
Application Note 85
Interfacing the DS1620

to the Motorola SPI Bus

APPLICATION NOTE 85

030998 1/3

This application note is a courtesy of Michel St–Hilaire
and Marc Desjardins from XyryX Technologies, Quebec
city, Province of Quebec, Canada.

INTRODUCTION
The DS1620 Digital Thermometer and Thermostat pro-
vides 9–bit temperature readings which indicate the
temperature of the device. With three thermal alarm out-
puts, the DS1620 can also act as a thermostat. Temper-
ature settings and temperature readings are all commu-
nicated to/from the DS1620 over a simple 3–wire
interface.

However, the SPI interface found on many Motorola
processors cannot directly communicate with the
3–wire interface found on the DS1620. First, the data
flow to and from the DS1620 is multiplexed on only one
pin (DQ) while SPI needs two separate signals (MOSI,
MISO).

Second, most SPI interfaces are limited to 8–bit data
transfer, complicating sending and receiving the 9–bit
temperature readings to and from the DS1620. In addi-
tion, the DS1620’s interface transfers LSB first, while
SPI is an MSB-first communication protocol.

Lastly, the RST is unlike a CS (chip select) signal in that
RST must be high from the beginning of a transfer (pro-
tocol) to the end of all transfer of data (e.g. 9th bit trans-
ferred when reading temperature value).

Despite all these constraints, a fairly simple solution can
be found which allows an SPI interface to communicate
with a DS1620. This technique is described in this
application note.

SPI INTERFACE
The circuit shown in Figure 1 can be used to control data
flow direction with an SPI bus interfaced to a DS1620.
This circuit could be integrated into a small PAL if
desired.

The purpose of the DIR signal is to select between send-
ing data to or receiving data from the DS1620. When
DIR is low, the DS1620 is receiving data; if DIR is high,
data is being read by the SPI controller.

The resistor is necessary to prevent contention
between the output of the tri–state buffer on the MOSI
line and the DQ pin of the DS1620, because after a
READ command protocol has been received by the
DS1620, its DQ pin changes direction from input to out-
put in a few hundred nanoseconds. This time is much
too short for the microprocessor controlling the DIR sig-
nal to take action.

When connecting multiple peripherals on the same SPI
bus, the MISO signal must be tri–stated when the
DS1620 is not accessed to prevent contention with the
MISO signal of other peripherals. That is why the RST
signal is necessary in the logic which determines the
data direction.

Note that the SPI clock is wired directly to the CLK pin of
the DS1620. The software has to take care of the polar-
ity and phase of the SPI clock to be compatible with the
CLK timing requirements of the DS1620.

APPLICATION NOTE 85

030998 2/3

SPI TO DS1620 INTERFACE CIRCUIT Figure 1

MC68HC711E9

PB1

MOSI

DIR

MISO

SCK

PB0

CLK

TRI–STATE

DQ

GND

TH

TL

TCOM

+5V

RST

CLK/CONV

DS1620

MOSI

MISO

TRI–STATE

RST

VDD

SOFTWARE FOR THE INTERFACE
While the hardware for the interface is relatively
straightforward, the rest of the SPI/DS1620 interface
must be handled by software. The following example
shows a way to do this in the case of reading the temper-
ature from the DS1620. This code fragment assumes
that the DS1620 has already been initialized, that the
configuration register is set up properly, and that tem-
perature conversions have been initiated. See the
DS1620 data sheet for details on these operating
modes.

Before accessing the DS1620, the DIR signal must be
asserted low for a WRITE transfer to occur. RST must
be driven high to enable the DS1620. The SPI controller
sends out the protocol (eight bits long) to the DS1620.
Again, note that SPI sends information MSB first, while
the DS1620 communicates LSB first. In order to accom-
plish this, a software “mirror” should be used to reverse
the bit order. An example of such a function is given by:

unsigned char mirror(unsigned char value)
{

unsigned char i;
unsigned char value_mirrored = 0x00;

for (i=0;i<=7;i++)
{

value_mirrored = value_mirrored | (((value>>i)&0x01)<<(7–i));
}
return (value_mirrored);
}

APPLICATION NOTE 85

030998 3/3

With the protocol sent, the DIR is changed from low to
high (indicating now a READ transfer) because the
DS1620 is ready to send out the 9–bit value. Note that
RST is still high. The SPI controller reads the first eight
bits of the 9–bit value (LSB first). The software has to
“mirror” the received byte. The 9th bit (followed by seven

dummy bits) is pulled out by making another READ
transfer and keeping DIR and RST as they are. When
the second byte is received, the software again mirrors it
and pulls RST low, terminating communication with the
DS1620.

#define RST_bit 0 /* PB0 */
#define RST_port PORTB
#define DIR_bit 1 /* PB1 */
#define DIR_port PORTB
#define READ_TEMP_CMD 0xAA

unsigned int read_temp(void)
{

unsigned char temp_value_lo;
unsigned char temp_value_hi;

DIR_port = DIR_port & ~(1<<DIR_bit); /* DIR = LO: WRITE mode */
RST_port = RST_port | (1<<RST_bit); /* RST = HI: DS1620 enabled */
SPDR = mirror(READ_TEMP_CMD); /* Send protocol to DS1620 */
DIR_port = DIR_port | (1<<DIR_bit); /* DIR = HI: READ mode */
while ((SPSR & (1<<SPIF_bit)) == 0); /* Wait for SPI flag = ready */
temp_value_lo = mirror(SPDR); /* Receive 8 lowest bits */
temp_value_hi = mirror(SPDR); /* Receive 8 highest bits */
RST_port = RST_port & ~(1<<RST_bit); /* RST = LO: Temp. reading done */
return ((temp_value_hi<<8)+temp_value_lo); /* Return the 9–bit value */

}

RELATED PRODUCT:
DS1623

