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Subject to the terms and conditions set forth below, Intel hereby grants you a nonexclusive, nontransferable license, under its patents and 
copyrights on the example code sequences contained in the IA MMX™ Technology Developer's Manual, to use, reproduce and distribute 
such example code sequences, solely as part of your computer program(s) and solely in order to allow your computer program(s) to 
implement the multimedia instructions contained in such sequences solely with respect to the Intel instruction set architecture. No other 
license, express, implied, statutory, by estoppel or otherwise, to any other intellectual property rights is granted herein. THIS DOCUMENT 
AND ALL INFORMATION, PROPOSALS, SAMPLES AND OTHER MATERIALS PROVIDED IN CONNECTION WITH OR IN 
RELATION TO THIS DOCUMENT (INCLUDING, WITHOUT LIMITATION, THE EXAMPLE CODE SEQUENCES) ARE PROVIDED 
"AS IS" WITH NO WARRANTIES, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, AND INTEL SPECIFICALLY DISCLAIMS 
ANY IMPLIED WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT OR FITNESS FOR ANY PARTICULAR PURPOSE. 
Any use or distribution of this document or the materials contained herein must fully comply with all then current laws of the United States 
including, without limitation, rules and regulations of the United States Office of Export Administration and other applicable U.S. 
governmental agencies. THIS DOCUMENT AND THE MATERIALS PROVIDED HEREIN ARE PROVIDED WITHOUT CHARGE. 
THEREFORE, IN NO EVENT WILL INTEL BE LIABLE FOR ANY DAMAGES OF ANY KIND, INCLUDING DIRECT OR INDIRECT 
DAMAGES, LOSS OF DATA, LOST PROFITS, COST OF COVER OR SPECIAL, INCIDENTAL, CONSEQUENTIAL, DAMAGES 
ARISING FROM THE USE OF THE MATERIALS PROVIDED HEREIN, INCLUDING WITHOUT LIMITATION THE EXAMPLE 
CODE SEQUENCES, HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY. THIS LIMITATION WILL APPLY EVEN IF 
INTEL OR ANY AUTHORIZED AGENT OF INTEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  

*Other brands and names are the property of their respective owners.  
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CHAPTER 1 
INTRODUCTION TO THE INTEL ARCHITECTURE MMX™ TECHNOLOGY 
DEVELOPER'S MANUAL  
Intel's MMX technology is an extension to the Intel Architecture (IA) instruction set. The technology uses a single instruction, 
multiple data (SIMD) technique to speedup multimedia and communications software by processing multiple data elements in 
parallel. The MMX instruction set adds 57 new opcodes and a new 64-bit quadword data type. The new 64-bit data type, 
illustrated in Figure 1-1 below, holds packed integer values upon which MMX instructions operate. 

 

Figure 1-1. New Data Types 

In addition, there are eight new 64-bit MMX registers, each of which can be directly addressed using the register names MM0 
to MM7. Figure 1-2 shows the layout of the eight new MMX registers.  

 

Figure 1-2. MMXTM Register Set 

The MMX technology is operating-system transparent and 100% compatible with all existing Intel Architecture software; all 
applications will continue to run on processors with MMX technology. Additional information and details about the MMX 
instructions, data types and registers can be found in the Intel Architecture MMXTM Technology Programmers Reference 
Manual (Order Number 243007).  
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MMX technology will give a large performance boost to many applications, such as motion video, combined graphics with 
video, image processing, audio synthesis, speech synthesis and compression, telephony, conferencing, 2D graphics, and 3D 
graphics. Almost any application which performs calculations on integer data in a repetitive and sequential manner can benefit 
from MMX technology. The performance improvement results from parallel processing of  
8-bit, 16-bit and 32-bit data elements. An MMX instruction can operate on 8 bytes at once and two instructions can be 
executed in one clock cycle, which means that as many as 16 data elements can be processed in one clock cycle.  

In addition to increased performance, MMX technology will free up additional processor cycles for other functions. 
Applications which previously needed extra hardware can now execute in software only. Lower processor usage allows better 
concurrency, a feature exploited in many of today's operating systems. Based on Intel's analysis, performance improvements 
range from 50% to 400% for certain functions. This magnitude of improvement is similar to the performance boost seen in 
moving to a new processor generation. In software kernels, much larger speedups have been observed, ranging from three to 
five times the original speed and beyond.  
 
1.1 About This Manual 
It is assumed that the reader is familiar with the Intel Architecture software model and assembly language programming.  

This manual describes the software programming optimizations and considerations for the IA MMX technology. Additionally, 
it covers coding techniques and examples that will help you get started in coding your application.  

This manual is organized into six chapters, including this chapter (Chapter 1), and one appendix.  

Chapter 1-Introduction to the Intel Architecture MMXTM Technology.  

Chapter 2-Overview of Processor Architecture and Pipelines. This chapter provides an overview of the architecture and 
pipelines of Pentium® and dynamic (P6-family) processors with MMX technology.  

Chapter 3-Guidelines for Developing MMXTM Code. This chapter provides a list of rules and guidelines that will help you 
develop fast and efficient code. Additionally, it provides information on general optimization, instruction scheduling and 
selection, and cache and memory optimization.  

Chapter 4-MMXTM Code Development Strategy. This chapter reviews the steps for creating MMX routines in your 
application.  

Chapter 5-Coding Techniques. This chapter contains coding examples to help you get started in coding MMX routines.  

Chapter 6-Performance Monitoring Counters. This chapter details the performance monitoring counters and their functions.  

Appendix A- MMXTM Instruction Set. This appendix summarizes the MMX instructions.  
 
1.2 Related Documentation 
Refer to the following documentation for more information on the Intel Architecture and specific techniques referred to in this 
manual:  

• Intel Architecture MMX TM Technology Programmers Reference Manual, Intel Corporation, Order Number 243007.  

• Pentium® Processor Family Developer's Manual: Volume 1, 2, and 3, Intel Corporation, Order Number 241428, 
241429, and 241430.  

• Pentium® Pro Processor Family Developer's Manual: Volume 1, 2, and 3, Order Number 242690, 242691, and 
242692.  

• Optimizations for Intel's 32-bit Processors, Application Note AP-526, Order Number 242816 
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CHAPTER 2
OVERVIEW OF PROCESSOR ARCHITECTURE AND PIPELINES  

This section provides an overview of the pipelines and architectural features of the Pentium® and dynamic execution (P6-
family) processors with MMXTM technology. By understanding how the code flows through the pipeline of the processor, you 
can better understand why a specific optimization will improve the speed of your code. Additionally, it will help you to 
schedule and optimize your application for high performance.  
 
2.1 Pipelines of Superscalar (Pentium® Family) and Dynamic Execution (P6-Family) 
Architectures  

2.1.1 SUPERSCALAR (PENTIUM® FAMILY) PIPELINE 
The Pentium processor is an advanced superscalar processor. It is built around two general-purpose integer pipelines and a 
pipelined floating-point unit, allowing the processor to execute two integer instructions simultaneously. A software-transparent 
dynamic branch-prediction mechanism minimizes pipeline stalls due to branches. Pentium processors with MMX technology 
add additional stages to the pipeline. The integration of the MMX Technology pipeline with the integer pipeline is very similar 
to that of the floating-point pipe.  

Pentium processors can issue two instructions every clock cycle, one in each pipe. The first logical pipe is referred to as the "U" 
pipe, and the second as the "V" pipe. During decoding of any given instruction, the next two instructions are checked, and, if 
possible, they are issued such that the first one executes in the U-pipe and the second in the V-pipe. If it is not possible to issue 
two instructions, then the next instruction is issued to the U-pipe and no instruction is issued to the V-pipe.  

When instructions execute in the two pipes, their behavior is exactly the same as if they were executed sequentially. When a 
stall occurs, successive instructions are not allowed to pass the stalled instruction in either pipe. Figure 2-1 shows the pipelining 
structure for this scheme:  

 

Figure 2-1. MMXTM Technology Pipeline Structure 

Pentium processors with MMX technology add an additional stage to the integer pipeline. The instruction bytes are prefetched 
from the code cache in the prefetch (PF) stage, and they are parsed into instructions in the fetch (F) stage. Additionally, any 
prefixes are decoded in the F stage.  

Instruction parsing is decoupled from the instruction decoding by means of an instruction First In, First Out (FIFO) buffer, 
which is situated between the F and Decode 1 (D1) stages. The FIFO has slots for up to four instructions. This FIFO is 
transparent; it does not add additional latency when it is empty.  

During every clock cycle, two instructions can be pushed into the instruction FIFO (depending on availability of the code 
bytes, and on other factors such as prefixes). Instruction pairs are pulled out of the FIFO into the D1 stage. Since the average 
rate of instruction execution is less than two per clock, the FIFO is normally full. As long as the FIFO is full, it can buffer any 
stalls that may occur during instruction fetch and parsing. If such a stall occurs, the FIFO prevents the stall from causing a stall 
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in the execution stage of the pipe. If the FIFO is empty, then an execution stall may result from the pipeline being "starved" for 
instructions to execute. Stalls at the FIFO entrance may result from long instructions or prefixes (see Sections 3.2.3 and 3.4.2).  

The following chart details the MMX technology pipeline on superscalar processors and the conditions in which a stall may 
occur in the pipeline.  

 

Figure 2-2. MMXTM Technology Instruction Flow in a Pentium® Family Processor with MMX Technology 

Table 2-1 details the functional units, latency, throughput, and execution pipes for each type of MMX technology instruction.  

Table 2-1. MMXTM Technology Instructions and Execution Units 

 
Operation 

Number of  
Functional Units 

 
Latency 

 
Throughput 

Execution  
Pipes 

ALU 2 1 1 U and V 
Multiplexer 1 3 1 U or V 

Shift/pack/unpack 1 1 1 U or V 
Memory access 1 1 1 U only 

Integer register access 1 1 1 U only 

• The Arithmetic Logic Unit (ALU) executes arithmetic and logic operations (that is, add, subtract, xor, and).  

• The Multiplier unit performs all multiplication operations. Multiplication requires three cycles but can be pipelined, 
resulting in one multiplication operation every clock cycle. The processor has only one multiplier unit which means 
that multiplication instructions cannot pair with other multiplication instructions. However, the multiplication 
instructions can pair with other types of instructions. They can execute in either the U- or V-pipes.  

• The Shift unit performs all shift, pack and unpack operations. Only one shifter is available so shift, pack and unpack 
instructions cannot pair with other shift unit instructions. However, the shift unit instructions can pair with other types 
of instructions. They can execute in either the U- or V-pipes.  
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• MMX Technology Instructions that access memory or integer registers can only execute in the U-pipe and cannot be 
paired with any instructions that are not MMX Technology instructions.  

• After updating an MMX technology register, two clock cycles must pass before that MMX technology register can be 
moved to either memory or to an integer register.  

Information on pairing requirements can be found in Section 3.3.  

Additional information on instruction format can be found in the Intel Architecture MMXTM Technology Programmer's 
Reference Manual, (Order Number 243007).  

2.1.2. DYNAMIC EXECUTION (P6-FAMILY) PIPELINE 
P6-family processors use a Dynamic Execution architecture that blend out-of-order and speculative execution with hardware 
register renaming and branch prediction. These processors feature an in-order issue pipeline, which breaks Intel386TM 
processor macroinstructions up into simple, micro-operations called micro-ops (or uops), and an out-of-order, superscalar 
processor core, which executes the micro-ops. The out-of-order core of the processor contains several pipelines to which 
integer, jump, floating-point, and memory execution units are attached. Several different execution units may be clustered on 
the same pipeline: for example, an integer address logic unit and the floating-point execution units (adder, multiplier, and 
divider) share a pipeline. The data cache is pseudo-dual ported via interleaving, with one port dedicated to loads and the other 
to stores. Most simple operations (integer ALU, floating-point add, even floating-point multiply) can be pipelined with a 
throughput of one or two operations per clock cycle. Floating-point divide is not pipelined. Long latency operations can 
proceed in parallel with short latency operations.  

The P6-family pipeline is comprised of three parts: the In-Order Issue Front-end, the Out-of-Order Core and the In-Order 
Retirement unit. Details about the In-Order Issue Front-end follow below.  
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Figure 2-3. Out-Of-Order Core and Retirement Pipeline 

Since the dynamic execution processors execute instructions out of order, the most important consideration in performance 
tuning is making sure enough micro-ops are ready for execution. Correct branch prediction and fast decoding are essential to 
getting the most performance out of the In-Order Front-End. Branch prediction and the branch target buffer are detailed in 
Section 2.3. Decoding is discussed below.  

During every clock cycle, up to three Intel Architecture macro instructions can be decoded in the ID1 pipestage. However, if 
the instructions are complex or are over seven bytes then the decoder is limited to decoding fewer instructions.  

The decoders can decode:  

1. Up to three macro-instructions per clock cycle.  

2. Up to six micro-ops per clock cycle.  

3. Macro-instructions up to seven bytes in length. 

P6-family processors have three decoders in the D1 pipestage. The first decoder is capable of decoding one IA macro-
instruction of four or fewer micro-ops in each clock cycle. The other two decoders can each decode an IA instruction of one 
micro-op in each clock cycle. Instructions composed of more than four micro-ops will take multiple cycles to decode. When 
programming in assembly language, scheduling the instructions in a 4-1-1 micro-op sequence increases the number of 
instructions that can be decoded each clock cycle. In general:  

• Simple instructions of the register-register form are only one micro-op.  
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• Load instructions are only one micro-op.  

• Store instructions have two micro-ops.  

• Simple read-modify instructions are two micro-ops.  

• Simple instructions of the register-memory form have two to three micro-ops.  

• Simple read-modify write instructions are four micro-ops.  

• Complex instructions generally have more than four micro-ops, therefore they will take multiple cycles to decode.  

For the purpose of counting micro-ops, MMX technology instructions are simple instructions. See Optimizations for Intel's 32-
bit Processors, Application Note AP-526 (Order Number 242816), Appendix D for a table that specifies the number of micro-
ops for each instruction in the Intel Architecture instruction set.  

Once the micro-ops are decoded, they will be issued from the In-Order Front-End into the Reservation Station (RS), which is 
the beginning pipestage of the Out-of-Order core. In the RS, the micro-ops wait until their data operands are available. Once a 
micro-op has all data sources available, it will be dispatched from the RS to an execution unit. If a micro-op enters the RS in a 
data-ready state (that is, all data is available), then the micro-op will be immediately dispatched to an appropriate execution 
unit, if one is available. In this case, the micro-op will spend very few clock cycles in the RS. All of the execution units are 
clustered on ports coming out of the RS. Once the micro-op has been executed it returns to the ROB, and waits for retirement. 
In this pipestage, all data values are written back to memory and all micro-ops are retired in-order, three at a time. The figure 
below provides details about the Out-of-Order core and the In-Order retirement pipestages.  

 

Figure 2-4. Out-Of-Order Core and Retirement Pipeline 
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Table 2-2. Dynamic Execution (P6-Family) Processor Execution Unit Pipelines 
Port Execution Units Latency/Thruput 

0 

Integer ALU Unit  
LEA instructions 
Shift instructions  
Integer Multiplication instruction  
Floating-Point Unit 
FADD instruction 
FMUL 
FDIV Unit 
MMXTM Technology ALU Unit  
MMX Technology Multiplier UnitFDIV 

Latency 1, Thruput 1/cycle  
Latency 1, Thruput 1/cycle 
Latency 1, Thruput 1/cycle  
Latency 4, Thruput 1/cycle 
Latency 3, Thruput 1/cycle 
Latency 5, Thruput 1/2cycle1,2 
Latency long and data dep., Thruput non-
pipelined 
Latency 1, Thruput1/cycle  
Latency 3, Thruput 1/cycle  

1 

Integer ALU Unit  
MMX Technology ALU Unit  
MMX Technology Shifter Unit  

Latency 1, Thruput 1/cycle  
Latency 1, Thruput 1/cycle  
Latency 1, Thruput 1/cycle  

2 Load Unit Latency 3 on a cache hit,  
Thruput 1/cycle4  

3 Store Address Unit Latency 3 (not applicable)  
Thruput 1/cycle3  

4 Store Data Unit Latency 1 (not applicable)  
Thruput 1/cycle  

Notes:  
1. The FMUL unit cannot accept a second FMUL within the cycle after it has accepted the first. This is NOT the same as only being able to do 

FMULs on even clock cycles.  

2. FMUL is pipelined one every two clock cycles. One way of thinking about this is to imagine that a P6-family processor has only a 32x32->32 
multiply pipelined.  

3. Store latency is not all that important from a dataflow perspective. The latency that matters is with respect to 
determining when they can retire and be completed. They also have a different latency with respect to load 
forwarding. For example, if the store address and store data of a particular address, for example 100, dispatch in clock 
cycle 10, a load (of the same size and shape) to the same address 100 can dispatch in the same clock cycle 10 and not 
be stalled.  

4. A load and store to the same address can dispatch in the same clock cycle.  

 
2.2 Caches 
The on-chip cache subsystem of processors with MMX technology consists of two 16 K four-way set associative caches with a 
cache line length of 32 bytes. The caches employ a write-back mechanism and a pseudo-LRU replacement algorithm. The data 
cache consists of eight banks interleaved on four-byte boundaries.  

On Pentium processors with MMX technology, the data cache can be accessed simultaneously from both pipes, as long as the 
references are to different cache banks. On the dynamic execution (P6-family) processors, the data cache can be accessed 
simultaneously by a load instruction and a store instruction, as long as the references are to different cache banks. The delay for 
a cache miss on the Pentium processor with MMX technology is eight internal clock cycles. On dynamic execution processors 
with MMX technology the minimum delay is ten internal clock cycles.  
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2.3 Branch Target Buffer 
Branch prediction for Pentium and dynamic execution processors with MMX technology is functionally identical except for 
one minor exception which will be discussed in Section 2.3.1.  

The Branch Target Buffer (BTB) stores the history of the previously seen branches and their targets. When a branch is 
prefetched, the BTB feeds the target address directly into the Instruction Fetch Unit (IFU). Once the branch is executed, the 
BTB is updated with the target address. Using the branch target buffer, branches that have been seen previously are 
dynamically predicted. The branch target buffer prediction algorithm includes pattern matching and up to four prediction 
history bits per target address. For example, a loop which is four iterations long should have close to 100% correct prediction. 
Adhering to the following guideline will improve branch prediction performance:  

Program conditional branches (except for loops) so that the most executed branch immediately follows the branch instruction 
(that is, fall through).  

Additionally, processors with MMX technology have a Return Stack Buffer (RSB), which can correctly predict return 
addresses for procedures that are called from different locations in succession. This increases further the benefit of unrolling 
loops which contain function calls, and removes the need to in-line certain procedures.  

2.3.1 CONSECUTIVE BRANCHES 
On the Pentium processor with MMX technology, branches may be mispredicted when the last byte of two branch instructions 
occur in the same aligned four byte section of memory, as shown in the figure below.  

 

Figure 2-5. Consecutive Branch Example 

This may occur when there are two consecutive branches with no intervening instructions and the second instruction is only 
two bytes long (such as a jump relative +/- 128).  

To avoid a misprediction in these cases, make the second branch longer by using a 16-bit relative displacement on the branch 
instruction instead of an 8-bit relative displacement.  
2.4 Write Buffers 
Processors with MMX technology have four write buffers (versus two in Pentium processors without MMX technology). 
Additionally, the write buffers can be used by either the U-pipe or the V-pipe (versus one corresponding to each pipe in 
Pentium processors without MMX technology). Performance of critical loops can be improved by scheduling the writes to 
memory; when you expect to see write misses, you should schedule the write instructions in groups no larger than four, then 
schedule other instructions before scheduling further write instructions.  
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CHAPTER 3 
GUIDELINES FOR DEVELOPING MMX™ CODE  

The following guidelines will help you develop fast and efficient MMX code that scales well across all processors with MMX 
technology.  
 
3.1 List of Rules and Suggestions 
The following section provides a list of rules and suggestions.  

3.1.1 RULES 
• Use a current generation compiler that will produce an optimized application. This will help you generate good code 

from the start.  

• Avoid partial register stalls. See Section 3.2.4.  

• Pay attention to the branch prediction algorithm (See Section 3.2.5). This is the most important optimization for 
dynamic execution (P6-family) processors. By improving branch predictability, your code will spend fewer cycles 
fetching instructions.  

• Schedule your code to maximize pairing. See Section 3.3.  

• Make sure all data are aligned. See Section 4.6.  

• Arrange code to minimize instruction cache misses and optimize prefetch. See Section 3.5.  

• Do not intermix MMX instructions and floating-point instructions. See Section 4.3.1.  

• Avoid prefixed opcodes other than 0F. See Section 3.2.3.  

• Avoid small loads after large stores to the same area of memory. Avoid large loads after small stores to the same area 
of memory. Load and store data to the same area of memory using the same data sizes and address alignments. See 
Section 3.6.1.  

• Use the OP, REG, MEM format whenever possible. This format helps to free registers and reduce cycles without 
generating unnecessary loads. See Section 3.4.1.  

• Always put an EMMS at the end of all sections of MMX instructions. See Section 4.4.  

• Optimize cache data bandwidth to MMX registers. See Section 3.6.  

3.1.2 SUGGESTIONS 

• Arrange code so that forward conditional branches are usually not taken, and backward conditional branches are 
usually taken.  

• Align frequently executed branch targets on 16-byte boundaries.  

• Unroll loops to schedule instructions.  

• Use software pipelining to schedule latencies and functional units.  
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• Always pair CALL and RET (return) instructions.  

• Avoid self-modifying code.  

• Avoid placing data in the code segment.  

• Calculate store addresses as soon as possible.  

• Avoid instructions that contain three or more micro-ops or instructions that are more than 7 bytes long. If possible, use 
instructions that require one micro-op.  

• Avoid using two 8-bit loads to produce a 16-bit load.  

• Cleanse partial registers before calling callee-save procedures.  

• Resolve blocking conditions, such as store addresses, as far as possible away from loads they may block.  

• In general, an N-byte quantity which is directly supported by the processor (8-bit bytes, 16-bit words, 32-bit 
doublewords, and 32-bit, 64-bit, and 80-bit floating-point numbers) should be aligned on the next highest power-of-
two boundary. Avoid misaligned data.  
-- Align 8-bit data on any boundary. 
-- Align 16-bit data to be contained within an aligned 4-byteword.  
-- Align 32-bit data on any boundary which is a multiple of four. 
-- Align 64-bit data on any boundary which is a multiple of eight. 
-- Align 80-bit data on a 128-bit boundary (that is, any boundary which is a multiple of 16 bytes).  

 
3.2 General Optimization Topics 
This section covers general optimization techniques that are important for the Intel Architecture.  

3.2.1 ADDRESSING MODES 
On the Pentium processor, when a register is used as the base component, an additional clock cycle is used if that register is the 
destination of the immediately preceding instruction (assuming all instructions are already in the prefetch queue). For example:  
add  esi, eax    ; esi is destination register 
mov  eax, [esi]  ; esi is base, 1 clock penalty 

Since the Pentium processor has two integer pipelines, a register used as the base or index component of an effective address 
calculation (in either pipe) causes an additional clock cycle if that register is the destination of either instruction from the 
immediately preceding clock cycle. This effect is known as Address Generation Interlock or AGI. To avoid the AGI, the 
instructions should be separated by at least one cycle by placing other instructions between them. The new MMX registers 
cannot be used as base or index registers, so the AGI does not apply for MMX register destinations.  

Dynamic execution (P6-family) processors incur no penalty for the AGI condition.  
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Figure 3-1. Pipeline Example of AGI Stall 

Note that some instructions have implicit reads/writes to registers. Instructions that generate addresses implicitly through ESP 
(PUSH, POP, RET, CALL) also suffer from the AGI penalty. Examples follow:  
sub  esp, 24 
         ;  1 clock cycle stall 
push ebx 
mov  esp, ebp 
         ;1  clock cycle stall 
pop  ebp 

PUSH and POP also implicitly write to esp. This, however, does not cause an AGI when the next instruction addresses through 
ESP. Pentium processors "rename" ESP from PUSH and POP instructions to avoid the AGI penalty. An example follows:  
push edi    ; no stall 
mov  ebx, [esp] 

On Pentium processors with MMX technology, instructions which include both an immediate and displacement fields are 
pairable in the U-pipe. When it is necessary to use constants, it is usually more efficient to use immediate data instead of 
loading the constant into a register first. If the same immediate data is used more than once, however, it is faster to load the 
constant in a register and then use the register multiple times. Following is an example:  
mov  result, 555   ; 555 is immediate, result is 
     ; displacement 
mov  word ptr [esp+4], 1   ; 1 is immediate,4 is displacement 

Since MMX instructions have two-byte opcodes (0x0F opcode map), any MMX instruction which uses base or index 
addressing with a 4-byte displacement to access memory will have a length of eight bytes. Instructions over seven bytes can 
limit decoding and should be avoided where possible (see Section 3.4.2). It is often possible to reduce the size of such 
instructions by adding the immediate value to the value in the base or index register, thus removing the immediate field.  

The Intel486TM processor has a one clock penalty when using a full register immediately after a partial register was written. 
The Pentium processor is neutral in this respect. This is called a partial stall condition. The following example relates to the 
Pentium processor.  
mov  al, 0           ; 1 
mov  [ebp], eax      ; 2 - No delay on the Pentium processor 

The following example relates to the Intel486 processor.  
mov  al, 0   ; 1 
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    ; 2  1 clock penalty 
mov  [ebp], eax  ; 3 

Dynamic execution (P6-family) processors exhibit the same type of stall as the Intel486 processors, except that the cost is 
much higher. The read is stalled until the partial write retires, which can be considerably longer than one clock cycle.  

For best performance, avoid using a large register (for example, EAX) after writing a partial register (for example, AL, AH, 
AX) which is contained in the large register. This guideline will prevent partial stall conditions on dynamic execution 
processors and applies to all of the small and large register pairs:  
AL AH AX EAX 
BL BH BX EBX 
CL CH CX ECX 
DL DH DX EDX  
  SP ESP 
  EP EBP 
  SI ESI 
  DI EDI 

Additional information on partial register stalls is in Section 3.2.4.  

3.2.2 ALIGNMENT 
This section provides information on aligning code and data for Pentium and dynamic execution (P6-family) processors.  

3.2.2.1 Code  

Pentium and dynamic execution (P6-family) processors have a cache line size of 32 bytes. Since the prefetch buffers fetch on 
16-byte boundaries, code alignment has a direct impact on prefetch buffer efficiency.  

For optimal performance across the Intel Architecture family, it is recommended that:  

• Loop entry labels should be aligned to the next 0 MOD 16 when it is less than eight bytes away from that boundary.  

• Labels that follow a conditional branch should not be aligned.  

• Labels that follow an unconditional branch or function call should be aligned to the next 0 MOD 16 when it is less 
than eight bytes away from that boundary. 

3.2.2.2 Data  

A misaligned access in the data cache or on the bus costs at least three extra clock cycles on the Pentium processor. A 
misaligned access in the data cache, which crosses a cache line boundary, costs nine to twelve clock cycles on dynamic 
execution (P6-family) processors. Intel recommends that data be aligned on the following boundaries for the best execution 
performance on all processors:  

3.2.2.2.1 2-Byte Data  

A 2-byte object should be fully contained within an aligned 4-byte word (that is, its binary address should be xxxx00, xxxx01, 
xxxx10, but not xxxx11).  

3.2.2.2.2 4-Byte Data  

The alignment of a 4-byte object should be on a 4-byte boundary.  

3.2.2.2.3 8-Byte Data  

An 8-byte datum (64 bit, for example, double precision real data types, all MMX packed register values) should be aligned on 
an 8-byte boundary.  
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3.2.3 PREFIXED OPCODES 
On Pentium processors, a prefix on an instruction can delay the parsing and inhibit pairing of instructions.  

The following list highlights the effects of instruction prefixes on the FIFO:  

• There is no penalty on 0F-prefix instructions.  

• An instruction with a 66h or 67h prefix takes one clock for prefix detection, another clock for length calculation, and 
another clock to enter the FIFO (three clock cycles total). It must be the first instruction to enter the FIFO, and a 
second instruction can be pushed with it.  

• Instructions with other prefixes (not 0Fh, 66h, or 67h) take one additional clock cycle to detect each prefix. These 
instructions are pushed into the FIFO only as the first instruction. An instruction with two prefixes will take three 
clock cycles to be pushed into the FIFO (two clock cycles for the prefixes and one clock cycle for the instruction ). A 
second instruction can be pushed with the first into the FIFO in the same clock cycle.  

The impact on performance exists only when the FIFO does not hold at least two entries. As long as the decoder (D1 stage) has 
two instructions to decode there is no penalty. The FIFO will quickly become empty if the instructions are pulled from the 
FIFO at the rate of two per clock cycle. So, if the instructions just before the prefixed instruction suffer from a performance 
loss (for example, no pairing, stalls due to cache misses, misalignments, etc.), then the performance penalty of the prefixed 
instruction may be masked.  

On dynamic execution (P6-family) processors, instructions longer than seven bytes in length limit the number of instructions 
decoded in each cycle (see Section 2.1.2). Prefixes add one to two bytes to the length of an instruction, possibly limiting the 
decoder.  

It is recommended that, whenever possible, prefixed instructions not be used or that they be scheduled behind instructions 
which themselves stall the pipe for some other reason.  

See Section 3.3 for more information on pairing of prefixed instructions.  

3.2.4 PARTIAL REGISTER STALLS ON DYNAMIC EXECUTION (P6-FAMILY) 
PROCESSORS 

On dynamic execution (P6-family) processors, when a 32-bit register (for example, EAX) is read immediately after 16 or 18-
bit register (for example, AL, AH, AX) is written, the read is stalled until the write retires (a minimum of seven clock cycles). 
Consider the example below. The first instruction moves the value 8 into the AX register. The following instruction accesses 
the large register EAX. This code sequence results in a partial register stall.  

MOV AX, 8  

ADD ECX, EAX  

Partial Stall occurs on access of the EAX register  

This applies to all of the 8- and 16-bit/32-bit register pairs:  
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Pentium processors do not exhibit this penalty.  

Because P6-family processors can execute code out of order, the instructions need not be immediately adjacent for the stall to 
occur. The following example also contains a partial stall:  

MOV AL, 8  

MOV EDX, 0x40  

MOV EDI, new_value  

ADD EDX, EAX  

Partial Stall Occurs on access of the EAX register  

In addition, any micro-ops that follow the stalled micro-op will also wait until the clock cycle after the stalled micro-op 
continues through the pipe. In general, to avoid stalls, do not read a large (32-bit) register (EAX) after writing a small (16- or 
18-bit) register (AL) which is contained in the large register.  

Special cases of reading and writing small and large register pairs have been implemented in dynamic execution processors in 
order to simplify the blending of code across processor generations. The special cases include the XOR and SUB instructions 
as shown in the following examples:  
    xor  eax, eax 
    movb  al, mem8 
    use  eax  <------- no partial stall 
    xor  eax, eax 
    movw  ax, mem16 
    use  eax  <------- no partial stall 
    sub  ax,  ax 
    movb al,  mem8 
    use  ax   <------- no partial stall 
    sub  eax, eax 
    movb  al, mem8 
    use   ax  <------- no partial stall 
    xor   ah, ah 
    movb  al, mem8 
    use   ax  <------- no partial stall 

In general, when implementing this sequence, always zero the large register then write to the lower half of the register. The 
special cases have been implemented for XOR and SUB when using EAX, EBX, ECX, EDX, EBP, ESP, EDI, and ESI.  

3.2.5 BRANCH PREDICTION INFORMATION 

Branch optimizations are the most important optimizations for dynamic execution (P6-family) processors. These optimizations 
also benefit the Pentium processor.  
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3.2.5.1 Dynamic Branch Prediction  

Three elements of dynamic branch prediction are important:  

1. If the instruction address is not in the BTB, execution is predicted to continue without branching (fall through).  

2. Predicted taken branches have a one clock delay.  

3. The BTB stores a 4-bit history of branch predictions. 

The first element suggests that branches should be followed by code that will be executed. Never follow a branch with data.  

To avoid the delay of one clock for taken branches, simply insert additional work between branches that are expected to be 
taken. This delay restricts the minimum size of loops to two clock cycles. If you have a very small loop that takes less than two 
clock cycles, unroll it.  

The branch predictor correctly predicts regular patterns of branches. For example, it correctly predicts a branch within a loop 
that is taken on every odd iteration, and not taken on every even iteration.  

3.2.5.2 Static Prediction on Dynamic Execution (P6-Family) Processors  

On dynamic execution processors, branches that do not have a history in the BTB are predicted using a static prediction 
algorithm. The static prediction algorithm follows:  

• Predict unconditional branches taken.  

• Predict backward conditional branches taken. This rule is suitable for loops.  

• Predict forward conditional branches to fall through. 

The performance penalty for static prediction is six clocks. The penalty for NO prediction or an incorrect prediction is greater 
than twelve clocks. The following chart illustrates the static branch prediction algorithm:  

 

Figure 3-2. Dynamic Execution (P6-Family) Static Branch Prediction Algorithm 

The following examples illustrate the basic rules for the static prediction algorithm.  
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A.Begin: MOV EAX, mem32 
  AND EAX, EBX 
  IMUL EAX, EDX 
  SHLD EAX, 7 
  JC Begin 

In this example, the backwards (JC Begin) branch is not in the BTB the first time through, therefore, the BTB will not issue 
a prediction. The static predictor, however, will predict the branch to be taken, so a misprediction will not occur.  

 
B.  MOV EAX, mem32 
  AND EAX, EBX 
  IMUL EAX, EDX 
  SHLD EAX, 7 
  JC Begin 
  MOV EAX, 0 
Begin: Call  Convert 

The first branch instruction (JC Begin) in this code segment is a conditional forward branch. It is not in the BTB the first 
time through, but the static predictor will predict the branch to fall through.  

The Call Convert instruction will not be predicted in the BTB the first time it is seen by the BTB, but the call will be predicted 
as taken by the static prediction algorithm. This is correct for an unconditional branch.  

In these examples, the conditional branch has only two alternatives: taken and not taken. Indirect branches, such as switch 
statements, computed GOTOs or calls through pointers, can jump to an arbitrary number of locations. If the branch has a 
skewed target destination (that is, 90% of the time it branches to the same address), then the BTB will predict accurately most 
of the time. If, however, the target destination is not predictable, performance can degrade quickly. Performance can be 
improved by changing the indirect branches to conditional branches that can be predicted.  

 
3.3 Scheduling 
Scheduling or pairing should be done in a way that optimizes performance across all processor generations. The following is a 
list of pairing and scheduling rules that can improve the speed of your code on Pentium and P6-family processors. In some 
cases, there are tradeoffs involved in reaching optimal performance on a specific processor; these tradeoffs vary based on the 
specific characteristics of the application. On superscalar Pentium processors, the order of instructions is very important to 
achieving maximum performance.  

Reordering instructions increases the possibility of issuing two instructions simultaneously. Instructions that have data 
dependencies should be separated by at least one other instruction.  

This section describes the rules you need to follow to pair MMX instructions with integer instructions. For each of the 
conditions listed in the following table, the subsection lists the rules that apply.  

Several types of rules must be observed to allow pairing:  

• General pairing rules: Rules which depend on the machine status and do not depend on the specific opcodes. They are 
also valid for integer and FP. For example, single-step should be disabled to allow instruction pairing.  

• Integer pairing rules: Rules for pairing integer instructions.  

• MMX instruction pairing rules for a pair of MMX instructions: rules that allow two MMX instructions to pair. 
Example: the processor cannot issue two MMX instructions simultaneously because only one multiplier unit exists.  

• MMX and integer instruction pairing rules: Rules that allow pairing of one integer and one MMX instruction. 
Note  

Floating-point instructions are not pairable with MMX instructions. 
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3.3.1 GENERAL PAIRING RULES 

For general pairing rules on Pentium processors, Optimizations for Intel's 32-bit Processors, Application Note AP-526, (Order 
Number 242816). The Pentium processors with MMX technology has relaxed some of the general pairing rules:  

• Pentium processors do not pair two instructions if either of them is longer than seven bytes. Pentium processors with 
MMX technology do not pair two instructions if the first instruction is longer than eleven bytes or the second 
instruction is longer than seven bytes. Prefixes are not counted.  

• Prefixed instructions are pairable in the U-pipe. Instructions with 0Fh, 66H or 67H prefixes are also pairable in the V-
pipe. 

3.3.2 INTEGER PAIRING RULES 

Pairing cannot be performed when the following two conditions occur:  

• The next two instructions are not pairable instructions (see the table below for an overview of instructions that are 
pairable; consult Optimizations for Intel's 32-bit Processors, Application Note AP-526, Appendix A contains a 
complete list of pairing characteristics of the individual instructions). In general, most simple ALU instructions are 
pairable.  

• The next two instructions have some type of register contention (implicit or explicit). There are some special 
exceptions to this rule; in a few cases, register contention can occur with pairing. These cases are explained in Section 
3.3.1.2.  

Table 3-1. Integer Instruction Pairing 
Integer Instruction Pairable in U-Pipe Integer Instruction Pairable in V-Pipe 

mov r, r alu r, i push r mov r, r alu r, i push r 
mov r, m alu m, i push i mov r, m alu m, i push I 
mov m, r alu eax, i pop r mov m, r alu eax, i pop r 
mov r, i alu m, r nop mov r, i alu m, r jmp near 
mov m, i alu r, m shift/rot by 1 mov m, i alu r, m jcc near 

mov eax, m inc/dec r shift by imm mov eax, m inc/dec r 0F jcc 
mov m, eax inc/dec m test reg, r/m mov m, eax inc/dec m call near 

alu r, r lea r, m test acc, imm alu r, r lea r, m nop 
    test reg, r/m test acc, imm 

3.3.2.1 Instructions that Cannot be Paired (NP)  

• shift/rotate with the shift count in cl.  

• Long-Arithmetic instructions, for example: MUL, DIV.  

• Extended instructions, for example: RET, ENTER, PUSHA, MOVS, STOS, LOOPNZ.  

• Some Floating-Point Instructions, for example: FSCALE, FLDCW, FST.  

• Inter-segment instructions, for example: PUSH sreg, CALL far.  

Also see Section 3.3.2.2, No Pairing Allowed because of Register Dependencies.  

3.3.2.2 Pairable Instructions Issued to U or V-pipes (UV)  

• Most 8/32 bit ALU operations, for example: ADD, INC, XOR.  
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• All 8/32 bit compare instructions, for example: CMP, TEST.  

• All 8/32 bit stack operations using registers, for example: PUSH reg, POP reg. 

3.3.2.3 Pairable Instructions Issued to U-pipe (PU)  

• The instructions listed below must be issued to the U-pipe and can pair with a suitable instruction in the V-Pipe. These 
instructions never execute in the V-pipe.  

• Carry and borrow instructions, for example: ADC, SBB.  

• Prefixed instructions, except 0Fh, 66H or 67H prefixed instructions (see Section 3.2.3).  

• Shift with immediate.  

• Some Floating-Point Operations, for example: FADD, FMUL, FLD. 

3.3.2.4 Pairable Instructions Issued to V-pipe (PV)  

These instructions can execute in either the U-pipe or the V-pipe but they are only paired when they are in the V-pipe. Since 
these instructions change the instruction pointer (eip), they cannot pair in the U-pipe since the next instruction may not be 
adjacent. Even when a branch in the U-pipe is predicted "not taken", the current instruction will not pair with the following 
instruction.  

• Simple control transfer instructions, for example: call near, jmp near, jcc. This includes both the jccshort and the 
jcc near (which has a 0f prefix) versions of the conditional jump instructions.  

• fxch 

3.3.2.5 No Pairing Allowed Because of Register Dependencies  

Instruction pairing is also affected by instruction operands. The following combinations cannot be paired because of register 
contention. Exceptions to these rules are given in the next section.  

1. The first instruction writes to a register that the second one reads from (flow-dependence). An example follows:  
2.    mov  eax, 8 
3.    mov  [ebp], eax 

4. Both instructions write to the same register (output-dependence), as shown below.  
5.    mov  eax, 8 
6.    mov  eax, [ebp] 

This limitation does not apply to a pair of instructions which write to the EFLAGS register (for example, two ALU operations 
that change the condition codes). The condition code after the paired instructions execute will have the condition from the V-
pipe instruction.  

Note that two instructions in which the first reads a register and the second writes to a condition knowing it (anti-dependence) 
may be paired. See following example:     
mov  eax, ebx 
mov  ebx, [ebp] 

For purposes of determining register contention, a reference to a byte or word register is treated as a reference to the entire 32-
bit register. Therefore,       
mov  al, 1 
mov  ah, 0 

do not pair due to output dependencies on the contents of the EAX register.  
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3.3.2.6 Special Pairs  

There are some special instructions that can be paired in spite of our "general" rule above. These special pairs overcome 
register dependencies and most involve implicit reads/writes to the esp register or implicit writes to the condition codes.  

Stack Pointer:  

• push reg/imm; push reg/imm  

• push reg/imm; call  

• pop reg ; pop reg 

Condition Codes:  

• cmp ; jcc  

• add ; jne 

Note that special pairs that consist of PUSH/POP instructions may have only immediate or register operands, not memory 
operands.  

3.3.2.7 Restrictions On Pair Execution  

There are some pairs that may be issued simultaneously but will not execute in parallel. The following two rules must be 
followed to pair an MMX instruction in the U-pipe and an integer instruction in the V-pipe.  

1. If both instructions access the same data-cache memory bank, then the second request (V-pipe) must wait for the first 
request to complete. A bank conflict occurs when bits 2 through 4 are the same in the two physical addresses. A bank 
conflict incurs a one clock penalty on the V-pipe instruction .  

2. Inter-pipe concurrency in execution preserves memory-access ordering. A multi-cycle instruction in the U-pipe will 
execute alone until its last memory access. 
 
 add  eax, mem1 
      add  ebx, mem2      ; 1 
 (add)   (add)       ; 2  2-cycle 

The instructions above add the contents of the register and the value at the memory location, then put the result in the 
register. An add with a memory operand takes two clocks to execute. The first clock loads the value from cache and 
the second clock performs the addition. Since there is only one memory access in the U-pipe instruction, the add in the 
V-pipe can start in the same cycle.  
 add  meml, eax   ; 1 
 (add)    ; 2 
 (add) add  mem2, ebx ; 3 
 (add)    ; 4 
 (add)    ; 5 

The above instructions add the contents of the register to the memory location and store the result at the memory 
location. An add with a memory result takes three clocks to execute. The first clock loads the value, the second 
performs the addition and the third stores the result. When paired, the last cycle of the U-pipe instruction overlaps 
with the first cycle of the V-pipe instruction execution.  

No other instructions may begin execution until the instructions already executing have completed.  

To best expose opportunities for scheduling and pairing, it is better to issue a sequence of simple instructions rather 
than a complex instruction that takes the same number of cycles. The simple instruction sequence can take advantage 
of more issue slots. The load/store style code generation requires more registers and increases code size. To 
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compensate for the extra registers needed, extra effort should be put into register allocation and instruction scheduling 
so that extra registers are used only when parallelism increases.  

3.3.3 MMXTM INSTRUCTION PAIRING GUIDELINES 

This section specifies guidelines for pairing MMX instructions with each other and with integer instructions.  

3.3.3.1 Pairing Two MMXTM Instructions:  

o Two MMX instructions which both use the MMX shifter unit (pack, unpack, and shift instructions) cannot pair since 
there is only one MMX shifter unit. Shift operations may be issued in either the U-pipe or the V-pipe but not in both 
in the same clock cycle.  

o Two MMX instructions which both use the MMX multiplier unit (pmull, pmulh, pmadd type instructions) cannot pair 
since there is only one MMX multiplier unit. Multiply operations may be issued in either the U-pipe or the V-pipe but 
not in both in the same clock cycle.  

o MMX instructions which access either memory or the integer register file can be issued in the U-pipe only. Do not 
schedule these instructions to the V-pipe as they will wait and be issued in the next pair of instructions (and to the U-
pipe).  

o The MMX destination register of the U-pipe instruction should not match the source or destination register of the V-
pipe instruction (dependency check).  

o The EMMS instruction is not pairable.  

o If either the CR0.TS or the CR0 are set, MMX instructions cannot go into the V-pipe. 

3.3.3.2 Pairing an Integer Instruction in the U-Pipe with an MMXTM Instruction in the V-Pipe  

o The MMX instruction is not the first MMX instruction following a floating-point instruction.  

o The V-pipe MMX instruction does not access either memory or the integer register file.  

o The U-pipe integer instruction is a pairable U-pipe integer instruction (see table 3-1 above).  

3.3.3.3 Pairing an MMXTM Instruction in the U-Pipe with an Integer Instruction in the V-Pipe  
o The V-pipe instruction is a pairable integer V-pipe instruction (see Table 3-1 above).  

o The U-pipe MMX instruction does not access either memory or the integer register file. 

3.3.3.4 Scheduling Rules  

All MMX instructions may be pipelined including the multiply instructions. All instructions take a single clock to execute 
except MMX multiply instructions which take three clocks.  

Since multiply instructions take three clocks to execute, the result of a multiply instruction can be used only by other 
instructions issued three clocks later. For this reason, avoid scheduling a dependent instruction in the two instruction pairs 
following the multiply.  

As mentioned in Section 2.1.1, the store of a register after writing the register must wait for two clocks after the update of the 
register. Scheduling the store two clock cycles after the update avoids a pipeline stall.  

 
3.4 Instruction Selection 
The following section describes instruction selection optimizations.  
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3.4.1 USING INSTRUCTIONS THAT ACCESS MEMORY 

An MMX instruction may have two register operands ("OP reg, reg") or one register and one memory operand ("OP reg, 
mem"), where OP represents the instruction operand and, reg represents the register and mem represents memory. "OP reg, 
mem" instructions are useful, in some cases, to reduce register pressure, increase the number of operations per cycle, and 
reduce code size.  

The following discussion assumes that the memory operand is present in the data cache. If it is not, then the resulting penalty is 
usually large enough to obviate the scheduling effects discussed in this section.  

In Pentium processors, "OP reg, mem" MMX instructions do not have longer latency than "OP reg, reg" instructions (assuming 
a cache hit). They do have more limited pairing opportunities, however (see Section 3.3.1). In dynamic execution (P6-family) 
processors, "OP reg, mem" MMX instructions translate into two micro-ops (as opposed to one uop for the "OP reg, reg" 
instructions). Thus, they tend to limit decoding bandwidth (see Section 2.1.2) and occupy more resources than "OP reg, reg" 
instructions.  

Recommended usage of "OP reg, mem" instructions depends on whether the MMX code is memory-bound (that is, execution 
speed is limited by memory accesses). As a rule of thumb, an MMX code section is considered to be memory-bound if the 
following inequality holds:  

 
For memory-bound MMX code, Intel recommends to merge loads whenever the same memory address is used more than once. 
This reduces the number of memory accesses.  

Example:  
OP  MM0, [address A] 
OP  MM1, [address A] 

becomes:  
MOVQ     MM2, [address A] 
OP       MM0, MM2 
OP        MM1, MM2  

For MMX code that is not memory-bound, load merging is recommended only if the same memory address is used more than 
twice. Where load merging is not possible, usage of "OP reg, mem" instructions is recommended to minimize instruction count 
and code size.  

Example:  
MOVQ  MM0, [address A] 
OP  MM1, MM0 

becomes:  
OP  MM1, [address A] 

In many cases, a "MOVQ reg, reg" and "OP reg, mem" can be replaced by a "MOVQ reg, mem" and "OP reg, reg". This 
should be done where possible, since it saves one uop on dynamic execution processors.  

Example: (here OP is a symmetric operation)  
MOVQ  MM1,  MM0   (1 micro-op)  
OP  MM1, [address A] (2 micro-ops) 

becomes:  
MOVQ     MM1, [address A] (1 micro-op)  
OP        MM1, MM0   (1 micro-op) 
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3.4.2 INSTRUCTION LENGTH 

On Pentium processors, instructions greater than seven bytes in length cannot be executed in the V-pipe. In addition, two 
instructions cannot be pushed into the instruction FIFO (see Section 2.1.1) unless both are seven bytes or less in length. If only 
one instruction is pushed into the FIFO, pairing will not occur unless the FIFO already contains at least one instruction. In code 
where pairing is very high (this often happens in MMX code) or after a mispredicted branch, the FIFO may be empty, leading 
to a loss of pairing whenever the instruction length is over seven bytes.  

In addition, dynamic execution (P6-family) processors can only decode one instruction at a time when an instruction is longer 
than seven bytes.  

So, for best performance on all Intel processors, use simple instructions that are less than eight bytes in length (see Section 
3.4.1 for one way to reduce instruction size).  

 
3.5 Cache Optimization 
Cache behavior can dramatically affect the performance of your application. By having a good understanding of how the cache 
works, you can structure your code to take best advantage of cache capabilities. For more information on the structure of the 
cache, see Section 2.2.  

3.5.1 LINE FILL ORDER 

When a data access to a cacheable address misses the data cache, the entire cache line is brought into the cache from external 
memory. This is called a line fill. On Pentium and dynamic execution (P6-family) processors, these data arrive in a burst 
composed of four 8-byte sections in the following burst order:  

1st Address 2nd Address 3rd Address 4th Address 
0h 8h 10h 18h  
8h 0h 18h  10h  
10h  18h 0h  8h  
18h 10h 8h 0h 

Data are available for use in the order that they arrive from memory. If an array of data is being read serially, it is preferable to 
access it in sequential order so that each data item will be used as it arrives from memory.  

3.5.2 DATA ALIGNMENT WITHIN A CACHE LINE 

Arrays with a size which is a multiple of 32 bytes should start at the beginning of a cache line. By aligning on a 32-byte 
boundary, you take advantage of the line fill ordering and match the cache line size. Arrays with sizes which are not multiples 
of 32 bytes should begin at 32- or 16-byte boundaries (the beginning or middle of a cache line). In order to align on a 16-or 32- 
byte boundary, you may need to pad the data. If this is necessary, try to locate data (variables or constants) in the padded space.  

3.5.3 WRITE ALLOCATION EFFECTS 

Dynamic execution (P6-family) processors have a "write allocate by read-for-ownership" cache, whereas the Pentium 
processor has a "no-write-allocate; write through on write miss" cache.  

On dynamic execution (P6-family) processors, when a write occurs and the write misses the cache, the entire 32-byte cache 
line is fetched. On the Pentium processor, when the same write miss occurs, the write is simply sent out to memory.  

Write allocate is generally advantageous, since sequential stores are merged into burst writes, and the data remains in the cache 
for use by later loads. This is why dynamic execution (P6-family) processors adopted this write strategy, and why some 
Pentium processor system designs implement it for the L2 cache, even though the Pentium processor uses write-through on a 
write miss.  
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Write allocate can be a disadvantage in code where:  

o Just one piece of a cache line is written.  

o The entire cache line is not read.  

o Strides are larger than the 32-byte cache line.  

o Writes to a large number of addresses (>8000). 

When a large number of writes occur within an application, as in the example program below, and both the stride is longer than 
the 32-byte cache line and the array is large, every store on a dynamic execution (P6-family) processor will cause an entire 
cache line to be fetched. In addition, this fetch will probably replace one (sometimes two) dirty cache line.  

The result is that every store causes an additional cache line fetch and slows down the execution of the program. When many 
writes occur in a program, the performance decrease can be significant. The Sieve of Erastothenes program is a simplistic 
example that demonstrates these cache effects. In this example, a large array is stepped through in increasing strides while 
writing a single value of the array with zero.  

Note: 
This is a very simplistic example used only to demonstrate cache effects; many other optimizations are possible in this code.  

Sieve of Erastothenes example:  
boolean array[2..max] 
for(i=2;i<max;i++) { 
     array := 1; 
    } 
      
for(i=2;i<max;i++) { 
     if( array[i] ) { 
         for(j=2;j<max;j+=i) {  
          array[j] := 0;  /*here we assign memory to 0 causing     
                         fetch within the j loop */ 
         } 
     } 
} 

Two optimizations are available for this specific example. One is to pack the array into bits, thereby reducing the size of the 
array, which in turn reduces the number of cache line fetches. The second is to check the value prior to writing, thereby 
reducing the number of writes to memory (dirty cache lines).  

3.5.3.1 Optimization 1: Boolean 
In the program above, 'Boolean' is a char array. It may well be better, in some programs, to make the "boolean" array into an 
array of bits, packed so that read-modify-writes are done (since the cache protocol makes every read into a read-modify-write). 
But, in this example, the vast majority of strides are greater than 256 bits (one cache line of bits), so the performance increase 
is not significant.  

3.5.3.2 Optimization 2: Check Before Writing  
Another optimization is to check if the value is already zero before writing.  
boolean array[2..max] 
for(i=2;i<max;i++) { 
     array := 1; 
    } 
      
    for(i=2;i<max;i++) { 
     if( array[i] ) {               
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         for(j=2;j<max;j+=i) { 
          if( array[j] != 0 ) {  /* check to see if value is      
              array[j] := 0; 
          } 
         } 
     } 
    } 

The external bus activity is reduced by half because most of the time in the Sieve program the data is already zero. By checking 
first, you need only one burst bus cycle for the read and you save the burst bus cycle for every line you do not write. The actual 
write back of the modified line is no longer needed, therefore saving the extra cycles.  

Note: 
This operation benefits P6-family processors but may not enhance the performance of Pentium processors. As such, it should 
not be considered generic. Write allocate is generally a performance advantage in most systems, since sequential stores are 
merged into burst writes, and the data remain in the cache for use by later loads. This is why P6-family processors use this 
strategy, and why some Pentium processor-based systems implement it for the L2 cache.  
 
3.6 Memory Optimization 

3.6.1 PARTIAL MEMORY ACCESSES 
The MMX registers allow you to move large quantities of data without stalling the processor. Instead of loading single array 
values that are 8-, 16-, or 32-bits long, consider loading the values in a single quadword, then incrementing the structure or 
array pointer accordingly.  

Any data that will be manipulated by MMX instructions should be loaded using either;  

o The MMX instruction that loads a 64-bit operand (for example, MOVQ MM0, m64), or  

o the register-memory form of any MMX instruction that operates on a quadword memory operand (for example, 
PMADDW MM0, m64).  

All SIMD data should be stored using the MMX instruction that stores a 64-bit operand (for example, MOVQ m64, MM0).  

The goal of these recommendations is twofold: First, the loading and storing of SIMD data is more efficient using the larger 
quadword data block sizes. Second, this helps to avoid the mixing of 8-, 16-, or 32-bit load and store operations with 64-bit 
MMX load and store operations to the same SIMD data. This, in turn, prevents situations in which a) small loads follow large 
stores to the same area of memory, or b) large loads follow small stores to the same area of memory. Dynamic execution 
processors will stall in these situations. (See list of rules in Section 3.1.1.).  

Consider the following examples. In the first case, there is a large load after a series of small stores to the same area of memory 
(beginning at memory address "mem"). The large load will stall in this case:  
       MOV     mem, eax  ; store dword to address "mem" 
        MOV     mem + 4, ebx  ; store dword to address "mem + 4" 
               : 
               : 
        MOVQ    mm0, mem  ; load qword at address "mem", stalls 

The MOVQ must wait for the stores to write memory before it can access all the data it requires. This stall can also occur with 
other data types (for example, when bytes or words are stored and then words or doublewords are read from the same area of 
memory). When you change the code sequence as follows, the processor can access the data without delay:  
       MOVD mm1,  ebx  ; build data into a qword first before  
            ; storing it to memory 
        MOVD mm2, eax 
        PSLLQ mm1, 32              
        POR mm1, mm2 
        MOVQ mem, mm1  ; store SIMD variable to "mem" as a 
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     ; qword 
                : 
                : 
        MOVQ mm0, mem  ; load qword SIMD variable "mem",no 
     ;stall 

In the second case, there is a series of small loads after a large store to the same area of memory (beginning at memory address 
"mem"). The small loads will stall in this case:  
        MOVQ     mem, mm0   ; store qword to address 
       ; "mem" 
                : 
                : 
        MOV      bx,       mem + 2   ; load word at address  
       ; "mem + 2", stalls  
        MOV      cx,       mem + 4   ; load word at address  
       ; "mem + 4", stalls 

The word loads must wait for the quadword store to write to memory before they can access the data they require. This stall 
can also occur with other data types (for example, when doublewords or words are stored and then words or bytes are read 
from the same area of memory). When you change the code sequence as follows, the processor can access the data without 
delay:  
       MOVQ     mem, mm0       ; store qword to address "mem" 
                : 
                : 
        MOVQ     mm1, mem       ; load qword at address "mem" 
        MOVD     eax, mm1  ; transfer "mem + 2" to ax from 
      ; MMX register not memory  
        PSRLQ    mm1,  32 
        SHR  eax, 16 
        MOVD     ebx, mm1  ; transfer "mem + 4" to bx from 
      ; MMX register, not memory  
        AND ebx,  0ffffh 

These transformations, in general, increase the number the instructions required to perform the desired operation. For dynamic 
execution (P6-family) processors, the performance penalty due to the increased number of instructions is more than offset by 
the benefit. For Pentium processors, however, the increased number of instructions can negatively impact performance, since 
they do not benefit from the code transformations above. For this reason, careful and efficient coding of these transformations 
is necessary to minimize any potential negative impact to Pentium processor performance.  

3.6.2 INCREASING BANDWIDTH OF MEMORY FILLS AND VIDEO FILLS 

It is beneficial to understand how memory is accessed and filled. A memory-to-memory fill (for example a memory-to-video 
fill) is defined as a 32-byte (cache line) load from memory which is immediately stored back to memory (such as a video frame 
buffer). The following are guidelines for obtaining higher bandwidth and shorter latencies for sequential memory fills (video 
fills). These recommendations are relevant for all Intel Architecture processors with MMX technology and refer to cases in 
which the loads and stores do not hit in the second level cache.  

3.6.2.1 Memory Fills  

3.6.2.1.1 Increasing Memory Bandwidth Using the MOVQ Instruction  

Loading any value will cause an entire cache line to be loaded into the on-chip cache. But, using MOVQ to store the data back 
to memory instead of using 32-bit stores (for example, MOVD) will reduce by half the number of stores per memory fill cycle. 
As a result, the bandwidth of the memory fill cycle increases significantly. On some Pentium processor-based systems, 30% 
higher bandwidth was measured when 64-bit stores were used instead of 32-bit stores. Additionally, on dynamic execution 
processors, this avoids a partial memory access when both the loads and stores are done with the MOVQ instruction.  
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3.6.2.1.2 Increasing Memory Bandwidth by Loading and Storing To and From the Same DRAM Page  

DRAM is divided into pages (which are not the same as Operating System (OS) pages. The size of a DRAM page is a function 
of the DRAM's size and organization. Page sizes of several Kbytes are common. Like OS pages, DRAM pages are constructed 
of sequential addresses. Sequential memory accesses to the same DRAM page have shorter latencies than sequential accesses 
to different DRAM pages. In many systems the latency for a page miss (that is, an access to a different page instead of the page 
previously accessed) can be twice as large as the latency of a memory page hit (access to the same page as the previous access). 
Therefore, if the loads and stores of the memory fill cycle are to the same DRAM page, we can see a significant increase in the 
bandwidth of the memory fill cycles.  

3.6.2.1.3 Increasing the Memory Fill Bandwidth by Using Aligned Stores  

Unaligned stores will double the number of stores to memory. Intel strongly recommends that quadword stores be 8-byte 
aligned. Four aligned quadword stores are required to write a cache line to memory. If the quadword store is not 8-byte aligned, 
then two 32 bit writes result from each MOVQ store instruction. On some systems, a 20% lower bandwidth was measured 
when 64 bit misaligned stores were used instead of aligned stores.  

3.6.2.2 Video Fills  

3.6.2.2.1 Use 64 Bit Stores to Increase the Bandwidth to Videob  

Although the PCI bus between the processor and the Frame buffer is 32 bits wide, using MOVQ to store to video is faster on 
most Pentium processor-based systems than using twice as many 32-bit stores to video. This occurs because the bandwidth to 
PCI write buffers (which are located between the CPU and PCI bus) is higher when quadword stores are used.  

3.6.2.2.2 Increase the Bandwidth to Video Using Aligned Stores  

When a non-aligned store is encountered, there is a dramatic decrease in the bandwidth to video. Misalignment causes twice as 
many stores, and, in addition, the latency of stores on the PCI bus (to the Frame buffer) is much longer. On the PCI bus, it is 
not possible to burst sequential misaligned stores. On Pentium processor-based systems, a decrease of 80% in the video fill 
bandwidth is typical when misaligned stores are used instead of aligned stores. 
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CHAPTER 4 
MMX™ CODE DEVELOPMENT STRATEGY  

In general, developing fast applications for Intel Architecture (IA) processors is not difficult. An understanding of the 
architecture and good development practices make the difference between a fast application and one that runs significantly 
slower than its full potential. Intel Architecture processors with MMXTM technology add a new dimension to code 
development. Performance increase can be significant, though the conversion techniques are straight forward. In order to 
develop MMX technology code, examine the current implementation and determine the best way to take advantage of MMX 
technology instructions. If you are starting a new implementation, design the application with MMX technology in mind from 
the start.  

4.1 Making a Plan 
Whether adapting an existing application or creating a new one, using MMX technology instructions to optimal advantage 
requires consideration of several issues. Generally, you should look for code segments that are computationally intensive, that 
are adaptable to integer implementations, and that support efficient use of the cache architecture. Several tools are provided in 
the Intel Performance Tool Set to aid in this evaluation and tuning.  

Several questions should be answered before beginning your implementation:  

• Which part of the code will benefit from MMX technology?  

• Is the current algorithm the best for MMX technology?  

• Is this code Integer or Floating-Point?  

• How should I arrange my data?  

• Is my data 8-, 16- or 32-bit?  

• Does the application need to run on processors both with and without MMX technology? Can I use CPUID to create a 
scaleable implementation?  

 
4.2 Which Part of the Code Will Benefit from MMXTM Technology? 
Step one: Determine which code to convert.  

Most applications have sections of code that are highly compute-intensive. Examples include speech compression algorithms 
and filters, video display routines, and rendering routines. These routines are generally small, repetitive loops, operating on 8- 
or 16-bit integers, and take a sizable portion of the application processing time. It is these routines that will yield the greatest 
performance increase when converted to MMXTM technology optimized libraries code. Encapsulating these loops into MMX 
technology-optimized libraries will allow greater flexibility in supporting platforms with and without MMX technology.  

A performance optimization tool such as Intel's VTune visual tuning tool may be used to isolate the compute-intensive sections 
of code. Once identified, an evaluation should be done to determine whether the current algorithm or a modified one will give 
the best performance. In some cases, it is possible to improve performance by changing the types of operations in the 
algorithm. Matching the algorithms to MMX technology instruction capabilities is key to extracting the best performance.  
 
4.3 Is the Code Floating-Point or Integer? 
Step two: Determine whether the algorithm contains floating-point or integer data.  
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If the current algorithm is implemented with integer data, then simply identify the portions of the algorithm that use the most 
microprocessor clock cycles. Once identified, re-implement these sections of code using MMX technology instructions.  

If the algorithm contains floating-point data, then determine why floating-point was used. Several reasons exist for using 
floating-point operations: performance, range and precision. If performance was the reason for implementing the algorithm in 
floating-point, then the algorithm is a candidate for conversion to MMX technology instructions to increase performance.  

If range or precision was an issue when implementing the algorithm in floating point then further investigation needs to be 
made. Can the data values be converted to integer with the required range and precision? If not, this code is best left as 
floating-point code.  

4.3.1 MIXING FLOATING-POINT AND MMXTM TECHNOLOGY CODES 
When generating MMX technology code, it is important to keep in mind that the eight MMX technology registers are aliased 
upon the floating-point registers. Switching from MMX technology instructions to floating-point instructions can take up to 
fifty clock cycles, so it is best to minimize switching between these instruction types. Do not intermix MMX technology code 
and floating-point code at the instruction level. If an application does perform frequent switches between floating-point and 
MMX technology instructions, then consider extending the period that the application stays in the MMX technology instruction 
stream or floating-point instruction stream to minimize the penalty of the switch.  

When writing an application that uses both floating-point and MMX technology instructions, use the following guidelines for 
isolating instruction execution:  

• Partition the MMX technology instruction stream and the floating-point instruction stream into separate instruction 
streams that contain instructions of one type.  

• Do not rely on register contents across transitions.  

• Leave an MMX technology code section with the floating-point tag word empty using the EMMS instruction.  

• Leave the floating-point code section with an empty stack. 

For example: 
 
FP_code: 
 .. 
 ..  /* leave the floating-point stack empty  
 */ 
MMX_code: 
 ... 
 EMMS  /* empty the MMX Technology registers */ 
FP_code1: 
 ... 
 ...  /* leave the floating-point stack empty  
 */ 

Additional information on the floating-point programming model can be found in the Pentium® Processor Family Developer's 
Manual: Volume 3, Architecture and Programming, (Order Number 241430).  

 
4.4 EMMS Guidelines 
Step three: Always call the EMMS instruction at the end of your MMX technology code.  

Since the MMX technology registers are aliased on the floating-point registers, it is very important to clear the MMX 
technology registers before issuing a floating-point instruction. Use the EMMS instruction to clear the MMX technology 
registers and set the value of the floating-point tag word (TW) to empty (that is, all ones). This instruction should be inserted at 
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the end of all MMX technology code segments to avoid an overflow exception in the floating-point stack when a floating-point 
instruction is executed.  

 
4.5 CPUID Usage for Detection of MMXTM Technology 
Step four: Determine if MMX technology is available.  

MMX technology can be included in your application in two ways: Using the first method, have the application check for 
MMX technology during installation. If MMX technology is available, the appropriate libraries can be installed. The second 
method is to check during program execution and install the proper libraries at runtime. This is effective for programs that may 
be executed over a network.  

To determine whether you are executing on a processor with MMX technology, your application should check the Intel 
Architecture feature flags. The CPUID instruction returns the feature flags in the EDX register. Based on the results, the 
program can decide which version of code is appropriate for the system.  

Existence of MMX technology support is denoted by bit 23 of the feature flags. When this bit is set to 1 the processor has 
MMX technology support. The following code segment loads the feature flags in EDX and tests the result for MMX 
technology. Additional information on CPUID usage may be found in Intel Processor Identification with CPUID Instruction, 
Application Note AP-485, (Order Number 241618).  
…    ; identify existence of CPUID instruction 
…    ;  
…    ; identify Intel Processor 
…    ; 
mov EAX, 1   ; request for feature flags 
CPUID    ; 0Fh, 0A2h   CPUID Instruction 
test EDX, 00800000h  ; is MMX technology Bit(bit 23)in feature    
jnz Found 
 
4.6 Alignment of Data 
Step five: Make sure your data is aligned.  

Many compilers allow you to specify the alignment of your variables using controls. In general this guarantees that your 
variables will be on the appropriate boundaries. However, if you discover that some of the variables are not appropriately 
aligned as specified, then align the variable using the following C algorithm. This aligns a 64-bit variable on a 64-bit boundary. 
Once aligned, every access to this variable will save three clock cycles.  
if (NULL == (new_ptr = malloc(new_value +1)* sizeof (var_struct)) 
mem_tmp = new_ptr; 
mem_tmp /= 8; 
new_tmp_ptr = (var_struct*) ((Mem_tmp+1) * 8); 

Another way to improve data alignment is to copy the data into locations that are aligned on 64-bit boundaries. When the data 
is accessed frequently this can provide a significant performance improvement.  

4.6.1 STACK ALIGNMENT 

As a matter of convention, compilers allocate anything that is not static on the stack and it may be convenient to make use of 
the 64-bit data quantities that are stored on the stack. When this is necessary, it is important to make sure the stack is aligned. 
The following code in the function prologue and epilogue will make sure the stack is aligned.  
Prologue: 
 push  ebp    ; save old frame ptr 
 mov  ebp,  esp   ; make new frame ptr 
 sub  ebp,  4   ; make room of stack ptr 
 and  ebp,  0FFFFFFFC  ; align to 64 bits 
 mov  [ebp],esp   ; save old stack ptr 
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 mov  esp, ebp   ; copy aligned ptr 
 sub  esp, FRAMESIZE   ; allocate space 
 … callee saves, etc 
epilogue: 
 … callee restores, etc 
 mov   esp, [ebp] 
 pop  ebp 
 ret 

In cases where misalignment is unavoidable for some frequently accessed data, it may be useful to copy the data to an aligned 
temporary storage location.  

 
4.7 Data Arrangement 
MMX technology uses an SIMD technique to exploit the inherent parallelism of many multimedia algorithms. To get the most 
performance out of MMX technology code, data should be formatted in memory according to the guidelines below.  

Consider a simple example of adding a 16-bit bias to all the 16-bit elements of a vector. In regular scalar code, you would load 
the bias into a register at the beginning of the loop, access the vector elements in another register, and do the addition one 
element at a time.  

Converting this routine to MMX technology code, you would expect a four times speedup since MMX technology instructions 
can process four elements of the vector at a time using the MOVQ instruction, and perform four additions at a time using the 
PADDW instruction. However, to achieve the expected speedup, you would need four contiguous copies of the bias in the 
MMX technology register when doing the addition.  

In the original scalar code, only one copy of the bias was in memory. To use MMX technology instructions, you could use 
various manipulations to get four copies of the bias in an MMX technology register. Or, you could format your memory in 
advance to hold four contiguous copies of the bias. Then, you need only load these copies using one MOVQ instruction before 
the loop, and the four times speedup is achieved. For another interesting example of this type of data arrangement see Section 
5.6.  

The new 64-bit packed data types defined by MMX technology creates more potential for misaligned data accesses. The data 
access patterns of many algorithms are inherently misaligned when using MMX technology instructions and other packed data 
types. A simple example of this is an FIR filter. An FIR filter is effectively a vector dot product in the length of the number of 
coefficient taps. If the filter operation of data element i is the vector dot product that begins at data element j (data [ j ] 
*coeff [0] + data [j+1]*coeff [1]+...+data [j+num_of_taps-1]*coeff [num_of_taps-1] ), 
then the filter operation of data element i+1 begins at data element j+1.  

Section 4.6 covers aligning 64-bit data in memory. Assuming you have a 64-bit aligned data vector and a 64-bit aligned 
coefficients vector, the filter operation on the first data element will be fully aligned. For the filter operation on the second data 
element, however, each access to the data vector will be misaligned! Duplication and padding of data structures may be used to 
avoid the problem of data accesses in algorithms which are inherently misaligned. Using MMXTM Technology Instructions to 
Compute a 16-Bit Real FIR Filter, Application Note #559, (Order Number 243044) shows an example of how to avoid the 
misalignment problem in the FIR filter.  

Note that the duplication and padding technique overcomes the misalignment problem, thus avoiding the expensive penalty for 
misaligned data access, at the price of increasing the data size. When developing your code, you should consider this tradeoff 
and use the option which gives the best performance.  

4.8 Tuning the Final Application  
The best way to tune your application once it is functioning correctly is to use a profiler that measures the application while it 
is running on a system. Intel's VTune visual tuning tool is such a tool and can help you to determine where to make changes in 
your application to improve performance. Additionally, Intel's processors provide performance counters on-chip. Section 6.1 
documents these counters and provides an explanation of how to use them. 
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CHAPTER 5  
MMX™ CODING TECHNIQUES  
 
Coding Techniques 
This section contains several simple examples that will help you to get started in coding your application. The goal is to 
provide simple, low-level operations that are frequently used. Each example uses the minimum number of instructions 
necessary to achieve best performance on Pentium(R) and P6-family processors.  

• Each example includes:  

• A short description.  

• Sample code.  

• Any necessary notes.  

These examples do not address scheduling as we assume you will incorporate the examples in longer code sequences.  
 
5.1 Unsigned Unpack 
The MMXTM technology provides several instructions that are used to pack and unpack data in the MMX technology registers. 
The unpack instructions can be used to zero-extend an unsigned number. The following example assumes the source is a 
packed-word (16-bit) data type.  
 
Input:   MM0 : Source value; 
         MM7 : 0 
A local variable can be used instead of the register MM7, if desired.  
Output:         MM0 : two zero-extended 32-bit doublewords from 2 LOW end words  
                MM1 : two zero-extended 32-bit doubleword from 2 HIGH end words 
MOVQ            MM1, MM0                ; copy source 
PUNPCKLWD       MM0, MM7                ; unpack the 2 low end words  
                                        ; into two 32-bit double word 
PUNPCKHWD       MM1, MM7                ; unpack the 2 high end words into two 
                                        ; 32-bit double word 
 
5.2 Signed Unpack 
Signed numbers should be sign-extended when unpacking the values. This is done differently than the zero-extend shown 
above. The following example assumes the source is a packed-word (16-bit) data type.  
 
Input:  MM0 : source value 
Output: MM0 : two sign-extended 32-bit doublewords from the two LOW end words  
        MM1 : two sign-extended 32-bit doublewords from the two HIGH end words 
PUNPCKHWD       MM1, MM0        ; unpack the 2 high end words of the 
                                ; source into the second and fourth  
                                ; words of the destination 
PUNPCKLWD       MM0, MM0        ; unpack the 2 low end words of the 
                                ; source into the second and fourth 
                                ; words of the destination 
PSRAD           MM0, 16         ; Sign-extend the 2 low end words of 
                                ; the source into two 32-bit signed 
                                ; doublewords 
PSRAD           MM1, 16         ; Sign-extend the 2 high end words of 
                                ; the source into two 32-bit signed 
                                ;doublewords 
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5.3 Interleaved Pack with Saturation 
The PACK instructions pack two values into the destination register in a predetermined order. Specifically, the PACKSSDW 
instruction packs two signed doublewords from the source operand and two signed doublewords from the destination operand 
into four signed words in the destination register as shown in the figure below.  

 

Figure 5-1. PACKSSDW mm, mm/mm64 Instruction Example 
The following example interleaves the two values in the destination register, as shown in the figure below.  

 

Figure 5-2. Interleaved Pack with Saturation Example 
This example uses signed doublewords as source operands and the result is interleaved signed words. The pack instructions can 
be performed with or without saturation as needed.  
 
Input:  MM0 : Signed source1 value 
        MM1 : Signed source2 value 
Output: MM0 : The first and third words contain the signed-saturated doublewords from 
MM0  
        MM0.  The second and fourth words contain the signed-saturated doublewords 
from MM1 
PACKSSDW        MM0, MM0        ; pack and sign saturate 
PACKSSDW        MM1, MM1        ; pack and sign saturate 
PUNPKLWD        MM0, MM1        ; interleave the low end 16-bit values of the 
                                ; operands 
 
The pack instructions always assume the source operands are signed numbers. The result in the destination register is always 
defined by the pack instruction that performs the operation. For example, the PACKSSDW instruction, packs each of the two 
signed 32-bit values of the two sources into four saturated 16-bit signed values in the destination register. The PACKUSWB 
instruction, on the other hand, packs each of the four signed 16-bit values of the two sources into four saturated 8-bit unsigned 
values in the destination. A complete specification of the MMX technology instruction set can be found in the Intel 
Architecture MMX TM Technology Programmers Reference Manual, (Order Number 243007).  
 
5.4 Interleaved Pack Without Saturation 
This example is similar to the last except that the resulting words are not saturated. In addition, in order to protect against 
overflow, only the low order 16-bits of each doubleword are used in this operation.  
 
Input:  MM0 : signed source value 
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        MM1 : signed source value 
Output: MM0 : The first and third words contain the low 16-bits of the doublewords in MM0 : The second and fourth words 
contain the low 16-bits of the doublewords in MM1 PSLLD MM1, 16 ; shift the 16 LSB from each of the double ; words 
values to the 16 MSB position PAND MM0, {0,ffff,0,ffff} ; mask to zero the 16 MSB of each ; doubleword value POR MM0, 
MM1 ; merge the two operands  
 
5.5 Non-Interleaved Unpack 
The unpack instructions perform an interleave merge of the data elements of the destination and source operands into the 
destination register. The following example merges the two operands into the destination registers without interleaving. For 
example, take two adjacent elements of a packed-word data type in source1; place this value in the low 32-bits of the results. 
Then take two adjacent elements of a packed-word data type in source2; place this value in the high 32-bits of the results. One 
of the destination registers will have the combination shown in Figure 5-3.  

 

Figure 5-3. Result of Non-Interleaved Unpack in MM0 
The other destination register will contain the opposite combination as in Figure 5-4.  

 

Figure 5-4. Result of Non-Interleaved Unpack in MM1 
The following example unpacks two packed-word sources in a non-interleaved way. The trick is to use the instruction which 
unpacks doublewords to a quadword, instead of using the instruction which unpacks words to doublewords.  
 
Input:  MM0 : packed-word source value 
        MM1 : packed-word source value 



MMX™ Technology Developers Guide 
March 1996 
 

36 

Output: MM0 : contains the two low end words of the original sources, non-
interleaved  
        MM2 : contains the two high end words of the original sources, non-
interleaved. 
MOVQ            MM2, MM0        ; copy source1 
PUNPCKLDQ       MM0, MM1        ; replace the two high end words of MM0 
                                ; with the two low end words of MM1 
                                ; leave the two low end words of MM0  
                                ; in place 
PUNPCKHDQ       MM2, MM1        ; move the two high end words of MM2 to the 
                                ; two low end words of MM2; place the two 
                                ; high end words of MM1 in the two high end 
                                ; words of MM2 
 
5.6 Complex Multiply by a Constant 
Complex multiplication is an operation which requires four multiplications and two additions. This is exactly how the 
PMADDWD instruction operates. In order to use this instruction you need only to format the data into four 16-bit values. The 
real and imaginary components should be 16-bits each.  

Let the input data be Dr and Di where  
Dr = real component of the data  
Di = imaginary component of the data  

Format the constant complex coefficients in memory as four 16-bit values [Cr -Ci Ci Cr]. Remember to load the values into the 
MMX technology register using a MOVQ instruction.  
Input:  MM0 : a complex number Dr, Di  
        MM1 : constant complex coefficient in the form[Cr-Ci Ci Cr]  
Output: MM0 : two 32-bit dwords containing [ Pr Pi  ] 
 
The real component of the complex product is Pr = Dr*Cr - Di*Ci, and the imaginary component of the complex product is  
 
Pi = Dr*Ci + Di*Cr  
PUNPCKLDQ MM0,MM0       ; This makes [Dr Di Dr Di] 
PMADDWD   MM0, MM1      ; and you're done, the result is                 
                        ; [(Dr*Cr-Di*Ci)(Dr*Ci+Di*Cr)] 
 
Note that the output is a packed word. If needed, a pack instruction can be used to convert the result to 16-bit (thereby 
matching the format of the input).  
 
5.7 Absolute Difference of Unsigned Numbers 
This example computes the absolute difference of two unsigned numbers. It assumes an unsigned packed-byte data type. Here, 
we make use of the subtract instruction with unsigned saturation. This instruction receives UNSIGNED operands and subtracts 
them with UNSIGNED saturation. This support exists only for packed bytes and packed words, NOT for packed dwords.  
 
Input:  MM0:  source operand 
        MM1:  source operand 
Output: MM0: The absolute difference of the unsigned operands 
MOVQ            MM2, MM0        ; make a copy of MM0 
PSUBUSB         MM0, MM1        ; compute difference one way 
PSUBUSB         MM1, MM2        ; compute difference the other way 
POR             MM0, MM1        ; OR them together 
This example will not work if the operands are signed. See the next example for signed absolute differences.  
 
5.8 Absolute Difference of Signed Numbers 
This example computes the absolute difference of two signed numbers. There is no MMX technology instruction subtract 
which receives SIGNED operands and subtracts them with UNSIGNED saturation. The technique used here is to first sort the 



MMX™ Technology Developers Guide 
March 1996 
 

37 

corresponding elements of the input operands into packed-words of the maxima values, and packed-words of the minima 
values. Then the minima values are subtracted from the maxima values to generate the required absolute difference. The key is 
a fast sorting technique which uses the fact that B= XOR(A, XOR(A,B)) and A = XOR(A,0). Thus in a packed data type, 
having some elements being XOR(A,B) and some being 0, you could XOR such an operand with A and receive in some places 
values of A and in some values of B. The following examples assume a packed-word data type, each element being a signed 
value.  
 
Input:  MM0: signed source operand 
        MM1: signed source operand 
Output: MM0: The absolute difference of the signed operands 
MOVQ            MM2, MM0        ; make a copy of source1 (A) 
PCMPGTW         MM0, MM1        ; create mask of source1>source2 (A>B) 
MOVQ            MM4, MM2        ; make another copy of A 
PXOR            MM2, MM1        ; Create the intermediate value of the swap 
                                ; operation - XOR(A,B) 
PAND            MM2, MM0        ; create a mask of  0s and XOR(A,B) 
                                ; elements. Where A&gtB there will be a value 
                                ; XOR(A,B) and where A<=B there will be 0. 
MOVQ            MM3, MM2        ; make a copy of the swap mask 
PXOR            MM4, MM2        ; This is the minima - XOR(A, swap mask) 
PXOR            MM1, MM3        ; This is the maxima - XOR(B, swap mask) 
PSUBW           MM1, MM4        ; absolute difference = maxima-minima 
 
5.9 Absolute Value 
To compute |x|, where x is signed. This example assumes signed words to be the operands.  
 
Input: MM0 : signed source operand 
Output: MM1 : ABS(MM0) 
MOVQ    MM1, MM0        ; make a copy of x 
PSRAW   MM0,15          ; replicate sign bit (use 31 if doing 
                        ; DWORDS) 
PXOR    MM0, MM1        ; take 1's complement of just the 
                        ; negative fields 
PSUBS   MM1, MM0        ; add 1 to just the negative fields 
 
Note that the absolute value of the most negative number (that is, 8000 hex for 16-bit) does not fit, but this code does 
something reasonable for this case; it gives 7fff which is off by one.  
 
5.10 Clipping Signed Numbers to an Arbitrary Signed Range [HIGH, LOW] 
This example shows how to clip a signed value to the signed range [HIGH, LOW]. Specifically, if the value is less than LOW 
or greater than HIGH then clip to LOW or HIGH, respectively. This technique uses the packed-add and packed-subtract 
instructions with unsigned saturation, which means that this technique can only be used on packed-bytes and packed-words 
data types.  

The following example uses the constants packed_max and packed_min.  

The following examples shows the operation on word values. For simplicity we use the following constants (corresponding 
constants are used in case the operation is done on byte values):  

• PACKED_MAX equals 0x7FFF7FFF7FFF7FFF  

• PACKED_MIN equals 0x8000800080008000  

• PACKED_LOW contains the value LOW in all 4 words of the packed-words datatype  

• PACKED_HIGH contains the value HIGH in all 4 words of the packed-words datatype  
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• PACKED_USMAX is all 1's  

• HIGH_US adds the HIGH value to all data elements (4 words) of PACKED_MIN  

• LOW_US adds the LOW value to all data elements (4 words) of PACKED_MIN  

The examples illustrate the operation on word values.  
 
Input: MM0 : Signed source operands 
Output: MM0 : Signed operands clipped to the unsigned range [HIGH, LOW] 
PADD    MM0, PACKED_MIN                         ; add with no    
                                                ; saturation 0x8000 
                                                ; to convert to  
                                                ; unsigned 
PADDUSW MM0, (PACKED_USMAX - HIGH_US)           ; in effect this clips 
                                                ; to HIGH 
PSUBUSW MM0, (PACKED_USMAX - HIGH_US + LOW_US)  ; 
                                                ; in effect  
                                                ; this clips to LOW 
PADDW   MM0, PACKED_LOW                         ; undo the previous two 
                                                ; offsets 
 
The code above converts values to unsigned numbers first and then clips them to an unsigned range. The last instruction 
converts the data back to signed data and places the data within the signed range. Conversion to unsigned data is required for 
correct results when the quantity (HIGH - LOW) < 0x8000.  

IF (HIGH - LOW) >= 0x8000, the algorithm can be simplified to the following:  
Input: MM0 : Signed source operands 
Output: MM0 : Signed operands clipped to the unsigned range [HIGH, LOW] 
PADDSSW MM0, (PACKED_MAX - PACKED_HIGH)                 ;in effect this 
                                                        ; clips to HIGH 
PSUBSSW MM0, (PACKED_USMAX - PACKED_HIGH + PACKED_LOW)  ;clips to LOW 
PADDW   MM0, LOW                                        ;undo the  
                                                        ;previous two  
                                                        ;offsets 
 
This algorithm saves a cycle when it is known that (HIGH - LOW) >= 0x8000. To see why the three instruction algorithm does 
not work when (HIGH - LOW) < 0x8000, realize that 0xffff minus any number less than 0x8000 will yield a number greater in 
magnitude than 0x8000 which is a negative number. When  

PSUBSSW MM0, (0xFFFF - HIGH + LOW)  

(the second instruction in the three-step algorithm) is executed, a negative number will be subtracted causing the values in 
MM0 to be increased instead of decreased, as should be the case, and causing an incorrect answer to be generated.  
 
5.11 Clipping Unsigned Numbers to an Arbitrary Unsigned Range [HIGH, LOW] 
This example clips an unsigned value to the unsigned range [HIGH, LOW]. If the value is less than LOW or greater than 
HIGH, then clip to LOW or HIGH, respectively. This technique uses the packed-add and packed-subtract instructions with 
unsigned saturation, thus this technique can only be used on packed-bytes and packed-words data types.  

The example illustrates the operation on word values.  
Input: MM0 : Unsigned source operands 
Output: MM0 : Unsigned operands clipped to the unsigned range [HIGH, LOW] 
PADDUSW MM0, 0xFFFF - HIGH              ; in effect this clips to HIGH 
PSUBUSW MM0, (0xFFFF - HIGH + LOW)      ; in effect this clips to LOW 
PADDW   MM0, LOW                        ; undo the previous two offsets 
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5.12 Generating Constants 
The MMX technology instruction set does not have an instruction that will load immediate constants to MMX technology 
registers. The following code segments will generate frequently used constants in an MMX technology register. Of course, you 
can also put constants as local variables in memory, but when doing so be sure to duplicate the values in memory and load the 
values with a MOVQ instruction.  

Generate a zero register in MM0:  
PXOR            MM0, MM0 
 
Generate all 1's in register MM1, which is -1 in each of the packed data type fields:  
 
PCMPEQ          MM1, MM1 
 
Generate the constant 1 in every packed-byte [or packed-word] (or packed-dword) field:  
 
PXOR            MM0, MM0 
PCMPEQ          MM1, MM1 
PSUBB           MM0, MM1        [PSUBW  MM0, MM1]       (PSUBD  MM0, MM1) 
 
Generate the signed constant 2n -1 in every packed-word (or packed-dword) field:  
 
PCMPEQ          MM1, MM1 
PSRLW           MM1, 16-n                               (PSRLD MM1, 32-n) 
 
Generate the signed constant -2n in every packed-word (or packed-dword) field:  
 
PCMPEQ          MM1, MM1 
PSLLW           MM1, n                                  (PSLLD  MM1, n) 
 
Because the MMX technology instruction set does not support shift instructions for bytes, 2n-1 and -2n are relevant only for 
packed-words and packed-dwords..  
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CHAPTER 6 
MMX™ TECHNOLOGY PERFORMANCE MONITORING EXTENSIONS  

The most effective way to improve the performance of your code is to find the performance bottlenecks. Intel Architecture 
processors include a counter on the processor that will allow you to gather information about the performance of your 
application. This counter keeps track of events that occur while your code is executing. You can read the counter during 
execution and determine if your code has stalls. This may be accomplished by using Intel's VTune profiling tool or by using 
instructions within your code.  

The section describes the performance monitoring features for MMX code on Pentium® and P6-family processors with MMX 
technology.  

The RDPMC instruction is described in Section 6.3.  
 
6.1 Superscalar (Pentium® Family) Performance Monitoring Events  
All Pentium processors feature performance counters and several new events have been added to support MMX technology. 
All new events are assigned to one of the two event counters (CTR0, CTR1), with the exception of "twin events" (such as " D1 
starvation" and "FIFO is empty") which are assigned to different counters to allow their concurrent measurement. The events 
must be assigned to their specified counter. Table 6-1 lists the performance monitoring events. New events are listed in bold.  

Table 6-1. Performance Monitoring Events 

 

Serial 

 

Encoding 

 

Counter 0 

 

Counter 1 

 

Performance Monitoring Event 
Occurrence or 

Duration 

0 000000  Yes Yes Data Read  OCCURRENCE 
1 000001  Yes Yes Data Write  OCCURRENCE 
2 000010  Yes Yes Data TLB Miss  OCCURRENCE 
3 000011  Yes Yes Data Read Miss  OCCURRENCE 
4 000100  Yes Yes Data Write Miss  OCCURRENCE 
5 000101 Yes Yes Write (hit) to M or E state lines  OCCURRENCE 
6 000110  Yes Yes Data Cache Lines Written Back  OCCURRENCE 
7 000111  Yes Yes External Data Cache Snoops  OCCURRENCE 
8 001000  Yes Yes External Data Cache Snoop Hits  OCCURRENCE 
9 001001  Yes Yes Memory Accesses in Both Pipes  OCCURRENCE 
10 001010  Yes Yes Bank Conflicts OCCURRENCE 

11 001011 Yes Yes Misaligned Data Memory or I/O 
References  OCCURRENCE 

12 001100  Yes Yes Code Read OCCURRENCE 
13 001101 Yes Yes Code TLB Miss OCCURRENCE 
14 001110 Yes Yes Code Cache Miss OCCURRENCE 
15 001111 Yes Yes Any Segment Register Loaded  OCCURRENCE 
16 010000  Yes Yes Reserved  
17 010001  Yes Yes Reserved  
18 010010  Yes Yes Branches OCCURRENCE 
19 010011 Yes Yes BTB Predictions OCCURRENCE 
20 010100  Yes Yes Taken Branch or BTB hit.  OCCURRENCE 
21 010101  Yes Yes Pipeline Flushes OCCURRENCE 
22 010110  Yes Yes Instructions Executed OCCURRENCE 
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23 010111  Yes Yes Instructions Executed in the v-pipe e.g. 
parallelism/pairing  OCCURRENCE 

24 011000  Yes Yes Clocks while a bus cycle is in progress 
(bus utilization)  DURATION 

25 011001 Yes Yes Number of clocks stalled due to full 
write buffers  DURATION 

26 011010  Yes Yes Pipeline stalled waiting for data 
memory read  DURATION 

27 011011  Yes Yes Stall on write to an E or M state line  DURATION 
29 011101  Yes Yes I/O Read or Write Cycle  OCCURRENCE 

 
 

Table 6-1. Performance Monitoring Events (Cont'd) 
 

Serial 

 

Encoding 

 

Counter 0 

 

Counter 1 

 

Performance Monitoring Event 
Occurrence or 

Duration 

30 011110  Yes Yes Non-cacheable memory reads  OCCURRENCE 

31 011111  Yes Yes Pipeline stalled because of an address 
generation interlock  DURATION 

32 100000  Yes Yes Reserved  
33 100001  Yes Yes Reserved  
34 100010  Yes Yes FLOPs OCCURRENCE 
35 100011  Yes Yes Breakpoint match on DR0 Register  OCCURRENCE 
36 100100  Yes Yes Breakpoint match on DR1 Register  OCCURRENCE 
37 100101  Yes Yes Breakpoint match on DR2 Register  OCCURRENCE 
38 100110  Yes Yes Breakpoint match on DR3 Register  OCCURRENCE 
39 100111  Yes Yes Hardware Interrupts  OCCURRENCE 
40 101000 Yes Yes Data Read or Data Write  OCCURRENCE 
41 101001  Yes Yes Data Read Miss or Data Write Miss  OCCURRENCE 

43 101011 Yes No MMXTM instructions executed in u-
pipe  OCCURRENCE 

43 101011 No Yes MMX instructions executed in v-pipe  OCCURRENCE 
45 101101 Yes No EMMS instructions executed  OCCURRENCE 

45 101101 No Yes Transition between MMX instructions 
and FP instructions  OCCURRENCE 

46 101110 No Yes Writes to Non-Cacheable Memory  OCCURRENCE 
47 101111 Yes No Saturating MMX instructions executed  OCCURRENCE 
47 101111 No Yes Saturations performed  OCCURRENCE 
48 110000 Yes No Number of Cycles Not in HLT State  DURATION 
49 110001 Yes No MMX instruction data reads  OCCURRENCE 

 
 

Table 6-1. Performance Monitoring Events (Cont'd)  
 

Serial 

 

Encoding 

 

Counter 0 

 

Counter 1 

 

Performance Monitoring Event 
Occurrence or 

Duration 

50 110010 Yes No Floating Point Stalls  DURATION 
50 110010 No Yes Taken Branches  OCCURRENCE 

51 110011 No Yes D1 Starvation and one instruction in 
FIFO  OCCURRENCE 

52 110100 Yes No MMX instruction data writes  OCCURRENCE 
52 110100 No Yes MMX instruction data write misses  OCCURRENCE 



MMX™ Technology Developers Guide 
March 1996 
 

42 

53 110101 Yes No Pipeline flushes due to wrong branch 
prediction  OCCURRENCE 

53 110101 No Yes Pipeline flushes due to wrong branch 
predictions resolved in WB-stage  OCCURRENCE 

54 110110 Yes No Misaligned data memory reference on 
MMX instruction  OCCURRENCE 

54 110110 No Yes Pipeline stalled waiting for MMX 
instruction data memory read  DURATION 

55 110111 Yes No Returns Predicted Incorrectly  OCCURRENCE 

55 110111 No Yes Returns Predicted (Correctly and 
Incorrectly)  OCCURRENCE 

56 111000 Yes No MMX instruction multiply unit 
interlock  DURATION 

56 111000 No Yes MOVD/MOVQ store stall due to 
previous operation  DURATION 

57 111001 Yes No Returns  OCCURRENCE 
57 111001 No Yes RSB Overflows  OCCURRENCE 
58 111010 Yes No BTB false entries  OCCURRENCE 

58 111010 No Yes BTB miss prediction on a Not-Taken 
Branch  OCCURRENCE 

59 111011 Yes No 
Number of clocks stalled due to full 
write buffers while executing MMX 
instructions  

DURATION 

59 111011 No Yes Stall on MMX instruction write to E or 
M line  DURATION 

6.1.1 DESCRIPTION OF MMXTM INSTRUCTION EVENTS  
The event codes/counter are provided in parenthesis.  

• MMX instructions executed in U-pipe (101011/0):  
-- Total number of MMX instructions executed in U-pipe.  

• MMX instructions executed in V-pipe (101011/1):  
-- Total number of MMX instructions executed in V-pipe.  

• EMMS instructions executed (101101/0):  
-- Counts number of EMMS instructions executed.  

• Transition between MMX instructions and FP instructions (101101/1):  
-- Counts first floating-point instruction following any MMX instruction or first MMX instruction following a 
floating-point instruction. May be used to estimate the penalty in transitions between FP state and MMX state. An 
even count indicates the processor is in MMX state. An odd count indicates it is in FP state.  

• Writes to non-cacheable memory (101110/1):  
-- Counts the number of write accesses to non-cacheable memory. It includes write cycles caused by TLB misses and 
I/O write cycles. Cycles restarted due to BOFF# are not re-counted.  

• Saturating MMX instructions executed (101111/0):  
-- Counts saturating MMX instructions executed, independently of whether or not they actually saturated. Saturating 
MMX instructions may perform add, subtract, or pack operations .  

• Saturations performed (101111/1):  
-- Counts number of MMX instructions that used saturating arithmetic where at least one of the results actually 
saturated (that is, if an MMX instruction operating on four dwords saturated in three out of the four results, the 
counter will be incremented by only one).  
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• Number of cycles not in HALT (HLT) state (110000/0):  
-- This event counts the number of cycles the processor is not idle due to HALT (HLT) instruction. This event will 
enable the user to calculate "net CPI". Note that during the time that the processor is executing the HLT instruction, 
the Time Stamp Counter (TSC) is not disabled. Since this event is controlled by the Counter Controls CC0, CC1 it can 
be used to calculate the CPI at CPL=3 which the TSC cannot provide.  

• MMX instruction data reads (110001/0):  
-- Analogous to "Data reads", counting only MMX instruction accesses.  

• MMX instruction data read misses (110001/1):  
-- Analogous to "Data read misses", counting only MMX instruction accesses.  

• Floating-Point stalls (110010/0):  
-- This event counts the number of clocks while pipe is stalled due to a floating-point freeze.  

• Number of Taken Branches (110010/1):  
-- This event counts the number of taken branches.  

• D1 starvation and FIFO is empty (110011/0), D1 starvation and only one instruction in FIFO (110011/1):  
-- The D1 stage can issue 0, 1, or 2 instructions per clock if instructions are available in the FIFO buffer. The first 
event counts how many times D1 cannot issue ANY instructions because the FIFO buffer is empty. The second event 
counts how many times the D1-stage issues just a single instruction because the FIFO buffer had just one instruction 
ready. Combined with two other events, Instruction Executed (010110) and Instruction Executed in the V-pipe 
(010110), the second event enables the user to calculate the number of times pairing rules prevented issue of two 
instructions.  

• MMX instruction data writes (110001/1):  
-- Analogous to "Data writes", counting only MMX instruction accesses.  

• MMX instruction data write misses (110100/1):  
-- Analogous to "Data write misses", counting only MMX instruction accesses.  

• Pipeline flushes due to wrong branch prediction (110101/0), Pipeline flushes due to wrong branch prediction resolved 
in WB-stage(110101/1):  
-- Counts any pipeline flush due to a branch which the pipeline did not follow correctly. It includes cases where a 
branch was not in the BTB, cases where a branch was in the BTB but was mispredicted, and cases where a branch was 
correctly predicted but to the wrong address. Branches are resolved in either the Execute stage (E-stage) or the 
Writeback stage (WB-stage). In the latter case, the misprediction penalty is larger by one clock. The first event listed 
above counts the number of incorrectly predicted branches resolved in either the E-stage or the WB-stage. The second 
event counts the number of incorrectly predicted branches resolved in the WB-stage. The difference between these 
two counts is the number of E-stage resolved branches.  

• Misaligned data memory reference on MMX instruction (110110/0):  
-- Analogous to "Misaligned data memory reference", counting only MMX instruction accesses.  

• Pipeline stalled waiting for data memory read ( 110110/1):  
-- Analogous to "Pipeline stalled waiting for data memory read", counting only MMX technology accesses.  

• Returns predicted incorrectly or not predicted at all (110111/0):  
-- These are the actual number of Returns that were either incorrectly predicted or were not predicted at all. It is the 
difference between the total number of executed returns and the number of returns that were correctly predicted. Only 
RET instructions are counted (that is, IRET instructions are not counted).  

• Returns predicted (correctly and incorrectly) (110111/1):  
-- This is the actual number of Returns for which a prediction was made. Only RET instructions are counted (that is, 
IRET instructions are not counted).  
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• MMX technology multiply unit interlock (111000/0):  
-- This event counts the number of clocks the pipe is stalled because the destination of a previous MMX technology 
multiply instruction is not yet ready. The counter will not be incremented if there is another cause for a stall. For each 
occurrence of a multiply interlock, this event may be counted twice (if the stalled instruction comes on the next clock 
after the multiply) or only once (if the stalled instruction comes two clocks after the multiply).  

• MOVD/MOVQ store stall due to previous operation (111000/1):  
-- Number of clocks a MOVD/MOVQ store is stalled in D2 stage due to a previous MMX technology operation with a 
destination to be used in the store instruction.  

• Returns (111001/0):  
-- This is the actual number of Returns executed. Only RET instructions are counted (that is, IRET instructions are not 
counted). Any exception taken on a RET instruction also updates this counter.  

• RSB overflows (111001/1):  
-- This event counts the number of times the Return Stack Buffer (RSB) cannot accommodate a call address.  

• BTB false entries (111010/0):  
-- This event counts the number of false entries in the Branch Target Buffer. False entries are causes for misprediction 
other than a wrong prediction.  

• BTB miss-prediction on a Not-Taken Branch (111010/1):  
-- This event counts the number of times the BTB predicted a Not-Taken branch as Taken.  

• Number of clocks stalled due to full write buffers while executing MMX instructions (111011/0):  
-- Analogous to "Number of clocks stalled due to full write buffers", counting only MMX instruction accesses.  

• Stall on MMX instruction write to an E or M state line (111011/1):  
-- Analogous to "Stall on write to an E or M state line", counting only MMX instruction accesses. 

 
6.2 Dynamic Execution (P6-Family) Performance Monitoring Events  
This section describes the counters on P6-family processors. Table 4-2 lists the events that can be counted with the 
performance-monitoring counters and read with the RDPMC instruction.  

In the table, the:  

• Unit column gives the microarchitecture or bus unit that produces the event.  

• Event number column gives the hexadecimal number identifying the event.  

• Mnemonic event name column gives the name of the event.  

• Unit mask column gives the unit mask required (if any).  

• Description column describes the event.  

• Comments column gives additional information about the event.  

These performance monitoring events are intended to be used as guides for performance tuning. The counter values reported 
are not guaranteed to be absolutely accurate and should be used as a relative guide for tuning. Known discrepancies are 
documented where applicable. All performance events are model-specific to P6-family processors and are not architecturally 
guaranteed in future versions of the processor. All performance event encodings not listed in the table are reserved and their 
use will result in undefined counter results.  

Further details will be made available in a later version of this document.  
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See the end of the table for notes related to certain entries in the table.  
Table 6-2. Performance Monitoring Counters 

Unit Event 
Num. Mnemonic Event Name Unit 

Mask Description Comments 

Data Cache 
Unit (DCU) 43H DATA_MEM_ REFS 00H 

All memory references, both 
cacheable and non- 
cacheable  

 

 45H DCU_LINES_IN 00H Total lines allocated in the 
DCU.   

 46H DCU_M_LINES_IN 00H Number of M state lines 
allocated in the DCU.   

 47H DCU_M_LINES_  
OUT  00H 

Number of M state lines 
evicted from the DCU. This 
includes evictions via snoop 
HITM, intervention or 
replacement.  

 

 48H DCU_MISS_  
OUTSTANDING  00H 

Weighted number of cycles 
while a DCU miss is 
outstanding.  

An access that also misses 
the L2 is short-changed by 2 
cycles. (i.e. if counts N 
cycles, should be N+2 
cycles.)  
Subsequent loads to the 
same cache line will not 
result in any additional 
counts. 
Count value not precise, but 
still useful.  

Instruction 
Fetch Unit 
(IFU)  

80H IFU_IFETCH  00H 
Number of instruction 
fetches, both cacheable and 
non-cacheable.  

 

 81H IFU_IFETCH_MISS 00H Number of instruction fetch 
misses.   

 85H ITLB_MISS 00H Number of ITLB misses.   

 86H IFU_MEM_STALL 00H 

Number of cycles that the 
instruction fetch pipe stage 
is stalled, including cache 
misses, ITLB misses, ITLB 
faults, and victim cache 
evictions.  

 

 87H ILD_STALL 00H 
Number of cycles that the 
instruction length decoder is 
stalled.  

 

Table 6-2. Performance Monitoring Counters (Cont'd) 
 

Unit 
Event 
Num. Mnemonic Event Name Unit 

Mask Description Comments 

 29H L2_LD MESI 
0FH Number of L2 data loads.   

 2AH L2_ST MESI 
0FH Number of L2 data stores.   

 24H L2_LINES_IN 00H Number of lines allocated in the 
L2.   

 26H L2_LINES_OUT 00H Number of lines removed from 
the L2 for any reason.   

 25H L2_M_LINES_INM 00H Number of modified lines 
allocated in the L2.   

 27H L2_M_LINES_OUTM 00H 
Number of modified lines 
removed from the L2 for any 
reason.  
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 2EH L2_RQSTS MESI 
0FH Number of L2 requests.   

 21H L2_ADS 00H Number of L2 address strobes.   

 22H L2_DBUS_BUSY 00H Number of cycles during which 
the data bus was busy.   

 23H L2_DBUS_BUSY_RD 00H 
Number of cycles during which 
the data bus was busy 
transferring data from L2 to the 
processor.  

 

External Bus 
Logic (EBL)2  62H BUS_DRDY_CLOCKS  

00H 
(Self) 
20H 

(Any) 

Number of clocks during which 
DRDY is asserted.  

Unit Mask = 00H 
counts bus clocks 
when the processor is 
driving DRDY.  
 
Unit Mask = 20H 
counts in processor 
clocks when any agent 
is driving DRDY.  

 63H BUS_LOCK_CLOCKS 
00H 

(Self) 
20H 

(Any) 

Number of clocks during which 
LOCK is asserted  

Always counts in 
processor clocks  

 
 

Table 6-2. Performance Monitoring Counters (Cont'd) 
 

Unit 
Event Num. Mnemonic Event Name Unit Mask Description Comments 

 66H BUS_TRAN_RFO 00H (Self)  
20H (Any) 

Number of read for ownership 
transactions.   

 68H BUS_TRAN_IFETCH 00H (Self)  
20H (Any) 

Number of instruction fetch 
transactions.   

 69H BUS_TRAN_INVAL 00H (Self)  
20H (Any) 

Number of invalidate 
transactions.   

 6AH BUS_TRAN_PWR 00H (Self)  
20H (Any) 

Number of partial write 
transactions.   

 6BH BUS_TRANS_P 00H (Self)  
20H (Any) Number of partial transactions.   

 6CH BUS_TRANS_IO 00H (Self)  
20H (Any) Number of I/O transactions.   

 6DH BUS_TRAN_DEF 00H (Self)  
20H (Any) 

Number of deferred 
transactions.   

 6EH BUS_TRAN_BURST 00H (Self)  
20H (Any) Number of burst transactions.   

 70H BUS_TRAN_ANY 00H (Self)  
20H (Any) Number of all transactions.   

 6FH BUS_TRAN_MEM 00H (Self)  
20H (Any) Number of memory transactions   

 
 

Table 6-2. Performance Monitoring Counters (Cont'd)  
 

Unit 
Event Num. Mnemonic Event Name Unit Mask Description Comments 

 61H BUS_BNR_DRV 00H (Self) 
Number of bus clock cycles 
during which this processor is 
driving the BNR pin.  

 

 7AH BUS_HIT_DRV 00H (Self) 
Number of bus clock cycles 
during which this processor is 
driving the HIT pin.  

Includes cycles due to 
snoop stalls.  
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 7EH BUS_SNOOP_STALL 00H (Self) Number of clock cycles during 
which the bus is snoop stalled.   

Floating Point Unit C1H FLOPS  00H Number of computational 
floating-point operations retired.  Counter 0 only 

 10H FP_COMP_OPS_EXE 00H 
Number of computational 
floating-point operations 
executed.  

Counter 0 only. 

 11H FP_ASSIST 00H 
Number of floating-point 
exception cases handled by 
microcode.  

Counter 1 only. 

 12H MUL 00H Number of multiplies. Counter 1 only. 

 13H DIV 00H Number of divides. Counter 1 only. 

 14H CYCLES_DIV_BUSY 00H Number of cycles during which 
the divider is busy.  Counter 0 only. 

Memory Ordering 03H LD_BLOCKS 00H Number of store buffer blocks   

 04H SB_DRAINS 00H Number of store buffer drain 
cycles.   

 05H MISALIGN_MEM_REF 00H Number of misaligned data 
memory references.   

Instruction 
Decoding and 
Retirement  

C0H INST_RETIRED OOH Number of instructions retired.   

 C2H UOPS_RETIRED 00H Number of micro-ops retired.   

 D0H INST_DECODER 00H Number of instructions 
decoded.   

Interrupts C8H HW_INT_RX 00H Number of hardware interrupts 
received.   

 
 

Table 6-2. Performance Monitoring Counters (Cont'd)  
 

Unit 
Event Num. Mnemonic Event Name Unit Mask Description Comments 

 C6H CYCLES_INT_MASKED 00H Number of processor cycles for 
which interrupts are disabled.   

Branches C4H BR_INST_RETIRED 00H Number of branch instructions 
retired.   

 C5H BR_MISS_PRED_  
RETIRED  00H   
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APPENDIX A  
MMXTM INSTRUCTION SET  

The table below contains a summary of the MMX instruction set. The instruction mnemonics below are the base set of 
mnemonics; most instructions have multiple variations (e.g., packed-byte, -word, and -dword variations). Complete 
information on the MMX instructions may be found in the Intel Architecture MMX TM Technology Programmer’s Reference 
Manual (Order Number 243007).  

Table A-1. Intel Architecture MMXTM Instruction Set 
Packed Arithmetic Wrap Around Signed Sat Unsigned Sat 
Addition PADD PADDS PADDUS 
Subtraction PSUB PSUBS PSUBUS 
Multiplication PMULL/H   
Multiply & add PMADD   
Shift right Arithmetic PSRA   
Compare PCMPcc   
Conversions Regular Signed Sat Unsigned Sat 
Pack  PACKSS PACKUS 
Unpack PUNPCKL/H   
Logical Operations Packed Full 64-bit  
And  PAND  
And not  PANDN  
Or  POR  
Exclusive or  PXOR  
Shift left PSLL PSLL  
Shift right PSRL PSRL  
Transfers and Memory Operations 32-bit 64-bit  
Register-register move MOVD MOVQ  
Load from memory MOVD MOVQ  
Store to memory MOVD MOVQ  
Miscellaneous 
Empty multimedia state EMMS   
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