On Preparing Your Programming Report

In general, a problem-solving procedure involving programming usually takes a top-down strategy consisting of four steps: 

i) understanding and setting up the problem requirements; 

ii) understanding the challenging issues and figuring out their theoretical solutions;

iii) designing the whole system and implementing those theoretical solutions;
iv) debugging and testing all sub-systems as well as the whole system.

Similarly, you can organize your report and tell your story easily by following the same steps:

i) your problem:

a. show clearly your understanding as well as refinement of the abstract requirement (i.e. the description given in the assignment); 

b. state the assumptions you made about your problem (no matter how implicitly in your mind), such as what you do and what you do not do (e.g. network is reliable therefore fault-tolerance is not considered an issue in assignment 1);

This part is to set up an objective of problem solving. Making this part clear will make it easier for you to continue working on your solutions, and also for markers to check your solutions.

Note that your refinements might be different from others, depending on how far you can imagine with the abstract requirement. Consequently your solutions and implementation will be different as well.
ii) your solutions:

a. give your understanding about the issues that you consider as critical or challenging (i.e. which, without being resolved correctly and properly, will cause failure of your whole system);

b. show how you resolve them (theoretically as well as pragmatically). For example, you might give a description on how a solution or algorithm works for your problem in general, and then discuss how you apply or adapt it into your own special problem. If you like, you might also want to discuss about alternative solutions and why you prefer that one instead of others;
This part is to theoretically resolve your problem. Correctness of implementation is only guaranteed once all critical problems are clearly understood and addressed. Solutions you got in this step will become correctness requirements for your implementation later on.
iii) your implementation:

a. illustrate your system design by using whatever appropriate diagrams or figures, WITH proper descriptions;

b. highlight the important technical points you have addressed/practiced, especially those you have used to implement the theoretical solutions for your challenging issues;

c. pin-point exactly the places in your source code where you have coded your problem-solving techniques as well as important technical points;
This part is the connection between your solution and your codes. Your description will be helpful to understand your design, as well as how your critical solution really works.
Note: putting a class diagram without any description makes no sense at all. Try to avoid this!

iv) your testing:

a. design a set of test cases towards verifying the correctness of your implementation, in particular for those cases where critical problems might arise. Describe what you want to test, how you design the test case, and what is expected to be observed;
b. demonstrate that your solution works (via snapshots captured under corresponding test cases, whether they are expected, and explain why if not).
This part is to verify correctness of your implementation by the execution results of your application. Of course you are not supposed to traverse all possible executions. That’s why a careful design of test cases is so important in order to save your time and efforts. To confidently claim that your application really works in certain situations, you have to make such situation occur and let the corresponding snapshots tell!
Note: a distributed system is different from a sequential program. Executions might be different from one another due to non-determinism of such systems. An error might appear in one execution but disappear forever thereafter. Think carefully before you start debugging or testing.

In short, the above is just suggestions. It is not necessary to follow and to address every point of those. No matter what you eventually put in your report, the principle to earn readability and good mark is, MAKE IT SIMPLE AND CLEAR.

