
21 Jan 98 Application Note:
USB Monitor Control

Philips Semiconductors 
Asia Product Innovation Center
Logic Products Group

1

USB Monitor Control

Introduction

The components needed to implement USB monitor control is given in the figure below.  They include
software running on the host system to hardware and firmware running on the USB monitors.

Monitor Control
Application

HID Class
WDM Driver

USB System
Software

USB Host
Controller

Model-Specific
Firmware

USB Interface
Firmware

USB Hub
Hardware

USB
Monitor

Windows 95B/98/NT 5.0 Host

Kernel Space

User Space

Philips provided
Components for
USB Monitors

Standard
Windows 98
Components

Standard
Windows 95B
Components

Monitor Control
DLL

HID Class
Parser

Pseudo-HID
WDM Driver

PSMCI

PSMCI:
Philips
Semiconductors
Monitor Control
Interface



21 Jan 98 Application Note:
USB Monitor Control

Philips Semiconductors 
Asia Product Innovation Center
Logic Products Group

2

Monitor Control Software Suite

Microsoft will release HID drivers in the Windows 98 (Memphis).  To enable monitor makers to ship
USB monitor control in Windows 95B (OSR2.1), Philips Semiconductors has provided a complete
monitor control software suite.  This includes:

1. The Monitor Control Application.  This is a GUI (Graphical User Interface) sample to enable users to
do simple monitor control.  This applet talks to the underlying layers through the PSMCI (Philips
Semiconductors Monitor Control Interface).

2. PSMCI (Philips Semiconductors Monitor Control Interface).  This is a user friendly API (Application
Programming Interface) provided by the Philips Monitor Control DLL (Dynamic Link Library) and
driver.  This interface allows monitor makers to write their own fancy applets and provide product
differentiation.

3. Monitor Control DLL (Dynamic Link Library).  This DLL takes care of the details of HID data
structures and converts it to the user friendly PSMCI.  With this DLL, the programmers need not
have the WDM DDK (Device Driver Kit) to compile their applications.

4. Pseudo-HID WDM (Win32 Driver Model) driver.  This is the driver that emulates the Memphis HID
driver functionality.

The software suite for OSR2.1 is also portable to the Windows 98 when it is released.  Another software
suite based strictly on Microsoft HID drivers will also be provided in due course.  Because of the
PSMCI, the applet remains largely unchanged when switching between different versions of the
operating systems.  Also the firmware that is already shipped with the monitors remains unchanged
since it is compliant to the HID Specification and Monitor Control Class Specification.

With this monitor control software suite, Philips Semiconductors has provided a turnkey solution for
USB monitor control.  The other components in the solution include the USB silicon devices:
PDIUSBH11, PDIUSBH11A, PDIUSBH12, PDIUSBD11, PDIUSBD10 with their associated firmware
reference codes and evaluation boards complete with schematics, BOM (Bill Of Material) list and gerber
files.



21 Jan 98 Application Note:
USB Monitor Control

Philips Semiconductors 
Asia Product Innovation Center
Logic Products Group

3

Monitor Control Firmware Guidelines

Monitor Control Class specifies that a monitor is a HID device.  According to HID specification, one
needs to specify the characteristics of the Data Items to be read from or written to that particular device
in a structure known as Report Descriptor.  Each Data Item will have a Usage Value linked to that
particular Data Item. One or more Data Items can be grouped together under a Report ID.

Monitor Control Class Specification does not specify the Report ID values. So it is up to each monitor
manufacturer to specify the Report IDs and the grouping of the Data Items under these Report IDs.

In general the Report Descriptor can differ from one monitor to another.  One can design and build
Monitor Control Application (and potentially the underlying drivers) that will work with different monitors.
However, since the applet and the monitor normally comes from the same vendor, it is also perfectly
OK to have the applet “tied” with a particular monitor firmware.

After spending a lot of time and with wealth of information available to us, we have come out with a
simple, versatile and accurate implementation, which should comply with the final Monitor Control Class
Specification.  The following describes our Report Descriptor implementation and should be used as a
guideline:

1.  All Data Items for monitor control are of Feature type.  This is a logical choice.
2.  The Usage values of the Data Items follow the usage values of the USB Monitor Control Class

specification or the Control Code values of the VESA Monitor Control Command Set specification.
3.  Each Data Item is assigned one Report ID. This minimizes the USB bandwidth during monitor

control (changing brightness means only brightness command is sent on the USB).
4.  All Data Items have Report IDs equal to the Usage values. As the Usage values for a particular

Usage Page are unique numbers so will be the Report IDs. The uniqueness of the Report IDs is a
requirement according to the HID Specification.  This gives some kind of “standardized” assignment
and may simplify firmware coding.

5.  There may be potential conflict between Usage values of different Usage Pages.  The strategy is to
start off with the VESA Virtual Control and VESA Command Usage Pages first.  There are no
conflicts in Usage values for these two pages.  Other Usage values can then be added from other
Usage pages with remaining non-conflicting Report ID.

6.  Security Key as described in the following paragraph has to be incorporated in the device firmware
to use the monitor control software suite.



21 Jan 98 Application Note:
USB Monitor Control

Philips Semiconductors 
Asia Product Innovation Center
Logic Products Group

4

Security Key:

This is a Data Item, which has to be part of the REPORT DESCRIPTOR. This is needed to run the
Philips Semiconductor’s  Monitor Control Software Suite.

The item has been defined in the following manner:

Report Count (7) 95h,07h
Report Size(8) 75h,08h
Report ID (FD) 85h,0FDh
Usage(FD) 09h,0FDh
Feature(DATA,VAR,ABS) B1h,02h

The above Item is under Usage Page Monitor (80h). When inquired, the firmware should return a data
packet with the following 7bytes of data:

 50h, 68h, 69h, 6Ch, 69h, 70h, 73h.

So including the Report ID, the data packet would be FD, 50h, 68h, 69h, 6Ch, 69h, 70h, 73h.

Device Arrival/Removal Message

You should call RegisterApplet, while starting the Applet. This will leave the CallBack function name
with the driver. Driver will call the CallBack function whenever the Monitor Control HID device is plugged-
out or Plugged-in.

The CallBack function has the CALLBACK_APPLET_STRUCT as the parameter. The following
members of this structure is used:

HidDeviceHandle will contain the Handle of the device, whose status is changed.
DwEvent will contain

02 Device plugged-out
03 Device Plugged-in

Rest of the members of the structure are irrelevant to this call.

This command supports the multiple plug-out and plug-in of the Monitor Control HID device. Now for
OSR2.1, you need to call this function as part of your initialization routine to avoid any problems while
plug-out and plug-in. The information of CallBack function to the Applet is optional. You may do the
following things when a CallBack function is called to inform the Plug-out or Plug-in of the Monitor
Control HID device:

1.  Ignore the message. In this case you are assuming the monitor being plugged-in is same. If a
different monitor is being plugged-in then you should not ignore the command.

2.  Close and open the Applet.



21 Jan 98 Application Note:
USB Monitor Control

Philips Semiconductors 
Asia Product Innovation Center
Logic Products Group

5

3.  Refresh the Applet with the latest status, like gray the controls of the Applet.

Essentially by doing this you do not have to close and reopen the Monitor Control Applet, while the
Device is plugged-out and then plugged-in.

Accessing Interrrupt Pipe

The data over the interrupt pipe is accessed through a callback function provided by the Applet. Please
follow the steps below for the interrupt pipe data access:

Call RegisterApplet (WINAPI* PCallBackApplet )

This will leave the CallBack function name with the driver and driver will call the CallBack function
whenever there is data read from the interrupt pipe.

The typedef struct _CALLBACK_APPLET_STRUCT
{

DWORD dwEvent,
PPHILIPS_MAINREPORT pMainReport,
PRANGE_REPORT pRangeReport,
PAUX_REPORT pAuxReport

}CALLBACK_APPLET_STRUCT, *PCALLBACK_APPLET_STRUCT;

So the CallBackApplet will look like

DWORD WINAPI CallBackFunction(PCALLBACK_APPLET_STRUCT param)

and you should call the RegisterApplet as RegisterApplet(&CallBackApplet);

Reference Documents

1. USB Monitor Control Class Spec. Rev. 1.0.
2. VESA Monitor Control Command Set V1pR0D13 or later.
3. Device Class Definition for Human Interface Devices (HID) V1.0.
4. USB Spec. Rev. 1.0, especially Chapter 9: USB Device Framework.


