
IrDA Infrared Communications:
An Overview

By

Patrick J. Megowan
David W. Suvak

Charles D. Knutson
Counterpoint Systems Foundry, Inc.

{patm, davesu, knutson}@countersys.com

Biographies:

Patrick Megowan and David Suvak have been involved with the Infrared Data Association
since the beginning. At Hewlett-Packard they created much of the pioneering
HP/Microsoft Windows 95 IrDA solution. Pat and Dave subsequently founded
Counterpoint Systems Foundry, Inc., to make IrDA software solutions for embedded
systems and non-PC platforms. Counterpoint products are available for major RTOSs and
in stand-alone, DOS, and Windows configurations. Counterpoint is heavily involved in the
ongoing development of standards and technologies. Dr. Charles Knutson is Vice
President of Research and Development at Counterpoint Systems Foundry.

1.0 Introduction

As infrared data communications, based on standards from the Infrared Data
Association (IrDA), become widely available on personal computers and peripherals, a
timely opportunity exists for effective and inexpensive short range wireless
communications on embedded systems and devices of all types. The IrDA standards were
developed rapidly (compared to most standards organizations), and information on the
IrDA protocols has not yet reached every corner of the embedded systems universe. This
paper gives an overview of the IrDA protocols with comments on their use in embedded
environments.

The Infrared Data Association (IrDA) is an industry-based group of over 150
companies that have developed communication standards especially suited for low cost,
short range, cross-platform, point-to-point communications at a wide range of speeds.
These standards have been implemented on various computer platforms and more recently
have become available for many embedded applications. Because of their wide acceptance,
the IrDA specifications are now on an accelerated track for adoption as ISO standards.

1.1 What is an IrDA Protocol Stack?

Communications protocols deal with many issues, and so are generally broken into
layers, each of which deals with a manageable set of responsibilities and supplies needed
capabilities to the layers above and below. When you place the layers on top of each other,
you get what is called a protocol stack, rather like a stack of pancakes or a stack of plates.
An IrDA protocol stack is the layered set of protocols particularly aimed at point-to-point
infrared communications and the applications needed in that environment.

Below is a picture of the IrDA protocol layers. This layering will serve as the
overall structure for much of the remaining discussion.

Physical Layer

IrLAP

IrLMP

Tiny TP

IAS IrLAN OBEX IrCOMM

The layers within this stack can be divided into two groups—required and optional
protocols.

1.2 Required IrDA Protocols

The required layers of an IrDA protocol stack are in unshaded boxes in the
diagram above and include the following:

• Physical Layer: Specifies optical characteristics, encoding of data, and framing
for various speeds.

• IrLAP: Link Access Protocol. Establishes the basic reliable connection.
• IrLMP: Link Management Protocol. Multiplexes services and applications on

the LAP connection.
• IAS: Information Access Service. Provides a “yellow pages” of services on a

device.

1.3 Optional Protocols

The optional protocols are shown above in shaded boxes. The use of the optional
layers depends upon the particular application. The optional protocols are:

• TinyTP: Tiny Transport Protocol. Adds per-channel flow control to keep
things moving smoothly. This is a very important function and is required in
many cases.

• IrOBEX: The Object Exchange protocol. Easy transfer of files and other data
objects

• IrCOMM: Serial and Parallel Port emulation, enabling existing apps that use
serial and parallel communications to use IR without change.

• IrLAN: Local Area Network access, enabling walk-up IR LAN access for
laptops and other devices.

When the stack layers shown above are integrated into an embedded system, the
picture may look more like the following:

User

Application

OBEX

IrCOMM

Driver Mode

Controller/UART

Infrared Transceiver

IAS
Tiny TP

IrLMP

IrLAP

Upper Layer API

Framer Timer

User Mode

Interrupt
Mode

Physical Layer

Framer API OS API

Operating
System
(OS)

2.0 Physical Layer and the Framer

2.1 Framer Overview

The Physical layer includes the optical transceiver, and deals with shaping and
other characteristics of infrared signals including the encoding of data bits, and some
framing data such as begin and end of frame flags (BOFs and EOFs) and cyclic
redundancy checks (CRCs). This layer must be at least partially implemented in hardware,
but in some cases is handled entirely by hardware.

In order to isolate the remainder of the stack from the ever-changing hardware
layer, a software layer called the framer is created. Its primary responsibility is to accept
incoming frames from the hardware and present them to the Link Access Protocol layer
(IrLAP). This includes accepting outgoing frames and doing whatever is necessary to send
them. In addition, the framer is responsible for changing hardware speeds at the bidding of
the IrLAP layer, using whatever magic incantations the hardware designer invented for
that purpose (these signals have not yet been standardized).

3.0 IrLAP - Link Access Protocol

3.1 IrLAP Overview

Immediately above the framer we encounter the IrLAP layer, also known as the
Link Access Protocol, or LAP for short. IrLAP is a required IrDA protocol corresponding
to OSI layer 2 (data link protocol). It is based on High-Level Data Link Control (HDLC)
and Synchronous Data Link Control (SDLC) with extensions for some unique
characteristics of infrared communications.

IrLAP provides reliable data transfer using the following mechanisms:
• Retransmission.
• Low-level flow control. (TinyTP provides high-level flow control and should

almost always be used in place of IrLAP flow control.)
• Error detection.

By dealing with reliable data transfer at a low level, upper layers are free from this
concern and can be assured that their data will be delivered (or at least that they will be
informed if it was not). Data delivery might fail if the beam path were blocked. For
instance, someone could put a coffee cup in the path of the infrared beam. IrLAP alerts the
upper layer so that higher-level layers can deal with the problem appropriately. As an
example, an application sitting on the stack could be alerted of an interruption in data
flow, allowing it to alert the user through some interface. The user could then potentially

remedy the problem (by moving the coffee cup) without dropping the connection or losing
the data transferred to that point.

3.2 Environmental Characteristics

Several environmental factors influenced the development of the IrLAP layer.
These include the following:

• Point-to-point. Connections are one-to-one, such as camera to PC or data
collector to printer. The range is typically zero to one meter, although
extended range up to 10 meters or more is under development. This is not like
a local area network (many-to-many) protocol.

• Half-duplex. Infrared light, and therefore data, is sent in one direction at a
time. However, the link changes directions frequently and can simulate full
duplex in cases where timing is not extremely sensitive.

• Narrow infrared cone. The infrared transmission is directional within a 15
degree half angle in order to minimize interference with surrounding devices.

• Hidden Nodes. Other IR devices approaching an existing connection may not
be immediately aware of the connection if they approach from behind the
current transmitter. They must wait and see if the link turns around before
stepping in.

• Interference. IrLAP must overcome interference from fluorescent lights, other
IR devices, sunlight, moonbeams, and so forth.

• No collision detection. The design of the hardware is such that collisions are
not detected, so the software must handle cases where collisions cause lost
data with methods such as random back off.

3.3 Roles within a LAP connection

The two parties to a LAP connection have a master-slave relationship with
differing responsibilities (and resulting code complexity). The IrDA terms for this are
Primary (master) and Secondary (slave).

Primary Station:
• Sends Command frames—initiates connections and transfers.
• Responsible for organization and control of data flow.
• Deals with unrecoverable data link errors.
• Typical primary devices include PCs, PDAs, cameras, and anything that needs

to print (printers are currently all secondaries).

Secondary Station:
• Sends Response frames—only speaks when spoken to.

• Typical secondary devices are printers and other peripherals, and resource-
constrained devices (secondaries are smaller and less complex).

In any connection one device must play the primary role. The other device must
play the secondary role, but its protocol stack may be either a secondary or another
primary—most primaries can play a secondary role. Once started, the two sides take turns
talking with the primary leading off. No side can talk for more than 500 milliseconds at a
time before allowing the other side a chance to talk (even if just to say it has nothing to
send for the moment).

Note that the issue of master versus slave becomes much less obvious at the higher
protocol layers—once two devices are connected, an application on a secondary (slave)
can initiate an operation just as easily as an application on the primary side.

3.4 Modes

IrLAP is built around two modes of operation, corresponding to whether or not a
connection exists.

3.4.1 Normal Disconnect Mode (NDM)

NDM is also known as contention state, and is the default state of disconnected
devices. In this mode a device must observe a set of media access rules. Of utmost
importance, a device in NDM must check whether other transmissions are occurring (a
condition known as media busy) before transmitting. This is accomplished by listening for
activity. If no activity is detected for greater than 500 milliseconds (the maximum time for
the link to turn around), the media is considered to be available for establishment of a
connection.

A great ease-of-use feature is provided by the NDM communications rules. A
classic problem is getting both sides of the link configured with the same communications
parameters—frequently users get completely stuck. This can be particularly difficult on
embedded devices that don’t have a user interface for setting or reviewing
communications parameters. This problem is completely absent with IrDA solutions—all
NDM communications use the following link parameters: ASYNC, 9600 bps, 8 bits, no
parity. During the connection process, the two sides exchange capability information, and
subsequently shift to the best parameters supportable by both sides.

3.4.2 Normal Response Mode (NRM)

NRM is the mode of operation for connected devices. Once both sides are talking
using the best possible communication parameters (established during NDM), higher stack
layers use normal command and response frames to exchange information.

3.5 IrLAP Frame Format

The basic IrLAP frame format is as follows:

Address Control Information

While there are too many details about frame formats to discuss here, it is worth
noting that the Address and Control fields require only two bytes total—the IrDA
protocols add very little overhead to the user data.

3.6 IrLAP Frame Wrappers

Before sending, a frame is wrapped with framing information. Three different
frame wrappers are used by IrLAP, depending upon the speed of the connection.

• Asynchronous (ASYNC) Framing: 9600 bps - 115.2 kbps
• Synchronous (SYNC) HDLC Framing: 576 kbps and 1.152 Mbps
• Synchronous 4 PPM Framing: 4 Mbps

3.7 Service Primitive Diagram

IrLAP operations are described in the specification using service primitives. You
can think of the service primitive as a conceptual model of an API for an operation that
IrLAP performs (actual APIs for IrLAP services are completely up to the developer). This
diagram illustrates an operation: it starts with a service request, travels across the link as a
frame, is reported as an indication (frequently an up-call) on the receiving side; the
receiver then formulates a response which travels back as a frame, finally resulting in a
confirm (often an up-call) to the original requester.

IrLAP Layer A IR Medium IrLAP Layer B

Request

Frame(s)

Indication

Confirm

Frame(s)

Response

3.8 IrLAP Services

A number of services are defined in the IrLAP specification. Not all services are
necessary for all devices, and the IrLAP specification (along with the IrDA Lite standard)
describes the minimum requirements. The most important services include the following:

• Device Discovery: Explores the nearby IR-space to see who is present and get
some hint as to what they can do.

• Connect: Chooses a specific partner, negotiates the best possible
communication parameters supported by both sides, and connects.

• Send Data: The whole reason for all this effort—used by higher layer protocols
for almost all of their work.

• Disconnect: Closes down and returns to the NDM state, ready for a new
connection.

4.0 IrLMP - Link Management Protocol

4.1 IrLMP Overview

The IrLMP layer depends upon the reliable connection and negotiated performance
provided by the IrLAP layer. IrLMP is a required IrDA layer, and provides the following
functionality:

• Multiplexing: LMP allows multiple IrLMP clients to run over a single IrLAP
link.

• Higher level discovery, consisting of:
• Address conflict resolution on IrLAP Discovery. Handles the case of

multiple devices with the same IrLAP address by telling them to
generate new addresses

• Information Access Service (IAS). A “yellow pages” describing the
services available on a device.

4.2 IrLMP Terminology

In order to have multiple IrLMP connections on a single IrLAP connection, there
must be some higher level addressing scheme. The following terminology is used to
describe this addressing:

• LSAP (Logical Service Access Point): The point of access to a service or
application within IrLMP (for example, a printing service). It is referenced with
a simple one byte number, the LSAP-SEL (described next).

• LSAP-SEL (LSAP Selector): A one byte number that corresponds to an
LSAP. Think of this as the address of a service within the LMP multiplexor.
This byte is broken into ranges—0x00 is the IAS server, 0x01 through 0x6F
are legal LMP connections, 0x70 are for connectionless services (not discussed
in this paper), and the rest are reserved for future use.

Given the limited number of LSAP-SEL values, services are not assigned fixed
“port addresses” as in TCP/IP. Instead, services have fixed published names, and the LMP
IAS (yellow pages) is used to look up the LSAP-SEL for a desired service.

4.3 IrLMP Services

Here are the services defined in the IrLMP specification. Not all services are
necessary in all devices, and the specification (along with the IrDA Lite standard)
describes the minimum requirements. Notice that this set is identical to the set listed in the
IrLAP section above—it is a common feature of protocol stacks for operations to
propagate upward like this, with each layer adding its particular contribution.

• Device Discovery: Finds out additional information about devices in the IR
space.

• Connect: Establishes a connection between a pair of services at the LMP level.
• Data: Sends the data back and forth.
• Disconnect: Closes this LMP connection. Note that this does not necessarily

4.4 Frame Format

The IrLMP layer adds the following 2 bytes of information to frames in order to
perform its basic operations:

C DLSAP-SEL r SLSAP-SEL

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

• C: Distinguishes between control and data frames.
• r: Reserved.
• DLSAP-SEL: LSAP-SEL (service address) of the destination of the current

frame.
• SLSAP-SEL: LSAP-SEL for the sender of the current frame

5.0 IAS - The Information Access Service

5.1 IAS - The Yellow Pages for Services and Applications

The IAS, or Information Access Service, acts as the “yellow pages” for a device.
All of the services/applications available for incoming connections must have entries in the
IAS which can be used to determine the service address (LSAP-SEL). The IAS can also
be queried for additional information about services.

A full IAS implementation consists of client and server components. The client is
the component that makes inquiries about services on the other device using the
Information Access Protocol (IAP, used only within the IAS). The server is the
component that knows how to respond to inquiries from an IAS client. The server uses an
information base of objects supplied by the local services/applications. In fixed-purpose
embedded systems this may be a hard-coded collections of objects, while in a PDA there
may be APIs for registering and de-registering services. Note that devices which never
initiate LMP connections might include an IAS server only.

5.2 IAS Information Model

The IAS Information Base is a collection of objects that describe the services
available for incoming connections. The information base is used by the IAS server to
respond to incoming IAS queries.

Information base objects consist of a class name and one or more attributes. They
are quite similar to entries in the yellow pages of a phone book. The class name is
equivalent to the business name in the phone book—it is the official published name of the
service or application. IAS clients will inquire about a service using this name. The
attributes contain information analogous to phone number, address, and other
characteristics of the business. The one essential attribute for every entry is the LSAP-SEL
(or service address), which is required in order to make a LMP connection to the service.

An IAS object is made of the following pieces:

• Class Name (up to 60 octets).
• Named attributes (up to 60 octet names):

• Up to 256 attributes.
• Attributes value types:

• User string (up to 256 octets)
• Octet Sequence (up to 1024 octets)
• Signed Integer (32-bit).

5.3 Getting information using the IAS

There are a number of IAS operations defined in the IrLMP standard, but the most
used and only required one is called GetValueByClass. The inquiring party gives the class
name (for example, Printer) and the name of the attribute it wants (for example, the
LSAP-SEL), and receives a response that consist of one or more answers (for example,
the LSAP-SELs for any printing services in the responding party’s information base) or an
indication that the service or attribute does not exist.

IAS Query Arguments:
• Class Name Length (1 octet).
• Class Name (Length octets).
• Attribute Name Length (1 octet).
• Attribute Name (Length octets).

Results:
• Return Code:

• 0: Success, results follow.
• 1: No such class, no results follow.
• 2: No such attribute, no results follow.

If the result code indicates success, the call returns the following information:

• List Length (2 octets).
• List of results:

• Object Identifier (2 octets).
• Attribute value (based on attribute type).

6.0 TinyTP - the Tiny Transport Protocol

6.1 TinyTP Overview

To put TinyTP in its proper perspective, it would help to review the layers covered
so far:

• Physical layer defines the hardware requirements and low-level framing of the
data.

• IrLAP provides reliable, sequenced data, and trouble-free connection at agreed
upon parameters with automatic negotiation to best common parameters.

• IrLMP provides multiplexing of services onto the LAP connection and the IAS
“yellow pages” of services available for incoming connection.

TinyTP (TTP for short) is an optional IrDA layer, although it is so important that it

should generally be considered a required layer (except in the case of current printing
solutions). TTP provides two functions:

• Flow control on a per-LMP-connection (per-channel) basis.
• SAR (segmentation and reassembly).

TTP adds one byte of information to each IrLMP packet to perform its task.

6.2 Tiny TP Flow Control

Per-channel flow control is currently the most important use of TinyTP. You may
recall that IrLAP offers flow control and wonder why another flow control mechanism is
needed. To illustrate the need, suppose that a LAP connection is established, and two
LMP connections are made on top of the LAP connection using the LMP multiplexing
capability. If one side turns LAP flow control on, the flow of data on the LAP connection
(which carries all the LMP connections) is completely cut in that direction, and the other
side cannot get the data it wants until LAP flow control is turned off. The work of the
second side may be seriously disrupted (especially if timers are involved).

If flow control is applied on a per-LMP-connection basis using TinyTP (or other
mechanisms), then one side can stop to digest information without negatively affecting the
other side.

6.3 How TTP flow control works

TTP is a credit-based flow control scheme. It works as follows:

• At connection, some credit is extended by each side. One credit corresponds to
permission to send one LMP packet. If you send a credit, you must be able to
accept a maximum sized packet. You can see that the number of credits you
extend depends entirely on how much buffer space you have. As long as you
have buffers, you can send anywhere from 1 to 127 credits.

• Sending data causes credit to be used up (1 unit of credit per packet sent).
• Periodically, the receiver issues more credit. This “credit policy” is entirely at

the receiver’s discretion, but the policy can make a big difference in the
performance of the link. If the sender is constantly running out of credit and
having to wait for more, throughput will suffer.

• If a sender has no credit, no data movement can occur, but…
• A credit-only packet can always be sent—it is not subject to flow control.

Although the above description talks about the sender and receiver as if those roles
are fixed, it is common for both sides of a LMP connection to send and receive, hence
both sides will be issuing and using credit. Note that the credit byte normally travels as
part of a LMP data packet, so LMP packets are not needed just for sending credit as long
as there is data to send and credit to send with. Obviously a little head scratching is in
order to set up an efficient credit policy.

6.4 Segmentation and Reassembly

The other TTP function is called SAR (segmentation and re-assembly). The basic
idea is that TTP breaks large data into pieces (segmentation), and puts it back together on
the other side (re-assembly). The entire piece of data being chopped up and re-constituted
is called an SDU, or Service Data Unit, and the maximum SDU size is negotiated when
the TTP/LMP connection is first made.

6.5 Tiny TP Service Primitives

As with the IrLAP and IrLMP layers, TTP operations are characterized as service
primitives:

• Connect: Negotiate maximum SDU size.
• Disconnect.
• Data: Reliable sequenced data.
• Local Flow Control: Stop data delivery.

• Udata: Unreliable, unsequenced (pass through to IrLMP).

TTP service primitives focus on the core of the LMP primitives—connect, send,
and disconnect, adding a means to exert flow control.

6.6 TTP Frame Formats

The two frame formats used by TTP are the connect packet (carried with the
IrLMP connect packet, hence the limited data length), and the data packet, carried with
IrLMP data packets.

0 to 59 bytes

User DataInitial CreditP=0

1 byte

IrLAPmax - 3 bytes

User DataDelta CreditM

1 byte

Data Packet

P = Parameter bit: 0 - No parameters 1 - Parameters included

M = More bit: 0 - Last segment 1 - More segments to follow (not last)

Connect Packet

7.0 IrDA Lite - IrDA Gets Small

7.1 IrDA Lite Overview

Up until this section, we have discussed layers of the IrDA protocol stack. This
section briefly describes a specification which does not create a new layer, but which
modifies layers already described.

The IrDA Lite specification describes a set of design and implementation strategies
that together yield the smallest possible implementation that will still perform connection-
oriented communications with a full IrDA implementation.

Naturally, the ultimate size of the stack will depend heavily on the hardware, the
software tools available, and the experience and skills of the development team. However,
our experience suggests that primaries under 10 Kbytes code size and secondaries under
5K are feasible on common CISC processors used in embedded systems. RAM usage can
be as low as a few hundred bytes, most of which is needed to buffer incoming frames.

7.2 An All or Nothing Deal?

The IrDA Lite specification is composed of a number of strategies. A developer
may choose to implement all of them, or only the ones appropriate to a particular device.
For instance, some of the strategies severely limit the performance of the stack:

• Speeds restricted to 9600 bps.
• LAP packet size restricted 64 bytes.

While the most severely constrained devices (watches, for instance) may both need
and tolerate these constraints, many devices (such as digital cameras) need high
performance. Some strategies do not affect performance at all, so a judicious choice is in
order to balance the needs for performance, functionality, and size.

By way of example, Counterpoint Systems Foundry offers three performance/size
points in its IrLite products: Compact (implements all possible IrDA Lite strategies);
Extended (allows speeds up to 4 Mbps and large packet sizes, but limits window size to
one); and Performance (Extended version plus window size up to seven—implements only
IrDA Lite strategies that do not affect throughput). Other combinations of features are
possible, but this illustrates that there is a substantial range of possible implementations
under IrDA Lite.

7.3 A Key element of IrDA Lite

While a description of most of the IrDA Lite strategies is beyond the scope of this
paper, it is worth noting the following key strategy and its effect on the decision to use an
IrDA Lite based protocol implementation.

In a non-IrDA Lite setting, applications issue an IrLMP disconnect when they are
done, and IrLMP closes the LAP connection when all the LMP connections are done. In
contrast, under IrDA Lite applications use the IrLAP disconnect operation when they are
done. Suppose we have two applications communicating on their respective LMP channels

with counterparts on another device. If one side finishes up and issues an IrLAP
disconnect, the other side’s connection will terminate without warning, a potentially
disastrous scenario.

Many embedded systems have a focused purpose and will find a single
communication channel adequate. If multiple applications desire separate channels at the
same time, things will still work as long as they are aware of each other and employ a “last
one to leave turns out the light” approach to the IrLAP disconnect. Alternatively, it may
be much easier for all applications to send all their data through an IrOBEX
implementation (discussed in the next section), and let OBEX take care of making and
breaking connections for everyone, as well as handling all the intricacies and contingencies
that occur in any communications task.

8.0 IrOBEX - Object Exchange Protocol

8.1 IrOBEX overview

IrOBEX is an optional application layer protocol designed to enable systems of all
sizes and types to exchange a wide variety of data and commands in a resource-sensitive
standardized fashion. It addresses one of the most common applications on either PCs or
embedded systems: take an arbitrary data object (a file, for instance), and send it to
whoever the infrared device is pointing to. It also provides some tools to enable the object
to be recognized and handled intelligently on the receiving side.

The potential range of objects is wide, encompassing not only traditional files, but
also pages, phone messages, digital images, electronic business cards, database records,
hand-held instrument results, or diagnostics and programming. The common thread is that
the application doesn’t need or want to get involved in managing connections or dealing
with the communications process at all. Just take the object and ship it to the other side
with the least fuss possible. It is very similar to the role that HTTP serves in the Internet
protocol suite, although HTTP is very “pull”-oriented in its fundamental design, while
OBEX is more evenly balanced.

8.2 Characteristics of IrOBEX protocol

OBEX was created to “package” an IrDA communications transaction as
completely as possible and thereby dramatically simplify the development of
communications-enabled applications. It was further designed to meet the following
criteria:

• Simple: Supports most-needed operations/applications.
• Compact: Under 1K code on small system.

• Flexible: Supports data handling for both industry standard and custom types.
• Extensible and Debug-able.
• Works on IrDA, but is transport independent.

8.3 Components of IrOBEX protocol

The OBEX standard consists of the following pieces:
• Session model: The rules of conversation governing the exchange of objects.

Includes optional negotiation during connection, a set of operations such as
Put and Get. Allows terminating the transfer of an object without closing the
connection. Supports graceful close of a connection.

• Object model: Provides a flexible and extensible representation for objects and
information describing the object.

• Guidelines for use and extension:
• Defining new session operations.
• Defining new object types

• IAS entry for a default OBEX server, and suggestions for its capability.

9.0 IrCOMM - Serial and Parallel Port Emulation

9.1 IrCOMM Overview

When the IrDA standards were developed, there was a strong desire to allow
existing PC applications that use serial and parallel ports to operate via infrared without
change. These applications, collectively known as “legacy applications”, included printing,
file transfer applications such as LapLink or Carbon Copy, and modem communications.

However, IrDA infrared communications differs significantly from serial and
parallel communications. For instance, both serial and parallel cables have individual
circuits over which signals can be sent independently and concurrently. By contrast,
infrared has a single beam of light, and all information must be fitted into LMP or higher
layer packets in a serial stream.

The IrCOMM standard was developed to solve these problems and allow legacy
applications to be used over infrared with a minimum of hassle. The key feature of
IrCOMM is the definition of a so-called control channel to carry the non-data circuit
information. In the stack picture, IrCOMM rests on top of IrLMP and TinyTP.

IrCOMM is an optional IrDA protocol that applies only to certain applications. In
general, new applications are better served if they avoid IrCOMM and use other IrDA
applications protocols such as IrOBEX, IrLAN, or TinyTP directly. This is because
IrCOMM masks some of the useful features built into the lower protocols. After all, its job

is to make IrDA look like serial and parallel media that do not have handy features like
automatic negotiation of best common parameters and a “yellow pages” of available
services.

9.2 IrCOMM Service Types

Because different applications use the non-data circuits of serial and parallel
communications to varying degrees, four service types are defined in IrCOMM:

• 3-Wire Raw (Parallel and Serial Emulation): Sends data only, no non-data
circuit information and hence no control channel. Runs directly on IrLMP.

• 3-Wire (Parallel and Serial Emulation): Minimal use of control channel. Uses
Tiny TP.

• 9-Wire (Serial emulation only): Uses control channel for status of standard RS-
232 non-data circuits. Uses Tiny TP.

• Centronics (Parallel emulation only): Uses control channel for status of
Centronics non-data circuits. Uses Tiny TP.

10.0 IrLAN - LAN access

10.1 IrLAN Overview

The final optional protocol discussed is IrLAN. It is mentioned only briefly
because it is not an approved standard at this time, nor is its use widespread in the world
of embedded systems—it primarily serves as an extremely convenient connection between
portable PCs and office LANs.

IrLAN offers three models of operation:

• Enable a computer to attach to a LAN via an Access Point Device (sometime
called an IR LAN Adapter). The Hewlett Packard NetBeam IR is an example
of this type of device.

• Enable two computers to communicate as though attached on a LAN—in
effect an instant LAN between a pair of machines, with access to the other
machines’ directories and other LAN capabilities.

• Enable a computer to attach to a LAN through a second computer already
attached.

11.0 Summary

IrDA Protocol stack implementations are available today on Windows 95, Window

3.x, Macintosh, a few PDAs, peripherals and adapters from HP, ESI and others. Stacks
are also available in kit form for embedded applications, and are rapidly approaching on
major embedded operating systems such as pSOS, OS/9, VxWorks, GeoWorks, Windows
CE, Itron, and others.

Features like automatic selection of compatible communication parameters and
service “yellow pages” make the IrDA protocols well-suited to embedded devices, even in
consumer markets where the device must communicate simply (like a TV remote control)
to gain wide-spread acceptance.

The IrDA standards documents and additional information about the Infrared Data
Association are available at www.irda.org. The IrDA web site also includes links to
suppliers of hardware and software. Information about Counterpoint Systems Foundry,
Inc., can be obtained at www.countersys.com.

The IrDA meets quarterly (most often in the California Bay Area) to discuss
ongoing standards work, show off and discuss new products and technologies, and bring
together individuals and companies with common interests.

