
AP-648
APPLICATION
NOTE

December, 1997

USB Audio Using the
8x930Ax/Hx Controller
and an Audio Codec
Order Number: 292206-003

Information in this document is provided in connection with Intel products. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or
warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright
or other intellectual property right. Intel products are not intended for use in medical, life saving, or life
sustaining applications. Intel may make changes to specifications and product descriptios at any time, without
notice.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725 or by visiting Intel’s website at http://www.intel.com.

Copyright © Intel Corporation 1997. *Third-party brands and names are the property of their respective owners.

Contents
1.0 INTRODUCTION .. 1

2.0 USB and Digital Audio ... 1

2.1 Universal Serial Bus ... 1

2.2 Intel’s 8x930Ax/Hx USB Controller ... 1

2.3 Traditional PC Audio ... 1

2.3.1 Possible Drawbacks to Using PC Sound Cards .. 1

2.4 USB Audio .. 2

3.0 Codec Background and Selection .. 2

3.1 Codec Basics .. 2

3.2 ARCHITECTURE CONSIDERATIONS .. 3

3.3 Performance ... 3

3.4 Features ... 3

3.5 Interface Signals ... 3

3.5.1 Serial .. 4

3.5.2 Parallel ... 4

4.0 8x930Ax/Hx Interface ... 4

4.1 USB to 8x930Ax/Hx Interface ... 4

4.2 8x930Ax/Hx to Codec Interface .. 5

5.0 8x930Ax/Hx to Codec Interface Example ... 5

5.1 HIGH LEVEL SYSTEM CONSIDERATIONS ... 5

5.2 AD1845 Details ... 6

5.3 8x930Ax/Hx to AD1845 Interface Example .. 7

5.4 Considerations and Recommendations .. 10

5.4.1 USB SOF ... 10

5.4.2 Data Request ... 10

5.4.3 Matching Data Rates ... 10

5.4.4 Offsetting the SOF ... 10

6.0 Conclusion .. 11

7.0 References .. 11

8.0 Firmware Template for Communication Between the 8x930Ax/Hx and Audio Codec 12

8.1 Firmware Guideline ... 12

8.1.1 Initialize .. 12

8.1.2 SOF ISR ... 13

8.1.3 Codec Request ISR ... 14

8.2 Sample Subroutines ... 14

9.0 Sample Firmware Subroutines for Communication Between the 8x930Ax/Hx and Audio Codec . 15

10.0 Schematics ... 2 0
iii

Contents
Figures

1. Generic Coding and Decoding Block Diagram... 2

2. 8x930Ax/Hx and AD1845 Block Diagram ...7

3. AD1845 DMA Timing Requirements .. 8

4. 8x930Ax/Hx Parallel Port Write Timing ..8

5. Read Timings for AD1845 ..8

6. Read Timings for 8x930Ax/Hx (1 Wait State) .. 9

7. 8x930Ax/Hx and AD1845 Offset ... 11

Tables

1. Sample Wire Map Between 8x930Hx and Audio Codec .. 12
iv

AP-648

e

it
r,
O
n

r
o.

-
an
C
the

is
d
or
nd
rd
er
e

hat
C
al
PC
s

-
y
al
to
n
de
s

s.
1.0 INTRODUCTION

This application note provides an introduction to
interfacing the 8x930Ax/Hx with an audio codec to
perform playback of digital audio, presents an overview
of USB as it relates to digital audio, and discusses codec
background and selection. It also describes 8x930Ax/Hx
interfacing, providing an example with design recommen-
dations.

2.0 USB and Digital Audio

2.1 Universal Serial Bus

The Universal Serial Bus (USB) is an industry standard
interconnection bus designed to support a wide range of
peripherals around the PC. The USB topology has three
elements: host, hubs, and functions. The PC is the host
and peripherals are the functions. Peripherals interface to
the host PC via USB cables and protocol. To enable a
variety of peripherals, the USB protocol defines four
transfer types: Control, Isochronous, Interrupt and Bulk.

Every peripheral will need to support control transfers so
that configuration and command/status information can
flow between the host PC and peripheral. Isochronous
transfers provide guaranteed bus access and constant data
rate to support CTI (computer-telephone integration) and
audio systems. Interrupt transfers are designed to support
human input devices such as joysticks, mice, and
keyboards. These devices need to communicate small
amounts of data infrequently, but with bounded service
periods. Bulk transfers are designed for peripherals such
as printers and digital cameras. These devices
communicate large amounts of data to the PC as
bandwidth becomes available.

The USB implements a blocking bandwidth allocation
scheme that denies access to a peripheral if the peripheral
exceeds the current bandwidth allocation or latency
requirements. USB allows up to 90% of the bus
bandwidth to be used by isochronous and interrupt
transfers. The remaining 10% is reserved for control
transfers. Bulk transfers only occur on a bandwidth-
available basis.

2.2 Intel’s 8 x930Ax/Hx USB Controller

Intel’s 8x930Ax/Hx is a single chip, USB Specification
Rev. 1.0 compliant, peripheral controller. The presence of

a rich combination of integrated features makes th
8x930Ax/Hx peripheral controller flexible and powerful.
It contains a MCS® 251 microprocessor core, four 8-b
I/O ports, three 16-bit timers, hardware watchdog time
Programmable Counter Array (PCA), and a Serial I/
port. The purpose of this application note is to provide a
introduction on interfacing the 8x930Ax/Hx with an audio
codec to perform playback of digital audio.

2.3 Traditional PC Audio

There are currently two predominant methods fo
generating audio using a PC. The first is CD audi
Similar to home stereo compact disk players, the CD
ROM drive reads the compact disk and produces
analog output. This analog signal is inputted to a P
sound card, processed further, and then outputted from
PC using a standard RCA plug.

The second method of generating audio via a PC
performed by reading a file from memory into the soun
card. The sound card performs any decoding
processing, converts the digital data to analog, a
outputs the analog signal from the PC via the standa
RCA plugs. This is the procedure used when a us
downloads an audio file or initiates a playback from th
hard drive.

2.3.1 Possible Drawbacks to Using PC
Sound Cards

There are several drawbacks to using sound cards t
install into a PC card slot. The sound card utilizes P
resources like interrupts and ports. It is also an addition
cost. Since the sound card has to be inserted into the
box, reconfiguration is required which can be viewed a
difficult by many users.

The interior of a PC box is also noisy with electromag
netic interference (EMI). This may limit the sound qualit
of ‘inside the box’ solutions, as there is an analog sign
that is sent from the CD-ROM to the sound card. Due
design complexity, sound cards can be limited i
channels. This can hamper their scalability and preclu
their use in multiple-channel surround sound system
without the addition of processing power to the speaker
1

AP-648

B
e

r
e
de

 in
ch
 to
 is
).
ar

-bit
al

he
a

,
on
,
e
n.
-
d
el
ith
2.4 USB Audio

USB, however, lends itself nicely to audio applications
because it is ‘outside the box’. The audio data remains
digital until it is outside the PC. It is converted back to
analog just prior to the speaker amplification circuitry,
resulting in improved sound quality. Digital audio
typically has higher fidelity, which is obvious in high-end
speakers. A USB based solution is also scalable allowing
the speaker vendor to increase the quality of audio
without the addition of any hardware between the host
and the USB controller.

For instance, it is possible to have more than two channels
of audio data, enriching the user’s multimedia experience.
Similarly, the ease of plug and play makes a USB imple-
mentation attractive. The data processing can be done on
the host, providing a cost savings to the speaker manufac-
turer. The user need only buy a pair of USB capable
speakers.

USB has also demonstrated the ability to handle the
bandwidth required by audio applications. A compact disk
has a sample rate of 44.1kHz and 16 bits per sample.
Since the USB frame rate is 1ms, the audio peripheral will
receive nine frames containing 44 samples and one frame
containing 45 samples. In other words, over a time period
of 10ms, the peripheral will receive 9*44 + 45 = 441
samples, which averages to 44.1 samples per millisecond
and equals the sample rate of 44.1kHz.

Assuming two channels of audio data, 10 bytes for
protocol overhead, and a worst-case bit stuffing of 16%,
the playback system will need to handle (45*16*2 +
10)*1.16 = 1682 bits/ms, or approximately 210 bytes/ms.
Each USB frame has a data payload of 1024 bytes.
Therefore, playback of a stereo audio signal would

consume approximately 20% of the available US
bandwidth. Out of each 210B packet, there will b
(45*16*2) = 180B of raw audio data.

3.0 Codec Background and Selection

3.1 Codec Basics

Given that the digital-to-analog conversion will occu
inside the USB peripheral, it is beneficial to cover th
operation of codecs. In general, codecs are used to CO
and/or DECode data. The term is somewhat general,
that codecs are available for different types of data; su
as audio or video. It is also used on occasion to refer
COmpression and DECompression, in which the data
encoded according to an algorithm (MPEG for example
For PC audio, the industry accepted data format is line
Pulse Code Modulation (PCM). More specifically, two
channels of data (stereo) that is represented by a 16
twos complement digital word. Figure 1 shows a gener
block diagram of coding and decoding.

Coding is done when an analog signal is sampled by t
analog-to-digital converter (ADC) and quantized to
digital word (in this example, a 16-bit word with a twos
complement format). Depending on the application
digital signal processing (DSP) can then be performed
the digital samples for the purpose of filtering
compression, etc. PCM in its basic form doesn’t us
compression, so there is no DSP block for our applicatio
Decoding of the digital samples is done by the digital-to
analog converter (DAC). The output is the reconstructe
analog signal. It should be noted that for a two-chann
stereo application, there are two separate data paths w
duplicate DSP and DAC blocks so that each channel can
be controlled individually.
Figure 1. Generic Coding and Decoding Block Diagram

A4439-01

Analog
Input

ADC DSP DAC

Analog
Output

Sample
Clock
2

AP-648

rs
y

e
vel
io
ut
s.
re:
r

ile
ly

tes
er
the
 the
r.

st
e.
to

st
s
ne;
n
rd
e

e
nd
ta
e
is

e
em
ask

ec
ce.
e
to
s,
An example of coding is the recording of an audio
waveform which entails the first half of the system shown
in Figure 1 on page 2. An analog waveform is digitized,
compressed if necessary, and then stored on a medium
such as a CD. Audio playback is the second half of the
system, where the digital words are read from the
medium, decompressed if necessary, and then converted
from digital to analog and played through a speaker.

3.2 ARCHITECTURE CONSIDER-
ATIONS

Several different circuit architectures exist for performing
the analog-to-digital and digital-to-analog conversions.
For 16-bit digital audio, it appears that sigma delta ADCs
and DACs are the industry favorite. As one might expect,
there are design trade-offs that have to be made by codec
manufacturers. The sigma delta architecture offers the
appropriate balance between speed of conversion and
resolution of bits.

It is not necessary for the casual user to understand the
fine details of how the conversion is done. Conversely,
the process shouldn’t be considered a black box. Sigma
delta converters typically employ integrators, compar-
ators, and digital filters (decimation). The theory of
operation is rather involved, but the main principle is that
input can be oversampled, threshold approximations can
be made, and filtering can be done to extract the output.
Since oversampling is used, the codec user should expect
to supply a reference frequency substantially higher than
the sample rate of the audio data.

3.3 Performance

Another main consideration that should be examined is
the signal-to-noise ratio (SNR). SNR1 is used as a figure
of merit for ADCs and DACs and represents the ‘clean-
liness’ of the output. It is typically computed via the Fast
Fourier Transform (FFT) of the output signal under a pure
sinusoidal input. A rule of thumb is that high quality audio
requires a SNR of at least 75dB. One can typically find
converters with a SNR of 80dB. However, one must
understand that the system into which the codec is placed
has a great effect on the sound quality.

1. SNR is the ratio of the fundamental frequency com-
pared to all the other frequencies at the output.

3.4 Features

The codec chip usually includes all the necessary filte
and support circuitry used by the converters. The
generally do not provide the amplifier circuits that driv
the speakers. The output of a typical codec is a line le
output (RCA type connectors). Therefore, standard aud
amplifier circuitry can be used. Many codecs also outp
voltage references to help with biasing of the amplifier
Other features to consider when choosing a codec a
serial or parallel interface, bi-directional transfe
capability, and buffering.

Some codecs support a byte-wide parallel transfer wh
others support a bit-wide serial exchange. As previous
mentioned, a 1ms USB frame may contain up to 180 by
of audio data. Therefore, the USB controller must deliv
data at a rate of 180KBps to the codec. The designer of
USB audio system must match the processing needs of
codec to the processing capabilities of the USB controlle
If the controller is required to process more than ju
audio data, it may be beneficial to use a parallel interfac
This would increase the controller resources available
other processes.

Bi-directional capability can also increase a codec’s co
and complexity. Support for bi-directional transfer
means that both coding and decoding can be do
although not simultaneously. Typically, a reconfiguratio
is necessary to switch between playback and reco
modes. Bi-directional support will increase the interfac
complexity as well.

Finally, on chip buffering is a feature to consider. Som
codecs provide FIFO buffers to ease the interface a
timing requirements to microprocessors. Since da
delivery must be guaranteed, the buffer allows som
tolerance in servicing the codec’s need for data. This
especially important if the controller will process more
than one task. The clock rate of the controller will b
much higher than the audio sample rate, but the syst
designer must take precautions to assure that the t
switch overhead can be accommodated.

3.5 Interface Signals

The number of interface signals required by the cod
depends on the number of features and type of interfa
Typically, there are two sets of signals connecting th
codec and controller: data and control. It is possible
find codecs that require relatively few interface signal
3

AP-648

he
r.

ast

e
or
e
l

but this typically means that control and data information
is multiplexed. Because multiplexing eases the number of
interconnects, it requires more management by the
controller and greater attention to timing and coding.

3.5.1 Serial

A serial interface will most likely require from 7 to 11
interface signals. The data and control bundles are usually
separate. Control information is passed via 3 signals:
CDATA, CSHIFT, and CLATCH. CDATA is serial
control data. This data is used to configure the codec for
the sampling rate, data format, filter programming, master
clock frequency, etc. CSHIFT is a clock signal that clocks
each bit, serially, into a control buffer. CLATCH is a
signal that latches the control word into a register and
initiates reconfiguration.

Data is passed in a similar manner by SDATA, SSHIFT,
and LRCLK. SDATA is the serial data. SSHIFT is the
clock signal that shifts each data bit into a buffer. LRCLK
indicates whether the data word is for the left or right
channel. For example, 16 bits of left channel information
is clocked into the buffer using SSHIFT. A transition on
the LRCLK latches the data word and then signals the
next 16 bits as right channel data.

The remaining signals vary from codec to codec. There
will be at least one chip enable or initialization signal.
There could also be separate control signals for features
like muting, power management, or transfer direction.
Support for bi-directional transfers may require additional
interface signals. This sometimes depends on whether the
codec becomes a bus master or remains a slave. Keep in
mind the number of control signals and the complexity of
control logic.

3.5.2 Parallel

A parallel interface will require approximately 12 - 20
interface signals. Control and data information is usually
multiplexed over the parallel bus. Data information is
passed via DATA[7:0], DCLK, and LRCLK. An entire 8-
bit word will be latched using the CLK signal. LRCLK
may or may not be required to signify separation of
left/right data. Control data may also be output onto
DATA[7:0]. One or two additional control signals are
asserted to notify the codec as to whether the incoming
byte is audio data or control information. There will also
be a reset or initialization signal.

As with the serial case, the number of interconnects can
climb quickly with additional features. Some parallel
codecs are capable of interfacing directly to the ISA bus
which may complicate the interface due to bus control
issues. Likewise, bi-directional support could increase the
number of interconnects.

4.0 8x930Ax/Hx Interface

4.1 USB to 8x930Ax/Hx Interface

The implementation of USB on the 8x930Ax/Hx can be
divided into four sections: first-in, first-out (FIFO),
Function Interface Unit (FIU), Serial Bus Interface
Engine (SIE), and the transceiver.

The 8x930Ax/Hx has a total of eight FIFOs: four transmit
FIFOs and four receive FIFOs. The transmit/receive
FIFOs support four function endpoints (0-3). Endpoint 0
is 16 bytes and is dedicated for control transfers. Endpoint
1 is user configurable up to 1024 bytes, and Endpoint 2
and 3 are 16 bytes. Endpoints 1, 2, and 3 can be used for
interrupt, isochronous, control, or bulk transfer types.

The transmit and receive FIFOs are circulating FIFOs
which support up to two separate data sets of variable
sizes and contain byte count registers that access the
number of bytes in the data sets. They also have flags that
detect a full or empty FIFO and have the capability of
retransmitting the current data set.

The FIU, SIE, and transceiver make up the rest of the
8x930Ax/Hx’s USB interface. The transceiver circuitry
detects and drives signaling on the USB data lines. T
serial bus interface engine is the USB protocol interprete
It is responsible for bit stuffing/unstuffing and for
ensuring that transmissions across USB cables are le
significant bit (LSb) first. The FIU controls operation of
the FIFOs and monitors the data transaction. Th
operation of these three units isn’t of much concern f
the user. However, more information can be found in th
8x930Ax, 8x930Hx Universal Serial Bus User’s Manua
(1).

Given the data payload size, audio applications will use
Endpoint 1. More specifically, the 1024 byte FIFO will be
configured into two 512 byte sections. During trans-
mission of an audio stream, data from frame X will be
read into section A. At the start of frame (X+1), data in
section A will be valid and incoming data from the host
will be read into section B. At the start of frame (X+2),
4

AP-648

d a
trol
n.
to
ith
eds
ot

e

c’s
ne
e

ed

to
e
c
ut
th
ot
io
 by

or
cs

ent
e

id-

d
le

rt
e
s
4

data in section B will be valid and incoming data from the
host will overwrite section A.

Note that the re-transmit feature does not apply to
isochronous transfers. Also note that the USB protocol
requires least significant bits and least significant bytes
first. The SIE takes care of transmitting the least
significant bit to most significant bit in a given byte, so
the user need not worry about LSb first. It is the user’s
responsibility, however, to ensure that multi-byte data
packets are transmitting least significant bytes (LSB) first.

4.2 8x930Ax/Hx to Codec Interface

Once data has been captured from the USB cable into the
transceiver FIFOs, there are two methods in which to
transfer data from the 8x930Ax/Hx to the codec. The first
is through the Serial I/O port. The second is through the
system bus (8 bit I/O ports 0 and 2). For isochronous
transfers, the 8x930Ax/Hx is configured as a high speed
device and runs internally at 12MHz.

The serial I/O port supports communication with modems
and other external peripheral devices. It can operate in 3
full duplex asynchronous modes or 1 half duplex
synchronous mode. In half duplex mode (mode 0), the
clock is output on the TXD pin while data is received and
transmitted on the RXD pin. Transfers are controlled by
using the Serial Port Control (SCON) and Serial Buff
(SBUFF) registers. Similar to the transmit/receive
FIFO’s, data is transferred LSb first. The user must be
aware that a peripheral cycle is not equal to 8x930Ax/Hx’s
clock cycle. Peripheral cycles run at a rate of Fclk/6. An
internal clock rate of 12MHz equates to a 2MHz clock
rate on the TXD pin.

Additional interface signals can be controlled using the
remaining I/O’s on Port 1 and 3. The TI bit in the SCON
register can be polled to determine the completion of a
data sample transfer and therefore trigger a LRCLK
signal. Since the 8x930Ax/Hx has only one Serial I/O
port, the transfer of control information needs to be
programmed explicitly.

The system bus (ports 0 and 2) is used to communicate
with external memory. The external bus supports 16 bits
of addressing and 8 bits of data by using two 8 bit ports
for the interface. One port is used for 8 bits of address
information while the other 8-bit port is multiplexed with
address and data. From a codec’s perspective, it does not

matter if the 8x930Ax/Hx is configured for page mode or
non-page mode.

A codec that uses a parallel interface can be considere
second memory device. The codec may use the con
interface to request a data sample or control informatio
After the controller detects the request, it writes data on
the system bus. A great deal of care must be taken w
the address decoding and bus timing. The designer ne
to make sure that reads/writes to memory are n
acknowledged by the codec and vice versa.

Using the 17- and 18-bit addressing modes of th
8x930Ax/Hx can be useful. An external PAL or logic gate
can decode these two signals to generate the code
enable signals. The transfer of control signals can be do
using ports 1 and 3. Similar to the Serial I/O method, th
signal transitions on these pins must be programm
explicitly.

5.0 8x930Ax/Hx to Codec Interface
Example

The following example shows what one would need
implement the playback of digital audio using th
8x930Ax/Hx and an AD1845 Parallel Port Stereo Code
from Analog Devices. This is not a recommendation b
only a design application example. Many codecs wi
parallel interfaces could conform to this example. It is n
intended to cover all details of designing a USB aud
system, but merely to address some of the issues faced
system designers.

5.1 HIGH LEVEL SYSTEM CONSIDER-
ATIONS

One of the goals is to provide a simple overall design f
the playback of stereo digital audio data. The serial code
considered for this example required that data be s
MSb first. As previously discussed, serial output from th
8x930Ax/Hx is LSb first. This requires that bit reordering
be done. In theory, one could use bit operations to indiv
ually write bits to one of the 8x930Ax/Hx's output pins.
However, it is assumed that the timing restrictions an
coding overhead are too complex to make this a viab
solution.

Another possible solution would be to use the serial po
in conjunction with some external components. Th
maximum peripheral clock rate from the serial port i
2MHz. The audio data rate is 180 bytes/ms = 1.4
5

AP-648

he
x

),
ers
re
he
es
to
n
ter

t

ta
he

ta
ol
e.
s

l
r
the
to
f
d.

c
Q)

ck

s

 of
e

ts
s
 to

le
set
t
Q
is
ot
Mbits/s. Therefore, 72% of the serial port’s clock cycles
need to be available for transferring data. The program
code and interrupt routines can be streamlined to satisfy
this throughput requirement. For instance, the program
code could be simplified so that its sole responsibility
would be to transfer data from the 8x930Ax/Hx receive
FIFO to the serial port. An external FIFO or buffer,
capable of reordering the bits in each byte, could be used
and a state machine could be designed on a FPGA to
control the interface between the FIFO and codec.

This would remove the logic complexity from the
8x930Ax/Hx. The FPGA would be responsible for the
codec’s configuration and regulate the flow of data to the
codec. Care would have to be taken, since the codec and
speaker system would essentially run asynchronous to the
8x930Ax/Hx and USB system. The 8x930Ax/Hx would
simply pump data out the serial port and into the FIFO.
The FPGA would have to monitor the state of the codec
and fill level of the FIFO and coordinate the flow of data
between the two.

If the serial interface is utilized for other purposes, a
parallel codec solution can also be implemented.
Although a parallel codec is typically more expensive
than a serial codec, some of the additional features can
prove beneficial and provide a lower overall cost. For
example, it supports a burst type transfer that simplifies
handshaking. This helps to ease the latency requirements
with the controller. The AD1845 is also a flexible part in
terms of system configuration. It can be programmed to
accept several data formats and data rates, and is
operational with a range of clock rates. Finally, many
parallel codecs support bi-directional transfers and power
down modes, leaving room for future development.

5.2 AD1845 Details

For (16-bit twos) complement PCM data, the AD1845
FIFO considers a ‘sample’ to be a pair of left/right data
samples. Therefore, the on-chip 16-sample FIFO will hold
16 left/right pairs = 64 bytes = 512 bits of audio data. The
data payload in each USB frame is 180 bytes, so the
AD1845 is capable of holding over a third of the data in a
USB frame. Additionally, the AD1845 accepts data which
transferred low byte first. It expects LSB left channel,
MSB left, LSB right, MSB right. This is the same order
that bytes are transmitted by the host, so there is no need
for bit or byte reordering.

 Addressing for the codec’s registers is performed via t
ADR1:0 signals. These two bits of input select the Inde
Address Register (IAR), Indexed Data Register (IDR
Status Register, or PIO Data Register. These four regist
are considered to have direct forms of addressing. The
are also 32 registers that have indirect addressing. T
IAR register holds 4 bits of data that signify the address
of the indirect registers. The IDR contains data that is
be read/written to the register pointed to by the IAR. I
other words, the user selects a particular control regis
by driving ADR1:0 = 0 and writing the appropriate 8 bits
to the parallel port. This loads the IAR with the indirec
address. By driving ADR1:0 = 1, the IDR register is
selected. The next write to the parallel port loads the da
into the particular indirect register that is addressed by t
IAR.

Because it is necessary to perform two writes to the da
bus and two writes to the ADR signals to update a contr
register, setup and initialization can become cumbersom
However, the AD1845 supports a Direct Memory Acces
(DMA) protocol during data transfers. The DMA protoco
is similar to a burst type of transfer. If the codec’s buffe
is not full, the codec requests data. For each request,
controller acknowledges the request and proceeds
output 4 bytes of data (a left/right pair). This type o
protocol helps to cut down on the processing overhea
For every interrupt request by the codec, the 8x930Ax/Hx
returns 4 bytes of data instead of just one byte.

During playback, the signaling is as follows: The code
requests data by asserting Playback Data Request (PDR
high. The controller acknowledges by asserting Playba
Data Acknowledge (PDAK) low. The controller then
follows by outputting data onto the 8 bit bus. Data i
clocked into the codec by the WR#1 input. WR# is strobed
low and data is latched into the codec on the rising edge
WR#. The AD1845 de-asserts PDRQ on the falling edg
of the final WR# strobe and the controller de-asser
PDAK after the rising edge of the final WR# strobe. Thi
completes the handshake and the codec will be able
issue another data request.

It should be noted that the ADR inputs are ignored whi
PDAK is asserted. To stop playback, the user must re
bits in a control register by using IAR and IDR. This mus
be done in between PDRQ data requests. All PDR
requests must be acknowledged. If the controller
stopping playback and has loaded the IAR but has n

1. The maximum clock rate for WR# is 6.25 MHz
6

AP-648

ny

e
y

of

ith
e

te
s

h
he
latched the data into the register, and PDRQ is output by
the codec, the controller must acknowledge the request. It
must output PDAK and strobe WR# four times. When the
codec de-asserts PDRQ, the controller can write to IDR
and finish stopping the playback.

The power up initialization of the AD1845 takes approxi-
mately 512ms. The IAR reads 80h during initialization
and can be polled for a value other than 80h to determine
when initialization has completed. This indicates that the
controller will have to perform reads from the codec, even
if there are no bi-directional transfers. Similarly, when
certain parameters are changed during setup, the AD1845
goes through routines that allow filters and other circuitry
to settle. The controller must again poll the IAR register.

5.3 8x930Ax/Hx to AD1845 Interface
Example

A general system block diagram is shown in Figure 2
below. The 8x930Ax/Hx provides 1K of on-chip data
memory. All code is executed out of external memory
(ROM or RAM) or on-chip ROM. For this design

example, it is assumed that code would be contained on an
external ROM chip. The 1K of on-chip memory should
suffice for any scratch pad area so there shouldn’t be a
need to write to external memory.

The first issue to be addressed is the timing of th
interface signals. Figure 3 indicates the timing required b
the AD1845 and Figure 4 indicates the default timings
the 8x930Ax/Hx parallel port. All timings are in ns.

As one can see, the setup and hold of the data byte w
respect to WR# is 10ns; 15ns for the AD1845. Th
equivalent times for the 8x930Ax/Hx are 68ns and 28ns,
indicating that all setup and hold times are compatible.

However, there is a discrepancy in the width of the wri
pulse. The AD1845 requires a minimum width of 100n
but the 8x930Ax/Hx default configuration only provides
71.8ns. Therefore, the 8x930Ax/Hx must be configured
with an extra wait state. This will increase the WR# widt
to 154ns. Since the program is executing out of ROM, t
8x930Ax/Hx WR# signal is connected only to the codec.
Figure 2. 8x930Ax/Hx and AD1845 Block Diagram

A4437-01

PSEN#

8x930Ax/Hx

ALE

P1,P3

RD#USB

EPROM

AD1845

CE

RD#

A16:17

A0:7

Data [7:0]

Amplifier
&

Speaker

XYZ

RDC

A8:15

L

D0:7

NOTES
P1,P3 = Ports 1 and 3 are used for A16:17, INT0# and other codec interface signals
 xyz = Codec interface signals WR#, CS#, PDAK#, PDRQ, ADR1:0, RESET#
7

AP-648
Figure 3. AD1845 DMA Timing Requirements

Figure 4. 8x930Ax/Hx Parallel Port Write Timing

Figure 5. Read Timings for AD1845

A4443-01

WR#

DATA
(7:0)

PDRQ

PDAK

100

10

10

15

25

Byte 4

10

10

15

Byte 1

A4442-01

WR#

P0 or P2 Address

71.8

68

28

Data

A4440-01

RD#

DATA[7:0]

100

40

15

Byte
8

AP-648
Figure 6. Read Timings for 8x930Ax/Hx (1 Wait State)

A4441-01

PSEN#

P0 or P2 Address

156

133
0

Data
Reading from the codec presents some additional
problems since there must be a way of determining if the
controller is reading from the memory chip or the codec.
One way to do this is to assign the codec to a memory
address or memory block. Any read from that particular
location or block is ignored by the external ROM.

The 8x930Ax/Hx provides for 16-, 17-, or 18-bit
addressing. Under 18-bit addressing, outputs A16 and
A17 (pins P1.7 and P3.7) select one of four 64KB
memory pages (00, 01, FE, and FF). The program code
executing out of ROM should easily fit inside a 64KB
block. This program code can reside in page FF. By
defining the codec as page 00, one can decode A16 and
A17 and generate the codec’s read signal. Namely, O-
Ring A16, A17, and PSEN# will produce a read signal for
the codec. Required read timings are shown above in
Figure 5 and Figure 6. All timings are in ns.

When addressing the codec, the 8 bits of address data sent
out onto the system bus by the 8x930Ax/Hx are irrelevant.
With 1 wait state, the 8x930Ax/Hx requires valid data to
be on the bus within 133ns after applying PSEN#. The
AD1845 can deliver the data being read in 40ns, so the
decoding logic has roughly 90ns to generate the codec’s
read signal. Note that all reads, including the ones to the
external ROM chip, will have 1 wait state. This will
degrade program execution to some degree, as there will
be an extra cycle of latency from ROM reads.
9

AP-648

B
be

tion
se
’s
k
ll
on

 a
xt
d,
.
e

d

hat
ine
y
ily
 a
in
 is
f
r
g

t
e

ust
te
d

r.
d

s

5.4 Considerations and Recommenda-
tions

5.4.1 USB SOF

Although bandwidth allotment for the isochronous data is
guaranteed, there is no guarantee regarding the exact
placement of the isochronous data inside a particular
frame. Furthermore, the exact byte count of raw data will
also vary. Since the placement and exact size of the data
packet can vary from frame to frame, the system designer
must use the Start of Frame (SOF) interrupt and RXCNT
register to determine when new data is valid and how
much data has been received.

As previously mentioned, the endpoint 1 receive FIFO is
1024 bytes and is configured as two 512 byte FIFOs. Data
in each of the FIFOs is qualified by the SOF. In other
words, a SOF tells the user that a new frame has started
and that the isochronous data received in the previous
frame must be valid. The SOFH register contains the Any
Start of Frame (ASOF) bit which indicates that a SOF has
been received. This can be set to generate an interrupt.
The interrupt routine can then poll the RXCNT register,
which contains the byte count for the data packet which is
received.

5.4.2 Data Request

The 8x930Ax/Hx’s external interrupts (INT0# and INT1#)
can be used to detect the AD1845’s request for data
(PDRQ signal). Edge triggered interrupts must be a high-
to-low transition and stay low for at least 5 state times
(666ns). The PDRQ signal is active high, so it must be
inverted. This can be absorbed into the PAL logic that
contains the WR# and RD# logic. One must realize that
PDRQ has a minimum de-assertion time of 320ns
between requests. This should not present a problem, but
rather indicate the degree of turnaround that may be
necessary when the codec’s buffer is not full.

The RXDAT register contains the byte which is currently
active in the receive FIFO. FIFO pointers are incremented
automatically after each read so the user need only be
concerned with moving data from RXDAT to the output
port. Data transmission can be done using a loop. The
interior of the loop detects PDRQ, outputs PDAK, and
performs 4 moves from RXDAT to the output port.
RXCNT is the number of bytes received in a particular
frame and signifies the loop exit point.

5.4.3 Matching Data Rates

The delivery of isochronous data via discrete US
packets presents some other issues that should
addressed. On average, the delivery rate and consump
rate are the same (44.1KHz). However, there is no pha
synchronization between the USB clock and the codec
clock. Therefore, there will be phase misalignment. Cloc
jitter and phase drift due to component variations wi
cause a temporary mismatch in delivery and consumpti
rates.

For instance, imagine that 44 samples are delivered in
USB frame. This data must feed the codec for the ne
1ms. Since the codec’s sampling clock isn’t synchronize
it could go through 45 cycles in the 1ms time period
Similarly, the USB frame may deliver 45 samples, and th
codec may only request 44.

Since delivery and consumption could be mismatche
during any 1ms time period, one frame may suffer from
data starvation while the next frame has extra samples t
aren’t consumed. The system designer must determ
how these issues will be handled. Many codecs will repla
the last sample if no new data is available. One can eas
drop samples by moving to the next receive FIFO when
SOF interrupt is received. Any data that was received
the previous frame and not transferred to the codec
simply not used. This would be the simplest method o
handling too much / too little data. Of course, adding o
dropping samples without any interpolation or averagin
will degrade performance.

5.4.4 Offsetting the SOF

The problem with frame starvation lies in the fact tha
there will be contention at the end of each 1ms tim
period (end of each USB frame). The 8x930Ax/Hx
receives 44 or 45 samples in a data packet and m
spread that data over a 1ms time period. This will instiga
a race between arrival of the next USB frame an
emptying of the codec’s buffer.

For example, assume the 8x930Ax/Hx transmits the last
byte of data from a packet and fills the AD1845 buffe
The AD1845 will deplete a sample from the buffer an
assert PDRQ. The 8x930Ax/Hx will not be able to
respond. The AD1845 will continue to deplete sample
from the buffer while the 8x930Ax/Hx waits for the next
packet of data.
10

AP-648
Figure 7. 8x930Ax/Hx and AD1845 Offset

A4444-01

SOF1 SOF2

8 Dummy 8 Samples

X ± (2* Delta)

44 Samples, Packet #1

X ± (2* Delta)

SOF3

8 Samples 8 Samples8 Samples
ta
nd
le
he
ed

f

A solution for this is to offset the arrival of a USB frame
by emptying the AD1845 buffer. This can be accom-
plished by outputting 8 dummy samples at the start of the
isochronous transfer. See Figure 7 above.

When the isochronous transfer is first started, 8 samples
worth of dummy data can be sent to the codec (32 bytes).
This will delay consumption of the real audio data. The
arrival of the next USB frame will occur when the codec’s
buffer is half empty instead of completely empty.

Additional stewardship will be necessary. Phase
mismatch will still exist and samples will have to be
padded or dropped. To do this, the system designer will
have to determine a point in time when the last sample
should be transmitted to the codec. This can be called
point X, and a delta around point X can be defined.

A timer count can be used to roughly determine the
amount of time that has elapsed since a SOF. If the loop
variable hasn’t reached RXCNT before the timer count
(count + delta), then a sample needs to be dropped. This
keeps the offset centered at 8 samples. Likewise, if the
loop variable reaches RXCNT before a timer value of
(count - delta), then the codec is running fast requiring the
addition of an extra sample. Controlling the offset also
buys the system designer some time in handling the SOF
interrupts. While the 8x930Ax/Hx is attending to the new
SOF and new data packet, the codec is coasting on the last
8 samples in its buffer.

6.0 Conclusion

As one may conclude, the playback of digital audio da
via USB has many advantages. The quality of sou
delivered to the end user can be improved whi
maintaining cost effectiveness and ease of use. T
variety of audio codecs and the numerous integrat
features of the 8x930Ax/Hx controller make it well suited
for codec interfacing. Additionally, the transmission o
audio data is well within the capabilities of the USB
protocol and the 8x930Ax/Hx controller, allowing future
development.

7.0 References
(1) 8x930Ax, 8x930Hx USB Microcontroller User’s
Manual - order number: 272949-001.
11

AP-648

d by one
8.0 Firmware Template for Communication Between the 8x930Ax/Hx and Audio Codec

The purpose of this template is to guide the user in developing the communication code between the 8x930Ax/Hx and the
AD1845. Intel assumes no liability whatsoever for use of this template.

Table 1 below indicates the example wire map between the 8x930Hx and the audio codec. Please refer to Section 10.0,
Schematics for more details

Table 1. Sample Wire Map Between 8x930Hx and Audio Codec

The template has been divided into three portions:

1. Initialization

2. Start Of Frame (SOF) ISR

3. CODEC Request ISR

Sample subroutines are provided in Section 8.2 below.

8.1 Firmware Guideline

8.1.1 Initialize

1. The 8x930Hx powers on and the 8x930Ax/Hx evaluation board initializes.

— Set the PCA to positive edge triggered interrupts on CEX0

— Set the SOF interrupt to a priority level above the PCA interrupt

2. Assume

— The 8x930Hx is in PAGE-MODE for memory bus access.

— There is an additional state inserted into the memory bus access. The 8x930Hx WR# strobe is lengthene
state length. This is one way of allowing the bus to sync up with codec’s read and write cycle.

Codec 8x930Hx

Data 7:0 P2: 0:7

WR# P3.6(WR#)

RD# P3.7 OR PSEN#

CS# Ground

PDAK# P1.0(T2)

PDRQ P1.3(CEX0)

ADDR 1:0 ADDR 1 to GND and ADDR 0 to P1.1 (T2EX)

RESET# Tied to Vcc on the codec with an RC timed for the necessary
delay required at power up; tied to pin P1.5(CEX2) on the
8x930Hx

PWRDWN# Vcc

CDACK# Vcc
12

AP-648

nnel
3. Initialize the codec with the 8x930Hx

— Resynch subroutine used at power on

— Set MODE2 bit

• Indir_cntrl_reg_write 01001100B, 11011010B

— Set Crystal Clock select to 25 Mhz

• 25 Mhz is an arbitrary frequency, other possibilities are: 24.576, 1431818, 24, and 33 Mhz

• indir_cntrl_reg_write 01011101B, 01100000B

— Resynch subroutine used again as the codec resets itself

— Set codec for 16-bit PCM 44.1 Khz sample rate

• Indir_cntrl_reg_write 01001000B, 01011011B

— Set codec for DMA transfers (write directly to the codec FIFO), Single channel DMA, Playback DISABLED
(i.e. wait till data available from host)

• Indir_cntrl_reg_write 01001001B, 00000100B

— Clear MCE Bit (note: there will be 128 samples of muted output now)

• Cntrl_reg_write 0B 00000000B

8.1.2 SOF ISR

Four possible situations have been considered:

1. There is audio data in the FIFO (check RXCON bit RXFFRC) and currently no playback by the codec

— Transfer all audio data in the FIFO to the RAM buffer in on chip memory

— Use the byte count from RXCNT

— Data goes from RXDAT to RAM buffer one byte at a time

— When transfer is complete update the ram buffer’s data pointer

— Turn on the playback of the codec

— Indir_Cntrl_reg_write 00001001B, 00000101B

— The above write enables codec DMA transfer(write directly to the codec FIFO), Single Cha
DMA, Playback ENABLED

— Set a global variable "HubSamples" = the samples in the RAM buffer i.e. RXCNT / 4

— Set a global variable "playback" to TRUE

2. There is audio data in the FIFO and playback is occurring

— Transfer all audio data in the FIFO to the RAM buffer in on chip memory as in a)

— Update "HubSamples"

— Update the data pointer in the ram buffer

3. There is no audio data in the FIFO and no playback by the codec

— Do nothing

4. There is no new audio data in the FIFO and playback is occurring
13

AP-648

r

ack

e.

ESS bit is
 timing

 bits of
gh. This
— if "HubSamples" = 0 then turn playback by the codec off and set the global variable "playback" to FALSE

— This means that while there is no data in the FIFO there is still data needed for playback in the audio buffe

• To "turn playback by the codec off"

NOTE: the codec cannot request data (i.e. PDRQ HI) when trying to write to codec registers.

— Drive PDAK# low 10 ns before beginning a write to the codec
— Write all four bytes of a "dummy" sample (i.e. all zeros) to the codec
— Drive PDAK# high 10 ns after the write cycle has ended
— Indir_Cntrl_write_reg 00001001B, 00000100B (DMAtransfers, SingleChannelDMA, Playb
DISABLED)

8.1.3 Codec Request ISR

Interrupt comes from the PCA:

— if "HubSamples" > 0 then service the request with "real" data

— Drive PDAK# low 10 ns before beginning write to the codec

— Write all four bytes to the codec from the ram buffer

— Drive PDAK# high 10 ns after the end of the write

— Update the data pointer to the RAM buffer

— Decrement "HubSamples"

Otherwise, if "HubSamples" = 0 then do nothing and let the codec make use of its feature to replay the last sampl

8.2 Sample Subroutines

cntrl_reg_read ADDRESS, TARGET REG{

Reads from the directly addressable registers on the codec 10 ns before the memory read to the codec the ADDR
transmitted to the codec over P1.1 and held stable until 10 ns after the read strobe returns high. This fulfills the
requirements of the codec.

}

NOTE: Only the first two registers of the four direct registers on the AD1845 are relevant to this application. Pins are
conserved on the 8x930Hx by tying the upper bit of ADDR1:0 on the codec to ground. TARGET REG is simply
the byte register where the data will be stored.

cntrl_reg_write ADDRESS, DATA{

Writes to the directly addressable registers on the codec 10 ns before the memory write to the codec the two
ADDRESS are transmitted to the codec over P1.2:1 and held stable until 10 ns after the write strobe returns hi
fulfills the timing requirements of the codec.

}

resynch{

Waits for the codec to reset itself
14

AP-648
using function cntrl_reg_read

poll control register 00B on the codec until it reads 80H

 }

indir_cntrl_reg_write ADDRESS, DATA{

Writes to the indirectly addressable registers on the codec.

cntrl_reg_write 0B, ADDRESS // indirect register to write

cntrl_reg_write 1B, DATA // the upper bit of the direct register address is always 0B

 }

9.0 Sample Firmware Subroutines for Communication Between the 8x930Ax/Hx and
Audio Codec

This sample code is meant to assist the user in developing their communication code between the 8x930Ax/Hx and the
AD1845. This is to be used only as a reference and has not been thoroughly tested. Intel assumes no liability whatsover for
use of this code.
15

Sample Subroutine code

InitilizeEmbeddedFunction:

Call INIT_VARIABLES ;Initialize the RAM space as required
Call SV_ResetRoutine
Call INIT_FUNCTION_EP0

Call INIT_CODEC

setb SOFIE ; Enable SOF Interrupts
setb IEN1.1 ; Enable Function ISR
ret

; Initialize the USB subsystem
; lcall INIT_USERS_CODE ; Call to Users code for initialization

**
;Sub Routine Name: INIT_CODEC
;Brief Description: Initializes the codec for interface w/ the 8x930Ax/Hx
;Registers Saved: Standard pushing and poping of registers used
**

INIT_CODEC:

 ; Not directly related to the codec but initialize global variables hubsamples and
playback
 ; Also configures the PCA to receive data request interrupts from the codec

push WR0

mov WR0,#0000h
mov playback,WR0
mov hubsamples,WR0

pop WR0

mov CCAPM0,#21h ; Positive edge triger and enable interrupt request for
CEX0

mov IPH1,#01h ; Bumps SOF interupt from level 0 to level 1 priority.
Ensures that ; SOF has higher priority than Codec data
request

**

Resynch ; make sure that the codec has
come ; out of reset

;IndirectCodecControlRegWrite: MACRO Addr, Dat ; Set the MODE2 BIT
 IndirectCodecControlRegWrite 01001100b,11011010b ; Set Crystal Clock to

25 Mhz
IndirectCodecControlRegWrite 01011101b,01100000b ; resynch again to allow the
codec ; to reset
Resynch ; Set codec for 16-bit PCM
44.1 ; Khz sample rate
 IndirectCodecControlRegWrite 01001000b,01011011b ; Set Codec for dma transfers

; Single Channel DMA transfers

 IndirectCodecControlRegWrite 01001001b,00000100b ; Playback DISABLED
 CodecControlRegWrite00 00000000b ; Clear the MC3 Bit

ret

;--

; SOF ISR
;
**
COMMENT *---

Function name : SOF_ISR
Brief Description : Service the SOF_ISR Interrupt
 : This routine simply displays the upper three bytes of the
 : SOF in the lower three bits of the LEDs on LED_PORT = P1.
 : It does not affect the other LEDS. Very useful
 : in determining when the function is receiving SOFs
 : The service routine also transfers audio data to
 : a ram buffer for use by the codec
Regs preserved : Reg. A is saved
--
--------------------*
SCOPE

Sample Subroutine code

SOF_ISR:
EmbeddedFunctionSofRoutine:

jnb ASOF, ExitSofIsr ; If this ASOF bit not set, the ISR could be a
HUB. Go Check.

call SV_SOF_ROUTINE
clr ASOF
push ACC
IF FUB_BOARD == DISABLED

mov A, LED_PORT
 anl A, #0F8h

mov LED_PORT, A
mov A, SOFH
anl A, #07h
orl LED_PORT, A

ENDIF
pop ACC

ExitSofIsr:

COMMENT *---

 SOF Service Routine for the Codec
--
-------------------*

push R0 ; Save registers
push WR2

 mov A,RXCON ; move RXCON to get at the RXFFRC bit
anl A,#10h ; mask everything except RXFFRC
jnz dat_yes ; if (data in fifo)
mov A,playback ; if (playback == FALSE)
anl A,#0FFh
jz bye ; then (do nothing)
mov WR2,hubsamples ; elseif (hubsamples != 0)
cmp WR2,#0000h ; i.e. there are samples in the RAM buffer
jne bye ; then (do nothing)
lcall STOP_PLAY_BACK ; else (turn off the codec)
mov playback,#0000h ; set playback = FALSE
sjmp bye ; we’re done!

dat_yes:
mov A,playback
anl A,#0FFh ; if (playback == FALSE)
 jz turn_on ; then (turn on the codec and transfer data to ram

buffer)
 lcall XFER_DATA ; else (only transfer data to the ram buffer)
sjmp bye ; we’re done

turn_on:
 lcall XFER_DATA

lcall START_PLAY_BACK
 sjmp bye ; we’re done

bye:
 pop WR2
 pop R0

 ret

COMMENT *---

Function name : START_PLAY_BACK
Brief Description : The global playback function is set to TRUE and
 : the codec is set to playback audio data
Regs preserved : N/A
--
------------*

START_PLAY_BACK:
 mov playback,#0FFh ; set playback = TRUE
 IndirectCodecControlRegWrite 00001001B,00000101B
 ; the above bit sequence ENABLES playback by the codec

 ret

;******* END START_PLAY_BACK ********

COMMENT *---

Function name : STOP_PLAY_BACK
Brief Description : Playback by the codec is disabled by first
 : satisfying the codec’s data req and then turning

Sample Subroutine code

 : playback off.
Regs preserved : DR4 is preserved
--
------------*

STOP_PLAY_BACK:
push DR4 ; save regs
mov WR4,#0000h ; move codec addr into double word

 mov WR6,#0000h
clr 1.0 ; drop PDAK# LOW

 mov @DR4,WR4 ; move two "dummy" samples to the codec
 mov @DR4,WR4 ; i.e. all zeros
 setb 1.0 ; drive PDAK# HIGH

 IndirectCodecControlRegWrite 00001001B,00000100B
 ; the above bit sequence DISABLES playback by the codec

 pop DR4

 ret
;******* END STOP_PLAY_BACK ********

COMMENT *---

Function name : XFER_DATA
Brief Description : Transfer ISOC data from the ep1 fifo to a ram buffer.
 : In the process hubsamples is updated.
Regs preserved : WR2, WR4, R6
--
---------------*

XFER_DATA:
 push WR2 ; save registers
 push WR4
 push R6

 mov WR2,#0000h ; zero the register
 mov WR2,RXCNTL
 srl WR2 ; divide byte count by 4 to get the sample count
 srl WR2
 mov hubsamples,WR2 ; write back the new value of hubsamples
 mov WR4,audio_buf ; initialize the audio buffer pointer

move_it: ; begin loop
 cmp WR2,#0000h ; if (sample count == 0)
 je see_ya ; then (we are done)
 mov R6,RXDAT ; begin moving 1 sample to the RAM buffer
 mov @WR4,R6
 inc WR4,#01d
 mov R6,RXDAT ; get the audio data from fifo
 mov @WR4,R6 ; transfer audio data to the RAM buffer
 inc WR4,#01d ; increment the buffer pointer
 mov R6,RXDAT
 mov @WR4,R6
 inc WR4,#01d
 mov R6,RXDAT
 mov @WR4,R6 ; end move 1 sample to the RAM buffer
 inc WR4,#01d
 dec WR2,#01d ; one sample down (WR2) to go
 sjmp move_it ; end loop
 mov audio_data_ptr,audio_buf ; reset the pointer to the beginning of the buffer
and new data
see_ya:
 pop R6
 pop WR4
 pop WR2

 ret

;******** END XFER_DATA ********

COMMENT *--
Function name : CODEC_ISR
Brief Description : Services the Codec’s request for data one sample at a time
Regs preserved : WR0,R2-5,WR6,DR12
--
*

CODEC_ISR:

Sample Subroutine code

push WR0 ;preserve register values
push R2

 push R3
 push R4
 push R5
 push WR6
 push DR12

 mov WR0,hubsamples ; if (hubsamples == 0)
 cmp WR0,#0000h ; then exit
 je finis ; i.e. there is no audio data
 ; so let the codec repeat last sample

 ; set up the data for the entire sample
 mov R2,audio_data_ptr ; left low byte
 mov R3,audio_data_ptr + 1; left high byte
 mov R4,audio_data_ptr + 2; right low byte
 mov R5,audio_data_ptr + 3; right high byte
 mov WR12,#0000h
 mov WR14,#0000h ; load the address for the codec into DR12
 clr P1.0 ; drop PDAK# low
 mov @DR12,R2 ; left low byte to codec
 mov @DR12,R3 ; left high byte to codec
 mov @DR12,R4 ; right low byte to codec
 mov @DR12,R5 ; right high byte to codec
 setb P1.0 ; drive PDAK# back high

 dec WR0,#1D ; decrement the hubsamples
 mov hubsamples,WR0 ; update hubsamples
 mov WR6,audio_data_ptr
 add WR6,#04d ; increment the pointer to the next sample
 mov audio_data_ptr,WR6
 mov CCON,#00h ; clear the PCA Compare/Capture Flag at CCON.0

finis:
pop DR12

 pop WR6
 pop R5
 pop R4
 pop R3
 pop R2
 pop WR0

 ret

; ********* END CODEC_ISR **********

20

10.0 Schematic

A

Intel Corporation

1

Thursday, September 11, 1997 1 1

B

Peripheral Controllers Group
5000 W. Chandler Blvd.
Chandler, AZ 85226

CODEC Board

LCT

Size

Drawn by

CAGE Code DWG NO Rev

Sheet
of

Date

P5V

DGND

DGND

AGND

AGNDAGND

AGND

AGND

AGND

AGND

DGND

DGND DGND

P5V P5V

DGND

P5V

DGND
AGND

AGND

AGND

25 MHz

D
A
T
A
(
7
:
0
)

P1.0

P1:5

P1:2

P1:3

P1:1

P
2
.
(
0
:
7
)

P3.6

CLK

AVCC

EN

P1.2

VREF_2_25V

PSENNOT

P1.7

P1.3

DATA0

P2.0
P2.1

P2.6
P2.5
P2.4

P2.2

P1.1
P1.0

P2.3

P2.7

DATA3

P2.6

P2.3

P2.2

P2.4

P2.1

P2.2

DATA4

DATA2

P1.5

P2.5

P2.3

P2.7

P2.0

DATA5

DATA6

DATA7

DATA5

DATA3

P2.0
P2.1DATA1

DATA6

DATA2

DATA0

DATA4

P2.5

P2.4

DATA1

DATA7

P2.6

P2.7

DGND

U7A

7404

1 2

L2

47uH

J1

20pF

C6

U6B

74HC04

3 4

74ACT373

D0
3

D1
4

D2
7

D3
8

D4
13

D5
14

D6
17

D7
18

OC
1

G
11

Q0
2

Q1
5

Q2
6

Q3
9

Q4
12

Q5
15

Q6
16

Q7
19

C1

470uF

U8A

74HC32

1

2
3

L1

47uH

U6A

74HC04

1 2

74ACT373

D0
3

D1
4

D2
7

D3
8

D4
13

D5
14

D6
17

D7
18

OC
1

G
11

Q0
2

Q1
5

Q2
6

Q3
9

Q4
12

Q5
15

Q6
16

Q7
19

20pF

C7

AD1845

Analog Devices
SOCKET68
I265428

U2

GNDD
44VDD
45M_IN
46M_OUT
47NC
48NC
49NC
50NC
51NC
52GNDD
53VDD
54NC
55XCTLO
56INT
57XCTL1
58CS#
59RD#
60

R
_A

U
X

2
4

3
R

_A
U

X
1

4
2

R
_O

U
T

4
1

L_
O

U
T

4
0

L_
A

U
X

1
3

9
L_

A
U

X
2

3
8

G
N

D
A

3
7

V
C

C
3

6
V

C
C

3
5

G
N

D
A

3
4

V
R

E
F_

F
3

3
V

R
E

F
3

2
L_

F
IL

T
3

1
L_

LI
N

E
3

0
L_

M
IC

2
9

R
_M

IC
2

8
R

_L
IN

E
2

7

ADR0
10

V
D

D
1

CDAK#
11

G
N

D
D

2

CDRQ
12

D
A

TA
3

3

PDAK#
13

D
A

TA
2

4

PDRQ
14

D
A

TA
1

5

Vdd
15

D
A

TA
0

6

GNDD
16

V
D

D
7

XTAL1I
17

G
N

D
D

8

XTAL1O
18

A
D

R
1

9

Vdd
19

GNDD
20

XTAL2I
21

XTAL2O
22

PWRDWN#
23

RESET#
24

GNDD
25

R_FILT
26

W
R

#
61

D
B

D
IR

62
D

B
E

N
#

63
G

N
D

D
64

D
A

TA
7

65
D

A
TA

6
66

D
A

TA
5

67
D

A
TA

4
68

C4

470uF

U5

LM386
+

-

3

2
5

6 1
4 8

7
C3

1uF

C9
10uF

P1

T
o

P
5

on
 8

x9
30

A
x/

H
x

ev
al

ua
tio

n
bo

ar
d

21
4
6

3

8
5

10
12

7

14

9

16
18

11

20
22

13

24

15

26
28

17

30

19

32
34

21

36
38

23

40

25

42
44

27

46

29

48
50

31
33
35
37
39
41
43
45
47
49

U8C

74HC32

9

10
8

U7B

7404

3 4

U8D

74HC32

12

13
11

U7C

7404

5 6

U7D

7404

9 8

U8B

74HC32

4

5
6

C13
0.1uF

1
2

C11
0.1uF

1
2

C10
0.1uF

1
2

C12
0.1uF

1
2

C15
0.1uF

1
2

C14
0.1uF

1
2

C8

1uF

R3

8.86K

C5
0.05uF

C2

0.05uF

R5
8.86K

R6

8.86K

U4
LM386

+

-

3

2
5

6 1
4 8

7

R1

8.86K
R2

10K

R4

10K

	USB Audio Using the 8x930Ax/Hx Controller and an A...
	1.0 INTRODUCTION
	2.0 USB and Digital Audio
	2.1 Universal Serial Bus
	2.2 In tel’s 8x930Ax/Hx USB Controller
	2.3 Traditional PC Audio
	2.3.1 Possible Drawbacks to Using PC Sound Cards

	2.4 USB Audio

	3.0 Codec Background and Selection
	3.1 Codec Basics
	3.2 ARCHITECTURE CONSIDERATIONS
	3.3 Performance
	3.4 Features
	3.5 Interface Signals
	3.5.1 Serial
	3.5.2 Parallel

	4.0 8x930Ax/Hx Interface
	4.1 USB to 8x930Ax/Hx Interface
	4.2 8x930Ax/Hx to Codec Interface

	5.0 8x930Ax/Hx to Codec Interface Example
	5.1 HIGH LEVEL SYSTEM CONSIDERATIONS
	5.2 AD1845 Details
	5.3 8x930Ax/Hx to AD1845 Interface Example
	5.4 Considerations and Recommendations
	5.4.1 USB SOF
	5.4.2 Data Request
	5.4.3 Matching Data Rates
	5.4.4 Offsetting the SOF

	6.0 Conclusion
	7.0 References
	8.0 Firmware Template for Communication Between th...
	8.1 Firmware Guideline
	8.1.1 Initialize
	8.1.2 SOF ISR
	8.1.3 Codec Request ISR

	8.2 Sample Subroutines

	9.0 Sample Firmware Subroutines for Communication ...
	10.0 Schematic

