 739454 �1
115. 885924 310. 306330 29
�22. 587463 �299. 698329 �147 �1

0. 778878 144. 233164 303 29
�28. 436576 �303 �147

0. 980572 147 303 �1
�29 �303 � 29

1 147 � �147 �0. 980572
�29 � 303 28. 436576

1 �303 �144. 233164 �0. 778878
147 299. 698329 22. 587463
�29 �310. 306330 �115. 885924

1 173. 739454 276. 334798
�69. 531439 �464. 322574

381. 872771

3
777777777775

Figure 10 Quadratic B-spline scaling functions and wavelets forj = 3.
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A.4 Endpoint-interpolating cubic B-spline wavelets

Some examples of cubic B-spline scaling functions and wavelets are shown in Figure 11. The synthesis matricesPj and Qj for endpoint-
interpolating cubic B-spline wavelets are

P1 = 1
2

"
2
1 1

1 1
1 1

2

#
P2 = 1

16

2
64

16
8 8

12 4
3 10 3

4 12
8 8

16

3
75 Pj�3 = 1

16

2
666666666664

16
8 8

12 4
3 11 2

8 8
2 12 2

8 8
2 12

8 �
2 � 2

� 8
12 2

8 8
2 11 3

4 12
8 8

16

3
777777777775

Q1 = p
7

"
1

�2
3

�2
1

#
Q2 =

q
315

31196288

2
64

1368
�2064 �240

1793 691
�1053 �1053

691 1793
�240 �2064

1368

3
75 Q3 =

2
666664

6. 311454
�9. 189342 �1. 543996

7. 334627 4. 226722 0. 087556
�3. 514553 �5. 585477 �0. 473604 �0. 000155

1. 271268 6. 059557 1. 903267 0. 019190
�0. 259914 �4. 367454 �4. 367454 �0. 259914

0. 019190 1. 903267 6. 059557 1. 271268
�0. 000155 �0. 473604 �5. 585477 �3. 514553

0. 087556 4. 226722 7. 334627
�1. 543996 �9. 189342

6. 311454

3
777775

Qj�4 =
q

5 � 2j

675221664

2
666666666666666664

25931. 200710
�37755. 271723 �6369. 305453

30135. 003012 17429. 266054 385. 797044
�14439. 869635 �23004. 252368 �2086. 545605 �1

5223. 125428 24848. 487871 8349. 373420 124
�1067. 879425 �17678. 884301 �18743. 473059 �1677 �1

78. 842887 7394. 685374 24291. 795239 7904 124
�0. 635830 �1561. 868558 �18420. 997597 �18482 �1677

115. 466347 7866. 732009 24264 7904
�0. 931180 �1668. 615872 �18482 �18482 �1

123. 378671 7904 24264 124
�0. 994989 �1677 �18482 � �1677 �0. 994989

124 7904 � 7904 123. 378671
�1 �1677 � �18482 �1668. 615872 �0. 931180

124 24264 7866. 732009 115. 466347
�1 �18482 �18420. 997597 �1561. 868558 �0. 635830

7904 24291. 795239 7394. 685374 78. 842887
�1677 �18743. 473059 �17678. 884301 �1067. 879425

124 8349. 373420 24848. 487871 5223. 125428
�1 �2086. 545605 �23004. 252368 �14439. 869635

385. 797044 17429. 266054 30135. 003012
�6369. 305453 �37755. 271723

25931. 200710

3
777777777777777775

Figure 11 Cubic B-spline scaling functions and wavelets forj = 3.
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