
3
Video Coding Concepts

3.1 INTRODUCTION

compress vb.: to squeeze together or compact into less space; condense

compress noun: the act of compression or the condition of being compressed

Compression is the process of compacting data into a smaller number of bits. Video compres-
sion (video coding) is the process of compacting or condensing a digital video sequence
into a smaller number of bits. ‘Raw’ or uncompressed digital video typically requires a
large bitrate (approximately 216 Mbits for 1 second of uncompressed TV-quality video, see
Chapter 2) and compression is necessary for practical storage and transmission of digital
video.

Compression involves a complementary pair of systems, a compressor (encoder) and
a decompressor (decoder). The encoder converts the source data into a compressed form
(occupying a reduced number of bits) prior to transmission or storage and the decoder converts
the compressed form back into a representation of the original video data. The encoder/decoder
pair is often described as a CODEC (enCOder/ DECoder) (Figure 3.1).

Data compression is achieved by removing redundancy, i.e. components that are not nec-
essary for faithful reproduction of the data. Many types of data contain statistical redundancy
and can be effectively compressed using lossless compression, so that the reconstructed data
at the output of the decoder is a perfect copy of the original data. Unfortunately, lossless com-
pression of image and video information gives only a moderate amount of compression. The
best that can be achieved with current lossless image compression standards such as JPEG-LS
[1] is a compression ratio of around 3–4 times. Lossy compression is necessary to achieve
higher compression. In a lossy compression system, the decompressed data is not identical to
the source data and much higher compression ratios can be achieved at the expense of a loss
of visual quality. Lossy video compression systems are based on the principle of removing
subjective redundancy, elements of the image or video sequence that can be removed without
significantly affecting the viewer’s perception of visual quality.

H.264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia.
Iain E. G. Richardson. C© 2003 John Wiley & Sons, Ltd. ISBN: 0-470-84837-5

VIDEO CODING CONCEPTS•28

enCOder

video source

transmit
or store

DECoder

display

Figure 3.1 Encoder/decoder

temporal correlation

spatial correlation

Figure 3.2 Spatial and temporal correlation in a video sequence

Most video coding methods exploit both temporal and spatial redundancy to achieve
compression. In the temporal domain, there is usually a high correlation (similarity) between
frames of video that were captured at around the same time. Temporally adjacent frames (suc-
cessive frames in time order) are often highly correlated, especially if the temporal sampling
rate (the frame rate) is high. In the spatial domain, there is usually a high correlation between
pixels (samples) that are close to each other, i.e. the values of neighbouring samples are often
very similar (Figure 3.2).

The H.264 and MPEG-4 Visual standards (described in detail in Chapters 5 and 6) share a
number of common features. Both standards assume a CODEC ‘model’ that uses block-based
motion compensation, transform, quantisation and entropy coding. In this chapter we examine
the main components of this model, starting with the temporal model (motion estimation and
compensation) and continuing with image transforms, quantisation, predictive coding and
entropy coding. The chapter concludes with a ‘walk-through’ of the basic model, following
through the process of encoding and decoding a block of image samples.

3.2 VIDEO CODEC

A video CODEC (Figure 3.3) encodes a source image or video sequence into a compressed
form and decodes this to produce a copy or approximation of the source sequence. If the

VIDEO CODEC •29

temporal
model

spatial
model

entropy
encoder

stored
frames

residual

vectors

coefficientsvideo
input

encoded
output

Figure 3.3 Video encoder block diagram

decoded video sequence is identical to the original, then the coding process is lossless; if the
decoded sequence differs from the original, the process is lossy.

The CODEC represents the original video sequence by a model (an efficient coded
representation that can be used to reconstruct an approximation of the video data). Ideally, the
model should represent the sequence using as few bits as possible and with as high a fidelity
as possible. These two goals (compression efficiency and high quality) are usually conflicting,
because a lower compressed bit rate typically produces reduced image quality at the decoder.
This tradeoff between bit rate and quality (the rate-distortion trade off) is discussed further in
Chapter 7.

A video encoder (Figure 3.3) consists of three main functional units: a temporal model,
a spatial model and an entropy encoder. The input to the temporal model is an uncompressed
video sequence. The temporal model attempts to reduce temporal redundancy by exploiting
the similarities between neighbouring video frames, usually by constructing a prediction of
the current video frame. In MPEG-4 Visual and H.264, the prediction is formed from one or
more previous or future frames and is improved by compensating for differences between
the frames (motion compensated prediction). The output of the temporal model is a residual
frame (created by subtracting the prediction from the actual current frame) and a set of model
parameters, typically a set of motion vectors describing how the motion was compensated.

The residual frame forms the input to the spatial model which makes use of similarities
between neighbouring samples in the residual frame to reduce spatial redundancy. In MPEG-4
Visual and H.264 this is achieved by applying a transform to the residual samples and quan-
tizing the results. The transform converts the samples into another domain in which they are
represented by transform coefficients. The coefficients are quantised to remove insignificant
values, leaving a small number of significant coefficients that provide a more compact repre-
sentation of the residual frame. The output of the spatial model is a set of quantised transform
coefficients.

The parameters of the temporal model (typically motion vectors) and the spatial model
(coefficients) are compressed by the entropy encoder. This removes statistical redundancy
in the data (for example, representing commonly-occurring vectors and coefficients by short
binary codes) and produces a compressed bit stream or file that may be transmitted and/or
stored. A compressed sequence consists of coded motion vector parameters, coded residual
coefficients and header information.

The video decoder reconstructs a video frame from the compressed bit stream. The
coefficients and motion vectors are decoded by an entropy decoder after which the spatial

VIDEO CODING CONCEPTS•30

model is decoded to reconstruct a version of the residual frame. The decoder uses the motion
vector parameters, together with one or more previously decoded frames, to create a prediction
of the current frame and the frame itself is reconstructed by adding the residual frame to this
prediction.

3.3 TEMPORAL MODEL

The goal of the temporal model is to reduce redundancy between transmitted frames by forming
a predicted frame and subtracting this from the current frame. The output of this process is
a residual (difference) frame and the more accurate the prediction process, the less energy is
contained in the residual frame. The residual frame is encoded and sent to the decoder which
re-creates the predicted frame, adds the decoded residual and reconstructs the current frame.
The predicted frame is created from one or more past or future frames (‘reference frames’).
The accuracy of the prediction can usually be improved by compensating for motion between
the reference frame(s) and the current frame.

3.3.1 Prediction from the Previous Video Frame

The simplest method of temporal prediction is to use the previous frame as the predictor
for the current frame. Two successive frames from a video sequence are shown in Figure
3.4 and Figure 3.5. Frame 1 is used as a predictor for frame 2 and the residual formed by
subtracting the predictor (frame 1) from the current frame (frame 2) is shown in Figure 3.6.
In this image, mid-grey represents a difference of zero and light or dark greys correspond
to positive and negative differences respectively. The obvious problem with this simple pre-
diction is that a lot of energy remains in the residual frame (indicated by the light and dark
areas) and this means that there is still a significant amount of information to compress after
temporal prediction. Much of the residual energy is due to object movements between the two
frames and a better prediction may be formed by compensating for motion between the two
frames.

3.3.2 Changes due to Motion

Changes between video frames may be caused by object motion (rigid object motion, for
example a moving car, and deformable object motion, for example a moving arm), camera
motion (panning, tilt, zoom, rotation), uncovered regions (for example, a portion of the scene
background uncovered by a moving object) and lighting changes. With the exception of
uncovered regions and lighting changes, these differences correspond to pixel movements
between frames. It is possible to estimate the trajectory of each pixel between successive
video frames, producing a field of pixel trajectories known as the optical flow (optic flow) [2].
Figure 3.7 shows the optical flow field for the frames of Figure 3.4 and Figure 3.5. The complete
field contains a flow vector for every pixel position but for clarity, the field is sub-sampled so
that only the vector for every 2nd pixel is shown.

If the optical flow field is accurately known, it should be possible to form an accu-
rate prediction of most of the pixels of the current frame by moving each pixel from the

TEMPORAL MODEL •31

Figure 3.4 Frame 1

Figure 3.5 Frame 2

Figure 3.6 Difference

reference frame along its optical flow vector. However, this is not a practical method of
motion compensation for several reasons. An accurate calculation of optical flow is very
computationally intensive (the more accurate methods use an iterative procedure for every
pixel) and it would be necessary to send the optical flow vector for every pixel to the decoder

VIDEO CODING CONCEPTS•32

Figure 3.7 Optical flow

in order for the decoder to re-create the prediction frame (resulting in a large amount of
transmitted data and negating the advantage of a small residual).

3.3.3 Block-based Motion Estimation and Compensation

A practical and widely-used method of motion compensation is to compensate for movement
of rectangular sections or ‘blocks’ of the current frame. The following procedure is carried
out for each block of M × N samples in the current frame:

1. Search an area in the reference frame (past or future frame, previously coded and trans-
mitted) to find a ‘matching’ M × N -sample region. This is carried out by comparing the
M × N block in the current frame with some or all of the possible M × N regions in the
search area (usually a region centred on the current block position) and finding the region
that gives the ‘best’ match. A popular matching criterion is the energy in the residual formed
by subtracting the candidate region from the current M × N block, so that the candidate
region that minimises the residual energy is chosen as the best match. This process of
finding the best match is known as motion estimation.

2. The chosen candidate region becomes the predictor for the current M × N block and is
subtracted from the current block to form a residual M × N block (motion compensation).

3. The residual block is encoded and transmitted and the offset between the current block and
the position of the candidate region (motion vector) is also transmitted.

TEMPORAL MODEL •33

10

2 3 4 5

Y Cb Cr

16

16

16

16
8

8

8

8

16x16 region
 (colour)

Figure 3.8 Macroblock (4:2:0)

The decoder uses the received motion vector to re-create the predictor region and decodes the
residual block, adds it to the predictor and reconstructs a version of the original block.

Block-based motion compensation is popular for a number of reasons. It is relatively
straightforward and computationally tractable, it fits well with rectangular video frames and
with block-based image transforms (e.g. the Discrete Cosine Transform, see later) and it
provides a reasonably effective temporal model for many video sequences. There are however
a number of disadvantages, for example ‘real’ objects rarely have neat edges that match
rectangular boundaries, objects often move by a fractional number of pixel positions between
frames and many types of object motion are hard to compensate for using block-based methods
(e.g. deformable objects, rotation and warping, complex motion such as a cloud of smoke).
Despite these disadvantages, block-based motion compensation is the basis of the temporal
model used by all current video coding standards.

3.3.4 Motion Compensated Prediction of a Macroblock

The macroblock, corresponding to a 16 × 16-pixel region of a frame, is the basic unit for motion
compensated prediction in a number of important visual coding standards including MPEG-1,
MPEG-2, MPEG-4 Visual, H.261, H.263 and H.264. For source video material in 4:2:0 for-
mat (see Chapter 2), a macroblock is organised as shown in Figure 3.8. A 16 × 16-pixel
region of the source frame is represented by 256 luminance samples (arranged in four
8 × 8-sample blocks), 64 blue chrominance samples (one 8 × 8 block) and 64 red chrominance
samples (8 × 8), giving a total of six 8 × 8 blocks. An MPEG-4 Visual or H.264 CODEC
processes each video frame in units of a macroblock.

Motion Estimation
Motion estimation of a macroblock involves finding a 16 × 16-sample region in a reference
frame that closely matches the current macroblock. The reference frame is a previously-
encoded frame from the sequence and may be before or after the current frame in display
order. An area in the reference frame centred on the current macroblock position (the search
area) is searched and the 16 × 16 region within the search area that minimises a matching
criterion is chosen as the ‘best match’ (Figure 3.9).

Motion Compensation
The selected ‘best’ matching region in the reference frame is subtracted from the current
macroblock to produce a residual macroblock (luminance and chrominance) that is encoded

VIDEO CODING CONCEPTS•34

current macroblock

search area current frame

reference frame

best match

Figure 3.9 Motion estimation

and transmitted together with a motion vector describing the position of the best matching
region (relative to the current macroblock position). Within the encoder, the residual is encoded
and decoded and added to the matching region to form a reconstructed macroblock which is
stored as a reference for further motion-compensated prediction. It is necessary to use a
decoded residual to reconstruct the macroblock in order to ensure that encoder and decoder
use an identical reference frame for motion compensation.

There are many variations on the basic motion estimation and compensation process. The
reference frame may be a previous frame (in temporal order), a future frame or a combination
of predictions from two or more previously encoded frames. If a future frame is chosen as the
reference, it is necessary to encode this frame before the current frame (i.e. frames must be
encoded out of order). Where there is a significant change between the reference and current
frames (for example, a scene change), it may be more efficient to encode the macroblock
without motion compensation and so an encoder may choose intra mode (encoding without
motion compensation) or inter mode (encoding with motion compensated prediction) for each
macroblock. Moving objects in a video scene rarely follow ‘neat’ 16 × 16-pixel boundaries and
so it may be more efficient to use a variable block size for motion estimation and compensation.
Objects may move by a fractional number of pixels between frames (e.g. 2.78 pixels rather than
2.0 pixels in the horizontal direction) and a better prediction may be formed by interpolating
the reference frame to sub-pixel positions before searching these positions for the best match.

3.3.5 Motion Compensation Block Size

Two successive frames of a video sequence are shown in Figure 3.10 and Figure 3.11. Frame
1 is subtracted from frame 2 without motion compensation to produce a residual frame

Figure 3.10 Frame 1

Figure 3.11 Frame 2

Figure 3.12 Residual (no motion compensation)

VIDEO CODING CONCEPTS•36

Figure 3.13 Residual (16 × 16 block size)

Figure 3.14 Residual (8 × 8 block size)

(Figure 3. 12). The energy in the residual is reduced by motion compensating each 16 × 16
macroblock (Figure 3.13). Motion compensating each 8 × 8 block (instead of each 16 × 16
macroblock) reduces the residual energy further (Figure 3.14) and motion compensating each
4 × 4 block gives the smallest residual energy of all (Figure 3.15). These examples show that
smaller motion compensation block sizes can produce better motion compensation results.
However, a smaller block size leads to increased complexity (more search operations must
be carried out) and an increase in the number of motion vectors that need to be transmitted.
Sending each motion vector requires bits to be sent and the extra overhead for vectors may
outweigh the benefit of reduced residual energy. An effective compromise is to adapt the block
size to the picture characteristics, for example choosing a large block size in flat, homogeneous
regions of a frame and choosing a small block size around areas of high detail and complex

TEMPORAL MODEL •37

Figure 3.15 Residual (4 × 4 block size)

motion. H.264 uses an adaptive motion compensation block size (Tree Structured motion
compensation, described in Chapter 6.

3.3.6 Sub-pixel Motion Compensation

Figure 3.16 shows a close-up view of part of a reference frame. In some cases a better motion
compensated prediction may be formed by predicting from interpolated sample positions in
the reference frame. In Figure 3.17, the reference region luma samples are interpolated to half-
samples positions and it may be possible to find a better match for the current macroblock by
searching the interpolated samples. ‘Sub-pixel’ motion estimation and compensation1 involves
searching sub-sample interpolated positions as well as integer-sample positions, choosing the
position that gives the best match (i.e. minimises the residual energy) and using the integer- or
sub-sample values at this position for motion compensated prediction. Figure 3.18 shows the
concept of a ‘quarter-pixel’ motion estimation. In the first stage, motion estimation finds the
best match on the integer sample grid (circles). The encoder searches the half-sample positions
immediately next to this best match (squares) to see whether the match can be improved and if
required, the quarter-sample positions next to the best half-sample position (triangles) are then
searched. The final match (at an integer, half- or quarter-sample position) is subtracted from
the current block or macroblock.

The residual in Figure 3.19 is produced using a block size of 4 × 4 samples using half-
sample interpolation and has lower residual energy than Figure 3.15. This approach may be ex-
tended further by interpolation onto a quarter-sample grid to give a still smaller residual (Figure
3.20). In general, ‘finer’ interpolation provides better motion compensation performance (a
smaller residual) at the expense of increased complexity. The performance gain tends to dimin-
ish as the interpolation steps increase. Half-sample interpolation gives a significant gain over
integer-sample motion compensation, quarter-sample interpolation gives a moderate further
improvement, eighth-sample interpolation gives a small further improvement again and so on.

1 The terms ‘sub-pixel’, ‘half-pixel’ and ‘quarter-pixel’ are widely used in this context although in fact the process
is usually applied to luma and chroma samples, not pixels.

VIDEO CODING CONCEPTS•38

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Figure 3.16 Close-up of reference region

5 10 15 20 25 30

5

10

15

20

25

30

Figure 3.17 Reference region interpolated to half-pixel positions

TEMPORAL MODEL •39

Integer search positions

Best integer match

Half-pel search positions

Best half-pel match

Quarter-pel search positions

Best quarter-pel match

Key :

Figure 3.18 Integer, half-pixel and quarter-pixel motion estimation

Figure 3.19 Residual (4 × 4 blocks, half-pixel compensation)

Figure 3.20 Residual (4 × 4 blocks, quarter-pixel compensation)

VIDEO CODING CONCEPTS•40

Table 3.1 SAE of residual frame after motion compensation (16 × 16 block size)

Sequence No motion compensation Integer-pel Half-pel Quarter-pel

‘Violin’, QCIF 171945 153475 128320 113744
‘Grasses’, QCIF 248316 245784 228952 215585
‘Carphone’, QCIF 102418 73952 56492 47780

Figure 3.21 Motion vector map (16 × 16 blocks, integer vectors)

Some examples of the performance achieved by sub-pixel motion estimation and com-
pensation are given in Table 3.1. A motion-compensated reference frame (the previous frame
in the sequence) is subtracted from the current frame and the energy of the residual (approx-
imated by the Sum of Absolute Errors, SAE) is listed in the table. A lower SAE indicates
better motion compensation performance. In each case, sub-pixel motion compensation gives
improved performance compared with integer-sample compensation. The improvement from
integer to half-sample is more significant than the further improvement from half- to quarter-
sample. The sequence ‘Grasses’ has highly complex motion and is particularly difficult to
motion-compensate, hence the large SAE; ‘Violin’ and ‘Carphone’ are less complex and
motion compensation produces smaller SAE values.

TEMPORAL MODEL •41

Figure 3.22 Motion vector map (4 × 4 blocks, quarter-pixel vectors)

Searching for matching 4 × 4 blocks with quarter-sample interpolation is considerably
more complex than searching for 16 × 16 blocks with no interpolation. In addition to the extra
complexity, there is a coding penalty since the vector for every block must be encoded and
transmitted to the receiver in order to reconstruct the image correctly. As the block size is
reduced, the number of vectors that have to be transmitted increases. More bits are required to
represent half- or quarter-sample vectors because the fractional part of the vector (e.g. 0.25, 0.5)
must be encoded as well as the integer part. Figure 3.21 plots the integer motion vectors that are
required to be transmitted along with the residual of Figure 3.13. The motion vectors required
for the residual of Figure 3.20 (4 × 4 block size) are plotted in Figure 3.22, in which there are 16
times as many vectors, each represented by two fractional numbers DX and DY with quarter-
pixel accuracy. There is therefore a tradeoff in compression efficiency associated with more
complex motion compensation schemes, since more accurate motion compensation requires
more bits to encode the vector field but fewer bits to encode the residual whereas less accurate
motion compensation requires fewer bits for the vector field but more bits for the residual.

3.3.7 Region-based Motion Compensation

Moving objects in a ‘natural’ video scene are rarely aligned neatly along block boundaries
but are likely to be irregular shaped, to be located at arbitrary positions and (in some cases)
to change shape between frames. This problem is illustrated by Figure 3.23, in which the

VIDEO CODING CONCEPTS•42

Problematic
macroblock

Reference frame Current frame

Possible
matching
positions

Figure 3.23 Motion compensation of arbitrary-shaped moving objects

oval-shaped object is moving and the rectangular object is static. It is difficult to find a good
match in the reference frame for the highlighted macroblock, because it covers part of the
moving object and part of the static object. Neither of the two matching positions shown in
the reference frame are ideal.

It may be possible to achieve better performance by motion compensating arbitrary
regions of the picture (region-based motion compensation). For example, if we only attempt
to motion-compensate pixel positions inside the oval object then we can find a good match
in the reference frame. There are however a number of practical difficulties that need to be
overcome in order to use region-based motion compensation, including identifying the region
boundaries accurately and consistently, (segmentation) signalling (encoding) the contour of
the boundary to the decoder and encoding the residual after motion compensation. MPEG-4
Visual includes a number of tools that support region-based compensation and coding and
these are described in Chapter 5.

3.4 IMAGE MODEL

A natural video image consists of a grid of sample values. Natural images are often difficult to
compress in their original form because of the high correlation between neighbouring image
samples. Figure 3.24 shows the two-dimensional autocorrelation function of a natural video
image (Figure 3.4) in which the height of the graph at each position indicates the similarity
between the original image and a spatially-shifted copy of itself. The peak at the centre of the
figure corresponds to zero shift. As the spatially-shifted copy is moved away from the original
image in any direction, the function drops off as shown in the figure, with the gradual slope
indicating that image samples within a local neighbourhood are highly correlated.

A motion-compensated residual image such as Figure 3.20 has an autocorrelation function
(Figure 3.25) that drops off rapidly as the spatial shift increases, indicating that neighbouring
samples are weakly correlated. Efficient motion compensation reduces local correlation in the
residual making it easier to compress than the original video frame. The function of the image

IMAGE MODEL •43

8

6

4

2
100

50

0 0

50

X 108

100

Figure 3.24 2D autocorrelation function of image

X 105

6

4

2

0

−2
20

10

0 0

10

20

Figure 3.25 2D autocorrelation function of residual

VIDEO CODING CONCEPTS•44

Raster
scan
order

Current pixel

B C

A X

Figure 3.26 Spatial prediction (DPCM)

model is to decorrelate image or residual data further and to convert it into a form that can be
efficiently compressed using an entropy coder. Practical image models typically have three
main components, transformation (decorrelates and compacts the data), quantisation (reduces
the precision of the transformed data) and reordering (arranges the data to group together
significant values).

3.4.1 Predictive Image Coding

Motion compensation is an example of predictive coding in which an encoder creates a pre-
diction of a region of the current frame based on a previous (or future) frame and subtracts
this prediction from the current region to form a residual. If the prediction is successful, the
energy in the residual is lower than in the original frame and the residual can be represented
with fewer bits.

In a similar way, a prediction of an image sample or region may be formed from
previously-transmitted samples in the same image or frame. Predictive coding was used as
the basis for early image compression algorithms and is an important component of H.264
Intra coding (applied in the transform domain, see Chapter 6). Spatial prediction is sometimes
described as ‘Differential Pulse Code Modulation’ (DPCM), a term borrowed from a method
of differentially encoding PCM samples in telecommunication systems.

Figure 3.26 shows a pixel X that is to be encoded. If the frame is processed in raster order,
then pixels A, B and C (neighbouring pixels in the current and previous rows) are available in
both the encoder and the decoder (since these should already have been decoded before X).
The encoder forms a prediction for X based on some combination of previously-coded pixels,
subtracts this prediction from X and encodes the residual (the result of the subtraction). The
decoder forms the same prediction and adds the decoded residual to reconstruct the pixel.

Example
Encoder prediction P(X) = (2A + B + C)/4
Residual R(X) = X – P(X) is encoded and transmitted.

Decoder decodes R(X) and forms the same prediction: P(X) = (2A + B + C)/4
Reconstructed pixel X = R(X) + P(X)

IMAGE MODEL •45

If the encoding process is lossy (e.g. if the residual is quantised – see section 3.4.3) then the
decoded pixels A′, B′ and C′ may not be identical to the original A, B and C (due to losses
during encoding) and so the above process could lead to a cumulative mismatch (or ‘drift’)
between the encoder and decoder. In this case, the encoder should itself decode the residual
R′(X) and reconstruct each pixel.

The encoder uses decoded pixels A′, B′ and C′ to form the prediction, i.e. P(X) = (2A′+
B′+ C′)/4 in the above example. In this way, both encoder and decoder use the same prediction
P(X) and drift is avoided.

The compression efficiency of this approach depends on the accuracy of the prediction
P(X). If the prediction is accurate (P(X) is a close approximation of X) then the residual energy
will be small. However, it is usually not possible to choose a predictor that works well for all
areas of a complex image and better performance may be obtained by adapting the predictor
depending on the local statistics of the image (for example, using different predictors for areas
of flat texture, strong vertical texture, strong horizontal texture, etc.). It is necessary for the
encoder to indicate the choice of predictor to the decoder and so there is a tradeoff between
efficient prediction and the extra bits required to signal the choice of predictor.

3.4.2 Transform Coding

3.4.2.1 Overview

The purpose of the transform stage in an image or video CODEC is to convert image or
motion-compensated residual data into another domain (the transform domain). The choice
of transform depends on a number of criteria:

1. Data in the transform domain should be decorrelated (separated into components with
minimal inter-dependence) and compact (most of the energy in the transformed data should
be concentrated into a small number of values).

2. The transform should be reversible.
3. The transform should be computationally tractable (low memory requirement, achievable

using limited-precision arithmetic, low number of arithmetic operations, etc.).

Many transforms have been proposed for image and video compression and the most pop-
ular transforms tend to fall into two categories: block-based and image-based. Examples
of block-based transforms include the Karhunen–Loeve Transform (KLT), Singular Value
Decomposition (SVD) and the ever-popular Discrete Cosine Transform (DCT) [3]. Each of
these operate on blocks of N × N image or residual samples and hence the image is processed
in units of a block. Block transforms have low memory requirements and are well-suited to
compression of block-based motion compensation residuals but tend to suffer from artefacts
at block edges (‘blockiness’). Image-based transforms operate on an entire image or frame
(or a large section of the image known as a ‘tile’). The most popular image transform is
the Discrete Wavelet Transform (DWT or just ‘wavelet’). Image transforms such as the DWT
have been shown to out-perform block transforms for still image compression but they tend to
have higher memory requirements (because the whole image or tile is processed as a unit) and

VIDEO CODING CONCEPTS•46

do not ‘fit’ well with block-based motion compensation. The DCT and the DWT both feature
in MPEG-4 Visual (and a variant of the DCT is incorporated in H.264) and are discussed
further in the following sections.

3.4.2.2 DCT

The Discrete Cosine Transform (DCT) operates on X, a block of N × N samples (typi-
cally image samples or residual values after prediction) and creates Y, an N × N block
of coefficients. The action of the DCT (and its inverse, the IDCT) can be described in
terms of a transform matrix A. The forward DCT (FDCT) of an N × N sample block is
given by:

Y = AXAT (3.1)

and the inverse DCT (IDCT) by:

X = ATYA (3.2)

where X is a matrix of samples, Y is a matrix of coefficients and A is an N × N transform
matrix. The elements of A are:

Ai j = Ci cos
(2 j + 1)iπ

2N
where Ci =

√
1

N
(i = 0), Ci =

√
2

N
(i > 0) (3.3)

Equation 3.1 and equation 3.2 may be written in summation form:

Yxy = Cx Cy

N−1∑
i=0

N−1∑
j=0

Xi j cos
(2 j + 1)yπ

2N
cos

(2i + 1)xπ

2N
(3.4)

Xi j =
N−1∑
x=0

N−1∑
y=0

Cx CyYxy cos
(2 j + 1)yπ

2N
cos

(2i + 1)xπ

2N
(3.5)

Example: N = 4

The transform matrix A for a 4 × 4 DCT is:

A =

1

2
cos (0)

1

2
cos (0)

1

2
cos (0)

1

2
cos (0)

√
1

2
cos

(π

8

) √
1

2
cos

(
3π

8

) √
1

2
cos

(
5π

8

) √
1

2
cos

(
7π

8

)
√

1

2
cos

(
2π

8

) √
1

2
cos

(
6π

8

) √
1

2
cos

(
10π

8

) √
1

2
cos

(
14π

8

)
√

1

2
cos

(
3π

8

) √
1

2
cos

(
9π

8

) √
1

2
cos

(
15π

8

) √
1

2
cos

(
21π

8

)

(3.6)

IMAGE MODEL •47

The cosine function is symmetrical and repeats after 2π radians and hence A can be simplified
to:

A =

1

2

1

2

1

2

1

2√
1

2
cos

(π

8

) √
1

2
cos

(
3π

8

)
−

√
1

2
cos

(
3π

8

)
−

√
1

2
cos

(π

8

)

1

2
−1

2
−1

2

1

2√
1

2
cos

(
3π

8

)
−

√
1

2
cos

(π

8

) √
1

2
cos

(π

8

)
−

√
1

2
cos

(
3π

8

)

(3.7)

or

A =

a a a a
b c −c −b
a −a −a a
c −b b c

 where

a = 1

2

b =
√

1

2
cos

(π

8

)

c =
√

1

2
cos

(
3π

8

)
(3.8)

Evaluating the cosines gives:

A =

0.5 0.5 0.5 0.5
0.653 0.271 0.271 −0.653
0.5 −0.5 −0.5 0.5

0.271 −0.653 −0.653 0.271

The output of a two-dimensional FDCT is a set of N × N coefficients representing the image
block data in the DCT domain and these coefficients can be considered as ‘weights’ of a set
of standard basis patterns. The basis patterns for the 4 × 4 and 8 × 8 DCTs are shown in
Figure 3.27 and Figure 3.28 respectively and are composed of combinations of horizontal and
vertical cosine functions. Any image block may be reconstructed by combining all N × N
basis patterns, with each basis multiplied by the appropriate weighting factor (coefficient).

Example 1 Calculating the DCT of a 4 × 4 block

X is 4 × 4 block of samples from an image:

j = 0 1 2 3

i = 0 5 11 8 10

1 9 8 4 12

2 1 10 11 4

3 19 6 15 7

VIDEO CODING CONCEPTS•48

Figure 3.27 4 × 4 DCT basis patterns

Figure 3.28 8 × 8 DCT basis patterns

IMAGE MODEL •49

The Forward DCT of X is given by: Y = AXAT. The first matrix multiplication, Y′ = AX, cor-
responds to calculating the one-dimensional DCT of each column of X. For example, Y ′

00 is
calculated as follows:

Y ′
00 = A00 X00 + A01 X10 + A02 X20 + A03 X30 = (0.5 ∗ 5) + (0.5 ∗ 9) + (0.5 ∗ 1)

+ (0.5 ∗ 19) = 17.0

The complete result of the column calculations is:

Y′ = AX =

17 17.5 19 16.5
−6.981 2.725 −6.467 4.125

7 −0.5 4 0.5
−9.015 2.660 2.679 −4.414

Carrying out the second matrix multiplication, Y = Y′AT, is equivalent to carrying out a 1-D DCT
on each row of Y′:

Y = AXAT =

35.0 −0.079 −1.5 1.115
−3.299 −4.768 0.443 −9.010

5.5 3.029 2.0 4.699
−4.045 −3.010 −9.384 −1.232

(Note: the order of the row and column calculations does not affect the final result).

Example 2 Image block and DCT coefficients

Figure 3.29 shows an image with a 4 × 4 block selected and Figure 3.30 shows the block in
close-up, together with the DCT coefficients. The advantage of representing the block in the DCT
domain is not immediately obvious since there is no reduction in the amount of data; instead of
16 pixel values, we need to store 16 DCT coefficients. The usefulness of the DCT becomes clear
when the block is reconstructed from a subset of the coefficients.

Figure 3.29 Image section showing 4 × 4 block

VIDEO CODING CONCEPTS•50

75

80

98

126

114

137

151

159

88

176

181

178

68

156

181

181 537.2537.2

-106.1

-42.7

-20.2

-76.0

35.0

46.5

12.9

-12.7

10.3

3.9

-7.8

-6.1

-9.8

-8.5

Original block

-54.8

DCT coefficients

Figure 3.30 Close-up of 4 × 4 block; DCT coefficients

Setting all the coefficients to zero except the most significant (coefficient 0,0, described as
the ‘DC’ coefficient) and performing the IDCT gives the output block shown in Figure 3.31(a), the
mean of the original pixel values. Calculating the IDCT of the two most significant coefficients
gives the block shown in Figure 3.31(b). Adding more coefficients before calculating the IDCT
produces a progressively more accurate reconstruction of the original block and by the time five
coefficients are included (Figure 3.31(d)), the reconstructed block is a reasonably close match to
the original. Hence it is possible to reconstruct an approximate copy of the block from a subset of
the 16 DCT coefficients. Removing the coefficients with insignificant magnitudes (for example
by quantisation, see Section 3.4.3) enables image data to be represented with a reduced number
of coefficient values at the expense of some loss of quality.

3.4.2.3 Wavelet

The popular ‘wavelet transform’ (widely used in image compression is based on sets of filters
with coefficients that are equivalent to discrete wavelet functions [4]. The basic operation of a
discrete wavelet transform is as follows, applied to a discrete signal containing N samples. A
pair of filters are applied to the signal to decompose it into a low frequency band (L) and a high
frequency band (H). Each band is subsampled by a factor of two, so that the two frequency
bands each contain N/2 samples. With the correct choice of filters, this operation is reversible.

This approach may be extended to apply to a two-dimensional signal such as an intensity
image (Figure 3.32). Each row of a 2D image is filtered with a low-pass and a high-pass
filter (Lx and Hx) and the output of each filter is down-sampled by a factor of two to produce
the intermediate images L and H. L is the original image low-pass filtered and downsampled
in the x-direction and H is the original image high-pass filtered and downsampled in the x-
direction. Next, each column of these new images is filtered with low- and high-pass filters
(Ly and Hy) and down-sampled by a factor of two to produce four sub-images (LL, LH, HL
and HH). These four ‘sub-band’ images can be combined to create an output image with the
same number of samples as the original (Figure 3.33). ‘LL’ is the original image, low-pass
filtered in horizontal and vertical directions and subsampled by a factor of 2. ‘HL’ is high-pass
filtered in the vertical direction and contains residual vertical frequencies, ‘LH’ is high-pass
filtered in the horizontal direction and contains residual horizontal frequencies and ‘HH’ is
high-pass filtered in both horizontal and vertical directions. Between them, the four subband

IMAGE MODEL •51

134

134

134

134

134

134

134

134

134

134

134

134

134

134

134

134

100

120

149

169

100

120

149

169

100

120

149

169

100

120

149

169

75

95

124

144

89

110

138

159

110

130

159

179

124

145

173

194

1 coefficient

(a) (b)

(c) (d)

2 coefficients

5 coefficients

76

66

95

146

109

117

146

179

117

150

179

187

96

146

175

165

3 coefficients

Figure 3.31 Block reconstructed from (a) one, (b) two, (c) three, (d) five coefficients

images contain all of the information present in the original image but the sparse nature of the
LH, HL and HH subbands makes them amenable to compression.

In an image compression application, the two-dimensional wavelet decomposition de-
scribed above is applied again to the ‘LL’ image, forming four new subband images. The
resulting low-pass image (always the top-left subband image) is iteratively filtered to create
a tree of subband images. Figure 3.34 shows the result of two stages of this decomposi-
tion and Figure 3.35 shows the result of five stages of decomposition. Many of the samples
(coefficients) in the higher-frequency subband images are close to zero (near-black) and it is
possible to achieve compression by removing these insignificant coefficients prior to trans-
mission. At the decoder, the original image is reconstructed by repeated up-sampling, filtering
and addition (reversing the order of operations shown in Figure 3.32).

3.4.3 Quantisation

A quantiser maps a signal with a range of values X to a quantised signal with a reduced range
of values Y. It should be possible to represent the quantised signal with fewer bits than the
original since the range of possible values is smaller. A scalar quantiser maps one sample of
the input signal to one quantised output value and a vector quantiser maps a group of input
samples (a ‘vector’) to a group of quantised values.

VIDEO CODING CONCEPTS•52

Lx

Hx

Ly

Hy

Ly

Hy

down-
sample

down-
sample

down-
sample

down-
sample

down-
sample

down-
sample

LL

LH

HL

HH

L

H

Figure 3.32 Two-dimensional wavelet decomposition process

LL

HL

LH

HH

Figure 3.33 Image after one level of decomposition

3.4.3.1 Scalar Quantisation

A simple example of scalar quantisation is the process of rounding a fractional number to the
nearest integer, i.e. the mapping is from R to Z . The process is lossy (not reversible) since it is
not possible to determine the exact value of the original fractional number from the rounded
integer.

IMAGE MODEL •53

Figure 3.34 Two-stage wavelet decomposition of image

Figure 3.35 Five-stage wavelet decomposition of image

A more general example of a uniform quantiser is:

F Q = round

(
X

Q P

)

Y = F Q.Q P

(3.9)

VIDEO CODING CONCEPTS•54

where QP is a quantisation ‘step size’. The quantised output levels are spaced at uniform
intervals of QP (as shown in the following example).

Example Y = QP.round(X/QP)

Y

X Q P = 1 Q P = 2 Q P = 3 Q P = 5

−4 −4 −4 −3 −5

−3 −3 −2 −3 −5

−2 −2 −2 −3 0

−1 −1 0 0 0

0 0 0 0 0

1 1 0 0 0

2 2 2 3 0

3 3 2 3 5

4 4 4 3 5

5 5 4 6 5

6 6 6 6 5

7 7 6 6 5

8 8 8 9 10

9 9 8 9 10

10 10 10 9 10

11 11 10 12 10

· · · · · ·

Figure 3.36 shows two examples of scalar quantisers, a linear quantiser (with a linear
mapping between input and output values) and a nonlinear quantiser that has a ‘dead zone’
about zero (in which small-valued inputs are mapped to zero).

IMAGE MODEL •55

1 2 43

-1-2- 3-4

1

2

3

4

-2

-1

-3

-4

Output

0
Input

1 2 3 4

-1-2-3-4

1

2

3

4

-1

-2

-3

Output

0

dead
zone

-4

linear nonlinear

Input

Figure 3.36 Scalar quantisers: linear; nonlinear with dead zone

In image and video compression CODECs, the quantisation operation is usually made up
of two parts: a forward quantiser FQ in the encoder and an ‘inverse quantiser’ or (IQ) in the de-
coder (in fact quantization is not reversible and so a more accurate term is ‘scaler’ or ‘rescaler’).
A critical parameter is the step size QP between successive re-scaled values. If the step size
is large, the range of quantised values is small and can therefore be efficiently represented
(highly compressed) during transmission, but the re-scaled values are a crude approximation
to the original signal. If the step size is small, the re-scaled values match the original signal
more closely but the larger range of quantised values reduces compression efficiency.

Quantisation may be used to reduce the precision of image data after applying a transform
such as the DCT or wavelet transform removing remove insignificant values such as near-zero
DCT or wavelet coefficients. The forward quantiser in an image or video encoder is designed
to map insignificant coefficient values to zero whilst retaining a reduced number of significant,
nonzero coefficients. The output of a forward quantiser is typically a ‘sparse’ array of quantised
coefficients, mainly containing zeros.

3.4.3.2 Vector Quantisation

A vector quantiser maps a set of input data (such as a block of image samples) to a single value
(codeword) and, at the decoder, each codeword maps to an approximation to the original set of
input data (a ‘vector’). The set of vectors are stored at the encoder and decoder in a codebook.
A typical application of vector quantisation to image compression [5] is as follows:

1. Partition the original image into regions (e.g. M × N pixel blocks).
2. Choose a vector from the codebook that matches the current region as closely as possible.
3. Transmit an index that identifies the chosen vector to the decoder.
4. At the decoder, reconstruct an approximate copy of the region using the selected vector.

A basic system is illustrated in Figure 3.37. Here, quantisation is applied in the spatial domain
(i.e. groups of image samples are quantised as vectors) but it could equally be applied to

VIDEO CODING CONCEPTS•56

Find best
match

Codebook

Vector 1
Vector 2

...
Vector N

Look up

Codebook

Vector 1
Vector 2

...
Vector N

Input
block

Output
block

Encoder Decoder

Transmit
code index

Figure 3.37 Vector quantisation

motion compensated and/or transformed data. Key issues in vector quantiser design include
the design of the codebook and efficient searching of the codebook to find the optimal
vector.

3.4.4 Reordering and Zero Encoding

Quantised transform coefficients are required to be encoded as compactly as possible prior
to storage and transmission. In a transform-based image or video encoder, the output of
the quantiser is a sparse array containing a few nonzero coefficients and a large number of
zero-valued coefficients. Reordering (to group together nonzero coefficients) and efficient
representation of zero coefficients are applied prior to entropy encoding. These processes are
described for the DCT and wavelet transform.

3.4.4.1 DCT

Coefficient Distribution
The significant DCT coefficients of a block of image or residual samples are typically the
‘low frequency’ positions around the DC (0,0) coefficient. Figure 3.38 plots the probability
of nonzero DCT coefficients at each position in an 8 × 8 block in a QCIF residual frame
(Figure 3.6). The nonzero DCT coefficients are clustered around the top-left (DC) coefficient
and the distribution is roughly symmetrical in the horizontal and vertical directions. For a
residual field (Figure 3.39), Figure 3.40 plots the probability of nonzero DCT coefficients;
here, the coefficients are clustered around the DC position but are ‘skewed’, i.e. more nonzero

IMAGE MODEL •57

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Figure 3.38 8 × 8 DCT coefficient distribution (frame)

Figure 3.39 Residual field picture

coefficients occur along the left-hand edge of the plot. This is because the field picture has a
stronger high-frequency component in the vertical axis (due to the subsampling in the vertical
direction) resulting in larger DCT coefficients corresponding to vertical frequencies (refer to
Figure 3.27).

Scan
After quantisation, the DCT coefficients for a block are reordered to group together nonzero
coefficients, enabling efficient representation of the remaining zero-valued quantised coeffi-
cients. The optimum reordering path (scan order) depends on the distribution of nonzero DCT
coefficients. For a typical frame block with a distribution similar to Figure 3.38, a suitable
scan order is a zigzag starting from the DC (top-left) coefficient. Starting with the DC coef-
ficient, each quantised coefficient is copied into a one-dimensional array in the order shown
in Figure 3.41. Nonzero coefficients tend to be grouped together at the start of the reordered
array, followed by long sequences of zeros.

VIDEO CODING CONCEPTS•58

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Figure 3.40 8 × 8 DCT coefficient distribution (field)

The zig-zag scan may not be ideal for a field block because of the skewed coefficient
distribution (Figure 3.40) and a modified scan order such as Figure 3.42 may be more effective,
in which coefficients on the left-hand side of the block are scanned before those on the right-
hand side.

Run-Level Encoding
The output of the reordering process is an array that typically contains one or more clusters
of nonzero coefficients near the start, followed by strings of zero coefficients. The large
number of zero values may be encoded to represent them more compactly, for example
by representing the array as a series of (run, level) pairs where run indicates the number
of zeros preceding a nonzero coefficient and level indicates the magnitude of the nonzero
coefficient.

Example

Input array: 16,0,0,−3,5,6,0,0,0,0,−7, . . .
Output values: (0,16),(2,−3),(0,5),(0,6),(4,−7). . .

Each of these output values (a run-level pair) is encoded as a separate symbol by the entropy
encoder.

Higher-frequency DCT coefficients are very often quantised to zero and so a reordered
block will usually end in a run of zeros. A special case is required to indicate the final
nonzero coefficient in a block. In so-called ‘Two-dimensional’ run-level encoding is used,
each run-level pair is encoded as above and a separate code symbol, ‘last’, indicates the end of
the nonzero values. If ‘Three-dimensional’ run-level encoding is used, each symbol encodes

IMAGE MODEL •59

Figure 3.41 Zigzag scan order (frame block)

start

etc.

end

Figure 3.42 Zigzag scan order (field block)

three quantities, run, level and last. In the example above, if –7 is the final nonzero coefficient,
the 3D values are:

(0, 16, 0), (2, −3, 0), (0, 5, 0), (0, 6, 0), (4, −7, 1)

The 1 in the final code indicates that this is the last nonzero coefficient in the block.

3.4.4.2 Wavelet

Coefficient Distribution
Figure 3.35 shows a typical distribution of 2D wavelet coefficients. Many coefficients in
higher sub-bands (towards the bottom-right of the figure) are near zero and may be quantised

VIDEO CODING CONCEPTS•60

Layer 1 Layer 2

Figure 3.43 Wavelet coefficient and ‘children’

to zero without significant loss of image quality. Nonzero coefficients tend to correspond to
structures in the image; for example, the violin bow appears as a clear horizontal structure in
all the horizontal and diagonal subbands. When a coefficient in a lower-frequency subband is
nonzero, there is a strong probability that coefficients in the corresponding position in higher-
frequency subbands will also be nonzero. We may consider a ‘tree’ of nonzero quantised
coefficients, starting with a ‘root’ in a low-frequency subband. Figure 3.43 illustrates this
concept. A single coefficient in the LL band of layer 1 has one corresponding coefficient in
each of the other bands of layer 1 (i.e. these four coefficients correspond to the same region
in the original image). The layer 1 coefficient position maps to four corresponding child
coefficient positions in each subband at layer 2 (recall that the layer 2 subbands have twice
the horizontal and vertical resolution of the layer 1 subbands).

Zerotree Encoding
It is desirable to encode the nonzero wavelet coefficients as compactly as possible prior to
entropy coding [6]. An efficient way of achieving this is to encode each tree of nonzero
coefficients starting from the lowest (root) level of the decomposition. A coefficient at the
lowest layer is encoded, followed by its child coefficients at the next higher layer, and so
on. The encoding process continues until the tree reaches a zero-valued coefficient. Further
children of a zero valued coefficient are likely to be zero themselves and so the remaining
children are represented by a single code that identifies a tree of zeros (zerotree). The decoder
reconstructs the coefficient map starting from the root of each tree; nonzero coefficients are
decoded and reconstructed and when a zerotree code is reached, all remaining ‘children’ are
set to zero. This is the basis of the embedded zero tree (EZW) method of encoding wavelet
coefficients. An extra possibility is included in the encoding process, where a zero coefficient
may be followed by (a) a zero tree (as before) or (b) a nonzero child coefficient. Case (b) does
not occur very often but reconstructed image quality is slightly improved by catering for the
occasional occurrences of case (b).

ENTROPY CODER •61

3.5 ENTROPY CODER

The entropy encoder converts a series of symbols representing elements of the video sequence
into a compressed bitstream suitable for transmission or storage. Input symbols may include
quantised transform coefficients (run-level or zerotree encoded as described in Section 3.4.4),
motion vectors (an x and y displacement vector for each motion-compensated block, with
integer or sub-pixel resolution), markers (codes that indicate a resynchronisation point in
the sequence), headers (macroblock headers, picture headers, sequence headers, etc.) and
supplementary information (‘side’ information that is not essential for correct decoding).
In this section we discuss methods of predictive pre-coding (to exploit correlation in local
regions of the coded frame) followed by two widely-used entropy coding techniques, ‘modified
Huffman’ variable length codes and arithmetic coding.

3.5.1 Predictive Coding

Certain symbols are highly correlated in local regions of the picture. For example, the average
or DC value of neighbouring intra-coded blocks of pixels may be very similar; neighbouring
motion vectors may have similar x and y displacements and so on. Coding efficiency may be
improved by predicting elements of the current block or macroblock from previously-encoded
data and encoding the difference between the prediction and the actual value.

The motion vector for a block or macroblock indicates the offset to a prediction reference
in a previously-encoded frame. Vectors for neighbouring blocks or macroblocks are often
correlated because object motion may extend across large regions of a frame. This is especially
true for small block sizes (e.g. 4 × 4 block vectors, see Figure 3.22) and/or large moving
objects. Compression of the motion vector field may be improved by predicting each motion
vector from previously-encoded vectors. A simple prediction for the vector of the current
macroblock X is the horizontally adjacent macroblock A (Figure 3.44), alternatively three or
more previously-coded vectors may be used to predict the vector at macroblock X (e.g. A, B
and C in Figure 3.44). The difference between the predicted and actual motion vector (Motion
Vector Difference or MVD) is encoded and transmitted.

The quantisation parameter or quantiser step size controls the tradeoff between com-
pression efficiency and image quality. In a real-time video CODEC it may be necessary
to modify the quantisation within an encoded frame (for example to alter the compres-
sion ratio in order to match the coded bit rate to a transmission channel rate). It is usually

A

B

X

C

Figure 3.44 Motion vector prediction candidates

VIDEO CODING CONCEPTS•62

sufficient (and desirable) to change the parameter only by a small amount between suc-
cessive coded macroblocks. The modified quantisation parameter must be signalled to the
decoder and instead of sending a new quantisation parameter value, it may be preferable to
send a delta or difference value (e.g. ±1 or ±2) indicating the change required. Fewer bits
are required to encode a small delta value than to encode a completely new quantisation
parameter.

3.5.2 Variable-length Coding

A variable-length encoder maps input symbols to a series of codewords (variable length
codes or VLCs). Each symbol maps to a codeword and codewords may have varying length
but must each contain an integral number of bits. Frequently-occurring symbols are rep-
resented with short VLCs whilst less common symbols are represented with long VLCs.
Over a sufficiently large number of encoded symbols this leads to compression of the
data.

3.5.2.1 Huffman Coding

Huffman coding assigns a VLC to each symbol based on the probability of occurrence of
different symbols. According to the original scheme proposed by Huffman in 1952 [7], it is
necessary to calculate the probability of occurrence of each symbol and to construct a set of
variable length codewords. This process will be illustrated by two examples.

Example 1: Huffman coding, sequence 1 motion vectors

The motion vector difference data (MVD) for a video sequence (‘sequence 1’) is required to be
encoded. Table 3.2 lists the probabilities of the most commonly-occurring motion vectors in the
encoded sequence and their information content, log2(1/p). To achieve optimum compression,
each value should be represented with exactly log2(1/p) bits. ‘0’ is the most common value and
the probability drops for larger motion vectors (this distribution is representative of a sequence
containing moderate motion).

Table 3.2 Probability of occurrence of motion vectors
in sequence 1

Vector Probability p log2(1/p)

−2 0.1 3.32
−1 0.2 2.32

0 0.4 1.32
1 0.2 2.32
2 0.1 3.32

ENTROPY CODER •63

-2

2

A

p = 0.1

p = 0.1

p = 0.2

-1

1

p = 0.2

p = 0.2

B p = 0.4

C

0

0 p = 0.4

D p =1.0

0

0

0

1

1

1

1

Figure 3.45 Generating the Huffman code tree: sequence 1 motion vectors

1. Generating the Huffman Code Tree
To generate a Huffman code table for this set of data, the following iterative procedure is carried
out:

1. Order the list of data in increasing order of probability.
2. Combine the two lowest-probability data items into a ‘node’ and assign the joint probability

of the data items to this node.
3. Re-order the remaining data items and node(s) in increasing order of probability and repeat

step 2.

The procedure is repeated until there is a single ‘root’ node that contains all other nodes and data
items listed ‘beneath’ it. This procedure is illustrated in Figure 3.45.

Original list: The data items are shown as square boxes. Vectors (−2) and (+2) have the
lowest probability and these are the first candidates for merging to form
node ‘A’.

Stage 1: The newly-created node ‘A’ (shown as a circle) has a probability of 0.2
(from the combined probabilities of (−2) and (2)). There are now three items
with probability 0.2. Choose vectors (−1) and (1) and merge to form
node ‘B’.

Stage 2: A now has the lowest probability (0.2) followed by B and the vector 0;
choose A and B as the next candidates for merging (to form ‘C’).

Stage 3: Node C and vector (0) are merged to form ‘D’.
Final tree: The data items have all been incorporated into a binary ‘tree’ containing five

data values and four nodes. Each data item is a ‘leaf’ of the tree.

2. Encoding
Each ‘leaf’ of the binary tree is mapped to a variable-length code. To find this code, the tree is
traversed from the root node (D in this case) to the leaf (data item). For every branch, a 0 or 1

VIDEO CODING CONCEPTS•64

Table 3.3 Huffman codes for sequence 1
motion vectors

Vector Code Bits (actual) Bits (ideal)
0 1 1 1.32
1 011 3 2.32

−1 010 3 2.32
2 001 3 3.32

−2 000 3 3.32

Table 3.4 Probability of occurrence
of motion vectors in sequence 2

Vector Probability log2(1/p)

−2 0.02 5.64
−1 0.07 3.84

0 0.8 0.32
1 0.08 3.64
2 0.03 5.06

is appended to the code, 0 for an upper branch, 1 for a lower branch (shown in the final tree of
Figure 3.45), giving the following set of codes (Table 3.3).

Encoding is achieved by transmitting the appropriate code for each data item. Note that once
the tree has been generated, the codes may be stored in a look-up table.

High probability data items are assigned short codes (e.g. 1 bit for the most common vector
‘0’). However, the vectors (−2, 2, −1, 1) are each assigned three-bit codes (despite the fact that
–1 and 1 have higher probabilities than –2 and 2). The lengths of the Huffman codes (each an
integral number of bits) do not match the ideal lengths given by log2(1/p). No code contains any
other code as a prefix which means that, reading from the left-hand bit, each code is uniquely
decodable.

For example, the series of vectors (1, 0, −2) would be transmitted as the binary sequence
0111000.

3. Decoding
In order to decode the data, the decoder must have a local copy of the Huffman code tree (or
look-up table). This may be achieved by transmitting the look-up table itself or by sending the
list of data and probabilities prior to sending the coded data. Each uniquely-decodeable code is
converted back to the original data, for example:

011 is decoded as (1)

1 is decoded as (0)

000 is decoded as (−2).

Example 2: Huffman coding, sequence 2 motion vectors

Repeating the process described above for a second sequence with a different distribution of
motion vector probabilities gives a different result. The probabilities are listed in Table 3.4 and
note that the zero vector is much more likely to occur in this example (representative of a sequence
with little movement).

ENTROPY CODER •65

Table 3.5 Huffman codes for sequence 2
motion vectors

Vector Code Bits (actual) Bits (ideal)

0 1 1 0.32
1 01 2 3.64

−1 001 3 3.84
2 0001 4 5.06

−2 0000 4 5.64

-2

2

A

p = 0.02

p = 0.03

p = 0.05

-1

1

p = 0.07

p = 0.08

0 p = 0.8

0

1
B p = 0.12

C p = 0.2

D p =1.0

0

0

0

1

1

1

Figure 3.46 Huffman tree for sequence 2 motion vectors

The corresponding Huffman tree is given in Figure 3.46. The ‘shape’ of the tree has changed
(because of the distribution of probabilities) and this gives a different set of Huffman codes (shown
in Table 3.5). There are still four nodes in the tree, one less than the number of data items (five),
as is always the case with Huffman coding.

If the probability distributions are accurate, Huffman coding provides a relatively compact
representation of the original data. In these examples, the frequently occurring (0) vector is
represented efficiently as a single bit. However, to achieve optimum compression, a separate
code table is required for each of the two sequences because of their different probability
distributions. The loss of potential compression efficiency due to the requirement for integral-
length codes is very clear for vector ‘0’ in sequence 2, since the optimum number of bits
(information content) is 0.32 but the best that can be achieved with Huffman coding is 1 bit.

3.5.2.2 Pre-calculated Huffman-based Coding

The Huffman coding process has two disadvantages for a practical video CODEC. First, the
decoder must use the same codeword set as the encoder. Transmitting the information contained
in the probability table to the decoder would add extra overhead and reduce compression

VIDEO CODING CONCEPTS•66

Table 3.6 MPEG-4 Visual Transform Coefficient
(TCOEF) VLCs (partial, all codes <9 bits)

Last Run Level Code

0 0 1 10s
0 1 1 110s
0 2 1 1110s
0 0 2 1111s
1 0 1 0111s
0 3 1 01101s
0 4 1 01100s
0 5 1 01011s
0 0 3 010101s
0 1 2 010100s
0 6 1 010011s
0 7 1 010010s
0 8 1 010001s
0 9 1 010000s
1 1 1 001111s
1 2 1 001110s
1 3 1 001101s
1 4 1 001100s
0 0 4 0010111s
0 10 1 0010110s
0 11 1 0010101s
0 12 1 0010100s
1 5 1 0010011s
1 6 1 0010010s
1 7 1 0010001s
1 8 1 0010000s

ESCAPE 0000011s
· · · · · · · · · · · ·

efficiency, particularly for shorter video sequences. Second, the probability table for a large
video sequence (required to generate the Huffman tree) cannot be calculated until after the
video data is encoded which may introduce an unacceptable delay into the encoding process.
For these reasons, recent image and video coding standards define sets of codewords based
on the probability distributions of ‘generic’ video material. The following two examples of
pre-calculated VLC tables are taken from MPEG-4 Visual (Simple Profile).

Transform Coefficients (TCOEF)
MPEG-4 Visual uses 3D coding of quantised coefficients in which each codeword represents
a combination of (run, level, last). A total of 102 specific combinations of (run, level, last)
have VLCs assigned to them and 26 of these codes are shown in Table 3.6.

A further 76 VLCs are defined, each up to 13 bits long. The last bit of each codeword is
the sign bit ‘s’, indicating the sign of the decoded coefficient (0 = positive, 1 = negative). Any
(run, level, last) combination that is not listed in the table is coded using an escape sequence, a
special ESCAPE code (0000011) followed by a 13-bit fixed length code describing the values
of run, level and last.

ENTROPY CODER •67

Table 3.7 MPEG4 Motion Vector
Difference (MVD) VLCs

MVD Code

0 1
+0.5 010
−0.5 011
+1 0010
−1 0011

+1.5 00010
−1.5 00011
+2 0000110
−2 0000111

+2.5 00001010
−2.5 00001011
+3 00001000
−3 00001001

+3.5 00000110
−3.5 00000111
· · · · · ·

Some of the codes shown in Table 3.6 are represented in ‘tree’ form in Figure 3.47. A
codeword containing a run of more than eight zeros is not valid, hence any codeword starting
with 000000000. . . indicates an error in the bitstream (or possibly a start code, which begins
with a long sequence of zeros, occurring at an unexpected position in the sequence). All other
sequences of bits can be decoded as valid codes. Note that the smallest codes are allocated to
short runs and small levels (e.g. code ‘10’ represents a run of 0 and a level of ±1), since these
occur most frequently.

Motion Vector Difference (MVD)
Differentially coded motion vectors (MVD) are each encoded as a pair of VLCs, one for the
x-component and one for the y-component. Part of the table of VLCs is shown in Table 3.7.
A further 49 codes (8–13 bits long) are not shown here. Note that the shortest codes represent
small motion vector differences (e.g. MVD = 0 is represented by a single bit code ‘1’).

These code tables are clearly similar to ‘true’ Huffman codes since each symbol is as-
signed a unique codeword, common symbols are assigned shorter codewords and, within a
table, no codeword is the prefix of any other codeword. The main differences from ‘true’
Huffman coding are (1) the codewords are pre-calculated based on ‘generic’ probability dis-
tributions and (b) in the case of TCOEF, only 102 commonly-occurring symbols have defined
codewords with any other symbol encoded using a fixed-length code.

3.5.2.3 Other Variable-length Codes

As well as Huffman and Huffman-based codes, a number of other families of VLCs are of
potential interest in video coding applications. One serious disadvantage of Huffman-based
codes for transmission of coded data is that they are sensitive to transmission errors. An

VIDEO CODING CONCEPTS•68

10 (0,0,1)

110 (0,1,1)

1110 (0,2,1)

1111 (0,0,2)

0111 (1,0,1)

01100 (0,4,1)

01101 (0,3,1)

01011 (0,5,1)

010101 (0,0,3)

010100 (0,1,2)

010011 (0,6,1)

010010 (0,7,1)

010001 (0,8,1)

010000 (0,9,1)

... 19 codes

... 17 codes

0000011 (escape)

... 24 codes

... 8 codes

... 4 codes

...4 codes

000000000X (error)

0

1

0

1

0

1

Start

... 12 codes

Figure 3.47 MPEG4 TCOEF VLCs (partial)

error in a sequence of VLCs may cause a decoder to lose synchronisation and fail to decode
subsequent codes correctly, leading to spreading or propagation of an error in a decoded
sequence. Reversible VLCs (RVLCs) that can be successfully decoded in either a forward or
a backward direction can improve decoding performance when errors occur (see Section 5.3).
A drawback of pre-defined code tables (such as Table 3.6 and Table 3.7) is that both encoder
and decoder must store the table in some form. An alternative approach is to use codes that

ENTROPY CODER •69

can be generated automatically (‘on the fly’) if the input symbol is known. Exponential
Golomb codes (Exp-Golomb) fall into this category and are described in Chapter 6.

3.5.3 Arithmetic Coding

The variable length coding schemes described in Section 3.5.2 share the fundamental dis-
advantage that assigning a codeword containing an integral number of bits to each symbol
is sub-optimal, since the optimal number of bits for a symbol depends on the information
content and is usually a fractional number. Compression efficiency of variable length codes
is particularly poor for symbols with probabilities greater than 0.5 as the best that can be
achieved is to represent these symbols with a single-bit code.

Arithmetic coding provides a practical alternative to Huffman coding that can more
closely approach theoretical maximum compression ratios [8]. An arithmetic encoder converts
a sequence of data symbols into a single fractional number and can approach the optimal
fractional number of bits required to represent each symbol.

Example

Table 3.8 lists the five motion vector values (−2, −1, 0, 1, 2) and their probabilities from Example
1 in Section 3.5.2.1. Each vector is assigned a sub-range within the range 0.0 to 1.0, depending
on its probability of occurrence. In this example, (−2) has a probability of 0.1 and is given the
subrange 0–0.1 (i.e. the first 10% of the total range 0 to 1.0). (−1) has a probability of 0.2 and
is given the next 20% of the total range, i.e. the subrange 0.1−0.3. After assigning a sub-range
to each vector, the total range 0–1.0 has been divided amongst the data symbols (the vectors)
according to their probabilities (Figure 3.48).

Table 3.8 Motion vectors, sequence 1:
probabilities and sub-ranges

Vector Probability log2(1/P) Sub-range

−2 0.1 3.32 0–0.1
−1 0.2 2.32 0.1–0.3

0 0.4 1.32 0.3–0.7
1 0.2 2.32 0.7–0.9
2 0.1 3.32 0.9–1.0

0 10.1 0.3 0.7 0.9

Total range

(-2) (-1) (0) (+1) (+2)

Figure 3.48 Sub-range example

VIDEO CODING CONCEPTS•70

Encoding Procedure for Vector Sequence (0, −1, 0, 2):

Range Symbol
Encoding procedure (L → H) (L → H) Sub-range Notes

1. Set the initial range. 0 → 1.0
2. For the first data (0) 0.3 → 0.7

symbol, find the
corresponding sub-
range (Low to High).

3. Set the new range (1) 0.3 → 0.7
to this sub-range.

4. For the next data (−1) 0.1 → 0.3 This is the sub-range
symbol, find the sub- within the interval 0–1
range L to H.

5. Set the new range (2) 0.34 → 0.42 0.34 is 10% of the range
to this sub-range 0.42 is 30% of the range
within the previous
range.

6. Find the next sub- (0) 0.3 → 0.7
range.

7. Set the new range (3) 0.364→0.396 0.364 is 30% of the
within the previous range; 0.396 is 70% of
range. the range

8. Find the next sub- (2) 0.9 → 1.0
range.

9. Set the new range (4) 0.3928→0.396 0.3928 is 90% of the
within the previous range; 0.396 is 100% of
range. the range

Each time a symbol is encoded, the range (L to H) becomes progressively smaller. At the end
of the encoding process (four steps in this example), we are left with a final range (L to H). The
entire sequence of data symbols can be represented by transmitting any fractional number that
lies within this final range. In the example above, we could send any number in the range 0.3928
to 0.396: for example, 0.394. Figure 3.49 shows how the initial range (0 to 1) is progressively
partitioned into smaller ranges as each data symbol is processed. After encoding the first symbol
(vector 0), the new range is (0.3, 0.7). The next symbol (vector –1) selects the sub-range (0.34,
0.42) which becomes the new range, and so on. The final symbol (vector +2) selects the sub-
range (0.3928, 0.396) and the number 0.394 (falling within this range) is transmitted. 0.394 can
be represented as a fixed-point fractional number using nine bits, so our data sequence (0, −1, 0,
2) is compressed to a nine-bit quantity.

Decoding Procedure

Decoded
Decoding procedure Range Sub-range symbol

1. Set the initial range. 0 → 1
2. Find the sub-range in which the 0.3 → 0.7 (0)

received number falls. This
indicates the first data symbol.

ENTROPY CODER •71

(cont.)

Decoded
Decoding procedure Range Sub-range symbol

3. Set the new range (1) to this sub- 0.3 → 0.7
range.

4. Find the sub-range of the new 0.34 → 0.42 (−1)
range in which the received
number falls. This indicates the
second data symbol.

5. Set the new range (2) to this sub- 0.34 → 0.42
range within the previous range.

6. Find the sub-range in which the 0.364 → 0.396 (0)
received number falls and decode
the third data symbol.

7. Set the new range (3) to this sub- 0.364 → 0.396
range within the previous range.

8. Find the sub-range in which the 0.3928→ 0.396
received number falls and decode
the fourth data symbol.

0 10.1 0.3 0.7 0.9

(0)

0.3 0 0.70.34 0.42 0.58 0.66

(-1)

0.34 0.420.348 0.364 0.396 0.412

(0)

0.364 0.3960.3672 0.3736 0.3864 0.3928

(2)

0.394

1

Figure 3.49 Arithmetic coding example

VIDEO CODING CONCEPTS•72

The principal advantage of arithmetic coding is that the transmitted number (0.394 in
this case, which may be represented as a fixed-point number with sufficient accuracy using
nine bits) is not constrained to an integral number of bits for each transmitted data sym-
bol. To achieve optimal compression, the sequence of data symbols should be represented
with:

log2(1/P0) + log2(1/P−1) + log2(1/P0) + log2(1/P2)bits = 8.28bits

In this example, arithmetic coding achieves nine bits, which is close to optimum. A
scheme using an integral number of bits for each data symbol (such as Huffman coding) is
unlikely to come so close to the optimum number of bits and, in general, arithmetic coding
can out-perform Huffman coding.

3.5.3.1 Context-based Arithmetic Coding

Successful entropy coding depends on accurate models of symbol probability. Context-based
Arithmetic Encoding (CAE) uses local spatial and/or temporal characteristics to estimate the
probability of a symbol to be encoded. CAE is used in the JBIG standard for bi-level image
compression [9] and has been adopted for coding binary shape ‘masks’ in MPEG-4 Visual
(see Chapter 5) and entropy coding in the Main Profile of H.264 (see Chapter 6).

3.6 THE HYBRID DPCM/DCT VIDEO CODEC MODEL

The major video coding standards released since the early 1990s have been based on the
same generic design (or model) of a video CODEC that incorporates a motion estimation and
compensation front end (sometimes described as DPCM), a transform stage and an entropy
encoder. The model is often described as a hybrid DPCM/DCT CODEC. Any CODEC that
is compatible with H.261, H.263, MPEG-1, MPEG-2, MPEG-4 Visual and H.264 has to
implement a similar set of basic coding and decoding functions (although there are many
differences of detail between the standards and between implementations).

Figure 3.50 and Figure 3.51 show a generic DPCM/DCT hybrid encoder and decoder.
In the encoder, video frame n (Fn) is processed to produce a coded (compressed) bitstream
and in the decoder, the compressed bitstream (shown at the right of the figure) is decoded to
produce a reconstructed video frame F′

n . not usually identical to the source frame. The figures
have been deliberately drawn to highlight the common elements within encoder and decoder.
Most of the functions of the decoder are actually contained within the encoder (the reason for
this will be explained below).

Encoder Data Flow
There are two main data flow paths in the encoder, left to right (encoding) and right to left
(reconstruction). The encoding flow is as follows:

1. An input video frame Fn is presented for encoding and is processed in units of a macroblock
(corresponding to a 16 × 16 luma region and associated chroma samples).

2. Fn is compared with a reference frame, for example the previous encoded frame (F′
n−1).

A motion estimation function finds a 16 × 16 region in F′
n−1 (or a sub-sample interpolated

THE HYBRID DPCM/DCT VIDEO CODEC MODEL •73

DCT

IDCT

Quant

Reorder

Dn

P

+

-

+

+ X

F’n
D’n

Fn

(current)

(reconstructed)

F’n-1
(reference)

Motion
Estimate

Motion
Compensate

Rescale

Vectors and
headers

Entropy
encode

Coded
bistream

Figure 3.50 DPCM/DCT video encoder

F'n-1 Motion
Compensate

IDCT Rescale Reorder
Entropy
decode

Coded
bistream

P

+

+

X
F'n

(reconstructed)

D'n

(reference) Vectors and
headers

Figure 3.51 DPCM/DCT video decoder

version of F’n−1) that ‘matches’ the current macroblock in Fn (i.e. is similar according
to some matching criteria). The offset between the current macroblock position and the
chosen reference region is a motion vector MV.

3. Based on the chosen motion vector MV, a motion compensated prediction P is generated
(the 16 × 16 region selected by the motion estimator).

4. P is subtracted from the current macroblock to produce a residual or difference macro-
block D.

5. D is transformed using the DCT. Typically, D is split into 8 × 8 or 4 × 4 sub-blocks and
each sub-block is transformed separately.

6. Each sub-block is quantised (X).
7. The DCT coefficients of each sub-block are reordered and run-level coded.
8. Finally, the coefficients, motion vector and associated header information for each mac-

roblock are entropy encoded to produce the compressed bitstream.

The reconstruction data flow is as follows:

1. Each quantised macroblock X is rescaled and inverse transformed to produce a decoded
residual D′. Note that the nonreversible quantisation process means that D′ is not identical
to D (i.e. distortion has been introduced).

2. The motion compensated prediction P is added to the residual D′ to produce a reconstructed
macroblock and the reconstructed macroblocks are saved to produce reconstructed frame
F′

n .

VIDEO CODING CONCEPTS•74

After encoding a complete frame, the reconstructed frame F′
n may be used as a reference frame

for the next encoded frame Fn+1 .

Decoder Data Flow
1. A compressed bitstream is entropy decoded to extract coefficients, motion vector and header

for each macroblock.
2. Run-level coding and reordering are reversed to produce a quantised, transformed mac-

roblock X.
3. X is rescaled and inverse transformed to produce a decoded residual D′.
4. The decoded motion vector is used to locate a 16 × 16 region in the decoder’s copy

of the previous (reference) frame F′
n−1. This region becomes the motion compensated

prediction P.
5. P is added to D′ to produce a reconstructed macroblock. The reconstructed macroblocks

are saved to produce decoded frame F′
n .

After a complete frame is decoded, F′
n is ready to be displayed and may also be stored as a

reference frame for the next decoded frame F′
n+1.

It is clear from the figures and from the above explanation that the encoder includes a
decoding path (rescale, IDCT, reconstruct). This is necessary to ensure that the encoder and
decoder use identical reference frames F′

n−1 for motion compensated prediction.

Example

A 25-Hz video sequence in CIF format (352 × 288 luminance samples and 176 × 144 red/blue
chrominance samples per frame) is encoded and decoded using a DPCM/DCT CODEC.
Figure 3.52 shows a CIF (video frame (Fn) that is to be encoded and Figure 3.53 shows the
reconstructed previous frame F′

n−1. Note that F′
n−1 has been encoded and decoded and shows

some distortion. The difference between Fn and F′
n−1 without motion compensation (Figure

3.54) clearly still contains significant energy, especially around the edges of moving areas.
Motion estimation is carried out with a 16 × 16 luma block size and half-sample accuracy,

producing the set of vectors shown in Figure 3.55 (superimposed on the current frame for
clarity). Many of the vectors are zero (shown as dots) which means that the best match for the
current macroblock is in the same position in the reference frame. Around moving areas, the
vectors tend to point in the direction from which blocks have moved (e.g. the man on the left
is walking to the left; the vectors therefore point to the right, i.e. where he has come from).
Some of the vectors do not appear to correspond to ‘real’ movement (e.g. on the surface of
the table) but indicate simply that the best match is not at the same position in the reference
frame. ‘Noisy’ vectors like these often occur in homogeneous regions of the picture, where
there are no clear object features in the reference frame.

The motion-compensated reference frame (Figure 3.56) is the reference frame ‘reor-
ganized’ according to the motion vectors. For example, note that the walking person (2nd
left) has been moved to the left to provide a better match for the same person in the current
frame and that the hand of the left-most person has been moved down to provide an improved
match. Subtracting the motion compensated reference frame from the current frame gives the
motion-compensated residual in Figure 3.57 in which the energy has clearly been reduced,
particularly around moving areas.

THE HYBRID DPCM/DCT VIDEO CODEC MODEL •75

Figure 3.52 Input frame Fn

Figure 3.53 Reconstructed reference frame F′
n−1

VIDEO CODING CONCEPTS•76

Figure 3.54 Residual Fn − F ′
n−1 (no motion compensation)

Figure 3.55 16 × 16 motion vectors (superimposed on frame)

THE HYBRID DPCM/DCT VIDEO CODEC MODEL •77

Figure 3.56 Motion compensated reference frame

Figure 3.57 Motion compensated residual frame

VIDEO CODING CONCEPTS•78

Table 3.9 Residual luminance samples
(upper-right 8 × 8 block)

−4 −4 −1 0 1 1 0 −2

1 2 3 2 −1 −3 −6 −3
6 6 4 −4 −9 −5 −6 −5

10 8 −1 −4 −6 −1 2 4
7 9 −5 −9 −3 0 8 13
0 3 −9 −12 −8 −9 −4 1

−1 4 −9 −13 −8 −16 −18 −13
14 13 −1 −6 3 −5 −12 −7

Figure 3.58 Original macroblock (luminance)

Figure 3.58 shows a macroblock from the original frame (taken from around the head
of the figure on the right) and Figure 3.59 the luminance residual after motion compensa-
tion. Applying a 2D DCT to the top-right 8 × 8 block of luminance samples (Table 3.9)
produces the DCT coefficients listed in Table 3.10. The magnitude of each coefficient is plot-
ted in Figure 3.60; note that the larger coefficients are clustered around the top-left (DC)
coefficient.

A simple forward quantiser is applied:

Qcoeff = round(coeff/Qstep)

where Qstep is the quantiser step size, 12 in this example. Small-valued coefficients become
zero in the quantised block (Table 3.11) and the nonzero outputs are clustered around the
top-left (DC) coefficient.

The quantised block is reordered in a zigzag scan (starting at the top-left) to produce a
linear array:

−1, 2, 1, −1, −1, 2, 0, −1, 1, −1, 2, −1, −1, 0, 0, −1, 0, 0, 0, −1, −1, 0, 0, 0, 0, 0, 1, 0, . . .

THE HYBRID DPCM/DCT VIDEO CODEC MODEL •79

Table 3.10 DCT coefficients

−13.50 20.47 20.20 2.14 −0.50 −10.48 −3.50 −0.62

10.93 −11.58 −10.29 −5.17 −2.96 10.44 4.96 −1.26
−8.75 9.22 −17.19 2.26 3.83 −2.45 1.77 1.89
−7.10 −17.54 1.24 −0.91 0.47 −0.37 −3.55 0.88
19.00 −7.20 4.08 5.31 0.50 0.18 −0.61 0.40

−13.06 3.12 −2.04 −0.17 −1.19 1.57 −0.08 −0.51
1.73 −0.69 1.77 0.78 −1.86 1.47 1.19 0.42

−1.99 −0.05 1.24 −0.48 −1.86 −1.17 −0.21 0.92

Table 3.11 Quantized coefficients

−1 2 2 0 0 −1 0 0
1 −1 −1 0 0 1 0 0

−1 1 −1 0 0 0 0 0
−1 −1 0 0 0 0 0 0

2 −1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Figure 3.59 Residual macroblock (luminance)

This array is processed to produce a series of (zero run, level) pairs:

(0, −1)(0, 2)(0, 1)(0, −1)(0, −1)(0, 2)(1, −1)(0, 1)(0, −1)(0, 2)(0, −1)(0, −1)(2, −1)

(3, −1)(0, −1)(5, 1)(EOB)

‘EOB’ (End Of Block) indicates that the remainder of the coefficients are zero.
Each (run, level) pair is encoded as a VLC. Using the MPEG-4 Visual TCOEF table

(Table 3.6), the VLCs shown in Table 3.12 are produced.

VIDEO CODING CONCEPTS•80

Table 3.12 Variable length coding example

Run, Level, Last VLC (including sign bit)

(0,−1, 0) 101
(0,2, 0) 11100
(0,1, 0) 100
(0,−1, 0) 101
(0,−1, 0) 101
(0,2, 0) 11100
(1,−1, 0) 1101
· · · · · ·
(5,1, 1) 00100110

2

4

6

8

1
2 3 4 5

6 7 8

5

10

15

20

25

Figure 3.60 DCT coefficient magnitudes (top-right 8 × 8 block)

The final VLC signals that LAST = 1, indicating that this is the end of the block. The
motion vector for this macroblock is (0, 1) (i.e. the vector points downwards). The predicted
vector (based on neighbouring macroblocks) is (0,0) and so the motion vector difference values
are MVDx = 0, MVDy = +1. Using the MPEG4 MVD table (Table 3.7), these are coded as
(1) and (0010) respectively.

The macroblock is transmitted as a series of VLCs, including a macroblock header,
motion vector difference (X and Y) and transform coefficients (TCOEF) for each 8 × 8 block.

At the decoder, the VLC sequence is decoded to extract header parameters, MVDx and
MVDy and (run,level) pairs for each block. The 64-element array of reordered coefficients is
reconstructed by inserting (run) zeros before every (level). The array is then ordered to produce
an 8 × 8 block (identical to Table 3.11). The quantised coefficients are rescaled using:

Rcoeff = Qstep.Qcoeff

(where Qstep = 12 as before) to produce the block of coefficients shown in Table 3.13. Note
that the block is significantly different from the original DCT coefficients (Table 3.10) due to

THE HYBRID DPCM/DCT VIDEO CODEC MODEL •81

Table 3.13 Rescaled coefficients

−12 24 24 0 0 −12 0 0
12 −12 −12 0 0 12 0 0

−12 12 −12 0 0 0 0 0
−12 −12 0 0 0 0 0 0

24 −12 0 0 0 0 0 0
−12 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Table 3.14 Decoded residual luminance samples

−3 −3 −1 1 −1 −1 −1 −3
5 3 2 0 −3 −4 −5 −6
9 6 1 −3 −5 −6 −5 −4
9 8 1 −4 −1 1 4 10
7 8 −1 −6 −1 2 5 14
2 3 −8 −15 −11 −11 −11 −2
2 5 −7 −17 −13 −16 −20 −11

12 16 3 −6 −1 −6 −11 −3

0

2

4

6

8

0
2

4
6

8

-20

0

20

Original residual block

0

2

4

6

8

0
2

4
6

8

-20

0

20

Decoded residual block

Figure 3.61 Comparison of original and decoded residual blocks

the quantisation process. An Inverse DCT is applied to create a decoded residual block (Table
3.14) which is similar but not identical to the original residual block (Table 3.9). The original
and decoded residual blocks are plotted side by side in Figure 3.61 and it is clear that the
decoded block has less high-frequency variation because of the loss of high-frequency DCT
coefficients through quantisation.

VIDEO CODING CONCEPTS•82

Figure 3.62 Decoded frame F′
n

The decoder forms its own predicted motion vector based on previously decoded vectors
and recreates the original motion vector (0, 1). Using this vector, together with its own copy of
the previously decoded frame F′

n−1, the decoder reconstructs the macroblock. The complete
decoded frame is shown in Figure 3.62. Because of the quantisation process, some distortion
has been introduced, for example around detailed areas such as the faces and the equations on
the whiteboard and there are some obvious edges along 8 × 8 block boundaries. The complete
sequence was compressed by around 300 times (i.e. the coded sequence occupies less than
1/300 the size of the uncompressed video) and so significant compression was achieved at
the expense of relatively poor image quality.

3.7 CONCLUSIONS

The video coding tools described in this chapter, motion compensated prediction, transform
coding, quantisation and entropy coding, form the basis of the reliable and effective coding
model that has dominated the field of video compression for over 10 years. This coding
model is at the heart of the two standards described in this book. The technical details of
the standards are dealt with in Chapters 5 and 6 but first Chapter 4 introduces the standards
themselves.

REFERENCES •83

3.8 REFERENCES

1. ISO/IEC 14495-1:2000 Information technology – lossless and near-lossless compression of
continuous-tone still images: Baseline, (JPEG-LS).

2. B. Horn and B. G. Schunk, Determining optical flow, Artificial Intelligence, 17, 185–203, 1981.
3. K. R. Rao and P. Yip, Discrete Cosine Transform, Academic Press, 1990.
4. S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1999.
5. N. Nasrabadi and R. King, Image coding using vector quantisation: a review, IEEE Trans. Commun,

36 (8), August 1988.
6. W. A. Pearlman, Trends of tree-based, set-partitioned compression techniques in still and moving

image systems, Proc. International Picture Coding Symposium, Seoul, April 2001.
7. D. Huffman, A method for the construction of minimum redundancy codes, Proc. of the IRE, 40,

pp. 1098–1101, 1952.
8. I. Witten, R. Neal and J. Cleary, Arithmetic coding for data compression, Communications of the

ACM, 30 (6), June 1987.
9. ITU-T Recommendation, Information technology – coded representation of picture and audio infor-

mation – progressive bi-level image compression, T.82 (JBIG).

