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ABSTRACT
Recently Viola et al. have introduced a rapid object detection
scheme based on a boosted cascade of simple feature classifiers. In
this paper we introduce and empirically analysis two extensions to
their approach: Firstly, a novel set of rotated haar-like features is
introduced. These novel features significantly enrich the simple
features of [6] and can also be calculated efficiently. With these new
rotated features our sample face detector shows off on average a
10% lower false alarm rate at a given hit rate. Secondly, we present
a through analysis of different boosting algorithms (namely
Discrete, Real and Gentle Adaboost) and weak classifiers on the
detection performance and computational complexity. We will see
that Gentle Adaboost with small CART trees as base classifiers
outperform Discrete Adaboost and stumps. The complete object
detection training and detection system as well as a trained face
detector are available in the Open Computer Vision Library at
sourceforge.net [8].

1  Introduction

Recently Viola et al. have proposed a multi-stage classification
procedure that reduces the processing time substantially while
achieving almost the same accuracy as compared to a much slower
and more complex single stage classifier [6]. This paper extends
their rapid object detection framework in two important ways:

Firstly, their basic and over-complete set of haar-like features is
extended by an efficient set of 45° rotated features, which add
additional domain-knowledge to the learning framework and which
is otherwise hard to learn. These novel features can be computed
rapidly at all scales in constant time. 

Secondly, we empirically show that Gentle Adaboost outperforms
(with respect to detection accuracy) Discrete and Real Adaboost for
object detection tasks, while having a lower computational
complexity, i.e., requiring a lower number of features for the same
performance. Also, the usage of small decision trees instead of
stumps as weak classifiers further improves the detection
performance at a comparable detection speed.

The complete training and detection system as well as a trained face
detector are available in the Open Computer Vision Library at http:/
sourceforge.net/projects/opencvlibrary/ [8].

2  Features
The main purpose of using features instead of raw pixel values as the
input to a learning algorithm is to reduce/increase the in-class/out-
of-class variability compared to the raw input data, and thus making
classification easier. Features usually encode knowledge about the
domain, which is difficult to learn from a raw and finite set of input
data. 

The complexity of feature evaluation is also a very important aspect
since almost all object detection algorithms slide a fixed-size
window at all scales over the input image. As we will see, our
features can be computed at any position and any scale in the same
constant time. At most 8 table lookups are needed per feature.

2.1 Feature Pool

Our feature pool was inspired by the over-complete haar-like
features used by Papageorgiou et al. in [5,4] and their very fast
computation scheme proposed by Viola et al. in [6], and is a
generalization of their work.

Let us assume that the basic unit for testing for the presence of an
object is a window of  pixels. Also assume that we have a very
fast way of computing the sum of pixels of any upright and 45°
rotated rectangle inside the window. A rectangle is specified by the
tuple  with , , ,

, , and its pixel sum is denoted by .
Two examples of such rectangles are given in Figure 1.

Our raw feature set is then the set of all possible features of the form 

 ,

where the weights , the rectangles , and N are arbitrarily
chosen.

This raw feature set is (almost) infinitely large. For practical reasons,
it is reduced as follows:

1. Only weighted combinations of pixel sums of two rectangles are
considered (i.e., ).

2. The weights have opposite signs, and are used to compensate for
the difference in area size between the two rectangles. Thus, for
non-overlapping rectangles we have
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Figure 1: Example of an upright and 45° rotated
rectangle.
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. Without restrictions we can set
 and get .

3. The features mimic haar-like features and early features of the
human visual pathway such as center-surround and directional
responses.

These restrictions lead us to the 14 feature prototypes shown in
Figure 2:

• Four edge features,
• Eight line features, and
• Two center-surround features.

These prototypes are scaled independently in vertical and
horizontal direction in order to generate a rich, over-complete set of
features. Note that the line features can be calculated by two
rectangles only. Hereto it is assumed that the first rectangle 
encompasses the black and white rectangle and the second rectangle

 represents the black area. For instance, line feature (2a) with
total height of 2 and width of 6 at the top left corner (5,3) can be
written as

.

Only features (1a), (1b), (2a), (2c) and (4a) of Figure 2 have been
used by [4,5,6]. In our experiments the additional features
significantly enhanced the expressional power of the learning
system and consequently improved the performance of the object
detection system. This is especially true if the object under
detection exhibit diagonal structures such as it is the case for many
brand logos. 

NUMBER OF FEATURES. The number of features derived from each
prototype is quite large and differs from prototype to prototype and
can be calculated as follows. Let  and  be the
maximum scaling factors in x and y direction. An upright feature of
size wxh then generates

features for an image of size WxH, while a  rotated feature
generates

 with z=w+h.

Table 1 lists the number of features for a window size of 24x24.

2.2 Fast Feature Computation

All our features can be computed very fast in constant time for any
size by means of two auxiliary images. For upright rectangles the
auxiliary image is the Summed Area Table .  is

defined as the sum of the pixels of the upright rectangle ranging
from the top left corner at (0,0) to the bottom right corner at (x,y)
(see Figure 3a) [6]:

.

It can be calculated with one pass over all pixels from left to right
and top to bottom by means of

with

From this the pixel sum of any upright rectangle  can

w0– Area r0( )⋅ w1 Area r1( )⋅=
w0 1–= w1 Area r0( ) Area r1( )⁄=

r0

r1
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Figure 2: Feature prototypes of simple haar-like and cen-
ter-surround features. Black areas have negative
and white areas positive weights.

1. Edge features

3. Center-surround features

2. Line features

4. Special diagonal line feature used in [3,4,5]

(a) (b) (c) (d)

(a) (b) (c) (d) (e) (f) (g) (h)

(a) (b)

X W w⁄= Y H h⁄=

XY W 1 w
X 1+

2
----------–+ 

  H 1 h
Y 1+

2
----------–+ 

 ⋅ ⋅

45°

Feature 
Type

w/h X/Y #

1a ; 1b 2/1 ; 1/2 12/24 ; 24/12 43,200

1c ; 1d 2/1 ; 1/2 8/8 8,464

2a ; 2c 3/1 ; 1/3 8/24 ; 24/8 27,600

2b ; 2d 4/1 ; 1/4 6/24 ; 24/6 20,736

2e ; 2g 3/1 ; 1/3 6/6 4,356

2f ; 2h 4/1 ; 1/4 4/4 3,600

3a 3/3 8/8 8,464

3b 3/3 3/3 1,521

Sum 117,941

Table 1: Number of features inside of a 24x24 window for 
each prototype.
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Figure 3: (a) Upright Summed Area Table (SAT) and
(b) Rotated Summed Area Table (RSAT);
calculation scheme of the pixel sum of up-
right (c) and rotated (d) rectangles.
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be determined by four table lookups (see also Figure 3(c):

This insight was first published in [6].

For 45° rotated rectangles the auxiliary image is the Rotated
Summed Area Table . It is defined as the sum of the
pixels of a  rotated rectangle with the bottom most corner at
(x,y) and extending upwards till the boundaries of the image (see
Figure 3b):

.

It can be calculated also in one pass from left to right and top to
bottom over all pixels by

with

as shown in Figure 4. From this the pixel sum of any rotated
rectangle  can be determined by four table lookups
(see Figure 5):

.

2.3 Fast Lighting Correction

The special properties of the haar-like features also enable fast
contrast stretching of the form

, .

µ can easily be determined by means of SAT(x,y). Computing ,
however, involves the sum of squared pixels. It can easily be
derived by calculating a second set of SAT and RSAT auxiliary
images for . Then, calculating  for any window requires

only 4 additional table lookups. In our experiments c was set to 2.

3  (Stage) Classifier

We use boosting as our basic classifier. Boosting is a powerful
learning concept. It combines the performance of many "weak"
classifiers to produce a powerful 'committee' [1]. A weak classifier
is only required to be better than chance, and thus can be very
simple and computationally inexpensive. Many of them smartly
combined, however, result in a strong classifier, which often
outperforms most 'monolithic' strong classifiers such as SVMs and
Neural Networks.

Different variants of boosting are known such as Discrete Adaboost
(see Figure 6), Real AdaBoost, and Gentle AdaBoost (see Figure
7)[1]. All of them are identical with respect to computational
complexity from a classification perspective, but differ in their
learning algorithm. All three are investigated in our experimental
results.

Learning is based on N training examples  with
and .  is a K-component vector. Each

component encodes a feature relevant for the learning task at hand.
The desired two-class output is encoded as –1 and +1. In the case of
object detection, the input component  is one haar-like feature.
An output of +1 and -1 indicates whether the input pattern does
contain a complete instance of the object class of interest. 

4  Cascade of Classifiers
A cascade of classifiers is a degenerated decision tree where at each
stage a classifier is trained to detect almost all objects of interest
(frontal faces in our example) while rejecting a certain fraction of
the non-object patterns [6] (see Figure 8). For instance, in our case
each stage was trained to eliminated 50% of the non-face patterns
while falsely eliminating only 0.1% of the frontal face patterns; 20
stages were trained. Assuming that our test set is representative for
the learning task, we can expect a false alarm rate about

 and a hit rate about .
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Figure 4: Calculation scheme for Rotated Summed Area
Tables (RSAT).
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Figure 5: Calculation scheme for rotated areas.
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Each stage was trained using one out of the three Boosting variants.
Boosting can learn a strong classifier based on a (large) set of weak
classifiers by re-weighting the training samples. Weak classifiers
are only required to be slightly better than chance. Our set of weak
classifiers are all classifiers which use one feature from our feature
pool in combination with a simple binary thresholding decision. At
each round of boosting, the feature-based classifier is added that
best classifies the weighted training samples. With increasing stage
number the number of weak classifiers, which are needed to achieve
the desired false alarm rate at the given hit rate, increases (for more
detail see [6]).

5  Experimental Results

All experiments were performanced on the complete CMU Frontal
Face Test Set of 130 grayscale pictures with 510 frontal faces [7]. A
hit was declared if and only if 

• the Euclidian distance between the center of a detected and

actual face was less than 30% of the width of the actual face as
well as

• the width (i.e., size) of the detected face was within ±50% of the
actual face width. 

Every detected face, which was not a hit, was counted as a false
alarm. Hit rates are reported in percent, while the false alarms are
specified by their absolute numbers in order to make the results
comparable with related work on the CMU Frontal Face Test set. 

Except otherwise noted 5000 positive frontal face patterns and 3000
negative patterns filtered by stage 0 to n-1 were used to train stage
n of the cascade classifer. The 5000 positive frontal face patterns
were derived from 1000 original face patterns by random rotation
about ±10 degree, random scaling about ±10%, random mirroring
and random shifting up to ±1 pixel. Each stage was trained to reject
about half of the negative patterns, while correctly accepting 99.9%
of the face patterns. A fully trained cascade consisted of 20 stages.

During detection, a sliding window was moved pixel by pixel over
the picture at each scale. Starting with the original scale, the
features were enlarged by 10% and 20%, respectively (i.e.,
representing a rescale factor of 1.1 and 1.2, respectively) until
exceeding the size of the picture in at least one dimension. 

Often multiple faces are detect at near by location and scale at an
actual face location. Therefore, multiple nearby detection results
were merged. Receiver Operating Curves (ROCs) were constructed
by varing the required number of detected faces per actual face
before merging into a single detection result.

During experimentation only one parameter was changed at a time.
The best mode of a parameter found in an experiment was used for
the subsequent experiments.

Discrete AdaBoost (Freund & Schapire [1])

1. Given N examples  with 

2. Start with weights wi = 1/N, i = 1, ..., N.

3. Repeat for m = 1, ..., M

(a) Fit the classifier  using weights wi on the training data .

(b) Compute , .

(c) Set , i = 1, ..., N, and renormalize weights so that .

4. Output the classifier 

Figure 6:Discrete AdaBoost training algorithm [1].
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Gentle AdaBoost

1. Given N examples  with 

2. Start with weights wi = 1/N, i = 1, ..., N.

3. Repeat for m = 1, ..., M

(a) Fit the regression function  by weighted least-squares of  to with weights 

(c) Set , i = 1, ..., N, and renormalize weights so that .

4. Output the classifier 

Figure 7:Gentle AdaBoost training algorithm [1]
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Figure 8: Cascade of classifiers with N stages. At each
stage a classifier is trained to achieve a hit rate of
h and a false alarm rate of f.
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5.1 Feature Scaling

Any multi-scale image search requires either rescaling of the
picture or the features. One of the advantage of the Haar-like
features is that they can easily be rescaled. Independent of the scale
each feature requires only a fixed number of look-ups in the sum
and squared sum auxilary images. These look-ups are performed
relative to the top left corner and must be at integral positions.
Obviously, by fractional rescaling the new correct positions become
fractional. A plain vanilla solution is to round all relative look-up
positions to the nearest integer position. However, performance
may degrade significantly, since the ratio between the two areas of
a feature may have changed significantly compared to the area ratio
at training due to rounding. One solution is to correct the weights of
the different rectangle sums so that the original area ratio between
them for a given haar-like feature is the same as it was at the original
size. The impact of this weight adapation on the performance is
amazing as can be seen in Figure 9.”*-Rounding” show the ROCs
for simple rounding, while “*-AreaRatio” shows the impact if also
the weight of the different rectangles is adjusted to reflect the
weights in the feature at the original scale.

5.2 Comparision Between Different Boosting Algorithms

We compared three different boosting algorithms:

• Discrete Adaboost,
• Real Adaboost, and
• Gentle Adaboost.

Three 20-stage cascade classifiers were trained with the respective
boosting algorithm using the basic feature set (i.e., features 1a, 1b,
2a, 2c, and 4a of Figure 2) and stumps as the weak classifiers. As
can be seen from Figure 10, Gentle Adaboost outperformed the
other two boosting algorithm, despite the fact that it needed on
average fewer features (see Table 2, second column). For instance,
at a an absolute false alarm rate of 10 on the CMU test set, RAB
deteted only 75.4% and DAB only 79.5% of all frontal faces, while
GAB achieved 82.7% at a rescale factor of 1.1. Also, the smaller
rescaling factor of 1.1 was very beneficial if a very low false alarm
rate at high detection performance had to be achieved. At 10 false
alarms on the CMU test set, GAB improved from 68.8% detection
rate with rescaling factor of 1.2 to 82.7% at a rescaling factor of 1.1. 

Table 2 shows in the second column (nsplit =1) the average number

of features needed to be evaluted for background patterns by the
different classifiers. As can be seen GAB is not only the best, but
also the fastest classifier. Therefore, we only investigate a rescale
scaling factor 1.1 and GAB in the subsequent experiments.

5.3 Input Pattern Size

Many different input pattern sizes have been reported in related

NSPLIT 1 2 3 4

DAB 45.09 44.43 31.86 44.86

GAB 30.99 36.03 28.58 35.40

RAB 26.28 33.16 26.73 35.71

Table 2: Average number of features evaluated per back-
ground pattern at a pattern size of 20x20.
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Figure 9: Performance comparision between different fea-
ture scaling approaches. “*-Rounding” rounds the
fractional position to the nearest integer position,
while “*-AreaRatio” also restores the ratio be-
tween the different rectangles to its original value
used during training.

Figure 10: Performance comparison between identically trained cascades with three different boosting algorithms. Only the
basic feature set and stumps as weak classifiers (nsplit=1) were used.



work on face detection ranging from 16x16 up to 32x32. However,
none of them have systematically investigated the effect of the input
pattern size on detection performance. As our experiments show for
faces an input pattern size of 20x20 achieves the highest hit rate at
an absolute false alarms between 5 and 100 on the CMU Frontal
Face Test Set (see Figure 11). Only for less than 5 false alarms, an
input pattern size of 24x24 worked better. A similar observation has
been made by [2]. 

5.4 Tree vs. Stumps

Stumps as weak classifer do not allow learning dependencies
between features. In general, N split nodes are needed to model
dependency between N-1 variables. Therefore, we allow our weak
classifier to be a CART tree with NSPLIT split nodes. Then,
NSPLIT=1 represents the stump case.

As can be seen from Figure 12 and Figure 13 stumps are
outperformed by weak tree classifiers with 2, 3 or 4 split nodes. For
18x18 four split nodes performed best, while for 20x20 two nodes
were slighlty better. The difference between weak tree classifiers
with 2, 3 or 4 split nodes is smaller than their superiority with
respect to stumps.The order of the computational complexity of the
resulting detection classifier was unaffected by the choise of the
value of NSPLIT (see Table 1). The more powerful CARTs
proportionally needed less weak classifiers to achieve the same
performance at each stage.

5.5 Basic vs. Extended Haar-like Features

Two face detection systems were trained: One with the basic and
one with the extended haar-like feature set. On average the false
alarm rate was about 10% lower for the extended haar-like feature
set at comparable hit rates. Figure 14 shows the ROC for both
classifiers using 12 stages. At the same time the computational
complexity was comparable. The average number of features
evaluation per patch was about 31 (see [3] for more details).

These results suggest that although the larger haar-like feature set
usually complicates learning, it was more than paid of by the added
domain knowledge. In principle, the center surround feature would
have been sufficient to approximate all other features, however, it is
in general hard for any machine learning algorithm to learn joint

behavior in a reliable way.

5.6 Training Set Size

So far, all trained cascades used 5000 positive and 3000 negative
examples per stage to limit the computational complexity during
training. We also trained one 18x18 classifiers with all positive face
examples, 10795 in total and 5000 negative training examples. As
can be seen from Figure 15, there is little difference in the training
results. Large training sets only slightly improve performance
indicating that the cascade trained with 5000/3000 examples
already came close to its representation power.

Conclusion
Our experimental results suggest, that 20x20 is the optimal input
pattern size for frontal face detection. In addition, they show that

Figure 11: Performance comparison between identically
trained cascades, but with different input pattern
sizes. GAB was used together with the basic fea-
ture set and stumps as weak classifiers (nsplit=1).

Figure 12: Performance comparison with respect to the or-
der of the weak CART classifiers. GAB was used
together with the basic feature set and a pattern
size of 18x18.

Figure 13: Performance comparison with respect to the or-
der of the weak CART classifiers. GAB was used
together with the basic feature set and a pattern
size of 20x20.



Gentle Adaboost outperforms Discrete and Real Adaboost.
Logitboot could not be used due to convergence problem on later
stages in the cascade training. It is also beneficial not just to use the
simplest of all tree classifiers, i.e., stumps, as the basis for the weak
classifiers, but representationally more powerful classifiers such as
small CART trees, which can model second and/or third order
dependencies.

We also introduced an extended set of haar-like features. Although
frontal faces exhibit little diagonal structures, the 45 degree rotated
features increased the accuracy. In practice, the have observed that
the rotated features can boost detection performance if the object
under detection exhibit some diagonal structures such as many
brand logos.

The complete training and detection system as well as a trained face
detector are available in the Open Computer Vision Library at http:/
sourceforge.net/projects/opencvlibrary/ [8].
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Figure 14: Basic versus extended feature set: On average
the false alarm rate of the face detector exploiting
the extended feature set was about 10% better at
the same hit rate (taken from [3]).
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amples using GAB and the basic feature set.
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