
DRIVER::WORKS™ Device Driver Development for Windows NT and Windows 98 (WDM) Version 2.0

Driver::Works exposes the object oriented design of Windows NT with a well-organized class library that closely models the
operating system. Driver::Works hides the messy details of NT/WDM driver design, greatly simplifying driver design and devel-

opment for both beginner and advanced device driver program-
mers. Driver::Wizard™ generates device drivers tailored for your
hardware. There is simply no faster, easier, or better way to build
device drivers for Windows NT or WDM.

Driver::Works hides the complexity of Windows NT and
WDM device driver development with a simple, easy-to-
use Wizard, class library, documentation, sample code,
and Vireo’s renowned technical support.

New in Release 2.0
• Enhanced WDM support:

• Stream Minidriver classes
• Video capture stream sample
• WDM resource configuration
• Improved USB support

• New Wizard supports:
• WDM
• Additional bus types
• Native MSVC projects

• New Driver::Monitor supports
Windows 98, timestamps, and
more

• New utilities

• New sample drivers

Driver::Wizard™ generates a device driver tailored
to your needs. With support for many bus types
including PCI, USB, ISA, PCMCIA, Driver::Wizard
can generate more than a thousand lines of code
to jump-start your development.

Driver::Monitor™ provides a unique workbench
for loading, testing, tracing, and unloading your
device driver.

According to Visual Developer in the Aug/Sep 1997 issue:

“If you develop drivers for Windows NT and/or
WDM, then this [Driver::Works] is the best way
to develop them, period.”

Driver::Wizard
Benefits
• NT or WDM drivers
• Bus-specific support:

• PCI
• PNPISA
• USB
• ISA
• PCMCIA
• and more

• Hardware resources support
• DMA support
• Mapped memory support
• Port I/O support
• Writes IRQ and DPC handlers

• Creates IRP handlers
• Optional trace code for debugging
• Integrated with MSVC
• Define IOCTL codes
• Select IRP queueing method

Here are just some of the sample drivers included in Driver::Works.

BASICPCI A skeletal driver for a PCI device. Illustrates assignment of
resources and access to the PCI configuration space. See
MASTRDMA for a full PCI example.

BUSADDR A demonstration of usage of class KPeripheralAddress and
related classes. Shows how to map a physical region of a
memory mapped device to process space, and how to do
port I/O. This example accesses hardware specific to Intel
platforms.

BASICUSB Shows how to access the USB configuration descriptor,
how to set up a configuration, and how to create interface
and pipe objects to model a USB device.

COMMFILT A filter driver for serial devices. Includes a GUI
application.

CONTROLR A demonstration of class KController. Illustrate serialization
of IRPs for devices sharing common physical resources
represented by a controller object.

DBGMSG A driver written to support message passing from
kernel mode drivers to utility program Driver::Monitor.

FILE A demonstration of file I/O from a kernel mode driver.

HIDMOUSE A WDM HID minidriver that enables control keys to simulate
mouse movements.

INTRDEMO A demonstration of handling hardware interrupts.

KBDCLASS A keyboard class driver, based on the DDK sample.

KBFILTER A filter driver for the keyboard.

MAPMEM A demonstration of memory mapped devices.

MASTRDMA A driver for a Datel PCI416L analog to digital board, demon-
strating bus master DMA.

PARPORT A contention handler (class driver) for the parallel port,
based on the DDK sample.

PCIENUM A driver to enumerate all the PCI devices in the system.

PCIWDM Provides a framework for a monolithic driver of a PCI device
in the WDM environment.

PORTIO A driver to support a simple utility program that enables you
to read and write ports interactively.

RAMDISK Implements a RAM disk, under the control of a GUI applica-
tion.

SERIAL A driver for 8250 style UARTs, using an extensible
SerialDevice class. This sample can be used to replace the
standard system-provided serial driver.

SLAVEDMA A driver for the National Instruments ATM-IO-16X analog
to digital board, illustrating how to perform slave (system)
DMA.

USBFILT A driver that filters URBs directed to and from a USB device.

VIDCAP A stream minidriver that implements video capture.

How much time and work does
Driver::Works save?
The first code sample below shows how to use Driver::Works to
report the use of one interrupt line and one I/O port to Windows.
The second sample shows how to perform the same task using
the DDK.

countOfPartials = 2
;

sizeOfResourceList
= sizeof(CM_RESOURC

E_LIST) +

(sizeof(CM_PARTIAL_
RESOURCE_DESCRIPTOR

)*

(countOfPartials-1)
);

resourceList = ExAl
locatePool(

PagedPool,

sizeOfResourceList

);

RtlZeroMemory(resou
rceList, sizeOfReso

urceList);

resourceList->Count
 = 1;

resourceList->List[
0].InterfaceType =

Isa;

resourceList->List[
0].BusNumber = 0;

resourceList->List[
0].PartialResourceL

ist.Count = countOf
Partials;

partial = &resource
List->List[0].

PartialResourceList
.PartialDescriptors

[0];

partial->Type = CmR
esourceTypePort;

partial->ShareDispo
sition = CmResource

ShareDeviceExclusiv
e;

partial->Flags = (U
SHORT)Extension->Ad

dressSpace;

partial->u.Port.Sta
rt = Extension->Ori

ginalController;

partial->u.Port.Len
gth = Extension->Sp

anOfController;

partial++;

partial->Type = CmR
esourceTypeInterrup

t;

partial->ShareDispo
sition = CmResource

ShareShared;

partial->Flags = CM
_RESOURCE_INTERRUPT

_LATCHED;

partial->u.Interrup
t.Vector = Extensio

n->OriginalVector;

partial->u.Interrup
t.Level = Extension

->OriginalIrql;

RtlInitUnicodeStrin
g(

&className,

L"LOADED SERIAL DRI
VER RESOURCES"

);

IoReportResourceUsa
ge(

&className,

Extension->DeviceOb
ject->DriverObject,

NULL,
0,
Extension->DeviceOb

ject,

resourceList,

sizeOfResourceList,

FALSE,
ConflictDetected

);

ExFreePool(resource
List);

Using Microsoft DDK:

•

KResourc
eRequest

 ResReq(
BusType,

 BusNumb
er, 0);

ResReq.A
ddPort(B

ase, Bas
e, Lengt

h, 4,

CmResour
ceShareD

eviceExc
lusive);

ResReq.A
ddIrq(Ve

ctor, Ve
ctor, 0,

CmResour
ceShareS

hared);

status =
 ResReq.

Submit(t
his, *Re

gPath);

Using DRIVER::WORKS:

Driver::Works Classes
The Driver::Works classes are carefully
designed and constructed for two primary
purposes:

1) To help you better understand NT and
WDM device drivers

2) To simplify the development of NT and
WDM device drivers

The Framework Classes
The Framework classes capture the single
driver, multiple device architecture defined
by the NT/WDM device driver model. These
classes handle all of the bookkeeping
required to pass messages to the correct handler within a dri-
ver. Special support is provided for WDM minidrivers to sim-
plify the callbacks defined by Microsoft for different device
classes.

Resource Management Classes
The Resource Management classes create a single, simple
interface used to request and manage hardware resources.
The simple nature of these classes hides a confusing tangle
of data structures and calls that are provided by the Microsoft
DDK.

Hardware Control Classes
The Hardware Control classes simplify the interface to your
hardware. Once again, thousands of lines of Driver::Works
library code create a simple and consistent interface to an
otherwise messy set of calls and structures.

Dispatcher Objects
The Dispatcher Object classes unify the waitable objects
defined by the NT/WDM system.

Memory Classes
The Memory Classes encapsulate memory management, sim-
plifying heap management and the use of Memory Descriptor
Lists (MDLs).

Container Objects and Utilities Classes
Take advantage of thousands of lines of source code
designed to eliminate repetitive coding. The Container and
Utility classes let you use Vireo’s bag of tricks, including com-
mon data structures such as Lists and FIFOs, debug tracing,
string management, and easy and direct access to values
stored in the system registry.

Driver::Works ClassesDriver::Works Classes

What does DAA mean to the
Driver::Works developer?
Driver::Works implements Vireo’s Device Access
Architecture (DAA) for use in Windows NT and WDM

drivers. Because the DAA interfaces are also provided in
VtoolsD for use in Windows 95/98 VxDs, and in Driver::Agent
for use in applications, porting is a snap!

Use DAA to take advantage of easy portability between plat-
forms without sacrificing access to the full, native device
interfaces available on each system. Vireo’s Device Access
Architecture is designed to provide optimal performance on
each platform while at the same time offering a simple, common
set of objects and interfaces that offer source code portability
with no limitations or overhead.

Kernel Mode

User Mode

DAA Library
Interfaces

• I/O Registers

• Mapped Memory

• Interrupt Handling

• Deferred Procedure

Calls

• Registry Access

• Unicode Strings

• Tracing Facilities

• IOCTL Abstraction

• Resource

Assignment

• Shared FIFOs

• List Operations

• Spin Locks

• Timer Services

Hardware

95/98

Fast Option

Windows NT
3.x/4.x

Application

DRIVER::AGENT

VTOOLSD

DRIVER::WORKS

Kernel Agent

VxD
Windows 95/98

WDM
98/NT 5.0

Device Access ArchitectureDevice Access Architecture

A.
Q.

DRIVER::WORKS™ Vireo Software, Inc.

Vireo Software, Inc.
30 Monument Square, Suite 135, Concord, MA 01742
Phone (978) 369-3380 Fax (978) 318-6946 Email sales@vireo.com Web www.vireo.com

Q. How does Driver::Works speed
up device driver development?

A. Driver::Works is a next-generation envi-
ronment for device driver development based
on a powerful and flexible C++ class library
coupled with a powerful code generation
wizard.

Over time, Windows application development
has evolved to class libraries such as MFC
and development tools such Microsoft’s
Application Wizard. Vireo provides a similar
environment for Windows NT and WDM
device driver development.

The Driver::Works class library offers thou-
sands of lines of tested code that reduce
many complex tasks to simple library calls.
In fact, Driver::Works offers by far the most
complete device driver library available.

Driver::Works also ships with complete
examples that are designed to be used as
a basis for further development.

Driver::Works also includes Vireo’s unique
Driver::Wizard technology. Driver::Wizard
guides you through a series of steps that
identify many characteristics of your device.
Driver::Wizard then generates source code
tailored to your driver.

Q. Does Driver::Works incur any
performance penalty?

A. No.

The Driver::Works libraries take extensive
advantage of C++ inline members to eliminate
overhead. In the few cases where even 2-3
instructions of overhead may be too much
(for example, the interrupt handler for a high-
frequency interrupt) the programmer can
choose between a class member or stand-
alone implementation.

In real-world tests, we have found no percep-
tible difference in performance between
Driver::Works drivers and drivers written
using only the Microsoft DDK.

Q. Is it safe to use C++ in a
device driver?

A. Yes.

Vireo has been supplying C++ device driver
tools since the release of VtoolsD in 1993.
Vireo’s libraries provide the infrastructure
required to safely use C++ within device dri-
vers. Whether writing in C or C++, developers
should avoid writing drivers that require large
amounts of stack space. Vireo uses C++ fea-
tures carefully and selectively to provide the
advantages of the language without overhead.

Q. What kind of drivers is
Driver::Works designed for?

A. Driver::Works is well suited for both
monolithic and layered drivers, NDIS protocol
drivers, filter drivers, USB devices, PCI and
ISA hardware devices, and many others. New
examples are made available on a regular
basis.

Q. Why choose Driver::Works?

A. Vireo has an unequaled reputation for
providing the tools and support you need to
develop device drivers. Our job isn’t finished
until your driver is working well!

Vireo provides free bug fixes available for
immediate download. Timely new versions
provide support for new compiler versions
and operating system revisions. Vireo also
provides new examples and bug fixes on a
regular basis.

Driver::Works incorporates years of class-
library design experience into a clean, object-
oriented system that accurately reflects the
underlying system architecture while avoiding
the use of arcane C++ language features.

Driver::Works never leaves you in the dark!
Full library source code is included in every
package, along with support for both Intel and
Alpha platforms.

Q. What is included in the
Driver::Works package?

A. Driver::Works includes:

• Driver::Wizard — practically writes your
driver for you.

• C++ Class Library for NT/WDM driver
development

• Windows NT support

• Windows 98 support

• Driver::Monitor — monitor driver activity
without a debugger

• Full technical support

• 30-day money back guarantee

• Complete library source code

• RISC platform support

• Full integration with Microsoft Visual C++

• Working examples

• Over 19,000 lines of sample code

• More than 20,000 lines of library source
code

• More than 700 pages of printed and online
documentation

Q. What is required to use
Driver::Works?

A. Driver::Works requires Microsoft Visual
C++ version 4.2 or later, and the Microsoft NT
DDK, or the Windows 98 DDK. Driver::Works
drivers have been tested on both Alpha and
Intel single and dual processor platform.

FAQs

C
op

yr
ig

ht
 ©

 1
99

8,
 V

ir
eo

 S
of

tw
ar

e,
 I

nc
.

