Universal Serial Bus

Peripheral Development Kit Documentation

USB Single Step Transaction (USBSSTD)
User Manual

Revision 0.1

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoever, including
infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of
Sale for such products. Intel retains the right to make changes to these documents at any time, without notice. Contact your local
Intel sales office or your distributor to obtain the latest specifications before placing your product order. Since publication of
documents referenced in this document, registration of the Pentium and iCOMP trademarks has been issued to Intel Corporation.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation

P.O. Box 7641

Mt. Prospect IL 60056-764

or call 1-800-879-4683

Copyright 11996 Intel Corporation. All Rights Reserved.

* Other brands and names are the property of their respective owners.

USB Peripheral Development Kit USBSSTD

1. Overview

USB Transaction Single Step (USBSSTD) is a simple, low-level tool for exercising USB
peripherals. USBSSTD is targeted to the needs of initial integration of a new USB peripheral.
During initial hardware integration, it is advantageous to have complete control and visibility into
the USB subsystem. USBSSTD provides this level of control and visibility. It provides an easy to
use, graphical interface which allows the user to construct, submit, and evaluate the status of
individual USB transactions. USBSSTD accommodates interactions with Host Controllers which
conform to the Universal Host Controller Interface (UHCI)."

Although the granularity of control is per-transaction, the tool provides a number of aids to help
the user to construct both individual, and sequences of transfers. These aids help the user to
quickly setup and issue complete USB message traffic, or simply issue sequences of USB input
or output transactions.

USBSSTD works independently of the USB software stack. It interacts directly with the host
controller and schedule, to issue transfers and send/receive data with the addressed USB device.
If the USB subsystem has a number of active devices, the user should take care in the use of this
tool.

The following sections are organized in a top-down fashion, beginning with a description of the
USBSSTD interface followed by an intuitive walk through of its use.

2. USBSSTD Interface

The primary dialog, illustrated in Figure 1, is organized into four sections. The top section contains
controls for constructing a transfer descriptor. A transfer descriptor is used to instruct the USB
Host Controller how to perform bus transaction.

USBE Single Step Transaction !EIE

n I 0 o SetlTp Prop.
Dew ﬁdd:fl Endpt Mz LEﬂI R | metup Selection

LowSpeed [FID IvI Datall I j

0x00000000 C/5t/al &ctivate Reftesh Mext Cut Mext In
Ox000000E1 mxL/L/PID

Results Start HC S5 HC
’7 Fezet Potts HC Prop.
Drata Buffer Lo Increasing A ddresses
o0 00 0o oo 00 00 dd 00 00 OO0 00 oo a0 00 00 00 eeeennns |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 & ... e e e s mnnnns b
-
1 F

Figure 1: USBSSTD Main Dialog

! Please refer to the UHCI Specification for details.

Intel 2/29/96 1

USB Peripheral Development Kit USBSSTD

There are two portions to the middle section. The left-hand middle contains transaction setup and
execution status information. As the user constructs a new transfer, the control bits of the transfer
appear in the Transfer Descriptor Window. Just below the Transfer Descriptor Window is the
“Results” window. This window displays the latest transaction status using intuitive English
phrases. At the same time, the Transfer Descriptor Window always shows the original bits from
which the Results Window’s phrases are derived.

The right-hand middle contains action buttons for both transaction and host controller control. The
details of their use is explained in following sections. Finally, the bottom of the dialog is a
scrollable window into the data buffer associated with the transfer descriptor.

This interface is used to modify two data structures, and to interact directly with the USB Host
Controller. The two data structures are defined below.

1. A data buffer used as data source or sink for the transaction (visible in bottom window of
the main dialog).

2. A transaction descriptor which is set up via this interface and executed by the Host
Controller. The interesting portions of the transfer descriptor are displayed in the Transfer
Descriptor Window.

The usage paradigm of this interface is based on a three step process.

1. |Initialization the transfer descriptor and data buffer. Transfer Descriptor initialization
includes setting device addressing, data toggle, PID selection and expected data transfer
length. Setting up the data buffer involves editing the data buffer to contain the correct
data, if the transfer is Host to Device. Otherwise, the data buffer need not be modified by
the user.

2. Transfer descriptor activation. Once the transfer descriptor and data buffer are initialized,
the user must tell the USB Host Controller to issue the transaction to the USB device.

3. Analysis of transaction execution. Once the Host Controller has completed executing the
transfer descriptor, the results are displayed in both the Transfer Descriptor and Results
windows.

This simple three-step process is repeated for every transaction the user desires to execute. The
following sub-sections cover the details of how the interface supports each of these steps.

2.1 Step 1: Transfer Descriptor/Data Buffer Initialization

The first step in issuing a transaction to the Host Controller is initialization of the transfer
descriptor and data buffer. The top section of the main dialog (Figure 1) is surrounded by a box
and contains controls for initialization of both the transfer descriptor and data buffer. These are
called the initialization controls.

All but two of the controls provide specific capabilities for specific fields in the transfer descriptor.
The other two controls provide easy shortcuts for initializing the transfer descriptor and data buffer
for standard SETUP transactions.

There are three edit boxes, marked from left to right as: Dev Addr, Endpt, and MxLen. The first
two edit boxes allow the user to specify the address of the USB device endpoint. These boxes
accept hexadecimal numbers only, and are range-checked to ensure valid values are provided by
the user. The MxLen edit box is used to set the Max Length field in the transfer descriptor. This
value represents the number of bytes the Host Controller should send or expect to receive during
the data portion of the bus transaction.

If the USB peripheral is a low speed device, the check box labeled as such should be checked.
Checking this box sets a bit in the transfer descriptor informing the Host Controller that the USB
device is a Low Speed device, and therefore should use low speed signaling protocol.

2 2/29/96 Intel

USB Peripheral Development Kit USBSSTD

The user may initialize the transfer descriptor to perform an IN (Function to Host), OUT (Host to
Function), or SETUP (Host to Function) transaction. The drop-down list control labeled PID is
used by the user to set the transfer descriptor appropriately.

A button is provided to allow the user control over the DATAO/DATAL bit, per transaction. This
button is located next to the PID selection drop list. The text on the button reflects the action which
will be taken if the button is pressed. For example, if the button text is “Data 1", then pressing the
button will set the data toggle to a ‘1’, and the button text will change to “Data 0.

The final two controls in the initialization box are shortcuts for initializing the transfer descriptor
and data buffer for SETUP transactions. Pressing the SetUp Prop. Button produces the dialog box
illustrated in Figure 2. The Setup Data Properties dialog is a tabbed properties dialog which
provides the user edit controls for each type of standard setup command. SendVendor and
SendClass are not supported via this interface.

Setup Data Properties
SET_ADDRESS | GSETDESCR | SETCOMFIG |
GET INTERFACE | SET INTERFACE |

SYMC FRAME | GET_DESCR |

GET_STATUS | CLEAR FEATLRE I SET FEATURE

bmF equestType [hex windex [hex]
a0

k. I Cancel 1 Help

Figure 2: Setup Properties Dialog

After the user has initialized one or more of the standard setup properties, the ‘OK’ button is used
to return to the main dialog. At this point, the user then uses the Setup Selection drop-down list,
located below the SetUp Prop. Button to select one of the standard setup commands. The result
of this selection is the transfer descriptor and data buffer are correctly initialized for the type of
setup command selected.

Just as the SetUp Prop. Button and Setup Selection drop-down list are short-cuts for initializing for
a SETUP transaction, there are two other buttons, located in the middle section of the main
dialog, which provide short cuts for initializing IN and OUT transactions. These buttons are
labeled: Next Out and Next In. The big benefit of these controls is that they automatically manage
the DATAO/DATAL, and are synchronized with Setup Selection. For example, if the data portion of
a control message is Host to Function, then each press of the Next Out will correctly initialize the
transfer descriptor for the next OUT transaction (correct management of DATAQ/DATAL, but the
user must explicitly set the correct MxLen). The first press of Next In will initialize the transfer
descriptor for the status stage of the control message, including setting of MxLen to issue a NULL
data packet. Likewise, if the data portion were Function to Host, then the first press of the Next
Out button would initialize the transfer descriptor to the status stage.

Intel 2/29/96 3

USB Peripheral Development Kit USBSSTD

There will be situations where the shortcuts do not provide all of the proper initialization
information. In these situations, the specific edit controls in the initialization window may be used
to override values in the transfer descriptor. In addition, the data buffer may be directly edited at
any time.

The data buffer window is the last edit box, extending across the entire bottom of the main dialog
box. The bytes of the data buffer are displayed 16 bytes per line, read right-to-left (i.e. with least
significant byte on the right).

After the transfer descriptor and data buffer are initialized, the user is ready to progress to step 2.

2.2 Step 2: Transfer Descriptor Activation

Once the transfer descriptor and data buffer are initialized, the next step is to have the Host
Controller use the transfer descriptor to issue a USB Bus Transaction to the USB peripheral.
Directly center on the main dialog box is a button marked Activate. Pressing this button causes
the Host Controller to execute the transfer descriptor when it sees it during its scan of the
schedule. USBSSTD does not provide any guarantees in which frame, or where in the frame the
transaction will be issued.

When the Activate button is pressed, USBSSTD then deactivates the button. The button will
remain deactivated until either the Host Controller has executed and de-activated the transfer
descriptor, or the transfer descriptor is reloaded via the Setup Selection, Next In, or Next Out edit
controls.

2.3 Step 3: Analysis of Transfer Results

USB Host Controller is an independent machine executing in parallel with the system process
associated with USBSSTD. USBSSTD implements no synchronization mechanisms with the Host
Controller. Therefore, once the transfer descriptor has been activated (via the Activate button),
there is no feedback path from the Host Controller to USBSSTD to signal that it has changed the
state of the transfer descriptor.

In order to evaluate the current state of the transfer descriptor, a Refresh button is provided to the
user. This button simply provides an explicit mechanism for refreshing the display from the actual
transfer descriptor and data buffer. This button is conveniently located next to the Activate button.

Between the press of the Activate button and a new transfer descriptor initialization, a press of the
Refresh button will additionally cause USBSSTD to interpret the transfer descriptor’s status bits,
and display an appropriate phrase, with the current byte count to the Results Window (middle-left
portion of main dialog).

4 2/29/96 Intel

USB Peripheral Development Kit

USBSSTD

The following list enumerates the phrases and interpretations the user will observe in the Results

Window.

Result Phrase

Interpretation

SUCCESS
NACK

STALLED/BITSTUFF

STALLED/TIMEOUT
STALLED/BABBLE

STALLED/FIFOERR

STALLED

Transaction completed normally, all expected bytes transferred.

Transaction is still active, USB device is issuing a NACK response to
the transaction.

Transaction failed. Host controller detected a bitstuff error in the data
sent by the USB device.

Transaction failed. No response from device

Transaction failed. Host controller received more bytes than expected
from the device. The expected number of bytes was MxLen. The
actual number of bytes received is also desplayed.

UHCI-specific error where there was either a FIFO overrun due to
inability to get to PCI bus during a Function to Host transfer, or
underrun for a similar reason during a Host to Function transfer.

The device response to the transaction was STALL, not NACK or
ACK.

2.4 Host Controller Interface

USBSSTD provides four controls for the Host Controller. These should be used with extreme
caution when integrating on a populated USB system . The Host Controller control buttons
are located middle-right of main dialog, below Next Out and Next In.

The first button explicitly turns the host controller on or off. The text on the button reflects the
action to be taken when the button is pressed. For example, if the button text says: “Start HC”,
then pressing the button will cause the host controller to be started, and the button text will change

to “Stop HC".

Intel

2/29/96 5

USB Peripheral Development Kit USBSSTD

Next to the Start/Stop HC button is the “single-step” host controller button. Prior to using this

USE [UHCI] Debugger Properties |
UHEI'

140 |F3nn

— UHCI Reqister ¥ alues
Camrand 0001

It Status Qono
Int En Reg 0005

RLI RERN

FLLCI 07ED
FLEA
SOFHM
Port O 0095
Port 1 O0CHA,
k. | Cancel | Apply | Help |

Figure 3: Host Controller Register Dialog

button, the user should make sure the host controller has been stopped (using the Start/Stop HC
button). Pressing this button turns the Host Controller “on” until it successfully executes a transfer
descriptor. At completion of the transaction, the Host Controller will turn itself off.

Directly below the Start/Stop HC button is a button for resetting the Host Controller’s port
registers. This button will deliver a reset signal to all ports, and any devices connected to any
subtree will be indiscriminately reset. All ports are re-enabled after the reset has been asserted for
proper amount of time (i.e. > 25ms).

The final button in this group is marked as HC Prop. Pressing this button produces a dialog of the
form illustrated in Figure 3. This dialog prints out the current values of the host controller’s
registers. Detailed definitions of these registers are available in the UHCI Specification.

Typically, the user can use this dialog to verify the host controller is running, and the port to which
the device under test is attached is enabled. Pressing the Update button on this dialog refreshes
the display directly from the Host Controller’s registers. The Host Controller is running normally if
the Command Register has a value of 0x0001, and on each press of the Update button, the value
in the FLCI (Frame List Current Index) register changes. This is a verification that the Host
Controller is running a walking the schedule, as expected.

In addition, the state of the port register connected to the device under test must have a value of
0x0095 if the connected device is a high speed and TBD if it is low speed. This really applies only
if the device under test is connected directly to one of the root hub ports. If connected to a
separate hub, then the port register(s) will reflect the state of the connection to the appropriate
device(s).

6 2/29/96 Intel

	Universal Serial Bus Peripheral Development Kit Documentation
	1. Overview
	2. USBSSTD Interface
	2.1 Step 1: Transfer Descriptor/Data Buffer Initialization
	2.2 Step 2: Transfer Descriptor Activation
	2.3 Step 3: Analysis of Transfer Results
	2.4 Host Controller Interface

