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1 Introduction

Wavelets are a mathematical tool for hierarchically decomposing
functions. They allow afunction to be described interms of acoarse
overall shape, plus detailsthat range from broad to narrow. Regard-
less of whether the function of interestisanimage, acurve, or asur-
face, wavelets offer an elegant technique for representing the levels
of detail present. Thisprimer isintended to provide people working
in computer graphics with some intuition for what wavelets are, as
well asto present the mathematical foundations necessary for study-
ing and using them. In Part 1, we discuss the simple case of Haar
waveletsin one and two dimensions, and show how they can be used
for image compression. In Part 2, we will present the mathematical
theory of multiresolution analysis, then devel op splinewaveletsand
describe their use in multiresolution curve and surface editing.

Although wavelets have their roots in approximation theory [5] and
signal processing [13], they have recently been applied to many
problems in computer graphics. These graphics applications in-
clude image editing [1], image compression [6], and image query-
ing [10]; automatic level-of-detail control for editing and render-
ing curves and surfaces [7, 8, 12]; surface reconstruction from con-
tours[14]; and fast methods for solving simulation problemsin ani-
mation [11] and global illumination [3, 4, 9, 15]. For adiscussion of
wavel ets that goes beyond the scope of this primer, werefer readers
to our forthcoming monograph [16].

We set the stage here by first presenting the simplest form of
wavelets, the Haar basis. We cover one-dimensional wavelet trans-
forms and basis functions, and show how these tools can be used to
compress the representation of a piecewise-constant function. Then
we discuss two-dimensional generalizations of the Haar basis, and
demonstrate how to apply these wavelets to image compression.

Because linear algebrais central to the mathematics of wavelets, we
briefly review important concepts in Appendix A.

2 Waveletsin onedimension

The Haar basis is the simplest wavelet basis. We will first discuss
how a one-dimensional function can be decomposed using Haar
wavelets, and then describe the actual basis functions. Finaly, we
show how using the Haar wavel et decomposition leadsto a straight-
forward technique for compressing a one-dimensional function.

2.1 Onedimensional Haar wavelet transform

To get asensefor how waveletswork, let’sstart with asimple exam-
ple. Suppose we are given aone-dimensional “image” with areso-
lution of four pixels, having values

[9 7 3 5]
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We can represent this image in the Haar basis by computing a
wavelet transform. To do this, we first average the pixels together,
pairwise, to get the new lower resolution image with pixel values

[8 4]

Clearly, some information has been lost in this averaging process.
Torecover the original four pixel valuesfrom the two averaged val-
ues, we need to store some detail coefficients, which capture the
missing information. In our example, we will choose 1 for the first
detail coefficient, since the average we computed is 1 less than 9
and 1 morethan 7. Thissingle number allows usto recover thefirst
two pixels of our origina four-pixel image. Similarly, the second
detail coefficientis —1,since4+(—1)=3and4 — (—1) =5.

Thus, we have decomposed the original image into a lower resolu-
tion (two-pixel) version and a pair of detail coefficients. Repeating
this process recursively on the averages gives the full decomposi-
tion:

Resolution Averages Detail coefficients
4 [9 7 3 5]
2 [8 4] [1 —1]

1 [6] [2]

Finally, wewill definethewavel et transform (also called thewavel et
decomposition) of the original four-pixel image to be the single co-
efficient representing the overall average of the original image, fol-
lowed by the detail coefficients in order of increasing resolution.
Thus, for the one-dimensional Haar basis, the wavelet transform of
our original four-pixel imageis given by

[6 2 1 —1]

The way we computed the wavelet transform, by recursively aver-
aging and differencing coefficients, iscalled afilter bank—a process
we will generalize to other types of wavelets in Part 2 of our tuto-
rial. Notethat no information hasbeen gained or lost by thisprocess.
Theorigina image had four coefficients, and so does the transform.
Also note that, given the transform, we can reconstruct theimage to
any resolution by recursively adding and subtracting the detail co-
efficients from the lower resolution versions.

Storing the image’s wavel et transform, rather than the image itself,
has a number of advantages. One advantage of the wavelet trans-
form is that often alarge number of the detail coefficients turn out
to be very small in magnitude, asin the example of Figure 1. Trun-
cating, or removing, these small coefficients from the representa-
tion introduces only small errorsin the reconstructed image, giving
aform of “lossy” image compression. We will discuss this particu-
lar application of wavelets in Section 2.3, after we present the one-
dimensional Haar basis functions.
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Figure 1 A sequence of decreasing-resolution approximations to a
function (left), along with the detail coefficients required to recapture
the finest approximation (right). Note that in regions where the true
function is close to being flat, a piecewise-constant approximation
works well, so the corresponding detail coefficients are relatively
small.

2.2 Onedimensional Haar wavelet basisfunctions

We have shown how one-dimensional images can be treated as se-
quences of coefficients. Alternatively, we can think of images as
piecewise-constant functions on the half-open interval [0, 1). To do
so, we will use the concept of avector space from linear algebra
A one-pixel imageisjust afunction that is constant over the entire
interval [0,1). We'll let V° be the vector space of all these func-
tions. A two-pixel image has two constant pieces over the inter-
vas[0,1/2) and [1/2,1). We'll call the space containing all these
functions V. If we continue in this manner, the space V! will in-
clude all piecewise-constant functions defined on the interval [0, 1)
with constant pieces over each of 2 equal subintervals.

We can now think of every one-dimensional imagewith 2 pixelsas
an element, or vector, in\!'. Note that because these vectors are all
functions defined on the unit interval, every vector inV' isalso con-
tained in VI*1, For example, we can always describe a piecewise-
constant function with two intervals as a piecewise-constant func-
tion with four intervals, with each interval in the first function cor-
responding to a pair of intervals in the second. Thus, the spacesV!
are nested; that is,

VecvicVvic ..

The mathematical theory of multiresolution analysis requires this
nested set of spacesV!. Wewill consider thistopic more thoroughly
inPart 2.

Now we need to define a basis for each vector spaceV'. The basis
functions for the spaces V! are called scaling functions, and are usu-
ally denoted by the symbol ¢. A simple basisfor V! is given by the
set of scaled and translated “box” functions:

P = p@x—i), i=0,...,2 -1,

where

o 1 for0<x<1
¢09 = { 0 otherwise.

Asan example, Figure 2 shows the four box functions forming a ba-
sisfor V2.

The next step is to choose an inner product defined on the vector
spaces V. The “standard” inner product,

1
(19 = / (4 g)
0

for two elementsf,g € V! will do quite well for our running ex-
ample. We can now define anew vector spaceW as the orthogonal

complement of V! in V*1. In other words, wewill let W be the space
of al functionsinVi*! that are orthogonal toall functionsinV/ under

the chosen inner product. Informally, we can think of the wavelets
inW as ameans for representing the parts of afunction inVi** that

cannot be represented in /.

A collection of linearly independent functi onSz/z{ (X) spanning W are

called wavelets. These basis functions have two important proper-

ties:

1. The basisfunctionsy! of W, together with the basis functions |
of VI, form abasis for Vi,

2. Every basis function z/;{ of W is orthogonal to every basis func-
tion ¢! of VJ under the chosen inner product*

Thus, the “detail coefficients’ of Section 2.1 are really coefficients
of the wavelet basis functions.

The wavelets corresponding to the box basis are known astheHaar
wavelets, given by
Y = p@x—10),  i=0,...

where

-1 forl/2<x<1

1 for0<x<1/2
Y = ,
0 otherwise.

Figure 3 shows the two Haar wavelets spanning W:.

Before going on, let’s run through our example from Section 2.1
again, but now applying these more sophisticated ideas.

We begin by expressing our original imageZ(x) as a linear combi-
nation of the box basis functionsinV2:

ZI(X) = G po(d) + G i) + CGP5(X) + C5B5(X).

1Some authors refer to functions with these properties aspre-wavelets

reserving theterm “wavelet” for functions:/z{ that are also orthogonal to each
other.
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Figure 2 The box basis for V2.
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Figure 3 The Haar wavelets for WL.
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A more graphical representation is
I = 9 x 1
+ 7 X [ l
+ 3 x [ l
+ 5 x [ 1
Note that the coefficients c3, . . ., c3 are just the four original pixel
values[97 3 5].

We can rewrite the expression for Z(x) in terms of basis functions
in V! and WA, using pairwise averaging and differencing:

I = ds() + croi(d) + dyhg(x) + dii(¥)
= 8 x [ |
v o4 x —
+ 1 x I__l
+ -1 X I__I

These four coefficients should ook familiar as well.

Finally, we'll rewrite Z(x) as a sum of basis functions in V°, WP,
and W

I() = chpo() + dgvg(d + dgeg(9 + di i(¥)

= 6 x |
+ 2 x I
+ 1 x —
|
+ -1 x ]
1

Once again, these four coefficients are the Haar wavelet transform
of the original image. The four functions shown above constitute
the Haar basis for V2. Instead of usi ng the usual four box functions,
we can use ¢, 13, ¥, and 7 to represent the overall average, the
broad detail, and the two types of finer detail possiblein afunction
in V2. The Haar basis for V! withj > 2 includes these functions as
well as narrower trandates of the wavelet ().

Orthogonality

The Haar basis possesses an important property known asorthog-
onality, which is not always shared by other wavelet bases. An or-
thogonal basisis onein which all of the basisfunctions, in this case
$9, 90,15, ¥1, . . ., areorthogonal to one another. Notethat orthogo-
nality isstronger than the minimum requirement for waveletsthaty!
be orthogonal to all scaling functions at the same resolution levelj.

Normalization

Another property that is sometimes desirable isnormalization. A
basis function u(x) is normalized if (u|u) = 1. We can normalize
the Haar basis by replacing our earlier definitions with

Plx) = 272p@x i)
W) = 272 y@x - ),

where the constant factor of 2/2 is chosen to satisfy (u|u) = 1 for
the standard inner product. With these modified definitions, the new
normalized coefficients are obtained by multiplying each old coef-
ficient with superscript j by 27172, Thus, in the example from the
previous section, the unnormalized coefficients [6 2 1 —1] become
the normalized coefficients

(62 5 %]

As an dternative to first computing the unnormalized coefficients
and then normalizing them, we can include normalization in the de-
composition algorithm. The following two pseudocode procedures
accomplish this normalized decomposition:

procedure DecompositionStep(C: array [1.. h] of reals)
fori < 1toh/2do
C'[i] « (C[2i — 1] +C[2])/V2
C'[h/2 +i] « (C[2i — 1] — C[2i])/v/2
end for
C«+C
end procedure

procedure Decomposition(C: array [1..h] of reals)
C « C/vh (normalize input coefficients)
whileh > 1do
DecompositionStep(C[1. . h])
h+ h/2
end while
end procedure

Now we can work with an orthonormal basis, meaning one that is
both orthogonal and normalized. Using an orthonormal basis turns



out to be handy when compressing a function or an image, which
we describe next.

2.3 Application I: Compression

The goa of compression is to express an initial set of data using
some smaller set of data, either with or without loss of information.
For instance, suppose we are given a function f (x) expressed as a
weighted sum of basisfunctionsui(x), . . ., Um(X):

f(x) = Zq ui(%).
i=1

The data set in this case consists of the coefficientscy, . . ., cn. We
would liketo find afunction approximatingf (x) but requiring fewer
coefficients, perhaps by using adifferent basis. That is, given auser-
specified error tolerance e (for lossless compression, e = 0), we are
looking for

=) aae
i=1

such that M < mand ||f(x) — f(x)|| < e for some norm. In general,
you could attempt to construct aset of basisfunctionst, . . . , U that
would provide agood approximation with few coefficients. Wewill
focus instead on the simpler problem of finding a good approxima-
tion in afixed basis.

One form of the compression problem is to order the coeffi-
cientscy, ..., Cm SO that for every m < m, the first m elements of
the sequence give the best approximation f(x) to f(x) as measured
in the L? norm. As we show here, the solution to this problem is
straightforward if the basis is orthonormal, as is the case with the
normalized Haar basis.

Let o be a permutation of 1,...,m, and let f(X) be afunction that
uses the coefficients corresponding to the firstriy numbers of the per-
mutation o

m
0 =D Copy Uop)-
i=1

The square of the L2 error in this approximation is

(00 = F [ £ — ()

m m
<Z Cor (i) Uor (i) Z Co (i) UG(J')>

IF0 = Fe);

i=itL j=l
m m
=) ) G &0 (U | Us)
=l j=mel
m
— 2
=) (o)
i=mtl

Thelast step follows from the assumption that the basisis orthonor-
mal, so (Ui |u) = &j. We conclude that to minimize this error
for any given m, the best choice for ¢ is the permutation that sorts
the coefficients in order of decreasing magnitude; that is, o satis-
fies|co| > -+ > [Com]-

Figure 1 demonstrated how a one-dimensional function could be
transformed into coefficients representing the function’s overall av-
erage and various resolutions of detail. Now we repeat the process,
this time using normalized Haar basis functions. We can apply L?

J_LL'—._,_,_

16 out of 16 coefficients

T

12 out of 16 coefficients

W

8 out of 16 coefficients

ol

4 out of 16 coefficients

J_LL'—._,_,_

14 out of 16 coefficients

TN

10 out of 16 coefficients

N

6 out of 16 coefficients

I —

2 out of 16 coefficients

Figure 4 Coarse approximations to a function obtained usingL2
compression: detail coefficients are removed in order of increasing
maghitude.

compression to the resulting coefficients simply by removing or ig-
noring the coefficients with smallest magnitude. By varying the
amount of compression, we obtain a sequence of approximations to
the original function, as shown in Figure 4.

3 Waveletsin two dimensions

In preparation for image compression, we need to generalize Haar
waveletsto two dimensions. First, we will consider how to perform
awavelet decomposition of the pixel vaues in a two-dimensional
image. We then describe the scaling functions and wavelets that
form atwo-dimensional wavelet basis.

3.1 Two-dimensional Haar wavelet transforms

There are two ways we can use wavelets to transform the pixel val-
ues within an image. Each is a generalization to two dimensions of
the one-dimensional wavelet transform described in Section 2.1.

To obtain the standard decomposition[2] of animage, wefirst apply
the one-dimensional wavelet transform to each row of pixel values.
This operation gives us an average value along with detail coeffi-
cientsfor each row. Next, we treat thesetransformed rowsasif they
werethemselves an image and apply the one-dimensional transform
to each column. The resulting values are all detail coefficients ex-
cept for a single overall average coefficient. The algorithm below
computes the standard decomposition. Figure5illustrates each step
of its operation.

procedur e StandardDecomposition(C: array [1..h, 1..w] of reals)
for row < 1tohdo
Decomposition(C[row, 1..w])
end for
for col + 1towdo
Decomposition(C[1. . h, col])
end for
end procedure

The second type of two-dimensional wavelet transform, called the
nonstandard decomposition, alternates between operations on rows
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Figure5 Standard decomposition of an image.

and columns. First, we perform one step of horizontal pairwiseaver-
aging and differencing on the pixel valuesin each row of theimage.
Next, we apply vertical pairwise averaging and differencing to each
column of theresult. To completethe transformation, werepeat this
processrecursively only on the quadrant containing averagesin both
directions. Figure 6 shows al the stepsinvolved in the nonstandard
decomposition procedure below.

procedur e NonstandardDecomposition(C: array [1..h, 1..h] of reals)
C <+ C/h (normalize input coefficients)
whileh > 1do
for row «+— 1tohdo
DecompositionStep(C[row, 1. .. h])
end for
for col «+ 1tohdo
DecompositionStep(C[1. . h, col])
end for
h+ h/2
end while
end procedure

3.2 Two-dimensional Haar basisfunctions

The two methods of decomposing a two-dimensional image yield
coefficients that correspond to two different sets of basis functions.
The standard decomposition of an image gives coefficientsfor aba-
sis formed by the standard construction [2] of a two-dimensional

basis. Similarly, the nonstandard decomposition gives coefficients
for the nonstandard construction of basis functions.

The standard construction of atwo-dimensional wavelet basis con-
sists of all possible tensor products of one-dimensional basis func-
tions. For example, when we start with the one-dimensional Haar
basis for V2, we get the two-dimensional basis for V2 shown in Fig-
ure?7. Notethat if we apply the standard construction to an orthonor-
mal basisin one dimension, we get an orthonormal basis in two di-
mensions.

The nonstandard construction of atwo-dimensional basis proceeds

transform rows

transform
columns

Figure 6 Nonstandard decomposition of an image.
by first defining a two-dimensional scaling function,

Pp(x.Y) = ¢(X) B(Y),

and three wavelet functions,

dP(X,Y) = ¢(X) P(y)
Yo(X,Y) = P(X) H(Y)
PP(X,Y) = P(X) P(y).

We now denote levels of scaling with asuperscriptj (aswedidinthe
one-dimensional case) and horizontal and vertical translations with
apair of subscriptsk and ¢£. The nonstandard basis consists of asin-
gle coarse scaling function ¢¢8‘0(x, Y):=¢p(X,y) along with scales
and trangdlates of the three wavelet functions ¢, ¥¢, and ¢i):

oY) = 20p@x—k 2y — 1)
bola(y) = 2up@x—k 2y —0)
Pl (xy) = 299@x—k 2y —0).

The constant 2 normalizes the wavelets to give an orthonormal ba-
sis. The nonstandard construction resultsin the basis for V2 shown
in Figure 8.

We have presented both the standard and nonstandard approaches
to wavelet transforms and basis functions because both have advan-
tages. The standard decomposition of an image is appealing be-
cause it smply requires performing one-dimensional transforms on
all rows and then on al columns. On the other hand, it is slightly
more efficient to compute the nonstandard decomposition. For an
m x mimage, the standard decomposition requires 4% — m) as-
signment operations, while the nonstandard decomposition requires
only $(n? — 1) assignment operations.

Another consideration is the support of each basis function, mean-
ing the portion of each function’s domain where that functionisnon-
zero. All nonstandard Haar basis functions have sguare supports,
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Figure 7 Standard construction of atwo-dimensional Haar wavelet
basis for V2. In the unnormalized case, functions are +1 where plus
signs appear, —1 where minus signs appear, and 0 in gray regions.

while some standard basis functions have nonsquare supports. De-
pending upon the application, one of these choices may be prefer-
able to the other.

3.3 Application II: Image compression

We defined compression in Section 2.3 as the representation of a
function using fewer basis function coefficients than were origi-
nally given. The method we discussed for one-dimensional func-
tions applies equally well to images, which we treat as the coeffi-
cients corresponding to a two-dimensional piecewise-constant ba-
sis. The approach presented here is only introductory; for a more
complete treatment of wavelet image compression, see the article
by DeVoreet al. [6].

We can summarize wavelet image compression using thel.? norm
in three steps:

1. Compute coefficientscy, . . ., Cm representing an image in anor-
malized two-dimensional Haar basis.

2. Sort the coefficientsin order of decreasing magnitude to produce
the sequence .y, - - - , Co(m)-

3. Starting with m = m, find the smalest m for which
S (Com)? < €2, wheree isthe allowable L? error.

The first step is accomplished by applying either of the two-
dimensional Haar wavelet transforms described in Section 3.1, be-
ing sure to use normalized basis functions. Any standard sorting
technique will work for the second step. However, for largeimages
sorting becomes exceedingly slow.

The pseudocode below outlines a more efficient method that uses
abinary search strategy to find a threshold below which coefficient
sizes are deemed negligible. The procedure takes as input a one-
dimensional array of coefficients C (with each coefficient corre-

sponding to a two-dimensional basis function) and an error toler-
ance e. For each guess at athreshold r, the algorithm computes the
square of the L2 error that would result from discarding coefficients
smaller in magnitude than . This squared error sis compared to e2

at each iteration to decide whether the binary search should continue
intheupper or lower half of thecurrent interval. Theagorithm halts
when thecurrent interval isso narrow that the number of coefficients

=
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Figure 8 Nonstandard construction of a two-dimensional Haar
wavelet basis for V2.

to be discarded no longer changes.

procedure Compress(C: array [1..m] of reals; e: real)
Tmin <— Min{ |C[i]| }
Tmax < Max { |C[i]| }
do
T 4 (Tmin + Tmax) /2
s« 0
fori < 1tomdo
if |C[i]| < 7 then s « s+ (C[i])?
end for
if s < € then Toin < 7 €S8 Tinay < 7
until Tmin A Tmax
for i + 1tomdo
if |C[i]] < 7 then C[i] +- 0
end for
end procedure

This binary search algorithm was used to produce the images in
Figure 9. These images demonstrate the high compression ratios
wavelets offer, as well as some of the artifacts they introduce.

DeVore et al. [6] suggest that the L' norm is best suited to the
task of image compression. Here is a pseudocode fragment for a
“greedy” L' compression scheme:

for each pixel (x,y) do
o[xy] + O
end for
fori «+ 1tomdo
0’ + & + error from discarding C[i]
if nyy [6[x V]| < €then
discard coefficient C[i]
§« &
end if
end for

Notethat this algorithm’s results depend on the order in which coef-
ficients are visited. Different images (and degrees of compression)
may be obtained from varying this orde—for example, by start-
ing with the finest scale coefficients, rather than the smallest coef-
ficients. You could also run a more sophisticated constrained op-
timi zation procedure to select the minimum number of coefficients
subject to the error bound.
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Figure9 L2 wavelet image compression: Theoriginal image (a) can be represented using (b) 19% of itswavelet coefficients, with 5% rel ative?
error; () 3% of its coefficients, with 10% relativel.? error; and (d) 1% of its coefficients, with 15% relativel? error.

4 Conclusion

We have described Haar wavel etsin one and two dimensions aswell
as how to use them for compressing functions and images. Part 2
of this primer will continue this exposition by presenting the math-
ematical framework of multiresolution analysis. We will also de-
velop aclass of wavel ets based on endpoint-interpol ating B-splines,
and describe how to use them for multiresolution curve and surface
editing.

Acknowledgments

We wish to thank Ronen Barzel, Steven Gortler, Michael Shantzis,
and the anonymous reviewers for many helpful comments. This
work was supported by NSF Presidential and National Young In-
vestigator awards (CCR-8957323 and CCR-9357790), by an NSF
Graduate Research Fellowship, by the University of Washington
Royalty Research Fund (65-9731), and by industrial gifts from
Adobe, Aldus, Microsoft, and Xerox.

References

[1] Deborah Berman, Jason Bartell, and David Salesin. Multires-
olution painting and compositing. In Proceedings of SG-
GRAPH 94, pages 85-90. ACM, New York, 1994.

[2] G. Beylkin, R. Coifman, and V. Rokhlin. Fast wavelet trans-
forms and numerical algorithms 1. Communications on Pure
and Applied Mathematics 44(2):141-183, March 1991.

[3] Per H. Christensen, Dani Lischinski, Eric J. Stollnitz, and
David H. Sdesin. Clustering for glossy global illumination.
ACM Transactions on Graphics 1996 (to appear).

[4] Per H. Christensen, Eric J. Stollnitz, David H. Salesin, and
Tony D. DeRose. Wavelet radiance. In G. Sakas, P. Shirley,
and S. Milller, editors, Photorealistic Rendering Techniques
pages 295-309. Springer-Verlag, Berlin, 1995.

[5] Ingrid Daubechies. Orthonormal bases of compactly sup-
ported wavelets. Communications on Pure and Applied Math-
ematics, 41(7):909-996, October 1988.

[6] R. DeVore, B. Jawerth, and B. Lucier. Image compression
through wavelet transform coding. |EEE Transactions on In-
formation Theory, 38(2):719-746, March 1992.

[7] Adam Finkelstein and David H. Salesin.  Multiresolution
curves. In Proceedings of SGGRAPH 94, pages 261-268.
ACM, New York, 1994.

[8] StevenJ. Gortler and Michael F. Cohen. Hierarchical and vari-
ational geometric modeling with wavelets. InProceedings of
the 1995 Symposium on Interactive 3D Graphics pages 35—
42. ACM, New York, 1995.

[9] Steven J. Gortler, Peter Schroder, Michael F. Cohen, and Pat
Hanrahan. Wavelet radiosity. In Proceedings of S GGRAPH
93, pages 221-230. ACM, New York, 1993.

[10] Charles E. Jacobs, Adam Finkelstein, and David H. Salesin.
Fast multiresolution image querying. In Proceedings of SG-
GRAPH 95, pages 277-286. ACM, New York, 1995.

[11] Zicheng Liu, Steven J. Gortler, and Michael F. Cohen. Hier-
archical spacetime control. InProceedings of S GGRAPH 94,
pages 35-42. ACM, New York, 1994.

[12] Michael Lounsbery, Tony DeRose, and Joe Warren. Multires-
olution surfaces of arbitrary topological type. ACM Transac-
tions on Graphics, 1996 (to appear).

[13] Stephane Mallat. A theory for multiresolution signal decom-
position: The wavelet representation. |EEE Transactions on
Pattern Analysis and Machine Intelligence 11(7):674-693,
July 1989.

[14] David Meyers. Multiresolutiontiling. Computer Graphics Fo-
rum, 13(5):325-340, December 1994.

[15] Peter Schroder, Steven J. Gortler, Michael F. Cohen, and Pat
Hanrahan. Wavelet projections for radiosity. Computer
Graphics Forum, 13(2):141-151, June 1994.

[16] Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin.
Wavelets for Computer Graphics: Theory and Applications
Morgan Kaufmann, San Francisco, 1996 (to appear).



A Linear algebrareview

The mathematics of wavelets rely heavily on fundamental ideas
from linear algebra. This appendix reviews afew important ideas.

A.1 Vector spaces

The starting point for linear algebra s the notion of avector space
A vector space (over the reals) can be loosely defined as a collec-
tion V of elements where

1. ForalabelRandforaluveV,autbveV.
2. Thereexistsaunique element O € V such that

- foralueV,0u=0,and

-fordlue V,0+u=u.

3. Other axioms (omitted here) hold true, most of which are neces-
sary to guarantee that multiplication and addition behave as ex-
pected.

The elements of a vector space V are called vectors, and the e-
ement O is called the zero vector. The vectors may be geometric
vectors, or they may be functions, as is the case when discussing
wavelets and multiresolution analysis.

A.2 Basesand dimension

A collection of vectorsug, Uz, . .
linearly independent if

. inavector spaceV are said to be

Clh+CU+---=0 ifandonlyif c=c=---=0.
A collectionus, Uy, . .. € V of linearly independent vectorsisabasis

for V if every v € V can be written as
i

for some real numberscy, cy,.... The vectorsin abasis for V are
saidtospan V. Intuitively speaking, linear independence meansthat
the vectorsare not redundant, and abasis consists of aminimal com-
plete set of vectors.

If abasis for V has afinite number of elementsu,...,un, thenV
isfinite-dimensional and itsdimension ism. Otherwise, V is said to
be infinite-dimensional.

Example IR® is a three-dimensional space, and &, =
(14,0,0), & =(0,1,0), &3 = (0,0,1) isabasisfor it.

Example: The set of all functions continuous on [0, 1] is
an infinite-dimensiona vector space. WE'll call this space
Cl[0,1].

A.3 Inner productsand orthogonality

When dealing with geometric vectors from the vector space IR, the
“dot product” operation has anumber of uses. The generalization of
the dot product to arbitrary vector spacesiscalled aninner product.
Formally, aninner product (- | -) on avector spaceV isany map from
V x VtoIRthatis

1. symmetric: (u|v) = (v|u),

2. bilinear: (au+bv|w) =a(u|w) + b(v|w), and

3. positive definite: (u|u) > Oforall u# 0.

A vector space together with aninner product is called, not surpris-
ingly, aninner product space

Example: It isstraightforward to show that the dot product
on IR defined by

((a1, @2, a3) | (b1, b2, b)) := @by + @by +ashs (1)

sati sfies the requirements of an inner product.

Example:  The following “standard” inner product on
C[0, 1] plays acentral role in most formulations of multires-
olution analysis:

1
(flgy = / £(X) g(x) dx.
0

The standard inner product can also be generalized to include
apositive weight function w(x):

1
(flg) = / W0 £ g0 .
0

One of the most important uses of the inner product isto formalize
theideaof orthogonality. Two vectorsu, vin aninner product space
are said to be orthogonal if (u|v) = 0. Itis not difficult to show
that a collection ug, Uy, . . . of mutually orthogonal vectors must be
linearly independent, suggesting that orthogonality isastrong form
of linear independence. An orthogonal basisis one consisting of
mutually orthogonal vectors.

A.4 Normsand normalization

A normisafunction that measures the length of vectors. In afinite-
dimensional vector space, wetypically usethe norm||u||:=(u | u)*/2.
If we are working with afunction space such asC[0, 1], we ordinar-
ily use one of the L norms, defined as

1 1/p
lull, = ( / |u(x)|"dx)
0

In the limit as p tends to infinity, we get what is known as the max-
norm

Ul == max |u(X)|.
lulle = max Jueo)
Even morefrequently used istheL.? norm, which can also bewritten
as ||ull, = (u| u)*/? if we are using the standard inner product.

A vector u with |Ju|| = 1issaid to be normalized. If we have an

orthogonal basis composed of vectors that are normalized in thel2
norm, the basis is called orthonormal. Stated concisely, a basis
U1, Uz, . .. isorthonormal if

(ulu) = dy,

where §;; is called the Kronecker deltaand isdefined to be 1ifi =,
and 0 otherwise.

Example: Thevectorse; = (1,0,0), & = (0,1,0), &3 =
(0, 0, 1) form an orthonormal basisfor theinner product space
IR® endowed with the dot product of Equation (1).
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1 Introduction

Wavelets are a mathematical tool for hierarchically decomposing
functions. They allow afunction to be described interms of acoarse
overall shape, plus detailsthat range from broad to narrow. Regard-
less of whether the function of interest is an image, a curve, or a
surface, wavelets provide an elegant technique for representing the
levels of detail present.

In Part 1 of this primer we discussed the simple case of Haar
wavelets in one and two dimensions, and showed how they can be
used for image compression. In Part 2, we present the mathematical
theory of multiresolution analysis, then develop bounded-interval
spline wavelets and describe their use in multiresolution curve and
surface editing.

2 Multiresolution analysis

The Haar waveletswediscussed in Part 1 are just one of many bases
that can be used to treat functions in a hierarchical fashion. In this
section, we develop a mathematical framework known asmultires-
olution analysis for studying wavelets [2, 11]. Our examples will
continue to focus on the Haar basis, but the more general mathe-
matical notation used here will come in handy for discussing other
wavelet bases in later sections.

Multiresolution analysis relies on many results from linear algebra.
Some readers may wish to consult the appendix in Part 1 for a brief
review.

Asdiscussed in Part 1, the starting point for multiresolution analysis
isanested set of vector spaces

Ve oVt c vV C

Asj increases, the resolution of functionsin\i increases. The basis
functions for the space V! are known as scaling functions.

The next step in multiresol ution analysisisto definewavel et spaces.
For each j, we defineW asthe orthogonal complement of \V in Vi*2,
Thismeansthat W includes all the functionsin\i*! that are orthog-
onal to al those in \/ under some chosen inner product. The func-
tions we choose as abasis for W are called wavelets.

2.1 A matrix formulation for refinement

The rest of our discussion of multiresolution analysis will focus on
wavel ets defined on a bounded domain, although we will also refer
to wavel ets on the unbounded real line wherever appropriate. Inthe
bounded case, each spaceV! has afinitebasis, allowing usto use ma-
trix notation in much of what follows, as did Lounsbery et al. [10]

and Quak and Weyrich [13].

tEricJ. Stollnitz, Tony D. DeRose, and David H. Salesin. Wavelets for com-
puter graphics: A primer, part 2. |[EEE Computer Graphics and Applica-
tions, 15(4):75-85, July 1995.

It is often convenient to put the different scaling functi ons¢{ (x) for
agiven level j together into a single row matrix,

P = [0 - ¢y (],
We can do the same for the

where Ml is the dimension of /.
wavelets:

P = (b - ¥ Kl

wheren isthe dimension of W, Because W isthe orthogonal com-
plement of V! in Vi1, the dimensions of these spaces satisfy m*! =
m+n.

The condition that the subspacesV! be nested is equivalent to requir-
ing that the scaling functions berefinable. Thatis, forallj =1,2,. ..
there must exist amatrix of constantsP' such that

) = PXP. @)

In other words, each scaling function at level j — 1 must be express-
ible as a linear combination of “finer” scaling functions at level j.
Note that since V' and VJ ! have dimensionsm' and mi %, respec-
tively, P isanm x mi~! matrix (taller than it iswide).

Since the wavelet spaceW ~* is by definition also asubspace of V1,
wecan writethewavelets¥/~1(x) aslinear combi natlons of thescal-
ing functions ®'(x). Thismeansthereisanm x n'~* matrix of con-
stants Q' satisfying

¥ = Q. @)

Example: In the Haar basis, at a particular level j there
arem = 2 scaling functionsand ' = 2 wavelets. Thus,
there must be refinement matrices describing how the two
scaling functions in V! and the two wavelets in W! can be
made from the four scaling functionsinV2:

P? = and @ =

PP OO

0
0
1
1

OCOr
OORrRHHr

Remark: In the case of wavelets constructed on the un-
bounded real line, the columns of P are shifted versions
of one another, as are the columns of Q. One column
therefore characterizes each matrix, so P’ and Q' are com-
pletely determined by sequences (..., p-1,po,p1,...) ad
(--.,9-1,90, 0, - - ), Which also do not depend onj. Equa-
tions (1) and (2) therefore often appear in the literature as ex-
pressions of the form

09 = Zp. $(2x—i)

YO = Zqi p(2x—i).



These equations are referred to as two-scale relations for
scaling functions and wavel ets, respectively.

Notethat equations (1) and (2) can be expressed asasingle equation
using block-matrix notation:

[t |w] =@ [P |Q]. ®3)
Example:  Substituting the matrices from the previous ex-

ample into Equation (3) along with the appropriate basis
functions gives

[p5 ¢1 ¥5 ¥il = [¢5 ¢1 ¢5 @3l

cor Rk
PR OO
|
corpk
PR OO

It is important to realize that once we have chosen scaling func-
tions and their refinement matrices P, the wavelet matrices Q) are
somewhat constrained (though not completely determined). Infact,
since all functions in ®~*(x) must be orthogonal to all functions

in ¥ ~Y(x), weknow (¢l * |4}y = Ofor al kand £.

To deal with all these inner products simultaneously, let’s define
some new notation for a matrix of inner products. We will denote
by [(®~!| ¥~1)] the matrix whose (k, £) entry is (¢} *| ¢} ).
Armed with this notation, we can rewrite the orthogonality condi-
tion on the wavelets as

(@ e = 0. @
Substituting Equation (2) into Equation (4) yields

(@@ Q =0 )

A matrix equation with a right-hand side of zero like this one is
known as a homogeneous system of equations. The set of all pos-
sible solutions is called the null space of [(®'~*| /)], and the
columnsof Q must form abasisfor thisspace. Thereareamultitude
of bases for the null space of amatrix, implying that there are many
different wavelet basesfor agiven wavelet spaceW . Ordinarily, we
uniquely determine the @ matrices by imposing further constraints
in addition to the orthogonality requirement given above. For exam-
ple, the Haar wavelet matrices can be found by requiring the least
number of consecutive nonzero entries in each column.

The literature on wavelets includes various terminologies for or-
thogonality. Some authors refer to a collection of functions that are
orthogonal to scaling functions but not to each other aspre-wavel ets,
reserving the term “wavelets’ for functions that are orthogonal to
each other aswell. Another common approach isto differentiate be-
tween an orthogonal wavelet basis in which all functions are mu-
tually orthogonal, and a semi-orthogonal wavelet basis in which
the wavelets are orthogonal to the scaling functions but not to each
other. The Haar basisis an example of an orthogonal wavelet basis,
whilethe spline wavel etswewill describein Section 3 are examples
of semi-orthogonal wavelet bases.

Finaly, itissometimes desirableto define wavel etsthat are not quite
orthogonal to scaling functionsin order to have wavelets with small
supports. This last alternative might be termed a non-orthogonal
wavelet basis, and we will mention an example when we describe
multiresolution surfacesin Section 4.3.

2.2 Thefilter bank

The previous section showed how scaling functions and wavelets
could be related by matrices. In this section, we show how matrix

notation can also be used for the decomposition process outlined in
Section 2.1 of Part 1.

Consider afunction in some approximation spaceV'. Let's assume
we have the coefficients of this function in terms of some scaling
function basis. We can write these coefficients as a column matrix
of vluesC = [¢ --- ¢, ;] . The coefficients ¢ could, for ex-
ample, be thought of as pixel colors, or aternatively, as thex- or
y-coordinates of acurve's control pointsin IR,

Suppose we wish to create alow-resolution versionC~* of C with
asmaller number of coefficientsm~1. The standard approach for
creating the m ~* values of C'~* isto use some form of linear filter-
ing and down-sampling on them entriesof C'. This process can be
expressed as a matrix equation

ct=AC (6)

where Alisan mi~* x m matrix of constants (wider than it istall).

Since C~! contains fewer entries than C, this filtering process
clearly loses some amount of detail. For many choices of A, itis
possible to capture the lost detail as another column matrix D=2,
computed by

D-!=pgd 7

whereB’ isan i~ x m matrix of constantsrelated toAl. Thepair of
matricesAl and B are called analysisfilters. The proc&ss of splitti n9
the coefficientsCl into alow-resolution versionC'~* and detail D’
iscalled analysis or decomposition.

If Al and B/ are chosen appropriately, then the orlglnal coefficients
C can be recovered from C~* and DI~* by using the matrices P!
and Q from the previous section:

cd=PC'+QD™ 8)

Recovering C' from C'—* and D'~ iscalled synthesis or reconstruc-
tion. In this context, P' and Q are called synthesisfilters.

Example: In the unnormalized Haar basis, the matrices A
and B are given by:

, 11 1 0o o
A‘é{o 0o 1 1]
pol[1 -1 0 o0
210 0 1 -1

These matrices represent the averaging and differencing op-
erations described in Section 2.1 of Part 1.

Remark: Once again, the matricesfor wavelets constructed
on the unbounded real line have asimple structure: Therows
of Al are shifted versions of each other, as arethe rows of B'.

The analysis Equations (6) and (7) often appear in the litera-

ture as
= Zal—zk Ci[
A
dL_l = ZbZ,Zk dé
A
where the sequences (...,a_1,a0,ai,...) and
(...,b_1,bo,by,...) are the entries in a row of Al and B,

respectively. Similarly, Equation (8) for reconstruction often
appears as

d =Y (eadtracad ).

1



Figure 1 Thefilter bank.

Note that the procedure for spllttlng C into a low-resolution
part C~* and a detail part D'~ can be applied recursively to the
low-resolution version C~1. Thus, the original coefficients can be
expressed as a hlerarchy of Iower resolution versionsC®, . ..,C~?
and detailsD®, ..., DI, asshown in Figure 1. This recursve pro-
cessisknown asafllter banK

Since the ongmal coefficients C' can be recovered from the se-
quence C°, D , D7, we can think of this sequence as a
transform of the orlglnal coeff| cients, known asawavel et transform
Note that the total size of the transform C°, D°, DY, ..., D'~ tisthe
same as that of the original version CJ, so no extra storage isre-
quired. (However, the wavelet coefficients may require more bits
to retain the accuracy of the original values.)

In general, the analysis filters A and B/ are not necessarily trans-
posed multiples of the synthesisfilters, aswas the case for the Haar
basis. Rather, A' and B' are formed by the matrices satisfying the
relation

[<I>j_1 ‘ \Iij_l] |:%J:| = 9)

S A
Notethat [P' | Q' | and [F} are both square matrices. Thus,

combining Equations (3) and (9) gives

A Ly
- @
Although we have not yet gotten specific about how to choose ma-
tricesAl, B, P/, and @, it should be clear from Equation (10) that
the two matrices in that equation must at least be invertible.

2.3 Designing a multiresolution analysis

The multiresolution analysis framework presented above is very
generd. In practiceyou often have the freedom to design amultires-
olution analysis specifically suited to a particular application. The
stepsinvolved are

1. Select the scaling functions /() for each j =
This choice determines the nested approxi mat|on spac&svJ the
synthesis filters P!, and the smoothness—that is, the number of
continuous derivatives—of the analysis.

2. Select aninner product defined on the functionsin \?, V2, . . ..
This choice determines the L? norm and the orthogonal comple-
ment spacesW . Although the standard inner product isthe com-
mon choice, in general theinner product should be chosen to cap-
ture a measure of error that is meaningful in the context of the
application.

3. Sdect a set of wavelets ¥ (x) that span W for eachj =
Thlsch0|cedeterm|nesthesynthessflltersQ Together, thesyn-
thesisfiltersP' and Q' determine the analysisfiltersA and B' by
Equation (10).

Itisgenerally desirable to construct the wavelets to form an orthog-
onal basis for W and to have small support (the support of a func-
tionf(x) isthe set of pointsx wheref (x) # 0). However, orthogonal -
ity often comes at the expense of increased supports, so a tradeoff

must be made. In the case of the spline wavelets presented in the
next section, the wavelets are constructed to have minimal support,
but they are not orthogonal to one another (except for the piecewise-
constant case). Wavelets that are both locally supported and mutu-
ally orthogonal (other than Haar wavel ets) were thought to be im-
possible until Daubechies' ground-bresking work showing that cer-
tain families of spaces V! actually do admit mutually orthogonal
wavelets of small support [5].

3 Splinewavelets

Until now, the only specific wavel et basis we have considered isthe
Haar basis. Haar basis functions have a number of advantages, in-
cluding

e simplicity,

orthogonality,

very small supports,

nonoverlapping scaling functions (at agiven level), and

nonoverlapping wavelets (at agiven level),

which make them useful in many applications. However, despite
these advantages, the Haar basis is a poor choice for applications
such as curve editing [8] and animation [9] because of its lack of
continuity.

There are a variety of ways to construct wavelets with k continu-
ousderivatives. One such class of wavelets can be constructed from
piecewise-polynomial splines. Thesespline wavel ets have been de-
veloped to alarge extent by Chui and colleagues[3, 4]. TheHaar ba-
sisisinfact the smplest instance of spline wavelets, resulting when
the polynomial degreeis set to zero.

In the following, we briefly sketch the ideas behind the construc-
tion of endpoint-interpolating B-spline wavelets. Finkelstein and
Salesin [8] developed a collection of wavelets for the cubic case,
and Chui and Quak [4] presented constructions for arbitrary degree.
Although the derivations for arbitrary degree are too involved to
present here, we give the synthesisfiltersfor the piecewise-constant
(Haar), linear, quadratic, and cubic cases in Appendix A. The next
three sections parallel the three steps described in Section 2.3 for
designing a multiresolution analysis.

3.1 B-splinescaling functions

Our first step is to define the scaling functions for a nested set of
function spaces. We'll start with the general definition of B-splines,
then specify how to make uniformly spaced, endpoint-interpolating
B-splines from these. (More detailed derivations of these and other
splines appear in a number of standard texts[1, 7].)

Given positive integersd and k, with k > d, and a collection of
non-decreasing valuesxo, . . . , Xk+a+1 called knots, the nonuniform B-
spline basi sfunctions of degreed aredefined recursively asfollows.

Fori = .,k andforr = .,d, let
0/ . 1 ifx <x< X
Ni(x) == { 0 otherwise
X Xi+r+1 —
N-'x:=—Nrl +7+x
I( ) Xi+r — ( ) Xi+r+1 — Xi+1 +1 ( )

(Note: The fractionsin these equations are taken to be 0 when their
denominators are 0.)

The endpoint-interpolating B-splines of degree d on [0, 1] result
when the first and last d + 1 knots are set to 0 and 1, respectively. In
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Figure 2 B-spline scaling functions for V1(d) with degreed =
0,1,2,and 3.

this case, the functions N3(X), . . ., N3(x) form a basis for the space
of piecewise-polynomials of degreed with d — 1 continuous deriva-
tives and breakpoints at theinterior knots xg+1 < Xge2 < - -+ < Xk

To make uniformly spaced B-splines, we choosek = 2 +d — 1
and Xg+1, . - . , X to produce 2 equally spaced interior intervals. This
construction gives 2 + d B-spline basis functions for a particular
degree d and level j. We will use these functions as the endpoint-
interpolating B-spline scaling functions. Figure 2 shows examples
of these functions at level j = 1 (two interior intervals) for various
degreesd. Notethat the basisfunctions defined here are not normal-
ized inthe L norm,

If V!(d) denotes the space spanned by the B-spline scaling functions
of degree d with 2 uniform intervals, it is not difficult to show that
the spacesVO(d), V3(d), . . . arenested asrequired by multiresol ution
analysis.

Therich theory of B-splines can be used to develop expressions for
the entries of the refinement matrix P* (see Chui and Quak [4] or
Quak and Weyrich [13] for details). The columns of P are sparse,
reflecting the fact that the B-spline basis functions are locally sup-
ported. The first and last d columns of P' are relatively compli-
cated, but the remaining (interior) columns are shifted versions of
column d + 1. Moreover, the entries of these interior columns are,
up to acommon factor of 1/2", given by binomial coefficients.

Example: Inthe case of cubic splines (d = 3), the matrix P!
forj > 3 hastheform

8
4

Niw O D
B NI [=J N}
PrhOoObAPR

.
1
@l -
PO DNPER
P hODER
U= g
D oNIw

4
8

where blank entries are taken to be zero, and the dots indi-
cate that the previous column is repeated, shifted down by
two rows each time.

3.2 Inner product

The second step of designing amultiresolution analysisisthe choice
of an inner product. We'll simply use the standard inner product
here:

1
(flg) = / £(X) g(x) dx.
0

3.3 B-splinewavelets

To complete our development of amultiresol ution analysis based on
B-splines, we need to find basis functions for the spacesW! that are
orthogonal complements to the spacesV'. Asshown in Section 2.1,
the wavelets are determined by matricesQ' satisfying Equation (5),
which we repeat here for convenience:

(@ '|e)Q =0 (11)

Since this is a homogeneous system of linear equations, there is
not a unique solution. We must therefore impose additional condi-
tions. To get wavelets with small supports, for example, we require
each column of Q' to have a minimal number of consecutive non-
zeros. This constraint imposes a banded structure on @ similar to
that of P'. For each column q of Q, Equation (11) leads to a small
homogeneous system that we solve for the non-zero entries ing.
Thematricesthat result and the corresponding B-splinewaveletsare
shown in Appendix A

Finkelstein and Salesin [8] took this approach to construct cubic B-
spline wavelets. Chui and Quak [4] derived slightly different spline
wavelets using derivative and interpolation properties of B-splines.
Note that both approaches result in semi-orthogonal wavelet bases:
The wavel ets are orthogonal to scaling functions at the same level,
but not to each other, except in the piecewise-constant case.

3.4 B-splinefilter bank

At this point, we have completed the steps in designing a multires-
olution analysis. However, to use spline wavelets, we must im-
plement afilter bank procedure incorporating the analysis filtersA
and B. These matricesallow usto determineC~*and D'~* from C
using matrix multiplication as in Equations (6) and (7). As dis-
cussed earlier in Section 2, the analysis filters are uniquely deter-
mined by the inverse relation in Equation (10):

A

o= erer

However, as Quak and Weyrich [13] point out, when implementing
the filter bank procedure for spline wavelets, it is generally not a
good ideato form thefiltersA' and B explicitly. AlthoughP' and @

are sparse, having only O(d) entries per column, Al and B' areingen-
eral dense, so matrix—vector multiplication would require quadratic
instead of linear time.

Fortunately, there is a better approach. Theideaisto computeC 1
and D'~ from C' by solving the sparse linear system

o rad-t ,
[P | Q] [F] =C.
-1

In order to solve this system for {F} , we first make the ma-

trix [P | Q] into a banded matrix simply by interspersing the
columns of P' and Q. The resulting banded system can then be
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Figure 3 Changing a curve's overall sweep without affecting its
character. Given the original curve (a), the system extracts the over-
all sweep (b). If the user modifies the sweep (c), the system can re-
apply the detail (d).

Figure4 Themiddle of thedark curveispulled, using editing at var-
ious levels of smoothingj. A change in a control point inC! has a
very broad effect, while a change in a control point inC* has a nar-
row effect.

solved in linear time using LU decomposition [12]. Thus we can
compute the entire filter bank operation without ever forming and
using Al or B explicitly.

4 Application I11: Multiresolution curves and surfaces

We presented two applications of waveletsin Part 1. compression of
one-dimensional signals and compression of two-dimensional im-
ages. Our third application of wavelets in computer graphics is
curve design and editing, as described in detail by Finkelstein and
Sdlesin [8]. Their multiresolution curves are built from a wavelet
basis for endpoint-interpolating cubic B-splines, which we dis-
cussed in the previous section.

Multiresolution curves conveniently support a variety of opera
tions:

e changing acurve'soverall “sweep” while maintaining itsfine de-
tails, or “character” (Figures 3 and 4);

e changing a curve's “character” without affecting its overall
“sweep” (Figure 5);

e editing acurve at any continuous level of detail, allowing an ar-
bitrary portion of the curve to be affected through direct manipu-
lation;

e smoothing at continuous levels to remove undesirable features
from acurve;

e approximating or “fitting” a curve within aguaranteed maximum
error tolerance, for scan conversion and other applications.

Here we'll describe briefly just the first two of these operations,
which fall out quite naturally from the multiresolution representa-
tion.

4.1 Editing the sweep of the curve

Editing the sweep of a curve at an integer level of the wavelet
transform is simple. Let C’ be the control points of the original

curve f2(t), let C' be alow-resolution version of C’, and let & be
an edited version of C, given by € = C + AC.. The edited ver-
sion of the highest resolution curve®’ = O+ AC canbe computed

ol

Figure5 Changing the character of a curve without affecting its sweep.

through synthesis:

¢ =c +aC
=C + PP P AC.

Note that editing the sweep of the curve at lower levels of smooth-
ing|j affectslarger portions of the high-resolution curvef(t). At the
lowest level, whenj = 0, the entire curve is affected. At the highest
level, whenj = J, only the narrow portion influenced by one original
control point is affected. The kind of flexibility that this multireso-
lution editing allows is suggested in Figures 3 and 4.

4.2 Editing the character of the curve

Multiresolution curves also naturally support changes in the char-
acter of acurve, without affecting its overall sweep. Let C’ be the
control pointsof acurve, andletC®, D°, . . ., D'~ denoteitswavelet
transform. Editing the character of the curveissimply amatter of re-
placing theexisting set of detail coefficientsD/, . .., D’~* withsome

new set D,...,D"", and reconstructing. To av0|d coordinate-
system artifacts, al detall coefficients are expressed in terms of the

curve'slocal tangent and normal, rather than thex and y directions.

Figure 5 demonstrates how the character of curvesin anillustration
can be modified with various detail styles. (The interactive illus-
tration system used to create this figure was described by Salisbury
etal.[14].)

4.3 Multiresolution surfaces

Multiresolution editing can be extended to surfaces by using ten-
sor products of B-spline scaling functions and wavelets. Either
the standard construction or the nonstandard construction described
in Part 1 for Haar basis functions can be used to form a two-
dimensional basis from a one-dimensional B-spline basis. We can
then edit surfaces using the same operations described for curves.
For example, Figure 6 shows a bicubic tensor-product B-spline sur-
face after altering its sweep at different levels of detail.

We can further generalize multiresolution analysis to surfaces of
arbitrary topology by defining wavelets based on subdivision sur-

faces, as described by Lounsbery et al. [10]. Their nonorthogonal

wavelet basis, in combination with the work of Eck et al. [6], al-

lows any polyhedral object to be decomposed into scaling function
and wavel et coefficients. Then acompression scheme similar to the
one presented for imagesin Section 3.3 of Part 1 can be used to dis-
play the object at variouslevelsof detail simply by leaving out small
wavel et coefficients during reconstruction. An example of thistech-
niqueis shownin Figure 7.

5 Conclusion

Our primer has only touched on afew of the many usesfor wavelets
in computer graphics. We hope thisintroduction to the topic has ex-
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Figure 6 Surface manipulation at different levels of detail: The original surface (a) is changed at anarrow scale (b), an intermediate scale (c),

and abroad scale (d).

A
K7\ <
S AVAYAVAVAY 0N
TN
I s

A2
N\
"

ZGONN]
K2
NAVAN,
NS
N

=
N
IS

J\
S NS
W

@

NI

AV

NN AN VA
RN AN KRR
N RRRS

AVAVAYAAVAVAVAVAVATANANN
VAV VAVA

> 7
SENINENINN
=
m‘f}ﬁmﬁf

=~
B

Figure7 Surface approximation using subdivision surface wavelets: (a) the original surface, (b) anintermediate approximation, and (c) acoarse

approximation.

plained enough of the fundamentals for interested readersto explore
both the construction of wavelets and their application to problems
in graphics and beyond. We present a more thorough discussion in
aforthcoming monograph [15].
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A Detailson endpoint-inter polating B-spline wavelets

This appendix presents the matrices required to apply endpoint-
interpolating B-spline wavelets of low degree. (The Matlab code
used to generate these matrices is available from the authors upon
request.) These concrete examples should serve to elucidate the
ideas presented in Section 3. To emphasize the sparse structure of
the matrices, zeros have been omitted. Diagonal dots indicate that
the previous column is to be repeated the appropriate number of
times, shifted down by two rows for each column. TheP matrices
have entries relating the unnormalized scaling functions defined in
Section 3, while the Q matrices have entries defining normalized,
minimally supported wavelets. Columns of theQ matrices that are
not represented exactly with integersare givento six decimal places.

A.1 Haar wavelets

The B-spline wavelet basis of degree 0 is simply the Haar basis de-
scribedin Section 2 of Part 1. Some examples of the Haar basis scal-
ing functions and wavelets are depicted in Figure 8. The synthesis
matricesP' and Q' are

1 1
1 -1

P = 1 QJ = % -1
1 ]
L
11 _I_IIJ
1 |
L
1 [
L
1 |
L
1 [
L
1 [
LI_
— [
L

Figure 8 Piecewise-constant B-spline scaling functions and
wavelets forj = 3.

A.2 Endpoint-inter polating linear B-spline wavelets

Figure 9 shows a few typical scaling functions and wavelets for
linear B-splines. The synthesis matrices PP and Q' for endpoint-
interpolating linear B-spline wavelets are

Pl= %[il]

2
2 1

RN R
B NR
BN e

N e

o=a[d]  @=yE 4

—12

[ —11. 022704
10.104145 1
—5.511352 —6
0.918559 10 1
—6 —6

>3 3 1 12
72 1. 1

. -6
10 0.918559
—6 —5.511352

1 10.104145
—11.022704 |

Figure9 Linear B-spline scaling functions and wavelets forj = 3.



A.3 Endpoint-inter polating quadr atic B-spline wavelets

Figure 10 shows some quadratic B-spline scaling functions and wavelets. The synthesis matricesP’ and Q' for the quadratic case are
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2 22 ) 13
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2 11 7 13 T 1
2 22
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Figure 10 Quadratic B-spline scaling functions and wavelets forj = 3.



A.4 Endpoint-inter polating cubic B-spline wavelets

Some examples of cubic B-spline scaling functions and wavelets are shown in Figure 11. The synthesis matricesP’ and Q' for endpoint-
interpolating cubic B-spline wavelets are
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Figure 11 Cubic B-spline scaling functions and wavelets forj = 3.
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