
Page 1 of 7

Copyright © 1996 by Dan Saks

C++ Theory and Practice

Mixing const with Type Names

The C/C++ Users Journal

December, 1996

Copyright © 1996 by Dan Saks

Last month, I attempted to clarify what I believe are some common misconceptions about

the meaning of the const qualifier in C++ and C (see “C++ Theory and Practice: const

as a Promise”, CUJ, November, 1996). This month I have some more thoughts about

const, particularly regarding the way it interacts with type names in declarations.

Over the past few months, I’ve received some feedback about my past articles on C++

declarations (see “The C++ Column That Needs a Name: Understanding C++

Declarations”, CUJ, December 1995 through “C++ Theory and Practice: Declarators,

Finale”, CUJ, October, 1996). Most of it was positive, thank you. However, one recent

letter suggested that I did my readers a disservice by suggesting that parsing C++

declarations is easier than most people realize. The author suggested that the better way

to cope with complex declarations is to compose them from simpler typedefs.

I agree that typedefs are a good tool for simplifying declarations, and you should use

them. What I want to show this month is that even when you use typedefs, you still can’t

get away with ignoring the underlying structure of C++ declarations. This is particularly

true when you combine typedef names with cv-qualifiers (const and volatile) in

declarations.

typedef vs. #define

Beginning C and C++ programmers often confuse the behavior of typedef and

#define. In many situations, using a typedef name appears to have the same effect as

using a parameterless macro name. For example, you can define a symbolic type such as

handle as a macro:

#define handle int // a macro

or as a typedef name:

typedef int handle; // a typedef name

Either way, when you use handle in a declaration such as

handle open(const char *);

it appears that the compiler substitutes int for handle. It’s hard to see how the macro

differs from the typedef name.

Here’s the classic example that exposes the difference. Consider the meaning of

Page 2 of 7

Copyright © 1996 by Dan Saks

#define string char * // a macro

as opposed to

typedef char *string; // a typedef name

when used in the declaration

string s, t;

When string is a macro, the preprocessor transforms the declarations for s and t into

char *s, t;

which declares s as “pointer to char” and t as just “char”. Whoops. That’s probably

not the intended result. When string is a typedef name, the compiler applies the entire

type “pointer to char” to both s and t during the semantic analysis of the declaration.

That probably is the intended result.

So typedef names do indeed come in handy in simplifying complex declarations, and they

do eliminate many of the surprises you can get with macros. But typedef names have

their own little surprises, particularly in how they combine with the cv-qualifiers const

and volatile.

For example, given

typedef char *string;

the declaration

const string s;

declares s as a “const pointer to char”, not as a “pointer to const char”. In other

words, the declaration for s is equivalent to

char *const s;

not

const char *s;

Here’s how it happens. In the declaration

const string s;

const and string are decl-specifiers. As I explained some months ago, the order of

the decl-specifiers in a declaration doesn’t matter, at least not as far as a compiler is

Page 3 of 7

Copyright © 1996 by Dan Saks

concerned. (See “The C++ Column That Needs a Name: Understanding C++

Declarations, CUJ, December 1995.) Thus,

const string s;

is equivalent to

string const s;

It’s s that is const, and s is a string, which (in this example) is first and foremost a

pointer. Therefore it’s the pointer that’s const, not what it points to.

By the way, this problem is not limited to just the C part of C++. It rears its head again in

the context of template type parameters. For example, consider the template definition

template <class T>
class X
 {
 ...
 const T m;
 ...
 };

If you instantiate the template using X<char *>, then member m in that instantiation

behaves as if declared as

char *const m;

rather than

const char *m;

Let’s Talk Style

This raises an interesting style issue. Bobby Schmidt and I have been banging this one

back and forth for a while. Bobby came to a conclusion a while ago, but I’m still

waffling about what to do.

Some months ago I suggested to Bobby that, since people tend to want to substitute

typedef names into declarations as if they were macros, maybe we should start to

encourage people to place const as the rightmost specifier when it appears in a decl-

specifier sequence. That is, although most people are accustomed to reading and writing

const string s; // (1)

maybe we should write it as

string const s; // (2)

Page 4 of 7

Copyright © 1996 by Dan Saks

and urge others to do the same.

The advantage of (2) is that, if you mentally substitute char * for string (as if it were

a macro), then it becomes

char *const s;

which is the correct interpretation. Substituting char * for string in (1) becomes

const char *s;

which is incorrect. (“Incorrect” in the sense that your perception would be at odds with

the compiler’s, in which case, you lose.)

Well, being the persuasive fellow that I am, Bobby bought the argument right away. You

may have noticed that, for some time now, he has been writing declarations such as

char const *s

and

int const N = 10;

rather than

const char *s

and

const int N = 10;

I, on the other hand, have not been able to persuade myself to follow suit.

In addition to making it easier to accurately substitute typedef names into declarations,

placing the const on the right seems to have another nice property — it lets you read

entire declarations, not just pointer operators, from right to left. For example,

T *const p;

declares p as a “const pointer to T”, which mentions const, the pointer operator(*) and

T as they appear from right to left in the declaration. Similarly,

T const *p;

declares p as a “pointer to const T”, which again mentions the *, const and T as they

appear from right to left in the declaration.

Page 5 of 7

Copyright © 1996 by Dan Saks

In contrast, you can’t read the more common style

const T *p;

strictly from right to left or from left to right. I don’t think I’ve ever heard anyone say p

is a “pointer to T const”. I think the only way you can read this strictly from right to

left is as p is a “pointer to a T that’s const”. But I don’t think anyone says that either.

Just about everyone reads it as p is a “pointer to const T”.

If you buy this argument about reading from right to left, then maybe it follows that you

should write the entire sequence of decl-specifiers in reverse order. For example, you

should declare what most people call an “unsigned long int” variable by writing

int long unsigned uli;

Yes, the order doesn’t matter to a compiler, but I doubt many people would be willing to

start doing this just to be “consistent”.

Bobby said he doesn’t find the ability to read declarations strictly from right to left to be

a very compelling reason for the const on the right, and that’s cool, because I don’t

either. He started placing the const on the right because he likes the way substituting

the type name as if it were a macro makes the type come out right (as in the previous

example using string as an alias for char *). He’s seen programmers make mistakes

with const and typedef, and this style helps avoid many of those mistakes.

I’ve been reluctant to start putting the const on the right because I’m not sure I want to

encourage people to think of typedef names as macros. A macro is a sequence of source

text; a typedef name is a symbol representing a bundle of compile-time type attributes.

The compiler processes them differently, and I’m not sure that programmers should ever

think of typedef names as macros, particularly because it’s easy to misinterpret the

typedef-as-macro conceptual model. But maybe it all depends on how you present the

model.

For example, consider

typedef char *(X::*pmf)();

when used in

pmf const f;

If you think the typedef-as-macro model suggests that you obtain the type of f by just

appending const to the end of the typedef, you will be disappointed in the results. This

yields

char *(X::*)() const;

Page 6 of 7

Copyright © 1996 by Dan Saks

which has type “pointer to member of X with type const member function with no

parameters returning pointer to char”. And that’s wrong.

The correct interpretation comes from substituting const f together in place of the

typedef name in the original typedef declaration, and then dropping the keyword

typedef. This yields

char *(X::*const f)();

which means f has type “const pointer to member of X with type function with no

parameters returning pointer to char”.

I really do believe the key insight in understanding C++ (and C) declarations is in

understanding the separate sub-structures of decl-specifier sequences and declarators.

You have no choice but to read declarators inside-out according to the precedence rules.

The order of the decl-specifiers does not matter to the compiler. But, since C and C++

are biased toward the English language, which reads words from left to right, most

programmers put the decl-specifiers in what they believe is the natural order from left to

right.

What’s natural? Probably what you first saw others do. And you almost always see

other people put const to the left of the type name.

But, cv-qualifiers (const and volatile) are unique among the decl-specifiers in that

they can appear in a declarator as well. They are the only decl-specifiers that you

substitute along with the type name when applying the typedef-as-macro conceptual

model. For example, when you use

typedef char *string;

in

extern const string s;

you take const s and substitute them together in place of string in the typedef

declaration. Drop the typedef and that leaves you with

char *const s;

Now substitute this back in place of const string s in the original declaration for s,

and you get

extern char *const s;

which is the correct interpretation of the original declaration for s, above.

The advantage of placing the const as the rightmost decl-specifier, as in

Page 7 of 7

Copyright © 1996 by Dan Saks

extern string const s;

is that it lets you think of string as a macro, const s as the entire macro parameter,

and extern as merely the surrounding context of the “macro call”. And maybe that’s a

good conceptual model.

I must confess, I really am thinking out loud here. I have rewritten parts of this article

several times because I’ve actually changed my perception of the problem as I’ve been

writing. (Writing is very good at clarifying things that way.) I started out thinking that I

was going to suggest continuing to place const on the left, but now I find myself leaning

toward putting it on the right (as Bobby does).

Well, maybe I just talked (or rather, wrote) myself into it after all.

