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Abstract

A dynamic task allocation algorithm for ray-tracing by progressive refinement on a distributed-memory parallel

computer is described. Parallelization of progressive ray-tracing is difficult because of the inherent sequential

nature of the sample location generation process, which is optimized (and different) for any given image.

We report on experimental results obtained from our implementation of this algorithm on a Meiko parallel

computer. The three performance measures of the algorithm, namely, load-balance, speedup, and image quality,

are shown to be good.
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1. Introduction

One of the main goals of contemporary computer graph-

ics is efficient rendering of photorealistic images. Op-

tical phenomena must be accurately modeled by the

rendering algorithm in order to provide visual realism.

Unfortunately, methods rendering accurate images by

simulating these physics, such as ray-tracing or radios-

ity, are computationally very expensive, sometimes re-

quiring minutes of CPU time to produce a medium

resolution image of reasonable quality. For this reason

the terms “efficient” and “photorealistic” remain con-

flicting and computer graphics users have to choose

between slow high-quality images and fast low-quality

images.

This paper is concerned with the ray-tracing method.

Much effort has been invested in accelerating this ren-

dering algorithm (see survey in Glassner1), but even

then, seconds of CPU time are still required to pro-

duce an image of reasonable quality and resolution on a

high-end workstation. This is obviously unpractical for

time-critical applications, such as visual simulation and

virtual reality systems, where image sequences are to

be generated at almost real-time rates (approximately

† A preliminary version of this paper was presented at the

2nd Winter School on Computer Graphics and Visualization,

Pilsen, Czech Republic, February 1995.

20 frames/sec), even if we were willing to compro-

mise somewhat on the resolution and quality of the

images.

2. Parallel Ray Tracing

The advent of cheap parallel processing power moti-

vates its use in accelerating ray-tracing, to approach

real-time rates. Whitted2 first observed that ray-tracing

lends itself easily to parallelization, as each ray can be

traced independently from others by any processor of a

parallel computer. Since then many systems have been

proposed to exploit this inherent source of parallelism in

a variety of ways (see surveys in Green3 and Jansen and

Chalmers4). The two main factors influencing the design

and performance of parallel ray-tracing systems, are the

computation model and the load-balancing mechanism.

2.1. Computation Models

The two main models of parallel computation, are

demand-driven computation and data-driven computa-

tion. In demand-driven systems, each processor is allo-

cated tasks to perform and is responsible for all com-

putations related to those tasks. In demand-driven ray-

tracing, the task assigned to a processor can be a region

of the image space, and that processor is responsible

for all computations related to the tracing of all rays

spawned by primary rays passing through that region.
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All data required by the processor for the computation

is communicated to it.

In data-driven systems, processors are allocated differ-

ent sections of the data, and a computation is assigned

to the processor which has access to the data required

to perform that computation. Thus, one computational

task is performed by a number of processors sharing the

required data. In data-driven ray-tracing, processors are

allocated parts of the scene geometry and each processor

is responsible for all computations accessing the objects

contained in its portion of the scene, independent of the

origin of the ray being traced. Rays spawned at one

processor, but requiring the data of another processor,

are transferred to that processor for further handling.

The most important consideration influencing the

choice of a particular computation model for ray-tracing

is the availability of memory. Because of unpredictable

trajectories of secondary rays contributing to the pixel, it

is almost impossible to know in advance which objects

of the scene will contribute to the tracing of a given

primary ray. Therefore, to use a demand-driven model,

each processor must have easy access to the entire scene

geometry. Not always is there enough local memory to

store the entire scene geometry and special techniques

are used to perform data exchange, which can seriously

degrade performance. Data-driven parallelization uses

memory more efficiently. However, as the number of

processors increases, the efficiency of the system drops

due to substantial task communication overhead.

2.2. Load Balancing

Load balancing mechanisms attempt to guarantee that

each processor performs an equal part of the total com-

putation (in terms of CPU time). The general need for

a good load balancing technique is amplified by the un-

predictable nature of the ray-tracing process, i.e. a large

variance in the time required to trace ray trees spawned

by different primary rays. It is almost impossible to

determine apriori which rays will be ”harder” to com-

pute or spawn more rays, and which scene objects will

be referenced more often than others, and, as a result,

one heavily loaded processor may reduce drastically the

performance of the whole system. Figures 5(a) and (f)

show images, and Figures 5 (b) and (g) maps of their

computational complexity (ray-tracing CPU time). The

complexity of a pixel is represented by a proportional

gray level intensity. For the image of Figure 5(a), the ra-

tio in complexity between different pixels reaches three

orders of magnitude.

There are two main strategies for load balancing,

static and dynamic. The former maps tasks to processors

apriori based on preliminary estimates of load distribu-

tion, so usually cannot ensure good balance. However,

since no communication overhead is required while pro-

cessing, this can sometimes result in an efficient com-

putation. The latter maps tasks to processors on the

fly and thus can regulate load distribution at run time,

providing better load balancing, at the expense of some

monitoring overhead.

3. Progressive Ray Tracing

3.1. Adaptive Sampling

Ray tracing over a regular pixel grid leads to redundant

computations on the one hand, and is prone to aliasing

artifacts on the other. It has been shown on many occa-

sions (see e.g. Dippe and Wold5, Mitchell6 and Mitchell7)

that nonuniform sampling yields artifacts that are much

less noticeable, trading off the aliasing for some noise.

Computer-generated images do not exhibit uniform

local image intensity variance. Edges and silhouettes

are areas of high contrast, containing high frequencies

which require dense sampling, while large, uniform ob-

jects and backgrounds are regions with small local vari-

ance and do not require high density sampling. How-

ever, too sparse sampling of large regions can miss small

objects and isolated features. The main goal of any algo-

rithm using nonuniform sampling is to produce a high

quality antialiased image with a relatively small number

of samples. Adaptive nonuniform sampling generates a

sample pattern tailored to the image content.

3.2. Progressive Sampling

In most adaptive ray-tracing implementations, pixels are

supersampled by a varying number of primary rays.

Cook8 used two levels of sampling density, a regular

coarse pattern for most pixels and a higher-density pat-

tern for pixels with high variance. Lee et. al9 varied the

sampling density at each pixel continuously as a func-

tion of local image variance. In both cases, at least one

sample is performed per pixel, and the target image pixel

values are computed as the average of the sample values

obtained for that pixel. The image is not complete until

all pixels have been sampled at least once. Painter and

Sloan10 first proposed to treat the image as a continuous

region in the plane (without pixel boundaries), adding

samples using progressive refinement. The advantage of

their method is that every prefix of the generated sam-

ple set is “optimally” distributed over the image plane,

allowing the quick reconstruction of a low quality image

from that prefix. Even though only a rough approxima-

tion of the final product can be achieved with a small

number of samples, it is sometimes very useful to see this

rough estimate, which can be further refined if needed.

In time-critical applications, the sampling is terminated

when time runs out, and some image, possibly crude, is

displayed.
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At the heart of any progressive ray-tracer lies the

adaptive sample generator. The sample generator of

Painter and Sloan maintains a binary 2-D tree split-

ting the two-dimensional image space along x and y

axes in turn. The decision on which region to refine by

the next sample is based on a variance estimate of the

region, its area and the number of samples already in it.

In this way the refinement process is driven by two cri-

teria: area coverage and feature location. After regions

reach the size of pixels, the only criteria used is mean

variance. The refinement process stops when a particular

confidence level of the image intensity is reached.

Other11, 12, 13 sample generators have been proposed

for producing an “optimal” sampling pattern. The sam-

ple location generator of Eldar et. al 12 (designed

for image compression) maintains a growing Delaunay

triangulation14 of sample locations. These triangles are

continuously refined. A new sample location is always

the center of one of the so-called “Delaunay circles”,

namely, circles circumscribing the Delaunay triangles.

By definition, these circles are empty of other sample

points. This next sample location is chosen from the

Delaunay circle according to some weighted product

of its size and local image intensity variance. In this

way it is guaranteed that large regions are refined be-

fore smaller ones in order to locate isolated features,

and regions containing high frequencies are refined be-

fore uniform areas in order to provide anti-aliasing.

Figures 5(c) and (h) show sample patterns for the im-

ages of Figures 5 (a) and (f) generated by this method.

The main data structures needed for the algorithm are

the geometric Delaunay triangulation (the latter is also

used for image recontruction, see Section 3.3) and a

priority queue of 2D points (centers of Delaunay cir-

cles). The space complexity of these structures is O(n),

where n is the number of sample points. Generating the

(n+ 1)’th point involves popping the priority queue, re-

quiring O(1) time, updating the Delaunay triangulation,

another O(1) time, and adding new candidate points

to the priority queue, another O(log n) time.. We re-

fer the reader to Eldar et al12 for further algorithmic

details.

3.3. Image Reconstruction

To produce a regular array of image pixels, the ir-

regular color intensity samples are interpolated to the

entire plane and resampled at the fixed regular pixel

positions. A natural and simple interpolation method

is triangulation of the sample set, and piecewise lin-

ear interpolation on this triangulation. The coordinates

(xp, yp) of any pixel in the triangle whose vertices are

{(x1, y1), (x2, y2), (x3, y3)} may be expressed as the affine

combination (xp, yp) = α(x1, y1) + β(x2, y2) + γ(x3, y3),

where α, β, γ are real and non-negative such that

α + β + γ = 1. The RGB intensities for that pixel are

taken to be αI1 + βI2 + γI3, where Ii are the intensities

of the samples at the triangle vertices. If more than one

sample falls within a pixel, the pixel RGB intensities are

taken as the average of the samples. Figures 5(d) and (i)

show the Delaunay triangulation of the sample sets of

Figures 5(c) and (h), and Figures 5(e) and (j) show the

piecewise-linear reconstruction of the images based on

these triangulations.

4. Parallel Progressive Ray Tracing

4.1. Goals

Adaptive sampling over the continuous image plane

speeds up ray-tracing by distributing ray-traced samples

in the image areas where they are most needed, thereby

reducing the number of rays traced in order to achieve

a given image quality. Progressive ray-tracing generates

the sample locations in an order such that images may

be reconstructed from any prefix of the entire sample

pattern. Despite these savings, this method of ray-tracing

is still too time-consuming for many applications, as

a large number of rays are still required to produce

an image of acceptable quality and some overhead is

imposed by the sample generation algorithm and image

reconstruction.

Suprisingly, the issue of parallelization of progressive

ray-tracing has not been dealt with in the literature

despite its obvious advantage. Standard strategies for

parallelization of regular (pixel-based) ray-tracing are

not suitable for parallel progressive ray-tracing. The

difficulty arising in parallelization of progressive ray-

tracing is the inherent sequential nature of the sample

location generation algorithm. The location of the ray

to be cast next relies heavily on the locations and the

values returned from the tracing of all previous rays,

implying that processors cannot make independent de-

cisions about where to sample next, but need to see the

results of other processors. If care is not exercised, this

will result in a suboptimal sampling pattern and hence,

suboptimal image quality, relative to that achievable by

the serial version of the algorithm.

In the following sections, we describe an algorithm

for parallel progressive ray-tracing. Our aim is to design

an algorithm suitable for a general-purpose distributed-

memory multiprocessing system, based on progressive

refinement of the image using up to a fixed number

of samples. Besides the standard performance measures

to be optimized by any parallel system, speedup and

load balancing, our objective is to generate an image of

quality approaching that produced by the serial version

of the progressive ray-tracing algorithm with the same

number of samples.

c© The Eurographics Association 1997
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Figure 1: Parallel system configuration.

The focus of this work is on the new concerns which

arise during parallelization of the progressive sampling

process. Hence, we ignore standard issues in parallel ray-

tracing, such as data-distribution, and assume that the

entire scene geometry can be held in the local memory

of each processor.

4.2. Computation Model

In the absence of memory limitations, the demand-

driven computation model is the most natural to

use, since it supports more flexible and efficient load-

balancing mechanisms. In our system we have two types

of processors: master and slave. The master monitors the

performance, adjusts the work distribution and provides

system-user interface, including image display. Slaves

run the main progressive ray-tracing tasks. The system

configuration is shown in Figure 1. It is very similar to

the so-called “processor farm” approach15.

4.3. Progressive Ray-Tracing Implementation

We use a sample location generator based on that of

Eldar et. al12 (see Section 3.1). The termination criteria

is the number of samples allotted to render the image.

Run on one processor, the pseudo-code of this algorithm

appears in Figure 2.

Samples are evaluated (ray-traced) using the public-

domain MTV ray-tracing package16. The code supports

ray-object intersections with geometric primitives such

as spheres, cones and polygons. The bounding volumes

acceleration technique is used with an algorithm for ray-

volume intersections due to Kay and Kajiya17. Shadow

caching optimization speeds up the search for objects

located between the intersection point and the light

source.

5. The Parallel Algorithm

5.1. Task Granularity

Our parallel algorithm is based on dynamic task allo-

cation, but has also a static allocation component, de-

termined during the preprocessing stage. The type and

Algorithm Serial(s,r)

// Adaptive ray-tracer for s samples on
// image region r.

sample_set := build_initial(r);
for i:= 1 to s do
begin
(x,y) := sample_loc_gen(sample_set);
c := ray_trace(x,y);
sample_set := sample_set + {(x,y,c)};

end
return <sample_set,cpu_time,variance>;

Figure 2: The serial adaptive ray-tracing algorithm:
sample set is a growing set of sample locations and val-
ues. build initial generates an initial sample set con-
taining 5 samples inside the region r. sample loc gen
supplies a new sample location based on all previous sam-
ple locations and values, and ray trace is the ray-trace
procedure. cpu time is the computation time for sample
generation and variance the variance of the set of sam-
ple values.

granularity of tasks were designed in order to distribute

the work as evenly as possible between processors, and

in order to achieve a good sample pattern, i.e. as close

as possible to that produced by the serial algorithm.

Two parameters, namely, an image region specifica-

tion and the number of samples to be performed in that

region, define a task allocated to a processor. A region

is the union of square image tiles of fixed size. The re-

gions assigned to each processor are determined during

the preprocessing stage, and fixed during the remainder

of the algorithm. The number of samples per region

is a parameter that may be adjusted according to the

progress of the refinement process in the various tiles

comprising the region. This provides a chance of achiev-

ing good load-balancing, since the distribution of work

can then be based on up-to-date information. Hence,

we combine static subdivision of image space, aimed at

achieving preliminary balanced work distribution, with

dynamic distribution of samples between tiles, aiming to

optimize the sample pattern.

5.2. Preprocessing

The image plane is divided into a square number of

tiles n, a parameter of the algorithm depending on the

number of processors p (obviously n ≥ p). Ultimately,

these n tiles are distributed between the p processors,

and each processor will thereafter work only on the set

of tiles assigned to it, which need not be adjacent in the

image plane. In order to guarantee a relatively balanced

distribution of work between processors, a short prepro-

cessing stage is performed where image characteristics of

the tiles, namely, the local variance and image complex-

ity, are estimated. We perform preprocessing in parallel,

c© The Eurographics Association 1997
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(a) (b) (c)

Figure 3: Algorithm for 8 slaves and 36 tiles. (a) Prepro-

cessing work of slave 2 in tiles i such that i ( mod 8) = 2).

(b) Tile weight map built by master after preprocessing

stage. Gray level intensity is proportional to weight. (c)

Processing by slave 2 in tiles assigned to it by master

according to results of (b). Note that this set of tiles is

different from that of (a).

where each slave processor is temporarily assigned an

(almost) equal number of tiles, and performs a small

number pr of adaptive samples in it (see Figure 3). No

attempt at balancing the load of these minute tasks is

made. The cpu time required for the samples in each

tile, cpu time(t), is measured, as is their variance, var(t).

The results of the preprocessing stage are sent to the

master processor who then assigns weights w(t) to each

tile t:

w(t) = cpu time(t) · pr(t) (1)

where

pr(t) = max
T∈t
{ rad(T ) · log(1 + var(T )) } (2)

The maximum is taken over all triangles T in the De-

launay triangulation of the sample locations in tile t,

rad(T ) is the radius of the circle circumscribing the

triangle T , and var(T ) is the variance of the three in-

tensities obtained at the vertices of T . The logarithmic

function on the variance was adopted from Eldar et al,

who propose a number of different weighting functions.

This one seemed to yield the best sample patterns.

The master then assigns (afresh) tiles to slave pro-

cessors in a way that the tile weight is more or less

uniformly distributed between the processors. It is ob-

vious that such crude preliminary estimates will not be

sufficient to provide good load balancing, so this tile

distribution serves only as a base for future on-line (dy-

namic) load balancing.

5.3. On-Line Load Balancing

We distribute the responsibility of achieving the goals of

our algorithm between master and slaves in the following

manner: the master provides balanced load distribution

while slaves distribute well the samples (whose number is

assigned by the master) in their tiles. The main parallel

adaptive-ray-tracing procedure consists of the master

assigning tasks to p slaves on demand until the total

required number of samples for the image, s, is reached.

The basic task, assigned by the master processor to

a slave processor, is ray-tracing of some number of

samples (in its region). The initial task size is a parameter

k ≤ s/p, but is decreased with time, in order to prevent

the case where the slave processor assigned the last task

works alone on a large number of samples, after the

others have already finished. The parameter 0 < d ≤ 1

determines the rate of decay of the task size.

The slave processors work exclusively on the set of

tiles assigned to them at the preprocessing stage. A

separate sample location data structure is maintained

by the slave processor for each of its tiles. On receipt of

a task, the slave processor distributes the alloted samples

between its tiles, which are ordered in a priority queue.

The priority pr(t) of a given tile t is calculated as in (2),

so large unsampled areas with large variance have the

highest priority and thus are sampled first.

The slave processor pops the highest priority tile from

the queue and performs in it a small number of samples,

using the serial progressive ray tracing algorithm (Figure

2). We call these smaller tasks mini-tasks. The size of

the mini-task performed by the slave processors is a

parameter q. After a mini-task has been performed on

a tile, its priority is updated and it is inserted back into

the priority queue. Obviously, if the priority of some tile

is much larger than the priorities of all other tiles in

the queue, many mini-tasks will be performed in that

tile before another tile is treated. The mini-tasks are

performed until the number of samples specified by the

master processor for the task is exhausted.

Reconstruction of the image is done by the master

processor after the completion of sampling by all slave

processors. The master collects all sample locations and

values from the slave processors and (serially) recon-

structs the entire image by the method described in

Section 3.3.

Pseudo-code of our algorithm appears in Figure 4.

6. Experimental Results

6.1. The Parallel Architecture

Our algorithm was implemented on a Meiko general-

purpose parallel computer with distributed memory. It

consists of a SparcStation1 host processor with 28MB

RAM and 28 i860 processors with at least 8MB RAM

each. The topology of the system is logically reconfig-

urable. The peak performance of the i860 processor is

120 MIPS.
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Algorithm Dynamic(p,s,n,k,d,q,pr)

// Adaptive ray-trace s samples by p processors.
// Use n image tiles. Initial task size is k
// samples, which decreases with decay rate d.
// Mini-task size is q. pr samples per tile are
// performed during preprocessing.

MASTER:
// preprocess by receiving results from slaves.
for t:= 1 to n do

<cpu[t],var[t]> := receive(t%p);

map tiles to slaves according to weights based
on <cpu,var>; // see Eq. (1)

// initialize slave task sizes.
for proc := 0 to p-1 do k[proc] := k;

// main ART loop.
s -= n*pr;
while s>0 do
for proc := 0 to p-1 do
if idle(proc) and s>0 then
begin
assign_task(proc,k[proc]); // tell slave proc
s -= k[proc]; // to perform task
k[proc] *= d; // of size k[proc] samples

end;

terminate all slave processors; // terminate ART.

// collect results from slaves.
samples = {};
for proc := 0 to p-1 do

samples = samples U receive(proc);

// reconstruct image from samples.
reconstruct(samples);

SLAVE:
// preprocess pr samples per tile.
for t := 1 to n do

if (t%p==slave_id) then
begin

<samp,c,v> := serial(pr,tile[t]);
send(<c,v>) to master;

end;

// main ART procedure.
samples = {};
while (not terminated) do
begin
k := request_task(); // receive task from master.
while k>0 do
t := pop(priority_queue); // get tile.
<samp,c,v> := serial(q,tile[t]);
samples = samples U samp;
prior := update(tile[t].priority); // see Eq. (2)
push(priority_queue,t,prior);
k -= q;

end;
end;
send(samples) to master; // send results.

Figure 4: The parallel progressive ray-tracing algorithm.

6.2. Performance Measures

The performance of our parallel progressive ray-tracing

algorithm for p processors and s samples is evaluated

using the following measures :

1. Speedup

S(p, s) =
T (1, s)

Tmax(p, s)

T (1, s) is the CPU time required for one processor to

perform the serial progressive ray-tracing algorithm

with s samples and Tmax(p, s) is the CPU time con-

sumed by the “slowest” processor of the p-processor

parallel system, running the parallel progressive ray-

tracing algorithm with s samples. The times do not

include the reconstruction of the image, which is per-

formed serially by the master processor only. Ideally,

S(p, s) = p.

2. Load disbalance

L(p, s) =
Tmax(p, s)− Tmin(p, s)

Tmin(p, s)

Tmax(p, s) and Tmin(p, s) are the CPU times consumed

by the “slowest” and the “fastest” of p processors,

while tracing s rays in total, respectively. Ideally

L(p, s) = 0.

3. Image infidelity (unique for ART)

N(p, s) = ||I(p, s)− I(1, s)||1
I(p, s) and I(1, s) are the pixel color intensities of the

image produced by the parallel algorithm and the

serial algorithm, respectively. || · ||1 is the mean l1
norm:

||(r, g, b)||1 =
1

3n

n∑
i=1

(|ri|+ |gi|+ |bi|) .

Ideally N(p, s) = 0.

6.3. Test Scenes

We tested our algorithm on scenes obtained18 from the

Standard Procedural Database (SPD) of Haines19. The

SPD was designed to be a standard benchmark for

evaluating the performance of rendering algorithms. We

present here the results for the SPD models “gears”

(Figure 5(a)) and “tree” (Figure 5(f)) (See page 49 for

Figure 5). “Gears” is a polygonal scene, containing a

variety of complex silhouettes and multiple edges, which

challenge adaptive sampling algorithms. Apart from this,

the “gears” model contains objects with various material

properties, giving rise to intensive reflection and refrac-

tion processes. As a result, the CPU time required to

trace different primary rays varies within three orders of

magnitude (see Figure 5(b)), a fact which significantly af-

fects task distribution. “Tree” contains many very small

features (e.g. leaves), which could easily be lost in a

progressive ray-tracing scenario.
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(a) (b)

(c) (d) (e)

(f) (g)

(h) (i) (j)

Figure 5: (a) Synthetic image “gears”. (b) Complexity map. Darker colors denote pixels requiring more CPU time to

compute (c) Adaptive sample pattern of 1,000 primary rays, concentrated mostly in areas of high image intensity variance.

Note that there is no correlation between ray complexity and image intensity variance. (d) Delaunay triangulation of the

sample pattern of (c). (e) Piecewise linear image reconstruction based on the triangulation (d). (f)-(j) Analogous to

(a)-(e) for “tree” scene.
c© The Eurographics Association 1997
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(a) (b) (c)

(d) (e) (f)

Figure 7: Qualitative performance of the parallel adaptive ray-tracing algorithm with s = 10, 000 primary rays on the

“tree” scene: sample patterns and reconstructed images produced by various numbers of processors: (a),(d) p = 1 (serial).

(b),(e) p = 14. (c),(f) p = 26. Note the reconstruction artifacts in the branch shadows in the extreme right portion of (e).

6.4. Quantitative and Qualitative Results

The sample patterns and reconstructed images pro-

duced by our parallel algorithm, sampling 10,000 pri-

mary rays in total, by various numbers of processors,

are shown in Figures 6 and 7 (See page 52 for Figure 6).

Obviously, the number of tiles grows with the number

of processors in order to provide well-distributed task

allocation. A large number of tiles (81 in the case of

26 processors) influences the quality of the sample pat-

terns and, hence, also the reconstructed images. This is

reflected in so-called edge effects which occur because

processors do not distribute samples well in the vicinity

of tile borders. On the other hand, reducing the number

of tiles may lead to significant disbalance in work dis-

tribution which, in turn, damages sample patterns. The

patterns shown in Figure 6 demonstrate the tradeoff be-

tween these two factors. Even so, certain badly-sampled

regions (waste or lack of samples as compared to the

serial pattern) in the “worst” pattern (produced by 26

processors) lead to artifacts in the reconstruction which

are hardly noticable.

Figure 8 shows quantitative results of our algorithm

for the test scenes. The speedup and disbalance (Fig-

ure 8(a-b,d-e)) are very good. For 26 processors working

on the “gears” scene, we achieve speedup of 23.8 and

load disbalance of 15%. The image reconstruction re-

sults in an image infidelity of 11 (on a scale of 0-255) for

“gears” and 5 for “tree”, which is very good, considering

the relatively small number of samples performed.

Attention should be paid to the fact that when the

performance of the rendering algorithm is measured, the

most important measure is still the qualitative one, i.e.

visual appreciation of the image (and its artifacts). In

our case, we consider our results to be quite good.

6.5. Algorithm Parameter Values

We initially obtained the best values for the algorithm

parameters n, k, d, q and pr, which depend on the scene,

and on p and s, by trial and error. After some practice,

we obtained rules of thumb for determining these val-

ues. The best number of image tiles, n, is determined

by the following tradeoff: A large number of tiles en-

ables each processor to work on a variety of tiles located

in different regions of the image, so balances the load

better. Too many tiles damages the sample pattern sig-

nificantly, as “edge effects”, related to samples on the

tile borders, dominate them. The values we used for n
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Figure 8: Quantitative performance of the parallel adaptive ray-tracing algorithm on the test scenes. (a) “Gears” speedup.

(b) “Gears” load disbalance. (c) “Gears” image infidelity. (d)-(f) Analogous to (a)-(c) for “tree”.

were square integers, for programming convenience. The

(simple) rule of thumb is that more tiles are required for

larger numbers of processors. The performance does not

seem to be too sensitive to this number, as long as it is

not too small or too large.

The performance of the algorithm is quite sensitive

to the task granularity determined by the initial task

size k, and its decay rate d. Increasing task granularity

will increase communication overhead. In terms of load

balancing, fine granularity is important towards the end

of the sampling process, so k and d must be chosen so

that the resulting geometric series of task sizes starts

off with a relatively large fraction of the samples per

processor, and reaches a size of about 2% of the samples

per processor at the end. The rule of thumb is that

k ≈ s/2p, so that approximately half the samples to be

performed by a processor are assigned already at its

first task. The decay rate for the task size, d, should be

approximately 30%.

Our algorithm does not seem to be very sensitive to

the value of q - the size of the mini-tasks performed by

a processor on any one of its tiles. In practice, we took

q = 1.

We used values between 5 and 10 for pr - the number

of preprocessed samples per tile. More samples would

provide more reliable estimates of tile weights, but would

slow down the algorithm, as no load-balancing is per-

formed during this stage.

Table 1 shows the best values of the n, k and d param-

eters for our algorithm run on the “gears” scene with

s = 10, 000 and p = 10, and how a change in each one of

these parameters influences the performance measures S ,

L and N. Figure 9 shows sample patterns corresponding

to each one of parameter vectors of Table 1. Obvi-

ously, the resulting suboptimal sample patterns cause a

decrease in the quality of the reconstructed images.

7. Conclusion

7.1. Discussion

A fundamental assumption which we made about the

underlying architecture is the existence of enough local
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(a) (b)

(c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 6: Qualitative performance of the parallel adaptive ray-tracing algorithm with s = 10, 000 primary rays on the

“gears” scene: sample patterns and reconstructed images produced by various numbers of processors: (a),(c) p = 1

(serial). (b),(d) p = 2. (e),(h) p = 10. (f),(i) p = 18. (g),(j) p = 26. Note the reconstruction artifacts in the white gear

at the top of the stack just behind the nearest (pink) gear in (i) and (j).
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 9: ”Gears” sample patterns resulting from varying one of the algorithm parameters. s = 10, 000, p = 10. (a) best

(n = 36, k = 450, d = 30, q = 1, pr = 10), (b) k = 460, (c) k = 440, (d) d = 25, (e) d = 35, (f) n = 49, (g) n = 25.
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n k d S L N

36 450 30 9.9 1 10.1

36 460 30 9.1 5 10.3

36 440 30 9.1 4 10.1

36 450 25 9.6 2 10.1

36 450 35 9.5 4 10.3

49 450 30 9.2 4 10.3

25 450 30 9.7 21 10.1

Table 1: Influence of n, k and d parameters on S , L and N

performance measures for ”gears”, s = 10, 000, p = 10.

The first row shows the best values of n, k, d. In each

of the other rows, one of the parameters (in boldface) is

modified (increased or decreased) causing a degradation

in performance.

processor memory to store the entire scene geometry.

The Meiko local processor memory (8-32MB) allowed

us to store large scenes, such as ”gears”, in each pro-

cessor, but this may not be the case for other parallel

machines. In case of memory limitations, a special mem-

ory management mechanism must be incorporated into

the parallel algorithm.

As was mentioned in Section 6.4, “edge effects” dam-

age sample patterns because processors generate bad

sample patterns in their tile border areas. An opti-

mization which probably could diminish this unpleas-

ant effect would require additional communication be-

tween processors, aimed at joint sampling of adjacent

regions. We did not implement this, as the decrease in

reconstructed image quality caused by “edge effects” is

negligible compared with the decrease in speedup and

load balance, which would be incurred by the addi-

tional inter-processor communication within the Meiko

platform. Another possible solution to the edge-effects

problem is to use overlapping image tiles. The recon-

struction algorithm, merging all samples, would get a

better density, and suppress some of the edge artifacts.

This method incurs an extra sampling cost, and will be

checked in future implementations.

7.2. Summary

An algorithm for parallel progressive ray-tracing based

on dynamic task allocation has been proposed. The

algorithm for parallelization of progressive ray-tracing

differs fundamentally from those used for parallelization

of standard (pixel based) ray-tracing, since it optimizes

the number and locations of the rays traced, which are

generated by a process which has an inherent serial

nature. Our algorithm significantly (almost to the best

possible) speeds up the progressive ray-tracing, which is

still too time-consuming to run serially.

Our algorithm has been shown to achieve very good

speedup and load-balancing. The price paid for this is

a somewhat suboptimal sample pattern, relative to that

produced by the serial algorithm. This, however, still

results in an image almost identical to that obtained

by the serial algorithm, and even to that obtained by a

supersampling pixel-based ray-tracing algorithm.

The algorithm is designed for a general-purpose par-

allel computer with distributed memory and can be eas-

ily ported to any other similar architecture with minor

modifications.

Performing progressive ray-tracing in parallel may be

viewed in a wider context as a special case of parallel

progressive sampling of a real function over a contin-

uous domain. This is an important open problem in

parallel processing. We have reported first results in

that direction.
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