Universal Serial Bus (USB)

Device Class Definition
for Human Interface
Devices (HID)

Firmware Specification—10/14/98
Version 1.1draft

Please send comments via electronic mail to:
usbdevice@fes.fm.intel.com

©1996,1997,1998, USB Implementers’ Forum—All rights reserved.

10/15/98:

Contents

10/15/98:

1.

PrEfaCe ... aa s vii
1.1 Intellectual Property DiSClaimer..........ccoocceiiiiiiiiiiiiieieeeeee e e e Vii
1.2 CONtrBULOTS....coeiiiiieeeeeeeeeee e, vii
1.3 Scope Of thiS REVISIONuuuiiiiiiiiiiiiiiiiiiiiiiiiiisiieereeeeeeeeeeeeeeeeeeeeeeeeeeeeeees viii
1.4 ReVISION HISTOMY ...coiiiiiiiiiee et e e viii
1.5 Document CONVENTIONSccoiiuuiiiieieee ettt e e e e sttt e e e e e s eee e e e e [

INtrOAUCHION.... ..ot e e b e e s s seesseeseeeeees 1
0 R Yo o o L= PR TSSRPPPRIIN 1
2.2 PUIPOSE ..ttt ettt 2
2.3 Related DOCUMENIS..........uuiiiiiiiei ittt 3

ManNageMENT OVEIVIEWcceiiiiiiiiiieeeeeeeiiiee e e e e e st ee e e e e s s nneeeeeaaesessnnneeees 4

Functional CharacCteriStiCS...........uiiii i 7
41 THE HID ClaSS...uuuiiiiiiiiiiiiieiieeeeeeeeeeeeee ettt 7
4.2 SUDCIBSSeeiiiiei i 8
4.3 PrOtOCOIS......coiiiiiiieeeeee 9
A4 INEEITACES ...t e e 10
4.5 Device LIMItAtiONSccccciuuuiiiiiiiiiiiiiiiiesieessreesreeereeeeeeeeerererereeeeeeeeeeeses 12

Operational MOAEoevviiiiiiiiiii e, 13
5.1 Device DesSCrHPtOr SITUCIUIEcceeeiiiiiiee et 13
5.2 REPOM DESCIIPLOIS...ccviiiiiiieiiiiiieeiee ettt e e 15
5.3 GENEriC ItEM FOIMAL.........uuuuuuiiiiiiiiiiiiiiiiiiriierrreerreeere e errrerreeeeeeeeeeees 15
5.4 MM PaAISEr... s 16
5. D USBOES i e 18
B8 REPOITS. .ottt 18
L A S 1 o TP PEPPR P 19
5.8 Format of Multibyte Numeric Values...........ccccveevemeeiiiiiiiiiiicieeeeee e, 20
oI I @ 41=T o v= L1 To] o F PSR PSPPSR 21
5,10 NUITVAIUES. ...t 21

(DTS 0] (o £ P EUPT PRSP 22
6.1 Standard DESCIPLOISuuuuuuuuiirririiiiiererreeierrreeerreeerereree e 22
6.2 Class-Specific DESCHPLOIS.uuuiiiieiiiiiiieiiee et e e ee e 22

oI R o 1 I T od o (o 23

6.2.2 REPOIT DESCIIPLON ...veiiiie ettt e e e e 24

6.2.2.1 1tems TYPES @Nd TaAgSuuuuuurrnrnnnnrnnnrrnnerinnnrnrerrrenrrerreeereeerereeeeeee 28
6.2.2.2 SN0 HEMS.....eiiiieeeeeeeeeeeeeeeee e, 28

iv

Contents

10/14/98:

6.2.2.3 LONG IIEMS ccoiiiiiiieiceeee e 29

6.2.2.4 MAIN EIMSuiiiiiii ettt e e e 30

6.2.2.5 Input, Output, and Feature Items..........ccccceeeeeeee e, 31

6.2.2.6 Collection, End Collection [temS.........cceeevvvveiiiiiiieieiiieeeeeeeenan. 35

6.2.2.7 GlODaAl HEBMS ... 36

6.2.2.8 LOCAl EIMS ... 41

6.2.2.9 Padding........coooiiiiii i 43

6.2.3 PhySiCal DESCIPIOISuvviiiieeeiiiiiiiieie ettt e e 44
7. REQUESTES ...t et e e e e e e e aeeane 49
7.1 Standard REQUESESuuiiiiiieiiiiiiie et e e et e e e e e e ennes 49
7.1.1 Get_DeSCrPtOr REQUESTccvieiiiieeiieeeieeeeeeeee ettt e e 50
7.1.2 Set_DesCriptor REQUESTooi it 51
7.2 Class-SpeCific REQUESES..........uuuuiriiiiiiiiiiiiiiieiirerrreerreerreeeeeereeeeeeeeeereeeeeees 51
7.2.1 Get_RepPOIt REQUESTiiii e 52
7.2.2 Set_RepOrt REQUESTiiiiie e 53

7.2.3 Get_Idle REQUESTcoi et 53
7.2.4 Set_1dle REQUEST.........uuuueieeeiiiiiiiiiiiiiiiieetieeeeeeereeereeeeeeeeereerreerrerreeeeeeees 53

7.2.5 Get_ProtoCOl REQUEST.........c.cuiiiiiiee ettt 55
7.2.6 Set_ProtoCol REQUESLuuuuiiieiiiiiiiiiiiiiiiieeveeeereeeeeeeee e e e e eereeeeee e 55

8. REPOM PrOtOCOL......eiiiiiiiiiiiiiiii e 56
8.1 REPOI TYPES ..ttt e et a e eaane 56
8.2 Report Format for Standard HemSccccceeviiiiiiiiiiee e 56
8.3 Report Format for Array IteMSuuvuurrirrriiiiiieeiieerireeeeeeeeeeereeeeeeeeeeeees 57
8.4 RePOIrt CONSITAINTScciiiiiiiiiee ettt e aaeaee e s 58
8.5 Report EXample.......ccoooiiiiiiii s 58
APPENIX A: USAGE TAGS ..uvvvvrerieeeeiiiiiiiieiae et saitieeeeeeesssssttteeeeaessssnsreeeeeaeessanssnens 61
Appendix B: Boot Interface DeSCrPtOrS.......cccvvvieiiiiieieeeeeeeeeeee 61
B.1 Protocol 1 (Keyboard)ueeiieeiiiiiiiiiieeae et eeaee e e 61
B.2 ProtOCOI 2 (MOUSE).....uuuuuiiiiiiiiieiieiiieeeeeeeeeeeeeeeeeeeeeeeeeeseaaaaaaaaasaaaaaaaaaaaaaeeeeees 63
Appendix C: Keyboard Implementation..............ccccceeiiiiiiiiiice e 64
Appendix D: Example Report DESCIPIOIS.........oooevvieii e 66
D.1 Example JOYStICK DESCHPLON.ciiiiiiiiiiiiee ettt 66
Appendix E: Example USB Descriptors for HID Class Devices..........cccceeeeeee.... 68
E.L DEVICE DESCHPLON ...vtiiiiiieiiiiiiiiee e ettt ettt e e e e e st e e e e e s nnebeeeeaeas 68
E.2 Configuration DeSCHPLOr.......cciiieiiieeeeee e e i e eeerenenes 69
E.3 Interface Descriptor (Keyboard)............covveiiiiiiiiiiieeieee e 70
E.4 HID Descriptor (Keyboard).........cccccvvviiiiiiieieeeeeee 70
E.5 Endpoint Descriptor (Keyboard)c..ueevvieiiiiiiiiiiiie e 71
E.6 Report Descriptor (Keyboard)ccccccuuiumiiiiiiiiiiiiiiiiiieiieseieeereeeeeeeeeeee 72

Contents \%

10/14/98:

E.7 Interface DeSCriptor (MOUSE).......uuuuieeieeiiieeiieeieeeeeeeeeeeeeeeeestaaaaaaaaaaaaaaaaaaaaens 73
E.8 HID DeSCrPtOr (MOUSE)......c.iiitiiiieieeeeeeiiiieeee e e e e s eiteeee e e e s eeeteeee e e e e e e nnenes 73
E.9 Endpoint DeSCIPLOr (MOUSE)vviiiiiiiieiieeeieeeeeeeeeeeee et a e e e e e e aaae e e e e e 73
E.10 Report DesCriptor (MOUSE)cccueiiiiiiiieiiee e e s eiiieee e e e s eiiaee e e e e e eeeeneeee e 74
S 1 T o TS Tod 0 (o SRR 74
Appendix G: Legacy Keyboard Implementation............cccccoeeviiiiiieiine i, 77
[T A U 0 To L= U 77
G.2 MaNagemMENt OVEIVIEWciieeiiiiiiiiieeeeeeesiiiieeeeee e s s eiteeeeeeeesssannreeeeeaesaans 77
G.3 Boot Keyboard RequireMentscoooeeeiiiiiiieiseccsecccceeeeees 78
G.4 Keyboard: Non-USB Aware System Design Requirements 79
G.5 Keyboard: Using the Keyboard Boot Protocol...........ccccceeveeeeee, 79
Appendix H: Glossary Definitionsccooiiiiiiiiiiiie e 83

Vii

10/15/98:

1. Preface

1.1 Intellectual Property Disclaimer

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES
WHATSOEVER INCLUDING ANY WARRANTY OF MERCHANTABILITY,
FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR
SAMPLE.

A LICENSE IS HEREBY GRANTED TO REPRODUCE AND DISTRIBUTE
THIS SPECIFICATION FOR INTERNAL USE ONLY. NO OTHER LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY OTHER
INTELLECTUAL PROPERTY RIGHTS IS GRANTED OR INTENDED
HEREBY.

AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY,
INCLUDING LIABILITY FOR INFRINGEMENT OF PROPRIETARY
RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN THIS
SPECIFICATION. AUTHORS OF THIS SPECIFICATION ALSO DO NOT
WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL
NOT INFRINGE SUCH RIGHTS.

All product names are trademarks, registered trademarks, or service marks of their
respective owners.

1.2 Contributors

While many people contributed to this document, only one contributor is listed
from each organization.

Company Contact

Alps Mike Bergman
Cybernet Tom Peurach

DEC Tom Schmidt

Intel Steve McGowan
Key Tronic Corporation Jodi Crowe
LCS/Telegraphics Robert Dezmelyk
Logitech Remy Zimmermann
Microsoft Corporation Mike Van Flandern
NCR Bob Nathan

Sun Microsystems Mike Davis

ThrustMaster Joe Rayhawk

Viii Device Class Definition for Human Interface Devices (HID) Version 1.1

10/14/98:

1.3 Scope of this Revision

This version 1.1 release is intended to encapsulate all review comments and
concepts to complete the Human Interface DewliB || device class.

1.4 Revision History

Version Release date Description

1.1draft 10/14/98 Incorporate HID review requests: 18, 19, 20, 21, 22,
23, 25, 26, 28, 29, 30, 32 and 35.
Removed Usage Table sections. These can be found in
theUniversal Serial Bus HID Usage Tables
document.

1.0 1/30/96 1.0 Release.

Preface iX

10/14/98:

1.5 Document Conventions

This specification uses the following typographic conventions

Example of convention

Description

Get_Report, Report

Data, Non-Data

BValue

bValue bcdNamewOther

[bValug

{this (0) | that (1)}

Collection
End Collection

Words in bold with initial letter capitalized
indicate elements with special meaning
such as requests, descriptors, descriptor
sets, classes, or subclasses.

Proper-cased words are used to distinguish
types or categories of things. For example
Data and Non-Data type Main items.

Italicized letters or words indicate
placeholders for information supplied by
the developer.

Placeholder prefixes such &s,'‘bcd’, and

‘w’ are used to denote placeholder type. For
example:

b bits or bytes; dependent on context
bcd binary-coded decimal

bm bitmap

d descriptor
i index

w word

Items inside square brackets are optional.

Ellipses in syntax, code, or samples
indicate ‘and so on...” where additional
optional items may be included (defined by
the developer).

Braces and a vertical bar indicate a choice
between two or more items or associated
values.

This font is used for code, pseudo-code,
and samples.

10/15/98:

2. Introduction

Universal Serial Bus (USB) is a communications architecture that gives a personal
computer (PC) the ability to interconnect a variety of devices using a simple four-
wire cable. The USB is actually a two-wire serial communication link that runs at
either 1.5 or 12 megabits per second (mbs). USB protocols can configure devices
at startup or when they are plugged in at run time. These devices are broken into
various device classes. Each device class defines the common behavior and
protocols for devices that serve similar functions. Some examples of USB device
classes are shown in the following table:

Device Class Example Device

Display Monitor

Communication Modem

Audio Speakers

Mass storage Hard drive

Human interface Data glove
See Also

For more information on terms and terminology, see Appendix H: Glossary
Definitions. The rest of this document assumes you have read and
understood the terminology defined in the glossary.

2.1 Scope

This document describes the Human Interface DeWdl) class for use with
Universal Serial Bus (USB). Concepts from the USB Specification are used but
not explained in this document.

See Also

The USB Specification is recommended pre-reading for understanding the
content of this document. See Section 2.3: Related Documents.

TheHID class consists primarily of devices that are used by humans to control the
operation of computer systems. Typical exampldsIDf class devices include:

« Keyboards and pointing devices—for example, standard mouse devices,
trackballs, and joysticks.
« Front-panel controls—for example: knobs, switches, buttons, and sliders.

« Controls that might be found on devices such as telephones, VCR remote
controls, games or simulation devices—for example: data gloves, throttles,
steering wheels, and rudder pedals.

Device Class Definition for Human Interface Devices (HID) Version 1.1

« Devices that may not require human interaction but provide data in a similar
format toHID class devices—for example, bar-code readers, thermometers, or
voltmeters.

Many typicalHID class devices include indicators, specialized displays, audio
feedback, and force or tactile feedback. ThereforeltBeclass definition
includes support for various types of output directed to the end user.

Note Force feedback devices requiring real time interaction are covered in a
separate document titled “USB Physical Interface Device (PID) Class.”

See Also

For more conceptual information, see the USB Specification, Chapter 9,
“USB Device Framework..” See Section 2.3: Related Documents.

2.2 Purpose

This document is intended to supplement the USB Specification and pktiidde
manufacturers with the information necessary to build USB-compatible devices. It
also specifies how thdID class driver should extract data from USB devices.

The primary and underlying goals of tHéD class definition are to:

+ Be as compact as possible to save device data space.

« Allow the software application to skip unknown information.

+ Be extensible and robust.

« Support nesting and collections.

» Be self-describing to allow generic software applications.

10/14/98:

Introduction 3

10/14/98:

2.3 Related Documents

This document references the following related documents:

Name Comment

Universal Serial Bus (USB) Specification, In particular, see Chapter 9, “USB Device
Version 1.0 Framework.”

USB Class Specification for Legacy

Software

USB HID Usage Supplement A detailed extension of the usages listed

in Appendix A.
USB Physical Interface Device (PID)
Specification
USB Audio Device Class

The most current information is maintained at the following site on the World
Wide Web: http://www.usb.org

Device Class Definition for Human Interface Devices (HID) Version 1.1

10/14/98:

3. Management Overview

Information about a USB device is stored in segments of its ROM (read-only
memory). These segments are called descriptors. An interface descriptor can
identify a device as belonging to one of a finite number of classe$ilDhelass

is the primary focus of this document.

A USB/HID class device uses a corresponditi class driver to retrieve and
route all data.

The routing and retrieval of data is accomplished by examining the descriptors of
the device and the data it provides.

Cirivear
{HIO}

Drervicn

Cormpensdd of Do @ desscripdo s andior Cain
|LESEHID pinm andt

TheHID class device descriptor identifies which other HID class descriptors are
present and indicates their sizes. For exanit@gort andPhysical Descriptors

HIC: dascriptar
Type Prasent Size
Report Y f
Phyaical ¥ n
Repart Physical
descriplar dascriptor sat

A Report descriptor describes each piece of data that the device generates and
what the data is actually measuring.

Report dascripbor

femis)
(18g, type, size, data)

For example, &eport descriptor defines items that describe a position or button
state. Item information is used to:

« Determine where to route input—for example, send input to mouse or joystick
API.

» Allow software to assign functionality to input—for example, use joystick
input to position a tank.

Management Overview 5

10/14/98:

By examining an items (collectively called tReport descriptor) thedID class
driver is able to determine the size and composition of data reports frétitthe

class device.

Physical descriptorsets are optional descriptors which provide information about
the part or parts of the human body used to activate the controls on a device.

Phvysical descriptor set

Physical descriptar

Device Class Definition for Human Interface Devices (HID) Version 1.1

10/14/98:

All of these things can be combined to illustrate the descriptor structure.

Davice
descripiar

l

Condiguration
descriplor

l

Intarface
descriplor

|

Endpoint
dasriphar

The rest of this specification documents the implementation details, caveats, and

String
descriphor
HID
desariplar
| |
Report Phwsical
descripbor descriptor

restrictions for developinglID class devices and drivers.

Functional Characteristics 7

10/14/98:

4. Functional Characteristics

This section describes the functional characteristics dfitbe

e Class
e Subclass
o Interfaces

4.1 The HID Class

USB devices are segmented into device classes that:

« Have similar data transport requirements.
« Share a single class driver.

For exampleAudio class devices require isochronous data pigH3. class
devices have different (and much simpler) transport requirements. The transport
requirements foHID class devices are identified in this document.

Note USB devices with data requirements outside the range of defined classes
must provide their own class specifications and drivers as defined by the USB
Specification. See Section 2.3: Related Documents.

A USB device may be a single class type or it may be composed of multiple
classes. For example, a telephone hand set might use featureki® {haudio,
andTelephonyclasses. This is possible because the class is specified in the
Interface descriptor and not tHeevicedescriptor. This is discussed further in
Section 5.1: Device Descriptor Structure.

The USB Core Specification defines the HID class code biterfaceClass
member of an Interface descriptor is always 3 for HID class devices.

See Also

The Audio Class Specification defines audio device transport requirements
in greater detail. See Section 2.3: Related Documents.

Device Class Definition for Human Interface Devices (HID) Version 1.1

10/14/98:

4.2 Subclass

During the early development of th#D specification, subclasses were intended

to be used to identify the specific protocols of different typdslDf class

devices. While this mirrors the model currently in use by the industry (all devices
use protocols defined by similar popular devices), it quickly became apparent that
this approach was too restrictive. That is, devices would need to fit into narrowly
defined subclasses and would not be able to provide any functionality beyond that
supported by the subclass.

TheHID committee agreed on the improbability that subclass protocols for all
possible (and yet to be conceived) devices could be defined. In addition, many
known devices seemed to straddle multiple classifications—for example,
keyboards with locators, or locators that provided keystrokes. Consequently, the
HID class does not use subclasses to define most protocols. IndtéBdckass
device identifies its data protocol and the type of data provided witliRefisrt
descriptor.

TheReport descriptor is loaded and parsed bykhiB class driver as soon as the
device is detected. Protocols for existing and new devices are created by mixing
data types within thReport descriptor.

Note Because the parser for tReport descriptor represents a significant
amount of code, a simpler method is needed to identify the device protocol for
devices requiring BIOS suppoBdot Device$. HID class devices use the
Subclasspart to indicate devices that support a predefined protocol for either
mouse devices or keyboards (that is, the device can be us@ba@evics.

The boot protocol can be extended to include additional data not recognized by
the BIOS, or the device may support a second preferred protocol for use by the
HID class driver.

TheblnterfaceSubClassiember declares whether a device supports a boot
interface, otherwise it is 0.

Subclass Codes

Subclass Code Description
0 No Subclass
1 Boot Interface Subclass
2-255 Reserved
See Also

Boot Report descriptors are listed in Appendix B: Boot Interface
Descriptors. FoHID subclass and protocol codes, see Appendix E:
Example USB Descriptors fétlD Class Devices.

Functional Characteristics 9

10/14/98:

4.3 Protocols

A variety of protocols are supported HID devices. BheerfaceProtocol
member of an Interface descriptor only has meaning i tierfaceSubClass
member declares that the device supports a boot interface, otherwise it is 0.

Protocol Codes

Protocol Code Description
0 None
1 Keyboard
2 Mouse
3-255 Reserved

10 Device Class Definition for Human Interface Devices (HID) Version 1.1

4.4 Interfaces

A HID class device communicates with tHED class driver using either the
Control (default) pipe or ainterrupt pipe.

Coninal pipe
[defaulk)

HICH HID
Class Davice Class Driver

Inferrupt pipe

TheControl pipe is used for:

» Receiving and responding to requests for USB control and class data.

« Transmitting data when polled by th#D class driver (using th@et_Report
request).

» Receiving data from the host.

Thelnterrupt pipe are used for:

« Receiving asynchronous (unrequested) data from the device.
« Transmitting low latency data to the device.

The Interrupt Out pipe is optional. If a device declares an Interrupt Out endpoint
then Output reports are transmitted by the host to the device through the Interrupt
Out endpoint. If no Interrupt Out endpoint is declared then Output reports are
transmitted to a device through the Control endpoint, using Set_Report(Output)
requests.

Note Endpoint 0 is aControl pipe always present in USB devices. Therefore,
only thelnterrupt In pipe is described for tHaterface descriptor using an
Endpoint descriptor. In fact, severhdterface descriptors may shakndpoint O.
An Interrupt Out pipe is optional and requires an additioBatipoint descriptor

if declared.

Pipe Description Required

Control (Endpoint 0) USB control, class request codes, and Y
polled data (Message data).

Interrupt In Data in, that is, data from device (Stream Y
data).

Interrupt Out Data out, that is, data to the device (Stream N
data).

See Also

For details about th€ontrol pipe, see the USB Specification. See Section
2.3: Related Documents.

10/14/98:

Functional Characteristics 11

4.5 Device Limitations

This specification applies to both high-speed and low-spiéBdclass devices.
Each type of device possesses various limitations, as defined in Chapter 5 of the
Universal Serial Bus Specification.

10/14/98:

12 Device Class Definition for Human Interface Devices (HID) Version 1.1

5. Operational Model

This section outlines the basic operational modeltdfCa class device. Flowchart
elements represent tables of information with the firmware.

5.1 Device Descriptor Structure

At the topmost level, a descriptor includes two tables of information referred to as
the Device descriptor and the String descriptor. A standard USB Device descriptor
specifies the Product ID and other information about the device. For example,
Device descriptor fields primarily include:

+ Class

« Subclass

« Vendor

« Product

« Version

Devica
descriptar

l A, LIEE desios may Feiva ong OF mond conligurasons

Ench i defined by Thea Configuration desorimior. & HID

C-ﬂﬂfllgl_lm‘lil:ll'l Slazen Seraiti DygeZally Ndia cnly G |:u'|l_;||'r|'|:l' Hiiis o
IJE"EI:ﬂFll.l:II' wiu bl Tgivy Srily & ':'.-:||||_|||'-|Im' S NP0

1

Inderlace
desscriphar

B 1

TEwr Clasa Sakd ol this descrpior dalinas the
/ dirvic &3 & HID clsas deve

Endpaant HID
descriptar descriptor
¥ L]
Repaar Phiyslcal
dasaripior descriplar

For HID class devices, the:

« Class type is not defined at tBevicedescriptor level. The class type for a
HID class device is defined by the Interface descriptor.

10/14/98:

Operational Model 13

10/14/98:

» Subclass field is used to identBpot Devices

Note ThebDeviceClasandbDeviceSubClaskelds in the Device Descriptor
should not be used to identify a device as belonging to the HID class. Instead use
theblinterfaceClassandblinterfaceSubClaskelds in the Interface descriptor.

See Also

The HID class driver identifies the exact type of device and features by
examining additional class-specific descriptors. For more information, see
Section 6.2: Class-Specific Descriptors. For methods of descriptor retrieval,
see Section 7: Requests

14 Device Class Definition for Human Interface Devices (HID) Version 1.1

10/14/98:

5.2 Report Descriptors

Preceding descriptors are illustrated by flowchart items that represent tables of
information. Each table of information can be thought of as a block of data.
Instead of a block of datReport descriptors are composed of pieces of
information. Each piece of information is calledltam.

An ltem s a E.IﬁglE peace of informakson
within a Report descrigior

5.3 Generic Item Format

An item is piece of information about the device. All items have a one-byte prefix
that contains the item tag, item type, and item size.

Bils 2322X12019189716 1514131211 1088 7T&a54 33 1o
Paris [hatn) I [atal I BTag : bikpe @ BSire

Eyias 2 1 0

An item may include optional item data. The size of the data portion of an item is
determined by its fundamental type. There are two basic types of items: short
items and long items. If the item is a short item, its optional data size may be 0, 1,
2, or 4 bytes. If the item is a long item, litSizevalue is always 2. The following
example illustrates possible values within the 1-byte prefix for a long item.

Bt 258, .04 FITTNAMMBITIS 15141312 1M 1088 TEE4 32 10
Pasts [wara] I B cvagiten Tag I bimiasize I11115 i1 ¢ 10
Byles 5-258 2 1 0

Operational Model 15

5.4 ltem Parser

TheHID class driver contains a parser used to analyze items foundRe tioet
descriptor. The parser extracts information from the descriptor in a linear fashion.
The parser collects the state of each known item as it walks through the descriptor,
and stores them in an item state table. The item state table contains the state of
individual items.

From the parser’s point of viewHID class device looks like the following
figure:

Application
Collaction

1 - |

Callection Repaort

l | L *

Main ltam
Fieport Report
Report Size
l L Feport Coun
Main Ham bain ltem
RAaport Size Report Size 1
Usags Usage I
Feport Cown Aepiort Caunt
Logical Minimum Logical Minimum
Lagical Maximum Logical Maximum
1 T
s
Uzaga Usage I Usaps

10/14/98:

16 Device Class Definition for Human Interface Devices (HID) Version 1.1

When some items are encountered, the contents of the item state table are moved.
These items include dlain, Push, andPop items.

« When aMain item is found, a new report structure is allocated and initialized
with the current item state table. Albcal items are then removed from the
item state table, buslobal items remain. In this wayzlobal items set the
default value for subsequent néwhain items. A device with several similar
controls—for example, six axes—would need to defineatubal items only
once prior to the firsMain item.

Note Main items are associated with a collection by the order in which they
are declared. A new collection starts when the parser rea@w@teation

item. The item parser associates with a collectioMaih items defined
between th&€ollection item and the nex@nd Collection item.

« When aPushitem is encountered, the item state table is copied and placed on
a stack for later retrieval.

« When aPopitem is found, the item state table is replaced with the top table
from the stack. For example:

Unit (Meter), Unit Exponent (-3), Push, Unit Exponent (0)

When the parser reachePashitem, it places the items defining units of
millimeters (10° meters) on the stack. The next item changes the item state
table to units of meters (1eters).

The parser is required to parse through the wiReleort descriptor to find all
Main items. This is necessary in order to analyze reports sent by the device.

See Also
For details, see Section 8: Report Protocol.

10/14/98:

Operational Model 17

10/14/98:

5.5 Usages

Usages are part of tikeport descriptor and supply an application developer with
information about what a control is actually measuring. In addititlsagetag
indicates the vendor’s suggested use for a specific control or group of controls.
While Report descriptors describe the format of the data—for example, three 8-
bit fields—aUsagetag defines what should be done with the data—for example,
X, Yy, and z input. This feature allows a vendor to ensure that the user sees
consistent function assignments to controls across applications.

A Report descriptor can have multiplésagetags. There is a one-to-one
correspondence between usages and controls, one usage control defined in the
descriptor. An array indicates that each field 8fegport descriptor represents
several physical controls. Each control may have attributes such as a usage
assigned to it. For example, an array of four buttons could have a Wsgge

tag for each button.

A Usageis interpreted as a 32 bit unsigned value where the high order 16 bits
defines thdJsage Pagand the low order 16 bits definetJaage ID Usage IDs
are used to select individual Usage on a Usage Page.

See Also
For an example, see Appendix E. 10: Report Descriptor (Mouse).

5.6 Reports

Using USB terminology, a device may send or receive a transaction every USB
frame (1 millisecond). A transaction may be made up of multiple packets (token,
data, handshake) but is limited in size to 8 bytes for low-speed devices and 64
bytes for high-speed devices. A transfer is one or more transactions creating a set
of data that is meaningful to the device—for examiplpyt , Output, and

Feature reports. In this document, a transfer is synonymous with a report.

I \
L 1 L} T L 1l L L} 1l [1 1 [1 ||

Ouput | i i fiiiiiii | Fnepons
- I e |
Feature PR A !
PR T R P S T R T _.-”ll

Most devices generate reports, or transfers, by returning a structure in which each
data field is sequentially represented. However, some devices may have multiple
report structures on a single endpoint, each representing only a few data fields. For
example, a keyboard with an integrated pointing device could independently

report “key press” data and “pointing” data over the same endRapbrt ID

items are used to indicate which data fields are represented in each report
structure. AReport ID item tag assigns a 1-byte identification prefix to each

18 Device Class Definition for Human Interface Devices (HID) Version 1.1

10/14/98:

report transfer. If n&keport ID item tags are present in tReport descriptor, it
can be assumed that only dnput, Output, andFeature report structure exists
and together they represent all of the device’s data.

Note Only Input reports are sent via theterrupt In pipe.Feature and
Output reports must be initiated by the host via@wntrol pipe or an optional
Interrupt Out pipe.

If a device has multiple report structures, all data transfers start with a 1-byte
identifier prefix that indicates which report structure applies to the transfer. This
allows the class driver to distinguish incoming pointer data from keyboard data by
examining the transfer prefix.

5.7 Strings

A collection or data field can have a particular label (string index) associated with
it. Strings are optional.

TheUsagetag of an item is not necessarily the same as a string associated with
the Main item. However, strings may be useful when a vendor-defined usage is
required. Thestring descriptor contains a list of text strings for the device.

See Also

For details, see Appendix E: Example USB Descriptorsifbr Class
Devices.

Operational Model 19

10/14/98:

5.8 Format of Multibyte Numeric Values

Multibyte numeric values in reports are represented in little-endian format, with
the least significant byte at the lowest address. The Logical Minimum and Logical
Maximum values identify the range of values that will be found in a report. If
Logical Minimum and Logical Maximum are both positive values then a sign bit

is unnecessary in the report field and the contents of a field can be assumed to be
an unsigned value. Otherwise, all integer values are signed values represented in
2's complement format. Floating point values are not allowed.

The least significant bit in a value is stored in bit 0, the next more significant in bit
1 and so on up to the size of the value. The following example illustrates bit
representation of a long integer value.

NINTBIATTRE2524 ZIX N 201F1B1718 1E1413 12111098 TEH&3Z10

Byled — TES4321 0 I TES43210 I TRS43210 I TESA43210
Crataul Value O 3 | |
Bultan 3 Bvle 2:% Byta 1 X Byta 0 Hapaort ID
Bution 2 -
Bisttoin 1

Byte Bits
0 0-7
1 8-15
2 16-23
3 24-31

20 Device Class Definition for Human Interface Devices (HID) Version 1.1

10/14/98:

5.9 Orientation

HID class devices are encouraged, where possible, to use a right-handed
coordinate system. If a user is facing a device, report values should increase as
controls are moved from left to right (X), from far to near (Y) and from high to
low (2).

Xt

s
Va

Controls reporting binary data should use the convention 0 = off, or False, and 1 =
on, or True. Examples of such controls are keys, buttons, power switches, and
device proximity sensors.

5.10 Null Values

HID class devices support the ability to ignore selected fields in a report at run-
time. This is accomplished by declaring bit field in a report that is capable of
containing a range of values larger than those actually generated by the control. If
the host or the device receives an out-of-range value then the current value for the
respective control will not be modified.

A hardware developer must carefully evaluate the controls in an individual report
to determine how an application on the host will use them. If there are any
situations in which an application will not modify a particular field every time the
report is sent to the device, then the field should provide a Null value. With Null
values, the host can initialize all fields in a report that it does not wish to modify to
their null (out-of-range) value and set the fields that it wishes to modify to valid
(in-range) values.

If an 8-bit field is declared and the range of valid values is 0 to Ox7F then any
value between 0x80 and OxFF will be considered out of range and ignored when
received. The initialization of null values in a report is much easier if they are alll
the same.

NOTE: It ishighlyrecommendethat O be included in the set of Null values so
that report buffers can simply be set to zero to establish the “don’t care” state for
all fields.

Descriptors 21

10/14/98:

6. Descriptors

6.1 Standard Descriptors

TheHID class device class uses the following standard USB descriptors:

Device
Configuration
Interface
Endpoint
String

See Also

For details about these descriptors as defined fiDaclass device, see
Appendix E: Example USB Descriptors fdfD Class Devices. For

general information about standard USB descriptors, see Chapter 9 of the
USB Specification, “USB Device Framework.”

6.2 Class-Specific Descriptors

Each device class includes one or more class-specific descriptors. These
descriptors differ from standard USB descriptor$dl® class device uses the
following class-specific descriptors:

HID
Report
Physical

22 Device Class Definition for Human Interface Devices (HID) Version 1.1

Descri ption

Parts

Remarks

10/14/98:

6.2.1 HID Descriptor

TheHID descriptor identifies the length and type of subordinate descriptors for a
device.

Part Offset/Size Description
(Bytes)

bLength 0/1 Numeric expression that is the total size of the
HID descriptor.

bDescriptorType 11 Constant name specifying type of HID
descriptor.

bcdHID 2/2 Numeric expression identifying the HID Class
Specification release.

bCountryCode 4/1 Numeric expression identifying country code of

thelocalized hardware.

bNumDescriptors 5/1 Numeric expression specifying the number of
class descriptors (always at least one i.e. Report
descriptor.)

bDescriptorType 6/1 Constant name identifying type of class
descriptor. See Section 7.1.2: Set_Descriptor
Request for a table of class descriptor constants.

wDescriptorLength 712 Numeric expression that is the total size of the
Reportdescriptor.

[bDescriptorType.. 9/1 Constant name specifying type of optional
descriptor.

[wDescriptorLength.. 10/2 Numeric expression that is the total size of the

optional descriptor.

« If an optional descriptor is specified, a corresponding length entry must also be
specified.

« Multiple optional descriptors and associated lengths may be specified up to
offset (3*)+6 and (3h)+7 respectively.

« The valuebNumDescriptorsdentifies the number of additional class specific
descriptors present. This number must be at least one (Besoat
descriptor will always be present. The remainder oftti® descriptor has the
length and type of each additional class descriptor.

« The valuehCountryCodedentifies which country the hardwardasalized
for. Most hardware is ndbcalized and thus this value would be zero (0).
However, keyboards may use the field to indicate the language of the key caps.
Devices are not required to place a value other than zero in this field, but some
operating environments may require this information. The following table
specifies the valid country codes.

Descriptors 23

Code (decimal) Country Code (decimal) Country

00 Not Supported 18 Netherlands/Dutch
01 Arabic 19 Norwegian

02 Belgian 20 Persian (Farsi)
03 Canadian-Bilingual 21 Poland

04 Canadian-French 22 Portuguese
05 Czech Republic 23 Russia

06 Danish 24 Slovakia

07 Finnish 25 Spanish

08 French 26 Swedish

09 German 27 Swiss/French
10 Greek 28 Swiss/German
11 Hebrew 29 Switzerland
12 Hungary 30 Taiwan

13 International (ISO) 31 Turkish

14 Italian 32 UK

15 Japan (Katakana) 33 us

16 Korean 34 Yugoslavia

17 Latin American 35-255 Reserved

6.2.2 Report Descriptor

TheReport descriptor is unlike other descriptors in that it is not simply a table of

values. The length and content dReport descriptor vary depending on the
number of data fields required for the device’s report or reportsR€pert

descriptor is made up of items that provide information about the device. The first
part of an item contains three fields: item type, item tag, and item size. Together

these fields identify the kind of information the item provides.

There are three item typedain, Global, andLocal. There are fivéMain item

tags currently defined:

« Input item tag: Refers to the data from one or more similar controls on a
device. For example, variable data such as reading the position of a single axis
or a group of levers or array data such as one or more push buttons or switches.

» Output item tag: Refers to the data to one or more similar controls on a device
such as setting the position of a single axis or a group of levers (variable data).
Or, it can represent data to one or more LEDs (array data).

» Featureitem tag: Describes device input and output not intended for
consumption by the end user —for example, a software feature or Control
Panel toggle.

» Collection item tag: A meaningful grouping triput, Output, andFeature
items—for example, mouse, keyboard, joystick, and pointer.

« End Collection item tag: A terminating item used to specify the end of a
collection of items.

10/14/98:

24 Device Class Definition for Human Interface Devices (HID) Version 1.1

10/14/98:

TheReport descriptor provides a description of the data provided by each control
in a device. EacMain item tag (nput, Output, or Feature) identifies the size of

the data returned by a particular control, and identifies whether the data is absolute
or relative, and other pertinent information. Precediogal andGlobal items

define the minimum and maximum data values, and so forlegort descriptor

is the complete set of all items for a device. By lookingRé&port descriptor

alone, an application knows how to handle incoming data, as well as what the data
could be used for.

One or more fields of data from controls are defined khain item and further
described by the precedi®jobal andLocal items.Local items only describe the
data fields defined by the nedain item.Global items become the default
attributes for all subsequent data fields in that descriptor. For example, consider
the following (details omitted for brevity):

Report Size (3)
Report Count (2)
Input

Report Size (8)
Input

Output

The item parser interprets tReport descriptor items above and creates the
following reports (the LSB is on the left):

Iripaut

_ 2 input report fialds, _ 2 input regort fiekds,

3 bits sach 8 bits mach.

\ 2 outpist rapart fialds,

B bils aach

Descriptors 25

A Report descriptor may contain sevebdhin items. AReport descriptor must
include each of the following items to describe a control’'s data (all other items are
optional):

» Input (Output or Feature)

+ Usage

» Usage Page

» Logical Minimum

« Logical Maximum

« Report Size

+ Report Count

The following is a coding sample of items being used to define a 3-button mouse.
In this caseMain items are preceded I@lobal items likeUsage Report Count
or Report Size(each line is a new item).

Usage Page (Generic Desktop), ;Use the Generic Desktop Usage Page
Usage (Mouse),

Collection (Application), ;Start Mouse collection

Usage (Pointer),

Collection (Physical), ;Start Pointer collection

Usage Page (Buttons)
Usage Minimum (1),
Usage Maximum (3),
Logical Minimum (0),

Logical Maximum (1), ;Fields return values from O to 1
Report Count (3),
Report Size (1), ;Create three 1 bit fields (button 1, 2, & 3)
Input (Data, Variable, Absolute), ;Add fields to the input report.
Report Count (1),
Report Size (5), ;Create 5 bit constant field
Input (Constant), ;Add field to the input report
Usage Page (Generic Desktop),
Usage (X),
Usage (Y),
Logical Minimum (-127),
Logical Maximum (127), ;Fields return values from -127 to 127
Report Size (8),
Report Count (2), ;Create two 8 bit fields (X & Y position)
Input (Data, Variable, Relative), ;Add fields to the input report
End Collection, ;Close Pointer collection
End Collection ;Close Mouse collection
See Also
For more information, see Appendix F: BNF Grammar for the USB HID
Descriptor.

10/14/98:

26 Device Class Definition for Human Interface Devices (HID) Version 1.1

6.2.2.1 Items Types and Tags

All items contain a 1-byte prefix which denotes the basic type of the item. The
HID class defines two basic formats for items:

« Short items: 1-5 bytes total length; used for the most commonly occurring
items. A short item typically contains 1 or O bytes of optional data.

« Long items: 3—258 bytes in length; used for items that require larger data
structures for parts.

Note This specification defines only items that use the short format.

The two item formats should not be confused with types of items siMhbias
Global, andLocal.

See Also
For overview information, see Section 5.3: Generic ltem Format.

6.2.2.2 Short Items

Descri ption The short item format packs the item size, type, and tag into the first byte. The
first byte may be followed by 0, 1, 2, or 4 optional data bytes depending on the
size of the data.

Parts Bils 23222120191B1716 15141312111088 7654 32 10
Paris [hatn) I [atal I BTag : bikpe @ BSire
Eylas 2 1 L
Part Description
bSize Numeric expression specifying size of data:
0 =0 bytes
1=1 byte
2 =2 bytes
3 =4 bytes
bType Numeric expression identifying type of item where:
0 = Main
1 = Global
2 = Local
3 = Reserved
bTag Numeric expression specifying the function of the item.
[datd] Optional data.
Remarks « A short item tag doesn’t have an explicit valuetd8izeassociated with it.

Instead, the value of the item data part determines the size of the item. That is,
if the item data can be represented in one byte, thetath@art can be
specified as 1 byte, although this is not required.

10/14/98:

Descriptors 27

Descri ption

Parts

10/14/98:

o If alarge data

item is expected, it can still be abbreviated if all of its high-order

bits are zero. For example, a 32-bit part in which bytes 1, 2, and 3 are all 0 can
be abbreviated as a single byte.

« There are three categories of short item thigsn, Global, andLocal. The
item type bTyp@ specifies the tag category and consequently the item’s

behavior.

6.2.2.3 Long items
Like the short item format, the long item format packs the item size, type, and tag

into the first byte.

The long item format uses a special item tag value to indicate

that it is a long item. The long item size and long item tag are each 8-bit
guantities. The item data may contain up to 255 bytes of data.

Bty 258 ..M FAZZAIMHIBITIS 1S 141312 11088 TEE4 32 10
Parts [ofata] B cvagitanm Tag I biDataSire I 1111 11§ 10 I
Bytes 3-258 2 1 o
Part Description
bSize Numeric expression specifying total size of item where size is 10 (2

bType

bTag
[bDataSiz¢
[bLongltemTag
[datd]

bytes); denotes item type as long.

Numeric expression identifying type of item where

3 = Reserved

Numeric expression specifying the function of the item; always 1111.
Size of long item data.

Long item tag.

Optional data items.

Important No long item tags are defined in this document. These tags are
reserved for future use. Tags XxFO—xFF are vendor defined.

28 Device Class Definition for Human Interface Devices (HID) Version 1.1

6.2.2.4 Main Iltems

Descri ption Main items are used to either define or group certain types of data fields within a
Report descriptor. There are two typesMéin items: data and non-data. Data-
type Main items are used to create a field within a report and indhyle
Output, andFeature. Other items do not create fields and are subsequently
referred to as non-dakdain items.

Parts One-Byte
Prefix (nn
represents

Main item tag size value) Valid Data

Input 100000n Bit 0 {Data (0) | Constant (1)}
Bit 1 {Array (0) | Variable (1)}
Bit 2 {Absolute (0) | Relative (1)}
Bit 3 {No Wrap (0) | Wrap (1)}
Bit 4 {Linear (0) | Non Linear (1)}
Bit 5 {Preferred State (0) | No Preferred (1)}
Bit 6 {No Null position (0) | Null state(1)}
Bit 7 Reserved (0)
Bit 8 {Bit Field (0) | Buffered Bytes (1)}
Bit 31-9 Reserved (0)

Output 100100 Bit 0 {Data (0) | Constant (1)}
Bit 1 {Array (0) | Variable (1)}
Bit 2 {Absolute (0) | Relative (1)}
Bit 3 {No Wrap (0) | Wrap (1)}
Bit 4 {Linear (0) | Non Linear (1)}
Bit 5 {Preferred State (0) | No Preferred (1)}
Bit 6 {No Null position (0) | Null state(1)}
Bit 7 {Non Volatile (0) | Volatile (1)}
Bit 8 {Bit Field (0) | Buffered Bytes (1)}
Bit 31-9 Reserved (0)

Feature 101100 Bit 0 {Data (0) | Constant (1)}
Bit 1 {Array (0) | Variable (1)}
Bit 2 {Absolute (0) | Relative (1)}
Bit 3 {No Wrap (0) | Wrap (1)}
Bit 4 {Linear (0) | Non Linear (1)}
Bit 5 {Preferred State (0) | No Preferred (1)}
Bit 6 {No Null position (0) | Null state(1)}
Bit 7 {Non Volatile (0) | Volatile (1)}
Bit 8 {Bit Field (0) | Buffered Bytes (1)}
Bit 31-9 Reserved (0)

Collection 101000 0x00 Physical (group of axes)
0x01 Application (mouse, keyboard)
0x02 Logical (interrelated data)

0x03-0x7F Reserved
0x80-0xFF Vendor-defined

End Collection ~ 1100006n Not applicable. Closes an item collection.

Reserved 110100 Not applicable. Reserved for future items.
to
111106n
Remarks + The default data value for @lain items is zero (0).

10/14/98:

Descriptors 29

Descri ption

10/14/98:

An Input item could have a data size of zero (0) bytes. In this case the value of
each data bit for the item can be assumed to be zero. This is functionally

identical to using a item tag that specifies a 4-byte data item followed by four
zero bytes.

6.2.2.5 Input, Output, and Feature Items
Input, Output, andFeature items are used to create data fields within a report.

An Input item describes information about the data provided by one or more
physical controls. An application can use this information to interpret the data
provided by the device. All data fields defined in a single item share an
identical data format.

TheOutput item is used to define an output data field in a report. This item is
similar to aninput item except it describes data sent to the device—for
example, LED states.

Feature items describe device configuration information that can be sent to the
device.

30 Device Class Definition for Human Interface Devices (HID) Version 1.1

Parts

10/14/98:

Bit

Part

Value

Description

2

Data |
Constant

Array |
Variable

Absolute |
Relative

0|1

01

01

Indicates whether the item is data or a constant
value. Data indicates the item is defining report
fields that contain modifiable device data.
Constant indicates the item is a static read-only
field in a report and cannot be modified (written)
by the host.

Indicates whether the item creates variable or array
data fields in reports. In variable fields, each field
represents data from a physical control. The
number of bits reserved for each field is
determined by preceding Report Size/Report
Count items. For example, a bank of eight on/off
switches could be reported in 1 byte declared by a
variable Input item where each bit represents one
switch, on (1) or off (0) (Report Size = 1, Report
Count = 8). Alternatively, a variable Input item
could add 1 report byte used to represent the state
of four three-position buttons, where the state of
each button is represented by two bits (Report Size
= 2, Report Count = 4). Or 1 byte from a variable
Input item could represent the x position of a
joystick (Report Size = 8, Report Count = 1).

An array provides an alternate means for
describing the data returned from a group of
buttons. Arrays are more efficient, if less flexible
than variable items. Rather than returning a single
bit for each button in the group, an array returns an
index in each field that corresponds to the pressed
button (like keyboard scan codes). An out-of range
value in and array field is considered no controls
asserted. Buttons or keys in an array that are
simultaneously pressed need to be reported in
multiple fields. Therefore, the number of fields in
an array input item (Report Count) dictates the
maximum number of simultaneous controls that
can be reported. A keyboard could report up to
three simultaneous keys using an array with three
8-bit fields (Report Size = 8, Report Count = 3).
Logical Minimum specifies the lowest index value
returned by the array and Logical Maximum
specifies the largest. The number of elements in
the array can be deduced by examining the
difference between Logical Minimum and Logical
Maximum (number of elements = Logical
Maximum - Logical Minimum + 1).

Indicates whether the data is absolute (based on a
fixed origin) or relative (indicating the change in
value from the last report). Mouse devices usually
provide relative data, while tablets usually provide
absolute data.

Descriptors 31

Bit

Part

Value

Description

10/14/98:

No Wrap |
Wrap

Linear |
Nonlinear

Preferred
State | No
Preferred

No Null
Position |
Null State

Non-
volatile |
Volatile

Reserved

Bit Field |
Buffered
Bytes

01

0|1

01

0]1

01

01

Indicates whether the data “rolls over” when
reaching either the extreme high or low value. For
example, a dial that can spin freely 360 degrees
might output values from O to 10. If Wrap is
indicated, the next value reported after passing the
10 position in the increasing direction would be 0.

Indicates whether the raw data from the device has
been processed in some way, and no longer
represents a linear relationship between what is
measured and the data that is reported.
Acceleration curves and joystick dead zones are
examples of this kind of data. Sensitivity settings
would affect the Units item, but the data would

still be linear.

Indicates whether the control has a preferred state
to which it will return when the user is not
physically interacting with the control. Push
buttons (as opposed to toggle buttons) and self-
centering joysticks are examples.

Indicates whether the control has a state in which
it is not sending meaningful data. One possible use
of the null state is for controls that require the user
to physically interact with the control in order for

it to report useful data. For example, some
joysticks have a multidirectional switch (a hat
switch). When a hat switch is not being pressed it
is in a null state. When in a null state, the control
will report a value outside of the specified Logical
Minimum and Logical Maximum (the most
negative value, such as -128 for an 8-bit value).

Indicates whether the Feature or Output control's
value should be changed by the host or not.
Volatile output can change with or without host
interaction. To avoid synchronization problems,
volatile controls should be relative whenever
possible. If volatile output is absolute, when
issuing a Set Report (Output), request set the value
of any control you don't want to change to a value
outside of the specified Logical Minimum and
Logical Maximum (the most negative value, such
as -128 for an 8-bit value). Invalid output to a
control is ignored by the device.

Data bit 7 is undefined for input items and is
reserved for future use.

Indicates that the control emits a fixed-size stream
of bytes. The contents of the data field are
determined by the application. The contents of the
buffer are not interpreted as a single numeric
guantity. Report data defined by a Buffered Bytes
item must be aligned on an 8-bit boundary. The
data from a bar code reader is an example.

32 Device Class Definition for Human Interface Devices (HID) Version 1.1

Remarks

10/14/98:

Bit Part Value Description
9 - Reserved 0 Reserved for future use.
31

« Ifthelnput item is an array, only the Data/Constant, Variable/Array and
Absolute/Relative attributes apply.

« The number of data fields in an item can be determined by examining the
Report SizeandReport Count values. For example an item withRaport
Sizeof 8 bits and &eport Count of 3 has three 8-bit data fields.

« The value returned by akrray item is an index so it is recommended that:
1) An Array field returns a 0 value when no controls in the array are asserted.
2) The Logical Minimum equals 1.
3) The Logical Maximum equal the number of elements in the array.

« Input items define input reports accessible viaGmatrol pipe with a
Get_Report (Input) request.

« Input type reports are also sent at the polling rate vidntieerupt In pipe.

« TheData | Constant, Variable | Array , Absolute | Relative, Nonlinear,
Wrap, andNull State data for arDutput item are identical to those data for
anlnput item.

« Output items makeéutput reports accessible via tmntrol pipe with a
Set_Report (Output) command.

o Output type reports can optionally be sent viaaterrupt Out pipe.

While similar in functionOutput andFeature items differ in the following
ways:

Feature items define configuration options for the device and are usually
set by a control panel application. Because they affect the behavior of a
device (for example, button repeat rate, reset origin, and so feetdire

items are not usually visible to software applications. ConverGelyput

items represent device output to the user (for example, LEDs, audio, tactile
feedback, and so forth). Software applications are likely to set device
Output items.

Feature items may be attributes of other items. For example, an Origin
Reset Feature may apply to one or more positipat items. LikeOutput
items,Feature items make up Feature Reports accessible vi@onérol
pipe with theGet_Report (Feature)andSet_Report (Feature)requests.

Descriptors 33

Description

Parts

Remarks

10/14/98:

6.2.2.6 Collection, End Collection Items

A Collection item identifies a relationship between two or more daiaug ,

Output, orFeature.) For example, a mouse could be described as a collection of
two to four data (x, y, button 1, button 2). While @allection item opens a
collection of data, th&nd Collection item closes a collection.

Type of
collection Value Description

Physical 0x00 A physical collection is used for a set of data items that represent
data points collected at one geometric point. This is useful for
sensing devices which may need to associate sets of measured or
sensed data with a single point. It does not indicate that a set of
data values comes from one device, such as a keyboard. In the
case of device which reports the position of multiple sensors,
physical collections are used to show which data comes from
each separate sensor.

Application 0x01 A group of Main items that might be familiar to applications. It
could also be used to identify item groups serving different
purposes in a single device. Common examples are a keyboard or
mouse. A keyboard with an integrated pointing device could be
defined as two different application collections. Data reports are
usually (but not necessarily) associated with application
collections (one report ID per application).

Logical 0x02 A logical collection is used when a set of data items form a
composite data structure. An example of this is the association
between a data buffer and a byte count of the data. The
collection establishes the link between the count and the buffer.

Reserved 0x03 - Reserved for future use.
Ox7F
0x80 - Vendor-defined.
OxFF

« All Main items between th€ollection item and théend Collection item are
included in the collection. Collections may contain other nested collections.

» Collection items do not generate data. Howevélsageitem tag must be
associated with any collection (such as a mouse or thr@tégction items
may be nested, and they are always optional, except for the top-level
application collection.

¢ If an unknown Vendor-defined collection type is encountered, then an
application must ignore all main items declared in that collection. Note that
global items declared in that collection will effect the state table.

e [f an unknown usage is attached to a known collection type then the contents
of that collection should be ignored. Note that global items declared in that
collection will effect the state table.

¢ String and Physical indices, as well as delimiters may be associated with
collections.

34 Device Class Definition for Human Interface Devices (HID) Version 1.1
6.2.2.7 Global Items
Descri ption Global items describe rather than define data from a control. A\viaiw item
assumes the characteristics of the item state t@ldbal items can change the
state table. As a resu®lobal item tags apply to all subsequently defined items
unless overridden by anoth®tobal item.
Parts One-Byte
Prefix (nn
represents

Global item tag size value) Description

Usage Page 000001n Unsigned integer specifying the current Usage
Page. Since a usage are 32 bit values, Usage
Page items can be used to conserve space in a
report descriptor by setting the high order 16 bits
of a subsequent usages. Any usage that follows
which is defines 16 bits or less is interpreted as a
Usage ID and concatenated with the Usage Page
to form a 32 bit Usage.

Logical Minimum 000101n Extent value in logical units. This is the
minimum value that a variable or array item will
report. For example, a mouse reporting x
position values from 0 to 128 would have a
Logical Minimum of 0 and a Logical Maximum
of 128.

Logical Maximum 001001n Extent value in logical units. This is the
maximum value that a variable or array item will
report.

Physical Minimum 001101 Minimum value for the physical extent of a
variable item. This represents the Logical
Minimum with units applied to it.

Physical Maximum 010001n Maximum value for the physical extent of a
variable item.

Unit Exponent 010101n Value of the unit exponent in base 10. See the
table later in this section for more information.

Unit 01100Tn Unit values.

Report Size 011101 Unsigned integer specifying the size of the

10/14/98:

report fields in bits. This allows the parser to
build an item map for the report handler to use.
For more information, see Section 8: Report
Protocol.

Descriptors 35

One-Byte
Prefix (nn
represents
Global item tag size value) Description

Report ID 100004n Unsigned value that specifies the Report ID. If a
Report ID tag is used anywhere in Report
descriptor, all data reports for the device are
preceded by a single byte ID field. All items
succeeding the first Report ID tag but preceding
a second Report ID tag are included in a report
prefixed by a 1-byte ID. All items succeeding
the second but preceding a third Report ID tag
are included in a second report prefixed by a
second ID, and so on.

This Report ID value indicates the prefix added
to a particular report. For example, a Report
descriptor could define a 3-byte report with a
Report ID of 01. This device would generate a
4-byte data report in which the first byte is 01.
The device may also generate other reports, each
with a unique ID. This allows the host to
distinguish different types of reports arriving
over a single interrupt in pipe. And allows the
device to distinguish different types of reports
arriving over a single interrupt out pipe. Report
ID zero is reserved and should not be used.

Report Count 10010hn Unsigned integer specifying the number of data
fields for the item; determines how many fields
are included in the report for this particular item
(and consequently how many bits are added to
the report).

Push 10100hn Places a copy of the global item state table on
the stack.

Pop 10110hn Replaces the item state table with the top
structure from the stack.

Reserved 11000hn Range reserved for future use.
to
11110%n

See Also
For a list ofUsage Pagéags, see Appendix A: Usage Tags.

Remarks e <While Logical Minimum andLogical Maximum (extents) bound the values
returned by a devic®hysical Minimum andPhysical Maximum give
meaning to those bounds by allowing the report value to be offset and scaled.
For example, a thermometer might have logical extents of 0 and 999 but
physical extents of 32 and 212 degrees.The resolution can be determined
with the following algorithm:

10/14/98:

36 Device Class Definition for Human Interface Devices (HID) Version 1.1

10/14/98:

if ((Physical Maximum == UNDEFINED)
|| (Physical Minimum == UNDEFINED)
|| ((Physical Maximum == 0) && (Physical Minimum == 0)))

{

Physical Maximum = Logical Maximum:;
Physical Minimum = Logical Minimum;

}

If (Unit Exponent == UNDEFINED)

Unit Exponent = 0;

Resolution = (Logical Maximum — Logical Minimum) /
((Physical Maximum — Physical Minimum) *

(10 Unit Exponent))

When linearly parsing a report descriptor, the global state values of Unit
Exponent, Physical Minimum and Physical Maximum are considered to be in
an “UNDEFINED” state until they are declared.

For example, a 400-dpi mouse might have the items shown in the following

table.

Item Value
Logical Minimum -127
Logical Maximum 127
Physical Minimum -3175
Physical Maximum 3175
Unit Exponent -4
Unit Inches

Therefore, the formula for calculating resolution must be:

Resolution = (127-(-127)) / ((3175-(-3175)) * 10

) = 400 counts per inch

« TheUnit item qualifies values as described in the following table.

Nibble System 0x0 Ox1 0x2 0x3 0x4
Exponent 0 1 2 3 4
0 System None Sl Linear Sl Rotation English English
Linear Rotation
1 Length None Centimeter Radians Inch Degrees
2 Mass None Gram Gram Slug Slug
3 Time None Seconds Seconds Seconds Seconds
4 Temperature None Kelvin Kelvin Fahrenheit Fahrenheit
5 Current None Ampere Ampere Ampere Ampere
6 Luminous None Candela Candela Candela Candela
intensity
7 Reserved None None None None None

Note

For Systempart, codes 0x5 to OxE aReserved code 0x7 is vendor-

Descriptors 37

10/14/98:

defined.

If both theLogical Minimum andLogical Maximum extents are defined as
positive values (0 or greater) then the report field can be assumed to be an
unsigned value. Otherwise, all integer values are signed values represented in
2’'s complement format.

Until Physical Minimum andPhysical Maximum are declared in a report
descriptor they are assumed by the HID parser to be eduadjical

Minimum andLogical Maximum, respectively. After declaring them to so

that they can applied to a (Input, Output or Feature) main item they continue to
effect all subsequent main items. If both Bigysical Minimum andPhysical
Maximum extents are equal to 0 then they will revert to their default
interpretation.

Codes and exponents not shown in the preceding table:

Code Exponent
0x5 5
0x6 6
0x7 7
0x8 -8
0x9 -7
OxA -6
0xB -5
0xC -4
0xD -3
OxE -2
OxF -1

Most complex units can be derived from the basic units of length, mass, time,
temperature, current and luminous intensity. For example energy (joules) can
be represented as:

joule =[mass(grams)][length(centimeters) 2|[time(seconds) 2]

The Unit exponent would be 7 because a joule is composed of kilograms (1 kg
equals 18grams) and meters. For example, consider the following.

Nibble Part Value
3 Time -2

2 Mass

1 Length

0 System

The parts of some common units are shown in the following table.

38 Device Class Definition for Human Interface Devices (HID) Version 1.1

Unit Nibbles

5 (i) 4 (x) 3 () 2 (m) 1(1) 0 (sys) Code
Distance (cm) 0 0 0 0 1 1 x0011
Mass (g) 0 0 0 1 0 1 x0101
Time (s) 0 0 1 0 0 1 x1001
Velocity (cm/s) 0 0 -1 0 1 1 xF011
Momentum 0 0 -1 1 1 1 xF111
Acceleration 0 0 -2 0 1 1 xEO11
Force 0 0 -2 1 1 1 xE111
Energy 0 0 -2 1 2 1 xE121
Angular Acceleration 0 0 -2 0 1 2 xEOQ12
Voltage -1 0 -3 1 2 1 x00F0D121

« In the case of an arraReport Count determines the maximum number of
controls that may be included in the report and consequently the number of
keys or buttons that may simultaneously be pressed as well as the size of each
element. For example, an array supporting up to three simultaneous key
presses, where each field is 1 byte, would look like this:

Report Size (8),

Report Count(3),

In the case of a variable item, tReport Count specifies how many controls
are included in the report. For example, eight buttons could look like this:
Report Size (1),

Report Count (8),

« If Report IDs are used, thenReport ID must be declared prior to the first
Input, Output, or Feature main item declaration in a report descriptor.

» The sameReport ID value can be encountered more than once in a report
descriptor. Subsequently declared Input, Output, or Feature main items will be
found in the respective ID/Type (Input, Output, or Feature) report.

6.2.2.8 Local Iltems

Description Local item tags define characteristics of controls. These items do not carry over to

the nextMain item. If aMain item defines more than one control, it may be
preceded by several similaocal item tags. For example, dmput item may
have severdlsagetags associated with it, one for each control.

10/14/98:

Descriptors 39

Parts

Remarks

10/14/98:

One-Byte
Prefix (nn
represents

Tag size value) Description

Usage 00001Gin Usage index for an item usage; represents a
suggested usage for the item or collection. In the
case where an item represents multiple controls, a
Usage tag may suggest a usage for every variable
or element in an array.

Usage Minimum 00011Gin Defines the starting usage associated with an array
or bitmap.

Usage Maximum 00101Gn Defines the ending usage associated with an array
or bitmap.

Designator Index 00111Gn Determines the body part used for a control. Index
points to a designator in the Physical descriptor.

Designator 01001Gn Defines the index of the starting designator

Minimum associated with an array or bitmap.

Designator 010110 Defines the index of the ending designator

Maximum associated with an array or bitmap.

String Index 01111Gin String index for a String descriptor; allows a string
to be associated with a particular item or control.

String Minimum 10001Gn Specifies the first string index when assigning a
group of sequential strings to controls in an array
or bitmap.

String Maximum 10011Gn Specifies the last string index when assigning a
group of sequential strings to controls in an array
or bitmap.

Delimiter 10101Gin Defines the beginning or end of a set of local
items (1 = open set, 0 = close set).

Reserved 101011hnto Reserved.

11111060

« While Local items do not carry over to the ndiain item, they may apply to
more than one control within a single item. For example, Ihpat item
defining five controls is preceded by thidsagetags, the three usages would
be assigned sequentially to the first three controls, and the third usage would
also be assigned to the fourth and fifth controls. If an item has no controls
(Report Count = 0), theocal item tags apply to thilain item (usually a
collection item).

« To assign unique usages to every control in a siigia item, simply specify
eachUsagetag sequentially (or uggsage Minimumor Usage Maximum).

« All Local items are unsigned integers.

Note It is important thatUsagebe used properly. While very specific usages
exist (landing gear, bicycle wheel, and so on) those usages are intended to
identify devices that have very specific applications. A joystick with generic
buttons should never assign an application-specific usage to any button.
Instead, it should assign a generic usage such as “Button.” However, an

40 Device Class Definition for Human Interface Devices (HID) Version 1.1

10/14/98:

exercise bicycle or the cockpit of a flight simulator may want to narrowly
define the function of each of its data sources.

It is also important to remember thdgageitems convey information about

the intended use for the data and may not correspond to what is actually being
measured. For example, a joystick would havX @amdY Usageassociated

with its axis data (and natsagesRx andRy.)

See Also
For a list of Usage parts, see Appendix A: Usage Tags.

Because button bitmaps and arrays can represent multiple buttons or switches
with a single item, it may be useful to assign multiple usagedairaitem.

Usage Minimum specifies the usage to be associated with the first
unassociated control in the array or bitmdpage Maximumspecifies the end

of the range of usage values to be associated with item elements. The
following example illustrates how this could be used for a 105-key keyboard.

Tag Result

Report Count (1) One field will be added to the report.

Report size (8) The size of the newly added field is 1
byte (8 bits).

Logical Minimum (0) Defines 0 as the lowest possible return
value.

Logical Maximum (101) Defines 101 as the highest possible return
value and sets the range from 0 to 101.

Usage Page (0x07) Selects keyboard usage page.

Usage Minimum (0x00) Assigns first of 101-key usages.

Usage Maximum (0x65) Assigns last of 101-key usages.

Input: (Data, Array, Absolute) Creates and adds a 1-byte array to the

input report.

If a Usage Minimumis declared as and extended usage then the associated
Usage Maximummust also be declared as an extended usage.

Interpretation ofJsage Usage Minimum or Usage Maximumitems vary as a
function of the item'$Sizefield. If the bSize field = 3 then the item is
interpreted as a 32 bit unsigned value where the high order 16 bits defines the
Usage Pagand the low order 16 bits defines thsage ID 32 bit usage items
that define both the Usage Page and Usage ID are often referred to as
“Extended” Usages.

If the bSize field = 1 or 2 then thésageis interpreted as an unsigned value
that selects Blsage IDon the currently defined Usage Page. When the parser
encounters a main item it concatenates the last declared Usage Page with a
Usage to form a complete usage value. Extended usages can be used to
override the currently defined Usage Page for individual usages.

If a Usage Minimumis declared as and extended usage then the associated
Usage Maximummust also be declared as an extended usage.

Descriptors 41

10/14/98:

« Two or more alternative usages may be associated with a control by simply
bracketing them witelimiter items. Delimiters allow aliases to be defined
for a control so that an application can access it in more than one way. The
usages that form a delimited set are organized in order of preference, where
the first usage declared is the most preferred usage for the control.

HID parsers must hand[@elimiters however, the support for the alternative
usages that they define is optional. Usages other than the first (most preferred)
usage defined may not be made accessible by system software.

» Delimiters cannot be used when defining usages that apply to Application
Collections or Array items.

6.2.2.9 Padding

Reports can be padded to byte-align fields by declaring the appropriately sized
main item and not declaring a usage for the main item.

42

Device Class Definition for Human Interface Devices (HID) Version 1.1

10/14/98:

6.2.3 Physical Descriptors

A Physical Descriptoris a data structure that provides information about the
specific part or parts of the human body that are activating a control or controls.
For example, a physical descriptor might indicate that the right hand thumb is used
to activate button 5. An application can use this information to assign functionality
to the controls of a device.

Note Physical Descriptorsare entirely optional. They add complexity and offer
very little in return for most devices. However, some devices, particularly those
with a large number of identical controls (for example, buttons) will find that
Physical Descriptorshelp different applications assign functionality to these
controls in a more consistent manner. Skip the following section if you do not plan
on supportind?hysical Descriptors

Similar Physical Descriptorsare grouped into set®esignator Indexitems
contained in th&®eport descriptor map items (or controls) to a spedfitysical
descriptor contained in &hysical Descriptorset (hereafter referred to
generically as a descriptor set).

Each descriptor set consists of a short header followed by one oPmgieal
Descriptors. The header defines tiBas (whether the descriptor set is targeted at

a right or left-handed user) and theeferenceof the set. For a particul&ias, a

vendor can define alterna®hysical Descriptors(for example, a right-handed

user may be able to hold a device in more than one way, therefore remapping the
fingers that touch the individual items).

EachPhysical Descriptorconsists of the following three fields:

« Designator. identifies the actual body part that effects an item—for example,
the hand.

« Qualifier: further defines the designator—for example, right or left hand.
« Effort: value quantifying the effort the user must employ to effect the item.

If multiple items identify the sani@esignator/Qualifier combination, thé&ffort
value can be used to resolve the assignment of functioristfém value of O

would be used to define the button a finger rests on when the hand is in the “at
rest” position, that is, virtually no effort is required by the user to activate the
button.Effort values increment as the finger has to stretch to reach a control.

The only time two or more controls will have identical

Designator/Qualifier/Effort combinations is because they are physically

connected together. A long skinny key cap with ‘+' at one end and ‘-’ at the other
is a good example of this. If it is implemented electrically as two discrete push-
buttons, it is possible to have both pressed at the same time even though they are
both under the same key cap. If the vendor decided that for this product, pressing
the ‘+" and *-" buttons simultaneously was valid then they would be described as
two discrete push-buttons with identi€lysical Descriptors However, if the

key cap was labeled “Volume” and pressing both buttons at the same time had no
meaning, then a vendor would probably choose to describe the buttons as a single

Descriptors 43

item with three valid states: off, more volume (+), and less volume (-). In this case
only onePhysical Descriptorwould be needed.

Consider a joystick that has two buttons (A and B) on the left side of the base and
a trigger button on the front of the stick that is logically ORed with Button A. The
joystick base is most often held in the left hand while the stick is manipulated with
the right. So, the first descriptor set would designate Button A as:

Index Finger, Right, Effort 0

Similarly, button B would be designated as:

Thumb, Left, Effort 0

If the joystick was placed on a table top and the left hand was used to control both
buttons on the base then another descriptor set could identify an alternate mapping
for Button A of:

Middle Finger, Left, Effort O

Button B would be designated as:

Index Finger, Left, Effort 0

Important Designatortags are optional and may be provided for all, some, or
none of a device’s items or elements.

Descriptor set 0 is a special descriptor set that specifies the number of additional
descriptor sets, and also the numbePlfsical Descriptorsin each set.

Part Offset/Size (Bytes) Description

bNumber 0/1 Numeric expression specifying the number of
Physical Descriptorsets. Do not include Physical
Descriptor 0 itself in this number.

bLength 1/2 Numeric expression identifying the length of each
Physical descriptor.

Upon receiving &et_Descriptor request from the host,HiD class device will
return the descriptor set specified in the requailuelow byte. A descriptor set
consists of a header followed by one or mehgsical Descriptors

10/14/98:

44 Device Class Definition for Human Interface Devices (HID) Version 1.1

TheHID class device uses the following format forRtsysical descriptor.

Part Offset/Size (Bytes) Description
bPhysicallinfo 0/1 Bits specifying physical information:
7.5 Bias

4.0 Preference
0 = Most preferred

dPhysical 1/2 Physical descriptor data, index 1.
dPhysical 3/2 Physical descriptor data, index 2.
dPhysical (n*2)-1/2 Physical descriptor data, index
Remarks « TheBiasfield indicates which hand the descriptor set is characterizing. This

may not apply to some devices.

Bias Value Description

0 Not applicable

1 Right hand

2 Left hand

3 Both hands

4 Either hand

5 Reserved

6 Reserved

7 Reserved

Note A device that only fits in the right hand will not return descriptor sets
with a left-handedias.

« ThePreferencefield indicates whether the descriptor set contains preferred or
alternative designator information. A vendor will define fimeferencevalue
of 0 for the most preferred or most typical set of physical information. Higher
Preferencevalues indicate less preferred descriptor sets.

« Physical Descriptorswithin a descriptor set are referencedd®signator
Index items in the Report descriptor.

« A Physical Descriptorhas the following parts:

Part Offset/Size (Bytes) Description
bDesignator 0/1 Designator value; indicates which part of the
body affects the item
bFlags 11 Bits specifying flags:
7.5 Qualifier
4.0 Effort
Designator Value Description
00 None
01 Hand
02 Eyeball
03 Eyebrow

10/14/98:

10/14/98:

Descriptors 45
Designator Value Description
04 Eyelid
05 Ear
06 Nose
07 Mouth
08 Upper lip
09 Lower lip
O0A Jaw
0B Neck
ocC Upper arm
oD Elbow
OE Forearm
OF Wrist
10 Palm
11 Thumb
12 Index finger
13 Middle finger
14 Ring finger
15 Little finger
16 Head
17 Shoulder
18 Hip
19 Waist
1A Thigh
1B Knee
1C Calf
1D Ankle
1E Foot
1F Heel
20 Ball of foot
21 Big toe
22 Second toe
23 Third toe
24 Fourth toe
25 Little toe
26 Brow
27 Cheek
28-FF Reserved

TheQualifier field indicates which hand (or half of the body) the desigriator

defining. This may not apply to for some devices.

46 Device Class Definition for Human Interface Devices (HID) Version 1.1

Qualifier Value Description

Not applicable
Right

Left

Both

Either

Center
Reserved

~N o o~ WN P O

Reserved

« TheEffort field indicates how easy it is for a user to access the control. A
value of 0 identifies that the user can affect the control quickly and easily. As
the value increases, it becomes more difficult or takes longer for the user to
affect the control.

10/14/98:

Requests 47

Remarks

10/14/98:

/. Requests
7.1 Standard Requests

TheHID class uses the standard requ&st Descriptor as described in the USB
Specification. When &et_Descriptor(Configuration) request is issued, it
returns the Configuration descriptor, lalterface descriptors, alEndpoint
descriptors, and thdID descriptor for each interface. It shall not return the
String descriptorHID Report descriptor or any of the optiondlD class
descriptors. ThéllD descriptor shall be interleaved betweenilttierface and
Endpoint descriptors for HID Interfaces. That is, the order shall be:

Configuration descriptor
Interface descriptor (specifying HID Class)
HID descriptor (associated with above Interface)
Endpoint descriptor (for HID Interrupt In Endpoint)
Optional Endpoint descriptor (for HID Interrupt Out Endpoint)

Note Get_Descriptor can be used to retrieve standard, class, and vendor
specific descriptors, depending on the setting oDibscriptor Type field.

See Also
For details, see Chapter 9 of the USB Specification, “USB Device Class
Framework.”

The following table defines tHeescriptor Type (the high byte ofvValuein the
Get_Descriptor request).

Part Description
Descriptor Type Bits specifying characteristics of Descriptor Type:
7 Reserved (should always be 0)
6.5 Type
0 = Standard
1 =Class
2 = Vendor

3 = Reserved
4..0 Descriptor

See the standard class or vendor Descriptor Types table.

48 Device Class Definition for Human Interface Devices (HID) Version 1.1

Descri ption

Parts

Remarks

10/14/98:

The following defines valid types @flassdescriptors.

Value Class Descriptor Types
0x21 HID

0x22 Report

0x23 Physical descriptor
0x24 - Ox2F Reserved

7.1.1 Get_Descriptor Request

TheGet_Descriptor request returns a descriptor for the device.

Part Standard USB Descriptor HID Class Descriptor

bmRequestType 100 xxxxx 10000001

bRequest GET_DESCRIPTOR (0x06) GET_DESCRIPTOR (0x06)

wValue Descriptor Type and Descriptor Type and
Descriptor Index Descriptor Index

windex 0 (zero) or Language ID Interface Number

wLength Descriptor Length Descriptor Length

Data Descriptor Descriptor

« For standard USB descriptors, bits 0-4 of bmRequestType indicate whether the
requested descriptor is associated with the device, interface, endpoint, or other.

+ ThewValuefield specifies th®escriptor Type in the high byte and the
Descriptor Index in the low byte.

« The low byte is th®escriptor Index used to specify the set fBhysical
Descriptors, and is reset to zero for othdtD class descriptors.

If aHID class descriptor is being requested themtimelexfield indicates

the number of the HID Interface. If a standard descriptor is being requested
then thewlndexfield specifies the Language ID for string descriptors, and

is reset to zero for other standard descriptors.

RequestindPhysical Descriptorset O returns a special descriptor
identifying the number of descriptor sets and their sizes.

A Get_Descriptorrequest with th&hysical Indexequal to 1 will request
the firstPhysical Descriptorset. A device could possibly have alternate
uses for its items. These can be enumerated by issuing subsequent
Get_Descriptor requests while incrementing tBescriptor Index. A

device will return the last descriptor set to requests with an index greater
than the last number defined in tHED descriptor.

Requests 49

7.1.2 Set_Descriptor Request

Descri ption The Set_Descriptorrequest lets the host change descriptors in the devices.
Support of this request is optional.

Parts Part Standard USB Descriptor HID Class Descriptor
bmRequestType 00000000 00000001
bRequest SET_DESCRIPTOR (0x07) SET_DESCRIPTOR (0x07)
wValue Descriptor Type (high) and Descriptor Type and

Descriptor Index (low) Descriptor Index

windex 0 (zero) or Language ID Interface
wLength Descriptor Length Descriptor Length
Data Descriptor Descriptor
7.2 Class-Specific Requests

Descri ption Class-specific requests allow the host to inquire about the capabilities and state of
a device and to set the state of output and feature items. These transactions are
done over th®efault pipe and therefore follow the format D&fault pipe
requests as defined in the USB Specification.

Parts Part Offset/Size (Bytes) Description

bmRequestType 0/1

bRequest 11
wValue 2/2
windex 4/2
wLength 6/2

10/14/98:

Bits specifying characteristics of request.
Valid values are 10100001 or 00100001
only based on the following description:

7 Data transfer direction
0 = Host to device
1 = Device to host

6.5 Type
1 =_Class

4..0 Recipient
1 = Interface

A specific request.

Numeric expression specifying word-size
field (varies according to request.)

Index or offset specifying word-size field
(varies according to request.)

Numeric expressions specifying number of
bytes to transfer in the data phase.

50 Device Class Definition for Human Interface Devices (HID) Version 1.1

Remarks The following table defines valid valuestiRequest
Value Description
0x01 GET_REPORT
0x02 GET_IDLE
0x03 GET_PROTOCOL
0x04-0x08 Reserved
0x09 SET_REPORT
Ox0A SET_IDLE
0x0B SET_PROTOCOE

! This request is mandatory and must be supported by all devices.

2 This request is required only for boot devices.

7.2.1 Get_Report Request

Descri ption The Get_Reportrequest allows the host to receive a report vigCinetrol pipe.
Parts Part Description

bmRequestType 10100001

bRequest GET_REPORT

wValue Report Type and Report ID

windex Interface

wlLength Report Length

Data Report
Remarks « ThewValuefield specifies th&eport Type in the high byte and tiReport

ID in the low byte. SeReport ID to O (zero) ifReport IDs are not used.
Report Type is specified as follows:

Value Report Type
01 Input

02 Output

03 Feature
04-FF Reserved

« This request is useful at initialization time for absolute items and for
determining the state of feature items. This request is not intended to be used
for polling the device state on a regular basis.

« Thelnterrupt In pipe should be used for recurrilmgput reports. Thénput
report reply has the same format as the reports fincerrupt pipe.

e An Interrupt Out pipe may optionally be used for low later@utput
reports.Output reports over thinterrupt Out pipe have a format that is
identical to output reports that are sent overGbatrol pipe, if aninterrupt
Out endpoint is not declared.

10/14/98:

Requests 51

Descri ption

Parts

Remarks

Descri ption

Parts

Remarks

Descri ption

Parts

10/14/98:

7.2.2 Set_Report Request

The Set_Reportrequest allows the host to send a report to the device, possibly
setting the state of input, output, or feature controls.

Part Description
bmRequestType 00100001

bRequest SET_REPORT

wValue Report Type and Report ID
windex Interface

wLength Report Length

Data Report

» The meaning of the request fields for 8&t_Reportrequest is the same as for
theGet_Reportrequest, however the data direction is reversed and the Report
Data is sent from host to device.

« A device might choose to ignore inf#t_Reportrequests as meaningless.
Alternatively these reports could be used to reset the origin of a control (that is,
current position should report zero). The effect of sent reports will also depend
on whether the recipient controls are absolute or relative.

7.2.3 Get_Idle Request

The Get_ldle request reads the current idle rate for a partidnfaut report (see:
Set_ldlerequest).

Part Description
bmRequestType 10100001

bRequest GET_IDLE

wValue 0 (zero) and Report ID
windex Interface

wLength 1 (one)

Data Idle rate

For the meaning of the request fields, refer to Section 7.2.4: Set_Idle Request.

7.2.4 Set_ldle Request

The Set_Idlerequest silences a particular report onltiterrupt In pipe until a
new event occurs or the specified amount of time passes.

Part Description
bmRequestType 00100001

bRequest SET_IDLE

wValue Duration and Report ID
windex Interface

wLength 0 (zero)

Data Not applicable

52 Device Class Definition for Human Interface Devices (HID) Version 1.1

Remarks

10/14/98:

This request is used to limit the reporting frequency of an interrupt in endpoint.
Specifically, this request causes the endpoint to NAK any polls on an interrupt in
endpoint while its current report remains unchanged. In the absence of a change,
polling will continue to be NAKed for a given time-based duration. This request
has the following parts.

Part Description

Duration When the upper byte wivalueis 0 (zero), the duration is indefinite.
The endpoint will inhibit reporting forever, only reporting when a
change is detected in the report data.

When the upper byte efValueis non-zero, then a fixed duration is

used. The duration will be linearly related to the value of the upper byte,
with the LSB being weighted as 4 milliseconds. This provides a reénge o
values from 0.004 to 1.020 seconds, with a 4 millisecond resolution. If
the duration is less than the device polling rate, then reports are
generated at the polling rate.

If the given time duration elapses with no change in report data, then a
single report will be generated by the endpoint and report inhibition will
begin anew using the previous duration.

Report ID If the lower byte of wValue is zero, then the idle rate applies to all input
reports generated by the device. When the lower byte of wValue is non-
zero, then the idle rate only applies to the Report ID specified by the
value of the lower byte.

Accuracy This time duration shall have an accuracy of +/-(10% + 2 milliseconds)

Latency A new request will be executed as if it were issued immediately after the
last report, if the new request is received at least 4 milliseconds before
the end of the currently executing period. If the new request is received
within 4 milliseconds of the end of the current period, then the new
request will have no effect until after the report.

If the current period has gone past the newly proscribed time duration,
then a report will be generated immediately.

If the interrupt in endpoint is servicing multiple reports, therSse Idle request

may be used to affect only the rate at which duplicate reports are generated for the
specifiedReport ID. For example, a device with two input reports could specify

an idle rate of 20 milliseconds for report ID 1 and 500 milliseconds for report ID

2.

The recommended default idle rate (rate when the device is initialized) is 500
milliseconds for keyboards (delay before first repeat rate) and infinity for joysticks
and mice.

Requests 53

Descri ption

Parts

Remarks

Descri ption

Parts

Remarks

10/14/98:

7.2.5 Get_Protocol Request

The Get_Protocolrequest reads which protocol is currently active (either the boot
protocol or the report protocol.)

Part Description
bmRequestType 10100001
bRequest GET_PROTOCOL
wValue 0 (zero)

windex Interface

wLength 1 (one)

Data 0 = Boot Protocol

1 = Report Protocol

This request is supported by devices inBbet subclass. The/\VValuefield
dictates which protocol should be used.

7.2.6 Set_Protocol Request

The Set_Protocolswitches between the boot protocol and the report protocol (or
vice versa).

Part Description
bmRequestType 00100001
bRequest SET_PROTOCOL
wValue 0 = Boot Protocol

1 = Report Protocol
windex Interface
wlLength 0 (zero)
Data Not Applicable

This request is supported by devices in the boot subclassMdlaefield
dictates which protocol should be used.

When initialized, all devices default to report protocol. However the host should
not make any assumptions about the device’s state and should set the desired
protocol whenever initializing a device.

54 Device Class Definition for Human Interface Devices (HID) Version 1.1

10/14/98:

8. Report Protocol
8.1 Report Types

Reports contain data from one or more items. Data transfers are sent from the
device to the host through th&errupt In pipe in the form of reports. Reports

may also be requested (polled) and sent throug8adnérol pipe or sent through

an optionalnterrupt Out pipe. A report contains the state of all the items

(Input, Output or Feature) belonging to a particuldeport ID. The software
application is responsible for extracting the individual items from the report based
on theReport descriptor.

All of the items’ values are packed on bit boundaries in the report (no byte or
nibble alignment). However, items reporting Null or constant values may be used
to byte-align values, or tHeeport Sizemay be made larger than needed for some
fields simply to extend them to a byte boundary.

The bit length of an item’s data is obtained throughRbport descriptor Report
Size* Report Count). ltem data is ordered just as items are ordered in the

Report descriptor. If eReport ID tag was used in thHeeport descriptor, all

reports include a single byte ID prefix. If tReport ID tag was not used, all

values are returned in a single report and a prefix ID is not included in that report.

8.2 Report Format for Standard Items

The report format is composed of an 8-bit report identifier followed by the data
belonging to this report.

151q13-2-1||:|ggi TES43Z10 I

I |
Byta 1 to n: Report Byle O Report 1D

Report ID
TheReport ID field is 8 bits in length. If n&Report ID tags are used in the
Report descriptor, there is only one report and Report ID field is omitted.

Report Data
The data fields are variable-length fields that report the state of an item.

Report Protocol 55

8.3 Report Format for Array Items

Each button in an array reports an assigned number called an array index. This can
be translated into a keycode by looking up the array elerosatge Pagand

Usage When any button transitions between open and closed, the entire list of
indices for buttons currently closed in the array is transmitted to the host.

Since only one array element can be reported in each array field, modifier keys
should be reported as bitmap data (a group of 1-bit variable fields). For example,
keys such asTRL, SHIFT, ALT, and GUI keys make up the 8 bit modifier byte in a
standard keyboard report. Although these usage codes are defined in the Usage
Table as EO—E7, the usage is not sent as array data. The modifier byte is defined
as follows.

@
=

Key

LEFT CTRL
LEFT SHIFT
LEFT ALT
LEFT GUI
RIGHT CTRL
RIGHT SHIFT
RIGHT ALT

~N O o~ W N PP O

RIGHT GUI

The following example shows the reports generated by a user typing
ALT+CTRL+DEL, using a bitmap for the modifiers and a single array for all other

keys.

Transition Modifier Byte Array Byte
LEFT ALT down 00000100 00
RIGHT CTRLdown 00010100 00
DEL down 00010100 4C
DEL up 00010100 00
RIGHT CTRLUpP 00000100 00
LEFT ALT Up 00000000 00

See Also

For a list of standard keyboard key codes, see Appendix A: Usage Tags.

If there are multiple reports for this device, each report would be preceded by its
uniqueReport ID.

10/14/98:

56 Device Class Definition for Human Interface Devices (HID) Version 1.1

n 181716 I1E1-1131."11'I'IEHI FELR43210

I I [
Byte 2 to n: Array Index Byte 1 Bilmagp Byte O Raport 1D

If a set of keys or buttons cannot be mutually exclusive, they must be represented
either as a bitmap or as multiple arrays. For example, function keys on a 101-key
keyboard are sometimes used as modifier keys—for exaripie|n this case, at
least two array fields should be reported in an array itenRégort Count (2).

8.4 Report Constraints

The following constraints apply to reports and to the report handler:

« Anitem field cannot span more than 4 bytes in a report. For example, a 32-bit
item must start on a byte boundary to satisfy this condition.

« Only one report is allowed in a single USB transfer.

« A report might span one or more USB transactions. For example, an
application that has 10-byte reports will span at least two USB transactions in a
low-speed device.

« All reports except the longest which exceddaxPacketSiztor the endpoint
must terminate with a short packet. The longest report does not require a short
packet terminator.

« [Each top level collection must be an application collection and reports may not
span more than one top level collection.

« If there are multiple reports in a top level collection then all reports, except the
longest, must terminate with a short packet.

« Areport is always byte-aligned. If required, reports are padded with bits (0)
until the next byte boundary is reached.

8.5 Report Example

The followingReport descriptor defines an item with &rput report.

Usage Page (Generic Desktop),
Usage (Mouse),
Collection (Application),
Usage (Pointer),
Collection (Physical),

Report ID (0A), ;Make changes to report OA
Usage (X), Usage (Y),

Logical Minimum (-127), ;Report data values range from -127
Logical Maximum (127), ;1o 127

Report Size (8), Report Count (2),

Input (Data, Variable, Relative), ;Add 2 bytes of position data (X & Y) to report OA
Logical Minimum (0), ;Report data values range from -127
Logical Maximum (1), ;1o 127

Report Count (3), Report Size (1),

Usage Page (Button Page),

Usage Minimum (1),

Usage Maximum (3),

10/14/98:

Report Protocol 57

Input (Data, Variable, Absolute), ;Add 2 bits (Button 1, 2 & 3) to report 0A
Report Size (5),
Input (Constant), ;Add 5 bits padding to byte align the report 0A
End Collection,
End Collection

Thelnput report structure for the above device would look as follows.

NINTBIATTRE2524 ZIX N 201F1B1718 1E1413 12111098 TEH&3Z10

Byled — FES43210 I TESA3214 I TES43214 I TES43210
T
Dataul Valug 0
Bultan 3 Bvle 2:% Byta 1 X Byta 0 Hapaort ID
Bution 2 -
Bisttoin 1

The following table uses a keyboard with an integrated pointing device to
demonstrate how to use two reports for a device with just one interface:

Item Usages Report ID
Report ID (00) Keyboard
Collection (Application) Modifier keys 00

Input (Variable, Absolute) LEDs 00

Output (Variable, Absolute) Main keys 00

Input (Array, Absolute)
End Collection

Report ID (01) Mouse

Collection (Application) Pointer
Collection (Physical) X, Y 01
Input (Variable, Relative) Button 01

Input (Variable, Absolute)
End Collection
End Collection

Note Only Input, Output, andFeatureitems (notCollection items) present

data in a report. This example demonstrates multiple reports, however this
interface would not be acceptable fdB@ot Device(use separate interfaces for
keyboards and mouse devices).

10/14/98:

Appendix A: Usage Tags 59

10/14/98:

Appendix A: Usage Tags

See the Universal Serial Bus HID Usage Tables document for a complete list of
Usage Pages atdsageTags including key codes for keyboards.

Appendix B: Boot Interface
Descriptors

TheHID Subclass 1 defines two descriptorsBaiot Devices Devices may

append additional data to these boot reports, but the first 8 bytes of keyboard
reports and the first 3 bytes of mouse reports must conform to the format defined
by theBoot Report descriptor in order for the data to be correctly interpreted by
the BIOS. The report may not exceed 8 bytes in length. The BIOS will ignore any
extensions to reports. These descriptors describe reports that the BIOS expects to
see. However, since the BIOS does not actually readpert descriptors, these
descriptors do not have to be hard-coded into the device if an alternative report
descriptor is provided. Instead, descriptors that describe the device reports in a
USB-aware operating system should be included (these may or may not be the
same). When thElID class driver is loaded, it will issue a Change Protocol,
changing from the boot protocol to the report protocol after reading the boot
interface’sReport descriptor.

B.1 Protocol 1 (Keyboard)

The following representsReport descriptor for a boot interface for a keyboard.

Usage Page (Generic Desktop),
Usage (Keyboard),
Collection (Application),
Report Size (1),
Report Count (8),
Usage Page (Key Codes),
Usage Minimum (224),
Usage Maximum (231),
Logical Minimum (0),
Logical Maximum (1),

Input (Data, Variable, Absolute), ;Modifier byte

Report Count (1),

Report Size (8),

Input (Constant), ;Reserved byte
Report Count (5),

Report Size (1),

Usage Page (LEDs),
Usage Minimum (1),
Usage Maximum (5),

60 Device Class Definition for Human Interface Devices (HID) Version 1.1

Output (Data, Variable, Absolute), ;LED report

Report Count (1),

Report Size (3),

Output (Constant), ;LED report padding
Report Count (6),

Report Size (8),
Logical Minimum (0),
Logical Maximum(255),
Usage Page (Key Codes),
Usage Minimum (0),
Usage Maximum (255),
Input (Data, Array),

End Collection

Byte Description

Modifier keys
Reserved
Keycode 1
Keycode 2
Keycode 3
Keycode 4
Keycode 5
Keycode 6

~N o ok~ WD - O

Note Byte 1 of this report is a constant. This byte is reserved for OEM use. The
BIOS should ignore this field if it is not used. Returning zeros in unused fields is
recommended.

The following table represents the modifier byte.

Bit Description

NUM LOCK
CAPS LOCK
SCROLL LOCK

0

1

2

3 COMPOSE
4 KANA

5

to7 CONSTANT

Note The LEDs are absolute output items. This means that the state of each LED
must be included in output reports (0 = off, 1 = on). Relative items would permit
reports that affect only selected controls (0O = no change, 1= change).

10/14/98:

Appendix B: Boot Interface
Descriptors 61

B.2 Protocol 2 (Mouse)

The following illustration representsReport descriptor for a boot interface for a
mouse.

Usage Page (Generic Desktop),
Usage (Mouse),
Collection (Application),
Usage (Pointer),
Collection (Physical),
Report Count (3),
Report Size (1),
Usage Page (Buttons),
Usage Minimum (1),
Usage Maximum (3),
Logical Minimum (0),
Logical Maximum (1),
Input (Data, Variable, Absolute),
Report Count (1),
Report Size (5),
Input (Constant),
Report Size (8),
Report Count (2),
Usage Page (Generic Desktop),
Usage (X),
Usage (Y),
Logical Minimum (-127),
Logical Maximum (127),
Input (Data, Variable, Relative),
End Collection,
End Collection

Byte Bits Description
0 0 Button 1
1 Button 2
2 Button 3
4t07 Device-specific
1 Oto7 X displacement
2 Oto7 Y displacement
3ton Oto7 Device specific (optional)

10/14/98:

62 Device Class Definition for Human Interface Devices (HID) Version 1.1

10/14/98:

Appendix C: Keyboard
Implementation

The following are the design requirements for USB keyboards:

Non-modifier keys must be reported in Input (Array, Absolute) items. Reports
must contain a list of keys currently pressed and not make/break codes (relative
data).

The keyboard must support thte request.

The keyboard must send data reports at the Idle rate or when receiving a
Get_Reportrequest, even when there are no new key events.

The keyboard must report a phantom state indexing Usage(ErrorRollOver) in
all array fields whenever the number of keys pressed exceeds the Report
Count. The limit is six non-modifier keys when using the keyboard descriptor
in Appendix B. Additionally, a keyboard may report the phantom condition
when an invalid or unrecognizable combination of keys is pressed.

The order of keycodes in array fields has no significance. Order determination
is done by the host software comparing the contents of the previous report to
the current report. If two or more keys are reported in one report, their order is
indeterminate. Keyboards may buffer events that would have otherwise
resulted in multiple event in a single report.

“Repeat Rate” and “Delay Before First Repeat” are implemented by the host
and not in the keyboard (this means the BIOS in legacy mode). The host may
use the device report rate and the number of reports to determine how long a
key is being held down. Alternatively, the host may use its own clock or the
idle request for the timing of these features.

Synchronization between LED states @assLOCK, Num Lock, SCROLL LOCK,

Compostg andKANA events is maintained by the host and NOT the keyboard. If
using the keyboard descriptor in Appendix B, LED states are set by sending a
5-bit absolute report to the keyboard vi8et_Report(Output) request.

For Boot Keyboards, the reported index for a given key must be the same value
as the key usage for that key. This is required because the BIOS will not read
theReport descriptor. It is recommended (but not required) that non-legacy
protocols also try to maintain a one-to-one correspondence between indices
andUsageTagswhere possible.

Appendix C: Keyboard Implementation 63

» Boot Keyboards must support the boot protocol an@&#ieProtocolrequest.
Boot Keyboards may support an alternative protocol (specified iRepert
descriptor) for use in USB-aware operating environments.

Key Event Modifier Array Array Array Comment
Byte
None 00000000 0OH OOH OOH
B
RALT down 01000000 00 00 00
None 01000000 00 00 00 Report current key

state even when no
new key events.

A down 01000000 04 00 00

x down 01000000 04 1B 00

B down 01000000 04 05 1B Report order is
arbitrary and does
not reflect order of
events.

Q down 01000000 01 01 01 Phantom state.
Four Array keys
pressed. Modifiers
still reported.

Aup 01000000 05 14 1B

B andQ up 01000000 1B 00 00 Multiple events in
one report. Event
order is
indeterminate.

None 01000000 1B 00 00

RALT up 00000000 1B 00 00

X up 00000000 00 00 00

Note This example uses a 4-byte report so that the phantom condition can be
more easily demonstrated. Most keyboards should have 8 or more bytes in their
reports.

10/14/98:

64 Device Class Definition for Human Interface Devices (HID) Version 1.1

Appendix D: Example Report
Descriptors

The following are example descriptors for common devices. These examples are
provided only to assist in understanding this specification and are not intended as
definitive solutions.

D.1 Example Joystick Descriptor

Usage Page (Generic Desktop),

Usage (Joystick),
Collection (Application),

Usage Page (Generic Desktop),

Usage (Pointer),

Collection (Physical),
Logical Minimum (-127),
Logical Maximum (127),

Report Size (8),

Report Count (2),

Push,
Usage (X),
Usage (Y),

Input (Data, Variable, Absolute),
Usage (Hat switch),

Logical Minimum (0),

Logical Maximum (3),

Physical Minimum 0),

Physical Maximum (270),

Unit (Degrees),

Report Count (1),

Report Size (4),

Input (Data, Variable, Absolute, Null State),
Logical Minimum (0),

Logical Maximum (1),

Report Count (2),

Report Size (1),

Usage Page (Buttons),
Usage Minimum (Button 1),
Usage Maximum (Button 2),

Unit (None),

Input (Data, Variable, Absolute)

End Collection,

Usage Minimum (Button 3),
Usage Minimum (Button 4),
Input (Data, Variable, Absolute),

Pop,
Usage (Throttle),
Report Count (1),

Input (Data, Variable, Absolute),

End Collection

10/14/98:

Appendix D: Example Report Descriptors 65

Byte Bits Description
0 Oto7 X position
1 Oto7 Y position
2 0to3 Hat switch

4 Button 1

5 Button 2

6 Button 3

7 Button 4
3 Oto7 Throttle

Note While the hat switch item only requires 3 bits, it is allocated 4 bits in the
report. This conveniently byte-aligns the remainder of the report.

10/14/98:

66 Device Class Definition for Human Interface Devices (HID) Version 1.1

Appendix E: Example USB
Descriptors for HID Class Devices

This appendix contains a sample set of descriptors for an imaginary product.

Caution This sample is intended for use as an instructional tool. Do NOT copy
this information verbatim—even if building a similar device. It is important to
understand the function of every field in every descriptor and why each value was
chosen.

The sample device is a low-speed 105-key keyboard with an integrated pointing
device. This device could be built using just one interface. However, two are used
in this example so the device can support the boot protocol. As a result there are
two Interface, Endpoint, HID andReport descriptors for this device.

E.1 Device Descriptor

Part Offset/Size Description Sample Value
(Bytes)

bLength 0/1 Numeric expression specifying the size of thi®x12
descriptor.

bDescriptorType 1/1 Device descriptor type (assigned by USB). 0x01

bcdUSB 2/2 USB HID Specification Release 1.0. 0x100

bDeviceClass 4/1 Class code (assigned by USB). Note that the0x00
HID class is defined in the Interface
descriptor.

bDeviceSubClass 5/1 Subclass code (assigned by USB). These 0x00
codes are qualified by the value of the
bDeviceClasdield.

bDeviceProtocol 6/1 Protocol code. These codes are qualified by 0x00
the value of thé@DeviceSubClasfeld.

bMaxPacketSize0 7/1 Maximum packet size for endpoint zero (onlyOx08
8, 16, 32, or 64 are valid).

idvVendor 8/2 Vendor ID (assigned by USB). For this OxFFFF
example we’ll use OXFFFF.

idProduct 10/2 Product ID (assigned by manufacturer). 0x0001

bcdDevice 12/2 Device release number (assigned by 0x0100
manufacturer).

iManufacturer 14/1 Index of String descriptor describing 0x04
manufacturer.

iProduct 15/1 Index of string descriptor describing product. 0x0E

iSerialNumber 16/1 Index of String descriptor describing the 0x30

10/14/98:

device’s serial number.

Appendix E: Example USB Descriptors for HID Class Devices 67

Part Offset/Size Description Sample Value
(Bytes)
bNumConfigurations 17/1 Number of possible configurations. 0x01

E.2 Configuration Descriptor

Part Offset/Size Description Sample Value
(Bytes)
bLength 0/1 Size of this descriptor in bytes. 0x09
bDescriptorType 11 Configuration (assigned by USB). 0x02
wTotalLength 2/2 Total length of data returned for this 0x003B
configuration. Includes the combined length
of all returned descriptors (configuration,
interface, endpoint, and HID) returned for this
configuration. This value includes the HID
descriptor but none of the other HID class
descriptors (report or designator).
bNuminterfaces 4/1 Number of interfaces supported by this 0x02
configuration.
bConfigurationValue 5/1 Value to use as an argument to Set 0x01
Configuration to select this configuration.
iConfiguration 6/1 Index of string descriptor describing this 0x00
configuration. In this case there is none.
bmaAttributes 7/1 Configuration characteristics 10100000B
7 Bus Powered
6 Self Powered
5 Remote Wakeup
4.0 Reserved (reset to 0)
MaxPower 8/1 Maximum power consumption of USB device0x32

from bus in this specific configuration when
the device is fully operational. Expressed in 2
mA units—for example, 50 = 100 mA. The
number chosen for this example is arbitrary.

E.3 Interface Descriptor (Keyboard)

Part Offset/Size Description Sample Value
(Bytes)
bLength 0/1 Size of this descriptor in bytes. 0x09
bDescriptorType 1/1 Interface descriptor type (assigned by USB). 0x04
binterfaceNumber 2/1 Number of interface. Zero-based value 0x00
identifying the index in the array of
concurrent interfaces supported by this
configuration.
bAlternateSetting 3/1 Value used to select alternate setting for the 0x00

10/14/98:

interface identified in the prior field.

68 Device Class Definition for Human Interface Devices (HID) Version 1.1

Part Offset/Size Description Sample Value
(Bytes)
bNumEndpoints 4/1 Number of endpoints used by this interface 0x01

(excluding endpoint zero). If this value is
zero, this interface only uses endpoint zero.

binterfaceClass 5/1 Class code (HID code assigned by USB). 0x03
binterfaceSubClass 6/1 Subclass code. 0x01

0 No subclass
1 Boot Interface subclass

binterfaceProtocol 7/1 Protocol code. 0x01

0 None
1 Keyboard
2 Mouse

ilnterface 8/1 Index of string descriptor describing this 0x00
interface.

E.4 HID Descriptor (Keyboard)

Part Offset/Size Description Sample Value
(Bytes)
bLength 0/1 Size of this descriptor in bytes. 0x09
bDescriptorType 11 HID descriptor type (assigned by USB). 0x21
bcdHID 2/2 HID Class Specification release number in 0x100
binary-coded decimal—for example, 2.10 is
0x210).
bCountryCode 4/1 Hardware target country. 0x00
bNumDescriptors 5/1 Number of HID class descriptors to follow. 0x01
bDescriptorType 6/1 Reportdescriptor type. 0x22
wDescriptorLength 712 Total length of Reporescriptor. Ox3F

E.5 Endpoint Descriptor (Keyboard)

Part Offset/Size Description Sample Value
(Bytes)

bLength 0/1 Size of this descriptor in bytes. 0x07

bDescriptorType 1/1 Endpoint descriptor type (assigned by USB). 0x05

10/14/98:

Appendix E: Example USB Descriptors for HID Class Devices 69

Part Offset/Size Description Sample Value
(Bytes)
bEndpointAddress 2/1 The address of the endpoint on the USB 10000001B

device described by this descriptor. The
address is encoded as follows:

Bit 0..3 The endpoint number
Bit 4..6 Reserved, reset to zero
Bit 7 Direction, ignored for

Control endpoints:
0 - OUT endpoint

1 - IN endpoint
bmAttributes 3/1 This field describes the endpoint’s attributes 00000011B
when it is configured using the
bConfigurationValue.
Bit 0..1 Transfer type:
00 Control
01 Isochronous
10 Bulk
11 Interrupt

All other bits are reserved.

wMaxPacketSize 4/1 Maximum packet size this endpoint is capabl@®x08
of sending or receiving when this
configuration is selected.

For interrupt endpoints, this value is used to
reserve the bus time in the schedule, required
for the per frame data payloads. Smaller data
payloads may be sent, but will terminate the
transfer and thus require intervention to
restart.

binterval 6/1 Interval for polling endpoint for data O0x0A
transfers. Expressed in milliseconds.

10/14/98:

70 Device Class Definition for Human Interface Devices (HID) Version 1.1

E.6 Report Descriptor (Keyboard)

E.7 Interface Descriptor (Mouse)

Iltem Value (Hex)
Usage Page (Generic Desktop), 0501
Usage (Keyboard), 09 06
Collection (Application), Al 01
Usage Page (Key Codes); 05 07
Usage Minimum (224), 19 EO
Usage Maximum (231), 29 E7
Logical Minimum (0), 1500
Logical Maximum (1), 2501
Report Size (1), 7501
Report Count (8), 95 08
Input (Data, Variable, Absolute), ;Modifier byte 8102
Report Count (1), 9501
Report Size (8), 75 08
Input (Constant), ;Reserved byte 8101
Report Count (5), 95 05
Report Size (1), 7501
Usage Page (Page# for LEDs), 05 08
Usage Minimum (1), 1901
Usage Maximum (5), 29 05
Output (Data, Variable, Absolute), ;LED report 91 02
Report Count (1), 9501
Report Size (3), 75 03
Output (Constant), ;LED report padding 9101
Report Count (6), 95 06
Report Size (8), 75 08
Logical Minimum (0), 1500
Logical Maximum(101), 2565
Usage Page (Key Codes), 05 07
Usage Minimum (0), 19 00
Usage Maximum (101), 29 65
Input (Data, Array), ;Key arrays (6 bytes) 8100
End Collection Co

Part Offset/Size Description Sample Value
(Bytes)
bLength 0/1 Size of this descriptor in bytes. 0x09
bDescriptorType 1/1 Interface descriptor type (assigned by USB). 0x04
binterfaceNumber 2/1 Number of interface. 0x01
bAlternateSetting 3/1 Value used to select alternate setting. 0x00
bNumEndpoints 4/1 Number of endpoints. 0x01
binterfaceClass 5/1 Class code (HID code assigned by USB). 0x03
binterfaceSubClass 6/1 1 = Boot Interface subclass. 0x01
binterfaceProtocol 7/1 2 = Mouse. 0x02

10/14/98:

Appendix E: Example USB Descriptors for HID Class Devices 71

Part Offset/Size Description Sample Value
(Bytes)
iinterface 8/1 Index of string descriptor. 0x00
E.8 HID Descriptor (Mouse)
Part Offset/Size Description Sample Value
(Bytes)
bLength 0/1 Size of this descriptor in bytes. 0x09
bDescriptorType 11 HID descriptor type (assigned by USB). 0x21
bcdHID 2/2 HID Class Specification release number. 0x100
bCountryCode 4/1 Hardware target country. 0x00
bNumDescriptors 5/1 Number of HID class descriptors to follow. 0x01
bDescriptorType 6/1 Reportdescriptor type. 0x22
wltemLength 712 Total length of Reporescriptor. 0x32

E.9 Endpoint Descriptor (Mouse)

Part Offset/Size Description Sample Value
(Bytes)
bLength 0/1 Size of this descriptor in bytes. 0x07
bDescriptorType 1/1 Endpoint descriptor type (assigned by USB). 0x05
bEndpointAddress 2/1 The address of the endpoint. 10000010B
bmAttributes 3/1 This field describes the endpoint’s attributes. 00000011B
wMaxPacketSize 4/2 Maximum packet size. 0x08
binterval 6/1 Interval for polling endpoint for data O0x0A

10/14/98:

transfers.

72 Device Class Definition for Human Interface Devices (HID) Version 1.1

E.10 Report Descriptor (Mouse)

Iltem Value (Hex)
Usage Page (Generic Desktop), 0501
Usage (Mouse), 09 02
Collection (Application), Al 01
Usage (Pointer), 0901
Collection (Physical), A1 00
Usage Page (Buttons), 0509
Usage Minimum (01), 1901
Usage Maximun (03), 29 03
Logical Minimum (0), 1500
Logical Maximum (1), 2501
Report Count (3), 95 03
Report Size (1), 7501
Input (Data, Variable, Absolute), ;3 button bits 8102
Report Count (1), 9501
Report Size (5), 75 05
Input (Constant), ;5 bit padding 8101
Usage Page (Generic Desktop), 0501
Usage (X), 09 30
Usage (Y), 0931
Logical Minimum (-127), 1581
Logical Maximum (127), 25 7F
Report Size (8), 75 08
Report Count (2), 95 02
Input (Data, Variable, Relative), ;2 position bytes (X & Y) 81 06
End Collection, CoO
End Collection Co

E.11 String Descriptors

Part Offset/Size Description Sample Value
(Bytes)
bLength 00/01 Length of String descriptor in bytes. 0x04
bDescriptorType 01/01 Descriptor Type = String 0x03
bString 02/02 Array of LangID codes (in this case the 2-byt®x0009
code for English).
bLength 04/01 Length of String descriptor. 0x0A
bDescriptorType 05/01 Descriptor Type = String 0x03
bString 06/08 Manufacturer ACME
bLength 14/01 Length of String descriptor. 0x22
bDescriptorType 15/01 Descriptor Type = String 0x03
bString 16/32 Product Locator Keyboard Locator
Keyboard
bLength 48/01 Length of String descriptor. O0x0E
bDescriptorType 49/01 Descriptor Type = String 0x03

10/14/98:

Appendix E: Example USB Descriptors for HID Class Devices 73

Part Offset/Size Description Sample Value
(Bytes)
bString 50/12 Device Serial Number ABC123

10/14/98:

Note In this example, offset is used for the string index because the offset is
always a small number (less than 256). Alternatively, each string could be given a
sequential string index (0, 1, 2, 3...). Both implementations are functionally
equivalent as long as the device responds appropriately to a string request.

74 Device Class Definition for Human Interface Devices (HID) Version 1.1

10/14/98:

Appendix F: Legacy Keyboard
Implementation

The boot and legacy protocols for keyboards in USB allow a system which is not
USB-aware (such as PC BIOS or IEEE 1275 boot firmware) to support a USB
HID class keyboard without fully supporting all required elements of USB. The
Boot/Legacy Protocol does not limit keyboards to this behavior. Instead, it is
anticipated that keyboards will support fdlD -compatible item-based protocols

, as well as boot and legapsotocols.

F.1 Purpose

This specification provides information to guide keyboard designers in making a
USB Boot/Legacy keyboard. It provides information for developers of the system
ROM so that they can use such a keyboard without fully parsindlihéreport
descriptor. The motivation is that while the fdlD class capability is

enormously rich and complex, it is not feasible to implement the regdii2d

class adjustable device driver in ROM. But, operator input may still be required
for either boot or legacy support.

F.2 Management Overview

TheHID Class specification provides for the implementation of self-describing
input devices. A device'HID descriptors, including thReport descriptor,
contain enough information for the operating system to understand the report
protocol the device uses to send events like key presses.

Most USB devices will run with the support of some USB-aware operating
system. The operating system can afford this level of complexity. In most systems,
the ROM-based boot system cannot.

However, the ROM-based boot system usually requires some keyboard support to
allow for system configuration, debugging, and other functions. Examples include
the BIOS in PC-AT systems, and IEEE 1275 boot firmware in workstations. PC-
AT systems running DOS have an additional problem, in that the BIOS must
provide full keyboard support for DOS legacy applications required for system
setup.

It is therefore necessary for the system to take keyboard input before the operating
system loads. It soon follows that mouse support may also be necessary. To make
this easier for the ROM developer, HHED specification defines a keyboard boot
protocol and a mouse boot protocol. Since these protocols are predefined, the
system can take the 8-byte packets and decode them directly. The boot system
does not need to parse fReport descriptors to understand the packet.

Appendix F: Legacy Keyboard Implementation 75

10/14/98:

F.3 Boot Keyboard Requirements

In order to be a USB Boot Keyboard, a keyboard should meet the following
requirements:

The Boot Keyboard shall report keys in the format described in Appendix B of
theHID Class specification.

The Boot Keyboard shall support t8et_Idle request.

The Boot Keyboard shall send data reports when the interrupt in pipe is polled,
even when there are no new key events.Sdte ldle request shall override
this behavior as described in tHeD Class specification.

The Boot Keyboard shall report “Keyboard ErrorRollOver” in all array fields
when the number of non-modifier keys pressed exceeds the Report Count. The
limit is six non-modifier keys for a Boot Keyboard.

The Boot Keyboard shall report “Keyboard ErrorRollOver” in all array fields
when combination of keys pressed cannot be accurately determined by the
device, such as ghost key or rollover errors.

The Boot Keyboard shall not maintaiaPS LOCK NUM LOCK, SCROLL LOCK,
COMPOSE or KANA LED states without expliciBet_Report(Output) requests
from the system.

The Boot Keyboard shall support all usage codes of a standard 84-key
keyboard. (See: Appendix A.3)

The Boot Keyboard shall support tBet_Protocolrequest.

The Boot Keyboard shall, upon reset, return to the non- boot protocol which is
described in itReport descriptor. That is, thReport descriptor for a Boot
Keyboard does not necessarily match the boot protocolR€&pert descriptor

for a Boot Keyboard is the non-boot protocol descriptor.

On receipt of &et_Descriptor request withwValueset to
CONFIGURATION, the keyboard shall return the Configuration descriptor,
all Interface descriptors, alEndpoint descriptors, and thdlD descriptor. It
shall not return théellD Report descriptor. ThedID descriptor shall be
interleaved with thénterface andEndpoint descriptors; that is, the order
shall be:

Configuration descriptor (other Interface, Endpoint, and Vendor
Specific descriptors if required)
Interface descriptor (with Subclass and Protocol specifying Boot
Keyboard)
HID descriptor (associated with this Interface)
Endpoint descriptor (HID Interrupt In Endpoint)
(other Interface, Endpoint, and Vendor Specific
descriptors if required)

76 Device Class Definition for Human Interface Devices (HID) Version 1.1

10/14/98:

F.4 Keyboard: Non-USB Aware System
Design Requirements

Following are the requirements for a BIOS, IEEE 1275 boot firmware, or other
non-USB aware system to use a USB boot protocol keyboard:

The system shall make no assumptions about the order of key presses from the
order of keys within a single report. The order of key codes in array fields has
no significance. Order determination is done by the host software comparing
the contents of the previous report to the current report. If two or more keys are
reported in one report, their order is indeterminate. Keyboards may buffer
events that would have otherwise resulted in multiple events in a single report.

The system shall implement typematic repeat rate and delay. The Boot
Keyboard has no capability to implement typematic repeat rate and delay. The
system may use the device report rate and the number of reports to determine
how long a key is being held down. Alternatively, the system may use its own
clock or theSet_Idlerequest for the timing of these features.

The system shall maintain synchronization between LED states the Caps Lock,
Num Lock, or Scroll Lock events. The system sets LED states by sending a 5-
bit absolute report to the keyboard vig&et Report(specifyingOutput

report) request.

The system shall issueS&t Protocolrequest to the keyboard after
configuring the keyboard device.

The system shall disregard the value of the second byte in the 8-byte keyboard
data packet. This byte is available for system-specific extensions; however,
there is no guarantee that any use of the second byte will be portable to a non-
specific system. It is therefore likely to be limited to use as a notebook
keyboard feature extension, where the keyboard is specific to the system and
cannot be moved to a generic platform.

F.5 Keyboard: Using the Keyboard Boot
Protocol

This section explains some of the detail behind the requirements listed in
Appendix G.4.

To use the boot protocol, the system should do the following:

Select a Configuration which includes a binterfaceSubClass of 1, “Boot
Interface Subclass,” and a binterfaceProtocol of 1, “Keyboard”.

Do aSet_Protocolto ensure the device is in boot mode. By default, the device
comes up in non-boot mode (must readRleport descriptor to know the
protocol), so this step allows the system to put the device into the predefined
boot protocol mode.

Appendix F: Legacy Keyboard Implementation 77

10/14/98:

On receipt of an 8-byte report on the Interrupt In endpoint, the system must
look at the modifier key bits (Byte 0, bits 7-0) to determine if any o§hrer,
CTRL, ALT, or GUI keys has changed state since the last report. The system
must also look at the six keycode bytes to see if any of the non-modifier keys
has changed state since the last report.

If a non-modifier key has changed state, the system must translate the keycode
sent in theReport to a system-recognized key event.

This remapping can be accomplished through a look-up table. The keycode is
actually an index, but for the system developer the distinction does not matter.
The value sent in the boot key report is identical to the value in the Usage
Index. For example, if the report contains the following then by looking up the
Usage Index in the Key Usage Table, the 04h izitkey, the 3Ah is the F1

key, and the 5Dh is the numeric keypad 5 key.

Byte Value

Byte O 00000000b
Byte 1 00000000b
Byte 2 04h

Byte 3 3Ah

Byte 4 5Dh

Byte 5 00h

Byte 6 00h

Byte 7 00h

Important It must be stressed that this is a carefully arranged exception to
the rule thatJsagesare not sent in HID report. In the Boot Keyboard case,
the keycode table has been written specifically so thaishgeis equal to the
Logical Index which is reported.

Note: The keypad example below needs to be fixed before the 1.0 document
can be finalized.

For example, assume a certain 17-key keypad does not use the boot protocol.
Therefore, it may not declare itself to be a Boot Keyboard. It might supply the
following Report descriptor, an example of a non-boot 17-key numeric
keypad:

Usage Page (Generic Desktop),
Usage (Keyboard),
Report Count (0),
Collection (Application),
Usage Page(Key Codes),
Usage(0), ; key null
Usage Minimum(53h),
Usage Maximum(63h),
Logical Minimum (0),
Logical Maximum (17),

78 Device Class Definition for Human Interface Devices (HID) Version 1.1

10/14/98:

Report Size (8),

Report Count (3)

Input (Data, Array),
End Collection

TheUsagescome from the same Key Code Usage Page, but because the
Logical Minimum, Logical Maximum, Usage Minimum and Usage Maximum
values are different, the bytes in the report no longer line up witidhgesn
the Key Code Usage Page. To indicate that the keypad ‘5’ is down in this
example, the report from this device would be as follows.

Byte Value
0 0Bh
1 00h
2 00h

The 0Bh is the index into the list Osagesdeclared by the above descriptor.
The list of declaretlsagesstarts with 53h, which is the Usage for “Keypad
Num Lock and Clear”. The eleventh element in this list is “Keypad 5", so the
report includes an entry with 0Bh.

This two step de-referencing is necessary for a non-boot device. In the general
case, the Usages required may not start at 1, may not be a continuous list, and
may use two or morgsage Pages

However, the boot protocol was designed both to be compatible withHEhe
Report descriptor parts, and to eliminate the two-step de-referencing for this
special case. The operating system should readlihveReport descriptor for

the device protocol. The ROM-based system may use the boot protocol after
issuing theSet_Protocolrequest.

Appendix H: Glossary Definitions 79

10/14/98:

Appendix H: Glossary Definitions

This appendix defines terms used throughout this document. For additional terms
that pertain to the USB, see Chapter 2, “Terms and Abbreviations,” in the USB
Specification.

Array
A series of data fields each containing an index that corresponds to an activated
control. Banks of buttons or keys are reported in array items.

Boot Device

A device which can be used by host system firmware to assist in system
configuration prior to the loading of operating system software. A non-boot device
does not need to be functional until the operating system has loaded.

Button bitmap
A series of 1-bit fields, each representing the on/off state of a button. Buttons can
be reported in either an array or a button bitmap.

Class
A USB device is organized into classifications suchli&s, audio, or other-based
on the device’s features, supported requests, and data protocol.

Collection

A collection is a meaningful grouping bifput , Output, andFeature items—for
example, mouse, keyboard, joystick, and pointer. A polbdection contains
items for x and y position data and button data. Cbkection andEnd
Collection items are used to delineate collections.

Control
A sink or source of a data field—for example, an LED is a sink or destination for
data. A button is an example of a source of data.

Control pipe
The default pipe used for bi-directional communication of data as well as for
device requests.

Data phase
Part of a device's response to a request.

Descriptor
Information about a USB device is stored in segments of its ROM (read-only
memory). These segments are called descriptors.

Device class
A method of organizing common functions and protocols for devices that serve
similar functions—for example, communication, audio, display, and so on.

80

Device Class Definition for Human Interface Devices (HID) Version 1.1

10/14/98:

Device descriptor
Packet of information that describes the device—for example, the vendor, product
ID, firmware version, and so on.

Endpoint descriptor
Standard USB descriptor describing the type and capabilities of a USB
communication channel, or pipe.

Feature control

Feature controls affect the behavior of the device or report the state of the device.
Unlike input or output data, feature data is intended for use by device
configuration utilities and not applications. For example, the value for the repeat
rate of a particular key could be a feature contitid feature controls are

unrelated to features discussed in Chapter 9 of the USB Specification.

Feature item
Adds data fields to a Feature report.

Field
A discrete section of data within a report.

Frame
The smallest unit of time on the Universal Serial Bus (USB); equal to 1
millisecond.

HID (Human Interface Device)

Acronym specifying either a specific class of devices or the type of device known
as Human Interface DevicedID) or HID class devices—for example, a data
glove. In this documentHID class” is synonymous with a device of type: human
interface.

HID class
The classification of USB devices associated with human interface dadi€e} (

HID class device
A device of type: human interface and classified as such.

HID descriptor
Information about a USB device is stored in segments of its ROM (read-only
memory). These segments are called descriptors.

Host
A computer with a USB port, as opposed to a device plugged into it.

Hub
A USB device containing one or more USB ports.

Idle rate

The frequency at which a device reports data when no new events have occurred.
Most devices only report new events and therefore default to an idle rate of
infinity. Keyboards may use the idle rate for auto repeating keys.

Appendix H: Glossary Definitions 81

10/14/98:

Input item
Adds one or more data fields to an input report. Input controls are a source of data
intended for applications—for example, x and y data.

Interface descriptor
The class field of this descriptor defines this devicelddDaclass device.

Interrupt In pipe
The pipe used to transfer unrequested data from the device to the host.

Interrupt Out pipe
The pipe used to transfer low latency data from the host to the device.

Item

A component of ARReport descriptor that represents a piece of information about
the device. The first part of an item, called the item tag, identifies the kind of
information an item provides. Also, referred to genericallRegort items.

Included are three categories of itetdgin, Global, andLocal. Each type of
item is defined by its tag. Also referred toMain item tag,Global item tag, and
Local item tag.

Item parser
The part of thedID class driver that reads and interprets the items iRépert
descriptor.

Logical units
The value the device returns for Logical Minimum and Logical Maximum. See
Physical units.

LSB
Least Significant Byte

Main item
An item that adds fields to a report. For exampilput, Output, andFeature
items are all data.

Message pipe
Another name for th€ontrol pipe.

NAK
The value returned when a request has been sent to the device and the device is
not prepared to respond.

Nibble
A half of a byte; 4 bits.

Non-USB aware

An operating system, program loader, or boot subsystem which does not support
USB per the core and device class specifications. Examples include PC-AT BIOS
and IEEE 1275 boot firmware.

82 Device Class Definition for Human Interface Devices (HID) Version 1.1

10/14/98:

Null
No value, or zero, depending upon context.

Output item
Adds one or more data fields to an output report. Output controls are a destination
for data from applications—for example, LEDs.

Packets
A USB unit of information: Multiple packets make up a transaction, multiple
transactions make up a transfer report.

Part
Document convention used to define bit attributes.

Physical Descriptor

Determines which body part is used for a control or collection. Baghical
descriptor consists of the following three fiel@s&signator, Qualifier and
Effort .

Physical units
The logical value with a unit parameter applied to it. See Logical units.

Pipes

Pipes are different ways of transmitting data between a driver and a device. There
are different types of pipes depending on the type of encoding or requesting that
you want to do. For example, all devices h@emtrol pipe by default. The

Control pipe is used for message-type data. A device may have one or more
Interrupt pipes. Aninterrupt In pipe is used for stream-type data from the

device and an option#dterrupt Out pipe may be used for low latency data to

the device. Other types of pipes incliBldk andisochronous These two types

of pipes are not used YD class devices and are therefore not defined for use
within this specification.

Protocol
A report structure other than the structure defined by the report descriptor.
Protocols are used by keyboards and mice to insure BIOS support.

Report

A data structure returned by the device to the host (or vice versa). Some devices
may have multiple report structures, each representing only a few items. For
example, a keyboard with an integrated pointing device could report key data
independently of pointing data on the same endpoint.

Report descriptor
Specifies fields of data transferred between a device and a driver.

Set
A group of descriptors—for example, a descriptor set.

Stream pipe
Isochronous pipe used to transmit data.

Appendix H: Glossary Definitions 83

10/14/98:

String descriptor
A table of text used by one or more descriptors.

Tag
Part of aReport descriptor that supplies information about the item, such as its
usage.

Terminating items

An item within a descriptor. For exampkush Pop, andltem are terminating
items. When the item parser within tH&D class driver locates a terminating
item, the contents of the item state table are moved.

Transaction

A device may send or receive a transaction every USB framdlidecond). A
transaction may be made up of multiple packets (token, data, handshake) but is
limited in size to 8 bytes for low-speed devices and 64 bytes for high-speed
devices.

Transfer

One or more transactions creating a set of data that is meaningful to the device—
for example)nput, Output, andFeature reports. In this document, a transfer is
synonymous with a report.

Unknown Usage
Unknown usages can be standard HID usages that an application predates or
vendor defined usages not recognized by a generic application.

Usage
What items are actually measuring as well as the vendor’s suggested use for
specific items.

USB Boot Device

Device is USBHID “Boot/Legacy” compliant and Reports its ability to use the
boot protocol, or report format, defined in tHED class specification for input
devices such as keyboards or mouse devices.

Variable
A data field containing a ranged value for a specific control. Any control reporting
more than on/off needs to use a variable item.

Vendor
Device manufacturer.

84 Index

Index

class-specific 21

configuration, sample 67
A defined 79
Actions, terminating items 16 device 4, 66
Arrays endpoint 68
defined 79 examples _
modifier bytes 55 for common devpes 64
Report Count behavior 38 for HID class devices 66
report format for items 55 for joystick 64
HID 22, 68, 80
interface (keyboard) 67
B Mouse 70
. Physical [begin] 42
Bias 42, 44 Physical [end] 43
Bitmap data 55 . Report 4, 14, 23, 70
BNF grammar for usB HID descriptor 74 standard 21
Body parts, physical descriptor parts 44 String 5

Boot interface descriptors 59

Boot protocol 74, 76

Boot subclass 53

Button bitmaps, defined 79

Button bitmaps, defined\\s USB_H10.DOC-

structure 12
Design requirements, USB keyboards 62
Designator Qualifier 42
Designator sets, Bias field 44
Designator tags 43

1287 79 Device class, defined 79
Device descriptors 4, 66, 80
C Devices
classes (table) 1
Class, defined 79 common, example descriptors 64
Class-specific requests 49 descriptors See Descriptors
Collection items force feedback 2
described 33 HID, examples 1
parser behavior 16 limitations 11
tags 23 orientation 20
Collection, defined 79 reports 17, 18
Configuration descriptors 67 USB devices See USB devices
Contributing companies vii Disclaimer, intellectual property vii
Control pipes 10, 79 Documentation
Controls, defined 79 conventions ix
Conventions, document ix purpose 2
Country codes 22 related documents 3
scope 1
D
Data fields in reports 29 E
Data items, defined 81 End Collection items 24, 33
Data phase, defined 79 Endpoint descriptors 10, 68, 80
Default pipes 49 Examples
Descriptor sets 83 descriptors for common devices 64
Descriptor sets\\ 4 descriptors for joysticks 64
Descriptors items used to define 3-button mouse 25
boot interface 59 Report descriptor 56

10/14/98:

Index 85

USB descriptors for HID class devices
66

F

Feature controls, defined 80
Feature items 32
(table) 32
defined 80
tags 23
usage 29
Field, defined 80
Floating point values 19
Force feedback devices 2
Format
generic item 14
report
array items 55
for standard items 54
Frame, defined 80
Function keys as modifier keys 56

G

Generic item format 14
Get_Descriptor requests 48
Get_ldle requests 51
Get_Protocol requests 53
Get_Report requests 50
Global items (table) 34
Glossary 79

H

Hatswitch items 65

HID (Human Interface Device)
1.0 release viii
defined 80
descriptors 22, 80
revision history viii

HID class
defined 80
definition goals 2
descriptors See Descriptors
device defined 80
device descriptors 4, 66
devices See Devices
examples of devices 1
functional characteristics 7
interfaces 10
item types 26
scope of documentation 1
subclasses 8
USB devices 7

HID class devices, operational model 12
Host, defined 80

Hub, defined 80, 81, 82

Human Interface Device See HID

Input items
(table) 29
defined 81
tags 23
Integer values 19
Intellectual property disclaimer vii
Interface
(keyboard) descriptors 67
descriptors, defined 81
for HID class devices 10
Interrupt pipe, defined 81
Interrupt pipes 10
Iltem parser
defined 81
use described 15
Item tags, Main 23
Iltems
array, report format 55
Collection 16, 33
data, defined 81
defined 81
End Collection 33
Feature 29, 32
Global 34
Hatswitch 65
HID class types 26
Input 29
Local 38
long 27
Main (table) 28
Output 29
Pop 16
Push 16
required for Report descriptors 25
Set Delimiter 41
short 26
standard report format 54
Unit 36
variable 38

J

Joysticks, example descriptors for 64

K

Keyboard implementation

86

Index

10/14/98:

boot protocol 76

bootable keyboard requirements 75

generally 74

management overview 74

non-USB aware system design 76

purpose of specification 74
Keyboards

boot, alternative protocol 63

Report descriptor protocol 59

USB design requirements 62

L

LED
output items 60
states 29
Legacy protocol 74
License, software vii
Local items (table) 38
Logical units, defined 81
Long items 27
LSB, defined 81

M

Main item tags 23
Main items 28
Message pipe, defined 81
Modifier byte (table) 55
Modifier keys 55
Mouse
3-button, items used to define 25
descriptors 70
endpoint descriptors 71
HID descriptors 72
Report descriptor protocol 61
Report descriptors 72
Multibyte numeric values 19

N

NAK, defined 81

Nibble, defined 81

Non-USB aware, defined 82
Null, defined 82

Numeric values, multibyte 19

O

Operational model for HID class devices 12
Orientation of HID class devices 20
Output items

(table) 29

defined 82

tags 23

P

Packets, defied 82
Parser
defined 81
described 15
Part, defined 82
Parts, for common units (table) 37
Physical descriptors 42, 44, 82
Physical units, defined 82
PID class 2
Pipes
control 10, 79
control\\ 10
Default 49
defined 82
interrupt 10, 81
message, defined 81
stream, defined 83
Pop items 16
Push items 16

R

Report descriptors 70
defined 82
described 4, 17
difference from other descriptors 23
example 56
keyboard 59
mouse 61, 72
parsing 16
required items 25
use described 14

Report ID items 17

Reports
constraints 56
data fields within 29
defined 82
described 17
format for array items\\ 55
format for standard items 54
types 54

Requests
class-specific 49
Get_Descriptor 48
Get_Idle 51
Get_Protocol 53
Get_Report 50
Set_Descriptor 49
Set_Idle 51
Set_Protocol 53
Set_Report 51

Index 87

standard 47 described 17
Types of reports 54

S Typographic conventions ix
Set Delimiter items 41 U
Set_Descriptor requests 49
Set_lIdle requests 51 Unit items (table) 36
Set_Procotol requests 53 Units, parts for common (table) 37
Set_Report requests 51 Universal Serial Bus See USB
Sets, defined 83 Usage tags
Short items 26 and Local items 38
Software license vii and report descriptors 17
Specification purpose 74 and strings 18
Stream pipes, defined 83 Usage, defined 83
String descriptors Usage, Unknown, defined 83

defined 83 USsB

described 5 described 1

usage 18 device classes (table) 1
String descriptors (table) 72 USB devices, HID class 7
Strings and usage tags 18 USB requests, standard 47
Subclasses, HID specification 8 USB-boot device, defined 83

T \%

Tags Values, multibyte numeric 19
Collection item 23 Variable items 38
defined 83 Variables, defined 83
Designator 43 Vendor, defined 83
End Collection 24 Version, scope of 1.0 viii
Feature item 23
Input item 23
items See B2ltems W
Main item 23 World Wide Web, related documentation 3
Output item 23
usage 17

Terminating items Y
actions 16
defined 83 YACC 74

Transactions, D355 defed 83

Transfers
defined 83

10/14/98:

