AP-648

APPLICATION
NOTE

USB Audio Using the
8x930Ax/Hx Controller
and an Audio Codec

December, 1997

Order Number: 292206-003

Information in this document is provided in connection with Intel products. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or
warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright
or other intellectual property right. Intel products are not intended for use in medical, life saving, or life
sustaining applications. Intel may make changes to specifications and product descriptios at any time, without
notice.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation 1997. *Third-party brands and names are the property of their respective owners.

in-'.-el® Contents

1.0 INTRODUGCTION ...ttt ettt ettt ettt ettt et eas e ea 4 eh e e ehe e ekt e ehe e e ehe e ek e e bt e nb e e s st e e enneenieeanns 1
2.0 USB @nd Digita@l AUGIO ..cc.euiiiiiiiieiii ettt ettt e e e ekt e e eh bt e et b e e e ek bee e eabee e esaneeeanbbeeennbeeeen 1
2.1 UNIVEISAl SEIIAl BUSeiiiieiiei ittt ettt e te e et e s e st e e ssbe e e ae e e s steee e e naeeesnteeeesnneens 1
2.2 Intel's 8x930Ax/Hx USB Controller 1
2.3 TraditioNal PC AUGIOeiiiiiiiie ettt ettt ettt e h et e e et bt e e s she e e s sab e e e eanbe s ensbe e e e beee e saeeans 1
2.3.1 Possible Drawbacks to Using PC SouUNd CardsSccceeevuveeeriuieeriiiieseiieeeniineesneeessnaesssneeenes 1
B U 1] = 3§ Lo [R PR SRPPTRPRPT 2
3.0 Codec Background and SEIECTIONoiiiuiiiiiiii ettt ettt bbb e ssie e s sabbeeenbee e e 2
I A O To [T ol =7 1 (o RSP PRRT 2
3.2 ARCHITECTURE CONSIDERATIONS ...ttt ittt sttt ettt et nn e e nee e 3
3.3 Performance .
3Bi4 FRALUIES ..ot iee ettt ettt ettt s ettt e ettt e e e e kbt e e e e be ettt e e e nh bbbttt e s e e nbebeeee s e e b
T [01 (=T = ot TS [U PPSRS 3
TN R ST - | TP PPRRI 4

3.5.2 Parallel ...

4.0 BXI30AXIHX INTEITACE ...ttt ettt e ettt e et et e e an et e e n e e s e e e s snrneeenneeees 4
4.1 USB t0 8X930AXIHX INTEITACE ...c..viiieeiie ittt ettt ettt ettt e e sab e e et e e e s bbeeenbee e saans 4
4.2 8X930AX/HX 10 COUEC INTEITACEeiiiiiieeiiie ettt ettt et e et e e st ae e et e e s eae e e e sne e e eneaens 5
5.0 8x930AX/Hx to Codec INterface EXAMPIEooooi it e e e e e e eee e e e 5
5.1 HIGH LEVEL SYSTEM CONSIDERATIONS ..ottt ettt sttt sebe e e sbeenee e 5
5.2 ADIL8BA5 DELAIIS ...uuveeeiieieiectiieiee ettt et e e et —ee e e e e ——aeae e e e e e e —ae e e s e e aareraeaesearnrees
5.3 8x930Ax/Hx to AD1845 Interface Example .
5.4 Considerations and RECOMMENALIONSiiiiiiuiriiiiieaie ettt b et e et e e seaee e senee s
L R 1= T L P
5.4.2 DAta REOUESToeeiiiiiiitieiee ettt e et e e et et
5.4.3 MatChing Data RAIESc.ccicuiiiiiiiiiiiei ittt et sttt san e
5.4.4 OffSettiNg the SOF ...ttt ettt en e
(SO 7 o o U E=] o] o H ORI
FA O I 2 (=T =T Lot =T TP UPR
8.0 Firmware Template for Communication Between the 8x930Ax/Hx and Audio CodecCccccu..... 12
8.1 FIrmware GUIAEINEoooiiiiiiiiiiei et e e e e e e e re e e s 12
L 0 R a1 1= 4= PO RSTRPRPPN 12
8.1.2 SOF ISRcccvvveene. .13
8.1.3 COAEC REQUESE ISR ..ottt ettt ettt et e et e et e e nt et e e sen e e ennbneennes 14
8.2 SAMPIE SUDIOULINES ...ttt ettt ettt ettt ettt e e s bt e e st b e e et b e e e s abeee e shsbe e easbee e nbeaenabeeesannen 14
9.0 Sample Firmware Subroutines for Communication Between the 8x930Ax/Hx and Audio Codec .15
BT O ST o o =T = o ORI 20

Contents intel
®

Figures

1. Generic Coding and Decoding BIOCK DIagramoueouiriiiiiie ettt 2
2. 8x930AX/HxX and AD1845 BIOCK DIGQIAMcc.vtiiieiiiiiie ittt sttt sttt et ettt sen e nre e e 7
3. AD1845 DMA Timing Requirements

4. 8x930Ax/Hx Parallel Port Write Timing

5. Read TimiNgS fOr ADLBAScciiiiiiitiiiie ettt ettt bt et bttt e eb e bt ettt e e e e saeeenes 8
6. Read Timings for 8X930AX/HX (1 Wt STALE) ...cccovvriiieeee ettt ee e e e s e e e e e s e snnnnees 9
7. 8X930AX/HX ANA ADL8A5 OFfSELeveeueieiitiiie ettt ettt s ettt 11
Tables

1. Sample Wire Map Between 8x930HX and AUdIO COUECeeeiiuiiiiiiiiie ettt 12

intel.

1.0 INTRODUCTION

This application note provides an introduction to
interfacing the 8x930Ax/Hx with an audio codec to
perform playback of digital audio, presents an overview
of USB as it relates to digital audio, and discusses codec
background and selection. It also describes 8x930Ax/Hx
interfacing, providing an example with design recommen-
dations.

2.0 USB and Digital Audio

2.1 Universal Serial Bus

The Universal Serid Bus (USB) is an industry standard
interconnection bus designed to support a wide range of
peripherals around the PC. The USB topology has three
elements: host, hubs, and functions. The PC is the host
and peripherds are the functions. Peripherals interface to
the host PC via USB cables and protocol. To enable a
variety of peripherals, the USB protocol defines four
transfer types. Control, Isochronous, Interrupt and Bulk.

Every peripheral will need to support control transfers so
that configuration and command/status information can
flow between the host PC and peripheral. Isochronous
transfers provide guaranteed bus access and constant data
rate to support CTI (computer-telephone integration) and
audio systems. Interrupt transfers are designed to support
human input devices such as joysticks, mice, and
keyboards. These devices need to communicate small
amounts of data infrequently, but with bounded service
periods. Bulk transfers are designed for peripheras such
as printers and digital cameras. These devices
communicate large amounts of data to the PC as
bandwidth becomes available.

The USB implements a blocking bandwidth allocation
scheme that denies access to a peripheral if the peripheral
exceeds the current bandwidth allocation or latency
requirements. USB allows up to 90% of the bus
bandwidth to be used by isochronous and interrupt
transfers. The remaining 10% is reserved for control
transfers. Bulk transfers only occur on a bandwidth-
available basis.

2.2 Intel's 8 xX930Ax/Hx USB Controller

AP-648

a rich combination of integrated features makes the
8x930Ax/Hx peripheral controller flexible and powerful.

It contains a MCS® 251 microprocessor core, four 8-bit
I/O ports, three 16-bit timers, hardware watchdog timer,
Programmable Counter Array (PCA), and a Serial /O
port. The purpose of this application note is to provide an
introduction on interfacing thex830Ax/Hx with an audio
codec to perform playback of digital audio.

2.3 Traditional PC Audio

There are currently two predominant methods for

generating audio using a PC. The first is CD audio.

Similar to home stereo compact disk players, the CD-

ROM drive reads the compact disk and produces an
analog output. This analog signal is inputted to a PC

sound card, processed further, and then outputted from the
PC using a standard RCA plug.

The second method of generating audio via a PC is
performed by reading a file from memory into the sound
card. The sound card performs any decoding or
processing, converts the digital data to analog, and
outputs the analog signal from the PC via the standard
RCA plugs. This is the procedure used when a user
downloads an audio file or initiates a playback from the
hard drive.

2.3.1 Possible Drawbacks to Using PC

Sound Cards

There are several drawbacks to using sound cards that
install into a PC card slot. The sound card utilizes PC
resources like interrupts and ports. It is also an additional
cost. Since the sound card has to be inserted into the PC
box, reconfiguration is required which can be viewed as
difficult by many users.

The interior of a PC box is also noisy with electromag-
netic interference (EMI). This may limit the sound quality
of ‘inside the box’ solutions, as there is an analog signal
that is sent from the CD-ROM to the sound card. Due to
design complexity, sound cards can be limited in
channels. This can hamper their scalability and preclude
their use in multiple-channel surround sound systems
without the addition of processing power to the speakers.

Intel's 8x930Ax/Hx is a single chip, USB Specification
Rev. 1.0 compliant, peripheral controller. The presence of

I 1

AP-648 intel
®

2.4 USB Audio consume approximately 20% of the available USB

))) o bandwidth. Out of each 210B packet, there will be
USB, however, lends itself nicely to audio applications (45*16*2) = 180B of raw audio data.

because it is ‘outside the box'. The audio data remains

digital until it is outside the PC. It is converted back to

analog just prior to the speaker amplification circuitry, 3.0 Codec Background and Selection
resulting in improved sound quality. Digital audio

typically has higher fidelity, which is obvious in high-end .

speakers. A USB based solution is also scalable allowing3'1 Codec Basics

the speaker vendor to increase the quality of audiogjven that the digital-to-analog conversion will occur
without the addition of any hardware between the hostinsjde the USB peripheral, it is beneficial to cover the
and the USB controller. operation of codecs. In general, codecs are used to COde
and/or DECode data. The term is somewhat general, in
Shat codecs are available for different types of data; such

Similarly. th £ ol d ol K SB imol ‘as audio or video. It is also used on occasion to refer to
imilarly, the ease of plug and play makes a USB imp e'COmpression and DECompression, in which the data is

mentation attr_a(_:tive. The datg processing can be done O8ncoded according to an algorithm (MPEG for example).
the host, providing a cost savings to th_e speaker manufacl-:m PC audio, the industry accepted data format is linear
turer.kThe user need only buy a pair of USB CapablePulse Code Modulation (PCM). More specifically, two
SPeakers. channels of data (stereo) that is represented by a 16-bit

USB has also demonstrated the ability to handle thetwos complement digital word. Figure 1 shows a general

bandwidth required by audio applications. A compact disk block diagram of coding and decoding.
has a sample rate of 44.1kHz and 16 bits per sample

Since the USB frame rate is 1ms, the audio peripheral Wi”analog-to-digital converter (ADC) and quantized to a
receiv_e‘nine frames containing 44 samples anq one fr"’_‘m%ligital word (in this example, a 16-bit word with a twos
containing 45 samples. In other words, over a time penodcomplement format). Depending on the application

. . . . ~ ,
of 10ms, th? peripheral will receive 9*44 + 45___ 441 digital signal processing (DSP) can then be performed on
samples, which averages to 44.1 samples per m||||sec0nqhe digital samples for the purpose of filtering,
and equals the sample rate of 44.1kHz. compression, etc. PCM in its basic form doesn’t use
compression, so there is no DSP block for our application.
Decoding of the digital samples is done by the digital-to-

the playback system will need to handle (45*16%2 + analog converter (DAC). The output is the reconstructed
analog signal. It should be noted that for a two-channel

10)*1.16 = 1682 bits/ms, or approximately 210 bytes/ms. R -
stereo application, there are two separate data paths with

Each USB frame has a data payload of 1024 bytes.d i 4 block retch ch |
Therefore, playback of a stereo audio signal would uplicate DSP and DAC blocks so tiegich channel can

be controlled individually.

For instance, it is possible to have more than two channel
of audio data, enriching the user's multimedia experience

Coding is done when an analog signal is sampled by the

Assuming two channels of audio data, 10 bytes for
protocol overhead, and a worst-case bit stuffing of 16%,

Analog / \ e—) Analog
Input / Output
—_— ADC ————)l\ DSP F———> DAC
N s s s s s
Sample
Clock
A4439-01

Figure 1. Generic Coding and Decoding Block Diagram

intel.

An example of coding is the recording of an audio
waveform which entails the first half of the system shown
in Figure 1 on page 2. An analog waveform is digitized,
compressed if necessary, and then stored on a medium
such as a CD. Audio playback is the second half of the

AP-648

3.4 Features

The codec chip usually includes all the necessary filters
and support circuitry used by the converters. They
generally do not provide the amplifier circuits that drive

the speakers. The output of a typical codec is a line level
output (RCA type connectors). Therefore, standard audio
amplifier circuitry can be used. Many codecs also output
voltage references to help with biasing of the amplifiers.
Other features to consider when choosing a codec are:
serial or parallel interface, bi-directional transfer
capability, and buffering.

system, where the digital words are read from the
medium, decompressed if necessary, and then converted
from digital to analog and played through a speaker.

3.2 ARCHITECTURE CONSIDER-
ATIONS

Severa different circuit architectures exist for performing
the analog-to-digita and digital-to-analog conversions.
For 16-bit digital audio, it appears that sigma delta ADCs
and DACs are the industry favorite. As one might expect,
there are design trade-offs that have to be made by codec
manufacturers. The sigma delta architecture offers the
appropriate balance between speed of conversion and
resolution of bits.

Some codecs support a byte-wide parallel transfer while
others support a bit-wide serial exchange. As previously
mentioned, a 1ms USB frame may contain up to 180 bytes
of audio data. Therefore, the USB controller must deliver
data at a rate of 180KBps to the codec. The designer of the
USB audio system must match the processing needs of the
codec to the processing capabilities of the USB controller.
If the controller is required to process more than just

It i for th a ¢ derstand th audio data, it may be beneficial to use a parallel interface.
IS Not necessary 10r the casual user 1o understand the This would increase the controller resources available to

fine details of how the conversion is done. Conversely
. L th .
the process shouldn’t be considered a black box. S|gma? er processes

delta converters typically employ integrators, compar- gj.directional capability can also increase a codec’s cost
ators, and digital filters (decimation). The theory of ang complexity. Support for bi-directional transfers

operation is rather involved, but the main principle is that means that both coding and decoding can be done;
input can be oversampled, threshold approximations canyjthough not simultaneously. Typically, a reconfiguration

be made, and filtering can be done to extract the output;g necessary to switch between playback and record
Since oversampling is used, the codec user should expechodes. Bi-directional support will increase the interface

to supply a reference frequency substantially higher thancomplexity as well.

the sample rate of the audio data.

Finally, on chip buffering is a feature to consider. Some
codecs provide FIFO buffers to ease the interface and
timing requirements to microprocessors. Since data

Another main consideration that should be examined isdelivery must be guaranteed, the buffer allows some
the signal-to-noise ratio (SNR). SAR used as a figure tolerar_1ce |r_1 serwcmg the codec’s neeq for data. This is
of merit for ADCs and DACs and represents the ‘clean- especially important if the controller will process more
liness’ of the output. It is typically computed via the Fast than one task. The clock _rate of the controller will be
Fourier Transform (FFT) of the output signal under a pure MUch higher than the audio sample rate, but the system
sinusoidal input. A rule of thumb is that high quality audio designer must take precautions to assure that the task
requires a SNR of at least 75dB. One can typically find SWitch overhead can be accommodated.

converters with a SNR of 80dB. However, one must
understand that the system into which the codecisepl 35
has a great effect on the sound quality.

3.3 Performance

Interface Signals

The number of interface signals required by the codec
depends on the number of features and type of interface.
Typically, there are two sets of signals connecting the
codec and controller: data and control. It is possible to
find codecs that require relatively few interface signals,

1. SNR is the ratio of the fundamental frequency com-
pared to all the other frequencies at the output.

AP-648

but this typically means that control and data information
is multiplexed. Because multiplexing eases the number of
interconnects, it requires more management by the
controller and greater attention to timing and coding.

3.5.1 Serial

A serid interface will most likely require from 7 to 11
interface signals. The data and control bundles are usually
separate. Control information is passed via 3 signals:
CDATA, CSHIFT, and CLATCH. CDATA is serid
control data. This data is used to configure the codec for
the sampling rate, data format, filter programming, master
clock frequency, etc. CSHIFT isaclock signal that clocks
each hit, seridly, into a control buffer. CLATCH is a
signd that latches the control word into a register and
initiates reconfiguration.

Data is passed in a similar manner by SDATA, SSHIFT,
and LRCLK. SDATA s the serial data. SSHIFT is the
clock signal that shifts each data bit into abuffer. LRCLK
indicates whether the data word is for the left or right
channel. For example, 16 bits of left channel information
is clocked into the buffer using SSHIFT. A transition on
the LRCLK latches the data word and then signals the
next 16 bits as right channel data.

The remaining signals vary from codec to codec. There
will be at least one chip enable or initialization signal.
There could also be separate control signals for features
like muting, power management, or transfer direction.
Support for bi-directional transfers may require additional

intel.

As with the serial case, the number of interconnects can
climb quickly with additional features. Some paralle
codecs are capable of interfacing directly to the ISA bus
which may complicate the interface due to bus control
issues. Likewise, bi-directional support could increase the
number of interconnects.

4.0 8x930AX/Hx Interface

4.1 USB to 8x930Ax/Hx Interface

The implementation of USB on the 8x930Ax/Hx can be
divided into four sections. first-in, first-out (FIFO),
Function Interface Unit (FIU), Seria Bus Interface
Engine (SIE), and the transceiver.

The 8x930AX/Hx has a totd of eight FIFOs: four transmit
FIFOs and four receive FIFOs. The transmit/receive
FIFOs support four function endpoints (0-3). Endpoint O
is 16 bytesand is dedicated for control transfers. Endpoint
1 is user configurable up to 1024 bytes, and Endpoint 2
and 3 are 16 bytes. Endpoints 1, 2, and 3 can be used for
interrupt, isochronous, control, or bulk transfer types.

The transmit and receive FIFOs are circulating FIFOs
which support up to two separate data sets of variable
sizes and contain byte count registers that access the
number of bytesin the data sets. They also have flags that
detect a full or empty FIFO and have the capability of
retransmitting the current data set.

The FIU, SIE, and transceiver make up the rest of the

interface signals. This sometimes depends on whether the
codec becomes a bus master or remains a save. Keep in
mind the number of control signals and the complexity of

8x930Ax/HX's USB interface. The transceiver circuitry
detects and drives signaling on the USB data lines. The
serial bus interface engine is the USB protocol interpreter.

control logic. It is responsible for bit stuffing/unstuffing and for
ensuring that transmissions across USB cables are least
significant bit (LSb) first. The FIU controls operation of
3.5.2 Parallel 9 (LSb) P

the FIFOs and monitors the data transaction. The
A parallel interface will require approximately 12 - 20 operation of these three units isn’'t of much concern for
the user. However, more information can be found in the

interface signals. Control and data information is usually 8x930Ax. Bx930Mx Uni | Serial Bus User's M |
multiplexed over the parallel bus. Data information is (f)(X, oX x Universal serial Bus User's Manua

passed via DATA[7:0], DCLK, and LRCLK. An entire 8-
bit word will be latched using the CLK signal. LRCLK
may or may not be required to signify separation of
left/right data. Control data may also be output onto
DATA[7:0]. One or two additional control signals are
asserted to notify the codec as to whether the incoming
byte is audio data or control information. There will also
be areset or initialization signal.

Given the data payload size, audio applications will use
Endpoint 1. More specifically, the 1024 byte FIFO will be
configured into two 512 byte sections. During trans-
mission of an audio stream, data from frame X will be
read into section A. At the start of frame (X+1), datain
section A will be valid and incoming data from the host
will be read into section B. At the start of frame (X+2),

4 I

1 AP-648
intel.

datain section B will be valid and incoming data from the matter if the 8 30Ax/Hx is configured for page mode or
host will overwrite section A. non-page mode.

Note that the retransmit feature does not apply to A codec that uses a parallel interface can be considered a
isochronous transfers. Also note that the USB protocol second memory device. The codec may use the control
requires least significant bits and least significant bytes interface to request a data sample or control information.

first. The SIE takes care of transmitting the least After the controller detects the request, it writes data onto

significant bit to most significant bit in a given byte, so the system bus. A great deal of care must be taken with
the user need not worry about LSb first. It is the user'sthe address decoding and bus timing. The designer needs
responsibility, however, to ensure that multi-byte datato make sure that reads/writes to memory are not

packets are transmitting least significant bytes (LSB) first. acknowledged by the codec and vice versa.

Using the 17- and 18-bit addressing modes of the
4.2 8x930Ax/Hx to Codec Interface 8x930Ax/Hx can be useful. An external PAL or logic gate

. can decode these two signals to generate the codec’s
Once data has been captured from the USB cable into the . 9 9 .
transceiver FIFOs. th re two methods in which t énable signals. The transfer of control signals can be done

ansceive s, there aré two methods n w '.C 0using ports 1 and 3. Similar to the Serial I/0 method, the
transfer data from thex830Ax/Hx to the codec. The first

. .) ignal t iti th i t b d
is through the Serial 1/0 port. The second is through theSlgna ransitions on these pins must be programme

system bus (8 bit I/O ports 0 and 2). For isochronousexmlcmy'

transfers, the 30Ax/Hx is configured as a high speed

device and runs internally at 12MHz. 5.0 8x930Ax/Hx to Codec Interface
Example

The serial I/O port supports communication with modems
and other external peripheral devices. It can operate in 3The following example shows what one would need to
full duplex asynchronous modes or 1 half duplex implement the playback of digital audio using the
synchronous mode. In half duplex mode (mode 0), the8x930Ax/Hx and an AD1845 Parallel Port Stereo Codec
clock is output on the TXD pin while data is received and from Analog Devices. This is not a recommendation but
transmitted on the RXD pin. Transfers are controlled by only a design application example. Many codecs with
using the Serial Port Control (SCON) and Serial Buff parallel interfaces could conform to this example. It is not
(SBUFF) registers. Similar to the transmit/receive intended to cover all details of designing a USB audio
FIFO's, data is transferred LSb first. The user must besystem, but merely to address some of the issues faced by
aware that a peripheral cycle is not equaX@3®AX/HX's system designers.

clock cycle. Peripheral cycles run at a rate of Fclk/6. An
internal clock rate of 12MHz equates to a 2MHz clock

rate on the TXD pin. 51 HIGH LEVEL SYSTEM CONSIDER-

ATIONS

Addit?o_nal interface signals can be contr_oll_ed using the One of the goals is to provide a simple overall design for
remaining |/O’s on Port 1 and 3. The Tl bit in the SCON o n1avhack of stereo digital audio data. The serial codecs
register can be polled to determine the completion of 8considered for this example required that data be sent
d_ata sample transfer and therefore trigger a_ LRCLK MSb first. As previously discussed, serial output from the
signal. Since the ®30AdHx has only one Serial /O gyg30ax/Hx is LSb first. This requires that bit reordering
port, the transfer of control information needs to be e yone. In theory, one could use bit operations to individ-
programmed explicitly. ually write bits to one of thex830Ax/Hx's output pins.

The system bus (ports 0 and 2) is used to communicat(yowever’ it is assumed that the timing restrictions and

with external memory. The external bus supports 16 bitsco;:htr_lgnoverhead are too complex to make this a viable
of addressing and 8 bits of data by using two 8 bit portsSo ution.

_for he mterfac_e, one port is gsed fpr 8 b'.ts of add_ressAnother possible solution would be to use the serial port
information while the other 8-bit port is multiplexed with ;| conjunction with some external components. The
address and data. From a codec's perspective, it does NPhaximum peripheral clock rate from the serial port is

2MHz. The audio data rate is 180 bytes/ms = 1.44

AP-648 intel
®

Mbits/s. Therefore, 72% of the serial port’s clock cycles Addressing for the codec’s registers is performed via the
need to be available for transferring data. The programADRL1:0 signals. These two bits of input select the Index
code and interrupt routines can be streamlined to satisfyAddress Register (IAR), Indexed Data Register (IDR),
this throughput requirement. For instance, the programStatus Register, or PIO Data Register. These four registers
code could be simplified so that its sole responsibility are considered to have direct forms of addressing. There
would be to transfer data from the930Ax/Hx receive are also 32 registers that have indirect addressing. The
FIFO to the serial port. An external FIFO or buffer, IAR register holds 4 bits of data that signify the addresses
capable of reordering the bits in each byte, could be useaf the indirect registers. The IDR contains data that is to
and a state machine could be designed on a FPGA tde read/written to the register pointed to by the IAR. In
control the interface between the FIFO and codec. other words, the user selects a particular control register
by driving ADR1:0 = 0 and writing the appropriate 8 bits
This would remove the logic complexity from the to the parallel port. This loads the IAR with the indirect
8x930Ax/Hx. The FPGA would be responsible for the zddress. By driving ADR1:0 = 1, the IDR register is
codec’s configuration and regulate the flow of data to the selected. The next write to the parallel port loads the data

codec. Care would have to be taken, since the codec anghto the particular indirect register that is addressed by the
speaker system would essentially run asynchronous to thgaR.

8x930Ax/Hx and USB system. Thex830Ax/Hx would
simply pump data out the serial port and into the FIFO. Because it is necessary to perform two writes to the data
The FPGA would have to monitor the state of the codecbus and two writes to the ADR signals to update a control
and fill level of the FIFO and coordinate the flow of data register, setup and initialization can become cumbersome.
between the two. However, the AD1845 supports a Direct Memory Access
(DMA) protocol during data transfers. The DMA protocol
If the serial interface is utilized for other purposes, a js similar to a burst type of transfer. If the codec’s buffer
parallel codec solution can also be implemented. s not full, the codec requests data. For each request, the
Although a parallel codec is typically more expensive controller acknowledges the request and proceeds to
than a serial codec, some of the additional features camutput 4 bytes of data (a left/right pair). This type of
prove beneficial and provide a lower overall cost. For protocol helps to cut down on the processing overhead.
example, it supports a burst type transfer that simplifies gqr every interrupt request by the codec, h@38Ax/Hx
handshaking. This helps to ease the latency requirementgeturns 4 bytes of data instead of just one byte.
with the controller. The AD1845 is also a flexible part in

terms of system configuration. It can be programmed toDuring playback, the signaling is as follows: The codec
accept several data formats and data rates, and isequests data by asserting Playback Data Request (PDRQ)
operational with a range of clock rates. Finally, many high. The controller acknowledges by asserting Playback
parallel codecs support bi-directional transfers and powerData Acknowledge (PDAK) low. The controller then
down modes, leaving room for future development. follows by outputting data onto the 8 bit bus. Data is
clocked into the codec by the WMput. WR# is strobed

. low and data is latched into the codec on the rising edge of
5.2 AD1845 Details WR#. The AD1845 de-asserts PDRQ on the falling edge
For (16-bit twos) complement PCM data, the AD1845 of the final WR_#_strobe and the_ controller de-asse_rts
FIFO considers a ‘sample’ to be a pair of left/right data PDAK after the rising edge of the final WR# s_trobe. This
samples. Therefore, the on-chip 16-sample FIFO will hold f:ompletes the handshake and the codec will be able to
16 left/right pairs = 64 bytes = 512 bits of audio data. The'SSUe another data request.
data payload in each USB frame is 180 bytes, so theI
AD1845 is capable of holding over a third of the data in a
USB frame. Additionally, the AD1845 accepts data which
transferred low byte first. It expects LSB left channel
MSB left, LSB right, MSB right. This is the same order
that bytes are transmitted by the host, so there is no nee
for bit or byte reordering.

t should be noted that the ADR inputs are ignored while
PDAK is asserted. To stop playback, the user must reset
bits in a control register by using IAR and IDR. This must
' be done in between PDRQ data requests. All PDRQ
Ejequests must be acknowledged. If the controller is
Stopping playback and has loaded the IAR but has not

1. The maximum clock rate for WR# is 6.25 MHz

intel.

latched the data into the register, and PDRQ is output by
the codec, the controller must acknowledge the request. It
must output PDAK and strobe WR# four times. When the
codec de-asserts PDRQ, the controller can write to IDR
and finish stopping the playback.

The power up initialization of the AD1845 takes approxi-
mately 512ms. The IAR reads 80h during initidization
and can be polled for a value other than 80h to determine
when initidization has completed. This indicates that the
controller will have to perform reads from the codec, even
if there are no bi-directional transfers. Similarly, when
certain parameters are changed during setup, the AD1845
goes through routines that allow filters and other circuitry
to settle. The controller must again poll the AR register.

53 8x930Ax/Hx to AD1845 Interface
Example

A general system block diagram is shown in Figure 2
below. The 8x930Ax/Hx provides 1K of on-chip data
memory. All code is executed out of externa memory
(ROM or RAM) or on-chip ROM. For this design

AP-648

example, it isassumed that code would be contained on an
externa ROM chip. The 1K of on-chip memory should
suffice for any scratch pad area so there shouldn’t be any
need to write to external memory.

The first issue to be addressed is the timing of the
interface signals. Figure 3 indicates the timing required by
the AD1845 and Figure 4 indicates the default timings of
the 8930Ax/Hx parallel port. All timings are in ns.

As one can see, the setup and hold of the data byte with
respect to WR# is 10ns; 15ns for the AD1845. The
equivalent times for thex830Ax/Hx are 68ns and 28ns,
indicating that all setup and hold times are compatible.

However, there is a discrepancy in the width of the write
pulse. The AD1845 requires a minimum width of 100ns
but the &930Ax/Hx default configuration only provides
71.8ns. Therefore, thex830Ax/Hx must be configured
with an extra wait state. This will increase the WR# width
to 154ns. Since the program is executing out of ROM, the
8x930AX/Hx WR# signal is connected only to the codec.

ﬁ—
USB
—> PSEN# . | RD#
8x930AX/Hx
ALE
P1,P3
Data [7:0]
AD1845 —»| Amplifier
&
> I » RD# ——| Speaker
A16:17 »| xvz
NOTES
P1,P3 = Ports 1 and 3 are used for A16:17, INTO# and other codec interface signals
xyz = Codec interface signals WR#, CS#, PDAK#, PDRQ, ADR1:0, RESET#
A4437-01

Figure 2. 8x930Ax/Hx and AD1845 Block Diagram

AP-648 intel
®

WR# R
// \\
; 115 ; 15
10 | /I 10 | |
DATA Y Bye1 : Byte 4 Y.
(7:0) \ Y /

A4443-01

Figure 3. AD1845 DMA Timing Requirements

WR# I E———
. -~ |

7/

/

\ :28
I

\
68\’/ |
PO or P2 Address \

Figure 4. 8x930Ax/Hx Parallel Port Write Timing

A4442-01

RD# o g
S \
40 \\ |
DATA[7:0] Byte

A4440-01

Figure 5. Read Timings for AD1845

. AP-648
intel.

PSEN# _<::,,,,1§§ ,,,,,,,, .
S|y / \

\ }0
133\ !
PO or P2 Address ‘

A4441-01

Figure 6. Read Timings for 8x930Ax/Hx (1 Wait State)

Reading from the codec presents some additional
problems since there must be a way of determining if the
controller is reading from the memory chip or the codec.
One way to do this is to assign the codec to a memory
address or memory block. Any read from that particular
location or block isignored by the external ROM.

The 8x930Ax/Hx provides for 16-, 17-, or 18-bit
addressing. Under 18-bit addressing, outputs A16 and
Al7 (pins P17 and P3.7) select one of four 64KB
memory pages (00, 01, FE, and FF). The program code
executing out of ROM should easily fit inside a 64KB
block. This program code can reside in page FF. By
defining the codec as page 00, one can decode A16 and

Al17 and generate the codec’s read signal. Namely, O-
Ring A16, A17, and PSEN# will produce a read signal for
the codec. Required read timings are shown above in
Figure 5 and Figure 6. All timings are in ns.

When addressing the codec, the 8 bits of address data sent
out onto the system bus by the€d80Ax/Hx are irrelevant.

With 1 wait state, theX®30Ax/Hx requires valid data to

be on the bus within 133ns after applying PSEN#. The
AD1845 can deliver the data being read in 40ns, so the
decoding logic has roughly 90ns to generate the codec’s
read signal. Note that all reads, including the ones to the
external ROM chip, will have 1 wait state. This will
degrade program execution to some degree, as there will
be an extra cycle of latency from ROM reads.

AP-648

54 Considerations and Recommenda-
tions

541 USB SOF

Although bandwidth allotment for the isochronous data is
guaranteed, there is no guarantee regarding the exact
placement of the isochronous data inside a particular
frame. Furthermore, the exact byte count of raw data will
also vary. Since the placement and exact size of the data
packet can vary from frame to frame, the system designer
must use the Start of Frame (SOF) interrupt and RXCNT
register to determine when new data is valid and how
much data has been received.

As previously mentioned, the endpoint 1 receive FIFO is
1024 bytes and is configured as two 512 byte FIFOs. Data
in each of the FIFOs is qualified by the SOF. In other
words, a SOF tells the user that a new frame has started
and that the isochronous data received in the previous
frame must be valid. The SOFH register contains the Any
Start of Frame (ASOF) bit which indicates that a SOF has
been received. This can be set to generate an interrupt.
The interrupt routine can then poll the RXCNT register,
which contains the byte count for the data packet which is
received.

5.4.2 Data Request

intel.

5.4.3 Matching Data Rates

The delivery of isochronous data via discrete USB
packets presents some other issues that should be
addressed. On average, the delivery rate and consumption
rate are the same (44.1KHz). However, there is no phase
synchronization between the USB clock and the codec’s
clock. Therefore, there will be phase misalignment. Clock
jitter and phase drift due to component variations will
cause a temporary mismatch in delivery and consumption
rates.

For instance, imagine that 44 samples are delivered in a
USB frame. This data must feed the codec for the next
1ms. Since the codec’s sampling clock isn’t synchronized,
it could go through 45 cycles in the 1ms time period.
Similarly, the USB frame may deliver 45 samples, and the
codec may only request 44.

Since delivery and consumption could be mismatched
during any 1ms time period, one frame may suffer from
data starvation while the next frame has extra samples that
aren’t consumed. The system designer must determine
how these issues will be handled. Many codecs will replay
the last sample if no new data is available. One can easily
drop samples by moving to the next receive FIFO when a
SOF interrupt is received. Any data that was received in
the previous frame and not transferred to the codec is
simply not used. This would be the simplest method of
handling too much / too little data. Of course, adding or

The 8x930AX/HX's external interrupts (INTO# and INT1#) dropping samples without any interpolation or averaging
can be used to detect the AD1845's request for dataWill degrade performance.

(PDRQ signal). Edge triggered interrupts must be a high-
to-low transition and stay low for at least 5 state times .
(666ns). The PDRQ signal is active high, so it must be5'4'4 Offsetting the SOF

|nvert§d. This can be absorbed. into the PAL '09'0 that The problem with frame starvation lies in the fact that
contains the WR# and RD# logic. One must realize thaty,o e il e contention at the end of each 1ms time
PDRQ has a minimum de-assertion time of 320ns period (end of each USB frame). Thex980AX/Hx
between requests. This should not present a problem, b%ceives 44 or 45 samples in a data packet and must
rather indicate the degree of turnaround that may begyreaq that data over a 1ms time period. This will instigate
necessary when the codec’s buffer is not full. a race between arrival of the next USB frame and

The RXDAT register contains the byte which is currently emptying of the codec’s buffer.

active in the receive FIFO. FIFO pointers are incremented,;or example, assume tha9B0AX/Hx transmits the last
automatically_ after Qach read so the user need only beEjyte of data from a packet and fills the AD1845 buffer.
concerned with moving data from RXDAT to the output 1he Ap1845 will deplete a sample from the buffer and
port. Data transmission can be done using a loop. Theassert PDRQ. The x830AxHx will not be able to
interior of the loop detects PDRQ, outputs PDAK, and resn6nd. The AD1845 will continue to deplete samples

performs 4 moves from RXDAT to the output port. f,m the huffer while the @30Ax/Hx waits for the next
RXCNT is the number of bytes received in a particular packet of data

frame and signifies the loop exit point.

10 I

. AP-648
intel.

SOF1 SOF2 SOF3
, 44 Samples, Packet #1
8 Dummy | [8 samples | 8 Samples| [8 Samples |8 Samples .
| b | f
X + (2* Delta) X+ (2 Delta) |
A4444-01

Figure 7. 8x930Ax/Hx and AD1845 Offset

A solution for this is to offset the arrival of a USB frame 6.0 Conclusion

by emptying the AD1845 buffer. This can be accom- n)

plished by outputting 8 dummy samples at the start of the As one may conclude, the playback of digital audio data

isochronous transfer. See Figure 7 above. via USB has many advantages. The quality of sound
delivered to the end user can be improved while

When the isochronous transfer is first started, 8 samples maintaining cost effectiveness and ease of use. The

worth of dummy data can be sent to the codec (32 bytes). variety of audio codecs and the numerous integrated

This will delay consumption of the real audio data. The features of the X®30Ax/Hx controller make it well suited

arrival of the next USB frame will occur when the codec’s for codec interfacing. Additionally, the transmission of

buffer is half empty instead of completely empty. audio data is well within the capabilities of the USB
protocol and the ®30Ax/Hx controller, allowing future

Additional stewardship will be necessary. Phase development.

mismatch will still exist and samples will have to be

padded or dropped. To do this, the system designer will

have to determine a point in time when the last sample?-0 References

should be transmitted to the codec. This can be calledy) 8x030Ax. 8x930HX USB Microcontroller User's
point X, and a delta around point X can be defined. Manual- ord;ar number: 272949-001

A timer count can be used to roughly determine the
amount of time that has elapsed since a SOF. If the loop
variable hasn’'t reached RXCNT before the timer count
(count + delta), then a sample needs to be dropped. This
keeps the offset centered at 8 samples. Likewise, if the
loop variable reaches RXCNT before a timer value of
(count - delta), then the codec is running fast requiring the
addition of an extra sample. Controlling the offset also
buys the system designer some time in handling the SOF
interrupts. While the ®30AX/Hx is attending to the new
SOF and new data packet, the codec is coasting on the last
8 samples in its buffer.

I 11

1 AP-648
intel.

8.0 Firmware Template for Communication Between the 8x930Ax/Hx and Audio Codec

The purpose of this template isto guide the user in devel oping the communication code between the 8x930Ax/Hx and the
AD1845. Intel assumes no liability whatsoever for use of this template.

Table 1 below indicates the example wire map between the 8x930Hx and the audio codec. Please refer to Section 10.0,
Schematics for more details

Table 1. Sample Wire Map Between 8x930Hx and Audio Codec

Codec 8x930HXx

Data 7:0 P2: 0:7

WR# P3.6(WR#)

RD# P3.7 OR PSEN#

CS# Ground

PDAK# P1.0(T2)

PDRQ P1.3(CEX0)

ADDR 1:0 ADDR 1 to GND and ADDR 0 to P1.1 (T2EX)

RESET# Tied to Vcc on the codec with an RC timed for the necessary
delay required at power up; tied to pin P1.5(CEX2) on the
8x930Hx

PWRDWN# Vcce

CDACK# Vcce

The template has been divided into three portions:
1. Initidization

2. Start Of Frame (SOF) ISR

3. CODEC Request ISR

Sample subroutines are provided in Section 8.2 below.

8.1 Firmware Guideline

8.1.1 Initialize

1. The 8x930Hx powers on and the 8x930Ax/Hx evaluation board initializes.
— Set the PCA to positive edge triggered interrupts on CEXO0
— Set the SOF interrupt to a priority level above the PCA interrupt

2. Assume
— The 8x930HXx is in PAGE-MODE for memory bus access.

— There is an additional state inserted into the memory bus access. The 8x930Hx WR# strobe is lengthened by ol
state length. This is one way of allowing the bus to sync up with codec’s read and write cycle.

I 12

1 AP-648
intel.

3. Initiglize the codec with the 8x930Hx

— Resynch subroutine used at power on

— Set MODEZ2 hit
 Indir_cntrl_reg_write 010011008, 11011010B

— Set Crystal Clock select to 25 Mhz
« 25 Mhz is an arbitrary frequency, other possibilities are: 24.576, 1431818, 24, and 33 Mhz
¢ indir_cntrl_reg_write 01011101B, 01100000B

— Resynch subroutine used again as the codec resets itself

— Set codec for 16-bit PCM 44.1 Khz sample rate
¢ Indir_cntrl_reg_write 010010008, 01011011B

— Set codec for DMA transfers (write directly to the codec FIFO), Single channel DMA, Playback DISABLED
(i.e. wait till data available from host)

¢ Indir_cntrl_reg_write 01001001B, 00000100B
— Clear MCE Bit fote: therewill be 128 samples of muted output now)
¢ Cntrl_reg_write 0B 00000000B

8.1.2 SOFISR
Four possible situations have been considered:

1. There is audio data in the FIFO (check RXCON bit RXFFRC) and currently no playback by the codec
— Transfer all audio data in the FIFO to the RAM buffer in on chip memory
— Use the byte count from RXCNT
— Data goes from RXDAT to RAM buffer one byte at a time
— When transfer is complete update the ram buffer's data pointer
— Turn on the playback of the codec
— Indir_Cntrl_reg_write 00001001B, 00000101B

— The above write enables codec DMA transfer(write directly to the codec FIFO), Single Channel
DMA, Playback ENABLED

— Set a global variable "HubSamples" = the samples in the RAM buffer i.e. RXCNT / 4
— Set a global variable "playback” to TRUE

2. Thereis audio data in the FIFO and playback is occurring
— Transfer all audio data in the FIFO to the RAM buffer in on chip memory as in a)
— Update "HubSamples"

— Update the data pointer in the ram buffer

3. Thereis no audio data in the FIFO and no playback by the codec
— Do nothing

4. There is no new audio data in the FIFO and playback is occurring

I 13

AP-648 intel
®

— if "HubSamples" = 0 then turn playback by the codec off and set the global variable "playback” to FALSE
— This means that while there is no data in the FIFO there is still data needed for playback in the audio buffer
* To "turn playback by the codec off"

NOTE: the codec cannot request data (i.e. PDRQ HI) when trying to write to codec registers.

— Drive PDAK# low 10 ns before beginning a write to the codec

— Write all four bytes of a "dummy" sample (i.e. all zeros) to the codec

— Drive PDAK# high 10 ns after the write cycle has ended

— Indir_Cntrl_write_reg 00001001B, 00000100B (DMAtransfers, SingleChannelDMA, Playback
DISABLED)

8.1.3 Codec Request ISR

Interrupt comes from the PCA:
— if "HubSamples" > 0 then service the request with "real" data
— Drive PDAK# low 10 ns before beginning write to the codec
— Write all four bytes to the codec from the ram buffer
— Drive PDAK# high 10 ns after the end of the write
— Update the data pointer to the RAM buffer

— Decrement "HubSamples"

Otherwise, if "HubSamples" = 0 then do nothing and let the codec make use of its feature to replay the last sample.

8.2 Sample Subroutines

cntrl_reg_read ADDRESS, TARGET REG{

Reads from the directly addressable registers on the codec 10 ns before the memory read to the codec the ADDRESS bit is
transmitted to the codec over P1.1 and held stable until 10 ns after the read strobe returns high. This fulfills the timing
requirements of the codec.

}

NOTE: Only thefirst two registers of the four direct registers on the AD1845 are relevant to this application. Pinsare
conserved on the 8x930Hx by tying the upper bit of ADDR1:0 on the codec to ground. TARGET REG is simply
the byte register where the data will be stored.

cntrl_reg_write ADDRESS, DATA{

Writes to the directly addressable registers on the codec 10 ns before the memory write to the codec the two bits of
ADDRESS are transmitted to the codec over P1.2:1 and held stable until 10 ns after the write strobe returns high. This
fulfills the timing requirements of the codec.

}
resynch{

Waits for the codec to reset itself

14 I

1 AP-648
intel.

using function cntrl_reg_read

poll control register 00B on the codec until it reads 80H

}

indir_cntrl_reg_write ADDRESS, DATA{

Writes to the indirectly addressable registers on the codec.

cntrl_reg_write 0B, ADDRESS// indirect register to write

cntrl_reg_write 1B, DATA // the upper bit of the direct register addressis always 0B

}
9.0 Sample Firmware Subroutines for Communication Between the 8x930Ax/Hx and
Audio Codec

This sample code is meant to assist the user in developing their communication code between the 8x930Ax/Hx and the
AD1845. Thisisto be used only as areference and has not been thoroughly tested. Intel assumes no liability whatsover for
use of this code.

I 15

Sample Subroutine code

InitilizeEnbeddedFuncti on:

Cal | I NI T_VARI ABLES ;Initialize the RAM space as required
Cal | SV_Reset Rout i ne
Cal | I NI T_FUNCTI ON_EPO

Call I NI T_CODEC

seth SOFI E ; Enable SOF Interrupts
setb IENL. 1 ; Enabl e Function ISR
ret
; Initialize the USB subsystem
; I call I' NI T_USERS_CODE ; Call to Users code for initialization
EEEEEEEEEEEEEEEEEEEEEREEES
; Sub Routine Name: I NI T_CODEC
; Brief Description: Initializes the codec for interface w the 8x930Ax/ Hx
; Regi sters Saved: St andard pushi ng and popi ng of registers used

EEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEREEES

I NI T_CODEC:

EE R R R R R R R R R
; Not directly related to thecodec but initialize global variabl eshubsanpl es and

pl ayback
; Also configures the PCA to receive data request interrupts fromthecodec

push VRO
mov VRO, #0000h

nmov pl ayback, VRO
nmov hubsanpl es, WR0O

pop VRO

nmov CCAPMD, #21h ; Positive edge triger and enable interrupt request for
CEXO0

nmov | PHL, #01h ; Bunmps SOF interupt fromlevel O to level 1 priority.

Ensur es t hat ; SOF has higher priority than Codec data

request

EE R R R R R R R R

Resynch ; make sure that the codec has
conme ; out of reset
; I'ndi rect CodecControl RegWite: MACROAddr, Dat ; Set the MODE2 BIT
I ndi rect CodecControl RegWite 01001100b, 11011010b ; Set Crystal Cock to
25 Mhz
I ndi rect CodecControl RegWite 01011101b, 01100000b ; resynch again to allow the
codec ; to reset
Resynch ; Set codec for 16-bit PCM
44. 1 ; Khz sanple rate
I ndi r ect CodecControl RegWite 01001000b, 01011011b ; Set Codec for dma transfers
; Single Channel DMA transfers
I ndi rect CodecControl RegWite 01001001b, 00000100b ; Playback DI SABLED
CodecCont r ol RegWite00 00000000b ; Clear the MC3 Bit
ret

’
EE R R R R R R R R R R R R

; SOF | SR

’
EE R R R R R R R R R R R

Functi on nanme : SOF_I SR
Brief Description : Service the SOF_ISR Interrupt
: This routine sinply displays the upper three bytes of the
SOF in the lower three bits of theLEDs on LED PORT = P1.
It does not affect the other LEDS. Very useful
in determning when the function is receivingSOFs
The service routine also transfers audio data to
: arambuffer for use by thecodec
Regs preserved : Reg. Ais saved

Sampl e Subroutine cod

SOF_| SR

e

EmbeddedFunct i onSof Rout i ne:

jnb ASCF, Exi t Sof I sr ; If this ASOF bit not set, the ISR could be a
HUB. Go Check.
cal | SV_SOF_ROUTI NE
clr ASCOF
push ACC
| F FUB_BOARD == DI SABLED
nmov A LED PORT
anl A, #0F8h
nmov LED_PORT, A
nmov A SOFH
anl A #07h
orl LED_PORT, A
ENDI F
pop ACC
Exi t Sof I sr:
(00 o | I L L R R R R P

anl A #10h
jnz dat_yes

nmov A, pl ayback

anl A, #0FFh
jz bye

mov WR2, hubsanpl es
cnp WR2, #0000h

; Save registers

move RXCON to get at the RXFFRC bit
mask everything except RXFFRC

if (data in fifo)

FALSE)

if (playback

; then (do not hi ng)
el seif (hubsanples !'= 0)
i.e. there are sanples in the RAM buffer

jne bye ; then (do not hing)
I call STOP_PLAY BACK ; else (turn off thecodec)
nmov pl ayback, #0000h ; set playback = FALSE
sj mp bye ; we're done!
dat _yes:
nmov A, pl ayback
anl A, #0FFh ; if (playback == FALSE)
jz turn_on ; then (turn on the codec and transfer data to ram
buffer)
I cal | XFER _DATA ; else (only transfer data to the ram buffer)
sjmp bye ; we're done
turn_on:
| cal | XFER_DATA
I cal | START_PLAY_BACK
sjmp bye ; we're done
bye:
pop WR2
pop RO
ret
COMVENT F - - - - - - m m oo m o oo oo oo o o e e oo

Functi on nane :
Brief Description :

Regs preserved

START_PLAY_BACK:

nov pl ayback, #0FFh
I ndi rect CodecControl RegWite

t he abov

ret

START_PLAY_BACK

The gl obal playback function is set to TRUE and
the codec is set to playback audio data

N A

; set playback = TRUE
00001001B, 00000101B

e bit sequence ENABLES pl ayback by thecodec

;******* END START_PLAY_BACK *kkkkkkk*k

Functi on nane
Brief Description :

STOP_PLAY_BACK
Pl ayback by thecodec is disabled by first
satisfying thecodec’s data req and then turning

Sample Subroutine code

. playback off.
Regs preserved : DR4 is preserved

STOP_PLAY_BACK:

push DR4 ; save regs
nmov WR4, #0000h ; nove codec addr into double word
nov WR6, #0000h
clr 1.0 ; drop PDAK# LOW
nov @R4, WR4 ; nove two "dummy" sanples to thecodec
nmov @DR4, WR4 ; i.e. all zeros
setb 1.0 ; drive PDAK# HI GH

I ndi rect CodecControl RegWite 00001001B, 00000100B
the above bit sequence DI SABLES pl ayback by thecodec

pop DR4
ret
;******* END STO:)_PLAY_BAO(* ok k ok ok ok kk

Functi on nane : XFER_DATA

Brief Description : Transfer |1SOC data fromthe eplfifo to a rambuffer.
: In the process hubsanpl es i s updat ed.

Regs preserved T VR2, WR4,

XFER_DATA:
push WR2 ; save registers
push W4
push R6

mov WR2, #0000h ; zero the register

nov VWR2, RXCNTL

srl WR2 ; divide byte count by 4 to get the sanple count
srl \R2

nmov hubsanpl es, WR2 ; wite back the new val ue of hubsanpl es

mov WR4, audi o_buf ; initialize the audio buffer pointer

nove_it: ; begin | oop
cmp VWR2, #0000h ; if (sanmple count == 0)
je see_ya ; then (we are done)
mov R6, RXDAT ; begin moving 1 sanple to the RAM buffer
mov @\R4, R6
inc W4, #01d
mov R6, RXDAT ; get the audio data fromfifo
mov @\R4, R6 ; transfer audio data to the RAM buffer
inc W4, #01d ; increment the buffer pointer
nmov R6, RXDAT
mov @\R4, R6
inc W4, #01d
nmov R6, RXDAT
mov @\R4, R6 ; end nove 1 sanple to the RAM buffer
inc W4, #01d
dec WR2, #01d ; one sanple down (WR2) to go
sjnp nmove_it ; end | oop
nmov audi o_data_ptr, audi o_buf ; reset the pointer to the beginning of the buffer
and new dat a
see_ya:
pop R6
pop WR4
pop WR2

ret
ckkkkkkkk END XFER DAT *kkkkkkk*k
Functi on nane : CODEC_I SR

Brief Description : Services the Codec’s request for data one sanple at a tine
Regs preserved © VRO, R2- 5, \R6, DR12

Sample Subroutine code

push VRO ;preserve register val ues
push R2

push R3

push R4

push R5

push WR6

push DR12

nmov WRO, hubsanpl es ; if (hubsanples == 0)

cnp VRO, #0000h ; then exit

je finis ; i.e. there is no audo data
so let the codec repeat |ast sanple

set up the data for the entire sanple

nov R2, audi o_data_ptr ; left low byte
nmov R3, audi o_data_ptr + 1; left high byte
nmov R4, audi o_data_ptr + 2; right |ow byte
nmov R5, audi o_data_ptr + 3; right high byte
mov VWR12, #0000h

nov WR14, #0000h ; load the address for the codec into DR12
clr P1.0 ; drop PDAK# | ow
nov @R12, R2 ; left low byte to codec
nov @R12, R3 ; left high byte to codec
nov @R12, R4 ; right low byte to codec
nmov @R12, R5 ; right high byte to codec
setb P1.0 ; drive PDAK# back high
dec VRO, #1D ; decrenent the hubsanpl es
nov hubsanpl es, WR0 ; updat e hubsanpl es
mov WR6, audi o_data_ptr
add WR6, #04d ; increment the pointer to the next sanple
nov audi o_data_ptr, WR6
nmov CCON, #00h ; clear the PCA Conpare/Capture Flag at CCON. 0
finis:
pop DR12
pop WR6
pop RS
pop R4
pop R3
pop R2
pop VRO
ret

*kkkhkkhkkkkk*x END COxCISR *kkkkhkkkkkk*k

10.0 Schematic

oo
Poaran 3
T] Rofa—ijoo oo
£ R R S
LEES e AT
2 patas 1203 @2
i |- BRE| Aotses Mo o
CeRosucansaoioii: oams e 1p; 5=
FEEESRRetREs st 11 vercamtn O BEN
23>%kkkz xkkxzaa> o7 Q7[R
§5555°555408 o ~
—s
110 o L n
om0 sl k Tancrors 3
] Cons e pazao P &
Enarabrd T 2 & b= e -
H PoRQ xcriofge—xX + @ 02 [EER Lmass
—mp X o —a 183 Da AR o
oo A el
et oo oo % papHeN
XTALLO ne 22— o 18106 s A2
Ve Nepe— E N a0
GNDD Analog Devices NC [0 0.05uF
X A SOCKETD ne 2 oc .
s 2] Sunoon et o c pov Pov sae
o i —
Al N X Tancrar e
Shoo Voo H-— 2
Sop f ‘ e T =
o X : = o
w $o08nyys 28E55EX X
S3s5akE2882228933 2 X
oo B33 RO § o o
"ﬂ” [l e k| uon s [
XXX J XX|T[XX Ll g :Aﬁ<
22— : ==~
2 £ X
7amcos e e AGND
6B, 8 x
AES N RS
5 M 4 —=291 § [EIEESS)
:j i g e
co U o e o
. 7amcos . St i
20pe A = e
F e »—ded A
e 7404
H ~
e F ez - G
]
74HC32 co C
1o
a0 ~
e pov
uec Psv
u
o Q 7
e
S I A T
Clo == o T= ci == o= cu o= o
= v . Tn o Tn b Tn S TolF Tn) Tn o o P—
| | | - | a Peripheral Controllers Group
wo 2o Sonow Crandier i
. ander A2 55226
"
oo
CODEC Board
74HC32 oar
e Jorescome owe o
p
=
Py cer By, Seprer 0 108 P

20

	USB Audio Using the 8x930Ax/Hx Controller and an A...
	1.0 INTRODUCTION
	2.0 USB and Digital Audio
	2.1 Universal Serial Bus
	2.2 In tel’s 8x930Ax/Hx USB Controller
	2.3 Traditional PC Audio
	2.3.1 Possible Drawbacks to Using PC Sound Cards

	2.4 USB Audio

	3.0 Codec Background and Selection
	3.1 Codec Basics
	3.2 ARCHITECTURE CONSIDERATIONS
	3.3 Performance
	3.4 Features
	3.5 Interface Signals
	3.5.1 Serial
	3.5.2 Parallel

	4.0 8x930Ax/Hx Interface
	4.1 USB to 8x930Ax/Hx Interface
	4.2 8x930Ax/Hx to Codec Interface

	5.0 8x930Ax/Hx to Codec Interface Example
	5.1 HIGH LEVEL SYSTEM CONSIDERATIONS
	5.2 AD1845 Details
	5.3 8x930Ax/Hx to AD1845 Interface Example
	5.4 Considerations and Recommendations
	5.4.1 USB SOF
	5.4.2 Data Request
	5.4.3 Matching Data Rates
	5.4.4 Offsetting the SOF

	6.0 Conclusion
	7.0 References
	8.0 Firmware Template for Communication Between th...
	8.1 Firmware Guideline
	8.1.1 Initialize
	8.1.2 SOF ISR
	8.1.3 Codec Request ISR

	8.2 Sample Subroutines

	9.0 Sample Firmware Subroutines for Communication ...
	10.0 Schematic

